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ABSTRACT 

Bayesian methods are common in reliability and risk assessment, however, such methods often 
demand a large amount of specification and can be computationally intensive. Because of this, many 
practitioners are unable to take advantage of many of the benefits found in a Bayesian-based 
approach. The Bayes linear methodology is similar in spirit to a Bayesian approach but offers an 
alternative method of making inferences. Bayes linear methods are based on the use of expected 
values rather than probabilities, and updating is carried out by linear adjustment rather than by Bayes 
Theorem. The foundations of the method are very strong, based as they are in work of De Finetti and 
developed further by Goldstein. A Bayes linear model requires less specification than a corresponding 
probability model and for a given amount of model building effort, one can model a more complex 
situation quicker. The Bayes linear methodology has the potential to allow us to build ``broad-brush" 
models that enable us, for example, to explore different test setups or analysis methods and assess the 
benefits that they can give. The output a Bayes linear model is viewed as an approximation to 
``traditional" probabilistic models. 
The methodology has been applied to support reliability decision making within a current United 
Kingdom Ministry of Defence (MOD) procurement project. The reliability decision maker had to 
assess different contractor bids and assess the reliability merit of each bid. Currently the MOD assess 
reliability programmes subjectively using expert knowledge - for a number of reasons, a quantitative 
method of assessment in some projects is desirable. The Bayes linear methodology was used to 
support the decision maker in quantifying his assessment of the reliability of each contractor's bid and 
determining the effectiveness of each contractor's reliability programme. From this, the decision 
maker was able to communicate to the project leader and contractors, why a specific contractor was 
chosen. 
The methodology has been used in other MOD projects and is considered by those within the MOD 
as a useful tool to support decision making. The paper will contain the following. The paper will 
introduce the Bayes linear methodology and briefly discuss some of the philosophical implications of 
adopting a Bayes linear methodology within the context of a reliability programme analysis. The paper 
will briefly introduce the reliability domain and the reasons why it is believed that the Bayes linear 
methodology can offer support to decision makers. An in-depth analysis of the problem will then be 
given documenting the steps taken in the 
project and how future decision makers can apply the methodology. A brief summary will then be 
given as to possible future work for those interested in the Bayes linear methodology. 
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1. INTRODUCTION 
The Bayes linear methodology is a quantitative method to express subjective beliefs 

and to review these beliefs once observations have been made [1]. An in-depth summary 
of the Bayes linear methodology can be found in [2]. It is an inferential tool that is similar 
in philosophy to “traditional" probabilistic Bayesian methods, but has a number of 
distinct features which give it certain advantages over these approaches when modeling 
complex problems [3]. Whilst “traditional" Bayesian approaches are demanding in terms 
of time, computational and elicitation effort, the Bayes linear methodology offers a quick 
and simple method to perform inference using expectation rather than probability as a 
basis. As such, the elicitation specification required from a decision maker is reduced and 
hence more complex scenarios can be modeled for an equivalent amount of resources. 

One motivation for using Bayes linear inference is therefore a practical one – to 
extend the scope of analysis to tackle challenging problems that previously would have 
been unfeasible or too costly using a ``traditional" Bayesian approach. We use Bayes 
linear methods to focus on a decision maker's subjective beliefs about some uncertain 
quantities. When modeling a problem, we assume that a decision maker holds certain 
beliefs about some quantities of interest (i.e. the MTBF of a system) and that the decision 
maker is able to make observations (i.e. the MTBF of a previous system) that they believe 
are related in some way (i.e. the MTBF of previous system is 50 hours less than the 
MTBF of the new system) to the original quantity of interest. The prior beliefs about 
these uncertain quantities are then linearly adjusted based on the information gathered 
and the Bayes linear formulas. Examples of practical complex problems modeled using 
BL methods are [4], [5], and [6]. 

The main difference between conventional probabilistic Bayesian methods and Bayes 
linear revolves around how beliefs about uncertain quantities are specified. Expectations 
are used as a primitive, rather than probability, following the development of de Finetti 
[7]. In the Bayes linear framework, a decision maker's uncertainty is represented by 
variance. The variance represents the decision maker's degree of uncertainty in specifying 
the exact value of a given variable. Whereas “traditional" Bayesian approaches use joint 
probability distributions to model relationships between quantities, Bayes linear uses 
covariance. The covariance quantifies the extent to which one quantity influences our 
belief about another quantity. For information on how these quantities are elicited from 
experts, see [6], [8], [9], [10] and in particular, [11]. 

With the support of the United Kingdom Ministry of Defence (MOD), the Bayes 
linear method has been used to support reliability decision making on two ‘live’ projects. 
This paper focuses on one of these projects and shows how the Bayes linear 
methodology has been used to support decision making. The construction of a Bayes 
linear model comprises three parts. First, we need to structure the model. Second, we 
need to populate the model with our decision maker's beliefs. Finally, we must analyze 
the model once observed data has become available. This paper will briefly discuss how 
this has been carried out.  For a more detailed description of all the steps, see [11].  

2. Bayes Linear Theory 
A decision maker identifies an uncertain quantity of interest, X, or more generally, a 

vector of quantities X., for which E(X) and var(X) are specified. The decision maker 
intends to observe some vector of quantities, D, which they believe will improve their 
assessment of X. The decision maker must specify E(D) and var(D). In order to 
demonstrate the strength of the relationship between X and D, the decision maker must 
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also specify cov(X, D). This matrix must be non-negative definite. One can represent D 
as D = αX + R where R represents the unexplained uncertainty between X and D. 

Once these values are elicited and observations made, the decision maker can use the 
following formulae to adjust their prior assessments by linear fitting. The adjusted 
expectation of X given observation of a collection of quantities D written ED(X) is ED 
(X) = E(X) + cov(X, D) var-1(D) (D-E(D)) where var-1(D) is the Moore-Penrose 
generalized inverse. Variance is used to quantify uncertainty. The adjusted variance of X 
given D is var(D) = var(X) – cov(X,D)var(D)cov(D,X) 

An important part of any inference is how the output of the model is interpreted by 
decision makers. For a detailed description of the different interpretations of the Bayes 
linear output, see [2]. For the purposes of this project, the adjusted quantities are 
interpreted as follows; ED(X) is viewed as an intuitive numerical summary of our 
subjective beliefs of X given the observations D, i.e. an approximate estimator for X. 
VarD(X) is viewed as a strict upper bound on the expected posterior variance. In some 
special cases, this may in fact be an exact value for the expected posterior expectation 
and variance. One such special case is when the joint probability distribution between X 
and D is multivariate normal [2]. Hence, it seems reasonable to assume that if the 
decision maker believes that the uncertain quantities are approximately joint normally 
distributed, then the posterior belief structure is approximately normal distributed. 

Bayes linear networks are used in a similar way to Bayesian Belief Networks. In a 
Bayes linear network, a node represents an uncertain variable whilst an arc represents the 
potential for a source node to influence the decision maker's belief about the destination 
node. In the Bayes linear network, an arc does not necessarily represent a causal 
relationship but instead it represents the fact that the value of one variable influences a 
decision maker's belief about the value of another variable. Figure 1 is the Bayes linear 
network for D = αX + R. 

 

X D
 
 
 
 

Figure 1 – Bayes linear network for X and D 

3. Elicitation 
For a Bayes linear model with variables (X1, … , Xn), to populate the model it is 

necessary to elicit E(Xi) for i =1, … ,n and cov(Xi, Xj) for i,j = 1, … , n. Eliciting means 
and covariances directly can often be difficult as experts do not naturally think in these 
terms. Methods have been developed which focus on eliciting percentiles and then 
calculating the mean and variance of the variable directly. Pearson and Tukey [12] 
suggested a method specifically for the mean and variance which uses 3 percentiles for 
the mean and 5 for the variance. Keefer and Bodily [13] further developed this method 
for eliciting the variance so that the analyst was only required to specify 3 percentage 
points. This technique, referred to as the Pearon and Tukey method throughout this 
paper, was used in order to elicit the necessary means and variance values. 

Due to the way in which prior beliefs are specified in a Bayes linear framework, there 
are a limited number of ways in which the dependency value between two variables can 
be specified. For this project, two different methods were used. As the Bayes linear 
methodology assumes that the relationship between any two variables can be written 
such that D = αX + R, one method of eliciting the covariance is for the decision maker 
to specify α, E(X), var(X), E(R) and var(R) using the Pearson and Tukey method. From 
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this, cov(X,D) = αvar(X).  
An alternative method is for the decision maker to state E(X), var(X), E(D) and 

var(D) using the Pearson and Tukey method. From this, the decision maker is asked to 
consider the effect of observing D = d on their belief regarding E(X). Rearranging the 
Bayes linear formulas, cov(X,D) can be calculated.  

Whilst the Bayes linear methodology offers an alternative to Bayesian Belief 
Networks and overcomes some of its weaknesses, the Bayes linear methodology also has 
some limitations. One of the strengths of the Bayes linear theoretical framework is that it 
does not require the decision maker to specify a distributional form for the uncertain 
variables that they are attempting to model. As Bayes linear only requires the decision 
maker to specify his or her first two moments, it does not distinguish between symmetric 
and skewed variables. One method around this problem would be to specify and model 
higher moments, such as X2. A further limitation of the Bayes linear methodology is that 
the adjusted variance is always less than the original variance once an observation has 
been made regardless of what is observed. As can be seen from the formula for the 
adjusted variance, as var-1(D) > 0 and cov2(X, D) ≥0, then the adjusted variance must 
always be less than or equal to the original variance. This might not be satisfactory for all 
cases, however, this is also the case for the binomial/beta Bayesian models which is 
commonly used in Bayesian reliability analysis. 

A final limitation of the Bayes linear methodology is that it does not allow for easy 
modeling of quantiles. This is because no distributional form is assumed on the uncertain 
variables. Because of this, the information being fed back to the decision maker from the 
output of the model is not as detailed as the Bayesian Belief Network methodology. The 
Bayes linear approach may be looked upon as a quick and simple methodology that 
approximates a full detailed probabilistic analysis and can potentially be used when the 
resources for a full analysis are unavailable. Ultimately, it should be viewed as a method 
to approximate the traditional ‘traditional’ Bayesian approach. However, it offers a logical 
and justifiable framework to handle problems in which it may only be possible to elicit 
partially specified beliefs. 

4. Project Background 
The MOD is procuring two land vehicles within a single procurement project. Both 

vehicles are individually designed and built, however, there are a number of sub-systems 
common to both vehicles. These include the hydraulic systems, power, electrical systems, 
suspension and other major sub-systems. In addition, the reliability programme and 
analysis for both vehicles are being carried out by a single contractor. The contracted 
reliability requirement for each vehicle is measured as both a basic reliability and mission 
reliability. Basic (or mission) reliability is defined as the probability the vehicle will 
complete a battlefield mission (BFM) without a basic (or mission) failure occurring. The 
reliability requirement for mission reliability for Vehicle A is 0.55 and for Vehicle B, 0.57. 
The reliability requirement for basic reliability is 0.24 for Vehicle A and 0.26 for Vehicle 
B (The data has been changed to maintain confidentiality). Both vehicles are purposely 
built to carry out tasks currently undertaken by vehicles that have been modified. Based 
on previous experience, these reliability requirements will be challenging to achieve, but 
not unrealistic. 

Prototypes for each vehicle were built and have undergone Reliability Growth Trials 
(RGT). The contractor carried out 50 BFM; 26 for Vehicle B and 24 for Vehicle A, split 
into three phases. The contractor then carried out a second group of RGT's on 
production vehicles with the intention of continuing to improve reliability. In addition, 
however, a secondary aim of these trials was to demonstrate reliability requirements had 
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been met. The contractor planned to carry out 30 BFM for Vehicle A split into three 
phases with 10 in each. Similar plans were made for Vehicle B. Based on the evidence 
provided by the contractor, the MOD decision maker must assess whether or not either 
vehicle will meet, or has already met, their basic and mission reliability requirements. The 
single source of evidence presented at this time is the output of the RGT's. In order to 
determine whether or not either vehicle will meet their respective requirements, the 
MOD decision maker is interested in the current reliability of each vehicle and using his 
subjective engineering judgment, he will assess whether or not he believes each vehicle is 
likely to improve by the required amount needed to meet the requirement. 

5. Project Modelling 
The purpose of the modeling is to develop a high-level methodology capable of 

assessing the basic and mission reliability of Vehicle A and Vehicle B using the observed 
data gathered during the reliability growth trial (RGT) and expert assessment of the 
expected growth between different phases of the RGT's. The aim is to highlight to the 
decision maker at the earliest possible stage, whether or not the in-service basic or 
mission reliability of Vehicle A or Vehicle B is likely to be met. The modeling will also 
attempt to capture a number of softer factors that are not addressed by other statistical 
methods. 

Each vehicle was being subjected to 10 BFM during three different phases.  It was 
assumed that the basic and mission reliability of each vehicle could be estimated using 
the data gathered during the phase. The value gathered using the RGT phase data and US 
Army Material Systems Analysis Activity  
(AMSAA) calculations is the value that will be used to assess the current reliability of 
each variant of each system. The basic reliability of Vehicle A prior to Phase 1 of the 
RGT is A1B and the observed basic reliability of Vehicle A during Phase 1 is A1Bi. Similar 
notation is used for Phase 2, 3 and the in-service variation of the vehicle. In addition to 
the observed phase data, the MOD decision maker believed that he could gather 
additional information from the contractor prior to each phase regarding the expected 
reliability growth between the phases. For example, GA1,2B is the basic reliability growth 
of Vehicle A between phase 1 and 2 whilst EGA1,2B is the value specified by the 
contractor’s expert regarding this growth. 

From this information, we can build a Bayes linear network for Vehicle A’s basic 
reliability.  
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Figure 2 – Bayes linear network for Vehicle A’s basic reliability 

The decision maker also specified that he believed that learning about the basic (or 
mission) reliability of Vehicle A informed him about the mission (or basic) reliability of 
Vehicle A, and similarly for Vehicle B. In addition, he believed that learning about the 
Vehicle A’s basic reliability, informed him about the basic reliability of Vehicle B, and 
similarly for mission reliability. As such Figure 2 must be extended to take this 
information into account. Due to space restrictions, Figure 3 is only partially extended. 
For the full Bayes linear network, see [11].  

6. Elicitation 
A short example will be given to show the style of questions asked of the decision 

maker on the project. In order to elicit the basic reliability of Vehicle A prior to phase 1, 
the decision maker was asked “What is your belief about the 5, 50 and 95 percentiles of the basic 
reliability of the Vehicle A's system entering Phase 1 of the RGT?” Based on the decision maker’s 
response, E(A1B) and var(A1B) can be calculated. 

To elicit the variance of the observations, the decision maker was asked “If you knew 
for certain the basic reliability of Vehicle A prior to Phase 1 was 0.1, what is your 5, 50 and 95 
percentiles for the output of the vehicle during phase 1?” From this, E(A1Bi) and var(A1Bi) can be 
calculated.  

To elicit the covariance between Vehicle A’s basic reliability and Vehicle B’s basic 
reliability, the decision maker was asked “Given that you know for sure basic reliability of Vehicle 
A prior to phase 1 is 0.1, what is your new belief about the expectation of Vehicle B's basic reliability 
prior to phase 1?” Using the decision maker’s response and rearranging the Bayes linear 
equations, cov(A1B, BB1B) can be calculated. 
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Figure 3 – Bayes linear network for Vehicle A and B’s basic and mission reliability 

7. Analysis 
Due to timing and access of data, the model has been built and populated with the 

decision maker's subjective beliefs, however, all the necessary observations to carry out 
inference on the reliability parameters of interest has not been gathered. Table 1 shows 
the initial belief of the decision maker.  

 

Variable Expectation Standard Deviation 

AIB 0.285 0.057 

AIM 0.584 0.128 

B BIB 0.302 0.061 

B BIM 0.578 0.118 

Table 1 – Prior belief  
Prior to any observations being made, the decision maker believes all reliability 

requirements will be met. However, there is still substantial uncertainty in this assessment 
and it is possible neither system will meet either of the requirements. The values in Table 
2 were gathered from the contractor during the RGT's. 
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Variable Observation Variable Observation

A1Bi 0.12 A3Mi 0.38 

A2Bi 0.14 BB1Bi 0.18 

A3Bi 0.09 BB2Bi 0.25 

A1Mi 0.45 BB1Mi 0.48 

A2Mi 0.4 BB2Mi 0.51 

Table 2 – Observations 
Unfortunately, the decision maker has been unable to gather the necessary values to 

populate the expert judgment variables on the expected growth between each system. 
Using the above observations, Table 3 displays the output of the model. In brackets is 
the percentage the standard deviation dropped by using the observations. 

 

Variable Target Expectation Standard 
Deviation 

AIB 0.24 0.1824 0.0487 (14.5%) 

AIM 0.55 0.4326 0.0846 (34.0%) 

B BIB 0.26 0.2705 0.0582 (4.3%) 

B BIM 0.57 0.5302 0.1014 (14%) 

Table 3 – Adjusted beliefs given observations 

8. Sensitivity Analysis 
If similar modeling had been carried out using a probabilistic approach, it is unlikely 

that sensitivity analysis could be carried out. Due to the simplicity of the Bayes linear 
formulas, sensitivity analysis can be carried out quickly. Three scenarios can potentially 
be investigated; we could modify our prior belief about our expectations, modify our 
prior beliefs regarding the covariance matrix, or consider potential sources of 
observations that have yet to be collected. The purpose of the sensitivity analysis is to 
analyze whether or not different scenarios would have had an effect on whether or not 
we believe the systems have met reliability requirements. 

8.1 Adjusting Prior Expectations 
Given the current covariance matrix and observations, we assess how much the 

decision maker's prior belief in E(AIB), E(AIM), E(BIB), and E(BIM), would have to increase 
by in order that his adjusted expectation is greater than the targets. In order to do this, 
we assume the covariance structure between the observed values and the value of interest 
remains the same. 

Given the observations made, in order that the adjusted expectation of AIB is equal to 
0.24, the prior expectation of AIB must be 0.5625. The decision maker's prior belief for 
E(AIB) was 0.285. Similar calculations can be carried out for E(AIB), E(AIM), E(BIB) and 
E(BIM). If the prior expectation of AIM was set to 0.999, the adjusted expectation of AIM 
given the observations would be 0.4456. No matter what value was entered into the 
model as the prior expectation of AIM, the vehicles adjusted expectation will be lower 
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than the target. If the prior expectation of BIB was lowered from 0.302 to 0.2548, the 
adjusted expectation of BIB given the observations would be equal to the target of 0.26. If 
the prior expectation of BIM was raised from 0.578 to 0.7799, the adjusted expectation of 
BBIM given the observations would meet the target of 0.57. The decision maker stated for 
the three reliability requirements that the contractor is currently not meeting; the 
proposed prior beliefs do not present his `true' belief about the reliability of the vehicles. 

8.2 Adjusting Covariance Matrix 
The aim of adjusting the covariance matrix is to assess whether or not the 

observations are having too strong an effect on the decision maker's prior beliefs. 
Sensitivity analysis is carried out on the residual uncertainty between the true reliability 
value and the reliability value observed during each phase of the RGT. All the 
observations made to date have been smaller than their expected value. As three out of 
the four reliability requirements are not currently being met, decreasing the residual 
variance, i.e. increasing the correlation  between the observation and the `true' reliability 
of the system, will make the adjusted expectation of the requirements decrease further. 
By lowering the correlation between the observations and `true' reliability, more faith is 
placed in the prior belief of the decision maker and the adjusted expectation of the 
parameters of interest will rise. 

At this time, the decision maker believes the observed basic reliability value will fall 
between -0.05 and 0.05 of the ‘true’ value. The decision maker believes the observed 
mission reliability value will fall between -0.1 and 0.1 of the `true' value. Two scenarios 
will be investigated. The first scenario is increasing the basic reliability range to -0.1 and 
0.1 and the mission reliability to -0.2 and 0.2. The second scenario is increasing the basic 
reliability range to -0.15 and 0.15 and increasing the mission reliability range to -0.3 and 
0.3. These two scenarios have the effect of changing the residual variance between the 
‘true’ reliability and observed reliability and essentially reducing the strength of the 
relationship between the observed value and the ‘true’ reliability. The result of each 
scenario can be found in Table 4 and Table 5. 

 

Variable Target Expectation Standard 
Deviation 

AIB 0.24 0.223 0.053 

AIM 0.55 0.512 0.103 

B BIB 0.26 0.286 0.059 

B BIM 0.57 0.543 0.109 

Table 4 – Adjusted beliefs given observations for Scenario 1 
 

Variable Target Expectation Standard 
Deviation 

AIB 0.24 0.268 0.055 

AIM 0.55 0.548 0.114 

B BIB 0.26 0.291 0.06 

B BIM 0.57 0.553 0.113 
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Table 5 – Adjusted beliefs given observations for Scenario 2 
It can be observed from the tables above that changing the residual uncertainty of 

the observations does not strongly affect the adjusted beliefs of Vehicle B. The largest 
impact of changing the residual uncertainty of the observations occurs for Vehicle A's 
basic and mission reliability. In Scenario 2 where the correlation is substantially reduced, 
the adjusted expectation for the basic reliability is greater that the target and the adjusted 
expectation for the mission reliability are only slightly below the target. However, the 
decision maker did not believe that it was realistic to think the residual uncertainty could 
potentially as high as in Scenario 1 or 2. 

8.3 Potential Sources of Observations 
The third form of sensitivity analysis is to consider the observations that have yet to 

be received. In this case, it may still be possible to gather the expert's opinion on the 
growth between the basic and mission reliability of each vehicle after the third phase of 
RGT's and prior to the vehicle entering service. We are interested in knowing what 
values for EGA3,IB  EGA3,IM and EGB3,IM will result in the respective vehicle meeting 
their respective requirement. EGB3,IB  is ignored as it is already on target to meet 
requirements. In order for the vehicles to meet reliability requirements, the expert must 
state three values; EGA3,IB = 0.075, EGA3,IM = 0.28, and EGA3,IM = 
0.0585. Each of these three values is outside the range of values the decision maker 
specified that he thought the expert may state. 

9. Summary of Analysis 
Based on the prior belief stated by the decision maker and the observations made, 

the contractor, at this stage, has not given the decision maker sufficient evidence to 
suggest they are meeting all four reliability requirements. The model indicates the 
expectation of Vehicle B's basic reliability is greater than the target. However, the 
expectation of both of Vehicle A's reliability requirements and Vehicle B's mission 
requirement is lower than the target. In the case of Vehicle A, the probability of meeting 
the target is small. 

Extensive sensitivity analysis has been carried out to investigate whether or not the 
three reliability requirements currently not being met could be met given changes in the   
prior specification by the decision maker. Two scenarios of particular interest were 
investigated; first, what changes could be made to the prior expectation so that 
requirements are being met, and second, what changes could be made to the covariance 
structure in order that reliability requirements were met. For the three reliability 
requirements currently not met, the decision maker did not believe it was feasible to 
modify his prior belief structure to such an extent that the adjusted expectation of each 
of the three requirements was greater than the target. 
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