2,261 research outputs found

    Mining frequent sequential patterns in data streams using SSM-algorithm.

    Get PDF
    Frequent sequential mining is the process of discovering frequent sequential patterns in data sequences as found in applications like web log access sequences. In data stream applications, data arrive at high speed rates in a continuous flow. Data stream mining is an online process different from traditional mining. Traditional mining algorithms work on an entire static dataset in order to obtain results while data stream mining algorithms work with continuously arriving data streams. With rapid change in technology, there are many applications that take data as continuous streams. Examples include stock tickers, network traffic measurements, click stream data, data feeds from sensor networks, and telecom call records. Mining frequent sequential patterns on data stream applications contend with many challenges such as limited memory for unlimited data, inability of algorithms to scan infinitely flowing original dataset more than once and to deliver current and accurate result on demand. This thesis proposes SSM-Algorithm (sequential stream mining-algorithm) that delivers frequent sequential patterns in data streams. The concept of this work came from FP-Stream algorithm that delivers time sensitive frequent patterns. Proposed SSM-Algorithm outperforms FP-Stream algorithm by the use of a hash based and two efficient tree based data structures. All incoming streams are handled dynamically to improve memory usage. SSM-Algorithm maintains frequent sequences incrementally and delivers most current result on demand. The introduced algorithm can be deployed to analyze e-commerce data where the primary source of the data is click stream data. (Abstract shortened by UMI.)Dept. of Computer Science. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2005 .M668. Source: Masters Abstracts International, Volume: 44-03, page: 1409. Thesis (M.Sc.)--University of Windsor (Canada), 2005

    Frequent subgraph mining from streams of linked graph structured data

    Get PDF
    Nowadays, high volumes of high-value data (e.g., semantic web data) can be generated and published at a high velocity. A collection of these data can be viewed as a big, interlinked, dynamic graph structure of linked resources. Embedded in them are implicit, previously unknown, and potentially useful knowledge. Hence, ecient knowledge discovery algorithms for mining frequent subgraphs from these dynamic, streaming graph structured data are in demand. Some existing algorithms require very large memory space to discover frequent subgraphs; some others discover collections of frequently co-occurring edges (which may be disjoint). In contrast, we propose|in this paper|algorithms that use limited memory space for discovering collections of frequently co-occurring connected edges. Evaluation results show the effectiveness of our algorithms in frequent subgraph mining from streams of linked graph structured data

    Incrementally updating the high average-utility patterns with pre-large concept

    Get PDF
    High-utility itemset mining (HUIM) is considered as an emerging approach to detect the high-utility patterns from databases. Most existing algorithms of HUIM only consider the itemset utility regardless of the length. This limitation raises the utility as a result of a growing itemset size. High average-utility itemset mining (HAUIM) considers the size of the itemset, thus providing a more balanced scale to measure the average-utility for decision-making. Several algorithms were presented to efficiently mine the set of high average-utility itemsets (HAUIs) but most of them focus on handling static databases. In the past, a fast-updated (FUP)-based algorithm was developed to efficiently handle the incremental problem but it still has to re-scan the database when the itemset in the original database is small but there is a high average-utility upper-bound itemset (HAUUBI) in the newly inserted transactions. In this paper, an efficient framework called PRE-HAUIMI for transaction insertion in dynamic databases is developed, which relies on the average-utility-list (AUL) structures. Moreover, we apply the pre-large concept on HAUIM. A pre-large concept is used to speed up the mining performance, which can ensure that if the total utility in the newly inserted transaction is within the safety bound, the small itemsets in the original database could not be the large ones after the database is updated. This, in turn, reduces the recurring database scans and obtains the correct HAUIs. Experiments demonstrate that the PRE-HAUIMI outperforms the state-of-the-art batch mode HAUI-Miner, and the state-of-the-art incremental IHAUPM and FUP-based algorithms in terms of runtime, memory, number of assessed patterns and scalability.publishedVersio

    Incrementally updating the high average-utility patterns with pre-large concept

    Get PDF
    High-utility itemset mining (HUIM) is considered as an emerging approach to detect the high-utility patterns from databases. Most existing algorithms of HUIM only consider the itemset utility regardless of the length. This limitation raises the utility as a result of a growing itemset size. High average-utility itemset mining (HAUIM) considers the size of the itemset, thus providing a more balanced scale to measure the average-utility for decision-making. Several algorithms were presented to efficiently mine the set of high average-utility itemsets (HAUIs) but most of them focus on handling static databases. In the past, a fast-updated (FUP)-based algorithm was developed to efficiently handle the incremental problem but it still has to re-scan the database when the itemset in the original database is small but there is a high average-utility upper-bound itemset (HAUUBI) in the newly inserted transactions. In this paper, an efficient framework called PRE-HAUIMI for transaction insertion in dynamic databases is developed, which relies on the average-utility-list (AUL) structures. Moreover, we apply the pre-large concept on HAUIM. A pre-large concept is used to speed up the mining performance, which can ensure that if the total utility in the newly inserted transaction is within the safety bound, the small itemsets in the original database could not be the large ones after the database is updated. This, in turn, reduces the recurring database scans and obtains the correct HAUIs. Experiments demonstrate that the PRE-HAUIMI outperforms the state-of-the-art batch mode HAUI-Miner, and the state-of-the-art incremental IHAUPM and FUP-based algorithms in terms of runtime, memory, number of assessed patterns and scalability.publishedVersio

    Edge-based mining of frequent subgraphs from graph streams

    Get PDF
    In the current era of Big data, high volumes of valuable data can be generated at a high velocity from high-varieties of data sources in various real-life applications ranging from sensor networks to social networks, from bio-informatics to chemical informatics. In addition, Big data are also available in business, education, engineering, finance, healthcare, scientific, telecommunication, and transportation domains. A collection of these data can be viewed as a big dynamic graph structure. Embedded in them are implicit, previously unknown, and potentially useful knowledge. Consequently, efficient knowledge discovery algorithms for mining frequent subgraphs from these dynamic streaming graph structured data are in demand. On the one hand, some existing algorithms discover collections of frequently co-occurring edges, which may be disjoint. On the other hand, some other existing algorithms discover frequent subgraphs by requiring very large memory space. With high volumes of Big data, available memory space may be limited. To discover collections of frequently co-occurring connected edges, we present in this paper two efficient algorithms that require small memory space. Evaluation results show the efficiency of our edge-based algorithms in mining frequent subgraphs from graph streams

    A Survey on Behavioral Pattern Mining from Sensor Data in Internet of Things

    Get PDF
    The deployment of large-scale wireless sensor networks (WSNs) for the Internet of Things (IoT) applications is increasing day-by-day, especially with the emergence of smart city services. The sensor data streams generated from these applications are largely dynamic, heterogeneous, and often geographically distributed over large areas. For high-value use in business, industry and services, these data streams must be mined to extract insightful knowledge, such as about monitoring (e.g., discovering certain behaviors over a deployed area) or network diagnostics (e.g., predicting faulty sensor nodes). However, due to the inherent constraints of sensor networks and application requirements, traditional data mining techniques cannot be directly used to mine IoT data streams efficiently and accurately in real-time. In the last decade, a number of works have been reported in the literature proposing behavioral pattern mining algorithms for sensor networks. This paper presents the technical challenges that need to be considered for mining sensor data. It then provides a thorough review of the mining techniques proposed in the recent literature to mine behavioral patterns from sensor data in IoT, and their characteristics and differences are highlighted and compared. We also propose a behavioral pattern mining framework for IoT and discuss possible future research directions in this area. © 2013 IEEE

    Mining High Utility Patterns Over Data Streams

    Get PDF
    Mining useful patterns from sequential data is a challenging topic in data mining. An important task for mining sequential data is sequential pattern mining, which discovers sequences of itemsets that frequently appear in a sequence database. In sequential pattern mining, the selection of sequences is generally based on the frequency/support framework. However, most of the patterns returned by sequential pattern mining may not be informative enough to business people and are not particularly related to a business objective. In view of this, high utility sequential pattern (HUSP) mining has emerged as a novel research topic in data mining recently. The main objective of HUSP mining is to extract valuable and useful sequential patterns from data by considering the utility of a pattern that captures a business objective (e.g., profit, users interest). In HUSP mining, the goal is to find sequences whose utility in the database is no less than a user-specified minimum utility threshold. Nowadays, many applications generate a huge volume of data in the form of data streams. A number of studies have been conducted on mining HUSPs, but they are mainly intended for non-streaming data and thus do not take data stream characteristics into consideration. Mining HUSP from such data poses many challenges. First, it is infeasible to keep all streaming data in the memory due to the high volume of data accumulated over time. Second, mining algorithms need to process the arriving data in real time with one scan of data. Third, depending on the minimum utility threshold value, the number of patterns returned by a HUSP mining algorithm can be large and overwhelms the user. In general, it is hard for the user to determine the value for the threshold. Thus, algorithms that can find the most valuable patterns (i.e., top-k high utility patterns) are more desirable. Mining the most valuable patterns is interesting in both static data and data streams. To address these research limitations and challenges, this dissertation proposes techniques and algorithms for mining high utility sequential patterns over data streams. We work on mining HUSPs over both a long portion of a data stream and a short period of time. We also work on how to efficiently identify the most significant high utility patterns (namely, the top-k high utility patterns) over data streams. In the first part, we explore a fundamental problem that is how the limited memory space can be well utilized to produce high quality HUSPs over the entire data stream. An approximation algorithm, called MAHUSP, is designed which employs memory adaptive mechanisms to use a bounded portion of memory, to efficiently discover HUSPs over the entire data streams. The second part of the dissertation presents a new sliding window-based algorithm to discover recent high utility sequential patterns over data streams. A novel data structure named HUSP-Tree is proposed to maintain the essential information for mining recenT HUSPs. An efficient and single-pass algorithm named HUSP-Stream is proposed to generate recent HUSPs from HUSP-Tree. The third part addresses the problem of top-k high utility pattern mining over data streams. Two novel methods, named T-HUDS and T-HUSP, for finding top-k high utility patterns over a data stream are proposed. T-HUDS discovers top-k high utility itemsets and T-HUSP discovers top-k high utility sequential patterns over a data stream. T-HUDS is based on a compressed tree structure, called HUDS-Tree, that can be used to efficiently find potential top-k high utility itemsets over data streams. T-HUSP incrementally maintains the content of top-k HUSPs in a data stream in a summary data structure, named TKList, and discovers top-k HUSPs efficiently. All of the algorithms are evaluated using both synthetic and real datasets. The performances, including the running time, memory consumption, precision, recall and Fmeasure, are compared. In order to show the effectiveness and efficiency of the proposed methods in reallife applications, the fourth part of this dissertation presents applications of one of the proposed methods (i.e., MAHUSP) to extract meaningful patterns from a real web clickstream dataset and a real biosequence dataset. The utility-based sequential patterns are compared with the patterns in the frequency/support framework. The results show that high utility sequential pattern mining provides meaningful patterns in real-life applications
    • …
    corecore