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Abstract

Belief Networks (also known as Graphical Probabilistic Networks and with various other
names) offer a useful formal language for stating complex arguments in rigorous, yet
visually clear terms. They are thus promising candidates for describing the complex,
often unclear reasoning that is often implied, but not described, when reasoning about
software dependability, in particular when "engineering judgement" comes into play.

We introduce the problem of building a rigorous safety case for software, and argue the
merits of belief networks as an aid for building, criticising and perfecting such safety
cases. This first report includes a high-level introduction to Belief Networks, and then
introduces and discusses a small but realistic example. Our conclusion is that this method
has great potential for making safety arguments easier to communicate and check, and in
the end more trustworthy.
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1  Introduction

Evaluating in quantitative terms the safety of software products is quite difficult, and as a
result the "software safety case"1 is usually a weak link in the demonstration of safety of
any system that includes computers. A lively debate exists about the need, and the very
possibility of giving a probabilistic measure of software reliability or safety; yet, if
system-level safety requirements are expressed in terms of probabilities, so must logically
be the requirements for any safety-critical subsystem or factor, including software.
Furthermore, our knowledge about the possibility of future failures can only be
probabilistic. The necessity of evaluating software dependability (reliability or safety) in
probabilistic terms is argued in detail for instance in [Littlewood and Strigini 1993].

Although it may be argued [Leveson 1991] that safety and reliability are goals that call
for different engineering approaches, they are similar concepts. Reliability measures
relate to the probability of failures; safety measures relate to the probability of unsafe
failures. The problems in evaluating them are similar. In many applications of
software, evaluating safety separately from reliability is impossible, because any
software failure may (because of either the nature of the application, or the lack of
safeguards in the design of the system) affect the behaviour of the system in arbitrary,
potentially unsafe ways. In the rest of this paper we shall usually refer to safety,
although it will be clear that the methods used are applicable to reliability evaluation,
and large subsets of our examples actually deal with reliability.

A probabilistic assessment of the safety of software is a formidable task for the assessor,
for which no proven methodology is available. Accepted standards and guidelines only
help in checking that recommended or prescribed practices were applied in the
development, verification and validation of the software, not that the result of their
application is indeed the required level of  safety. Mathematically rigorous conclusions are
only possible from very specific types of evidence, e.g., results of statistical testing, and
are often insufficient for certifying the required levels of safety [Littlewood and Strigini
1993, Strigini 1994a].

The assessor is confronted with a wealth of evidence about the design methods used, the
quality assurance organisation, and the results of testing, none of which is in itself
sufficient to prove the desired conclusion, e.g., that a system has a certain small
probability of dangerous failure. In these conditions, the assessor uses "engineering
judgement" to integrate all this evidence into a statement that the software is safe (or
reliable) enough. We believe that this step of integrating the available evidence into a
single, probabilistic statement is an essential, unavoidable phase in the assessment. No
improvement in software engineering (e.g., wider use of formal methods) will obviate its
necessity (for a more complete argument, see [Littlewood and Strigini 1993]).

In this judgement, experts rely on their previous experience as well as on the evidence
about the individual project they are assessing. The net of cause-and-effect chains,
deductions and inferences which binds the evidence with the conclusion to be reached is
presumably rational, but so complex as to defy analytical description. In trusting
engineering judgement, we rely on the ability of the human mind's (and especially the
experts' mind, through partially unconscious algorithms learnt from experience) in

1 The term "safety case" is currently used in some fields of industry to indicate a documented body of
evidence organised to provide a convincing and valid argument that a system is adequately safe for a given
application in a given environment (paraphrased from [Bishop, 1994]) .
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deriving decisions from such complex mazes of evidence and reasoning. However, these
abilities cannot be taken for granted: there is abundant literature (from experimental
psychology) showing the fallibility of various categories of experts in such tasks [Strigini
1994b]. In addition we must consider that safety assessment often concerns rare events
for which paste experience may simply be insufficient to draw any strong conclusion.

The assessor thus has to rely on engineering judgement, but this judgement is an
obscure, hidden psychological process and it should not be trusted lightly. To quote
Richard Feynman, "As far as I can tell, 'engineering judgement' means they are just
going to make up numbers" [Feynman 1988]. But engineering judgement does not need
to be trusted blindly, if the actual reasoning of the expert, or the rigorous reasoning for
which the expert's quick insight provides a shortcut,  can be described, and thus checked
and criticised by the same or by other experts [Strigini 1994b]. Unfortunately, this is
usually not done because of the daunting complexity of the task.

To facilitate the task of the assessor, we have looked for ways of formalising the software
safety case, i.e., giving an explicit formulation of the reasoning of the assessor,
susceptible of a rigorous mathematical interpretation. The benefits we would expect from
such "formalisation" are that the assessor can double-check his/her own reasoning for
consistency and plausibility of its premises and deductions, and the safety case is open
for inspection by other assessors, corporate decision makers, licensing authorities, etc.
The consistency of the arguments can be checked by automatic tools, so that the human
assessors can concentrate on the correctness of the premises and the structure of the
reasoning, rather than the verification of the complex computations involved.

 These methods, if supported by enough statistical evidence (e.g., about the effectiveness
of software engineering methods) could raise the levels of safety of the software that can
be reliably certified. In particular, they would allow the assessor to take into account all
the evidence available, while preserving logical and mathematical rigour. Even when
modest levels of safety are assessed, having an argument with a trustworthy logical
structure would be an improvement (in terms of better confidence in the conclusions) over
the current state in which quantitative assessment, if provided, is usually given as
experts' opinion, without the possibility of verifying the reasoning which led from the
existing evidence to that opinion.

We chose the formalism that is variously called "belief networks", "probabilistic belief
networks", "Bayesian causal networks", and such. This formalism, with software tools
allowing its use by non-mathematicians,  is being increasingly applied to decision
problems in different fields [Hall et al. 1992, Kleiter 1992, Reed 1993]. It is based on the
calculus of probabilities, which seems appropriate not only because the goal is
probabilistic assessment, but also because most of the reasoning in  engineering
judgement must be (at a conscious or unconscious level) of a statistical or probabilistic
nature: it deals with predicting the outcome of an individual case on the basis of
experience with a class of similar cases. This formalism is based on a Bayesian approach
to probability, i.e., the probability of an event is seen as the "degree of belief" that one
can rationally hold about the event taking place. The calculus of probabilities can then be
used for deduction from premises that are statements about the probabilities of events
rather than deterministic statements about events taking place or not taking place.  In
particular, statistical inference from observed facts is treated uniformly with the rest of
probabilistic reasoning (of which deterministic arguments and proofs are a special case).
Automated tools  are available for manipulating belief networks (in general, these tools
were originally intended for the construction of expert systems using Bayesian calculus to
deal with uncertainty).

This formalism and its supporting tools seems to have a potential for helping assessors
with many of their current problems: integrating "process-related" and "product-related"
reasoning; integrating structure-based probabilistic modelling with statistical inference;
building rigorous arguments for critical "lemmas" in a safety case, while retaining the
possibility of integrating these into larger arguments at a later stage if necessary;
building safety cases that can be used throughout the lifetime of a product,  updated
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with new evidence, detailed where necessary by adding new sub-arguments or refining
pre-existing ones; building re-usable templates of the safety cases, each appropriate for
use in a specific category of situations (application, organisations, etc.), making these
easy to use for (non-mathematician) domain experts but retaining the ability to access,
check and modify the underlying mathematical structure.

To know whether belief networks are appropriate in practice as an aid in software safety
cases, one needs to investigate whether their formalism is reasonably easy for specialists
in the software dependability field, and whether it lends itself to representing the kind of
information that are available in a software evaluation exercise.

This paper is meant to provide a first supporting argument for the appropriateness of
Bayesian networks as an aid for the assessment of software dependability, and for the
feasibility of their use. It is based on  simple exercises in using probabilistic belief
networks for reasoning about software dependability. These exercises use plausible
scenarios and numerical values, but are not based on actual software projects, nor do they
represent a  complete safety case. Our purpose in performing these exercises is to evaluate
whether the application of this method to an industrial case study would be worthwhile,
and to obtain indications for guiding it. For instance, we are interested in learning which
structures of belief networks would be useful and how the kinds of statistical knowledge
that are typically available could be integrated into them.

In section 2, we recall the problems of software evaluation, and in section 3 we briefly
introduce Bayesian reasoning and belief networks. Section 4 contains two simple
examples; Section 5 discusses the value of belief networks or similar formal mathematical
reasoning for a safety case. Section 6 develops in some more detail an example belief
network, showing some of the issues made explicit in defining the belief network, the
difficulties of the task and the results to be expected. Section 7 presents our conclusions.

2 Problems in probabilistic assessment of software

The difficulties of obtaining trustworthy predictions of software dependability are well
known. Claims of high dependability are usually based on a combination of diverse
evidence, like test results, use of good (i.e., conducive to high reliability) programming
languages and tools, existence of a quality assurance or safety plan, etc. Of these
elements, only test results are direct evidence about the dependability of the product. The
other elements (mostly concerning the software production process) may indicate that the
dependability measures for the product are likely to be in a certain range; but they
certainly do not allow very precise predictions. It has been observed (see e.g. [Fenton
1993, Fenton et al. 1994] that  most claims about the usefulness of software engineering
methods and tools are supported by very little statistical evidence. Even such popular
principles like structured programming have been accepted on the basis of convincing
advocacy rather than good experimental science. On the other hand, whatever little
support (for predicting high levels of dependability) can be obtained from process-related
evidence is needed, as the dependability requirements for critical software products often
exceed what can be demonstrated by testing only.

The arguments that can be built with  process-related evidence are usually of a complex
probabilistic nature: for instance, a good programming language does not absolutely
prevent programming errors. What it does is enhancing the expectation that in most
projects, if coupled with other favourable conditions (e.g., good management and project
scheduling, competent programmers) it will produce few (possibly zero) faults, and
programs will be unlikely to contain many faults, unless the choice of language is
accompanied by seriously detrimental conditions (like excessive time pressure and
inexpert personnel). This expectation that using a certain programming language will lead
to generally less error-prone (than is otherwise common) programming may be justified,
in its turn, by the fact be that this programming language has been observed to lead to
fewer errors. The latter is a statistical argument, which is more or less strong - and thus



Formalising a software safety case via belief networks 4

SHIP/T/0046v1.9  Final

raises our expectation by different amounts- depending on the size and representativity of
the sample observed. Another supporting argument may be based on a model of the
mental activities involved in programming, the patterns of errors and the way these are
affected by the features of programming languages; in this case, statistical supporting
arguments are needed separately for the different parts of the model. Other evidence in a
safety case will be of a deterministic nature, e.g. a proof that the product is incapable of
certain kinds of erroneous behaviour, provided that some hypotheses hold. The statement
that the hypotheses hold may in turn be supported by a probabilistic argument (see
examples in [Powell 1992]), and so on. These arguments are thus by necessity involved
and difficult to verify, which explains the frequent recourse to "engineering judgement"
as a label for incompletely developed arguments.

We believe that a way forward lies in stating the arguments with enough precision to
make them amenable to thorough verification and criticism. Clearly, the formalisation
process cannot be based on a simple recipe, but must depend on the details of the
evidence available.  For instance, the implication of the knowledge that a certain set of
software engineering methods and tools have been used may include, for different tools,
such diverse consequences as, e.g.:

- software bugs of a certain category are guaranteed to be absent (with a high
probability, given by the confidence that a certain tool deterministically avoids or
eliminates such bugs);

- some software bugs are likely to be rarer than if a certain tool had not been used, as
shown by experience on other projects (and the significance of this experience for
drawing conclusions about the current project is itself to be deduced through complex
reasoning);

- a certain method is thought to improve reliability, but this belief is based on
conjectures about the behaviour of the programmers that have never been tested
experimentally;  etc.

The supporting general knowledge that can be used to step from the raw evidence to
dependability claims may range from physical laws, to general deterministic proofs of
properties of the software, to probabilistic laws derived either from proof (e.g. about the
effectiveness of a cryptographic algorithm or an error-detecting code) or from statistical
evidence (e.g., about the effectiveness of a certain debugging technique). Managing the
complex logical structures that result from these interrelated arguments (keeping track
of which factors affect which other factors) is a difficult task in itself (see for instance
[Kailar et al. 1994] for an attempt to trace all the sub-arguments needed for the rigorous
assessment of cryptographic protocols).  After tracking the logical dependencies, some
calculus is needed to deduce whichever predictions can be deduced from all the raw
evidence available.

Different formalisms (each with a calculus of its own) have been developed for
reasoning with uncertainty [Ng and Abramson 1990, Saffiotti et al. 1992, Wright and
Cai 1994], the most popular ones being Bayesian calculus [Cheeseman 1988, Pearl
1988], fuzzy theory [Zadeh 1975] and possibility theory [Zadeh 1978, Dubois and Prade
1988]. We explore the use of Bayesian calculus, for which there are both a rigorous
mathematical definition and plausible claims that it offers support for optimal
decisions. Bayesian calculus can be criticised in that it requires the available knowledge
to be expressed in forms that may be alien to the intended users of the method, and such
that the translation may be prohibitively difficult. Whether these problems are serious
in our particular context will have to be investigated by experiment.

Reasoning about the effects of process factors on software safety may imply reasoning
about their effect on static characteristics of the product (e.g. design faults), and of the
latter on the behaviour of the product (as a function of the particular usage profile to
which the product will be subjected). Reasoning about safety may imply reasoning in
terms of reliability of the product, and of the more or less dangerous effects of failures,
as a function of the usage profile and the characteristics of the usage environment.

A formally structured argument is not in itself a guarantee of successful evaluation, if by
this we mean obtaining a prediction of satisfactory dependability. The formalism and
calculus only facilitate the use of existing knowledge, and thus make it easier to avoid
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erroneous deductions. They cannot compensate for missing knowledge: no sophisticated
mathematical treatment can prove, say, that a product which has not been extensively
tested, and was produced by some new, untested method, is very dependable. It is also
important to choose which knowledge will be included in the argument: one could try to
model all kinds of subtle relationships between characteristics of the product and process,
but many of these will not increase the levels of dependability that can be claimed, while
they will multiply the effort of collecting and describing the evidence. While checking the
consistency and correctness of arguments can be left to an automated assistant, choosing
which evidence, and which knowledge about the implications of such evidence, is to be
included in the argument requires competent human decisions. In this, again, the tools for
formalised description of reasoning can be useful, because the user can tentatively add
more detailed knowledge to check its possible implications, and thus better decide which
level  is convenient in the formal representation of the argument.

3 Belief networks

In recent years, much attention has been directed at probabilistic reasoning in graphical
models. Graphical models are known under various synonyms as : Belief Networks,
Causal Probabilistic Networks, Bayesian Belief Networks, Causal Nets, Probabilistic
Cause-Effect Models, Probabilistic Influence Diagrams etc. They have been used in a
wide variety of applications [Pearl 1993, CACM 1995] as an appropriate representation
for probabilistic knowledge. Researchers from the communities of AI, Statistics,
Medicine, Decision Analysis are interested in the issue of probabilistic reasoning. In
addition to  theoretical investigation [Pearl 1986, Lauritzen and Spiegelhalter 1988],
software products have been built  (HUGIN [Andersen et al. 1989], ERGO [Herskovits
1994], DEMOS [Henrion et al. 1991]) to support the use of these notations. These
products were used early on in medical environments, with application later  extending to
various fields [Reed 1993]. What follows is a very brief introduction to the topic. The
interested reader can turn to ([Charniak 1991, Henrion et al. 1991, Jensen 1993, CACM
1995, Wright 1995]) for more complete information.

A belief network is a directed acyclic graph used to represent probabilistic relationships
among events. A key characteristics of this formalism is its ability to deal with the
inherent uncertainty of our knowledge about the real world. We represent our
probabilistic knowledge about a certain real-world situation by specifying: i) the topology
of the belief network and ii) probability tables associated with its nodes.  This model of
our knowledge also represents the arguments that can be built to support a thesis about
the probabilities of some events in the belief network, on the basis of the probabilities of
other events. An informal judgement can be formalised into a belief network, in that one
can specify a series of links of the form "the truth of statement A supports my belief in
statement B", and can also specify how much  the truth of A strengthens this belief in B,
compared e.g. to how much some other truth C would weaken it.

In a belief network, each node represents a set of events (a partition on the set of
outcomes of an experiment or observation), possibly a numerical random variable. The
events, or values of the random variables, are called the possible "values" or "states" of
the node. Arcs represent statistical or probabilistic conditioning of the value of a node on
that of other nodes. With each node, a table of probabilities is associated. If the node has
no incoming arcs (root node), this table lists the ["marginal"] probabilities of the possible
values of the node; if it has incoming arcs, the table is a table of conditional probabilities
(of the values of this node, conditional on the values of its "parent" nodes). Arcs and
tables of conditional probabilities can thus be used to represent the fact that knowledge
about one node is useful for predictions about another node: through cause-effect
relationships ("amount of debugging" and "number of bugs before debugging" affect
"bugs left after debugging"), or via more general correlation laws ("which team
developed this software" affects "number of bugs"). Once one has derived these
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probabilities (which is of course a difficult task, and the task where human expertise and
critical ability is best spent), an automated tool can:

- calculate, from the tables of conditional and marginal probabilities of the ancestor
nodes, the probabilities of events represented by nodes with incoming arcs;

- when an event (value of a node) is actually observed, update the ("prior")
probabilities given by the user to other events in the table (by repeatedly applying
Bayes' theorem to "propagate" the new knowledge along the arcs in the graph).

A typical use of arcs is to indicate causal links between the factors represented by nodes:
this intuitive meaning is what gives belief network (often called "causal networks")
their popularity in the AI field. However, the arcs may represent any kind of
probabilistic correlation: causal, diagnostic (from effect to cause, rather than from cause
to effect), or simply an observed statistical correlation that is believed always to hold.
An arc between nodes A and B (in either direction) indicates simply that if we know the
state of A our probabilistic knowledge about B (our subjective probabilities for the
states of B) is different than it would otherwise be. This information can be described in
mathematical terms by giving the probabilities of the states of A conditional on those
of B, or vice-versa, or via correlation coefficients between states of A and B: all these
representations are equivalent.  People reasoning in intuitive terms often treat diagnostic
correlation very differently from casual correlation (they treat diagnostic evidence as
weaker than causal evidence). It is thus useful that the language of belief networks
allows them to represent those correlation links that they best understand, and let the
support tools translate them into the single underlying mathematical representation,
using, for instance, causal information for diagnostic inference as required.

Choosing the conditional and marginal probabilities to be associated with the nodes is
obviously difficult, and this difficulty is probably the main perceived obstacle to a wider
application of Belief Nets. Each probability table can be derived either from statistical
inference from observed data, or from a probabilistic model of the real-world phenomena
described by the belief network. For the former case, tool developers are now enriching
their tools with the ability to automatically derive probabilistic knowledge from relevant
databases [Cooper and Herskovits 1991, Lam and Bacchus 1994, Olesen and al 1994],
so that the necessary knowledge can be automatically derived from large collections of
data about past cases. By comparison, the choice of the nodes and the arcs to be included
in a belief network appears to be relatively easy. However, the precise mathematical
implications of choosing a certain network topology may be hard to grasp intuitively. The
arcs entering a node imply a conditioning of the probabilities of the states of that node
only on the states of its "parent" nodes: the states of the parent nodes are enough to
determine the probabilities of the states of the child node. So, the absence of arcs between
two nodes is a statement of conditional independence between those two nodes
(conditional on the states of some other nodes).

In other words, a network topology implies that the joint probability distribution of all
the variables in the belief network can be decomposed in terms of the set of marginal
and conditional distributions associated with that topology. Any topology with
additional arcs (and many with different sets of arcs) could still (with appropriate
probability tables) represent the same joint distribution, but would fail to convey the
visual information that some nodes provide no additional knowledge for statements
about other nodes.

To reason in probabilistic terms we need to identify events of interest and random
variables related to events. The random variables must be chosen so as to be useful in
reasoning. For instance, a variable which cannot be measured, and about which we do
not know how it affects, or is affected by, other variables, is normally useless. So, the
task itself of selecting the nodes and arcs in a belief network will help one to focus on
the precise meanings of the concepts involved, the nature of the relationships (causal,
diagnostic, or other) between different concepts, and the availability or lack of factual
knowledge concerning these relationships.
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4 Introductory examples

We give in this section two simple examples of Bayesian inference and of the use of be-
lief networks. These examples are simple enough that one would not need Bayesian net-
works to follow their statements and solutions: hence their use as introductory examples.

4.1 A textbook example: diagnosis

A textbook example of the use of Bayes' theorem is in modelling diagnosis: e.g., what is
the probability that a patient who tests positive for a disease actually has the disease? For
a software-related parallel, we consider the following example.

We are developing a system, and know that there is certain bug type appearing in 3% of
the modules (this is our prior knowledge). The problem is deciding whether a certain
specific module contains the bug. We have a diagnostic test (for instance, a code
inspection procedure, an automated dynamic test procedure) for detecting that kind of
bug. From past experience, we know that, if a software module contains the bug, our test
will reveal an anomaly with a probability of 0.87. However, in 1 % of the modules that
do not contain the bug, the test will detect an anomaly as though the bug were present.
This test procedure is still valuable, as it is a straightforward way of signalling a possible
source of serious problems. However, if it detects an anomaly, what is the probability
that the bug really exists? We can represent our knowledge so far in the following table of
conditional probabilities.

Given this true state The test outcome will be
of the Anomaly detected No anomaly detected
module: .... with these (conditional) probabilities:
Bug Absent 0.01 0.99
Bug Present 0.87 0.13

Table 4.1 Conditional probabilities of test outcomes, conditional on the
bug being and not being present

To answer our question, we need the additional piece of information stated before, i.e.,
the probability that the bug exists in a module chosen at random (without any additional
knowledge to differentiate this individual module from the rest of the population) is 3 %.
In the terminology commonly used in Bayesian analyses, this is our  prior probability that
the module contains the bug. Having stated all these probabilities, we have enough data
for filling in the table below.

True State of the Software Module Total per row

Bug Absent Bug Present (probabilities of
test outcomes):

Outcome
  of

Anomaly
detected 0.97*0.01= 0.97 % 0.03*0.87=2.61 %  3.58 %

 test No anomaly
detected 0.97*0.99=96.03 % 0.03*0.13=0.39 % 96.42 %

Total per column
(probabilities of true
states of module)

                   97  %                     3  % 100 %

Table 4.2 Probabilities of the 4 possible situations, given the conditional
probabilities shown above and a 3 % prevalence of the bug.
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If, at this point, our test detects an anomaly in our module, the probability that the module
really contains the bug is given by the ratio of the probabilities of the two events ("the test
detects  an anomaly, and the bug is indeed there" (0.0261) and "the test detects an
anomaly" (0.0358), i.e.,  about 0.73. This probability of the bug being present,
conditional on the test detecting an anomaly, is called the posterior probability that  the
software contains the bug ("posterior", i.e., successive, to obtaining additional
information via the test). For each outcome of the test, this procedure (which is an
application of Bayes' theorem) yields the posterior probability that the bug is or is not
present, shown in the table below.

The probability that the bug is really
present absent

If the test says:   is:
Anomaly detected ~ 72.9 % ~ 27.1  %
No anomaly detected  ~ 0.4  % ~ 99.6 %

Table 4.3 Posterior probabilities of bug being present, given test result

Clearly, for the probabilistic model to yield correct predictions, the proper choice of prior
probabilities is just as important as that of the conditional probabilities.

The fact that the test, when it says that the bug is present, is wrong 27 % of the time is
at times seen as counter-intuitive. It is indeed common for people to assume at first that
the test can only be wrong 13 % of the time, confusing between the conditional and the
marginal probabilities.  One can also notice that when the test results is the "usual" one
("Bug not detected"), the resulting posterior probabilities are not very different from the
prior probabilities. It is the relatively rare observation, i.e. the test output "Bug
detected", that dramatically changes our beliefs.

This simple reasoning structure would be represented by the following belief net, with
two nodes (each with two possible states) and one arc:

True state of the module  
("Bug is present"  
or  
"Bug is not present")

Test results
("Anomaly detected"
or
"No anomaly detected")

Fig. 4.1

To the node on the left, one would associate the marginal probabilities of its two possible
states, and to the node on the right, the conditional probabilities from our first table. The
computer tools available for manipulating belief networks would then be able to calculate
any consequence of this initial setting and of any additional observation about the facts
represented. For this network, they automatically compute our prior distributions of the
states of the nodes on the right (marginal probabilities of test outcomes - totals for the
rows of our second table); they allow the user to state e.g. that the state of the right-hand
node is "Anomaly detected", and the tool then automatically computes the posterior
probabilities for the node on the left, as in the right-hand column of our third table.

4.2 Statistical testing example

A software product is developed with a certain requirement on its probability of failure on
demand (Pfd). Then, to test that it satisfies this requirement, the software is subjected to
statistical testing (with inputs chosen as independent samples from an input distribution
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representative of the intended operational use of the software). If the testing reveals any
fault, the software will be subject to further debugging. If the testing reveals no fault,
however, we are interested in knowing what probability of failure on demand we should
expect from the software.

In this case, we represent our knowledge in the following 4-node network. We have
assumed here that the Pfd may take on a discrete series of values: 0 (perfect software),
10-6, 10-5, 10-4, 10-3, 10-2.  This is clearly an approximation of a "reasonable belief",
which would clearly take the form of a continuous distribution (there is no reason why
the true Pfd should not be, for instance, 0.008). Requiring that the event described in
each node of a belief network may assume only a finite number of values is an
unfortunate artefact of the computer tools we are using, which may be alleviated by
subdividing the real axis in as many intervals as is convenient. On the other hand, an
approximation with only few possible values may often be more natural for the expert
who has to express his/her prior beliefs, and be sufficient for an initial check of the
probabilistic argument. We have only used six values to keep the example reasonably
simple. Notice that considering a Pfd>10-2 completely impossible is a strong assumption.
According to the rules of Bayesian calculus, it will prevent us from accepting even a small
probability of such values, even if confronted with much evidence in that sense. Such
assumptions should be made cautiously, only on the basis of strong arguments, or, even
better, one should check that their effect on the specific conclusions one reached through
the use of the belief network is negligible. The belief network we choose is as follows:

  

Any failure in 500 
test runs? (Yes/No)

Any failure in 2500 
test runs? (Yes/No)

Any failure in 5000 
test runs? (Yes/No)

probability of failure 
on demand (Pfd): 
six possible values

Fig. 4.2.

For a given value of the Pfd, we derive the conditional probabilities of the two outcomes
at each of the lower three nodes using the formula (justified by the fact that tests are
independent trials - Bernoulli trials):

P(no failures in a run of N tests | Pfd=p) = (1-p)N

The choice of prior probabilities or probability distributions is the most sensitive part of
the exercise. Whatever assignment we choose, it must be supported by some rational
argument. We first explore the case in which the six possible values of the Pfd are
considered (prior to testing) equally likely (each has probability 1/6).

This could be described as a description of "ignorance"; but this is just an artefact of our
choice of letting the Pfd take only these six possible values. In general, there is no
unique "ignorance" prior. In this case, plausible alternatives would be, for instance:
equal probabilities for each among many Pfd values in the sequence  0.1, 0.01, .. ; a
uniform probability density function along the interval [0,1].
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Conditional probabilities of values of the leaf nodes
After 500 tests After 2500 tests After 5000 tests

Pfd Value 0 failures ≥ 1 failure 0 failures ≥1 failure 0 failures ≥1 failure
0 1 0 1 0 1 0

0.000001 ~1 5.00E-04 9.98E-01 2.50E-03 9.95E-01 4.99E-03
0.00001 9.95E-01 4.99E-03 9.75E-01 2.47E-02 9.51E-01 4.88E-02
0.0001 9.51E-01 4.88E-02 7.79E-01 2.21E-01 6.07E-01 3.93E-01
0.001 6.06E-01 3.94E-01 8.20E-02 9.18E-01 6.72E-03 9.93E-01
0.01 6.57E-03 9.93E-01 1.22E-11 ~1 1.50E-22 ~1

Table 4.4: Conditional Probabilities of Leaf Nodes, given the 6 possible
values for the Pfd.

This prior belief for the top node also determines the prior probabilities for the other
events (through their conditional probabilities - conditional on the value of the top node -
which we already assigned). We can now proceed to consider how different test
outcomes would change our prior beliefs. Figure 4.3 depicts the initial allocation of belief
in our model, with equal priors for the six values of the Pfd. The following figures
represent the effects of observing the outcome of one of the three experiments represented
by the three bottom nodes.

Fig. 4.3 Prior probabilities for the network in Figure 4.2, if the six
values of the probability of failure on demand have equal prior marginal

probabilities.
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Figure 4.4 : Failure Encountered in 500 tests. Our posterior beliefs are
drastically different from our priors: it is very likely that the Pfd is as bad
as 0.01, and the predictions for the outcomes of 2500 and 5000 tests are

changed to near-certainty of failure.

Figure 4.5 : No Failure in 2500 tests. The posterior distribution favours
very low values of Pfd.
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Figure 4.6 : Failure in 5000 tests. This removes the possibility of perfect
software, while giving nearly equal chances to the two non-zero values of

Pfd=10-2 and Pfd=10-3. This evidence implies that the shorter test runs
would be likely to produce a failure as well. However, if we intend to
draw precise inference from observing failures, we could obtain more

precise indications by discriminating, in the belief network, between the
cases in which 1, 2, 3, ... failures are observed.

Figure 4.7 : No failure in  5000 tests. The model gives the majority of
probability mass to the conjecture of fault-free software. One should

suspect this to be an artefact of our choosing 10-6 as the lowest possible
Pfd for non-perfect software. However, the Pfd is almost certainly lower

than 10-3.
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Figure 4.8 : Two independent test series were performed, one with 500
tests (failure observed) and the other with 5000 (no failures). The overall
result is that the software cannot be fault-free, yet the belief that it has a

low failure rate is reinforced.

As we pointed out before, the choice and representation of prior beliefs affects the
posterior beliefs derived from observation of new evidence. We underscore that this is
not a weakness of Bayesian methods, but a strength: "classical" statistical inference,
yielding "confidence levels" for conjectures, deals with the probability of observing the
evidence if the conjecture were true, but not with the probability that the conjecture is true
after the evidence is observed. The latter can only be determined as a function of a prior
probability. It is the evaluator's responsibility to use prior beliefs that are based on sound
scientific evidence, or to show that varying the prior beliefs within a plausible range does
not alter the posterior beliefs so as to invalidate any conclusion of interest.

If we have to base our priors on the opinions of experts, without the benefit of more
scientific support, the Bayesian network can be used by the experts to check the
consistency of their beliefs. For instance, the table below would tell the experts how
likely they "should" consider a certain test outcome to be (shown in one column in the
bottom section of the table), if their prior beliefs about Pfd are really as represented in the
same column in the top part of the table. This consistency check works both ways, of
course: one could try and elicit an expert's belief about the distribution of Pfd by asking
questions about the probabilities of the outcomes of different numbers of tests.
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Pfd Value Prior I Prior II Prior III Prior IV
0 16.67 1 70 30
0.000001 16.67 10 10 25
0.00001 16.67 20 5 20
0.0001 16.67 40 5 15
0.001 16.67 19 5 9
0.01 16.67 10 5 1
                         Probabilities of  Test Outcomes:
500 Tests, No Failure 75.98 80.53 92.79 94.62
500 Tests,     Failure 24.02 19.47 7.21 5.38
2500 Tests,  No Failure 63.89 63.19 89.16 86.86
2500 Tests,     Failure 36.11 36.81 10.84 13.14
5000  Tests,  No Failure 59.32 54.36 87.77 83.06
5000  Tests,   Failure 40.68 45.64 12.23 16.94

Table 4.5: Various prior distributions for the Pfd, compared on the basis
of beliefs about test outcomes.

5 Uses of formalised probabilistic safety arguments: proof vs.
rigorous critique

It seems that the "formalisation" of safety arguments (e.g. via belief networks) can be put
to two  main uses, which may coexist in any specific application

5.1 Formal arguments as proofs

We list this use first, as it is the more obvious one: one uses the formalisation exercise
actually to prove the safety claims made. The belief network must then completely
describe all the relevant parts of the argument linking the evidence available to the
conclusion of the argument, i.e., the safety claim.

In many cases (at least when the claim takes the form of a very low probability of
dangerous failure), this task would be very difficult, because of the complexity of the
network, the need to fill in conditional probabilities describing arcane relationships
between the relevant variables (e.g., how, exactly, does the experience of the
development team affect the proportion of failures which produce a certain unsafe
behaviour?), and, last but not least, the insufficiency of the statistical data available (about
test results, previous experience with similar method and products, etc.).

In other cases (all those in which the available evidence does warrant belief in the claimed
level of safety, we would hope), the belief network will provide a complete proof of the
claim. In so doing, it will also provide much useful additional information, like for
instance: which parts of the evidence used are essential to support the claim , and which
are marginal or inconclusive. It will also provide a framework for updating the safety case
with the accumulation of knowledge through the project and the lifetime of the product

An aspect of dependability predictions is that the amount of knowledge on which they
can be based increases during the life cycle of a product. Thus, an initial feasibility
study can only infer the dependability to be expected on the basis of past experience
with similar products (or observed effects of the different factors involved); as
development proceeds, new data (e.g. fault counts in different stages of verification,
complexity-related measurements) will give cues as to the position of the actual project
in the spectrum of scenarios contemplated in the feasibility study; the reliability growth
during debugging, the results of operational testing and, last, the accumulation of
operational experience will give additional, stronger indications of the dependability to
be expected in subsequent use. Thus, a safety case should be an evolving document,
revised periodically to take account of all lessons learned in the intervening time. An
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interesting feature of Bayesian reasoning is that the distributions of all variables of
interest, initially assigned on the basis of whichever knowledge is available, can be
refined with observation. All kinds of variables that one chooses to use in the reasoning
- e.g., the number of faults discovered in a  certain phase, the number of failures
observed in a given period of use, the amount of code in the product, etc. -  can be
assigned distributions from the very beginning. Many of these distributions will not be
sufficiently informative to be useful. As the project proceeds, the values of an
increasing number of these variables will be observed, causing (through the Bayesian
inference procedure) all other distributions to be updated.

5.2 Formal arguments as a basis for criticism and insight

Another use is possible for the formalisation exercise, however. If it  is not feasible to
build such a complete rigorous case, and the assessment is thus based on the experts'
informal reasoning, building "hypothetical" arguments can be a powerful aid for
validating such informal reasoning.  For instance, a "hypothetical" belief network may
link only a few of the relevant variables, and some of the probability tables may be filled,
in the absence of sufficient statistical knowledge, with "hypothetical" probability
distributions chosen in order to produce the same conclusion reached by the expert
assessor. The assessor can then check whether the structure and the probability
distributions in this hypothetical argument appear to be plausible and/or represent his/her
own reasoning. This exercise amounts to making sure that the expert's belief about the
final claim of interest (say, that a certain undesired event is very unlikely) and his/her
"supporting" beliefs (marginal probabilities for the root nodes, and conditional
probabilities for all others) are consistent: whether, for instance, the claim is actually a
logical consequence of the supporting beliefs. The automated tools will guarantee the
mathematical consistency of the arguments, so that the problem of deriving the
consequences of the stated distributions, and checking such complex structures for
inconsistencies is largely removed. The experts can thus look for a belief network that
they believe to be sound and that supports their own conclusions. If no such argument
can be found, the conclusions may be wrong. If it is found, and it depends on some
probability distribution that is unsupported by statistical data, but believed plausible, then
data collection can be focused to obtain the necessary statistical evidence.

This use of formal reasoning is just as important as the previous one. It would be a
mistake to believe that only complete proofs make full use of the potential of mathematics.
Quite the opposite is true: in the physical sciences, no belief can be based on mathematical
proof alone, without empirical validation of the premises on which the proof is based; in
addition, empirical validation amounts only to continually challenging and weeding out
incorrect conjectures, rather than supporting an absolute belief in any one of them. The
function of mathematics is that they allow us to organise our understanding of the
physical world and of the relationships between our conjectured theories and the observed
or observable facts. In the case of safety evaluation, our conjecture is that the system is
safe enough, and validating this conjecture means challenging it, by checking that its
implications do not contradict empirical knowledge. In the end, the value of proofs is that
building them requires us to understand the problem, not that  they definitely prove any
conclusion about real-world events. The "complete proofs" described in the previous
section may only be called "complete" insofar as their premises are consensually
accepted. The difference between that situation and that outlined in this section is one of
degree (of the uncertainty of the premises), not of kind.

In our exercise, we have actually noticed many possible uses of the belief network
tools, e.g.:

- communicating easily (visually) models of probabilistic dependencies and conditional
independence in complex probabilistic models;

- deriving consequences of specific probabilistic beliefs (data generation), to be exposed
to corroboration or refutation by experiment or checks of plausibility;
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- deriving alternative statements of complex joint probability distributions from their
statement in the form of a given network topology and its associated probability
distributions;

- refining prior probabilities using the data collected on an individual project
("specialising" one's generic knowledge for an individual case);

- inferring the distributions of non-measurable attributes with a clear intuitive
meaning, thus widening the range of conjectures that one could venture as a result of
the observed data, for later empirical validation.

Some of these advantages are characteristic of any form of formalised reasoning, others
of the probabilistic or of the Bayesian approach; others derive from the user-friendliness
of visual representations of complex abstract systems, and of software tools that
eliminate the burden of performing complex computations.

6. A more complete example

6.1 Modelled situation; the model

We now describe by a belief network a plausible structure for a software safety case. We
reiterate that no universally appropriate structure exists for such a belief network. Our
example is plausible, in that it refers to the information that could realistically be available
in a software development organisation. However, this is a fictional scenario and
organisation, built, like a novel character, out of realistic fragments. No attempt should be
made to recognise in our fictional organisation any individual real-world organisation.

As we said, a sound and useful argument can only be built using the knowledge available
in the interested organisation. So, we are not trying to show a "typical" or "general"
example of formalised safety case, but, rather, a realistic example of the kind of reasoning
which would be needed to build one in a situation (i.e., with a body of available
knowledge) that is itself plausible, but just one of the many possible situations. For this
study, we obtained the probability distributions that we used from published statistical
data (from an academic experiment), as a way of completing a realistic exercise. We
believe that no claim of "typicality" can be made for this specific set of numerical values,
nor, actually, for any other set, in the present state of insufficient statistical knowledge
about the software industry.

In our example, a safety case is built (as is common) on the two supporting arguments of
excellence in development ("process" argument) and of failure-free statistical testing
("product" argument). The product (and process) under evaluation are considered to be
fairly typical of a class of development projects with which the organisation has extensive
previous experience.  The safety claim is expressed in terms of a probability of failure per
demand (Pfd).

Reasoning about a probability of failure on demand makes our example mathematically
simpler than reasoning about, say continuous-time reliability. At the same time, this is
a scenario of practical interest: our system could be an on-demand protection system,
say a safety shut-down system (rather than, e.g., a continuous control system with
safety requirements. In this context, one can in certain cases assume independence
between successive demands, an assumption that greatly simplifies inference from test
results. This applies at least when "one demand" means "the inputs cross the threshold
into the alarm region, after which point the system has to perform a rather  complex,
long shutdown sequence. After this, starting up practically erases from the system all
memory of previous events".

The development process, from initial requirements to delivery of the product, is
represented in a  stylised way, as in the figure below:
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product:

activity:

activity:

activity:

product:
Initial pre-

delivery version 
of the system

Final (delivered) 
version of the 
system

System debugging

Statistical 
(acceptance) testing

Development 
up to the first 

system 
integration

Fig. 6.1. Life-cycle phases of our hypothetical product.

The basic structure of the safety case is then as sketched in Fig. 6.2. Our case is built as
follows: by the "process" argument, we claim that the product probably contains few
faults, and these are not very serious, which allows us to expect a small Pfd. A final
phase of statistical testing (showing no failures in a fixed number of runs, mandated by a
contract or regulation) then corroborates this belief.

The detailed belief net is shown in Fig. 6.3. The process-related evidence (e.g., the skill
of the development staff) is not explicitly represented by nodes and arcs in the belief
network. It is represented, though, by assigning the prior probabilities for those variables
that are represented explicitly on the basis of the distribution observed, for these
variables, in a population of projects sharing the same process. Knowledge about the
process allows some predictions ("prior" beliefs) about the number of faults in the
delivered product and their characteristics, and thus about the failure rate of the whole
software system. These predictions, available at the beginning of the project, are then
refined on the basis of measurements during development, and finally on the basis of
statistical testing.
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Sizes of 
faults at 
delivery

Process-
related 

arguments

Failures 
observed in 
acceptance 
testing, in 

N tests

Probability 
of failure on 

demand

Number 
of faults at

delivery

Fig. 6.2. A sketch of our safety case. The shaded nodes indicate intuitive
concepts that need to be specified rigorously  in order to build a belief

network

We have thus built a comparatively simple belief net. We will now discuss it in more
detail, showing that such a simple structure is reasonable for an organisation with
comparatively little knowledge, and yet that the choice of the structure implies formal
statements about the knowledge available and the causal relationships among the different
factors.

At the top, the node "initial number of faults" (in the completed product before
debugging) has a prior distribution based on measurements on previous products (of the
same type and approximate size and complexity, and developed within the same
organisation). Of course, these measurements must all be of an "initial number of faults"
interpreted in a similar manner for all the data points. For instance, the data points could
represent products that have been in use long enough that all the significant defects are
thought to have been discovered.

The variables "Number of faults found during debugging" and "Number of faults at
delivery" are of course related, as their sum must equal "Initial number of faults". We
have chosen to use the corresponding nodes in the belief network as follows: the
conditional probability distribution of "Number  of faults found during debugging" given
"Initial number of faults" is derived from the historical records of the organisation: this
conditional distribution represents the observed effectiveness of the debugging process in
this category of projects. The variable "Number of faults at delivery" is then a
"deterministic" variable (in terms of the belief network, this means: for each given pair of
states of its two parent nodes, the state of this node is known with certainty): adding this
node to the belief network does not specify any new information about the distributions
of the other variables, but is useful in that it represents a random variable with clear
intuitive value.
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Number 
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Fig. 6.3. The belief network for our safety case

All the process-related variables in the network are obviously affected by the values of
other "explanatory variables" in the process, e.g., the initial number of faults is affected
by the size of the product, the inherent complexity of the problem solved, the quality of
the development personnel, etc. One could decide to represent this influence by adding
parent nodes, representing the product size, problem complexity and quality of
personnel, with arcs entering the node representing the initial number of faults. The
problem, then, would be how to assign the conditional distributions.  One could do this
if one had abundant statistical data about projects with different combinations of these
three factors (measured on appropriate, standardised scales), or, as an alternative, a clear
quantitative model of how these factors affect the number of faults. It is understandable
that one would only venture predictions of this sort with some trepidation. If, instead,
we choose to reason about a rather homogeneous class of projects, i.e., a class where all
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the parameters with a known -but difficult to quantify-  effect on dependability are the
same for all projects, a belief net for products of this class does not need to contain
these explanatory variables as explicit nodes.

To derive a distribution of the failure rate from the distribution of the number of faults,
one needs some information about the "sizes" of the faults (i.e., for each fault, the
probability that it will cause a failure, per demand). Here , we model the uncertainty about
this by assuming a population of "possible faults", and that if the software contains, say,
k, faults, these can be considered as being extracted, independently from this population.
This model is akin to the Littlewood model [Littlewood 1980] used for extrapolating
software reliability growth. One could conceivably try and infer the sizes to be expected
in the faults remaining in the software from the faults found during the debugging phase.
After all, if one finds many faults which are larger than usual (without using more
powerful fault-finding techniques), one could expect the product to be populated with
larger-than-usual faults. We have instead chosen to assume no such link. These
assumptions are consistent with a scenario where, in products of the class under
considerations, very few faults are usually present in each product, and no special
regularity has been observed linking the sizes of the different faults in one product. One
can then think that developers insert faults by "picking at random" from a population of
available faults. The distribution of sizes in this population can then legitimately be
inferred from the samples observed in previous products.

A standard way of modelling this situation for the purpose of allowing inference from
new observations is to posit that the distribution of fault sizes (over the population)
belongs to a given parametric family of distributions. One can then represent the values of
the parameters as nodes in the belief network. These (their "prior" values) would initially
be set equal to those measured over the whole population of products.  Using
observations on this specific project, one would then update the parameter values to
represent updated predictions about this individual product.

To describe the distribution of fault sizes, we chose to use parameters that directly
represent the values of the probability distribution for different values of the random
variable (fault size). More precisely, the meaning of our parameters (corresponding to the
nodes in the "cloud" marked "parameters of the fault size distribution for this product") is
as follows. To make the modelling easier in intuitive terms, we divide the faults into
classes of decreasing sizes. We assume that all fault sizes belong to a succession of
discrete values, the negative powers of 10 (or another number that we believe
appropriate), so that we call class i the class of all faults with size 10-i. The node
"param. i" represents the random variable:

Probability(fault belongs to CLASSi)
________________________________________________________

Probability(fault does NOT belong to CLASS1, ...CLASSi-1)

which can also be stated as:

Probability(fault belongs to CLASSi | fault does NOT belong to CLASS0, ...CLASSi-1)

The distributions of these parameters, we repeat, determine the distribution of the faults
size for one fault chosen at random in this product. This is displayed in the "gauge" node
"fault size distribution for one fault in this product", which provides a necessary element
of feed-back to the user of the belief network.

One may think that it would be easier for a user to state directly the values of the
ordinates for each class, but this would leave the possibility of specifying inconsistent
probabilities (e.g. a distribution where the total probability mass is greater than 1).
Making the software tool (for manipulating belief networks) able to automatically
prevent such inconsistencies would probably be quite useful.
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This way of describing a probability distribution is unusual: most people would choose
distributions which have some nice mathematical property (in that it simplifies
calculations, e.g. allowing the posterior distribution to belong to the same family, and
yielding simple, closed-form expressions for the parameters of the posterior
distribution). These distributions often also have alternative descriptions in which some
of the parameters have a "natural" meaning, like e.g. the expected value of the random
variable. In our case, we felt that this kind of "intuitive" parameterisation could be
misleading, as the user will be interested in less obvious things, like the probability
masses in the "tails" of the distribution.

Clearly, we have constrained the shape of our distribution. By reducing the interval
between the sizes of faults in successive classes we could approximate a continuous
distributions closely as required. We expect that users will not be able to use a very
fine-grained description. The errors that this causes may be kept in check by sensitivity
analysis, and we expect them to be minor compared to the other uncertainties involved.

Since the tool we use compels us not to use continuous random variables, we
considered using, as an alternative description in terms of a discrete random variable, a
continuous "staircase" distribution of fault sizes, with each fault class including faults
in a certain interval of sizes. This seemed less intuitive, and its mathematical
description more likely to mislead, than the representation we chose.

The distribution of the system Pfd is then obtained from the number of faults after
debugging and the parameters describing the distribution of fault sizes. It is a
multinomial distribution: given that there are, say,  k faults, and given the probabilities
of a fault belonging to each of the fault classes, the probability that the Pfd is exactly x
is obtained by enumerating all the events in which choosing k  faults at random (from
the fault classes, with their different sizes of faults) would produce a set of k faults such
that its total Pfd is x, and computing the sum of the probabilities of all these random
choices. For the total Pfd of a k-tuple we use the sum of the Pfd's of the individual
faults. This means that faults do not mask one another and no two faults are ever
triggered by the same input, or, equivalently, that the "failure regions"  (in the input
space) corresponding to different faults are all disjoint. In reality, instead, the failure
regions due to different bugs will sometimes overlap, and one could preserve our
assumption only by redefining these failure regions: whenever there are two faults, A
and B, such that their failure regions overlap, one arbitrarily chooses to split the
intersection and assign the two parts one to the failure region of A and one to that of B.
If one were trying to model the effects of fault removal (reliability growth) this model
would not be satisfactory, since when one faults - say, A- is removed, its failure region
disappears except for its intersection with the failure region of B. In our case, the error
that we may introduce with this model seems minor compared to the overall uncertainty
in our predictions.

The node "Failures observed in acceptance testing, in N tests" allows us to update the
probability distributions in the belief networks on the basis of test results. The
probabilities of observing no failures and of observing some failure in N demands,
conditional on the "Probability of failure on demand", is computed as:

P(no failure in N demands | Pfd)=(1-Pfd)N

P(at least one failure in N demands|Pfd)=1-P(no failure in N demands| Pfd)=1-(1-Pfd)N

i.e., the outcomes of the demands are considered independent. This represents the
expected regime of operation of the protection system (demands being spaced widely
apart in time, so that no effect of a demand lingers until the next demand) and of course a
sound testing procedure would also preserve this property.

The knowledge modelled by this belief network goes through the following sequence of
stages during the project:

- initially, the belief network is populated with probability distributions obtained
from the history of previous projects. All the values of the probability
distributions are derived from the previous history of similar projects run by the
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development organisation. The belief network yields a "prior" distribution for the
variable of interest, i.e., the probability of failure on demand. Two useful items of
information from this distribution are: i) the expected value of the Pfd; ii) the
probability of satisfying, or of not satisfying, the requirements. This latter
probability is an indication of the risk of the project at this stage;

- when the project (using the organisation's standard methods and decision criteria)
delivers its first completed version of the system, the knowledge available is still
as it was initially. Of course, if management had observed significant departures
of this project from the normal progress of previous, similar projects, then this
belief network would no longer represents the available knowledge about this
project;

- as debugging proceeds, the number of faults found is logged. At the end of the
debugging phase, when the product is deemed ready for final acceptance testing
and then delivery, this number is "input to" the belief network as the observed
state of the node "Number of faults found during debugging". This changes the
distributions for all the nodes in the network, except those describing fault sizes.

Notice that if the predictions at this point looked worse than the initial predictions, one
could decide to perform additional debugging. However, this could not be used to
improve the prediction, in that it would be a change to the development process on
which the prediction is based. Furthermore, if one tried to input to the belief net the
number of faults found with this increased amount of debugging, one could actually
obtain a lower predicted dependability (if, as is likely, the number faults found is
usually positively correlated with the faultiness of the product).

- acceptance testing is then performed for N demands. If no failures happen (which
is expected to be the case), the state of the node "Failures observed in acceptance
testing, in N tests" is set to 'no failures", and all the other distributions are
updated as a result.

In successful projects, the state of the node "Failures observed in acceptance testing, in
N tests" will be "no failures". Logically, the required number of tests, N, should be set
to be at least such that, with the prior distributions for this population of products, the
series of failure-free tests demonstrates the required value for "Probability of failure on
demand".

- a safety case should normally be reviewed periodically. A node representing the
"Number of failures in a set interval in operation" could be added, with the same
parents, and a probability table derived in the same way, as for "Failures observed
in acceptance testing, in N tests", with a different value of N

Notice also that a requirement in terms of the unobservable random variable "Probability
of failure on demand" may look unsatisfactory [Littlewood and Wright 1995], and one
may prefer to require, for instance, that a failure (i.e., an observable event) be sufficiently
improbable over the lifetime of the system. This is easy to deal with: one can easily add a
node representing "number of failures over system lifetime" (as shown at the bottom-right
corner of our figure), and possibly an additional one, "number of demands over the
lifetime of the system", which would be derived from the safety case of the controlled
plant and primary control system, so as to model both the uncertainty about the system
Pfd and the uncertainty about the frequency of demands to be expected.

6.2 Use of the model

We derived prior distributions for the nodes of this belief network from a sample of
programs developed and tested in a series of academic experiments. We will not discuss
in detail the inference procedures used to obtain these distribution from the samples (as a
matter of fact, we are still reviewing this part as in some cases we used "naive" but quick
procedures). The purpose of this section is to show how these prior distributions can be
manipulated and updated. Most of it is obtained directly from screen dumps of the tool we
used (HUGIN, distributed by Hugin A/S in Denmark), which show histograms of the
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probability distributions in each node.  The next figure shows how the belief network of
figure 6.3 is represented on the screen by HUGIN. We changed the names of the nodes
slightly to obtain smaller figures.

Fig. 6.4. The belief network as represented by the tool we used, with
abbreviated names for the nodes (random variables).

We assumed that the acceptance testing simulates 50,000 demands on the system, and that 500
demands are expected over the lifetime of the system.

Prior distributions

The distribution for "Initial faults" was a best fit (to the sample observed) of a binomial
distribution with N=16. This rather arbitrary choice would have a serious misleading
effect if one were to find and fix 16 faults: this prior distribution would then compel one
to conclude that the software is now perfect! We accept this approximation under the
assumption that if one were to find more than 8 faults (the maximum ever observed in our
sample) one would conclude that the software needs major reworking anyway, and stop
the evaluation exercise at this stage. This is one of the many cases in which an argument
that seems reasonable in expected circumstances leads to paradoxical conclusions in an
unexpected situation. We plan to experiment with different forms of distributions,
representing different forms of "plausibility" about the tail of the distribution of the
number of faults, as of sensitivity test  for the conclusions obtained here.

The number of faults found during debugging was available for a small sub-sample of
our sample set. We have not yet tried to solve this inference problem in a rigorous
manner. The conditional distribution shown here is, for each value of "Initial faults" a
binomial distribution, with N equal to the value of "Initial faults" and p equal to the
fraction of faults that were found in debugging over our whole sample. In other words,
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we assume here that each fault has the same probability of being found, and that the
probability of finding a given fault is not affected by having found another fault.

In assigning a conditional distribution to this node, one may obtain the counter-intuitive
(but logically correct) effect that the more faults are found, the better the debugged system
will appear to be. In this case, our belief that the faults found are an indication of those
still present would make us think that the software contains more bugs than usual; but our
separate belief in the distribution of "Initial faults" makes us consider it unlikely that many
faults are present, so that, the more faults we have found, the fewer are likely to remain.
The interplay between these distributions decides whether we consider finding many
faults an indication of good debugging or of bad software as well, and whether we decide
that an unusually effective debugging phase outbalances the initial high number of faults.

We assigned the distributions for the nodes "System Pfd" and "Fault Size" as explained
in Section 6.1
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Comments

These prior distributions have some interesting implications. The expected value for
"System Pfd" is about 2 10-4.

Another interesting prediction is the probability of the project failing to deliver software
with the desired value of Pfd. If, for instance, the requirement is Pfd<10-3, the
probability that the software will not satisfy the requirement, i.e., Pfd ≥ 10-3, is about 12
%. Even more worrisome for the developers is the fact that the product has a 28 %
probability of not passing its acceptance test. The 6 % probability of at least one failure
(on demand) over the system lifetime is also worrisome, of course. However, the public
and the licensing authorities would be protected because the system will not be deployed
unless it passes its acceptance test (50,000 runs) first.

Inference from acceptance testing only

We may then consider whether this "average" product would be certifiable with some
confidence, assuming that it passed the prescribed acceptance testing.  This means asking
what the probabilities would look like after setting the value of the node "Test failures" to
0.

This is shown in the following figures.
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The expected value of the System Pfd is now about 8 10-7, and the probability of Pfd ≥
10-3 has fallen to about 0 (that is, lower than the lowest number represented by our tool).
In other words, products of this category, with this amount of acceptance testing, are a
much lesser risk for the regulator than for the developer: once the product has passed its
acceptance testing, there is a very good probability that it really satisfies is requirements.
Another appropriate comment is that in this case an adequate amount of testing provides
much stronger evidence of reliability than offered by "process" considerations.

We do not show, for brevity, the distributions for the "Fault Class" nodes. The
expectation for the future operational life of the system is that there will be failures  with a
probability of about 4 10-4. This, of course, is a direct implication of the Pfd
distribution. It is worth pointing out that if the requirement is indeed Pfd< 10-3, and 500
demands are expected over the lifetime of the system, then the requirements only imply
that the probability of having some failure during operation is less than about 0.4. A Pfd
of 10-4 would imply a probability of failures of about 0.05.

Inference from debugging and acceptance testing

We now consider how the developers' expectations would be changed by observations
during the project. Assume, for instance, that they find and correct 2 faults, and then the
software passes the 50,000 tests. The posterior distributions that this generates are shown
below.
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The expected value of the Pfd is still around 8 10–7, though slightly less (by about 5 %)
than it would be without having found these two faults. The other prediction do not
change by much either. We point out that 2 faults is very close to the number of faults we
would expect to find on the basis of the prior distribution. So, the debugging process
brought no surprises and no reason for reviewing our initial expectations.
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7. Discussion

This report shows how belief networks can be used to describe a complex argument, and
then, with the aid of a software tool, to explore its consequences and update it with the
results of new observations. We have first presented some very simple examples to show
the power of this formalism and calculus, and then described a more realistic example
which could be part of an actual safety case.

Our treatment of this example has been rather incomplete, for the sake of brevity. In an
actual use of this belief network for a safety case, a full, detailed discussion would be
necessary for all the assumptions used, showing that they do represent the available
knowledge of the experts and are either well-justified or acceptable as they do not
introduce dangerous errors in the conclusions. Likewise, the conclusions that can be
drawn from the network and the available measurements would be explored in detail, to
look for inconsistencies or other unexpected conclusions. More importantly, this process
of building the network and studying it would be likely to be iterative, as one would not
expect to produce the "right" network at the first attempt, but to use the networks one
initially propose as an aid for clarifying one's own thoughts. In successive versions of a
belief network, arcs could be added or discarded; nodes that prove useless could be
eliminated, others representing variables which, one realises, have some useful predictive
power, or allow the validation of the argument through observation, would be added.
This would certainly be a painstaking exercise; however, the claim we make for this
method is that it would make safety assessment exercises more trustworthy, not less
boring.

Our conclusion so far is that the method is indeed useful. "Playing" with our example
allowed us to reason about how we were building our argument, which parts of our
intuitions were right and which were wrong, which evidence was really useful. We
believe that this method should be applied to real-life case studies, to see whether its
usefulness is confirmed.

One can make serious errors in applying this method, like any other probabilistic
methods. The problem is that the safety case is in fact a complex design, leading to a
complex computer algorithm. The fact that the complex details are, once input to the
computer, hidden behind a visually intuitive user interface tempts one to gloss over those
details, and produce a "Garbage in, garbage out" situation. The temptation to stop at the
first belief net that seems to support one's claims will be strong. A belief net produced in
support of a safety case should be seen not as irrefutable evidence, but as a support that
makes the safety case visible and auditable.

There is a clear need to improve the software tools available. Probably because they were
developed as expert system shells, the tools we tried had insufficient capabilities of
displaying the probability distributions in a user-friendly manner and of dealing with the
minuscule probabilities needed in safety assessment. Further help for use in safety
assessment would come from tools for automatically producing probability tables, not
only via standard inference procedures from sample data but also from probabilistic
models of system behaviour (e.g., system failure rates as a function of component failure
rates).

At this stage, we believe that investment in such tools would be rewarded by a substantial
improvement in the ability of assessors to understand, refine and audit "engineering
judgement" on complex safety cases.  With the help of this formalism, an assessor can try
and answer questions like: "Are my conclusions the right conclusions to draw from my
knowledge (data plus informal insight)? Among my assumptions, which are really crucial
for my conclusions? What are the weak links in my argument, and what information do I
need to make them stronger?" From the point of view of certification practice, the use of
belief networks should make it much easier to communicate and discuss claims, and to
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update a safety case over time, all the way from a preliminary feasibility study to revising
it with operational experience.
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