
MINING HIGH UTILITY PATTERNS OVER DATA STREAMS

MORTEZA ZIHAYAT KERMANI

A DISSERTATION SUBMITTED TO
THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

GRADUATE PROGRAM IN DEPARTMENT OF ELECTRICAL ENGINEERING
AND COMPUTER SCIENCE

YORK UNIVERSITY
TORONTO, ONTARIO

JULY 2016

c©MORTEZA ZIHAYAT KERMANI, 2016

Abstract

Mining useful patterns from sequential data is a challenging topic in data mining. An

important task for mining sequential data is sequential pattern mining, which discov-

ers sequences of itemsets that frequently appear in a sequence database. In sequential

pattern mining, the selection of sequences is generally based on the frequency/support

framework. However, most of the patterns returned by sequential pattern mining may not

be informative enough to business people and are not particularly related to a business

objective. In view of this, high utility sequential pattern (HUSP) mining has emerged as

a novel research topic in data mining recently. The main objective of HUSP mining is to

extract valuable and useful sequential patterns from data by considering the utility of a

pattern that captures a business objective (e.g., profit, user’s interest). In HUSP mining,

the goal is to find sequences whose utility in the database is no less than a user-specified

minimum utility threshold.

Nowadays, many applications generate a huge volume of data in the form of data

streams. A number of studies have been conducted on mining HUSPs, but they are

ii

mainly intended for non-streaming data and thus do not take data stream characteristics

into consideration. Mining HUSP from such data poses many challenges. First, it is

infeasible to keep all streaming data in the memory due to the high volume of data accu-

mulated over time. Second, mining algorithms need to process the arriving data in real

time with one scan of data. Third, depending on the minimum utility threshold value, the

number of patterns returned by a HUSP mining algorithm can be large and overwhelms

the user. In general, it is hard for the user to determine the value for the threshold. Thus,

algorithms that can find the most valuable patterns (i.e., top-k high utility patterns) are

more desirable. Mining the most valuable patterns is interesting in both static data and

data streams.

To address these research limitations and challenges, this dissertation proposes tech-

niques and algorithms for mining high utility sequential patterns over data streams. We

work on mining HUSPs over both a long portion of a data stream and a short period of

time. We also work on how to efficiently identify the most significant high utility patterns

(namely, the top-k high utility patterns) over data streams.

In the first part, we explore a fundamental problem that is how the limited memory

space can be well utilized to produce high quality HUSPs over the entire data stream. An

approximation algorithm, called MAHUSP, is designed which employs memory adaptive

mechanisms to use a bounded portion of memory, to efficiently discover HUSPs over the

entire data streams.

The second part of the dissertation presents a new sliding window-based algorithm to

discover recent high utility sequential patterns over data streams. A novel data structure

named HUSP-Tree is proposed to maintain the essential information for mining recent

HUSPs. An efficient and single-pass algorithm named HUSP-Stream is proposed to

generate recent HUSPs from HUSP-Tree.

The third part addresses the problem of top-k high utility pattern mining over data

streams. Two novel methods, named T-HUDS and T-HUSP, for finding top-k high utility

patterns over a data stream are proposed. T-HUDS discovers top-k high utility itemsets

and T-HUSP discovers top-k high utility sequential patterns over a data stream. T-HUDS

is based on a compressed tree structure, called HUDS-Tree, that can be used to efficiently

find potential top-k high utility itemsets over data streams. T-HUSP incrementally main-

tains the content of top-k HUSPs in a data stream in a summary data structure, named

TKList, and discovers top-k HUSPs efficiently.

All of the algorithms are evaluated using both synthetic and real datasets. The per-

formances, including the running time, memory consumption, precision, recall and F-

measure, are compared.

In order to show the effectiveness and efficiency of the proposed methods in real-

life applications, the fourth part of this dissertation presents applications of one of the

proposed methods (i.e., MAHUSP) to extract meaningful patterns from a real web click-

stream dataset and a real biosequence dataset. The utility-based sequential patterns are

compared with the patterns in the frequency/support framework. The results show that

high utility sequential pattern mining provides meaningful patterns in real-life applica-

tions.

v

Acknowledgements

First and foremost, I would like to express my sincere appreciation to my supervisor Prof.

Aijun An for her continuous support of my PhD study and research, for her patience,

motivation, enthusiasm, and immense knowledge. Her guidance helped me in all the

time of research and writing of this thesis. I could not have imagined having had a better

advisor and mentor for my PhD study.

I would like to thank my committee members, Prof. Parke Godfrey and Prof. Jarek

Gryz for their great support and invaluable advice. I also show gratitude for Prof. Nick

Cercone (former thesis committee member), an excellent professor and pioneer in the

data mining area, who unfortunately passed away a few months before the official dis-

sertation defense.

The members of both data mining and database labs have contributed immensely to

my personal and professional time at York University. The group has been a source of

friendships as well as great collaborators. I am also thankful to the administrative and

technical staff of our department for their finest support.

vi

Lastly, I would like to thank my family for all their encouragement and love. Words

cannot express the feelings I have for my parents for their constant unconditional support

in every aspect of my life.

vii

Table of Contents

Abstract ii

Acknowledgements vi

Table of Contents viii

List of Tables xiv

List of Figures xvi

1 Introduction 1

1.1 Background . 1

1.1.1 High Utility Itemset Mining 7

1.1.2 High Utility Sequential Pattern mining 9

1.2 Motivation . 10

1.3 Research Objectives . 13

viii

1.3.1 Incremental High Utility Sequential Pattern Mining over the En-

tire Data Streams . 13

1.3.2 Mining Recent High Utility Sequential Patterns over Data Streams 14

1.3.3 Mining Top-k High Utility Patterns over Data Streams 15

1.3.4 High Utility Sequential Patterns in Real Life Applications . . . 16

1.4 Research Contributions . 16

1.4.1 Memory Adaptive High Utility Sequential Pattern Mining over

Data Streams . 16

1.4.2 Sliding Window-based High Utility Sequential Pattern Mining

over Data Streams . 17

1.4.3 Top-k High Utility Pattern Mining over Data Streams 18

1.4.4 Mining Meaningful Patterns in Real Life Applications 19

1.5 Thesis Structure . 20

2 Literature Review 24

2.1 Frequent Pattern Mining . 24

2.1.1 Frequent Itemset Mining . 24

2.1.2 Frequent Sequential Pattern Mining 26

2.1.3 Frequent Sequential Pattern Mining over Data Streams 29

2.1.4 Top-k Frequent Itemset/Sequence Mining 31

ix

2.2 High Utility Pattern Mining . 32

2.2.1 High Utility Itemset Mining 33

2.2.2 High Utility Itemset Mining over Data Streams 39

2.2.3 High Utility Sequential Pattern Mining 42

2.2.4 Top-k High Utility Itemset/Sequence Mining 46

2.3 Summary . 47

3 Memory Adaptive High Utility Sequential Patterns over Data Streams 48

3.1 Introduction . 48

3.2 Definitions and Problem Statement . 51

3.3 Memory Adaptive High Utility Sequential Pattern Mining 55

3.3.1 Overview of MAHUSP . 55

3.3.2 MAS-Tree Structure . 57

3.3.3 Rest Utility: A Utility Upper Bound 61

3.3.4 MAS-Tree Construction and Updating 63

3.3.5 Memory Adaptive Mechanisms 68

3.3.6 Mining HUSPs from MAS-Tree 73

3.3.7 Correctness . 74

3.4 Experiments . 77

3.4.1 Effectiveness of MAHUSP . 80

x

3.4.2 Time and Memory Efficiency of MAHUSP 82

3.4.3 Parameter Sensitivity Analysis 84

3.5 Summary . 86

4 Sliding Window-based High Utility Sequential Pattern Mining over Data

Streams 88

4.1 Introduction . 88

4.2 Definitions and Problem Statement . 94

4.3 Sliding Window-based High Utility Sequential Pattern Mining over Data

Streams . 97

4.3.1 Initialization phase . 99

4.3.2 Update Phase . 115

4.3.3 HUSP Mining Phase . 122

4.4 Experiments . 123

4.4.1 Methods in Comparison . 125

4.4.2 Performance evaluation for sliding two hundred consecutive win-

dows . 126

4.4.3 Number of Potential HUSPs 128

4.4.4 Time Efficiency of HUSP-Stream 129

4.4.5 Memory Usage . 132

xi

4.4.6 Effectiveness of SFU Pruning 133

4.4.7 Performance Evaluation with Window Size Variation 135

4.4.8 Scalability . 136

4.5 Summary . 137

5 Top-k High Utility Pattern Mining over Data Streams 141

5.1 Top-k High Utility Itemset Mining over a Data Stream 142

5.1.1 Preliminaries and Problem Statement 144

5.1.2 Challenges and New Definitions 146

5.1.3 T-HUDS: Top-k High Utility Itemset Mining over a Data Stream 153

5.2 Top-k High Utility Sequential Pattern Mining over Data Streams 180

5.2.1 Definitions and Problem Statement 183

5.2.2 Top-k High Utility Sequential Pattern Mining over Data streams 185

5.3 Experimental Results . 193

5.3.1 T-HUDS Performance Evaluation 193

5.3.2 T-HUSP Performance Evaluation 211

5.4 Summary . 217

6 Mining Meaningful Patterns in Real Life Applications 221

6.1 A Utility-based Users’ Reading Behavior Mining 221

6.1.1 Definitions . 223

xii

6.1.2 Demonstration . 226

6.2 A Disease-related Gene Expression Sequence Discovery 229

6.2.1 Definitions . 231

6.2.2 Demonstration . 234

6.3 Summary . 238

7 Conclusions and Future Work 239

7.1 Summary of Contributions . 240

7.2 Future Work . 243

Bibliography 246

xiii

List of Tables

1.1 An example of sequential data in a retail store 2

1.2 An example of a web clickstream dataset 3

1.3 An example of a time course microarray dataset 4

3.1 Dataset characteristics . 78

4.1 Summary of Notations . 93

4.2 Parameters of IBM data generator . 123

4.3 Details of parameter setting . 124

5.1 Summary of Notations . 152

5.2 Notations . 184

5.3 Details of the datasets . 194

5.4 Number of candidates generated in phase I 200

5.5 Memory comparison (MB), k=600 . 204

5.6 Methods with different strategies . 204

xiv

5.7 Number of candidates at the end of first phase for different versions of

T-HUDS: . 206

5.8 Parameters of IBM data generator . 211

5.9 Details of parameter setting . 213

6.1 Top-4 HUSPs versus Top-4 FSPs with respect to time spent and support 222

6.2 (a) An example of a time course microarray dataset, (b) Fold changes of

gene/probe values . 229

6.3 Converted utility-based sequential dataset from time course microarray

dataset in Table 6.2(a) . 234

6.4 Top-20 genes related to pneumonia 235

6.5 Top-4 HUSPs versus Top-4 FGSs with respect to utility and support . . 236

xv

List of Figures

1.1 Data stream processing models . 12

1.2 Thesis profile . 23

3.1 An example of a data stream of itemset-squences 51

3.2 An example of MAS-Tree for B1 in Figure 3.1. 58

3.3 Precision performance on the different datasets 80

3.4 Recall performance on the different datasets 80

3.5 F-Measure performance on the different datasets 81

3.6 Execution time on different datasets. 82

3.7 Memory Usage on different datasets. 83

3.8 Parameter sensitivity on different datasets. 84

4.1 An example of a data stream of itemset-squences 94

4.2 ItemUtilLists for items in SW1 in Figure 4.1 101

4.3 An Example of HUSP-Tree for SW1 in Figure 4.1 103

xvi

4.4 I-Step and S-Step to construct SeqUtilLists of the sequences 〈{ab}〉 and

〈{ab}{d}〉. 106

4.5 An overview of ItemUtilLists update step 118

4.6 An overview of HUSP-Tree update step 120

4.7 The updated (i) ItemUtilLists and (ii) SeqUtilList({ab}) after remov-

ing T1 from and adding T6 to the window 121

4.8 Execution time and sliding time (shown in logarithmic scale) over con-

secutive windows . 126

4.9 Number of PHUSPs on different datasets 128

4.10 Execution time and sliding time (shown in logarithmic scale) on different

datasets . 130

4.11 Sliding time on different datasets . 131

4.12 Memory Usage of the algorithms . 132

4.13 Impact of SFU on Run Time . 133

4.14 Impact of SFU on Number of PHUSPs 134

4.15 Impact of SFU on Memory Usage. 135

4.16 Evaluation of HUSP-Stream under different window sizes 136

4.17 Scalability of HUSP-Stream on different datasets: (a) Memory Usage ,

(b) Run Time . 137

5.1 Example of transaction data base and external utility of items 144

xvii

5.2 HUDS-Tree after inserting transaction in SW1 in Figure 5.1. 157

5.3 (a) An example of a data stream of itemset-sequence and sliding windows

over the data stream, (b) an example of external utility table 183

5.4 Reached threshold on (a) Connect-4, (b) IBM, (c) BMS-POS,(d) Chain-

Store Datasets . 198

5.5 Run time on (a) Connect-4, (b) IBM, (c) BMS-POS, (d) ChainStore

Datasets . 201

5.6 Run Time for Phase I: (a) Connect-4, (b) IBM, (c) BMS-POS, (d) Chain-

Store . 202

5.7 Run Time for Phase II: (a) Connect-4, (b) IBM, (c) BMS-POS, (d) Chain-

Store . 203

5.8 Run time for different versions of T-HUDS: (a) IBM, (b) BMS-POS, (c)

ChainStore datasets . 207

5.9 Impact of PrefixUtil on the number of generated candidates on (a)

IBM, (b) BMS-POS, (C) ChainStore datasets 208

5.10 Impact of PrefixUtil on run time on (a) IBM, (b) BMS-POS, (c) Chain-

Store datasets . 208

5.11 Effect of the window size on the run time: (a) IBM, (b) BMS-POS, (c)

ChainStore datasets . 209

5.12 Scalability of T-HUDS on different datasets (k=500). 210

xviii

5.13 Number of potential HUSPs on (a)DS1, (b) BMS, (c) DS2, (d) Chain-

Store Datasets . 214

5.14 Run time on (a) DS1, (b) BMS, (c) DS2, (d) ChainStore Datasets 216

5.15 Memory usage on(a)DS1, (b) BMS, (c) DS2, (d) ChainStore Datasets . 217

6.1 (a) Run time, (b) Memory Usage on the Globe dataset 223

6.2 (a) Precision, (b) Recall and (c) F-Measure performance on the Globe

dataset . 223

6.3 An example of a web clickstream dataset 224

6.4 The importance of news articles based on popularity and recency 224

6.5 (a) Run time, (b) Memory Usage on the GSE6377 dataset 237

6.6 (a) Precision, (b) Recall and (c) F-Measure performance on the GSE6377

dataset . 237

xix

1 Introduction

1.1 Background

Nowadays, huge volumes of data are produced in the form of sequences. A sequence

is an ordered list of events with or without concrete notions of time [44]. A sequence

database consists of a set of sequences. These sequential data are valuable sources of

information not only to find a particular event at a specific time, but also to discover

particular sequential relationships by analysing the occurrences of certain events or sets

of events. Sequential data are produced by many applications such as consumer shopping

sequences, Web access logs, DNA sequences, sequences in financial markets, etc. Here

are three examples drawn from different domains, where sequential data are produced.

1) Retail Business: Table 1.1 shows an example of sequential data from a retail

store. Each record is a customer transaction. In this table, the first column contains IDs

assigned to the transactions. The second column shows time stamps for the transactions.

The last three columns represent the information about the purchased items in each trans-

action, the quantity of each purchased item in the transaction and the unit profit. In this

1

Table 1.1: An example of sequential data in a retail store

Transaction ID Timestamp Customer ID The items Quantities Unit Profit

T1 10-09-2015 10:00:00 C1 {Bread,Milk} {2, 6} {$1, $1}

T2 10-09-2015 11:00:00 C2 {Birthday Cake} {2} {$20}

T3 10-09-2015 11:30:00 C3 {Birthday Card,Egg} {2, 3} {$10, $2}

T4 10-09-2015 12:00:00 C1 {Bread,Milk, Y oghurt, Tuna} {2, 4, 3, 5} {$1, $1, $4, $2.5}

T5 10-09-2015 12:10:00 C4 {Egg, P izza, Juice,Milk} {5, 4, 2} {$2, $8, $3, , $1}

T6 11-09-2015 9:00:00 C4 {Bread, Y oghurt,Milk} {2, 4, 3} {$1, $4, $1}

dataset, extracting customers’ shopping behavior patterns can address several important

questions such as how to increase revenue by recommending products based on previ-

ously observed shopping behaviours.

2) News Portal: Table 1.2 shows an example of a news portal clickstream dataset

D with 5 sessions {S1, S2, S3, S4, S5}. Each session contains a sequence of tuples, cor-

responding to the list of articles that a reader read in a visit to the news portal. For each

article that a user read, the article id, whether the user clicked on the like button, whether

she/he shared the news in a social media and the time that the user spent on the article are

recorded. For example, tuple 〈nw1, 1, 1, 14〉 in S1 means that a user visited news nw1,

pressed the like button, shared nw1 in a social media and also spent 14 minutes to read

news article nw1. From such a dataset, modeling users’ reading behavior is a major way

to obtain a deep insight into the users. Reading behaviour patterns are useful for the por-

tal designers to understand users’ navigation behavior and improve the portal design and

2

Table 1.2: An example of a web clickstream dataset

Session 〈 , , , 〉S 〈 , 1, 1,14〉〈 , 1, 0,3〉〈 , 1, 1, 22〉〈 , 0, 1,7〉S 〈 , 0, 0,4〉〈 , 1, 0,15〉〈 , 1, 1,18〉S 〈 , 1, 1,14〉〈 , 0, 0,1〉〈 , 1, 0,19〉〈 , 0, 1, 3〉S 〈 , 1, 0,4〉〈 , 1, 0,8〉〈 , 0, 0,13〉S 〈 , 1, 0,9〉〈 , 1, 0,2〉
e-business strategies. These patterns can be also used to build a news recommendation

system.

3) Bioinformatic: Microarray has been widely used in the biomedical field for iden-

tifying genes that are differentially expressed in different biological states (e.g. diseased

versus non-diseased). Table 1.3 shows a part of a time course microarray dataset obtained

from a biological investigation which consists of three patients whose IDs are P1, P2 and

P3. In this table, the gene expression values of three genes G1, G2 and G3 are presented

over four time points TP1, TP2, TP3 and TP4. Identifying potential gene regulations

that occur in a period of time is important for biologists. Such patterns allow researchers

to compare gene expression in different tissues, cells or conditions and provide some

information on the relative levels of expression of thousands of genes among samples

(usually less than a hundred).

Motivated by the above examples and many examples from other businesses that

involve sequential data, mining patterns in sequential data has become an interesting re-

search topic. The problem of sequential pattern mining was first introduced by Agrawal

3

Table 1.3: An example of a time course microarray dataset

 240 546 100 50321 98 454 974410 350 251 243128 786 135 344253 820 482 90290 150 256 864600 188 99 40500 555 510 80200 400 350 450

 1 2.2 −2.4 −4.81 −3.2 1.4 3.01 −1.1 −1.6 −1.61 6.1 1.0 2.61 3.2 1.9 −2.81 −1.9 −1.1 2.91 −3.1 −6.6 −151 1.1 1.0 −6.21 2 1.7 2.2() ()
and Srinkant [2] as follows. Given a sequence database, where each sequence consists

of a list of transactions ordered by transaction time and each transaction is a set of

items, sequential pattern mining is to discover all sequential patterns that frequently ap-

pear in the database. For example in Table1.1, mining sequential patterns is to find the

sequences of products that are frequently purchased by customers in a time order. In

the last two decades many techniques and algorithms such as AprioriAll [2], GSP [53],

FreeSpan [29], PrefixSpan [50], SPADE [71] and SPAM [9] have been proposed to mine

sequential patterns. The mined patterns have been used for different purposes such as

customer acquisition[14], web page design [12] and future location prediction of mobile

users [59].

Despite the usefulness of sequential pattern mining in many applications, these ap-

proaches assume that all items are equally important and consider only binary frequency

values of items in transactions. In [16], the authors showed that such approaches were

not sufficiently practical for industrial needs. In their study, the patterns returned by se-

4

quential pattern mining methods were handed over to business people, the results showed

that business people were not able to effectively take over and interpret the patterns to

solve business problems. According to their study, there are three reasons for the prob-

lem. First, many patterns returned by sequential pattern mining may not be informative

enough so that business people do not know which patterns are truly interesting and ac-

tionable for their business. Second, most of the patterns are not particularly related to a

business need. Third, business people often do not know how to take actions on them

to support business decision-making and operations. Below are three applications drawn

from retail business, news portal and bioinformatics where frequency-based sequential

pattern mining is not sufficiently practical.

1) Mining profitable shopping behaviour: In Table 1.1 the number of occurrences

of an item in a transaction (e.g., quantity) and the importance of an item (e.g., unit profit)

are not considered in the traditional framework of sequential pattern mining. Hence,

such a framework may discover a large number of sequential patterns having low selling

profits and lose the valuable information on important patterns that will contribute high

profits. According to the table, selling a Birthday Cake is much more profitable (e.g.,

$40 in total) than selling a bottle of milk (e.g., $15 in total), but a pattern containing a

Birthday Cake is much more infrequent than the one with a bottle of milk. Hence, the

sequences contain such profitable items may not be discovered by existing approaches.

However, these profitable patterns are important in making business decisions for maxi-

5

mizing revenue or minimizing marketing or inventory costs.

2) Mining user reading behaviour: There are some common deficiencies in most

previous approaches to user reading behaviour mining based on frequency-based pattern

mining in news domain. First, they discover patterns based on statistical measures such

as frequency which do not take the user’s interest into account. It is very common that

not all the news opened by the user are of interest to him/her. For example, in Table 1.2,

the user in session S3 clicked on the news nw4 to find that it is not very interesting to

him/her since he/she only spent one minute to browse the news article. Second, the in-

trinsic characteristics of news reading make web usage mining in news domain different

than other domains. The news domain is a dynamic environment. When users visit a

news portal, they are looking for new information or even surprising ones. However, the

traditional approaches ignore the fact that the value of a news article changes over time.

3) Mining disease-related gene expression sequences: Applying frequency-based

sequential pattern mining approaches to Table 1.3, we are able to identify potential gene

regulations that occur in a period of time frequently. These methods mostly choose im-

portant gene expression sequences based on the frequency/support framework. Usually,

such datasets are collected to study a specific disease. However, as clinical studies have

shown, the frequency alone may not be informative enough to discover gene expression

sequences regarding an specific disease. For example, some genes are more important

than others in causing a particular disease and some genes are more effective than others

6

in fighting diseases. The sequences contain these highly valuable genes may not be dis-

covered by the frequency-based approaches because they neither consider the importance

of each gene, nor temporal behavior of genes under biological investigation.

Considering these challenges, the important question is how to find sequential pat-

terns of business interest. In view of this, utility was introduced into sequential pattern

mining to discover patterns based on a business objective such as increasing profits, re-

ducing costs, user’s interest or a specific disease. This led to high utility pattern mining

where the patterns are selected as interesting patterns based on their utility value. There

are two main branches of high utility pattern mining which are highly related to the topic

of this thesis.

1.1.1 High Utility Itemset Mining

Let I = {i1, i2, ..., im} be a set of items and each item ij ∈ I is associated with a positive

number p(ij), called its external utility (which can be the price or profit) of item ij .

Let D be a set of N transactions: D = {T1, T2, ..., TN} such that for ∀Tj ∈ D,Tj =

{(i, q(i, Tj))|i ∈ I, q(i, Tj) is the quantity of item i in transaction Tj}. Utility of an item

i in a transaction Tj is defined as: u(i, Tj) = q(i, Tj) × p(i). Hence, the utility of an

itemset X in a transaction Tj is defined by: u(X,Tj) =
∑
i∈X

u(i, Tj). For example, in

Table 1.1, utility of itemset {Bread, Y oghurt} is (2×$1+3×$4)+(2×$1+4×$4) =

$32. An itemset is a high utility itemset (HUI) if its utility (such as the total profit that

7

the itemset brings) in a database is no less than a minimum utility threshold.

Mining HUIs is computationally more complex than mining frequent itemsets. This

is due to the fact that the utility of an itemset does not have the downward closure prop-

erty, which would allow effective pruning of search space during the HUI mining pro-

cess. In fact, the utility of an itemset may be higher than, equal to, or lower than those

of its super-itemsets and sub-itemsets [3, 52, 66]. In the last decade, several techniques

and algorithms have been proposed for mining high utility itemsets. The MEU (Mining

with Expected Utility) [64] is the first high utility itemset mining method. The authors

defined the problem of mining high utility itemsets, and proposed a theoretical model of

high utility itemset mining. Specifically, two types of utilities for items, namely trans-

action utility (referred as internal utility in our definitions above) and external utility,

were first proposed. They also proposed a utility upper bound called Expected Utility

for the itemset to prune unpromising candidates. The Two-Phase method presented in

[42] is one of the most cited papers in high utility itemset mining. The authors proposed

an over-estimate utility (i.e., TWU) model for mining high utility itemsets. The main

advantage of TWU is its downward closure property. In the first phase, Two-Phase dis-

covers all itemsets whose TWU is more than the threshold (i.e., HTWU itemsets). Then

in the second phase, it scans the database one more time to extract the true high utility

itemsets from the HTWU itemsets. Based on the TWU model, CTU-Mine [24] was

proposed that is more efficient than Two-phase in dense databases when the minimum

8

utility threshold is very low. To reduce the number of candidates in each database scan,

the isolated item discarding strategy (IIDS) was proposed in [37]. Applying IIDS, the

authors proposed two efficient algorithms FUM and DCG+. The authors of [34] pro-

posed tighter upper bounds of utility values than TWU values. In [57] a pattern growth

approach (i.e., UP-Growth) was proposed to discover high utility patterns in two scans

of database. The improved version of UP-Growth [57] was presented in [55]. Recently,

some works have focused on mining HUIs in one scan of database. HUI-Miner (High

Utility Itemset Miner) proposed by [40] is able to discover HUIs in one scan of database.

In [33] a high utility itemset approach is proposed that discovers HUIs in a single phase

without generating candidates.

1.1.2 High Utility Sequential Pattern mining

High utility itemset mining methods do not consider the ordering relationships between

items or itemsets. Considering the sequential orders between itemsets makes the mining

process much more challenging than mining high utility itemsets. To address this prob-

lem, high utility sequential pattern (HUSP) mining has emerged in data mining recently

[3, 4, 66]. HUSP mining finds sequences of items or itemsets whose utility is higher

than a user-specified utility threshold. The concept of HUSP mining was first proposed

by Ahmed et al [4]. They defined an over-estimated sequence utility measure, SWU ,

which has the downward closure property, and proposed the UL and US algorithms for

9

mining HUSPs which use SWU to prune the search space. Shie et al. [52] proposed

a framework for mining HUSPs in a mobile environment. Yin et al. [66] proposed the

USpan algorithm for mining HUSPs, in which a lexicographic tree was used to extract

the complete set of high utility sequential patterns.

1.2 Motivation

A data stream is an ordered and unbounded list of records (e.g., items/itemsets/sequences).

Many applications generate huge volumes of data streams such as network monitor-

ing, ATM operations in banks, sensor networks, web clickstreams, transactions in retail

chains and many others. For example, Table 1.1 can be considered as a part of a data

stream consisting of transactions ordered by their time stamps. Since transactions are

done by different customers, this data stream can be also conisdered to have multiple se-

quences of transactions, each corresponding to a customer. A customer is likely to shop

more than once in the retail store. Hence, the sequences of customers such as C1 and C2

become longer and longer over time and also it is very likely that new customers start

shopping in the future and thus new sequences can be generated as time evolves.

An algorithm dealing with data streams need to process the data in real time with one

scan of data. There are three main types of stream-processing models: damped window

based, sliding window based and landmark window based.

In the damped window based (also called time-fading window based) model, each

10

data record (e.g., a transaction) is assigned with a weight that decreases over time. There-

fore, in this model, recent data are more important than old ones. However, it is difficult

for users who are not domain experts to choose an appropriate decay function or decay

rate for this model. The sliding window based model captures a fixed number of most

recent records in a window, and it focuses on discovering the patterns within the window.

When a new record flows into the window, the oldest one is expired and its effect is elim-

inated from the window. Focusing on recent data can detect new characteristics of the

data or changes in data distributions quickly. However, in some applications long-term

monitoring is necessary and users want to treat all data elements starting from a past time

point equally and discover patterns over a long period of time in the data stream. The

landmark window based model is used for such a purpose, which treats all data records

starting from a past time point (called Landmark) until the current time equally and dis-

covers patterns over a long period of time in the data stream. Figure 1.1 summarizes

the different stream processing models. In this figure, a data record can be an item, a

transaction or a sequence.

All in all, mining such data poses many challenges due to its intrinsic characteristics.

First, it is infeasible to keep all streaming data in the memory due to the high volume of

data accumulated over time. Second, mining algorithms need to process the arriving data

in real time with one scan of data. Third, the distribution of data varies over time, and

hence analysis results need to be updated in real time.

11

… …

Figure 1.1: Data stream processing models

There are some recent studies on mining data streams, including approximate fre-

quency counts over data streams [38, 45, 48], mining frequent patterns in data streams[21,

35, 65] and high utility itemset mining over data streams [7, 42, 56], but no work has

been done to mine high utility sequential patterns over data streams. The advantage

of mining HUSPs over mining frequent sequential patterns from a data stream is that a

business objective can be considered during pattern discovery as the utility. There are

unique challenges in discovering HUSPs over data streams. Below, we first present the

research objectives and challenges and then we describe our contributions to address the

challenges.

12

1.3 Research Objectives

The objective of this dissertation is to develop techniques and algorithms for mining high

utility sequential patterns over data streams. We work on mining HUSPs over both a long

portion of a data stream and a short period of time. We also work on how to efficiently

identify the most significant high utility patterns (namely, the top-k high utility patterns)

over data streams. In this dissertation, we assume that the data in the data stream arrive

very fast and in a large volume, hence mining algorithms need to process the arriving

data in real time with one scan of data. In particular, we define and address the following

research issues.

1.3.1 Incremental High Utility Sequential Pattern Mining over the Entire Data

Streams

In some applications long-term monitoring or planning is necessary and users want to

discover patterns over a long period of time in the data stream. For example, the users

may want to detect important buying sequences of customers since the beginning of a

year or since the store changed its layout. A complete re-scan of a long portion of a

data stream is usually impossible or prohibitively costly. Mining from a dynamically-

increasing data streams allows incremental maintenance of patterns over a long period

of time in a data stream. However, incremental mining of HUSPs over a data stream is

13

challenging due to the need of capturing the information of data over a potentially long

period of time. Since real-time stream processing does not allow us to scan the data more

than once, information about the data processed so far need to be summarized and kept in

memory. However, it is possible that the amount of information we need to keep exceeds

the size of available memory. Thus, to avoid memory thrashing or crashing, memory-

aware data processing is needed to ensure that the size of the data structure does not

exceed the available memory, and at the same time the mining algorithm should be able

to adapt its computation and memory usage to produce the best possible solutions under

the memory constraint. That is, accurate approximation of the information needed for

the mining process is necessary.

1.3.2 Mining Recent High Utility Sequential Patterns over Data Streams

In some applications such as network traffic monitoring and intrusion detection, users

are more interested in information that reflect recent data rather than old ones. That

is, the mining method should capture most recent records (i.e., transactions/sequences)

in a window, and focus on discovering the patterns within the window. When a new

record flows into the window, the oldest one should be eliminated. To discover recent

HUSPs, a naive approach is to apply an existing algorithm on static data to re-generate

all HUSPs when the new record is added to the window and the oldest record is expired.

However, this approach is very time-consuming because it needs to re-run the whole

14

mining process on the window even just a very small portion of the data is changed.

1.3.3 Mining Top-k High Utility Patterns over Data Streams

A threshold-based high utility pattern (i.e., itemset/sequence) mining approach enables

us to discover the complete set of high utility patterns with a pre-defined minimum utility

threshold. However, it is often difficult for the user to specify a minimum utility thresh-

old, especially if the user has no background knowledge in the application domain. If the

threshold is set too low, a large number of patterns can be found, which is not only time

and space consuming [61], but also makes it hard to analyze the mining results. On the

other hand, if the threshold is set too high, there may be very few or even no high utility

patterns being found, which means that some interesting patterns are missed. Therefore,

it is more reasonable to ask users to set a bound on the result size and discover top-k high

utility patterns over data streams. The main challenge is that the minimum utility thresh-

old is not given in advance to mine top-k high utility patterns. In the threshold-based high

utility pattern mining approaches, the algorithms can prune the search space efficiently

with the given threshold. However, in the scenario of top-k high utility pattern mining,

the threshold is not provided. Therefore, the minimum utility threshold is initially set to

0. The mining task should gradually raise the threshold to prune the search space. Hence,

the challenge is to design strategies to raise the threshold as high as possible to prune the

search space as early as possible.

15

1.3.4 High Utility Sequential Patterns in Real Life Applications

Much of existing HUSP mining research has focused on devising techniques to discover

patterns from databases efficiently. Relatively little attention has been paid to show ap-

plicability of the algorithms in real life scenarios. There are several challenges to use a

HUSP mining algorithm in a real life application such as how to define the utility so that

it reflects the objective of the application effectively and how to convert input sequential

database to a utility-based sequential database.

1.4 Research Contributions

1.4.1 Memory Adaptive High Utility Sequential Pattern Mining over Data Streams

To solve the problem of mining high utility sequential patterns over the entire data

streams, we propose a memory-adaptive high utility sequential pattern mining over data

streams. In particular, our method is based on a specific type of the landmark window in

which the landmark is the beginning of the data stream. Our contributions are summa-

rized as follows.

• We propose a novel method for incrementally mining HUSPs over data streams.

Our method identifies high utility sequential patterns over a long period of time.

• We propose a novel and compact data structure, called MAS-Tree, to store potential

16

HUSPs over a data stream. The tree is updated efficiently once a new candidate is

discovered.

• Two efficient memory adaptive mechanisms are proposed to deal with the situation

when the available memory is not enough to add a new potential HUSPs to MAS-

Tree.

• Using MAS-Tree and the memory adaptive mechanisms, our algorithm, called

MAHUSP, efficiently discovers HUSPs over a data stream with a high recall and

precision. The proposed method guarantees that the memory constraint is satisfied

and also all true HUSPs are maintained in the tree under certain circumstances.

1.4.2 Sliding Window-based High Utility Sequential Pattern Mining over Data

Streams

To address the problem of mining recent high utility sequential patterns over data streams,

we propose a sliding window-based high utility sequential pattern mining over data

streams. Our contributions are summarized as follows.

• We define the problem of sliding window-based high utility sequential pattern min-

ing to discover recent HUSPs over data streams.

• We propose a new utility model, called suffix utility (SFU), to over-estimate the

sequence utility. We prove that SFU of a sequence is an upper bound of the

17

utilities of its super-sequences, which can be used to effectively prune the search

space in finding HUSPs.

• We propose efficient data structures named ItemUtilLists (Item Utility Lists) and

HUSP-Tree (High Utility Sequential Pattern Tree) for maintaining the essential in-

formation of high utility sequential patterns in a sliding window over a data stream.

• We propose a new one-pass algorithm called HUSP-Stream (High Utility Sequen-

tial Pattern Mining over Data Streams) for efficiently constructing and updating

ItemUtilLists and HUSP-Tree by reading a transaction in the data stream only once.

1.4.3 Top-k High Utility Pattern Mining over Data Streams

To address the problem of top-k high utility pattern mining over data streams, we pro-

pose two methods to discover top-k high utility itemsets and top-k high utility sequential

patterns over data streams. Our contributions are summarized as follows.

• We first propose a method, called T-HUDS, for mining top-k high utility itemsets

from data streams. Then, we propose another method, called T-HUSP, for mining

top-k high utility sequential patterns over data streams.

• We propose several strategies for initializing and dynamically adjusting the mini-

mum utility threshold during the top-k HUI/HUSP mining process.

18

• We conduct extensive experiments on both real and synthetic datasets to evaluate

the performance of the proposed algorithms. Experimental results show that T-

HUDS and T-HUSP serve as efficient solutions for the problems of top-k high

utility itemset mining over data streams and top-k high utility sequential pattern

mining over data streams, respectively.

1.4.4 Mining Meaningful Patterns in Real Life Applications

In order to demonstrate the applicability of the proposed methods in practical cases, we

discover meaningful patterns in two real-life applications. Our contributions are summa-

rized as follows.

• We conduct an analysis on a real web clickstream dataset obtained from a Canadian

news web portal to extract web users’ reading behavior patterns.

• We analyze a publicly available time course microarray dataset to identify gene

sequences correlated with a specific disease.

• Using several quality measures, the mined utility-based sequential patterns are

compared with the patterns in the frequency/support framework. The results show

that our methods provide more meaningful patterns in real-life applications.

19

1.5 Thesis Structure

This dissertation is organized as follows.

In Chapter 2, we first present an introduction to the traditional frequent pattern mining

framework, including existing work in frequent itemset/sequence mining over static data

and data streams and top-k frequent itemset/sequence mining over data streams. Then, an

overview of high utility pattern mining framework will be discussed. This overview de-

scribes existing work in high utility itemset mining, high utility itemset mining over data

streams, high utility sequential pattern mining and top-k high utility itemset/sequence

mining.

In Chapter 3, we explore a fundamental problem that is how the limited memory

space can be well utilized to produce high quality HUSPs over the entire data stream.

We design an approximation algorithm, called MAHUSP, that employs memory adaptive

mechanisms to use a bounded portion of memory, to efficiently discover HUSPs over

data streams. An efficient tree structure, called MAS-Tree, is proposed to store potential

HUSPs over a data stream. MAHUSP guarantees that all HUSPs are discovered under

certain circumstances. Our experimental study on real and synthetic datasets shows that

our algorithm cannot only discover HUSPs over data streams efficiently, but also adapt

to allocated memory without sacrificing much the quality of discovered HUSPs.

In Chapter 4, we propose a new method for sliding window-based high utility se-

20

quential pattern mining over a data stream. A novel data structure named HUSP-Tree

is proposed to maintain the essential information for mining HUSPs. HUSP-Tree can be

easily updated when new data arrive and old data expire in a data stream. An efficient

and single-pass algorithm named HUSP-Stream is proposed to generate HUSPs from

HUSP-Tree. When data arrive at or leave from the window, HUSP-Stream incrementally

updates HUSP-Tree to find HUSPs based on previous mining results. HUSP-Stream uses

a new utility estimation model to more effectively prune the search space. Experimental

results on real and synthetic datasets show that HUSP-Stream outperforms the state-of-

the-art algorithms and serves as an efficient solution to the problem of mining recent high

utility sequential patterns over data streams.

In Chapter 5, we propose two novel methods, named T-HUDS and T-HUSP, for find-

ing top-k high utility patterns (i.e., itemsets/sequences) over a data stream. T-HUDS

discovers top-k high utility itemsets and T-HUSP discovers top-k high utility sequential

patterns over a data stream. T-HUDS is based on a compressed tree structure, called

HUDS-Tree, that can be used to efficiently find potential top-k high utility itemsets over

sliding windows. T-HUDS uses a new utility estimation model to more effectively prune

the search space. We also propose several strategies for initializing and dynamically

adjusting the minimum utility threshold. We prove that no top-k high utility itemset

is missed by the proposed method. Inspired by T-HUDS, we propose a single pass al-

gorithm, called T-HUSP, to incrementally maintain the content of top-k HUSPs in the

21

sliding window in a summary data structure, named TKList, and discover top-k HUSPs

efficiently. In addition, two efficient strategies are proposed for raising the threshold.

Our experiments are conducted on both synthetic and real datasets. The results show that

both methods incorporating the proposed strategies demonstrate impressive performance

without missing any top-k high utility itemset/sequential patterns.

In Chapter 6, in order to show the effectiveness and efficiency of our proposed meth-

ods in real-life applications, we apply MAHUSP algorithm to a web clickstream dataset

obtained from a Canadian news web portal to showcase users’ reading behavior and also

to a real biosequence database to identify disease-related gene expression sequences. The

results show that MAHUSP effectively discovers useful and meaningful patterns in both

cases.

In Chapter 7, we review the contributions of the dissertation and summarize the di-

rections for future.

Figure 1.2 shows the research profile of this thesis.

22

Background Motivation
Challenges Contributions

Preliminaries
Literature Review

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7

Data TypeSequenceData Streams TransactionData Streams

MAHUSP HUSP-Stream T-HUSP T-HUDS
Incremental HUSP Mining Sliding Window based HUSP Mining Top-k HUSP Mining Top-k HUI Mining

Applications Conclusion Future Directions

Introduction and Literature Review

Algorithms

Applications and Summary

Figure 1.2: Thesis profile

23

2 Literature Review

In this Chapter, we first introduce the traditional frequent pattern mining framework,

which contains frequent itemset mining, frequent sequential pattern mining algorithms

over static data and data streams and top-k frequent itemset/sequence mining over data

streams. Then we present an overview of high utility pattern mining framework, which

contains an introduction to the research so far, high utility itemset mining, high utility

itemset mining over data streams, high utility sequential pattern mining and top-k high

utility itemset/sequence mining.

2.1 Frequent Pattern Mining

2.1.1 Frequent Itemset Mining

Frequent itemsets play an essential role in many data mining tasks which association

rules mining is one of the most popular ones. The motivation for finding association

rules came from the need to analyze customer transactions data to examine customer

behaviour in terms of purchased products. Association rules describe how often items

24

are purchased together. An association rule beer → diaper(80%) states that four out of

five customers that bought beer also bought diaper. Such rules are helpful for decisions

concerning product pricing, promotions, store layout and many others.

In 1994, Agrawal et al [1] proposed a property called Downward Closure Property,

which also known as the Apriori Property [1] and defined as follows. Given two item-

sets X and Y , support(X) (i.e., frequency of X) is equal or less than support(Y) (i.e.,

frequency of Y) if X ⊆ Y . Based on the apriori property, they proposed the Apriori

algorithm to find frequent itemsets. An itemset is called frequent itemset if its frequency

is no less than a given minimum support threshold. The Apriori algorithm discovers fre-

quent itemsets using a level-wise procedure. First, it scans the database to find 1-itemset

candidates (itemsets with only one item) and prunes the candidates whose support is less

than the minimum support threshold. Then, it joins the frequent 1-itemsets to generate 2-

itemset candidates, and keeps those whose frequency satisfies the minimum support. The

process repeats recursively until there is no more candidates to be generated, by which

time the frequent itemsets have been discovered. With the foundation frequent pattern

mining (namely, downward closure property), many algorithms were subsequently pub-

lished [39].

However, Apriori-based algorithms generate a huge number of candidates and scans

the original database multiple times to check the frequency of the candidates. In 2000,

Han et al [30] proposed an algorithm called FP-Growth[30] to address this problem. The

25

FP-Growth algorithm is based on a divide-and-conquer strategy to find frequent itemsets

without candidate generation. The foundation of the algorithm is a tree data structure

named Frequent-Pattern tree (FPtree), which stores the transaction database information.

FP-Growth scans the database D once to find the frequent and infrequent items. The

infrequent items are pruned from the original database, and the updated database D′ is

retained. Then, the FP-tree is constructed based on D′. The FP-tree is then divided into

a group of conditional databases, each one associated with one frequent pattern. Lastly,

each conditional database is mined separately. The process is recursively invoked until

no conditional databases can be generated.

Eclat [70], is another algorithm which is different from Apriori and FP-Growth. Eclat

benefits from the structural properties of frequent itemsets to discover patterns efficiently.

The items are organized into a subset lattice search space, which is decomposed into

small independent chunks or sub-lattices, which can be stored in memory. The authors

proposed lattice traversal techniques to discover all the long frequent itemsets and their

subsets efficiently.

2.1.2 Frequent Sequential Pattern Mining

Let I = {i1, i2, ..., im} be a set of items andD be a set ofN sequences: D = {S1, S2, ..., SN}

where Sj is a sequence of itemsets. The support of a sequence α = 〈X1, X2, ..., Xi〉 in

sequence dataset D is the number of sequences in D which contain α. If the support

26

α satisfies a minimum support threshold, α is a frequent sequential pattern. Given se-

quence β = 〈X ′1, X
′
2, ..., X

′
j〉 i ≤ j), α is a sub-sequence of β or equivalently β is a

super-sequence of α if and only if there exist integers 1 ≤ e1 < e2 < ...ei ≤ j such that

X1 ≤ X
′
e1
, X2 ≤ X

′
e2
, ..., Xi ≤ X

′
ei

.

Mining sequential patterns in sequence databases was first introduced by Agrawal et

al [2]. Since then, quite a few algorithms have been proposed such as AprioriAll [2],

GSP [53], FreeSpan [29] , PrefixSpan [50], SPADE [71] and SPAM [9] to find sequential

patterns efficiently. These algorithms can be generally categorized as using a horizontal

database (e.g., AprioriAll, GSP, FreeSpan and PrefixSpan) or a vertical database (e.g.,

SPADE, SPAM and ClaSP). A vertical representation provides the advantage of calcu-

lating frequencies of patterns without performing costly database scans. This allows

vertical mining algorithms to perform better on datasets having dense or long sequences

than algorithms using the horizontal format. All of the above algorithms rely on the

downward closure property. Below, we briefly introduce the above algorithms.

AprioriAll: AprioriAll [2] is the first proposed algorithm to mine sequential pat-

terns. It first finds all frequent 1-patterns. Then, it constructs and retains two types of

lists, called the candidate lists and the frequent pattern lists. For every (k + 1)-sequence

candidate produced by joining two frequent k-sequences, it requires to scan the original

database to calculate the support value. The process repeats until no more patterns can

be formed.

27

SPADE: SPADE (Sequential PAttern Discovery using Equivalent classes)[71] uses

a vertical data format and is a level-wise sequential pattern mining algorithm. SPADE

avoids multiple scans of the original database. Instead, SPADE builds a list of sequence

IDs and elements, called ID-list, for each candidate. The support count of the candidate

can be easily calculated from the list without scanning the original dataset.

SPAM: SPAM (Sequential PAttern Mining) [9] is a depth-first algorithm. The au-

thors introduced two novel joining operations called the sequence-extension step (S-

Step), itemset-extension step (I-Step) and also a lexicographical tree for the first time.

SPAM uses a depth-first strategy to traverse the lexicographical tree to extract the com-

plete set of frequent sequential patterns. SPAM also utilizes a vertical bitmap data struc-

ture and puts it in the memory such that the joining operation between two sequences is

done extremely fast.

PrefixSpan: PrefixSpan (Prefix-projected Sequential pattern mining) [50] is an ex-

tended pattern-growth approach for mining frequent sequential patterns and is the first

algorithm that does not generate candidates. PrefixSpan uses the ”prefix” of the se-

quence to project the database. Then, it scans the projected database for the items to

be concatenated to the prefix, and calculates the support for each item. It removes the

infrequent concatenation items and only keeps the frequent items. Finally, for each fre-

quent concatenation item, a new prefix and its corresponding smaller projected database

is constructed. The process continues until no more frequent concatenation items can be

28

scanned.

2.1.3 Frequent Sequential Pattern Mining over Data Streams

A desired feature of stream mining algorithms is that when records are inserted into or

deleted from the database, the algorithms can incrementally update the patterns based on

previous mining results, which is much more efficient than re-running the whole mining

process on the updated database. Several studies such as [15, 18, 19, 32, 46] have been

performed for mining sequential patterns over data streams. Below, we briefly introduce

these algorithms.

MILE: MILE [19] is an efficient algorithm to mine sequential patterns over data

streams. The proposed algorithm recursively uses the knowledge of existing patterns

to mine the new patterns efficiently. One unique feature of MILE is when some prior

knowledge of the data distribution in the data stream is available, it can be incorporated

into the mining process to further improve the performance of MILE.

SMDS: SMDS has two main features: first, it summarizes batches of transactions

using a sequence alignment method. This process works based on a greedy clustering

algorithm. The algorithm provides distinct clusters of sequences by considering the main

features of Web usage sequences. Second, frequent sequences found by SMDS are stored

in a prefix tree structure. This data structure enables SMDS to calculate the real support

of each proposed sequence efficiently.

29

IncSpam: IncSpam [32] is single-pass algorithm to mine set of sequential patterns

over a stream of itemset-sequences with a sliding window. The authors proposed a bit-

sequence representation to reduce the memory requirement of the online maintenance of

sequential patterns generated so far. The model receives sequences of a data stream and

uses a bit-vector data structure, called Customer Bit-Vector Array with Sliding Window

(CBASW), to store the information of items for each sequence. Lastly, a weight function

is adopted in this sliding window model. The weight function can judge the importance

of a sequence and ensure the correctness of the sliding window model.

SPEED: SPEED [15] identifies frequent maximal sequential patterns in a data stream.

SPEED is based on a novel data structure to maintain frequent sequential patterns cou-

pled with a fast pruning strategy. At any time, users can issue requests for frequent

maximal sequences over an arbitrary time interval. Furthermore, SPEED produces an

approximate support answer with an assurance that it will not bypass a user-defined fre-

quency error threshold.

SeqStream: SeqStream [18] mines closed sequential patterns in stream windows in-

crementally. It works based on various novel pruning strategies and a synopsis structure

called IST (Inverse Closed Sequence Tree) to keep inverse closed sequential patterns in

current window. There are two main tasks in SeqStream. The first one is to efficiently

update supports of tree nodes when an element is inserted to or removed from the win-

dow. The second one is to remove nodes that do not need to update or extend to eliminate

30

the related support counting and node extension costs as much as possible. SeqStream

uses an insertion database and removal database to update the support information of

current IST. These two databases are usually much smaller than the whole database in

the sliding window. Therefore the support update task can be completed quickly. For the

second task, SeqStream adopts various pruning strategies to safely skip nodes that do not

need to be handled.

2.1.4 Top-k Frequent Itemset/Sequence Mining

A challenging problem with many frequent pattern mining methods is that the user needs

to supply a minimum support threshold. In frequent itemsets mining, several methods

were proposed to find top-k frequent itemsets in static datasets [22, 23, 31, 49]. There are

also several methods for finding top-k frequent itemsets over data streams. Golab et al.

[28] proposed an algorithm, called FREQUENT, for the top-k frequent item discovery in

sliding windows. It performs well with bursty TPC/IP streams containing a small set of

popular item types. Wong and Fu [60] proposed two algorithms to address the problem

of top-k frequent l-itemsets (1 ≤ l ≤ L) mining over data streams. TOPSIL-Miner [62] is

another recent algorithm for mining top-k significant itemsets over data streams, which

works based on a prefix tree structure. This method is an approximation method and

does not guarantee that the exact set of top-k frequent itemsets is found. To address the

difficulty of setting minimum support, the problem of top-k sequential pattern mining

31

was defined by [58]. The authors proposed an algorithm called TSP. They proposed

two versions of TSP for respectively mining (1) top-k sequential patterns and (2) top-k

closed sequential patterns. Although these algorithms are efficient, it is difficult (if not

impossible) to simply adapt them to high utility itemset/sequence mining.

2.2 High Utility Pattern Mining

In the previous section, we reviewed several frequent pattern mining algorithms which

aim to discover various types of frequent patterns such as items, itemsets and sequences.

However, in frequent pattern mining, the number of occurrences of an item inside a trans-

action is ignored in the problem setting, so is the importance (such as price or weight)

of an item in the dataset. In order to assign different weights to items, weighted frequent

pattern mining methods were proposed [54, 68, 69]. These methods work with different

weights for different items. One of the first weighted frequent pattern mining methods is

WARM (Weighted Association Rule Mining) [54]. Another method is WFIM [69] which

was proposed to extend pattern growth algorithm to consider weighted items. This paper

defined a weight range and a minimum weight constraint. Items were given different

weights within the weight range. The support and weight of items were used to prune

the search space. However these methods are just applicable when the frequency of an

item in each transaction is either 1 or 0.

In view of this, high utility pattern mining has been studied recently [8, 17, 41, 57]. A

32

pattern is a high utility pattern (HUP) if its utility (such as the total profit that the pattern

brings) in a dataset is no less than a minimum utility threshold. Below, we present two

main types of high utility pattern mining approaches which are relevant to this disserta-

tion.

2.2.1 High Utility Itemset Mining

MEU: TheMEU (Mining with Expected Utility) model [64] is the first high utility item-

set mining method. In this paper, the authors defined the problem of high utility itemset

mining. They described two types of utilities for items, internal utility and external util-

ity. The internal utility of an item in a transaction is defined according to the information

stored in the transaction. The external utility of an item is based on information which

are not available in the transaction. The external utility is proposed as a new measure

for describing user preferences. By analyzing the utility relationships among itemsets,

they identified the utility bound property and the support bound property. Furthermore,

they defined the mathematical model of high utility itemset mining based on these prop-

erties. MEU does not use the downward closure property, hence a heuristic approach

was proposed to predict if a pattern should be added to the candidate set. MEU checks

the candidate patterns using a prediction method with a high computational cost. Later,

the UMining algorithm [63] improved its performance. They defined an upper bound

utility for each pattern. Using this upper bound, low utility patterns are pruned during

33

the mining process.

Two Phase Method: As mentioned before, the utility of an itemset may be equal

to, higher or lower than that of its supersets and subsets. Therefore, we cannot directly

use the anti-monotone property (also known as downward closure property) to prune the

search space. To facilitate the mining task, Liu et al. [42] introduced the concept of

transaction-weighted downward closure, which is based on the following definitions.

Definition 1 Transaction-Weighted Utility (TWU) of an itemset X over a dataset D is

defined as: TWUD(X) =
∑

X⊆Tj
∧
Tj∈D

TU(Tj), where TU(Tj) is the utility of transaction

Tj and is defined as TU(T) =
∑

item∈T
u(item, T).

Clearly, TWUD(X) ≥ uD(X). In addition, TWU satisfies the downward closure prop-

erty, that is, for all Y ⊆ X , TWUD(Y) ≥ TWUD(X).

Definition 2 An itemset X is a high transaction-weighted utilization itemset (abbrevi-

ated as HTWU) if TWUD(X) ≥ min util, where min util is called a minimum utility

threshold.

The Two-Phase method in [42, 43] proposed based on the overestimate utility (i.e.,

TWU) model. The general process for mining high utility itemsets using TWU from

a database is as follows. In the first phase of Two-Phase, all of the HTWU itemsets

are discovered. In the second phase, the database is scanned one more time and the

true high utility itemsets are extracted from the HTWU itemsets. Since TWUD(X) is

34

an overestimate of the true utility of X , the procedure does not miss any high utility

itemset. But the true utility of a generated itemset may be lower than the minimum

utility threshold. Thus, Two-Phase uses the second phase to compute the exact utility of

the HTWU itemsets and remove those whose utility is lower than the threshold.

CTU-Mine: Based on the TWU model, CTU-Mine [24] was proposed that is more

efficient than Two-phase in dense databases when the minimum utility threshold is very

low. In order to mine HUIs, a prefix tree, called CUP-tree, is constructed. It consists

of an ItemTable called GlobalItemTable made up of all high TWU items and a tree

called GlobalCUP-Tree with nodes linked by pointers from GlobalItemTable, contain-

ing itemset information for utility mining. GlobalItemTable contains all individual

HTWU items sorted in descending order by their TWU values. Then, a new algo-

rithm that traverses the tree using a bottom-up approach is presented. During mining

process, the algorithm constructs another tree called a High Utility Pattern Tree (HUP-

Tree) to maintain high utility itemsets and their utility values computed by traversing the

LocalCUP-Tree. This data structure and algorithm extend the pattern growth approach.

Later, to reduce the number of candidates in each database scan, the isolated item dis-

carding strategy (IIDS) was proposed in [37]. Using IIDS, two efficient algorithms

FUM and DCG+ were proposed by the authors.

IHUP: In [8], efficient tree structures were proposed to discover high utility item-

sets in incremental databases. The authors proposed three new tree structures with the

35

build once mine many property for high utility pattern mining in an incremental database.

They designed the first incremental tree structure, Incremental High Utility Pattern Lex-

icographic Tree (IHUPL − Tree), according to the items lexicographic order. This tree

can capture the incremental data without any restructuring operation, but the tree size

cannot be guaranteed to be compact. The second incremental tree structure, Incremen-

tal High Utility Pattern Transaction Frequency Tree (IHUPTF − Tree), is designed

according to the transaction frequency (descending order) of items to obtain a compact

tree. However, it is not guaranteed that items having higher transaction frequency will

also have a high utility value. If several low utility items appear in the upper portion of

the tree, then the mining task will take longer. To ensure the candidates of high utility

items will appear before low-utility items in any branch of the tree, the third incremental

tree structure, Incremental High Utility Pattern-Transaction-Weighted Utilization Tree

(IHUPTWU − Tree) is designed according to transaction-weighted utilization of items

in descending order, which ensures that only nodes containing candidate items are par-

ticipating in the mining operation. The proposed algorithm is called IHUP and works

as follows. It first constructs one of the proposed tree structures based on transactions

and then applies a pattern growth approach to generate candidates. In the second scan,

all HUIs are discovered from the generated candidates.

UP-Growth and UP-Growth+: In [57] a pattern growth approach (i.e., UP-Growth)

was proposed to discover high utility itemsets in two scans. UP-Growth defines a tree

36

structure and four effective strategies DGU, DGN, DLU and DLN for mining HUIs. The

information of high utility itemsets is maintained in a special data structure named UP-

Tree (Utility Pattern Tree) such that the candidate itemsets can be generated with only

two scans of the database. The improved version of [57] was presented in [55]. The

proposed framework consists of three main steps. First, it scans the database twice to

construct UP-Tree applying two proposed strategies: DGU and DGN . In the second

step, either Up-Growth or the other proposed method, called UP-Growth+, is applied

to generate candidates recursively. At the end, by computing the exact utility of each

candidate, all HUIs are discovered.

Most of the above algorithms adopt a similar framework: firstly, generate candidate

high utility itemsets from a database; secondly, compute the exact utilities of the candi-

dates by scanning the database to identify high utility itemsets. However, the algorithms

often generate a very large number of candidate itemsets and thus are confronted with

two problems: (1) excessive memory requirement for storing candidate itemsets; (2) a

large amount of running time for generating candidates and computing their exact util-

ities. When the number of candidates is so large that they cannot be stored in memory,

the algorithms will fail or their performance will be degraded due to memory thrashing.

Recently, some works have focused on mining HUIs in one scan of data base: HUI-

Miner and d2HUP. Both algorithms work in a new framework, which discovers high util-

ity itemsets without generating candidates. In the new framework, high utility itemsets

37

are directly identified from a set-enumeration tree, which is the search space constructed

by enumerating itemsets with prefix or suffix extensions. To facilitate the computation of

itemsets’ utility values and prune unpromising itemsets efficiently, both HUI-Miner and

d2HUP maintain utility information and utility upper bound information by two kinds of

data structure respectively. By avoiding the generation of a large number of candidates,

HUI-Miner and d2HUP show excellent performance and outperform the state-of-the-art

algorithms based on FP-growth over one order of magnitude.

HUI-Miner: HUI-Miner (High Utility Itemset Miner) proposed by [40] is able to

discover HUIs in one scan of database. HUI-Miner uses a new data storage, called

Utility-list, to maintain utility information about the patterns. Once Utility-list is con-

structed, HUI-Miner does not need the database and can discover the HUIs and their

exact utilities directly. The mining process is similar to Apriori-based algorithms but

instead of scanning database several times, HUI-Miner scans the data once and after that

it only scans the Utility-list several times.

d2HUP: In [33] a high utility itemset discovery approach (d2HUP) is proposed that

works in a single phase without generating candidates. They propose a novel data struc-

ture to maintain original utility information, named CAUL, during mining process and

then enumerate patterns by prefix extensions. A high utility itemset growth approach is

proposed, which enumerates an itemset as a prefix extension of another itemset. It com-

putes the utility of each enumerated itemset and an upper bound on the utilities of prefix

38

extensions of the itemset in order to directly identify high utility itemsets and to prune

the search space. The proposed utility upper bound is tighter than TWU , and is further

tightened by recursively filtering out items irrelevant in growing high utility itemsets with

sparse data.

2.2.2 High Utility Itemset Mining over Data Streams

Recently, high utility itemset mining from data streams has become an active research

topic in data mining [7, 42, 56].

THUI-Mine: THUI-Mine [56] was the first algorithm for mining temporal high util-

ity itemsets from data streams. It explores the issue of efficiently mining high utility

itemsets in temporal databases such as data streams. THUI-Mine discovers temporal

high utility itemsets from data streams efficiently and effectively. The underlying idea of

THUI-Mine algorithm is to integrate the advantages of Two-Phase algorithm [42] with

the incremental mining techniques for mining temporal high utility itemsets. The main

contribution of THUI-Mine is that it can efficiently identify the high utility itemsets in

data streams so that the execution time for mining high utility itemsets can be reduced.

That is, THUI-Mine discovers the temporal high utility itemsets in current time window

and also discovers the temporal high utility itemsets in the next time window with limited

memory space and less computation time by sliding window method. THUI-Mine first

finds the length-1 and length- 2 candidate patterns, and then all the candidate patterns

39

from the length-2 candidate patterns are generated in order to reduce the overall database

scans.

MHUI-BIT and MHUI-TID: Two algorithms, called MHUI-BIT and MHUI-TID,

were proposed in [36] for mining high utility itemsets from data streams. The proposed

algorithms consist of two major components, i.e., item information and a lexicographical

tree-based summary data structure based on the item information. Two effective repre-

sentations of item information, i.e., Bitvector and TIDlist, were developed and used in

the proposed methods to restrict the number of candidates and to reduce the processing

time and memory usage. The author proposed two algorithms to mine the set of high

utility itemsets based on Bitvector and TIDlist, respectively. The first proposed algo-

rithm based on the Bitvector representation is called MHUI-BIT (Mining High Utility

Itemsets based on BITvector). Moreover, the second proposed method, called MHUI-

TID (Mining High Utility Itemsets based on TIDlist), is based on TIDlist representation.

Both algorithms are composed of three phases, i.e., window initialization phase, window

sliding phase, and high utility itemset generation phase. In the first phase, the item in-

formation, i.e., Bitvector and TIDlist, are constructed and the transaction utility of each

transaction within the current window is calculated. Then the proposed lexicographi-

cal tree-based summary data structure, called LexTree-2HTU (lexicographical tree with

2-HTUitemsets), based on the item information is constructed. The second phase, i.e.,

window sliding phase, is activated when the window is full and a new transaction ar-

40

rives. In this phase, two operations are performed. The first operation is to update the

item-information. The second operation is to update the summary data structure LexTree-

2HTU. In the third phase, the proposed algorithms use level-wise method to generate a

set of candidate k-HTU-itemsets from the previous pre-known (k-1)-HTU-itemsets.

The proposed representations become very inefficient when the number of distinct

items become large in a window. During the mining process, these methods only store

length-1 and length-2 candidates. Then, other candidates whose length is more than two

are generated using an Apriori-like level-wise candidate generation algorithm.

GUIDE: GUIDE is a framework proposed in [10] for mining a compact form of high

utility itemsets from data streams with different models (i.e. the landmark, sliding and

time fading window models). It works based on a tree structure, called MUI-Tree, which

is constructed in one scan of the data stream. Depending on the type of the window

model, the node structure in MUI-Tree is different. Once transactions are loaded into

the memory, a process named transaction-projection is applied to produce the subsets of

the transactions, called projections. This process may result in some pattern loss. After

that, the projections are maintained into the tree. Finally, the high utility itemsets are

discovered.

HUPMS: HUPMS [7] is a recent method for mining HUIs from data streams, which

is based on the TWU model. The authors proposed a novel tree structure, called HUS-

tree (Incremental and Interactive Utility Tree for Stream data) to keep information about

41

patterns and their TWU values. The proposed tree structure, HUS-tree arranges the

items in lexicographic order. A header table is constructed to keep an item order in the

proposed tree structure. Each entry in a header table explicitly maintains item-id and

TWU value of an item. Each node in the tree maintains item-id and batch-by-batch

TWU information to efficiently maintain the window sliding environment. To facilitate

the tree traversals, adjacent links are also maintained in the tree structure. The mining

process is as follows. To apply a pattern growth mining approach, HUPMS first creates

a prefix tree for the bottom-most item by taking all the branches prefixing that item.

Subsequently, conditional tree for that item is created from the prefix tree by eliminating

the nodes containing items having low TWU value with that particular item. Then during

the second scan of the database, the exact utility of each candidate is calculated and HUIs

are discovered. HUS-tree has the build once mine many property for interactive mining.

That is, it can again mine the resultant patterns for different minimum utility thresholds

without rebuilding the tree.

2.2.3 High Utility Sequential Pattern Mining

As mentioned several sequential pattern mining algorithms have been proposed such as

AprioriAll [2], GSP [53], FreeSpan [29], PrefixSpan [46], SPADE [71] and SPAM [9].

Although the above algorithms are pioneers in sequential pattern mining, they treat all

items as having the same importance/utility and assumes that an item appears at most

42

once at a time point, which do not reflect the characteristics in the scenario of several

real-life applications and thus the useful information of sequences with high utilities

such as high profits is lost. High utility sequential pattern mining [5, 6, 52, 66] considers

the external utility (e.g., unit profits) and internal utility (e.g., quantity) of items such that

it can provide users with patterns having a high utility (e.g., profit).

UMSP: UMSP [52] was designed for mining high utility mobile sequential patterns.

Each itemset in a sequence is associated with a location identifier. With this feature, the

utility of a mobile sequential pattern is also a single value. The authors integrate mobile

sequential pattern mining with utility mining for finding high-utility mobile sequential

patterns. Two different types of methods, namely level-wise and tree-based ones, are pro-

posed for this problem. As the level-wise method, an algorithm called UMSPL (mining

high Utility Mobile Sequential Patterns by a Level-wise method) is proposed. Not only

supports but also utilities of patterns are considered in the level-wise mining processes.

For tree-based method, two algorithms UMSPT (DFG) (mining high Utility Mobile Se-

quential Patterns by a Tree-based method with a Depth First Generation strategy) and

UMSPT (BFG) (mining high Utility Mobile Sequential Patterns by a Tree-based method

with a Breadth First Generation strategy) are proposed. Both of the two tree-based algo-

rithms use a tree structure named MTS − Tree (Mobile Transaction Sequence Tree) to

summarize the corresponding information, such as locations, items, paths and utilities, in

mobile transaction databases. UMSP searches for patterns within MTS-Tree, which is ef-

43

ficient. However, due to the specific constraint on the sequences, this algorithm can only

handle specific sequences with simple structures (single item in each sequence element,

and a single utility per item).

UWAS: In [6], an algorithm is specifically designed for utility web log sequences.

The utility of a pattern can have multiple values, and the authors choose the utility with

maximal values to represent a pattern’s utility with two tree structures, i.e. UWAS-tree

and IUWAS-tree. The proposed approach can handle both forward and backward refer-

ences, avoids the level-wise candidate generation-and-test methodology, does not scan

databases several times and considers both internal and external utilities of a web page.

However, sequence elements with multiple items such as 〈(c, 2)(b, 1)〉 cannot be sup-

ported, and the scenarios considered in this paper are rather simple, which limit the

algorithm’s applicability for complex sequences.

UI and US: UI and US [5] extend traditional sequential pattern mining. For min-

ing high-utility sequential patterns, they propose two new algorithms: Utility Level is a

high-utility sequential pattern mining with a level-wise candidate generation approach,

and Utility Span is a high-utility sequential pattern mining with a pattern growth ap-

proach. The utility of a pattern is calculated in two ways. First, the utilities of sequences

having only distinct occurrences are added together. Second, the highest occurrences are

selected from sequences with multiple occurrences and used to calculate the utility.

USpan: Recently, Yin et al.[66] proposed a new definition for high utility sequen-

44

tial pattern mining, which aims at finding sequences having a maximum utility. They

proposed different definition of the utility of a sequence.

Definition 3 (Occurrence of a sequence α in a sequence Sr) Given a sequence Sr =<

D1, D2, ..., Dn > and a sequence α =< X1, X2, ..., XZ > where Di and Xi are itemsets,

α occurs in Sr iff there exist integers 1 ≤ e1 < e2 < ... < eZ ≤ n such that X1 ⊆ De1 ,

X2 ⊆ De2 , ..., XZ ⊆ DeZ . The ordered list of transactions De1 , De2 , ..., DeZ is called

an occurrence of α in Sr. Since α may have multiple occurrences in Sr, the set of all

occurrences of in Sr is denoted as OccSet(α, Sr).

Definition 4 (Utility of a sequence α in a sequence Sr) Let ō =< Te1 , Te2 , ..., TeZ >∈

OccSet(α, Sr) be an occurrence of α =< X1, X2, ..., XZ > in the sequence Sr ∈ DS.

The utility of α w.r.t. ō is defined as su(α, ō) =
∑Z

i=1 su(Xi, S
ei
r). The utility of α in Sr

is defined as su(α, Sr) = max{su(α, ō)|∀ō ∈ OccSet(α, Sr)}.

Note that the maximum utility of sequence α among all the occurrences of α in

sequence Sr is used as the utility of α in Sr.

Then, they proposed the USpan algorithm for mining high utility sequential patterns.

To satisfy Downward Closure Property, the authors have defined and used Sequence

Weighted Utilization (SWU) and Sequence Weighted Downward Closure (SDCP). In

SWU , the idea behind is very similar to that of TWU , such that SWU is also defined as

the sum of the transaction utilities of all the transactions containing the pattern, so SWU

45

is sequence-weighted counterpart of TWU . Based on the SWU of a pattern, an item is

called promising if adding it to a candidate pattern results in a new pattern whose SWU

is greater than or equal to the minimum utility threshold. Therefore, the pruning they per-

form before candidate generation is based on this SDCP . They also proposed a depth

pruning strategy which is a Pruning After Candidate Generation (PACG) mechanism.

2.2.4 Top-k High Utility Itemset/Sequence Mining

Top-k high utility itemset mining was first introduced in [17]. However, its high utility

itemset definition differs from the ones used in the recently proposed methods and in

ours. Recently, the TKU method was proposed in [61] to find top-k high utility itemsets

over a static dataset. The proposed approach mines top-k high utility itemsets without

setting the minimum utility threshold. It works based on Up-Growth [57]. Although it

can find top-k HUIs effectively, it is not designed for data streams. Not only is it not

able to adapt itself dynamically over streaming data, but also the proposed strategies

for raising the threshold have much room to be improved so that it could generate few

candidates and run faster in a data stream environment.

In [67], the authors proposed an algorithm, called Top-k high Utility Sequence (TUS

for short) mining, to identify top-k high utility sequential patterns. It works based on US-

pan [66]. They also proposed three features to handle the efficiency problem, including

two strategies for raising the threshold and one pruning for filtering unpromising items.

46

2.3 Summary

In this chapter, we introduced high utility sequential pattern mining and the related work.

In Section 2.1, the problem of frequent sequential pattern mining is defined and dis-

cussed. We presented several algorithms such as AprioriAll [2], GSP [53], FreeSpan

[29], PrefixSpan [50], SPADE [71] and SPAM [9]. Then we described several methods

for solving the problem of frequent sequential pattern mining over data streams. Lastly,

we discussed some existing work on top-k frequent itemset/sequence mining.

In Section 2.2, we introduced the high utility pattern mining framework. First, we

discussed the problem of high utility itemset mining over data streams and some existing

work has been explained. In sub-section 2.2.3, we briefly defined high utility sequential

pattern mining and presented the state-of-the-arts methods. Lastly, we described the

recent work on top-k high utility itemset/sequence mining.

47

3 Memory Adaptive High Utility Sequential Patterns

over Data Streams

3.1 Introduction

Although some preliminary works have been conducted on high utility sequential pat-

tern (HUSP) mining, existing studies [3, 4, 52, 66] mainly focus on mining high utility

sequential patterns in static databases and do not consider real-world applications that

involve data streams. In some applications users want to discover patterns over a long

period of time in the data stream. For example, we may want to find important event

sequences in an energy network since a new set of equipment was installed to monitor

the quality of the equipment over its life-time; we may want to monitor the sequence of

side-effects of a vaccine since it started to be used; or we may want to detect important

buying sequences of customers since the beginning of a year or since the store changed

its layout. A complete re-scan of a long portion of a data stream is usually impossible or

prohibitively costly. The landmark window is used for such a purpose, which consists of

48

all the data from a past time point (called landmark) until the current time. Mining from

a dynamically-increasing landmark window allows incremental maintenance of patterns

over a long period of time in a data stream. Considering all these applications, in this

chapter we aim at finding high utility sequential patterns (HUSPs) over a landmark win-

dow. In particular, the landmark in our method is the beginning of the data stream. Thus,

we are dealing with the problem of incrementally learning HUSPs over the entire data

stream. In this learning scenario, a complete re-scan of a long portion of the data stream

is usually impossible or prohibitively costly.

Compared with other data stream mining tasks, there are unique challenges in dis-

covering HUSPs over landmark windows.

1. HUSP mining needs to search a large search space due to a combinatorial number

of possible sequences.

2. HUSP mining does not have downward closure property to prune low utility pat-

terns efficiently. That is, the utility of a sequence may be higher than, equal to

or lower than those of its super-sequences and sub-sequences [3, 52, 66]. Conse-

quently, keeping up the pace with high speed data streams can be very hard for a

HUSP mining task.

3. A more important issue is the need of capturing the information of data over a

potentially long period of time. Data can be huge so that the amount of information

49

we need to keep may exceed the size of available memory. Thus, to avoid memory

thrashing or crashing, memory-aware data processing is needed to ensure that the

size of the data structure does not exceed the available memory, and at the same

time accurate approximation of the information needed for the mining process is

necessary.

In this chapter, we tackle these challenges and propose a memory-adaptive approach

to finding HUSPs from a dynamically-increasing data stream. To the best of our knowl-

edge, this is the first piece of work to mine high utility sequential patterns over data

streams in a memory adaptive manner. Our contributions are summarized as follows.

1. We propose a novel method for incrementally mining HUSPs over a data stream.

Our method can identify high utility sequential patterns over a long period of time.

2. We propose a novel and compact data structure, called MAS-Tree, to store potential

HUSPs over a data stream. The tree is updated efficiently once a new potential

HUSP is discovered.

3. Two efficient memory adaptive mechanisms are proposed to deal with the situation

when the available memory is not enough to add a new potential HUSPs to MAS-

Tree. The proposed mechanisms choose the least promising patterns to remove

from the tree to guarantee that the memory constraint is satisfied.

4. Using MAS-Tree and the memory adaptive mechanisms, our algorithm, called

50

Item Profit
a 2
b 3
c 1
d 4
e 3

SID Sequence Data
S1 :{(a,2)(b,3)(c,2)}; :{(b,1)(c,1)(d,1)}; :{(c,3)(d,1)}
S2 :{(b,4)}; :{(a,4)(b,5)(c,1)}
S3 :{(b,3)(d,1)}; :{(a,4)(b,5)(c,1)}; :{(a,2)(c,3)}
S4 :{(a,2)(b,5)(e,2)}
S5 :{(c,4)}

Figure 3.1: An example of a data stream of itemset-squences

MAHUSP, efficiently discovers HUSPs over a data stream with a high recall and

precision. The proposed method guarantees that the memory constraint is satisfied

and also all true HUSPs are maintained in the tree under certain circumstances.

5. We conduct extensive experiments and show that MAHUSP finds an approximate

set of HUSPs over a data stream efficiently and adapts to allocated memory without

sacrificing much the quality of discovered HUSPs.

The chapter is organized as follows. Section 3.2 provides relevant definitions and a

problem statement. Section 3.3 proposes the data structures and algorithms. Experimen-

tal results are shown in Section 3.4. We conclude the chapter in Section 3.5.

3.2 Definitions and Problem Statement

Let I∗ = {I1, I2, · · · , IN} be a set of items. An itemset is a set of distinct items. An

itemset-sequence S (or sequence in short) is an ordered list of itemsets 〈X1, X2, · · · , XZ〉,

where Z is the size of S. The length of S is defined as
Z∑
i=1

|Xi|. An L-sequence is a se-

51

quence of length L. A sequence database consists of a set of sequences {S1, S2, ..., SK},

in which each sequence Sr has a unique sequence identifier r called SID and consists of

an ordered list of itemsets 〈ISd1 , ISd2 , ..., ISdn〉, where each itemset has a unique global

identifier di . An itemset ISd in the sequence Sr is also denoted as Sdr .

In a data stream environment, sequences come continuously over time and they are

usually processed in batches. A sequence batch (or batch in short)Bk = {Si, Si+1, ..., Si+L−1}

is a set ofL sequences that occur during a period of time tk. The number of sequences can

differ among batches. A sequence data stream DS = 〈B1, B2, · · · , Bk, · · · 〉 is an or-

dered and unbounded list of batches where Bi

⋂
Bj = ∅ and i 6= j. For example, Figure

3.1 shows a sequence data stream with 2 batches B1 = {S1, S2} and B2 = {S3, S4, S5}.

Definition 5 (External utility and internal utility) Each item I ∈ I∗ is associated with

a positive number p(I), called its external utility (e.g., price/unit profit). In addition, each

item I in itemset Xd of sequence Sr (i.e., Sdr) has a positive number q(I, Sdr), called its

internal utility (e.g., quantity) of I in Xd or Sdr .

Definition 6 (Super-sequence and Sub-Sequence) Sequence α = 〈X1, X2, ..., Xi〉 is a

sub-sequence of β = 〈X ′1, X
′
2, ..., X

′
j〉 (i ≤ j) or equivalently β is a super-sequence of α

if there exist integers 1 ≤ e1 < e2 < ...ei ≤ j such that X1 ⊆ X
′
e1
, X2 ⊆ X

′
e2
, ..., Xi ⊆

X
′
ei

(denoted as α � β).

For example, if α = 〈{ac}{d}〉 and β = 〈{abc}{bce}{cd}〉, α is a sub-sequence of β

52

and β is the super-sequence of α.

Definition 7 (Utility of an item in an itemset of a sequence Sr) The utility of an item

I in an itemset Xd of a sequence Sr is defined as u(I, Sdr) = p(I) · q(I, Sdr).

Definition 8 (Utility of an itemset in an itemset of a sequence Sr) Given itemset X ,

the utility of X in the itemset Xd of the sequence Sr where X ⊆ Xd, is defined as

u(X,Sdr) =
∑
I∈X

u(I, Sdr).

For example, in Figure 3.1 the utility of item b in the first itemset of S1 (i.e., S1
1)

is u(b, S1
1) = p(b) · q(b, S1

1) = 3 × 3 = 9. The utility of the itemset {bc} in S1
1 is

u({bc}, S1
1) = u(b, S1

1) + u(c, S1
1) = 9 + 2 = 11.

Definition 9 (Occurrence of a sequence α in a sequence Sr) Given a sequence Sr =

〈S1
r , S

2
r , ..., S

n
r 〉 and a sequence α = 〈X1, X2, ..., XZ〉 where Sir and Xi are itemsets, α

occurs in Sr iff there exist integers 1 ≤ e1 < e2 < ... < eZ ≤ n such that X1 ⊆

Se1r , X2 ⊆ Se2r , ..., XZ ⊆ SeZr . The ordered list of itemsets 〈Se1r , Se2r , ..., SeZr 〉 is called

an occurrence of α in Sr. Since α may have multiple occurrences in Sr, the set of all

occurrences of α in Sr is denoted as OccSet(α, Sr).

Definition 10 (Utility of a sequence α in a sequence Sr) Let õ = 〈Se1r , Se2r , ..., SeZr 〉

be an occurrence of α = 〈X1, X2, ..., XZ〉 in the sequence Sr. The utility of α w.r.t. õ

is defined as su(α, õ) =
Z∑
i=1

u(Xi, S
ei
r). The utility of α in Sr is defined as su(α, Sr) =

max{su(α, õ)|∀õ ∈ OccSet(α, Sr)}.

53

Consequently, the utility of a sequence Sr is defined as su(Sr) = su(Sr, Sr).

For example, in Figure 3.1, the set of all occurrences of the sequence α = 〈{bd}{c}〉

in S3 is OccSet(〈{bd}{c}〉, S3) = {õ1 : 〈S1
3 , S

2
3〉, õ2 : 〈S1

3 , S
3
3〉}. Hence su(α, S3) =

max{su(α, õ1), su(α, õ2)} = {14, 16} = 16.

Definition 11 (Utility of a sequence α in a dataset D) The utility of a sequence α in a

dataset D of sequences is defined as su(α,D) =
∑
Sr∈D

su(α, Sr), where D can be a batch

or a data stream processed so far.

The total utility of a batch Bk is defined as UBk
=

∑
Sr∈Bk

su(Sr). The total utility

of a data stream DSi = 〈B1, B2, · · · , Bi〉 is defined as UDSi
=

∑
Bk∈DSi

UBk
.

Definition 12 (High utility sequential pattern) Given a utility threshold δ in percent-

age, a sequence α is a high utility sequential pattern (HUSP) in data stream DS, iff

su(α,DS) is no less than δ · UDS .

Problem statement. Given a utility threshold δ (in percentage), the maximum avail-

able memory availMem, and a dynamically-changing data streamDS = 〈B1, B2, · · · , Bi,

· · · 〉 (where batch Bi contains a set of sequences of itemsets at time period ti), our

problem of online memory-adaptive mining of high utility sequential patterns over data

stream DS is to discover, at any time ti (i ≥ 1), all sub-sequences of itemsets whose

utility in DSi is no less than δ ·UDSi
where DSi = 〈B1, B2, · · · , Bi〉 under the following

54

constraints: (1) the memory usage does not exceed availMem, and (2) only one pass of

data is allowed in total.

Given the memory and one-pass-of-data constraints, it may not be possible to find

the exact set of true HUSPs, especially when the data stream is large. Thus, our goal is

to find an accurate approximate set of HUSPs over the data stream.

3.3 Memory Adaptive High Utility Sequential Pattern Mining

In this section, we propose a single-pass algorithm named MAHUSP (Memory Adap-

tive High Utility Sequential Pattern mining over data streams) for incrementally mining

an approximate set of HUSPs over the entire data stream. Below, we first present an

overview of MAHUSP and then propose a novel tree-based data structure, called MAS-

Tree (Memory Adaptive high utility Sequential pattern Tree), to store the essential in-

formation of HUSPs over the data stream. Finally, we propose two memory adaptive

mechanisms and use them in the tree construction and updating process.

3.3.1 Overview of MAHUSP

Algorithm 1 represents an overview of MAHUSP. This algorithm processes the data

stream batch by batch. Given a utility threshold δ and a significance threshold ε, as a

new batchBk forms, MAHUSP first applies an existing HUSP mining algorithm on static

55

data (e.g., USpan [66])1 to find a set of HUSPs over Bk using ε as the utility threshold.

ε is lower than the utility threshold δ and specifies a trade-off between accuracy and run

time. A smaller ε value leads to more accurate results but longer run time. We consider

this set of HUSPs as potential HUSPs since they have the potential to become HUSPs

later. MAHUSP then calls Algorithm 2 to insert these potential HUSPs into the MAS-Tree

structure. Algorithm 2 assures that the memory constraint is satisfied and the most po-

tential HUSPs are kept in the tree. The MAS-Tree contains the potential HUSPs and their

approximated utilities over the data stream. Finally, if users request to find HUSPs from

the stream so far, MAHUSP returns the set of all the patterns (i.e., appHUSPs) in MAS-

Tree with approximate utility more than (δ− ε) ·UDSk
, where DSk = 〈B1, B2, · · · , Bk〉.

In Section 3.3.6, we will explain why we use (δ − ε) · UDS as the utility threshold.

1Note that USpan finds HUSPs with one-pass over data but is not an incremental learning algorithm.

56

Algorithm 1 MAHUSP
Input: Bk, δ, ε, availMem, mechanismType

Output: MAS-Tree, appHUSPs

1: HUSPBk
← HUSPs returned by USpan on Bk using ε · UBk

as minimum utility threshold

2: if MAS-Tree is empty (i.e. Bk is the first batch) then

3: Initialize MAS-Tree by creating root node

4: end if

5: Call Algorithm 2 to insert the patterns in HUSPBk
into MAS-Tree using availMem and

mechanismType

6: if user requests for HUSPs over current data stream then

7: appHUSPs ← potential HUSPs in MAS-Tree whose approximate utility is no less than (δ − ε) ·

UDS

8: end if

9: return MAS-Tree and appHUSPs if requested

Below we first describe how MAS-Tree is structured. Then the proposed memory

adaptive mechanisms and tree construction will be presented.

3.3.2 MAS-Tree Structure

We propose a novel data structure MAS-Tree (Memory Adaptive high utility Sequential

Tree) to store potential HUSPs in a data stream. This tree allows compact representation

and fast update of potential HUSPs generated in the batches, and also facilitates the

pruning of unpromising patterns to satisfy the memory constraint. In order to present

57

Figure 3.2: (a) An example of MAS-Tree for B1 in Figure 3.1. Note that an underscore

in a node name { c} means that the last itemset in the pattern of its parent, such as {ab},

belongs to the first itemset of the pattern of this node. That is {ab} and { c} forms {abc}.

(b) MAS-Tree after inserting three patterns:〈{ab}{bc}{d}〉,〈{b}{a}〉 and 〈{b}{bc}{d}〉.

MAS-Tree, the following definitions are provided.

Definition 13 (Prefix itemset of an itemset) Given itemsets X1 = {I1, I2, ..., Ii} and

X2 = {I ′1, I
′
2, ..., I

′
j} (i < j), where items in each itemset are listed in the lexicographic

order, X1 is a prefix itemset of X2 iff I1 = I
′
1, I2 = I

′
2, ..., and Ii = I

′
i (denoted as

X1 . X2). Note that items in an itemset are arranged in the lexicographic order.

Definition 14 (Suffix itemset of an itemset) Given itemsets X1 = {I1, I2, ..., Ii} and

X2 = {I ′1, I
′
2, ..., I

′
j} (i ≤ j), such that X1 . X2. The suffix itemset of X2 w.r.t. X1 is

defined as: X2 −X1 = {I ′i+1, I
′
i+2, ..., I

′
j}.

For example, itemset X1 = {ab} is a prefix itemset X2 = {abce} and X2 − X1 =

{ce}.

58

Definition 15 (Prefix sub-sequence and Prefix super-sequence) Given sequences α =

〈X1, X2, ..., Xi〉 and β = 〈X ′1, X
′
2, ..., X

′
j〉 (i ≤ j), α is a prefix sub-sequence (or prefix-

SUB in short) of β or equivalently β is a prefix super-sequence (or prefixSUP in short) of

α iff X1 = X
′
1, X2 = X

′
2, ..., Xi−1 = X

′
i−1, Xi . X

′
i (denoted as α . β).

Definition 16 (Suffix of a sequence) Given a sequence α = 〈X1, X2, ..., Xi〉 as a

prefixSUB of β = 〈X ′1, X
′
2, ..., X

′
j〉 (i ≤ j), sequence γ = 〈X ′i − Xi, X

′
i+1, ..., X

′
j〉

is called the suffix of β w.r.t. α.

For example, α = 〈{abc}{b}〉 is a prefixSUB of β = 〈{abc}{bce}{cd}〉 and β is the

prefixSUP of α. Hence, suffix of β w.r.t. α is 〈{ce}{cd}〉.

Figure 3.2(a) shows a part of MAS-Tree for the potential HUSPs returned by USpan

in the first batchB1 in Figure 3.1. In an MAS-Tree, each node represents a sequence, and

a sequence SP represented by a parent node P is a prefixSUB of the sequence SC repre-

sented by P ’s child node C. The child node C stores the suffix of SC with respect to its

parent sequence SP . Thus, the sequence represented by a node N is the ”concatenation”

of the sub-sequences stored in the nodes along the path from the root (which represents

the empty sequence) to N . There are two types of nodes in an MAS-Tree: C-nodes and

D-nodes.

A C-node or Candidate node uniquely represents a potential HUSP found in one of

the batches processed so far. For example, there are 6 C-nodes in Figure 3.2(a) repre-

59

senting 6 potential HUSPs (i.e., 〈{ab}〉, 〈{abc}〉, 〈{b}{ab}〉, 〈{b}{abc}〉, 〈{b}{b}〉, and

〈{b}{bc}{b}〉).

A D-node or Dummy node is a non-leaf node with at least two child nodes, repre-

senting a sequence that is not a potential HUSP but is the longest common prefixSUB of

all the potential HUSPs represented by its descendent nodes. In Figure 3.2(a), there is

one D-node representing 〈{b}〉, which is the longest common prefixSUB of four C-node

sequences 〈{b}{ab}〉, 〈{b}{abc}〉, 〈{b}{b}〉 and 〈{b}{bc}{b}〉. The reason for having

D-nodes in the tree is to use shared nodes to store common prefixes of HUSPs to save

space. Note that D-nodes are created only for storing the longest common prefixes (not

every prefix) of potential HUSPs to keep the number of nodes minimum. The MAS-Tree

is different from the prefix tree used to represent sequences for frequent sequence mining

where all the sub-sequences of a frequent sequence is frequent and is represented by a

tree node. In a MAS-Tree we do not store all sub-sequences of potential HUSPs since a

subsequence of a HUSP may not be a HUSP.

Let SN denote the sequence represented by a node N . A C-node N contains 3 fields:

nodeName, nodeUtil and nodeRsu. nodeName is the suffix of SN w.r.t. the sequence

represented by the parent of N . nodeUtil is the approximate utility of SN over the part

of the data stream processed so far. nodeRsu holds the rest utility value (to be defined in

the next section and used in memory adaptation) of SN . For example, in Figure 3.2(a),

the leftmost leaf node corresponds to pattern {abc}. Its nodeName is { c} (which is the

60

suffix of {abc} w.r.t. its parent node sequence {ab}) and its nodeUtil and nodeRsu are

39 and 54, respectively. A D-node has only one field nodeName, storing the suffix of

sequence it represents w.r.t. its parent sequence.

3.3.3 Rest Utility: A Utility Upper Bound

Before we present how a MAS-Tree is built and updated, we first define the rest utility

of a sequence and prove that it is an upper bound on the true utilities of the sequence and

all of its prefix super-sequences (prefixSUPs). The rest utilities are stored in the tree

and used to prune the tree in the memory adaptation procedure.

Definition 17 (First occurrences of a sequence α in a sequence Sr) Given a sequence

Sr = 〈S1
r , S

2
r , ..., S

n
r 〉 and a sequence α = 〈X1, X2, ..., XZ〉, õ ∈ OccSet(α, Sr) is the

first occurrence of α in Sr, iff the last itemset in õ occurs sooner than the last itemset of

any other occurrence in OccSet(α, Sr).

Definition 18 (Rest sequence of Sr w.r.t. sequence α) Given sequences Sr = 〈S1
r , S

2
r , ...,

Snr 〉 and α = 〈X1, X2, ..., XZ〉, where α � Sr. The rest sequence of Sr w.r.t. α, is de-

fined as: restSeq(Sr, α) = 〈Smr , Sm+1
r , ..., Snr 〉, where Smr is the last itemset of the first

occurrences of α in Sr.

Definition 19 (Rest utility of a sequence α in a sequence Sr) The rest utility of α in

Sr is defined as rsu(α, Sr) = su(α, Sr) + su(restSeq(Sr, α)).

61

For example, given sequence α = 〈{ac}{c}〉 and S1 in Figure 3.1, restSeq(S1, α) =

〈{(b, 1)(c, 1)(d, 1)}{(c, 3)(d, 1)}〉. Hence, su(restSeq(S1, α)) = 8 + 7 = 15, then

rsu(α, S1) = su(α, S1) + 15 = max{7, 9}+ 15 = 24.

Definition 20 (Rest utility of a sequence α in dataset D) The rest utility of a sequence

α in a dataset D of sequences is defined as rsu(α,D) =
∑
Sr∈D

rsu(α, Sr).

Theorem 1 The rest utility of a sequence α in a data stream DS is an upper-bound of

the true utilities of all the prefixSUPs of α in DS. That is, ∀β & α, su(β,DS) ≤

rsu(α,DS).

Proof

We prove that rsu(α, Sr) is an upper-bound of the true utilities of all the prefixSUPs of

α in sequence Sr. The proof can be easily extended to batch Bk and data stream DS.

Given sequence α = 〈X1, X2, . . . , XM〉, and β = 〈X1, X2, . . . , X
′
M , XM+1, ..., XN〉,

where XM . X
′
M . According to Definition 10:

su(β, Sr) = max{su(β, õ)|∀õ ∈ OccSet(β, Sr)}

Thus, ∃õ, su(β, Sr) = su(β, õ) (1)

Sequence β can be partitioned into two sub-sequences:

α = 〈X1, X2, ..., XM〉 and β ′ = 〈X ′M − XM , XM+1, ..., XN〉. The Equation 1 can be

62

rewritten as follows:

∃õα ∈ OccSet(α, Sr) and ∃õβ′ ∈ OccSet(β
′
, Sr − õα),

su(β, Sr) = su(α, õα) + su(β
′
, õβ′) (2)

Also, ∀õα ∈ OccSet(α, Sr), su(α, õα) ≤ su(α, Sr) (3)

Similarly, ∀õβ′ ∈ OccSet(β
′
, Sr − õα), su(β

′
, õβ′) ≤ su(β

′
, Sr − õα) (4)

where Sr − õα is a sequence consisting of all itemsets in Sr which occur after the last

itemset in õα. Since Sr − õα � restSeq(Sr, α), hence:

su(β
′
, õβ′) ≤ su(β

′
, Sr−õα) ≤ su(β

′
, restSeq(Sr, α)) ≤ su(restSeq(Sr, α)) (5)

From (3) and (5):

su(β, Sr) = su(α, õα)+su(β
′
, õβ′) ≤ su(α, Sr)+su(restSeq(Sr, α)) = rsu(α, Sr).

2

3.3.4 MAS-Tree Construction and Updating

The tree starts empty. Once a potential HUSP is found in a batch, it is added to the tree.

Below, we present how to insert a pattern into the tree in a memory adaptive manner.

Given a potential HUSP S in batch Bk, the first step is to find node N whose cor-

responding sequence SN is either S or the longest prefixSUB of S in MAS-Tree. Let

su(S,Bk) be the exact utility value of S in the batch Bk and rsu(S,Bk) be the rest util-

ity value of S in the batch Bk. If SN is S and N is a C-node, then nodeUtil(N) and

63

nodeRsu(N) are updated by adding su(S,Bk) and rsu(S,Bk) respectively. If N is a

D-node, it is converted to a C-node and nodeUtil(N) and nodeRsu(N) are initialized

by su(S,Bk) and rsu(S,Bk) respectively.

If SN is the longest prefixSUB of S, new node(s) are created to insert S into the tree.

In this situation, there are three cases:

1. Node N has a child node CN where S . SCN : For example, in Figure 3.2(a), if

pattern S = 〈{b}{a}〉, node N with SN = {b} is found. N has a child node CN

where SCN = 〈{b}{ab}〉 and S . SCN . In this case, a new C-node C is created as

child of N and parent of CN where nodeName(C) is the suffix S w.r.t. SN . Then

nodeUtil(C) and nodeRsu(C) are initialized by su(S,Bk) and rsu(S,Bk). Also

nodeName(CN) is updated w.r.t. SC . In our example, a new node is created with

{a}, 20, and 36 as nodeName, nodeUtil and nodeRsu, respectively (see Figure

3.2(b)).

2. Node N has a child node CN where SCN contains (but not exactly is) a longer

prefixSUB (i.e., Sprefix) of S than SN : For example, in Figure 3.2(b), given pat-

tern S = 〈{b}{bc}{d}〉, su(S,B1) = 17 and rsu(S,B1) = 17, node N with

SN = 〈{b}{b}〉 is found. Its child node CN where SCN = 〈{b}{bc}{b}〉 con-

tains a longer prefixSUB of S, Sprefix = 〈{b}{bc}〉. In this case, since Sprefix

is the longest common prefixSUB of S and SCN , a new D-node D correspond-

64

ing to Sprefix is created as child of N and parent of CN . Then a new C-node

C is created as child of D where nodeName(C) is the suffix of S w.r.t. Sprefix.

Its nodeUtil and nodeRsu are initialized by su(S,Bk) and rsu(S,Bk) respectively.

Also nodeName(CN) is updated w.r.t. SD. In the example, node D with

nodeName(D) = 〈{ c}〉 is added as child of N and parent of CN , and also node

C where nodeName(C) = 〈{d}〉 is created as child of D.

3. None of the above cases: For example in Figure 3.2(b), given pattern S = 〈{ab}{bc}

{d}〉 whose utility is 21 and rest utility is 21, node N with SN = {ab} is found. Its

child node does not contain S or a longer prefixSUB of S. In this case, a new C-

node C is created as child of N where nodeName(C) is the suffix of S w.r.t. SN .

Also, nodeUtil(C) and nodeRsu(C) are initialized by su(S,Bk) and rsu(S,Bk).

In the example, node C where nodeName(C) = 〈{bc}{d}〉, nodeUtil(C) = 21

and nodeRsu(C) = 21 is created as child of N .

Figure 3.2(b) shows the updated tree after inserting three patterns 〈{b}{a}〉, 〈{ab}{bc}

{d}〉 and 〈{b}{bc}{d}〉 to MAS-Tree presented in Figure 3.2(a).

65

Algorithm 2 Insert potential HUSPs into MAS-Tree - Part 1
Input: MAS-Tree, HUSPBk

, mechanismType, availMem

Output: MAS-Tree, currMem

1: newPatSetBk
← ∅

2: for ∀S ∈ HUSPBk
do

3: N ← The node with the longest prefixSUB of S in MAS-Tree

4: if SN is the same as S then

5: if N is C-node then

6: nodeRsu(N)← nodeRsu(N) + rsu(S,Bk)

7: nodeUtil(N)← nodeUtil(N) + su(S,Bk)

8: else

9: Convert N to C-node

10: nodeRsu(N)← rsu(S,Bk) +maxUtil

11: nodeUtil(N)← su(S,Bk) +maxUtil

12: end if

13: else

14: Add pair 〈S,N〉 to newPatSetBk

15: end if

16: end for

66

Insert potential HUSPs into MAS-Tree - Part 2
17: for ∀〈S,N〉 ∈ newPatSetBk

do

18: CN ← A child of node N with longer common prefixSUB (i.e.,Sprefix) of S than SN

19: if CN does not exist then

20: SC ← suffix of S w.r.t. SN

21: Call Algorithm 3 to create C-node C as a child of N using SC ,rsu(S,Bk), su(S,Bk)

22: else

23: if Sprefix is S then

24: SC ← suffix of S w.r.t. SN

25: Call Algorithm 3 to create C-node C as a child of N using SC , rsu(S,Bk), su(S,Bk)

26: Assign C as parent of CN and update nodeName(CN) w.r.t. nodeName(C)

27: else

28: SD ← suffix of Sprefix w.r.t. SN

29: Call Algorithm 3 to create D-node D as a child of N using SD

30: SC ← suffix of S w.r.t. Sprefix

31: Call Algorithm 3 to create C-node C as a child of D using SC , rsu(S,Bk), su(S,Bk)

32: Assign D as parent of CN and update nodeName(CN) w.r.t. nodeName(D)

33: end if

34: end if

35: end for

36: return MAS-Tree

Algorithm 2 shows the complete procedure for inserting the potential HUSPs found

in batch Bk to the tree. It first updates the tree using the patterns in HUSPBk
that

67

already exist in the tree. This is to avoid the memory adaption procedure from pruning

nodes that will be inserted again soon in the same batch. For each pattern S in HUSPBk
,

Algorithm 2 finds node N where SN is either S or the longest prefixSUB of S in the tree.

If SN is S, lines 5 to 12 update values of nodeRsu(N) and nodeUtil(N) accordingly.

If nodeName(N) is the longest prefixSUB of S, the pattern S and node N are inserted

into newPatSetBk
. Each pair in newPatSetBk

consists of a new pattern and a pointer

to the node associated to the longest prefixSUB of the pattern in the tree. After the tree is

updated using the existing patterns, for each pair 〈S,N〉 in newPatSetBk
, the pattern S

is inserted into the tree, in which Algorithm 3 is called to create a node for the tree in a

memory adaptive manner described below.

3.3.5 Memory Adaptive Mechanisms

MAS-Tree adapts its memory usage to the available memory. When inserting a new node

in the tree, if the memory constraint is to be violated, our algorithm will remove some tree

nodes to release memory. An intuitive approach to releasing memory is to blindly elimi-

nate some nodes from the tree. However, this approach could remove nodes representing

high quality2 HUSPs and make the mining results highly inaccurate. Below we propose

two memory adaptive mechanisms to cope with the situation when memory space is not

enough to insert a new potential HUSP in the tree. Our goal is to efficiently determine the

2A potential HUSP with higher likelihood to become a HUSP has higher quality.

68

nodes for pruning, without sacrificing too much the accuracy of the discovered HUSPs.

Mechanism 1. Leaf Based Memory Adaptation (LBMA): Given a MAS-Tree, a

pattern S and the available memory availMem, if the required memory to insert S is

not available, LBMA iteratively prunes the leaf node N with minimum nodeUtil(N)

among all the leaf nodes until the required memory is released.

Rationale: (1) A leaf node is easily accessible and we do not need to scan the whole

tree to find a node with low utilities. (2) A leaf node does not have a child, so it can be

pruned easily without reconnecting its parent to its children. (3) In case a great portion

of nodes in the tree are leaf nodes, leaf nodes with minimum utilities have low likelihood

to become a HUSP. Later we prove that LBMA is an effective mechanism so that all

true HUSPs stay in the tree under certain circumstances.

The second mechanism releases memory by pruning a sub-tree from MAS-Tree.

Mechanism 2. Sub-Tree Based Memory Adaptation (SBMA): Given a MAS-Tree,

a pattern S and available memory availMem, if the required memory to insert S is not

available, SBMA iteratively finds node N with minimum rest utility (nodeRsu(N)) in

MAS-Tree and prunes the sub-tree rooted at N from MAS-Tree till the required memory

is released.

Rationale: Since in MAS-Tree a descendant of a node N represents a prefix super-

sequence (prefixSUP) of the pattern represented by N , according to Theorem 1, the

rest utility of N (nodeRsu(N)) is an upper bound of the true utilities of all its descen-

69

dants. Therefore, if node N has a minimum rest utility, not only the pattern represented

by N is less likely to become HUSP, but also all of its descendants are less likely to

become HUSPs. Thus, we can effectively remove all the nodes in the subtree rooted at

N . Similar to LBMA, with this mechanism there is no need to reconnectN ’s parent with

its children (which would be needed if only a single non-leaf node is removed).

Algorithm 3 shows how the proposed memory adaptive mechanisms are incorporated

into node creation. It removes some nodes based on either LBMA or SBMA mechanism

when there is not enough memory for a new node. In addition, the following two issues

are addressed in this procedure.

Approximate Utility. When some C-nodes are removed from the tree, the potential

HUSPs represented by the removed nodes are discarded. If a removed pattern is a poten-

tial HUSP in the new batch, the pattern will be added into the tree again. But its utility

value in the previous batches is not recorded due the node removal. To compensate this

situation, we keep track of the maximum value of the nodeUtil or nodeRsu of all the re-

moved nodes, and add it to the nodeUtil and nodeRsu of a new C-node. The maximum

value is denoted as maxUtil in Algorithm 2 and Algorithm 3.

Node Merging. If the parent of a removed leaf node or subtree is a D-node and

the parent has a single child left after the node removal, the parent and its child are

merged into a single node (Lines 16-17 in Algorithm 3). This is to make the tree compact

and maintain the property of MAS-Tree (i.e., each node represents the longest common

70

prefixSUB of its descedants). Note that our strategy to remove either a subtree or a leaf

node allows us to maintain the MAS-Tree structure using such minimum adjustments.

71

Algorithm 3 Memory Adaptive Node Creation - Part 1
Input: S, su(S,Bk), rsu(S,Bk), nodeType, mechanismType, P (parent of the node to be created)

Output: node N , maxUtil

1: currMem← current memory usage

2: reqMem← memory usage for a node of nodeType for pattern S

3: while currMem+ reqMem ≥ availMem do

4: if mechanismType is LBMA then

5: Find the leaf node node with minimum nodeUtil(node) and remove it from the tree

6: maxUtil← nodeUtil(node);

7: relMem← memory released by pruning the node

8: currMem← currMem− relMem

9: end if

10: if mechanismType is SBMA then

11: Find node with minimum nodeRsu(node) and remove the subtree rooted by node

12: maxUtil← nodeRsu(node)

13: relMem← memory released by pruning the subtree

14: currMem← currMem− relMem

15: end if

16: if parent P of node has a single child C then

17: Merge P and C into a D-node if C is a D-node or a C-node if C is a C-node

18: Adjust the amount of current available memory currMem

19: end if

20: end while

72

Memory Adaptive Node Creation - Part 2
21: if parent P of node has been removed then

22: Call Algorithm 2 to get a new parent node and exit this procedure

23: end if

24: Create node N with pattern S

25: if nodeType is a C-node then

26: nodeRsu(N)← rsu(S,Bk) +maxUtil

27: nodeUtil(N)← su(S,Bk) +maxUtil

28: end if

29: currMem← currMem+ reqMem

30: return N , maxUtil

Let Lavg and NumPot be the average length and the number of potential HUSPs

respectively. The time complexity to find the node N to insert a pattern as its child is

O(NumPot × Lavg). For LBMA, the leaf nodes can be stored in a sorted list. Thus, a

direct access can be done to find a leaf node with minimum utility. The time complexity

for initializing and updating this list is O(NumPot). The time complexity to apply

SBMA is O(NumPot×Lavg). The time complexity to create the new node is O(Lavg).

3.3.6 Mining HUSPs from MAS-Tree

As the data stream evolves, when the user requests to find HUSPs on the stream so far,

MAHUSP traverses the MAS-Tree once and returns all the patterns represented by a node

whose nodeUtil is no less than (δ − ε) · UDSk
, where DSk = 〈B1, B2, · · · , Bk〉 is the

73

stream processed so far. The reason for using this threshold is that a potential HUSP in a

batch Bi may not be a potential pattern in batch Bj and thus its utility in batch Bj is not

recorded in the tree. However, since when we mineBj for potential HUSP, ε ·UBj
is used

as the threshold, the true utility of a non-potential pattern in Bj cannot be higher than

ε·UBj
. Thus, nodeUtil(N)+ε·UDSk

is an over-estimate for the approximate utility of the

pattern represented by node N . Finding nodes whose nodeUtil(N)+ε ·UDSk
≥ δ ·UDSk

is equivalent to finding those with nodeUtil(N) ≥ (δ − ε) · UDSk
.

3.3.7 Correctness

Given a data stream DS, a sequence α and a node N ∈ MAS-Tree where SN is α, let

sutree(α,DS) be nodeUtil(N) when availMem is infinite and there is no pruning, and

let suapprx(α,DS) be nodeUtil(N) when availMem is limited and pruning occurs.

Lemma 1 Given a potential HUSP α, the difference between the exact utility of α and

its utility in MAS-Tree is bounded by ε · UDS when availMem is infinite. That is,

su(α,DS)− sutree(α,DS) < ε · UDS .

Proof

According to Definition 11, su(α,DS) =
∑

Bj∈DS
su(α,Bj). Given batch Bk ∈ DS,

if su(α,Bk) < ε · UBk
, then α is not returned by USpan. In this case ε · UBk

is an

upper bound on utility of α in the batch Bk. Hence, su(α,DS) − sutree(α,DS) =

74

∑
Bm∈BSet

su(α,Bm) < ε ·
∑

Bk∈DS UBk
≤ ε · UDS , where BSet is the set of all batches

that α is not returned by USpan.

2

Lemma 2 Given potential HUSP α, the current MAS-Tree and C-node C where SC is

α, sutree(α,DS) ≤ suapprx(α,DS).

Proof

If node C is never pruned, then suapprx(α,DS) = sutree(α,DS) which is nodeUtil(C).

Otherwise, since we have a node with pattern α in the tree, C has been added back to

the tree after removal. Assume that, when C was pruned from MAS-Tree, the value of

maxUtil was denoted as maxUtil1, and when C with pattern α was re-inserted, the

value of maxUtil was denoted as maxUtil2. According to Algorithm 2, maxUtil1 ≤

maxUtil2. Once C was re-inserted into the tree, nodeUtil(C) was incremented by

maxUtil2 which is bigger than or equal tomaxUtil1. Since suapprx(α,DS) = nodeUtil(C),

suapprx(α,DS) ≥ sutree(α,DS).

2

Lemma 3 For any potential HUSP α, if sutree(α,DS) > maxUtil, α must exist in

MAS-Tree.

Proof

We prove it by contradiction. Assume that there is a HUSP β, where maxUtil <

75

sutree(β,DS), and node N with nodeName(N) = β does not exist in the tree. Since

0 ≤ maxUtil < sutree(β,DS), at some point, β was inserted to the tree. Otherwise,

sutree(β,DS) = 0. Since N does not exist in MAS-Tree, it must have been pruned

afterwards. Let utilold and rsuold denote nodeUtil(N) and nodeRsu(N) when N was

last pruned, respectively. Based on Lemma 2, sutree(β,DS) ≤ suapprx(β,DS), where

suapprx(β,DS) = utilold, at the time N was pruned. So sutree(β,DS) ≤ utilold. Based

on the memory adaptive mechanisms, utilold ≤ maxUtil. Hence, sutree(β,DS) ≤

utilold ≤ maxUtil, which contradicts the assumption. Thus, ifmaxUtil < sutree(α,DS),

α is in the tree.

2

Theorem 2 Once the user requests HUSPs over data stream DS, if maxUtil ≤ (δ− ε) ·

UDS , all the high utility sequential patterns will be returned.

Proof

Suppose there is a high utility sequential pattern α. According to Definition 11, su(α,DS) ≥

δ · UDS . On the other hand, based on Lemma 1, ε · UDS > su(α,DS)− sutree(α,DS).

Thus, ε · UDS + sutree(α,DS) > su(α,DS).

According to Definition 11, ε ·UDS + sutree(α,DS) > δ ·UDS . Hence, sutree(α,DS) >

(δ − ε) · UDS ≥ maxUtil.

According to Lemma 3, α must exist in the tree. On the other hand, based on Lemma

76

2, suapprx(α,DS) ≥ sutree(α,DS) > (δ − ε) · UDS . Hence, α will be returned by the

algorithm.

2

While this theory only guarantees the perfect recall in certain situations, we will show

in the next section that our algorithm will return HUSPs with both high recall and high

precision in practice.

3.4 Experiments

To evaluate the performance of our proposed algorithm, experiments have been con-

ducted on both synthetic datasets generated by the IBM data generator (DS1:D10K-C10-

T3-S4-I2-N1K, DS2:D100K-C8-T3-S4-I2-N10K)[2], and the real-world Kosarak dataset

[26]. The synthetic datasets are generated by IBM data generator [2]. The parameters in

DS1(DS2) mean that the number of sequences in the dataset is 10K(100K), the average

number of transactions in a sequence is 10(8), the average number of items in a transac-

tion is 3(3), the average length of a maximal pattern consists of 4(4) itemsets and each

itemset is composed of 2(2) items average. The number of items in the dataset is 1k(10k).

The Kosarak dataset contains web click-stream data of a Hungarian on-line news portal.

Table 3.1 shows dataset characteristics and parameter settings in the experiments. The

last column shows the available memory (i.e., avaliMem) assigned to the mining task.

We set availMem heuristically based on the average memory to store the data structures

77

Table 3.1: Dataset characteristics

Name #Seq #Item Type batchSize availMem

DS1 10K 1K Dense 1K 100MB

Kosarak 25K 15K Sparse, Large 5K 200MB

DS2 100K 1K Dense, Large 10K 400MB

used by USpan and the average memory used by MAS-Tree over the datasets. We follow

a previous study [4] to generate internal and external utilities of items in the datasets. The

external utility of each item is generated between 1 and 100 by using a log-normal distri-

bution and the internal utilities of items in a transaction are randomly generated between

1 and 100. The significance threshold (i.e., ε) is set as 0.5 × δ. For example, in DS2,

when δ = 0.0009, ε = 0.00045. We will later change these parameters (i.e., availMem,

batchSize and significance threshold) to show the performance of the algorithm under

different parameter values.

The batchSize column shows the number of sequences in each batch during the

evaluation. We will also investigate the effect of different sizes of batch on performance

of the method. The experiments are conducted on an Intel(R) Core(TM) i7 2.80 GHz

computer with 4 GB of RAM.

We use the following performance measures: (1) Precision and Recall: the aver-

age precision and recall values over data streams: precision = |appHUSPs
⋂
eHUSP |

|appHUSPs| ,

78

recall = |appHUSPs
⋂
eHUSP |

|eHUSP | , where eHUSP is the true set of HUSPs and appHUSPs is

the approximate set of HUSPs returned by a method. (2) F-Measure: 2× precision×recall
precision+recall

.

(3) Run Time: the total execution time of a method over data streams, (4) Memory Usage:

the memory consumption of a method.

To the best of our knowledge, no method was proposed to mine HUSPs over a data

stream in a memory adaptive manner. Therefore, the following methods are implemented

as comparison methods: (1) NaiveHUSP: this method is a fast method to approximate

the utility of a sequence over the past batches using the utilities of items in the sequence.

That is, the utility of each item over a data stream is tracked. If the user requests HUSPs,

the algorithm runs USpan to find all HUSPs in the current batch Bi. Then for each

pattern α, the utility of α over the data stream is calculated as follows: su(α,DSi) =

su(α,Bi) +
∑
I∈α

u(I,DSi−1). (2) RndHUSP: this method is a memory adaptive HUSP

mining method which adapts memory by pruning a sub-tree randomly, (3) USpan: once a

user requests HUSPs, USpan is run on the whole data stream (i.e., DSi) seen so far using

δ · UDSi
as the utility threshold to find the true set of HUSPs (i.e., eHUSP). Moreover,

we evaluate two versions of MAHUSP , named MAHUSP S (which uses the SBMA

mechanism) and MAHUSP L (which uses the LBMA mechanism).

79

Pr
ec

is
io

n
(%

)

0
25
50
75

100
0.

4
0.

42
0.

44
0.

46
0.

48 0.
5

0.
52

Minimum utility threshold (%) Minimum utility threshold (%) Minimum utility threshold (%)
(DS1) (Kosarak)(DS2)

Pr
ec

is
io

n
(%

)

Pr
ec

is
io

n
(%

)

0
25
50
75

100

0.
09

0
0.

09
2

0.
09

4
0.

09
6

0.
09

8
0.

10
0

0.
12

0 0
25
50
75

100

0.
09

0.
11

0.
13

0.
15

0.
17

0.
19

0.
21

MAHUSP_S MAHUSP_L NaïveHUSP RndHUSP

Figure 3.3: Precision performance on the different datasets

R
ec

al
l (

%
)

Minimum utility threshold (%) Minimum utility threshold (%) Minimum utility threshold (%)

R
ec

al
l (

%
)

R
ec

al
l (

%
)

(DS1) (Kosarak)(DS2)

0
25
50
75

100

0.
09

0
0.

09
2

0.
09

4
0.

09
6

0.
09

8
0.

10
0

0.
12

0

0
25
50
75

100

0.
09

0.
11

0.
13

0.
15

0.
17

0.
19

0.
21

MAHUSP_S MAHUSP_L NaïveHUSP RndHUSP

0
25
50
75

100

0.
4

0.
42

0.
44

0.
46

0.
48 0.

5
0.

52

Figure 3.4: Recall performance on the different datasets

3.4.1 Effectiveness of MAHUSP

In this section, the effectiveness of the methods is evaluated. Figure 3.3, Figure 3.4 and

Figure 3.5 show the results in terms of Precision, Recall and F-Measure on the three

datasets respectively. For consistency across datasets, the minimum threshold is shown

as a percentage (i.e., δ) of the total utility of the current data stream in the dataset.

Figure 3.3 shows the precisions of the methods on the three datasets. The proposed

methods outperform NaiveHUSP and RndHUSP significantly. MAHUSP L outperforms

80

F-
M

ea
su

re
 (%

)

Minimum utility threshold (%) Minimum utility threshold (%) Minimum utility threshold (%)
F-

M
ea

su
re

 (%
)

F-
M

ea
su

re
 (%

)

(DS1) (Kosarak)(DS2)

0
25
50
75

100

0.
4

0.
42

0.
44

0.
46

0.
48 0.

5
0.

52

0
25
50
75

100

0.
09

0
0.

09
2

0.
09

4
0.

09
6

0.
09

8
0.

10
0

0.
12

0 0
25
50
75

100

0.
09

0.
11

0.
13

0.
15

0.
17

0.
19

0.
21

MAHUSP_S MAHUSP_L NaïveHUSP RndHUSP

Figure 3.5: F-Measure performance on the different datasets

MAHUSP S in the most of the cases in DS1 and DS2. This is because the approximate

utility by LBMA is usually tighter than the one by SBMA, and thus there are fewer

false positives in the results. However, MAHUSP S performs better on the sparse dataset

Kosarak.

Figure 3.4 shows the recalls of the methods, which indicate that our proposed meth-

ods significantly outperform other methods in all the datasets. Indeed, onDS1, MAHUSP L

returns all the true patterns for each threshold value. Also, MAHUSP S returns all the

true patterns for most threshold values on DS2 and Kosarak. The results imply that

the condition presented in Theorem 2 happens often and the proposed memory adaptive

mechanisms prune the nodes effectively.

Figure 3.5 shows the F-Measure values for the four methods with different δ values

on the 3 datasets. In most of the cases, NaiveHUSP is the worst among the four methods.

This is because it estimates the utility of a sequence based on the utility of each item

81

0

100

200

300

0.
40

0
0.

42
0

0.
44

0
0.

46
0

0.
48

0
0.

50
0

0.
52

0

(a) DS1
Minimum utility threshold (%)

R
un

 T
im

e(
Se

c.
)

0

500

1000

1500

2000

0.
09

0
0.

09
2

0.
09

4
0.

09
6

0.
09

8
0.

10
0

0.
12

0

Minimum utility threshold (%)
(c) Kosarak(b) DS2

0
200
400
600
800

1000

0.
09

0.
11

0.
13

0.
15

0.
17

0.
19

0.
21

Minimum utility threshold (%)

R
un

 T
im

e(
Se

c.
)

R
un

 T
im

e(
Se

c.
)

MAHUSP_S MAHUSP_L NaïveHUSP RndHUSP USpan

Figure 3.6: Execution time on different datasets.

over the data stream which is not an accurate approximation. Both proposed methods

outperform the other methods significantly with an average F-Measure value of 90%

over the DS1, DS2 and Kosarak data sets.

3.4.2 Time and Memory Efficiency of MAHUSP

Figure 3.6 shows the execution time of each method with different threshold values.

Since NaiveHUSP only stores and updates the utility of each item over data streams,

it is the fastest method. However, it generates a high rate of false positives due to its

poor utility approximation. MAHUSP L is slower than MAHUSP S, since it prunes the

tree node by node. USpan is the slowest, whose run time indicates the infeasibility

of using a static learning method on data streams although it returns the exact set of

HUSPs. Moreover, MAHUSP methods are only a bit slower than random pruning method

82

0
1000
2000
3000
4000
5000

0.
09

0.
11

0.
13

0.
15

0.
17

0.
19

0.
21

Minimum utility threshold (%)

M
em

or
y

U
sa

ge
 (M

B
)

Minimum utility threshold (%) Minimum utility threshold (%)
M

em
or

y
U

sa
ge

 (M
B

)

M
em

or
y

U
sa

ge
 (M

B
)

(a) DS1 (c) Kosarak(b) DS2

0
1000
2000
3000
4000

0.
09

0
0.

09
2

0.
09

4
0.

09
6

0.
09

8
0.

01
0

0.
12

0

0
500

1000
1500
2000

0.
40

0.
42

0.
44

0.
46

0.
48

0.
50

0.
52

MAHUSP_S MAHUSP_L NaïveHUSP USpan

Figure 3.7: Memory Usage on different datasets.

(RndHUSP). Considering the big difference between them in precision and recall, it is

very worthwhile to use the pruning strategies proposed in this work.

Figure 3.7 shows the memory consumption of the methods on different datasets for

different values of δ. Since RndHUSP, MAHUSP L and MAHUSP S consume the same

amount of memory, we only present the results of MAHUSP S, NaiveHUSP and USpan.

USpan is the most memory consuming method since it needs to keep whole sequences

in the memory. The memory usage of NaiveHUSP depends on the number of promis-

ing items in the dataset. For example, when the threshold increases on DS2, since the

number of promising items decreases, the memory usage decreases. NaiveHUSP uses

less memory than MAHUSP S on DS2, since DS2 is a dense dataset. NaiveHUSP uses

more memory than MAHUSP S on Kosarak because this dataset is a sparse dataset and

NaiveHUSP stores a huge list of items and their utilities into the memory. Regardless of

the threshold value and the type of dataset, MAHUSP S guarantees that memory usage is

83

Dataset- size of Batch

0

200

400

600
D

S1
-1

k
D

S1
-3

k
D

S1
-5

k
D

S1
-7

k
K

O
S-

5k
K

O
S-

10
k

K
O

S-
15

k
K

O
S-

20
k

D
S2

-2
0k

D
S2

-4
0k

D
S2

-6
0k

D
S2

-8
0kR

un
 ti

m
e

(s
ec

.)

R
un

 t
im

e
(s

ec
.)

R
un

 ti
m

e
(s

ec
.)

F-
M

ea
su

re
 (%

)

F-
M

ea
su

re
 (%

)

F-
M

ea
su

re
 (%

)

(a) DS1 (c) Kosarak(b) DS2

(d) DS1 (f) Kosarak(e) DS2

Dataset- Significance threshold � (%) Dataset- availMem(MB)

Dataset- size of Batch Dataset- Significance threshold � (%) Dataset- availMem(MB)

0
250
500
750

1000

D
S1

-3
0

D
S1

-5
0

D
S1

-7
0

D
S1

-9
0

K
O

S-
30

K
O

S-
50

K
O

S-
70

K
O

S-
90

D
S2

-3
0

D
S2

-5
0

D
S2

-7
0

D
S2

-9
0

0
200
400
600
800

1000

D
S1

-5
0

D
S1

-1
00

D
S1

-1
50

D
S1

-2
00

K
O

S-
10

0
K

O
S-

20
0

K
O

S-
30

0
K

O
S-

40
0

D
S2

-2
00

D
S2

-4
00

D
S2

-6
00

D
S2

-8
00

0
25
50
75

100

D
S1

-1
k

D
S1

-3
k

D
S1

-5
k

D
S1

-7
k

K
O

S-
5k

K
O

S-
10

k
K

O
S-

15
k

K
O

S-
20

k
D

S2
-2

0k
D

S2
-4

0k
D

S2
-6

0k
D

S2
-8

0k 0
25
50
75

100

D
S1

-3
0

D
S1

-5
0

D
S1

-7
0

D
S1

-9
0

K
O

S-
30

K
O

S-
50

K
O

S-
70

K
O

S-
90

D
S2

-3
0

D
S2

-5
0

D
S2

-7
0

D
S2

-9
0

0
25
50
75

100

D
S1

-5
0

D
S1

-1
00

D
S1

-1
50

D
S1

-2
00

K
O

S-
10

0
K

O
S-

20
0

K
O

S-
30

0
K

O
S-

40
0

D
S2

-2
00

D
S2

-4
00

D
S2

-6
00

D
S2

-8
00

MAHUSP_S MAHUSP_L

Figure 3.8: Parameter sensitivity on different datasets.

bounded by the given input parameter availMem.

3.4.3 Parameter Sensitivity Analysis

In this section we evaluate the performance of MAHUSP L and MAHUSP S by varying

the batch size (batchSize), the significance threshold (ε) and the amount of available

memory (availMem). In all the experiments, δ is set to 0.46%, 0.096%, 0.15% for

DS1, DS2 and Kosarak respectively. Figures 3.8(a),(d) present the results on DS1,

DS2 and Kosarak when the number of sequences in the batch varies. The x-axes in each

graph represents the combination of the dataset name and the number of sequences in

the batch (i.e., batchSize). Figure 3.8 (a) shows the trend in the execution time with

84

different batch sizes. In all the datasets, the run time decreases as batchSize increases

since increasing the batch size leads to generating less number of intermediate potential

HUSPs. Figure 3.8 (d) shows F-Measures on different datasets. From Figure 3.8(d), we

can observe that the F-Measure of the methods increases slowly with increasing batch

sizes.

Figures 3.8 (b)(e) show the results on Run time and F-Measure for different values

of ε. Each bar in the graphs is assigned to each dataset and value of ε is a percentage

of δ. As it is observed, a higher value of ε leads to a lower number of HUSPs returned

by USpan in each batch and thus the F-Measure value decreases. On the other hand,

when the value of ε increases the processing time decreases since the number of HUSPs

returned by USpan decreases.

Figures 3.8(c),(f) present the results on different datasets for different values of availMem.

In the graphs, the x-axes represents the combination of the dataset name and the input

parameter availMem. Figure 3.8(c) shows the execution time with different values of

availMem. A higher value of availMem enables MAS-Tree to store more potential

HUSPs, hence LBMA or SBMA is called less frequently to release the memory. There-

fore, the execution time decreases when the available memory increases. Figure 3.8 (f)

shows the results on F-Measure. When the available memory is small (e.g., 50 MB in

DS1), there are fewer HUSPs in the memory and usually F-Measure is lower. However,

after a certain value of availMem, the performance of the proposed methods is much

85

higher.

3.5 Summary

In this chapter, we tackled the problem of mining HUSPs over the entire of a data stream

and proposed a memory-adaptive approach to finding HUSPs from a dynamically-increasing

data stream. To the best of our knowledge, this is the first piece of work to mine high util-

ity sequential patterns over data streams in a memory adaptive manner. Our contributions

are summarized as follows.

1. Compact data structure: we proposed a novel and compact data structure, called

MAS-Tree, to store potential HUSPs over a data stream. This tree allows com-

pact representation and fast update of potential HUSPs generated in the batches,

and also facilitates the pruning of unpromising patterns to satisfy the memory con-

straint. The MAS-Tree is different from the prefix tree used to represent sequences

for frequent sequence mining where all the sub-sequences of a frequent sequence

is frequent and is represented by a tree node. In a MAS-Tree we do not store all

sub-sequences of potential HUSPs since a subsequence of a HUSP may not be a

HUSP.

2. Memory adaptive mechanisms: in data stream mining, data can be huge so that

the amount of information we need to keep may exceed the size of available mem-

86

ory. Thus, to avoid memory thrashing or crashing, memory-aware data processing

is needed to ensure that the size of the data structure does not exceed the available

memory, and at the same time accurate approximation of the information needed

for the mining process is necessary. Hence, two efficient memory adaptive mech-

anisms are proposed to deal with the situation when the available memory is not

enough to add a new potential HUSPs to MAS-Tree. The proposed mechanisms

choose the least promising patterns to remove from the tree to guarantee that the

memory constraint is satisfied.

3. Single pass algorithm: in data stream mining, data should be usually processed

by an online algorithm whose workspace is insufficient to store all the data, so the

algorithm must process and then discard each data element. Using MAS-Tree and

the memory adaptive mechanisms, we proposed a novel single pass algorithm for

incrementally mining HUSPs over a data stream. Our algorithm, called MAHUSP,

efficiently discovers HUSPs over a data stream with a high recall and precision.

The proposed method guarantees that the memory constraint is satisfied and also

all true HUSPs are maintained in the tree under certain circumstances.

4. Extensive experiments: we conducted extensive experiments and show that MAHUSP

finds an approximate set of HUSPs over a data stream efficiently and adapts to al-

located memory without sacrificing much the quality of discovered HUSPs.

87

4 Sliding Window-based High Utility Sequential

Pattern Mining over Data Streams

4.1 Introduction

In some applications such as network traffic monitoring and intrusion detection, users

are more interested in the information that reflect recent data rather than old ones. The

most common data stream processing model to discover recent information is based on

sliding windows. Given a user-specified window size w, the sliding window based model

captures w most recent records in a window, and focuses on discovering the patterns

within the window. When a new record flows into the window, if there were already w

data records in the window, the oldest one is removed from the window. In this model,

the effect of the expired old data is eliminated, and the patterns are mined from the data

in the current window.

Some studies have been conducted on efficiently mining frequent sequences over data

streams using the sliding window model (See Chapter 2, subsection 2.1.3). However, ex-

88

isting methods have the following deficiencies. (1) They are frequency-based, and did not

consider the utility (e.g., value) of an item and thus cannot be used to find HUSPs over

sliding windows. (2) Most of the studies such as [19, 46] focused on mining sequential

patterns over a stream of items and few considered the scenario of a stream of itemsets

so that the sequential relationships between itemsets are lost [32]. However, itemset-

sequences are often encountered in real-life applications (e.g., market basket analysis).

(3) Generally speaking, the update operations on a sliding window can be categorized

into four types: (i) inserting new sequences, (ii) deleting existing sequences, (iii) ap-

pending new items/itemsets to the existing sequences and (iv) dropping items/itemsets

from the existing sequences. However, very few preliminary works have been proposed

for mining patterns on all the types of update in a unified framework.

To mine HUSPs over data streams using sliding windows, a naive approach is to

apply existing (static) HUSP mining algorithms to rerun the whole mining process on

the updated window whenever a data record comes into or an old one leaves from the

window. Obviously, the computational cost of this approach may be prohibitively high,

especially when data records arrive at a rapid rate and the database changes quickly.

Although sliding window-based HUSP mining is very desirable in many real-life appli-

cations such as online user behavior analysis and web mining, addressing this topic is

not an easy task due to the following challenges.

• Effectively pruning search space for sliding window-based mining high utility se-

89

quential patterns over a data stream is difficult, because the downward closure

property does not hold for the utility of sequences.

• Mining HUSPs over a data stream of itemset-sequence need to overcome the large

search space problem due to combinatorial explosion of sequences. Since items

with different quantities and unit profits can occur simultaneously in any data

record of itemset-sequence streams, the search space is much larger and the prob-

lem is much more challenging than mining HUSPs over streams of item-sequences.

• Streaming data usually come continuously, unboundedly and at a high speed. Keep-

ing all the data records in memory (even on disk) is infeasible and real-time pro-

cessing of each new incoming record is required. On the other hand, once a data

record is removed, it is impossible to backtrack over previously data records that

have been expelled from the window. Hence, how to efficiently discover HUSPs

over sliding windows by reading data records only once is a challenging problem.

• Data distribution in a stream usually changes over time such that a low (or high)

utility pattern can become a high (or low) utility pattern later on and hence cannot

be ignored. Comparing to mining HUSPs from a static dataset, mining HUSPs over

dynamic data streams has far more information to track and far greater complexity

to manage. How to efficiently discover correct HUSPs over a sliding window is a

challenging problem.

90

In this chapter, we address all of the above deficiencies and challenges by proposing

a new framework for sliding window-based high utility sequential pattern mining over

data streams. Our framework incrementally learns HUSPs from a sliding window over

data streams of itemset-sequences. The major contributions of this work are summarized

as follows.

1. We incorporate the concept of sliding window-based mining into HUSP mining

and formally define the new problem of sliding window-based high utility sequen-

tial pattern mining over data streams.

2. We propose two efficient data structures named ItemUtilLists (Item Utility Lists)

and HUSP-Tree (High Utility Sequential Pattern Tree) for maintaining the essen-

tial information of high utility sequential patterns in a transaction-sensitive sliding

window over a data stream. To the best of our knowledge, the ItemUtilLists struc-

ture is the first vertical data representation for HUSP mining over data streams that

can be used to efficiently calculate the utility of sequences. These data structures

can be built using one scan of data, allow easy updates when the window slides,

and can be used to compute sequence utilities without re-scanning the transactions

in the sliding window.

3. We also propose a novel over-estimate utility model, called Sequence-Suffix Utility

(SFU). We prove that SFU of a sequence is an upper bound of the utilities of some

91

of its super-sequences, which can be used to effectively prune the search space in

finding HUSPs. The experiments show that SFU is more effective in pruning

the search space than the previously-proposed SWU (Sequence-Weighted Utility)

model [4] for HUSP mining.

4. We propose a new one-pass algorithm called HUSP-Stream (High Utility Sequen-

tial Pattern Mining over Data Streams) for efficiently constructing and updating

ItemUtilLists and HUSP-Tree by reading a transaction in the data stream only once,

and by making use of both SFU and SWU to prune the size of HUSP-Tree. When

data arrive at or leave from the window, our method incrementally updates ItemU-

tilLists and HUSP-Tree to find HUSPs based on previous mining results without

re-running the whole mining process on updated databases. It supports four types

of update in a unified framework, including (a) inserting sequences, (b) deleting

sequences, (c) appending new items/itemsets to the existing sequences and (d)

dropping items/itemsets from the existing sequences.

5. We conduct extensive experiments on both real and synthetic datasets to evaluate

the performance of the proposed algorithm. Experimental results show that HUSP-

Stream outperforms the state-of-the-art HUSP mining algorithm substantially in

terms of execution time, the number of generated candidates and memory usage.

In particular, HUSP-Stream runs very well in some cases where USpan [66], a

92

Table 4.1: Summary of Notations

Notation Description

u(X,Sd
r) Utility of item/itemset X in transaction Td of Sr

TU(Sd
r) Utility of transaction Td of sequence Sr

α � β α is a subsequence of β, or α occurs in β

OccSet(α, Sr) Set of all the occurrences of α in sequence Sr

su(α, Sr) Utility of a sequence α in sequence Sr

α⊕ I Itemset-extended of sequence α and item I

α⊗ I Sequence-extended of sequence α and itemset {I}

TSWU(α, SWi) Sequence weighted utility of sequence α in SWi

suffix(Sr, α) Suffix of sequence Sr w.r.t. sequence α

SFU(α, SWi) Sequence-suffix utility of sequence α in SWi

state-of-the-art HUSP mining algorithm, fails to complete the mining task.

The remaining of the chapter is organized as follows. Section 4.2 provides defini-

tions and a problem statement. Section 4.3 presents the proposed algorithms and data

structures. Experimental results are shown in Section 4.4. We conclude the chapter in

Section 4.5.

93

T1 T2 T3 T4 T5 T6 T7 …

S1
{(a,2)(b,3)(c,2)} {(b,1)(c,1)(d,1)} {(c,3)(d,1)} {(b,1)(c,3)(d,2)} …

S2
{(b,4)} {(a,4)(b,5)(c,1)} …

S3
{(a,2)(b,5)(e,2)} …

SW
1

SW
2

Item a b c d e

Profit 2 3 1 4 3

(b) Profit Table

(a) A Data Stream of Itemset-Sequences

SID TID

Figure 4.1: (a) An example of a data stream of itemset-squences and transaction-sensitive

sliding windows over the data stream, (b) an example of external utility table

4.2 Definitions and Problem Statement

This section presents definitions and defines the problem of sliding window-based high

utility sequential pattern mining over data streams. For more details about preliminaries,

readers can refer to definitions in Chapter 3.

Figure 4.1 shows a data stream DS = 〈S1
1 , S

2
1 , S

3
2 , S

4
1S

5
2 , S

6
3 , S

7
1〉 with 7 transactions,

each belonging to one of three sequences: S1, S2 and S3.

In many applications, such as customer purchase sequence mining, a new trans-

action may belong to an existing sequence. In a data stream environment, transac-

tions come continually over time, and they are usually processed in batches. A trans-

94

action batch Bi consists of transactions arriving continuously in a time period, i.e.,

Bi = {Tj, Tj+1, ..., Tk}. A sliding window consists of w recent batches where w is

the size of the window. If the first batch in a sliding window is Bi, the window can be

presented as SWi = {Bi, Bi+1, ..., Bi+w−1}. The sliding window is called transaction-

sensitive sliding window if each batch consists of one transaction (i.e., Bi = {Ti}).

Therefore, when a new transaction arrives, the oldest one is removed from SW . Conse-

quently, the i-th transaction-sensitive sliding window over DS is equivalently defined as

SWi = 〈Ti, Ti+1, ..., Ti+w−1〉. Note that, in this chapter, a transaction-sensitive sliding

window is referred as sliding window.

Transactions in a sliding window can belong to different sequences3. For example, in

Figure 4.1, if the window size w is set to 5, the first and the second windows overDS are

SW1 = 〈S1
1 , S

2
1 , S

3
2 , S

4
1 , S

5
2 > (which has 2 sequences) and SW2 = 〈S2

1 , S
3
2 , S

4
1 , S

5
2 , S

6
3〉

(which has 3 sequences), respectively.

Definition 21 (Utility of an itemset in a transaction) Given itemsetX ⊆ Td, the utility

of X in the transaction Td of the sequence Sr is defined as u(X,Sdr) =
∑
I∈X

u(I, Sdr)

Definition 22 (Transaction utility) The transaction utility of transaction Sdr ∈ DS is

denoted as TU(Sdr) and computed as u(Sdr , S
d
r).

For example, u(b, S1
1) = p(b)× q(b, S1

1) = 3× 3 = 9, and u({bc}, S1
1) = u(b, S1

1) +

3In this work, w is defined as the number of transactions, however it could be defined as a period of
time, which means that a window is formed by the all transactions arrived in a time interval.

95

u(c, S1
1) = 9 + 2 = 11. Therefore, transaction utility of S1

1 is TU(S1
1) = 2× 2 + 3× 3 +

1× 2 = 15.

Definition 23 (Utility of a sequence α in a sequence Sr) Let õ = 〈Te1 , Te2 , ..., TeZ 〉 be

an occurrence of α = 〈X1, X2, ..., XZ〉 in the sequence Sr. The utility of α w.r.t. õ is

defined as su(α, õ) =
Z∑
i=1

u(Xi, Tei). The utility of α in Sr is defined as su(α, Sr) =

max{su(α, õ)|∀õ ∈ OccSet(α, Sr)}.

Definition 24 (Utility of a sequence in a sliding window) The utility of a sequence α

in the i-th sliding window SWi over DS is defined as su(α, SWi) =
∑

Sr∈SWi

su(α, Sr).

For example, let α = 〈{ab}{c}〉. In SW1 of Figure 4.1, OccSet(α, S1) = {〈S1
1 , S

2
1〉,

〈S1
1 , S

4
1〉}. The utility of α in S1 is su(α, S1) = max{su(α, 〈S1

1 , S
2
1〉), su(α, 〈S1

1 , S
4
1〉)}

= max{14, 16} = 16. The utility of α in SW1 is su(〈{ab}{c}〉, SW1) = su(α, S1) +

su(α, S2) = 16 + 0 = 16.

Definition 25 (High utility sequential pattern (HUSP)) A sequence α is called a high

utility sequential pattern (HUSP) in a sliding window SWi iff su(α, SWi) is no less than

a user-specified minimum utility threshold δ.

Problem statement. Given a minimum utility threshold δ, the problem of sliding

window-based high utility sequential pattern mining over a transaction data stream DS

is to discover all sequences of itemsets whose utility is no less than δ from the current

sliding window over DS.

96

A promising solution to this problem is to design an in-memory data structure to

maintain the essential information of HUSPs in SWi. When the window slides from

SWi to SWi+1, we incrementally update this structure to reflect the current HUSPs in

SWi+1. Our method and in-memory data structures are proposed based on this concept,

which are presented in the next section.

For convenience, Table 4.1 summarizes the concepts and notations we define in this

chapter.

4.3 Sliding Window-based High Utility Sequential Pattern Mining

over Data Streams

In this section, we propose a single-pass algorithm named HUSP-Stream (High Utility

Sequential Pattern mining over data Stream) for incrementally mining the complete set of

HUSPs in the current window SWi of a data stream based on the previous mining results

for SWi−1. We propose a vertical representation of the dataset called ItemUtilLists (Item

Utility Lists) and a tree-based data structure, called HUSP-Tree (High Utility Sequential

Pattern Tree), to model the essential information of HUSPs in the current window.

The overview of HUSP-Stream is presented in Algorithm 4. The algorithm includes

three main phases: (1) Initialization phase, (2) Update phase and (3) HUSP mining

phase. The initialization phase applies when the input transaction belongs to the first

97

sliding window (i.e., when i ≤ w). In the initialization phase (lines 1-5), the ItemUtil-

Lists structure is constructed for storing the utility information for every item in the input

transaction Sir. When there are w transactions in the first window (i.e., when i = w),

HUSP-Tree is constructed for the first window. If there are already w transactions in the

window when the new transaction Sir arrives, Sir is added to the window and the old-

est transaction in the window is removed. This is done by incrementally updating the

ItemUtilLists and HUSP-Tree structures on line 6, which is the update phase of the algo-

rithm. After the updating phase, if the user requests to find HUSPs from the new window,

HUSP-Stream finds all the HUSPs from the potential HUSPs stored in HUSP-Tree.

98

Algorithm 4 HUSP-Stream
Input: a new transaction Sir, window size w, minimum utility threshold δ, ItemUtilLists, HUSP-

Tree

Output: ItemUtilLists, HUSP-Tree, HUSPs

1: if i ≤ w (when Sir is a transaction in the first window) then

2: ∀ item ∈ Sir, put(r, i, u(item, Sir)) to ItemUtilLists(item)

3: if i = w then

4: Construct HUSP-Tree using ItemUtilLists and δ

5: end if

6: else

7: Update ItemUtilLists and HUSP-Tree using Sir, w and δ

8: end if

9: if the user requests to get HUSPs for the current window then

10: Find all the HUSPs from the potential HUSPs stored in HUSP-Tree using δ

11: end if

12: Return ItemUtilLists, HUSP − Tree, HUSPs if requested

4.3.1 Initialization phase

In this phase, HUSP-Stream reads the transactions in the first sliding window one by one

to construct ItemUtilLists and HUSP-Tree. Below we first introduce these two structures

and then explain how to construct them in the initialization phase.

99

4.3.1.1 ItemUtilLists (Item Utility Lists)

The first component of the proposed algorithm is an effective representation of items to

restrict the number of candidates and to reduce the processing time and memory usage.

ItemUtilLists is a vertical representation of the transactions in the sliding window. The

ItemUtilLists of an item I consists of several tuples. Each tuple stores the utility of item

I in the transaction Suv (i.e., transaction Tu in sequence Sv) that contains I . Each tuple

has three fields: SID, TID and Util. Fields SID and TID store the identifiers of Sv

and Tu, respectively. Field Util stores the utility of I in Suv (Definition 7 in Chapter 3).

Figure 4.2 shows ItemUtilLists for the first sliding window SW1 in Figure 4.1, which

is computed easily by using the external utility of I and the internal utility of I in Suv .

ItemUtilLists can be implemented with an array of hash maps with item ID as the

index for the array. An element of the array (i.e., the ItemUtilLists of an item) can

be implemented using a hash map with SID and TID as the key. Thus, a direct access

can be done to a tuple in ItemUtilLists. The average time complexity for initializing

ItemUtilLists is O(w × Lavg), where w is the window size and Lavg is the average

length of these transactions.

100

S1
S2

T1
T5

4
8

{a}
S1
S1
S2
S2

T1
T2
T3
T5

9
3
12
15

{b}
S1
S1
S1
S2

T1
T2
T4
T5

2
1
3
1

{c}
S1
S1

T2
T3

4
4

{d}

SIDs TIDs Util

Figure 4.2: ItemUtilLists for items in SW1 in Figure 4.1

4.3.1.2 HUSP-Tree Structure

In this section, we propose an efficient tree-based data structure called HUSP-Tree, to

maintain the essential information for mining HUSPs in an online fashion. The structure

of HUSP-Tree is similar to the lexicographic tree proposed in [32] and LQS-Tree [66].

These trees are used to enumerate sequential patterns in a sequence database. The main

difference among different lexicographic trees is in the node structure and the content in

each node. The node structure and content are important as they determine what can be

done during the mining process. For example, the tree proposed in [32] is used to find

frequent sequential patterns, hence a node in this tree mainly stores the frequency of a

sequence represented by the node. The LQS-Tree is for finding high utility sequential

patterns in a static database, and thus its node contains information about the utility of a

sequence. However, these trees were not designed for HUSP mining over data streams,

101

and thus their node structure and content do not allow online updates of sequence utilities

and do not support incremental mining of HUSPs over sliding windows.

A HUSP-Tree is a lexicographic sequence tree where each non-root node represents

a sequence of itemsets. Figure 4.3 shows part of the HUSP-Tree for the first window

SW1 in Figure 4.1, where the root is empty. Each node at the first level under the root

represents a sequence of length 1, a node on the second level represents a 2-sequence,

and all the child nodes of a parent are listed in alphabetic order of their represented

sequences. There are two types of child nodes for a parent: I-node and S-node, which

are defined as follows.

Definition 26 (Itemset-extended node (I-node)) Given a parent node p representing a

sequence α, an I-node is a child node of p which represents a sequence generated by

adding an item I into the last itemset of α (denoted as α⊕ I).

Definition 27 (Sequence-extended node (S-node)) Given a parent node p representing

a sequence α, an S-node is a child node of p which represents a sequence generated by

adding a 1-Itemset {I} after the last itemset of α (denoted as α⊗ I).

In Figure 4.3, the node for sequence 〈{abc}〉 is an I-node, while the node for 〈{ab}{c}〉

is an S-node. Their parents are {ab},

In sliding window-based data stream mining, a data structure is needed to address

two main issues. First, it is not possible to re-construct a tree when a new transaction

102

Figure 4.3: An Example of HUSP-Tree for SW1 in Figure 4.1

arrives at or leaves from the window and the data structure should be able to update

itself efficiently. Hence, LQS-Tree is not applicable here since it is not able to update

the contents in the nodes when the window slides. Second, the size of the tree can

be huge since the number of possible patterns is exponential in the number of items in

the database. To avoid generating such a tree, we need to design strategies to prune

the tree so that only the nodes representing potential HUSPs (to be defined later) are

generated. These strategies will be presented later in this section. Moreover, we need

to store summarized information regarding potential HUSPs to prune the tree during

tree construction and updating, and also to compute the exact utility of potential HUSPs

during the HUSP mining phase. Hence, we design each non-root node of a HUSP-Tree

to have a field, called SeqUtilList, for storing the needed information about the sequence

103

represented by the node.

Definition 28 (Sequence Utility List) The sequence utility list (SeqUtilList) of a se-

quence α in sliding window SWi is a list of 3-value tuples, where each tuple 〈SID, TID,Util〉

represents an occurrence of α in the sequences of SWi and the utility of α with respect

to the occurrence. The SID in a tuple is the ID of a sequence in which α occurs, TID

is the ID of the last transaction in the occurrence of α, and Util is the utility of α with

respect to the occurrence. The tuples in a SeqUtilList are ranked first by SID and then

by TID. If multiple occurrences of α have the same SID and TID, only the tuple

with the highest Util value is kept in SeqUtilList. The SeqUtilList of α is denoted as

SeqUtilList(α).

For example, given sequence α = 〈{a}{c}〉 in Figure 4.1, since α has two oc-

currences in SW1, which are 〈T1, T2〉 and 〈T1, T4〉, the SeqUtilList of α in SW1 is

{〈S1, T2, (4 + 1)〉, 〈S1, T4, (4 + 3)〉} = {〈S1, T2, 5〉, 〈S1, T4, 7〉}.

4.3.1.3 Major Steps in HUSP-Tree Construction

When the first sliding window becomes full, HUSP-Tree is constructed recursively in a

top-down fashion using ItemUtilLists. The first level of the tree under the root is con-

structed by using the items in ItemUtilLists as nodes. The SeqUtilList of these nodes is

the ItemUtilLists of the items. Given a non-root node, its child nodes are generated using

I-Step and S-Step, which generate I-nodes and S-nodes respectively.

104

Given a nodeN representing sequence α, I-Step generates all the I-nodes ofN (Def-

inition 26). We define I-Set of α as the set of items occurring in the sliding window (i.e.,

in ItemUtilLists) that are ranked alphabetically after the last item in α. In I-Step, given

an item I in the I-Set of α, for each tuple Tp = 〈s, t, u〉 in SeqUtilList(α), if there is

a tuple Tp′ = 〈s′, t′, u′〉 in ItemUtilLists(I) such that s = s′ and t = t′, then add a

new tuple 〈s, t, (u+u′)〉 to SeqUtilList(β), where β = α⊕ I , and SeqUtilList(β) was

initialized to empty before the I-Step. An I-node representing β is added as a child node

of N if SeqUtilList(β) is not empty.

For example, if α = 〈{a}〉 and I = b. To construct SeqUtilList of β = α⊕I = 〈{ab}〉,

we find the tuples for common transactions from SeqUtilList(〈{a}〉) = {〈S1, T1, 4〉,

〈S2, T5, 8〉} and ItemUtilLists(b) = {〈S1, T1, 9〉, 〈S1, T2, 3〉, 〈S2, T3, 12〉, 〈S2, T5, 15〉},

which are the ones containing 〈S1, T1〉 and 〈S2, T5〉. Hence, SeqUtilList(〈{ab}〉) is

{〈S1, T1, (4 + 9)〉, 〈S2, T5, (8 + 15)〉} = {〈S1, T1, 13〉, 〈S2, T5, 23〉}.

S-Step generates all the S-nodes for a non-root node. Given a node N for sequence

α, the S-Set of α contains all the items that occur in the sliding window. The S-Step

checks each item I in the S-Set to generate the S-nodes of N as follows. Let β be

α ⊗ I (i.e., a sequence by adding itemset {I} to the end of α). First, SeqUtilList(β) is

initialized to empty. For each tuple Tp = 〈s, t, u〉 in SeqUtilList(α), if there is a tuple

Tp′ = 〈s′, t′, u′〉 in ItemUtilLists(I) such that s = s′ and t < t′ (i.e., t′ occurs after t),

then a new tuple 〈s, t′, (u + u′)〉 is added to SeqUtilList(β). If SeqUtilList(β) is not

105

S1
S2

T1
T5

4

8

{a}

S1
S1
S2
S2

T1
T2
T3
T5

9

3

12

15

{b}
S1
S2

T1
T5

13

23

{ab}

S1
S1

T2
T3

4

4

{d}

S1
S1

T2
T3

17

17

{ab}{d}

a b

 ! " #$%

Figure 4.4: I-Step and S-Step to construct SeqUtilLists of the sequences 〈{ab}〉 and

〈{ab}{d}〉.

empty, an S-node is created under the node N to represent β.

For example, if α = 〈{ab}〉 and I = d. To construct SeqUtilList of β = α ⊗ I =

〈{ab}{d}〉, we need to find the tuples that satisfy the above conditions from SeqUtilList(〈

{ab}〉) = {〈S1, T1, 13〉, 〈S2, T5, 23〉} and ItemUtilLists(d) = {〈S1, T2, 4〉, 〈S1, T3, 4〉}.

The tuple 〈S1, T1, 13〉 in SeqUtilList(〈{ab}〉) and two tuples 〈S1, T2, 4〉 and 〈S1, T3, 4〉

in ItemUtilLists(d) satisfy the conditions. Hence, SeqUtilList(〈{ab}{d}〉) is {〈S1, T2, (13+

4)〉, 〈S1, T3, (13 + 4)〉} = {〈S1, T2, 17〉, 〈S1, T3, 17〉}.

Figure 4.4 shows the details of I-Step and S-Step to construct SeqUtilLists of 〈{ab}〉

and 〈{ab}{d}〉.

A complete description of the tree construction process will be given below after our

pruning strategies are presented.

106

4.3.1.4 Pruning Strategies

In HUSP mining, the downward closure property does not hold for the sequence utility.

Hence, the search space cannot be pruned as it is done in traditional sequential pattern

mining. To effectively prune the search space, the concept of Sequence-Weighted Utility

(SWU) was proposed in [4] to serve as an over-estimate of the true utility of a sequence,

which has the downward closure property. Below we integrate SWU into our proposed

framework. This model is called Transaction based Sequence-Weighted Utility (TSWU)

and we prove that TSWU has downward closure property.

Definition 29 The Transaction based Sequence-Weighted Utility (TSWU) of a sequence

α in the i-th transaction-sensitive window SWi, denoted as TSWU(α, SWi), is defined

as the sum of the utilities of all the transactions in all the sequences containing α in SWi:

TSWU(α, SWi) =
∑

S∈SWi∧α�S

∑
T∈S

TU(T)

where TU(T) is the utility of transaction T , and α � S means α is a subsequence of S.

For example, in SW1 in Figure 4.1, there are two sequences S1 and S2 contain

the sequence 〈{b}{c}〉. The TSWU of 〈{b}{c}〉 in SW1 is TSWU(〈{b}{c}〉, SWi)=

(15+8+7) + (12+24) = 66.

Since it uses the utilities of all the transactions of all the sequences containing α in

SWi, SWU of sequence α is an over-estimate of the utility of α (i.e., Definition 24).

107

That is, SWU(α, SWi) ≥ su(α, SWi). The theorem below states that TSWU has the

downward closure property over a sliding window.

Theorem 3 Given a sliding window SWi and two sequences α and β such that α � β,

TSWU(α, SWi) ≥ TSWU(β, SWi).

Proof

Let DSα be the set of sequences containing α in SWi and DSβ be the set of sequences

containing β in SWi. Since α � β, β cannot be present in any sequence where α does

not exist. Therefore, DSβ ⊆ DSα. Thus, according to Definition 29 TSWU(α, SWi) ≥

TSWU(β, SWi).

2

Since TSWU has the downward closure property, we can use it to prune the HUSP-

Tree.

Pruning Strategy 1 (Pruning by TSWU): Let α be the sequence represented by a

nodeN in the HUSP-Tree and δ be the minimum utility threshold. If TSWU(α, SWi) <

δ, there is no need to expand node N . This is because the sequence β represented by a

child node is always a super-sequence of the sequence represented by the parent node.

Hence su(β, SWi) ≤ TSWU(β, SWi) ≤ TSWU(α, SWi) < δ, meaning β cannot be

a HUSP.

Since TSWU uses the utilities of all the transactions of all the sequences containing

α, it overestimates the utility of a sequence too loosely. Below we propose another

108

over-estimate of the utility of a sequence, called Sequence-Suffix Utility (SFU), and then

develop a new pruning strategy based on SFU.

Definition 30 (First occurrence of sequence α in sequence Sr) Let õ = 〈Te1 , Te2 , ..., TeZ 〉

be an occurrence of a sequence α in the sequence Sr. õ is called the first occurrence of

α in Sr if the last transaction in õ (i.e., TeZ) occurs before the last transaction of all

occurrences in OccSet(α, Sr).

For example, there are two occurrences of {a}{c} in S1 in SW1 in Figure 4.1:

〈T1, T2〉 and 〈T1, T4〉. 〈T1, T2〉 is the first occurrence because T2 occurs earlier than T4.

Definition 31 (Suffix of a sequence Sr w.r.t. a sequence α) Given sequence õ =

〈Te1 , Te2 , ..., TeZ 〉 as the first occurrence of α in Sr. The suffix of Sr w.r.t. α (denoted

as suffix(Sr, α)) is the list of transactions in Sr after the last transaction in õ (i.e., after

TeZ).

Definition 32 (Sequence-Suffix utility of sequence α in sequence Sr) Given sequence

α � Sr, the sequence-suffix utility of α in Sr is defined as follows:

SFU(α, Sr) = su(α, Sr) +
∑

T∈suffix(Sr,α)

TU(T)

where TU(T) is the utility of transaction T .

In other words, the sequence-suffix utility of a sequence in Sr is the utility of α in Sr

plus the sum of the utilities of the transactions in the suffix of Sr with respect to α.

109

Note that for any non-root node N in the HUSP-Tree, SFU(α, Sr) can be com-

puted easily using the information in the SeqUtilList of N. According to Definition 23,

su(α, Sr) = max
õ∈OccSet(α,Sr)

{su(α, õ)} which can be obtained using the highest Util value

among all the tuples with Sr as its SID. The TID field of the first tuple stores the TID

of the last transaction in α’s first occurrences in Sr. With this TID value, we can eas-

ily get the TIDs of all the transactions in suffix(Sr, α), and obtain their TU values

(which were pre-computed and stored when a transaction was scanned to build ItemU-

tilLists). For example, the sequence-suffix utility of α = 〈{a}{c}〉 in S1 in Figure

4.1 is calculated as follow. According to SeqUtilList(α) = {〈S1, T2, 5〉, 〈S1, T4, 7〉},

su(α, S1) = max(5, 7) = 7 and suffix(S1, α) = {T4}. Hence, SFU(α, S1) =

7 + TU(T4) = 7 + 7 = 14.

Definition 33 The SFU of a sequence α in the i-th window SWi, denoted as SFU(α, SWi),

is defined as follows: SFU(α, SWi) =
∑

S∈SWi

SFU(α, S).

Property 1 The sequence-suffix utility value of α in a sliding window SWi is an upper

bound of the true utility of α in SWi. That is, su(α, SWi) ≤ SFU(α, SWi).

The following theorem states that SFU is an upper bound on the utility of pattern β

and any pattern prefixed with β where β is produced by S-Step from α.

Theorem 4 Given pattern α and sliding window SWi and item I , SFU(α, SWi) is an

upper bound on:

110

(A) the utility of pattern β = α⊗ I . That is, su(β, SWi) ≤ SFU(α, SWi).

(B) the utility of any β′s offspring θ (i.e., any sequence prefixed with β). That is,

su(θ, SWi) ≤ SFU(α, SWi).

Proof

Let β = α⊗I and S ∈ SWi. According to Definition 23, the utility of β can be rewritten

as:

su(β, S) = max
õ∈OccSet(β,S)

{su(α, õ) + u(I, õ)}

Assume that I occurs in transaction Ti ∈ ö where ö is the occurrence with the maxi-

mum utility of β. We have su(β, S) ≤ max
õ∈OccSet(β,S)

{su(α, õ) + TU(Ti)}.

Since all occurrences of I are in suffix(S, α), TU(Ti) ≤
∑

T∈suffix(S,α)
TU(T).

Therefore:

su(β, S) ≤ max
õ∈OccSet(β,S)

{su(α, õ) +
∑

T∈suffix(S,α)
TU(T)}

The second part is independent of õ. Thus,

su(β, S) ≤ max
õ∈OccSet(β,S)

{su(α, õ)}+
∑

T∈suffix(S,α)
TU(T) = SFU(α, S).

Below we prove that utility of any offspring of β is less than SFU(α, S). Assume

that θ = α ⊗ I � ... � ... � IS where IS is the last itemset in θ and � ∈ {⊗,⊕}. Let

õ1 be the occurrence with maximum utility of θ in S. The utility of θ can be rewritten as

follows:

su(θ, õ1) = su(α, õ1) +
∑

i∈θ∧i∈suffix(S,α)
u(i, õ1)

111

Note that all items in θ which are not in α occur in suffix(S, α). We know that

su(α, õ1) ≤ su(α, S). Hence:

su(θ, õ1) ≤ su(α, S) +
∑

i∈θ∧T∈õ1∧T∈suffix(S,α)
u(i, T)

Since the utility of each item in a transaction is no more than the utility of the trans-

action, su(θ, õ1) ≤ su(α, S) +
∑

i∈T∧T∈suffix(S,α)
TU(T) = SFU(α, S).

The conclusion can be easily extended from S to SWi.

2

Pruning Strategy 2 (Pruning by SFU): Let α be the sequence represented by a node

N in the HUSP-Tree and δ be the minimum utility threshold. If SFU(α, SWi) < δ, there

is no need to generate S-nodes from N. This is because the utility of α ⊗ I and any of

α⊗ I’s offspring is no more than SFU(α, SWi), which is less than δ,

The pruning using SFU becomes more effective than TSWU when the length of

the pattern increases. That is, it may prune more low utility patterns at each deeper level

of the HUSP-Tree. This is due to the fact that overestimation using SFU decreases as

the length of the pattern increases. In other words, given a sequence α, to extend it

using I-step or S-step and items in sequence S, the items are added from the end of first

occurrence of α in S. And those items in S within the first occurrence are unable to

form a new extension of α. However, for a sequence β formed by an itemset or sequence

extension, the utilities of those items are added to TSWU(β). For example in Table 4.1

SFU(〈{a}{b}{c}〉}, S1) = 10 + 14 = 24 and TSWU(〈{a}{b}{c}〉}, S1) = 15 + 8 +

112

7 + 14 = 44. In the evaluation section we will show the efficiency and effectiveness of

using SFU in comparison to use of TSWU for pruning the HUSP-Tree

4.3.1.5 HUSP-Tree Construction Algorithm

Using the proposed pruning strategies, our tree construction process will generate only

the nodes that represent potential HUSPs, defined as follows.

Definition 34 A sequence α is called potential high utility sequential pattern in slid-

ing window SWi iff:

• If the node for α is an I-node and TSWU(α, SWi) ≥ δ

• If the node for α is an S-node and SFU(α, SWi) ≥ δ

The complete tree construction process is as follows. We first generate the child

nodes of the root as described in Section 4.3.1.3. Then for each child node, the Tree-

Growth algorithm (see Algorithm 5) is called to generate its I-nodes and S-nodes using

the two pruning strategies and the I-Step and S-Step described in Section 4.3.1.3. Tree-

Growth is a recursive function and it generates all potential HUSPs in a depth-first man-

ner. Given the input node ND(α), it first checks whether TSWU(α) < δ. If yes, the

node is pruned. Otherwise, it generates the I-nodes from ND(α) using the I-Step (Lines

4-8) and recursively calls Algorithm 2 with each I-node. Then, the algorithm checks

113

whether SFU(α) satisfies the threshold δ. If yes, it generates the S-nodes of ND(α)

using the S-Step (Lines 11-15) and recursively calls the Algorithm 2 with each S-node.

Algorithm 5 TreeGrowth - Part 1
Input: ND(α): node representing sequence α

Output: HUSP-Tree

1: if TSWU(α, SWi) < δ then

2: remove node ND(α)

3: else

4: ISet ← items in ItemUtilLists whose TSWU >= δ and whose id ranks lexicographi-

cally after the last item in the last itemset of α

5: for each item γ ∈ ISet do

6: Compute SeqUtilList(α⊕ γ) using the I-Step

7: if SeqUtilList(α⊕ γ) is not empty then

8: Create I-node ND(α⊕ γ) as child of ND(α)

9: Call Algorithm 5 (ND(α⊕ γ))

10: end if

11: end for

114

TreeGrowth - Part 2
12: if SFU(α, SWi) ≥ δ then

13: SSet← items in ItemUtilLists whose TSWU >= δ

14: for each item γ ∈ SSet do

15: Compute SeqUtilList(α⊗ γ) using the S-Step

16: if SeqUtilList(α⊗ γ) is not empty then

17: Create S-node ND(α⊗ γ) as child of ND(α)

18: Call Algorithm 5 (ND(α⊗ γ))

19: end if

20: end for

21: end if

22: end if

The average time complexity for building HUSP-Tree with the first sliding window

is O(NumPot × NumOccavg), where NumPot is the number of potential high utility

patterns and NumOccavg is the average number of occurrences of a potential high utility

pattern. Note that NumPot depends on threshold δ.

4.3.2 Update Phase

When a new transaction Suv arrives, if the current window SWi is full, the oldest transac-

tion Sdc expires. In this scenario, the algorithm needs to incrementally update ItemUtil-

Lists and HUSP-Tree to find the HUSPs in SWi+1. Below, we first perform step-by-step

analysis and then develop the algorithm for the update phase.

115

Let H+ be the complete set of HUSPs in the current sliding window SWi, H− be the

complete set of HUSPs after a transaction removed from or added to SWi,D+ represents

the window after transaction Suv is added to SWi, D− represents the window after Sdc is

removed from SWi and S be a pattern found in SWi. The following lemmas state how

utility of S changes when a transaction is added to or removed from the window.

Lemma 4 Given non-empty sequence S, after Suv is added to the window, one of the

following cases is held:

(1) If S � Sv and S ∈ H+, then S ∈ H− and su(S,D+) ≥ su(S, SWi).

(2) If S � Sv and S 6∈ H+, then su(S,D+) ≥ su(S, SWi).

(3) If S 6� Sv and S ∈ H+, then S ∈ H− and su(S,D+) = su(S, SWi).

(4) If S 6� Sv and S 6∈ H+, then S 6∈ H− and su(S,D+) = su(S, SWi).

Proof Let S ′v be sequence Sv before transaction Suv is appended to and OSetSWi
be the

set of occurrences of S in SWi and OSetSWi+1
be the set of occurrences of S in SWi+1.

Below, we prove each case separately:

(1) Since S ∈ H , according to Definition 25, su(S, SWi) ≥ δ. Also, S � Sv hence

OSetSWi
⊆ OSetSWi+1

. In this case there is o′ ∈ OSetSWi+1
where o′ 6∈ OSetSWi

. If

su(S, o′) > su(S, S ′v) then su(S, SWi+1) > su(S, SWi). Otherwise, su(S, SWi+1) =

su(S, SWi). In both cases, since su(S, SWi) ≥ δ then su(S, SWi+1) ≥ δ and S ∈ H+.

(2) Since S � Sv henceOSetSWi
⊆ OSetSWi+1

. In this case there is o′ ∈ OSetSWi+1

where o′ 6∈ OSetSWi
. Also, S 6∈ H , according to Definition 25, su(S, SWi) < δ. If

116

su(S, o′) > su(S, S ′v) then su(S, SWi+1) > su(S, SWi). Otherwise, su(S, SWi+1) =

su(S, SWi).

(3) Since S 6� Sv hence OSetSWi
= OSetSWi+1

. In this case su(S,OSetSWi
) =

su(S,OSetSWi+1
) . Also, S ∈ H , according to Definition 25, su(S, SWi) ≥ δ. Since

the utility of S is the same, S ∈ H+.

(4) Since S 6� Sv hence OSetSWi
= OSetSWi+1

. In this case su(S,OSetSWi
) =

su(S,OSetSWi+1
) . Also, S 6∈ H , according to Definition 25, su(S, SWi) < δ. Conse-

quently, su(S, SWi+1) < δ so S 6∈ H+.

Lemma 5 Given sequence S, sequence S ′c before Sdc is removed from Sc, one of the

following cases is held:

(1) If S � S ′c and S ∈ H+, then su(S,D−) ≤ su(S, SWi).

(2) If S � S ′c and S 6∈ H+, then S 6∈ H− su(S,D−) ≤ su(S, SWi).

(3) If S 6� S ′c and S ∈ H+, then S ∈ H− and su(S,D−) = su(S, SWi).

(4) If S 6� S ′c and S 6∈ H+, then S 6∈ H− and su(S,D−) = su(S, SWi).

Proof Let OSetSWi
be the set of occurrences of S in SWi and OSetSWi+1

be the set of

occurrences of S in SWi+1:

(1) Since S ∈ H , according to Definition 25, su(S, SWi) ≥ δ. Also, since S � S ′c

and Sc � S ′c, hence OSetSWi+1
⊆ OSetSWi

. In this case there is o′ ∈ OSetSWi
where

o′ 6∈ OSetSWi+1
. If su(S, o′) > su(S, Sc) then su(S, SWi+1) < su(S, SW). Otherwise,

su(S, SWi+1) = su(S, SWi).

117

27

Deletion
Operation

ItemUtilList Update

Incrementally update
TSWU(), SFU()

Addition
Operation

Incrementally update
TSWU()

Add all the promising
items in Su to pSet

Update first level of
HUSP-Tree using PSet

Perform
HUSP-Tree Update

Figure 4.5: An overview of ItemUtilLists update step

(2) Since S � S ′c and Sc � S ′c, hence OSetSWi+1
⊆ OSetSWi

. In this case there

is o′ ∈ OSetSWi
where o′ 6∈ OSetSWi+1

. Also, S 6∈ H , according to Definition 25,

su(S, SWi) < δ. If su(S, o′) > su(S, Sc) then su(S, SWi+1) < su(S, SWi). Otherwise,

su(S, SWi+1) = su(S, SWi). In both cases, S 6∈ H+.

(3) Since S 6� S ′c hence OSetSWi+1
= OSetSWi

. In this case su(S,OSetSWi
) =

su(S,OSetSWi+1
) . Also, S ∈ H , according to Definition 25, su(S, SWi) ≥ δ. Since

the utility of S is the same, S ∈ H+.

(4) Since S 6� S ′c hence OSetSWi
= OSetSWi+1

. In this case su(S,OSetSWi
) =

su(S,OSetSWi+1
) . Also, S 6∈ H , according to Definition 25, su(S, SWi) < δ. Conse-

quently, su(S, SWi+1) < δ so S 6∈ H+.

Below we propose an efficient approach to update ItemUtilLists and HUSP-Tree

based on Lemma 4 and Lemma 5.

118

Figure 4.5 shows the update ItemUtilLists step. For each item β in the oldest trans-

action Sdc , the algorithm removes each tuple Tp whose SID and TID are c and d respec-

tively from ItemUtilLists(β) (i.e., Deletion operation in Figure 4.5). Then, TSWU(β)

and SFU(β) are updated accordingly. The next operation is addition operation, which

is performed as follows. For each item γ in the new transaction Suv , the algorithm inserts

new tuple 〈Sv, Tu, u(γ, Suv)〉 to ItemUtilLists(γ). Once, TSWU(γ) is updated, all the

promising items (i.e., the items whose TSWU is no less than the utility threshold) are

collected into an ordered set pSet. For each item γ in pSet, ifND(γ) is already under the

root and its SeqUtilList has not been updated, the algorithm replaces the old SeqUtilList

by the updated ItemUtilLists of item γ. If ND(γ) has not been created under the root,

the algorithm creates it under the root. All the unpromising nodes (i.e., the nodes whose

TSWU is less than the utility threshold) in the first level of HUSP-tree are removed from

the tree.

After ItemUtilLists update step, HUSP-Tree update step is invoked. Figure 4.6 shows

an overview of HUSP-Tree update step. For each child node ND(α) under the root, the

algorithm calls the procedure UpdateTree(ND(α)) to update the sub-tree of ND(α),

which is performed as follows. For each child node ND(β) where β is α ⊕ γ or α ⊗ γ

and γ ∈ pSet, the algorithm checks whether ND(β) is already in the current HUSP-

Tree. If ND(β) is not in the HUSP-Tree, the algorithm constructs β’s SeqUtilList using

I-Step or S-Step and creates ND(β) under ND(α). If ND(β) is already in the HUSP-

119

if Sd or Su

Is ND() already
in HUSP-Tree?

Call
UpdatTree(ND())

Construct ND() using
I-Step & S-Step

For each item under root

No

Update tuples in
SeqUtilList()

Yes

Calculate
SFU(), TSWU()

If TSWU() <
remove ND()

If is S-node and SFU() <
remove ND() and its offspring

Call
UpdateTree(ND())

Incrementally update
SFU(), TSWU()

For each I-node or S-node of

Figure 4.6: An overview of HUSP-Tree update step

Tree, the algorithm incrementally updates the tuples in SeqUtilList(β) related to the new

and oldest transactions as follows. Given the oldest transaction Sdc and the newest trans-

action Suv , according to Lemma 4 and Lemma 5, the SeqUtilList(β) should be up-

dated if it has a tuple whose SID is either Sc or Sv. These tuples (not all the tuples in

SeqUtilList(β)) are reconstructed by applying I-Step (if β is α ⊕ γ) or S-Step (if β is

α ⊗ γ) on SeqUtilList(α) and ItemUtilLists(γ). Then the algorithm updates TSWU

of β based on the updated SeqUtilList(β). If TSWU of β is less than the utility thresh-

old, the algorithm removes ND(β) and the sub-tree under ND(β). Otherwise, if β is

α ⊕ γ, the algorithm calls the procedure UpdateTree(ND(β)) to update the sub-tree of

ND(β). If β is α ⊗ γ, the SFU of β is updated using the updated SeqUtilList(β). If

120

S2
S3

T5
T6

8
4

{a}
S1
S2
S2
S3

T2
T3
T5
T6

3
12
15
15

{b}
S1
S1
S2

T2
T4
T5

1
3
1

{c}
S1
S1

T2
T3

4
4

{d}

SIDs TIDs Util

S3 T6 6
{e}

S2
S3

T5
T6

23
19

{ab}

S1
S2

T1
T5

13
23

{ab}

Since the outdated and new transactions do not belong to S2

S2 T5 23

{ab}Update
regarding S1

Add tuple
for S3

(i)

(ii)

Figure 4.7: The updated (i) ItemUtilLists and (ii) SeqUtilList({ab}) after removing

T1 from and adding T6 to the window

SFU of β is less than the threshold, node ND(β) and its subtree are removed from the

tree; otherwise, it recursively calls UpdateTree(ND(β)).

For example, Figure 4.7 shows the updated ItemUtilLists and SeqUtilList({ab})

when T1 is removed from and T6 is added to the window. Note that we do not re-

construct the whole SeqUtilList({ab}). Since T1 belongs to S1, we only need to up-

date/remove the first tuple and also add a new tuple for the new sequence S3. The other

tuples are not updated. In this figure, since {ab} is not in S1 any more but exists in S3,

SeqUtilList({ab}) is updated as SeqUtilList({ab}) = {〈S2, T5, 23〉, 〈S3, T6, 19〉}.

Since a tuple in ItemUtilLists can be accessed directly and the number of tuples

needed to be updated in ItemUtilLists isLoldest+Lnew, whereLoldest is the length of the

121

transaction to be removed and Lnew is the length of the new transaction added to the slid-

ing window, the average time complexity for updating ItemUtilLists isO(Lavg), where

Lavg is the average length of transactions in the data stream. The average time complex-

ity for updating HUSP-Tree is O(NumPot ×NumOccAffavg) where NumPot is the

number of potential high utility patterns in the new sliding window, andNumOccAffavg

is the average number of occurrences of a potential high utility pattern in the sequences

affected by the removal of the oldest transaction and the addition of the new transaction.

4.3.3 HUSP Mining Phase

HUSP mining phase is straight forward. After performing the update phase, HUSP-Tree

maintains the information of the potential HUSPs in the current window. When users

request the mining results, the algorithm performs the mining phase by traversing the

HUSP-Tree once. For each traversed node ND(α), the algorithm uses the SeqUtilList of

ND(α) to calculate the utility of α in the current window. If the utility of α is no less than

the minimum utility threshold, the algorithm outputs α as a HUSP. After traversing the

tree, all the HUSPs are outputted. Note that this HUSP mining phase can be combined

with the update phase. During HUSP-Tree update, the utility of the sequence represented

by each node can be computed. If the utility is no less than the threshold, the sequence

can be outputted as a HUSP during the update phase.

122

Table 4.2: Parameters of IBM data generator

D Number of sequences

C Average number of transactions in a sequence

T Average number of items in a transaction

S Average number of itemsets in a potential maximal sequential pattern

I Average number of items in an itemset of a potential maximal sequential pattern

N Number of distinct items

4.4 Experiments

In this section, we evaluate the performance of the proposed method. The experiments

were conducted on an Intel(R) Core(TM) i7 2.80 GHz computer with 8 GB of RAM.

Both synthetic and real datasets are used in the experiments. Two synthetic datasets

DS1:D10K-C10-T3-S4-I2-N10K and DS2:D100K-C8-T3-S4-I2-N1K were generated by

the IBM data generator [2]. The definition of parameters used by the IBM data generator

are shown in the Table 4.2.

Chainstore is a real-life dataset acquired from [51], which already contains internal

and external utilities. In order to use this dataset as a sequential dataset, we grouped

transactions in different sizes such that each group represents a sequence of transactions.

Another real dataset BMS is obtained from SPMF [25] which contains 3340 distinct items

and consists of 77,512 sequences of clickstream data from an e-retailer. We follow the

123

Table 4.3: Details of parameter setting

Dataset #Seq #Trans # Items Window Size (w)

DS1 10K 100K 1000 50K

BMS 77K 120K 3340 60K

DS2 100K 800K 1000 400K

ChainStore 400K 1000K 46,086 500K

previous study [4] to generate internal and external utility of items. The external utility

of each item is generated between 1 and 100 by using a log-normal distribution and the

internal utilities of items in a transaction are randomly generated between 1 and 100.

Table 4.3 shows characteristics of the datasets and parameter settings in the experi-

ments. The Window Size column of Table 4.3 shows the default window size for each

dataset. We will later change the window size to show the performance of the algorithms

under different window sizes.

We use the following measures to evaluate the performance of the algorithms:

• Number of potential high utility sequential patterns (#PHUSP): the total number

of potential high utility sequential patterns produced by the algorithm in all sliding

windows.

• Total execution time (sec.): the total execution time of the algorithms.

124

• Sliding Time (sec.): the average execution time of the algorithms to update data

structures when a transaction arrives to or leaves from the window.

• Memory Usage (MB): the average memory consumption per window.

4.4.1 Methods in Comparison

To the best of our knowledge, no study has been proposed for mining high utility se-

quential patterns over data streams. Hence, we compare our method with USpan [66],

which is the current best algorithm for mining high utility sequential patterns in static

databases. Since USpan is not applicable to data streams, we design two approaches to

apply USpan over data stream: (1) We run USpan on each sliding window individually,

and collect the aggregated results for the performance evaluation. We call this approach

USpan Trans since it is ran when the window slides. (2) The datasets used in the experi-

ments are quite large and the window slides a large number of times, so the first approach

runs very slow. To reduce the execution time of USpan, we modified USpan so that we

run it per set of transactions (i.e., per batch). Once the number of incoming transactions

equals to a given input parameter, USpan is ran to find HUSPs. This approach is called

USpan Batch. We set the size of each batch to 0.01% of whole transactions in dataset. In

the next section, we investigate the efficiency of the proposed method and two versions

of USpan in terms of update processing.

Moreover, in order to see the effect of using SFU to prune the tree in comparison

125

0

10000

20000

30000

40000

50000

60000

0.06 0.07 0.08 0.09 0.1

HUSP-Stream USpan_Batch
USpan_Trans

0

500

1000

1500

2000

2500

0.06 0.07 0.08 0.09 0.1

HUSP-Stream USpan_Batch
USpan_Trans

Minimum utility threshold (%)

Ex
ec

ut
io

n
tim

e
(s

ec
.)

0

500

1000

1500

2000

2500

3000

3500

4000

0.02 0.03 0.04 0.05 0.06

HUSP-Stream USpan_Batch
USpan_Trans

Minimum utility threshold (%)
Ex

ec
ut

io
n

tim
e

(s
ec

.)
Minimum utility threshold (%)

Ex
ec

ut
io

n
tim

e
(s

ec
.)

0.01

0.1

1

10

100

0.02 0.03 0.04 0.05 0.06

HUSP-Stream USpan_Batch
USpan_Trans

0.1

1

10

100

1000

0.06 0.07 0.08 0.09 0.1

HUSP-Stream USpan_Batch
USpan_Trans

0.01

0.1

1

10

100

0.06 0.07 0.08 0.09 0.1

HUSP-Stream USpan_Batch
USpan_Trans

Minimum utility threshold (%)

Sl
id

in
g

tim
e

(s
ec

.)

Minimum utility threshold (%)

Sl
id

in
g

tim
e

(s
ec

.)

Minimum utility threshold (%)
Sl

id
in

g
tim

e
(s

ec
.)

(a) DS1 (b) BMS (c) DS2

(d) DS1 (e) BMS (f) DS2

Figure 4.8: Execution time and sliding time (shown in logarithmic scale) over consecu-

tive windows

to the other pruning strategy, TSWU , we implemented a basic version of HUSP-Stream

in the experiments, called HUSPTSWU which applies the TSWU pruning strategy for

pruning I-nodes and S-nodes.

4.4.2 Performance evaluation for sliding two hundred consecutive windows

In this section we investigate the efficiency of update processing of the methods. Since

USpan is not designed for data stream environment, it is not able to return results over

126

all the sliding windows in the datasets due to memory problem and long time processing.

In order to compare, after the first window is processed, we only added a small portion

of transactions (i.e. 200 transactions) to show the performance of the methods. Figure

4.8(a), Figure 4.8(b) and Figure 4.8(c) show the execution run time for the three methods

on DS1, BMS and DS2 respectively. USpan Trans is the slowest method because it is ran

per transaction. USpan Batch works more efficient than USpan Trans, since it updates

data structures and results per set of transactions. However, HUSP-Stream outperforms

both methods significantly. For example in DS2, HUSP-Stream is 20 times faster than

USpan Trans and around 8 times faster than USpan Batch. We will later show the results

of execution time over the whole datasets.

The second measure is average window sliding time. Figure 4.8(d), Figure 4.8(e)

and Figure 4.8(f) show the results on DS1, BMS and DS2 respectively. For the dataset

DS1, the average window sliding time of HUSP-Stream is more than 20 times faster than

that of USpan Trans and 10 times faster than that of USpan Batch. For BMS, this ratio

is 40 times and for the largest dataset DS2, HUSP-Stream is 500 times faster than the

USpan Trans. As the figures presented, USpan Trans is very inefficient even for a small

number of updates. Hereafter, we do not report USpan Trans as a comparison method

since the datasets are really large and it can not return results due to memory problem

and long time processing.

127

(b) BMS

Minimum utility threshold (%)

#P
H

U
SP

0K

500K

1,000K

1,500K

2,000K

0.
06

0.
07

0.
08

0.
09 0.

1

Minimum utility threshold (%)

#P
H

U
SP

0K

1,000K

2,000K

3,000K

0.
02

0.
03

0.
04

0.
05

0.
06

(d) ChainStore(c) DS2

HUSP-Stream USpan_Batch

0K

2,000K

4,000K

6,000K

0.
06

0.
07

0.
08

0.
09 0.

1

#P
H

U
SP

Minimum utility threshold (%)

10K

100K

1,000K

10,000K
0.

06

0.
07

0.
08

0.
09 0.

1

Minimum utility threshold (%)

#P
H

U
SP

(a) DS1

Figure 4.9: Number of PHUSPs on different datasets

4.4.3 Number of Potential HUSPs

In this section, we evaluate the algorithms in terms of the number of potential high utility

sequential patterns (PHUSPs) produced by the algorithms. Figure 4.9 shows the results

under different utility thresholds. For consistency across datasets, the minimum threshold

is shown as a percentage of the total utility of all the sequences in a dataset. As shown

in Figure 4.9, HUSP-Stream produces much fewer PHUSPs than USpan Batch. For

example, on DS1, when the threshold is 0.06%, the number of PHUSPs generated by

USpan Batch is 10 times more than that generated by HUSP-Stream. On the larger

128

datasets, i.e., BMS, DS2 and ChainStore, the number of PHUSPs grows quickly when

the threshold decreases. For example, on BMS, when the threshold is 0.02%, the number

of PHUSPs produced by USpan Batch is 14 times larger than that generated by HUSP-

Stream. The main reason why our approach produces much fewer candidates is that

HUSP-Stream incrementally updates HUSP-Tree by reusing the previous mining results.

Hence it avoids regenerating a large number of intermediate PHUSPs during the mining

process. Another reason is that our pruning strategies are more effective than the ones

used in USpan Batch.

4.4.4 Time Efficiency of HUSP-Stream

Figure 4.10(a), Figure 4.10(b), Figure 4.10(c) and Figure 4.10(d) show the total execu-

tion time of the algorithms on each of the four datasets with different minimum utility

threshold. As it is shown in the figure, HUSP-Stream is much faster than USpan Batch.

For example, HUSP-Stream runs 5 times faster on the BMS dataset and more than 10

times faster than USpan Batch on DS2. A reason is that USpan Batch re-run the whole

mining process, while HUSP-Stream performs incremental mining on each new win-

dow by efficiently updating its data structures. For example, the average execution

time of HUSP-Stream on DS1 is 350 seconds, while that of USpan Batch on the same

dataset is close to 1,200 seconds. On the BMS dataset, HUSP-Stream runs faster than

USpan Batch by 5 times. Besides, it can be observed that HUSP-Stream is very scalable.

129

0K

10K

20K

0K

5K

10K

15K

20K

0.06 0.07 0.08 0.09 0.1

Run Time

Minimum utility threshold (%)

0
500

1000
1500
2000
2500
3000

0.02 0.03 0.04 0.05 0.06Ex
ec

ut
io

n
tim

e
(s

ec
.)

Minimum utility threshold (%)

Ex
ec

ut
io

n
tim

e
(s

ec
.)

Minimum utility threshold (%)

Ex
ec

ut
io

n
tim

e
(s

ec
.)

(a) DS1

(d) ChainStore(c) DS2

HUSP-Stream USpan_Batch

0
200
400
600
800

1000
1200
1400

0.06 0.07 0.08 0.09 0.1

(b) BMS

Minimum utility threshold (%)

Ex
ec

ut
io

n
tim

e
(s

ec
.)

Figure 4.10: Execution time and sliding time (shown in logarithmic scale) on different

datasets

Even under the low threshold, it can perform well. From this experiment, the less number

of PHUSPs of HUSP-Stream is another reason that the run time of HUSP-Stream is less

than that of USpan Batch. Also maintenance performance of data structures used in the

algorithm is the other reason that HUSP-Stream always outperforms USpan Batch.

Then we evaluate the average window sliding time of the algorithms under different

minimum utility thresholds. Figure 4.11 shows the average window sliding time of the

algorithms on DS1, BMS, DS2 and ChainStore. For the datasets DS1 and BMS, the

average window sliding time of our algorithm is below 1 second, which is 10 times

130

Run Time

Minimum utility threshold (%)

0.01
0.1

1
10

100

0.02 0.03 0.04 0.05 0.06

0.1
1

10
100

1000

0.06 0.07 0.08 0.09 0.1
0.1

1
10

100
1000

0.02 0.03 0.04 0.05 0.06Sl
id

in
g

tim
e

(s
ec

.)

Minimum utility threshold (%) Minimum utility threshold (%)

(a) DS1 (b) BMS

(d) ChainStore(c) DS2

Sl
id

in
g

tim
e

(s
ec

.)

0.01
0.1

1
10

100

0.06 0.07 0.08 0.09 0.1
Minimum utility threshold (%)

Sl
id

in
g

tim
e

(s
ec

.)

Sl
id

in
g

tim
e

(s
ec

.)

HUSP-Stream USpan_Batch

Figure 4.11: Sliding time on different datasets

faster than that of USpan Batch. For the largest dataset DS2, when the threshold is set to

0.06%, HUSP-Stream only spends 2.2 second, while USpan Batch sends more that 160

seconds. In this case, HUSP-Stream is 100 times faster than the USpan Batch. For the

largest dataset ChainStore, when the threshold is set to 0.04%, HUSP-Stream only spends

1.1 second, while USpan Batch sends more that 260 seconds. In this case, HUSP-Stream

is 200 times faster than the USpan Batch.

131

0
1000
2000
3000
4000

0.
06

0.
07

0.
08

0.
09 0.
1 0

2000
4000
6000
8000

10000

0.
02

0.
03

0.
04

0.
05

0.
06

Minimum utility threshold (%)

M
em

or
y

U
sa

ge
 (M

B
)

0

1000

2000

3000

0.
02

0.
03

0.
04

0.
05

0.
06

Minimum utility threshold (%) Minimum utility threshold (%)

M
em

or
y

U
sa

ge
 (M

B
)

M
em

or
y

U
sa

ge
 (M

B
)

(b) BMS

(d) ChainStore(c) DS2

HUSP-Stream USpan_Batch

0
100
200
300
400

0.
06

0.
07

0.
08

0.
09 0.

1
Minimum utility threshold (%)

M
em

or
y

U
sa

ge
 (M

B
)

(a) DS1

Figure 4.12: Memory Usage of the algorithms

4.4.5 Memory Usage

We also evaluate the memory usage of the algorithms under different utility thresholds.

The results are shown in Figure 4.12, which indicate our approach consumes less memory

than USpan Batch. For example, for the dataset DS2, when the threshold is 0.06%, the

memory consumption of HUSP-Stream is around 300 MB, while that of USpan Batch

is over 4,000 MB. A reason is that USpan Batch produces too many PHUSPs during the

mining process, which causes USpan Batch to have more tree nodes than HUSP-Stream.

132

0
5,000

10,000
15,000
20,000
25,000
30,000

0.
06

0.
07

0.
08

0.
09 0.

1

Ex
ec

ut
io

n
tim

e
(s

ec
.)

Ex
ec

ut
io

n
tim

e
(s

ec
.)

0
300
600
900

1,200

0.02 0.03 0.04 0.05 0.06

0
5,000

10,000
15,000
20,000
25,000
30,000

0.
02

0.
03

0.
04

0.
05

0.
06Ex

ec
ut

io
n

tim
e

(s
ec

.)

Minimum utility threshold (%)

Minimum utility threshold (%) Minimum utility threshold (%)

(BMS)

(ChainStore)(DS2)

HUSP-Stream HUSP-TSWU

Ex
ec

ut
io

n
tim

e
(s

ec
.)

0
100
200
300
400
500

0.06 0.07 0.08 0.09 0.1
Minimum utility threshold (%)

(DS1)

Figure 4.13: Impact of SFU on Run Time

4.4.6 Effectiveness of SFU Pruning

In this section, we evaluate the use of SFU (in comparison to the use of only TSWU) for

pruning the tree. To show effectiveness of the proposed pruning strategy, HUSP-Stream

is compared to its basic version, HUSP TSWU, which only applies the TSWU pruning

strategy for pruning I-nodes and S-nodes.

Figure 4.13, Figure 4.14 and Figure 4.15 illustrate the run time, the number of po-

tential HUSPs generated by the two methods, and their memory usage under different

133

0K

500K

1,000K

1,500K

0.
06

0.
07

0.
08

0.
09 0.

1

0K

500K

1,000K

0.
02

0.
03

0.
04

0.
05

0.
06

#P
H

U
SP

#P
H

U
SP

Minimum utility threshold (%)

Minimum utility threshold (%)

0K
500K

1,000K
1,500K
2,000K
2,500K
3,000K

0.
02

0.
03

0.
04

0.
05

0.
06

Minimum utility threshold (%)

#P
H

U
SP

(BMS)

(ChainStore)(DS2)

0K
100K
200K
300K
400K
500K

0.
06

0.
07

0.
08

0.
09 0.

1

#P
H

U
SP

Minimum utility threshold (%)

(DS1)

HUSP-Stream HUSP-TSWU

Figure 4.14: Impact of SFU on Number of PHUSPs

utility threshold values. These figures show that our new pruning strategy is more effec-

tive than using only TSWU in all three performance measures. Moreover, these figures

show that the differences between the two pruning methods in the number of PHUSPs,

run time and memory usage increase in general when the utility threshold decreases.

These results indicate that our proposed SFU is much more effective than TSWU in

pruning.

134

0
500

1,000
1,500
2,000

0.
06

0.
07

0.
08

0.
09 0.
1

0
250
500
750

1,000

0.
02

0.
03

0.
04

0.
05

0.
06

0
500

1,000
1,500
2,000

0.
02

0.
03

0.
04

0.
05

0.
06

M
em

or
y

U
sa

ge
 (M

B
)

Minimum utility threshold (%)

Minimum utility threshold (%) Minimum utility threshold (%)

M
em

or
y

U
sa

ge
 (M

B
)

M
em

or
y

U
sa

ge
 (M

B
)

(BMS)

(ChainStore)(DS2)

0

200

400

600
0.

06

0.
07

0.
08

0.
09 0.
1M
em

or
y

U
sa

ge
 (M

B
)

Minimum utility threshold (%)

(DS1)

HUSP-Stream HUSP-TSWU

Figure 4.15: Impact of SFU on Memory Usage.

4.4.7 Performance Evaluation with Window Size Variation

Below we evaluate the performance of the algorithms under different window sizes. In

this experiment, the minimum utility threshold is set to 0.09%, 0.03%,0.09%, 0.04%

for the datasets DS1, BMS, DS2 and ChainStore, respectively. The results are shown

in Figure 4.16. In Figure 4.16(a), each bar shows the memory consumption of HUSP-

Stream on a dataset under a window size. For example, the most left bar is the memory

consumption of HUSP-Stream on DS1 when the window size is set to 2,000 transactions.

135

1

10

100

1000

10000
D

S1
-2

k
D

S1
-4

k
D

S1
-6

k
D

S1
-8

k
B

M
S-

20
k

B
M

S-
40

k
B

M
S-

60
k

B
M

S-
80

k
D

S2
-3

00
k

D
S2

-4
00

k
D

S2
-5

00
k

D
S2

-6
00

k
C

ha
in

-4
00

K
C

ha
in

-6
00

K
C

ha
in

-8
00

K
C

ha
in

-

0

200

400

600

800

1000

D
S1

-2
k

D
S1

-4
k

D
S1

-6
k

D
S1

-8
k

B
M

S-
20

k
B

M
S-

40
k

B
M

S-
60

k
B

M
S-

80
k

D
S1

-3
00

k
D

S1
-4

00
k

D
S1

-5
00

k
D

S1
-6

00
k

C
ha

in
-4

00
K

C
ha

in
-6

00
K

C
ha

in
-8

00
K

C
ha

in
-1

00
0K

Dataset- size of window

M
em

or
y

U
sa

ge
 (M

B
)

R
un

 T
im

e
(S

ec
.)

Dataset- size of window

Figure 4.16: Evaluation of HUSP-Stream under different window sizes

From Figure 4.16(a), we can observe that the memory consumption of HUSP-Stream

increases very slowly with increasing window sizes. Figure 4.16(b) shows the execution

time of HUSP-Stream under different window sizes. We can see that HUSP-Stream is

also scalable in time with increasing window sizes.

4.4.8 Scalability

To further evaluate the scalability of HUSP-Stream, we generate a number of subsets of

the DS1, BMS, DS2 and ChainStore datasets. The size of a subset ranges from 50% to

100% transactions of the dataset it is generated from. Figure 4.17 illustrates how the

memory usage and run time of HUSP-Stream for producing HUSPs vary with different

dataset sizes. We observe that the run time increases (almost) linearly when the number

of transactions increases. This indicates that HUSP-Stream scales well with the size of

136

0
100
200
300
400
500

0.5 0.6 0.7 0.8 0.9 1
0

1000
2000
3000
4000
5000
6000
7000

0.5 0.6 0.7 0.8 0.9 1

DS1 BMS DS2 ChainStore

Proportion of Transactions

M
em

or
y

U
sa

ge
 (M

B
)

Proportion of Transactions
R

un
 T

im
e

(S
ec

.)

Figure 4.17: Scalability of HUSP-Stream on different datasets: (a) Memory Usage , (b)

Run Time

dataset.

4.5 Summary

In this chapter, we addressed main deficiencies and challenges of mining recent HUSPs

over data streams, by proposing a new framework for sliding window-based high util-

ity sequential pattern mining over data streams. To the best of our knowledge, existing

methods have the following deficiencies. (1) They are frequency-based, and did not con-

sider the utility (e.g., value) of an item and thus cannot be used to find HUSPs over sliding

windows. (2) Most of the studies focused on mining sequential patterns over a stream

of items and few considered the scenario of a stream of itemsets so that the sequential

137

relationships between itemsets are lost. However, itemset-sequences are often encoun-

tered in real-life applications (e.g., market basket analysis). (3) Generally speaking, the

update operations on a sliding window can be categorized into four types: (i) inserting

new sequences, (ii) deleting existing sequences, (iii) appending new items/itemsets to the

existing sequences and (iv) dropping items/itemsets from the existing sequences. How-

ever, very few preliminary works have been proposed for mining patterns on all the types

of update in a unified framework. Our framework incrementally learns HUSPs from a

sliding window over data streams of itemset-sequences. The major contributions of this

work are summarized as follows.

1. Efficient data structure to maintain essential information: we proposed two

efficient data structures named ItemUtilLists (Item Utility Lists) and HUSP-Tree

(High Utility Sequential Pattern Tree) for maintaining the essential information

of high utility sequential patterns in a transaction-sensitive sliding window over

a data stream. To the best of our knowledge, the ItemUtilLists structure is the

first vertical data representation for HUSP mining over data streams that can be

used to efficiently calculate the utility of sequences. These data structures can be

built using one scan of data, allow easy updates when the window slides, and can

be used to compute sequence utilities without re-scanning the transactions in the

sliding window.

138

2. Efficient search space pruning strategy: we proposed a novel over-estimate util-

ity model, called Sequence-Suffix Utility (SFU). We prove that SFU of a sequence

is an upper bound of the utilities of some of its super-sequences, which can be used

to effectively prune the search space in finding HUSPs. The experiments show that

SFU is more effective in pruning the search space than the previously-proposed

SWU (Sequence-Weighted Utility) model [4] for HUSP mining.

3. Single pass mining algorithm: we proposed a new one-pass algorithm called

HUSP-Stream (High Utility Sequential Pattern Mining over Data Streams) for

efficiently constructing and updating ItemUtilLists and HUSP-Tree by reading a

transaction in the data stream only once, and by making use of both SFU and

SWU to prune the size of HUSP-Tree. When data arrive at or leave from the

window, our method incrementally updates ItemUtilLists and HUSP-Tree to find

HUSPs based on previous mining results without re-running the whole mining

process on updated databases. It supports four types of update in a unified frame-

work, including (a) inserting sequences, (b) deleting sequences, (c) appending new

items/itemsets to the existing sequences and (d) dropping items/itemsets from the

existing sequences.

4. Extensive experiments: we conducted extensive experiments on both real and

synthetic datasets to evaluate the performance of the proposed algorithm. Ex-

139

perimental results show that HUSP-Stream outperforms the state-of-the-art HUSP

mining algorithm substantially in terms of execution time, the number of gener-

ated candidates and memory usage. In particular, HUSP-Stream runs very well in

some cases where USpan [66], a state-of-the-art HUSP mining algorithm, fails to

complete the mining task.

140

5 Top-k High Utility Pattern Mining over Data Streams

Since there could be a large number of high utility patterns, finding only top-k patterns

is more attractive than producing all the patterns whose utility is above a threshold. A

challenge with finding high utility patterns over data streams is that it is not easy for

users to determine a proper minimum utility threshold in order for the method to work

efficiently. In this chapter, we propose two methods for finding top-k high utility patterns

over sliding windows of a data stream. The first proposed method, called T-HUDS, finds

top-k high utility itemsets over data streams. T-HUDS is based on a compressed tree

structure, called HUDS-Tree, that can be used to efficiently find potential top-k high util-

ity itemsets over sliding windows. T-HUDS uses a new utility estimation model to more

effectively prune the search space. We also propose several strategies for initializing and

dynamically adjusting the minimum utility threshold. Then, inspired by T-HUDS, we

propose our second method, called T-HUSP, for discovering of top-k high utility sequen-

tial patterns over data streams. This method is based on our proposed method in Chapter

4 (i.e., HUSP-Stream). T-HUSP incrementally maintains the content of top-k HUSPs in

141

the sliding window in a summary data structure, named TKList. In addition, two efficient

strategies are proposed for initializing and raising the threshold. Our experimental re-

sults on real and synthetic datasets demonstrate impressive performance of the proposed

methods without missing any high utility patterns.

5.1 Top-k High Utility Itemset Mining over a Data Stream

A key problem with the existing HUI mining methods over data streams is that the user

needs to supply a minimum utility threshold. A solution to this threshold setting problem

is to mine top-k high utility itemsets, in which the user supplies k, the number of HUIs

to be returned. A benefit of mining top-k HUIs is that it is easier and more intuitive for

the user to indicate how many patterns they would like to see than specifying a utility

threshold. In addition, the number of returned patterns will be under control and the

results will not overwhelm the user. A major challenge in top-k HUI mining is that the

number of itemsets is exponential and it is infeasible to compute the utilities of all the

itemsets and identify the top-k ones. A minimum utility threshold is thus needed in the

mining process to prune the search space.

In this section, we propose effective strategies for automatically initializing and dy-

namically adjusting the minimum utility threshold for mining top-k high utility itemsets

over data streams. Three of our strategies can be applied to both static and streaming

data, and one of them is specially designed for data streams. We use a sliding window

142

based data stream mining method, in which a set of recent data (called a sliding win-

dow) is the target of mining. In addition to the new strategies for setting and adjusting

the threshold, we also propose to use another over-estimate utility as the search heuristic

for finding HUIs in the first phase of the top-k HUI mining process. This over-estimate

(called prefix utility) is more effective than the most commonly used TWU (an over-

estimate of the itemset utility) in pruning the search space because it is a closer estimate

of the true utility than TWU . The contributions are as follows:

• We propose a method for mining top-k high utility itemsets from data streams. To

the best of our knowledge, existing methods for mining HUIs over data streams

do not address the issue of mining top-k HUIs, and previous top-k HUI mining

methods do not work on data streams.

• We propose several strategies for initializing and dynamically adjusting the mini-

mum utility threshold during the top-k HUI mining process. We prove that using

these strategies will not miss any top-k HUIs.

• We propose an over-estimate of the itemset utility, which is closer to the true util-

ity than TWU. We prove that this estimate (i.e., prefix utility) has a special type

of downward closure property, which allows it to be used in the pattern growth

method to effectively prune the search space. Using a closer over-estimate results

in fewer candidates being generated in the first phase of the method.

143

TID Transaction

T1 (a,1)(c,1)(d,2)

T2 (a,2)(c,6)(e,2)(f,5)

T3 (a,1)(b,2)(c,3)(d,3)(e,1)

T4 (b,4)(c,3)(d,3)(e,2)

T5 (b,2)(c,2)(e,1)(f,2)

T6 (a,2)(f,5)

Item Name a b c d e f

External utility 3 6 5 8 4 3

B1

B2

B3

SW1

SW2

Figure 1: Example of transaction data base and external utility of items

on both real and synthetic data sets, which shows that our proposed
method is faster and less memory consuming than the state-of-the-art
methods.

Figure 5.1: Example of transaction data base and external utility of items

• We propose a compact data structure (called HUDS-Tree) to store the information

about the transactions in a sliding window. The tree is used to compute the prefix

utility and to initialize and adjust the minimum utility threshold.

• We conduct an extensive experimental evaluation of the proposed method on both

real and synthetic datasets, which shows that our proposed method is faster and

less memory consuming than the state-of-the-art methods.

5.1.1 Preliminaries and Problem Statement

Let I = {i1, i2, ..., im} be a set of items and each item ij ∈ I is associated with a positive

number p(ij), called its external utility (which can be the price or profit) of item ij .

Let D be a set of N transactions: D = {T1, T2, ..., TN} such that for ∀Tj ∈ D,Tj =

144

{(i, q(i, Tj))|i ∈ I, q(i, Tj) is the quantity of item i in transaction Tj}. Figure 5.1 shows

an example of a dataset with six transactions.

Definition 35 Utility of an itemset X in a dataset of transactions D of transactions is

defined as: uD(X) =
∑

X⊆Tj∧Tj∈D

∑
i∈X

u(i, Tj).

We use u(X) to denote uD(X) when dataset D is clear in the context.

Definition 36 (High Utility Itemset (HUI)) An itemset X is called a high utility itemset

(HUI) on a dataset D if and only if uD(X) ≥ min util where min util is called a

minimum utility threshold.

We are interested in mining top-k HUIs in data streams. In a data stream environment,

transactions come continually over time, and they are usually processed in batches. A

transaction batchBi consists of transactions arriving continuously in a time period, i.e.,

Bi = {Tj, Tj+1, ..., Tm}. For example, assuming that the dataset in Figure 5.1 is a data

stream and that each batch contains 2 transactions, there are three batches in the stream:

B1 = {T1, T2}, B2 = {T3, T4}, and B3 = {T5, T6}.

A sliding window is a set of w most recent batches, where w is called the size of

window, denoted as winSize. If the first batch in a sliding window is Bi, the window can

be represented as SWi = {Bi, Bi+1, ..., Bi+winSize−1}. As a new batch forms up in a

data stream, the sliding window removes its oldest batch and adds the new batch to the

window. For example, consider the data stream in Figure 5.1. Assume that the winSize

145

is 2. The first two batches form the first sliding window: SW1 = {B1, B2}. When

the third batch B3 is filled up with transactions, the second sliding window is formed:

SW2 = {B2, B3}. The problem tackled is defined as follows.

Problem 1 For each sliding window SWi in a data stream, the problem is to find the

top-k high utility itemsets in SWi, ranked in descending order of their utility, where k is

a positive integer given by the user.

5.1.2 Challenges and New Definitions

There are inherent challenges in mining top-k HUIs in data streams. First, since stream-

ing data can come continuously in a high speed, they need to be processed as fast as

possible. As mentioned earlier, the utility of an itemset does not have the downward

closure property, and thus most of the existing HUI mining methods use TWU (an over-

estimate of the itemset utility) as the search heuristic to prune itemsets whose TWU is

below the minimum utility threshold. To further speed up the HUI mining process, we

define another over-estimate utility of an itemset, which provides a closer estimation of

the true utility of an itemset than TWU . This over-estimate utility, called Prefix Utility,

is used in our HUI mining to more effectively prune the search space.

Definition 37 Prefix utility of an itemset X in a transaction T . Assume the items in

T are ranked in an order (such as the lexicographic order) and that X ⊆ T . The prefix

146

set of X in T , denoted as PrefixSet(X,T), consists of all the items in T that are not

ranked after any item in X . The prefix utility of X in T is defined as:

PrefixUtil(X,T) =
∑

i∈PrefixSet(X,T)

u(i, T)

For example, in Figure 5.1, the prefix set of itemset {ac} in transaction T3 is {abc}.

Thus, PrefixUtil({ac}, T3) = u(a, T3) + u(b, T3) + u(c, T3) = 3 + 12 + 15 = 30.

Definition 38 Prefix utility of an itemset X in a dataset D is defined as:

PrefixUtilD(X) =
∑

X⊆Tj
∧
Tj∈D

PrefixUtil(X,Tj)

Here we assume that items in all the transactions are ranked in the same order.

Example 1 Let D be the dataset in Figure 5.1. Since only T1, T2 and T3 in D contain

itemset {ac}, we have

PrefixUtilD({ac}) = PrefixUtil({ac}, T1) + PrefixUtil({ac}, T2) +

PrefixUtil({ac}, T3) = 8 + 36 + 30 = 74

Property 2 For any itemset X in a dataset D, the following relationship holds:

TWUD(X) ≥ PrefixUtilD(X) ≥ uD(X)

147

Lemma 6 Assume that items in all the transactions in a dataset D are ranked in an

order. Let X be an itemset and X = Y ∪ {i} where i is the last item in X in the ranked

order. For all Z ⊆ Y ,

PrefixUtilD(Z ∪ {i}) ≥ PrefixUtilD(X).

Proof

Let SX be the set of transactions containing X in a dataset D. According to Definition

38, we have:

PrefixUtilD(Z ∪ {i}) = PrefixUtilSX
(Z ∪ {i}) + PrefixUtilD−SX

(Z ∪ {i}).

Since itemset Z ∪ {i} contains the last item in X and Z ∪ {i} ⊆ X , we have:

PrefixUtilSX
(Z ∪ {i}) = PrefixUtilSX

(X).

Clearly, PrefixUtilSX
(X) = PrefixUtilD(X). Thus,

PrefixUtilD(Z ∪ {i}) = PrefixUtilD(X) + PrefixUtilD−SX
(Z ∪ {i}).

Since PrefixUtilD−SX
(Z ∪ {i}) ≥ 0,

PrefixUtilD(Z ∪ {i}) ≥ PrefixUtilD(X).

2

148

This lemma means that the prefix utility of an itemset X has the downward closure

property if we only concern the subsets of X that contain the last item in X in the ranked

order. Such a special kind of the downward closure property allows us to use PrefixUtil

to prune search space in our HUI mining algorithm to be described later.

Example 2 Assume that a, b and c are items in a dataset and that the items in the dataset

are ranked in the lexicographic order. According to Lemma 6, PrefixUtil({ac}) ≥

PrefixUtil({abc}) and PrefixUtil({bc}) ≥ PrefixUtil({abc}). Thus, if PrefixUtil({ac})

or PrefixUtil({bc}) is less than a minimum utility threshold, PrefixUtil({abc}) must

be less than the threshold. Since PrefixUtil({abc}) ≥ u({abc}), u({abc}) must be less

than the threshold.

The second challenge of our problem is in finding top-k patterns. An efficient method

for finding top-k patterns is to first find potential patterns whose (estimated) utility is

above a threshold and then identify the top-k patterns from the potential ones [61]. Since

the minimum utility threshold is not given in the top-k problem, a challenge in top-k pat-

tern mining is how to set up the threshold so that the process generates fewer number of

potential patterns that include all the top-k patterns. To meet this challenge, we propose

some strategies for initializing and dynamically raising the minimum utility threshold

during the stream mining process. Below we define minimum transaction utility, which

will be used in our strategy for initializing the threshold.

149

Definition 39 Minimum Transaction Utility (mtu) of a transaction T is defined as:

mtu(T) = mini∈T (u(i, T)).

For example, in Figure 5.1, mtu(T4) = min(u(b, T4), u(c, T4), u(d, T4), u(e, T4)) =

min(24, 15, 24, 8) = 8.

Based on the mtu values of the transactions, we define an underestimate utility of an

itemset in a dataset as follows.

Definition 40 Minimum Transaction Utility (MTU) of an itemset X over a dataset D

is defined as: MTUD(X) =
∑

X⊆T
∧
T∈D

mtu(T).

We use MTU(X) to denote MTUD(X) when the dataset D is clear in the context. For

example, for the dataset in Figure 5.1:

MTU({bc}) = mtu(T3) +mtu(T4) +mtu(T5) = 3 + 8 + 4 = 15.

Lemma 7 For any itemsetX in a datasetD, the following relationship holds: MTUD(X) ≤

uD(X).

Proof

Given itemset X , let SX be the set of transactions in D that contain X . For a transaction

T ∈ SX , according to Definition 39, we have:

mtu(T) = min
i∈T

(u(i, T)) and u(X,T) =
∑
i∈X

u(i, T)

150

Hence, mtu(T) ≤ u(X,T). According to Definitions 35 and 40,

MTUSX
(X) =

∑
X⊆T

∧
T∈SX

mtu(T) ≤
∑

X⊆T
∧
T∈SX

u(X,T) = uSX
(X)

Since transactions not in SX do not contain X , we have MTUD(X) ≤ uD(X).

2

Lemma 8 The minimum transaction utility of an itemset satisfies the downward closure

property. That is, for all Y ⊆ X , MTU(Y) ≥MTU(X).

Proof

Since all the transactions containing an itemset X also contains any subset Y of X ,

MTU(Y) ≥MTU(X).

2

The third challenge for mining top-k HUIs in streaming data is that there can be a

huge amount of data in a data stream. Thus, use of compact memory data structures is

necessary in the mining process. To meet this challenge, a compressed data structure,

called HUDS-Tree, is used in our method which can be built with one scan of data. Find-

ing potential patterns is done based on the information in HUDS-Tree. HUDS-Tree and

our method for finding top-k HUIs are described in the next section. For convenience,

Table 5.1 summarizes the concepts and notations we define in this section.

151

Table 5.1: Summary of Notations

Concept Description

u(i, T) Utility of item i in transaction T

u(X) Utility of itemset X in a dataset

TWU(X) Transaction-Weighted Utility (an over-estimate utility)

HUI High Utility Itemsets

PrefixUtil(X) Prefix Utility of itemset X

mtu(T) Minimum Transaction Utility of transaction T

MTU(X) Minimum Transaction Utility of Itemset X (an underestimated utility)

LPI(X) Lowest Profit Item Utility of Itemset X (an underestimated utility)

miu(i) Minimum Item Utility of item i in any transaction of a dataset

MIU(X) Minimum Itemset Utility of Itemset X (an underestimated utility)

maxUtilList List of maximum values of MTUs and LPIs for each level of HUDS-Tree

MIUList List of top-k MIU values in potential HUIs

minTopKUtili Minimum Top-k Utility of the ith sliding window

PTKHUI Potential Top-k High Utility Itemset

PTKSet Set of Potential Top-k High Utility Itemsets

152

5.1.3 T-HUDS: Top-k High Utility Itemset Mining over a Data Stream

In this section, we propose an efficient method (called T-HUDS) to find top-k HUIs

in data streams without specifying a minimum utility threshold. T-HUDS works based

on a prefix tree, called HUDS-Tree (High Utility Data Stream Tree), and two auxiliary

lists of utility values. HUDS-Tree dynamically maintains a compressed version of the

transactions in a sliding window. The two auxiliary lists each maintain a utility list of

length log2(k + 1) or k, where k is the number of top-k itemsets to be returned, and are

used to dynamically adjust the minimum utility threshold during the mining process.

5.1.3.1 An Overview of T-HUDS

The T-HUDS method includes three main steps: (1) HUDS-Tree construction: construct

a HUDS-Tree and two auxiliary lists; (2) HUDS-Tree mining: discover top-k HUIs from

the current sliding window; and (3) HUDS-Tree update: once a new batch arrives, inserts

the transactions in the new batch into the tree, removes transactions in the oldest batch

from the tree if the sliding window had been filled up, and updates the two auxiliary lists.

Algorithm 6 presents an overview of the proposed method. We assume that the data

stream comes in batches. Given a batch Bi of transactions, k and the sliding window

size (winSize), if a HUDS-Tree does not exist yet (i.e., the batch is the very first one),

a HUDS-Tree is constructed based on the transactions in Bi, and two auxiliary lists,

153

maxUtilList and MIUList, are also computed or initialized. If a HUDS-Tree already

exists, the tree and the two auxiliary lists are updated to reflect the additions or changes

of transactions in the sliding window. Once a new window is formed, T-HUDS calls

Algorithm 8 to find top-k HUIs for the new sliding window.

Algorithm 6 T-HUDS
Input: Bi, k, winSize, HUDS-Tree

Output: Top-k HUIs

1: if HUDS-Tree is empty (i.e., Bi is the very first batch B1) then

2: minTopKUtil0 ← 0

3: Construct a HUDS-Tree based on Bi (i.e., B1)

4: Construct the auxiliary list maxUtilList based on the information in the HUDS-Tree

5: Initialize the auxiliary listMIUList using the top-k miu values of the items (to be defined in later)

6: else

7: Call Algorithm 10 to update HUDS-Tree, maxUtilList and MIUList using Bi and winSize

8: end if

9: if batch ID i ≥ winSize then

10: Call Algorithm 8 to compute top-k HUIs on the current sliding window with the HUDS-Tree,

maxUtilList, MIUList and minTopKUtili−1

11: end if

12: Return Top-k HUIs

Below we first describe how the HUDS-Tree is structured and constructed. Then we

present our methods for estimating the minimum utility threshold, our top-k HUI mining

154

algorithm and finally our procedure for updating the HUDS-Tree.

5.1.3.2 HUDS-Tree Structure and Construction

The structure of HUDS-Tree is similar to that of FP-tree [30], UP-tree [57] or HUS-tree

[7]. These trees are used to compress a transaction database into a tree. A non-root node

in the trees represents an item in the transaction database, and a path from the root to a

node compresses the transactions that contains the items on the path. Since the FP-tree

is used to find frequent itemsets, a node in an FP-tree mainly stores the frequency of an

itemset represented by the path from the root to the node. The UP-tree is for finding

high utility itemsets, and thus its node contains not only frequency but also an estimated

utility of the itemset. The HUS-tree is used for mining high utility patterns over data

streams. Thus, its node stores the TWU value of the itemset for each batch in a sliding

window to facilitate the update process. Since we are dealing with data streams as well,

our HUDS-Tree is similar to a HUS-tree. But instead of storing TWU values, a node

in a HUDS-Tree stores the PrefixUtil of the represented itemset for each batch, which

is, as discussed earlier, a closer estimate of the true utility of the itemset than TWU .

In addition, to effectively estimate the minimum utility threshold, a node in HUDS-Tree

also stores the MTU value of the itemset for each batch. The node structure of the

HUDS-Tree is described below.

A non-root node in a HUDS-Tree contains the following fields: nodeName, node-

155

Counts, nodePUtils, nodeMTUs and succ. nodeName is the name of the item represented

by the node. The nodeCounts field is an array with winSize elements, where winSize is

the number of batches in the sliding window. Each element in nodeCounts corresponds

to a batch in the current sliding window and registers the number of the transactions in

the batch falling onto the path from the root to the node. LetX be the itemset represented

by the path. The nodePUtils field is an array of winSize elements, each corresponding

to a batch and storing the prefix utility of X in the transactions of the batch falling onto

the path. Similarly, nodeMTUs is an array of the minimum transaction utilities (MTU)

of X in the transactions falling onto the path for all the batches of the sliding window.

Keeping separate information for each batch facilitates the update process, that is, when

a new batch Bi arrives, if the oldest batch needs to be removed, it is easy to remove the

information of the oldest batch and include the information for the new batch. Finally,

succ points to the next node of the tree having the same nodeName.

Example 3 A HUDS-Tree, built from the transactions in sliding window SW1 = {B1, B2}

in Figure 5.1, is illustrated in Figure 5.2, where the winSize is 2 and thus nodeCounts,

nodePUtils and nodeMTUs each contains two values. For example, in node 〈b :

[0, 1], [0, 15], [0, 3]〉, nodeName is b, nodeCounts holds [0,1], meaning the number of

transactions matching path a → b is 0 in B1 and 1 in B2, respectively, and [0,15] and

[0,3] are the contents of nodePUtils and nodeMTUs, respectively. Since b appears

only in the second batch, its values for nodeCounts, nodePUtils and nodeMTUs in

156

Link Item PUtila 12b 39c 113d 141e 173f 59

root
a[2,1],[9,3],[9,3]

b[0,1],[0,15],[0,3]
c[0,1],[0,30],[0,3]

c[2,0],[44,0],[9,0]

d[1,0],[24,0],[3,0] e[1,0],[44,0],[6,0]
f[1,0],[59,0],[6,0]

Level maxUtil

1 12
2 9
3 8

maxUtilList:
d[0,1],[0,54],[0,3]
e[0,1],[0,58],[0,3]

b[0,1],[0,24],[0,8]
c[0,1],[0,39],[0,8]
d[0,1],[0,63],[0,8]

e[0,1],[0,71],[0,8]

Figure 5.2: HUDS-Tree after inserting transaction in SW1 in Figure 5.1.

the first batch are 0. The field succ is not illustrated for the clarity reason.

Each item has an entry in the header table of the HUDS-Tree. An entry in the header

table contains the name of the item, the PrefixUtil value of the item in the transactions

represented by the tree and a link pointing to the first node in the HUDS-Tree carrying the

item. The PrefixUtil value of an item is computed by adding up all the nodePUtils

values of the nodes labeled with the item in the tree.

157

Algorithm 7 Insert Transaction into HUDS-Tree
Input: Transaction T , rootNode, idx, batchNumber

Output: Updated HUDS-Tree, maxUtilList

1: let itemidx be the idxth item in T

2: if ∃ node ∈ the children of the rootNode & nodeName(node) = itemidx then

3: node.nodePUtils[batchNumber]+ =
∑idx

j=1 u(itemj, T)

4: node.nodeCounts[batchNumber] + +

5: node.nodeMTUs[batchNumber]+ = MTU(T)

6: else

7: node.nodeName← itemidx

8: node.nodePUtils[batchNumber]←
∑idx

j=1 u(itemj, T)

9: node.nodeCounts[batchNumber]← 1

10: node.nodeMTUs[batchNumber]←MTU(T)

11: add node as a child node of rootNode

12: end if

13: update the idxth element, maxUtilidx, in the maxUtilList

14: if idx 6= the length of T then

15: Algorithm7(T, node, idx+ 1, batchNumber)

16: end if

17: HUDS−Tree← rootNode

18: Return HUDS−Tree, maxUtilList
158

Given the first batch B1 of transactions, a HUDS-Tree is constructed as follows. For

each transaction in B1, we first arrange the items in the transaction in an order (such as

the lexicographic order or the descending external item utility order) , and then insert

the items into the HUDS-Tree in the way similar to building an FP-tree [30]. For ex-

ample, for the first item item1 in a transaction T in B1, if a node with the same item

name is not found under the root, a new child is created and its fields are initialized as

follows: nodeName = item1, nodePUtils[1] = u(item1, T), nodeCounts[1] = 1,

nodeMTUs[1] = MTU(T). If the node with the item name already exists under the

root, its fields for the current batch are updated. Details of the procedure for inserting

one transaction T in batch Bi into the HUDS-Tree are presented in Algorithm 7. In the

algorithm, the input parameter batchNumber should be given a value of i%winSize+1,

where i is the ID of the current batch Bi in the data stream and % is the modulo oper-

ator which returns the remainder of dividing i by winSize. For example, if i = 2 or

winSize + 2, batchNumber is 2. The algorithm is a recursive algorithm. Each call to

the algorithm “inserts” one item of the input transaction T into the tree. The input pa-

rameter idx indicates which item in T is being “inserted”. idx is initialized to 1 for each

transaction. Clearly, the tree can be built with one scan of the data in Bi.

Before we describe how to mine HUIs from a HUDS-Tree and how to update the

tree with new batches, we first present our method for estimating the minimum utility

threshold.

159

5.1.3.3 Estimation of Minimum Utility Threshold

Our objective is to find top-k high utility itemsets. Since the number of itemsets is

exponential with respect to the number of items in the data, it is infeasible to enumerate

all the itemsets, find their utilities in the sliding window and outputs the top-k highest

utility itemsets. An efficient procedure for finding top-k itemsets is to first use an efficient

method to find potential itemsets whose utility is above a threshold and then identify

the top-k itemsets from the potential ones [61]. To do this, a proper minimum utility

threshold is needed in the first phase of the procedure. If the threshold is set too low,

many unwanted HUIs are produced, which is time-consuming. If it is set too high, we

may not be able to produce k itemsets. A good strategy for setting the threshold should

satisfy the following conditions: (1) it should not miss any top-k HUIs; (2) the estimated

threshold should be as close as possible to the utility of the kth highest utility itemset.

In our method, we use four strategies to initialize and dynamically adjust the thresh-

old during the mining process. These strategies lead to significant pruning of search

space. Below we describe three strategies, which will be used in the first phase of our

mining method. The fourth strategy (to be used in the second phase) will be described in

Section 5.1.3.4.

Initializing the Threshold Using maxUtilList: In a HUDS-Tree, the nodeMTUs

field of a node n stores the MTU values of the itemset represented by the path from

160

the root to n in the set of transactions falling onto the path in each batch separately.

The MTU value of the itemset in the transactions on the path in the sliding window

can be easily calculated by summing up all the values in nodeMTUs of node n. We

use nodeMTU(n) to denote this sum. Similarly, nodeCount(n) is used to denote the

count of the itemset in the set of the transactions falling on the path in the whole sliding

window. Now we are ready to define the maxUtilList.

Definition 41 (Maximum Utility List (maxUtilList)) of a HUDS-Tree is a list of length

d:

maxUtilList = {maxUtil1, ...,maxUtild}

where d is the depth of the HUDS-Tree and maxUtili is computed based on the nodes

on the ith level of the tree as follows:

maxUtili = max
j
{max(minProfit(nodei,j)× nodeCount(nodei,j),

nodeMTU(nodei,j))}

where nodei,j is the jth node in level i of the tree,minProfit(nodei,j) = min{p(item)|item ∈

X} where p(item) is the external utility of the item and itemset X is formed by the path

from the root to nodei,j in the tree, nodeCount(nodei,j) is the sum of the counts in the

nodeCounts field of nodei,j (i.e., the total number of transactions in the sliding window

that have prefix X), and nodeMTU(nodei,j) is sum of the values in the nodeMTUs

161

field of nodei,j (i.e., the total MTU value of itemset X in all the transactions of the

sliding window that have prefix X).

For example, assume that the root is at level 0 in Figure 5.2. The level 2 has one b

node and two c nodes. maxUtil2 is thus computed as:

maxUtil2 = max{max(3× nodeCount(b), nodeMTU(b)),

max(3× nodeCount(c), nodeMTU(c)),

max(5× nodeCount(c), nodeMTU(c))}

= max{max(3× 1, 3),max(3× 2, 9),max(5× 1, 8)} = 9.

Lemma 9 Let utilk be the utility of the kth itemset in the top-k high utility itemset list.

utilk is no less than maxUtilL where L = dlog2(k + 1)e.

Proof

Let’s call nodeCount(nodei,j)×minProfit(nodei,j) Lowest Profit Item utility (LPI) of

the itemset X formed by the path from the root to nodei,j in the set S of transactions

represented by the path. Clearly, LPI(X) is another underestimate of the utility of X in

S, i.e., LPI(X) ≤ u(X) on S. Also, for all Y ⊆ X , LPI(Y) ≥ LPI(X) on S.

Let nodeL,j be a node on level L of the tree, XL,j denote the itemset formed by

the path from the root to nodeL,j , and SL,j denote the set of transactions falling onto

the path. Assume that nodeL,j is the node with maxUtilL, that is, maxUtilL is either

nodeMTU(nodeL,j) (i.e., MTU(XL,j) on SL,j) or LPI(XL,j) on SL,j .

162

Assume that Y is a subset ofXL,j . According to Lemma 8,MTU(Y) ≥MTU(XL,j)

on set SL,j . According to Property 7, u(Y) ≥ MTU(Y) on SL,j . Similarly, u(Y) ≥

LPI(Y) ≥ LPI(XL,j) on SL,j . Thus,

u(Y) ≥ max(nodeMTU(nodeL,j), LPI(XL,j)) = maxUtilL.

Since u(Y) on the entire dataset represented by the tree is no less than u(Y) on SL,j .

Thus, u(Y) on the entire dataset is no less than maxUtilL.

Since nodeL,j is at level L of the tree, XL,j contains L items (assuming the root is at

level 0). Thus, XL,j has 2L − 1 subsets. Thus, there are at least 2L − 1 itemsets whose

utility is no less than maxUtilL.

If L = dlog2(k + 1)e, we have

L ≥ log2(k + 1)⇒ 2L ≥ k + 1⇒ 2L − 1 ≥ k

Thus, there are at least k itemsets with utility higher than or equal to maxUtilL.

Thus, utilk is no less than maxUtilL.

2

Lemma 9 declares that maxUtilL can be used to set the minimum utility threshold

for finding top-k HUIs, where L = dlog2(k + 1)e. No top-k HUIs can be missed with

such a threshold. Intuitively, maxUtilL is the maximum value among the nodeMTU

values and LPI values of the nodes on level L of the tree.

ThemaxUtilList can be computed while constructing and updating the HUDS-Tree.

163

If k is fixed, only maxUtilL needs to be computed in the list; otherwise, the values of

maxUtili for all the levels are maintained.

Adjusting the Threshold Using MIUList: MIUList is another list that we main-

tain to dynamically adjust the minimum utility threshold. It keeps the top-k minimum

itemset utility (MIU) values of current potential high utility itemsets. Below we first

define the concept of MIU [61]:

Definition 42 Minimum Item Utility of an item a in any transaction of a dataset D

is defined as: miuD(a) = u(a, Tq) where Tq ∈ D and ¬∃ Tp ∈ D such that u(a, Tp) <

u(a, Tq).

Definition 43 Minimum Itemset Utility of an itemset X in a dataset D is defined as:

MIUD(X) =
∑
ai∈X

miuD(ai)× SCD(X) where SCD(X) is support count of X in D.

We use MIU(X) to denote MIUD(X) when the dataset D is clear in the context.

Property 3 For any itemset X in dataset D, MIUD(X) ≤ uD(X).

The miu value of an item can be computed during the HUDS-Tree construction and

update. It can be stored in the global header table of the HUDS-Tree. The MIU value

of an itemset can be computed based on the miu values of its elements and the support

count of the itemset (maintained in the nodeCounts fields). In [61], the MIU values of

itemsets are used to raise the minimum support threshold during the HUI mining process.

164

But they may not be used properly. We use them to adjust the minimum utility threshold

by maintaining a minimum itemset utility list defined as follows.

Definition 44 Minimum Itemset Utility List(MIUList) Given a set of already-generated

HUIs, MIUList contains the top-k list of the MIU values of these HUIs, ranked in

MIU -descending order, denoted as MIUList = {MIU1,MIU2,,MIUk}, where

MIU1 ≥MIU2 · · · ≥MIUk.

Lemma 10 Let MIUk be the kth member of MIUList and utilk be the utility of the kth

highest utility itemset in the top-k HUI list. utilk is no less than MIUk.

Proof

Assume that the MIUi values in MIUList are the MIU values of itemsets X1, X2,

. . .Xk, respectively. According to Property 3, we have:

∀Xi ∈ {X1, X2, . . . Xk},MIU(Xi) ≤ u(Xi).

According to the Definition 44, MIUk is the smallest value in the MIUlist. Thus, there

are at least k itemsets whose utility is no less than MIUk.

2

According to this lemma, if the minimum utility threshold is set to MIUk, no top-k

HUI will be missed. Thus, we have the following strategy for adjusting the threshold.

Once the HUDS-Tree is built or updated for a sliding window SWi, MIUList is initial-

ized to the top-k highest miu values of single items. During the process of mining HUIs

165

for window SWi, once a new potential HUI is generated, its MIU is compared with the

current MIUk. If it is greater than the current MIUk, the new MIU value is inserted into

the MIUList. If the new MIUk is greater than the current minimum utility threshold,

then the threshold can be raised to the new MIUk.

Adjusting the Threshold with minTopKUtil of Last Window: Our third strategy

for adjusting the minimum utility threshold is to make use of the utility values of the

top-k HUIs in the last sliding window. For this, we define the minimum top-k utility

(minTopKUtil) of a sliding window as follows.

Definition 45 Let SWi = {Bi, Bi+1, . . . , Bi+winSize−1} be the ith sliding window and

let TopkHUISeti denote the set of top-k HUIs in window SWi. The minimum top-k

utility of a sliding window SWi is defined as:

minTopKUtili = min
itemset∈TopkHUISeti

i+winSize−1∑
j=i+1

uBj
(itemset)

In other words, theminTopKUtil of sliding window SWi is the minimum of the utilities

of the itemsets in TopkHUISeti in the last winSize− 1 batches of SWi.

Lemma 11 Let utilk be the utility of the kth highest utility itemset over sliding window

SWi+1, and minTopKUtili be the minimum top-k utility of window SWi. We have

utilk ≥ minTopKUtili.

166

Proof

LetB be the union of lastwinSize−1 batches in window SWi. Then the next sliding

window SWi+1 = B ∪Bnew where Bnew is the new batch in SWi+1. Since B ⊂ SWi+1,

for each itemset X in TopkHUISeti, uB(X) ≤ uSWi+1
(X). Since minTopKUtili ≤

uB(X) for all X ∈ TopkHUISeti and there are k itemsets in TopkHUISeti, there are

at least k itemsets whose utility in SWi+1 is at least minTopKUtili.

2

According to this lemma, if the minimum utility threshold in window SWi+1 is set to

minTopKUtili, no top-k high utility itemsets will be missed.

The minTopKUtili value is computed during the second phase of our procedure

for mining top-k HUIs from sliding window SWi, which is to be described in Section

5.1.3.4.

5.1.3.4 Mining Top-k High Utility Itemsets

After a HUDS-Tree is built or updated for a sliding window SWi, we use a 2-phase

procedure to find top-k HUIs in SWi. In the first phase, the HUDS-Tree is mined to

generate a set of potential top-k high utility itemsets (i.e., PTKHUIs) that satisfy a

dynamically-changing minimum utility threshold. In the second phase, the exact utilities

of the PTKHUIs are computed and the top-k high utility itemsets are returned.

167

This 2-phase procedure is shown in Algorithm 8. At the beginning of the procedure,

we initialize the minimum utility threshold, min util, according to the strategies proposed

in Section 5.1.3.3 as follows:

min util = max{maxUtilL,MIUk,minTopKUitli−1},

where minTopKUitli−1 is the minimum top-k utility of the last sliding window

(initialized to 0 in Algorithm 6 if the new batch is the first one), maxUtilL is the Lth

element in maxUtilList (where L is computed in Line 1), and MIUk is the kth element

of the MIUList that initially contains the list of the top-k minimum item utilities (miu)

of single items.

With this initial min util threshold, Algorithm 9 is called to find PTKHUIs from the

HUDS-Tree (Line 3). This is the first phase of the top-k procedure. The second phase

(from Line 4 to the end) finds exact top-k HUIs from the set of PTKHUIs. Below we

describe each phase in detail.

Phase I: Discover PTKHUIs from HUDS-Tree: In Phase I, a set of potential top-k

HUIs (PTKHUIs) is found from the HUDS-Tree. Our objective in this phase is to find

as few PTKHUIs as possible (so that the second phase will be faster) while not missing

any top-k HUIs. Our procedure for this phase follows a pattern growth approach, similar

to FP-growth [30] and HUPMS [7].

168

Algorithm 8 Top-k HUI Mining - Part - 1
Input: HUDS-Tree, maxUtilList,MIUList, minTopKUtili−1, k, SWi

Output: TopkHUISet , minTopKUtili

1: L← dlog(k + 1)e

2: min util← max{maxUtilL,MIUk,minTopKUtili−1}

3: Generate a set of potential top-k HUIs (PTKSet) by calling Algorithm 9 with

min util. The min util is also dynamically updated in Algorithm 9

4: Scan the transactions in the current sliding window SWi to obtain uSWi
(itemset)

and uSWi−Bi
(itemset) for each itemset in PTKSet, where Bi is the first batch in

SWi.

5: TopkHUISet← ∅

6: for each itemSet ∈ PTKSet do

7: if uSWi
(itemSet) ≥ min util then

8: Insert 〈itemSet, uSWi
(itemSet)〉 into TopkHUISet so that the elements in

TopkHUISet are ranked in the utility-descending order

9: if the size of TopkHUISet > k then

10: Remove the last element from TopkHUISet

11: if uSWi
(lastItemSet) > min util where lastItemSet is the current last

itemset in TopkHUISet then

12: min util← uSWi
(lastItemSet)

13: end if
169

Top-k HUI Mining - Part - 2
14: end if

15: end if

16: end for

17: minTopKUtili ← min{uSWi−Bi(itemset)|itemset ∈ TopkHUISet}

18: Return TopkHUISet, minTopKUtili

The major differences between our Phase I procedure and the others are as follows.

First, we use both PrefixUtil and local TWUs to prune the search space, while others

for HUI mining mainly use TWU . Second, we use effective strategies for initializing

and dynamically adjusting the min util threshold during the mining process.

The pseudocode of the HUDS-Tree mining procedure is described in Algorithm 9.

Like FP-growth, the algorithm is a recursive algorithm. In the first call to the procedure,

the input HUDS-Tree is the global tree, and the itemset X in the input list is empty.

In a recursive call, the input tree is the X-conditional HUDS-Tree where X is a non-

empty itemset. The algorithm works as follows. For each item t in the (conditional)

header table, the algorithm checks if the PrefixUtil of t satisfies themin util threshold

(Line 2). If yes, a potential top-k HUI IS is generated by extending X with item t.

IS is then added into the potential top-k HUI set (i.e., PTKSet). Then, the min util

threshold is adjusted in lines 5 to 7. If MIU(IS) is more than the current min util, the

MIU value is inserted into MIUList and min util is raised by the minimum value of

MIUList. MIU(IS) can be computed easily because SCSWi
(IS) can be computed

170

Algorithm 9 HUDS-Tree Mining to Generate PTKHUIs (Phase I)
Input: HUDS-Tree, itemset X , min util, MIUList, k

Output: PTKSet, min util,MIUList

1: for each item t in the header table of HUDS-Tree do

2: if PrefixUtil(t) ≥ min util then

3: Generate a potential top-k itemset: IS ← {t} ∪X

4: Add IS into the PTKSet set

5: if MIUSWi
(IS) ≥ min util then

6: Insert MIUSWi(IS) into the MIUList

7: min util←MIUk

8: end if

9: Pattern baseIS ← all prefix paths of the nodes for item t with their utilities

10: Prune all items in the Pattern baseIS whose TWU in Pattern baseIS is less than min util.

11: Construct conditional HUDS−TreeIS and its header table

12: if HUDS-TreeIS is not empty then

13: call Algorithm 9(HUDS-TreeIS ,IS, min util, MIUList, k)

14: end if

15: end if

16: end for

17: Return PTKSet, min util,MIUList

171

using the nodeCounts fields of the t nodes and the miu values of all the items have

already been computed when building the global HUDS-Tree.

After IS is generated, to find longer PTKHUIs containing IS, IS-conditional pattern

base (Pattern baseIS) is built by enumerating all the prefix paths of the t nodes in the

tree. The utility of each prefix path is the sum of the values in the nodePUtils field of

the t node in that path. Each item’s local TWU value can then be computed by adding

up the utilities of the prefix paths it is in. In Line 9, we eliminate items in the conditional

pattern base whose local TWU is less than the min util threshold. After that, the IS-

conditional HUDS-Tree is constructed based on the conditional pattern base with the

remaining items. At the end of tree construction, all the nodePUtils values of nodes

with the same nodeName in the conditional tree are added and the result is added to

local header table as the PrefixUtil value of the item. Once a conditional tree is built,

Algorithm 9 is called recursively to discover longer PTKHUIs ending with IS.

In the performance evaluation section, we will show that this pattern-growth proce-

dure generates fewer potential top-k HUIs and has less overall run time than the state-

of-the-art algorithms for high utility itemset mining. This is due to the use of the prefix

utility in pruning the search space and also the dynamical increase of min util during

the mining process.

Phase II: Identifying Top-k HUIs from PTKHUIs: HUDS-Tree is a compact repre-

172

sentation of the transactions in a sliding window. It allows the use of the pattern growth

method to efficiently find the potential top-k HUIs. However, since the quantity of an

item inside a transaction may vary among transactions, the exact utility of an itemset

cannot be obtained from the HUDS-Tree. Thus, in this second phase, we scan the trans-

actions in the current sliding window to obtain the exact utility of each potential top-k

HUI, and then identify the top-k HUIs based on the true utility of the PTKHUIs.

The second phase procedure is shown in Lines 4-12 of Algorithm 8. In Line 4, it

scans the transactions in the current sliding window SWi to obtain the exact utility of

each itemset in PTKSet in SWi and also the exact utility of each itemset in the last

winSize− 1 batches of SWi. From Line 6 to Line 12, top-k HUIs are identified using a

selected insertion sort, in which only the itemsets whose utility is no less than min util

are inserted to the top-k list (denoted as TopkHUISet). TopkHUISet is maintained

to have no more than k elements, ranked in utility-descending order. In addition, if

TopkHUISet contains k elements, min util is adjusted dynamically to be the utility of

the kth itemset in TopkHUISet (Lines 11 and 12). We call this adjustment our fourth

strategy for increasing the min util threshold.

Finally, in Line 13 of the algorithm, the minimum top-k utility of the current sliding

window (SWi) is set to minimum utility value of the itemset in TopkHUISet in the last

winSize − 1 batches of SWi. This is for adjusting the min util threshold for mining

tip-k HUIs in the next sliding window SWi+1.

173

Theorem 5 Given a sliding window SWi, if X is among the top-k high utility itemsets,

it is returned by Algorithm 6.

Proof

We prove the theorem by showing that the min util in our algorithm is never over the

exact utility of the kth highest utility itemset in the current sliding window, and also that

our HUDS-Tree mining procedure does not prune out any itemset whose true utility is

greater than min util.

Let utilk be the exact utility of the kth highest utility itemset for sliding window SWi.

In our algorithms, the min util is set or adjusted in the following three places:

• In Line 2 of Algorithm 8:

min util = max{maxUtilL,MIUk,minTopKUtili−1}

where L = dlog2(k + 1)e.

According to Lemmas 9, 10, and 11, maxUtilL ≤ utilk, MIUk ≤ utilk and

minTopKUtili−1 ≤ utilk. Thus, min util is no larger than utilk.

• In Lines 5-7 of Algorithm 9, min util is dynamically adjusted to MIUk, which is

the kth highest MIU value of the already generated potential top-k HUIs. Accord-

ing to Lemma 10, MIUk ≤ utilk. Thus, min util ≤ utilk.

• In Lines 11-12 in Algorithm 8, min util is dynamically adjusted to the lowest

utility of the current top-k HUI set. Thus, min util is no larger than utilk.

174

Below we show that our HUDS-Tree mining procedure for generating potential top-k

HUIs (i.e., Algorithm 9) does not miss any top-k HUIs. There are two places where we

prune the search space in Algorithm 9.

• In Line 2, if the PrefixUtil of an item t is less than min util, item t will not be

added to itemsetX to form longer HUI containing {t}∪X . The PrefixUtil of t in

the (conditional) header table is actually PrefixUtil({t} ∪X) (according to how

it is computed). AssumeX = Y ∪{i}where i is the last item inX in the item order

for building the HUDS-Tree. Then {t}∪X = {t}∪Y ∪{i}. According to Lemma

6, PrefixUtil({t}∪Y ∪{i}) ≥ PrefixUtil(S ∪{t}∪Y ∪{i}) where S is a set

of items containing the items ranked before t in the item order for building the tree.

Thus, if PrefixUtil({t}∪Y ∪{i}) < min util, PrefixUtil(S∪{t}∪Y ∪{i}) <

min util. This means that if the PrefixUtil of t in the header table is less than

min util, there is no need to check any itemsets whose ”suffix” is {t} ∪X .

• In Line 9 of the algorithm, we prune out all the items whose local TWU is less

than min util. Since TWU has the downward closure property, the pruning does

not miss any itemsets whose TWU is no less than min util.

Both PrefixUtil and TWU are over-estimates of the true utility of an itemset. If an

over-estimate is less than min util, the true utility must be less than min util. Thus, if

an itemset is pruned by PrefixUtil or TWU , its true utility must be less than min util.

175

Thus, no itemsets whose utility ≥ min util is pruned by the algorithm. Since min util

is never over utilk, no top-k HUI is missed by our algorithms.

2

The following example illustrates how the proposed strategies are applied during the

mining process.

Example 4 Given the transactions in Figure 5.1, let winSize = 2 and k = 5. Once

the first window arrives, a complete HUDS-Tree is constructed (Figure 5.2). Since no

candidate is generated before learning from the first window, MIUList is initialized by

the five most largest miu values of the items. Therefore, MIUList = {16, 15, 12, 5, 4}.

Also, maxUtilList is built during the tree construction and updating: maxUtilList =

{12, 9, 8}, where the length of maxUtilList is dlog2(k + 1)e = 3. Since this window

is the first window, minTopKUtil0 = 0. Thus, the initial minimum utility threshold

(minUtil) is computed as follows:

minUtil = max(maxUtil3,MIU5,minTopKUtil0) = max(8, 4, 0) = 8.

During the candidate generation in Algorithm 8, MIUList is updated based on the

miu values of each new candidate. At the end of candidate generation, MIUList =

{48, 40, 38, 37, 36}. minUtil is then updated to 36 (minUtil = max(8, 36, 0)). After

the second phase the first set of top-5 high utility itemsets are discovered as follows:

{(bcd, 114), (cd, 99), (bcde, 126), (cde, 90), (bde, 96)}

176

Next, we compute the minimum Top-k utility of the 1st sliding window (minTopKUtil1)

as follows. The exact utilities of top-5 high utility itemsets in the first sliding window are:

{(bcd, 114), (cd, 78), (bcde, 126), (cde, 90), (bde, 95)}

Hence, minTopKUtil1 = 78. This value is used to help initialize the minimum utility

threshold (minUtil) for the next sliding window. The process of initializing and updating

minUtil for the second and later sliding windows is the same as the one for the first

window.

5.1.3.5 HUDS-Tree Update

When a new batch of transactions arrives, the HUDS-Tree needs to be updated to repre-

sent the transactions in the new sliding window. This involves removing from the tree

the information of the oldest batch in the last window (if the last window was full) and

adding to the tree the transactions in the new batch. Algorithm 10 describes this update

process.

In Line 1, the index of the batch in the tree node fields is computed as batchNumber =

i%winSize + 1, where i is the new batch ID (assuming the very first batch in the data

stream is B1), and winSize is the maximum number of batches in a sliding window.

The information about the new batch will be put into the batchNumberth slots in the

nodeCounts, nodePUtils and nodeMTUs fields of the tree nodes. In Lines 2 to 8,

177

if the new batch ID (i.e., i in Bi) is greater than the size of the sliding window (which

means that the last sliding window was full), then the information about the oldest batch

is removed by changing nodeCounts[batchNumber], nodePUtils[batchNumber] and

nodeMTUs[batchNumber] in each node to zero. If the sum of the values in nodePUtils

for all the remaining batches is zero in a node, the node and the subtree rooted at the node

are removed (Line 7). Then, the transactions in the new batch are inserted into the tree

one by one by calling Algorithm 7. batchNumber is passed to Algorithm 7 so that the

information about the new batch will be stored the batchNumberth slots in the node

fields. In Algorithm 7, maxUtilList is also updated. After all the transactions are in-

serted into the tree, the prefix utilities of each item is updated in Line 12. Finally, the

MIUList is updated as described in Line 13.

178

Algorithm 10 HUDS-Tree-Update - Part 1
Input: HUDS-Tree, new batch Bi, k

Output: HUDS-Tree, maxUtilList,MIUList

1: batchNumber ← i%winSize+ 1

2: for each node in HUDS-Tree do

3: nodeCounts[batchNumber]← 0

4: nodePUtils[batchNumber]← 0

5: nodeMTUs[batchNumber]← 0

6: if ∀i (1 ≤ i ≤ winSize) nodePUtils[i] = 0 then

7: remove the node and its subtree from the tree

8: end if

9: end for

10: for every T ∈ Bi do

11: {HUDS-Tree,maxUtilList} ← Algorithm7(T , HUDS-Tree, root of HUDS-

Tree, 1, batchNumber)

12: update the miu value of each item in T

13: end for

14: Update the PrefixUtil value of each item in the header table by summing up all the

values in the nodePUtils fields of all the nodes for the item in the tree.

179

HUDS-Tree-Update - Part 2
15: Update MIUList by (1) computing the MIU value of each item in the header table using the miu

value of the item and the nodeCounts values in all the nodes for the item and (2) select the top-k MIU

values.

16: Return HUDS-Tree, maxUtilList, MIUList

5.2 Top-k High Utility Sequential Pattern Mining over Data Streams

In this section, we propose a sliding window-based method, called T-HUSP, to find top-

k high utility sequential patterns over data streams. This method is an extended version

of our proposed method in Chapter 4 (i.e., HUSP-Stream), for discovering high utility

sequential patterns over sliding windows.

Although HUSP-Stream can discover high utility sequential patterns based on a given

minimum utility threshold efficiently, it is difficult to set an appropriate minimum utility

threshold for the following reasons. First, a large number of patterns in a data stream

are needed to be analyzed before a proper utility threshold can be determined. Second,

the set of HUSPs in a data stream may change over time, hence it is difficult or impos-

sible to choose a proper utility threshold from a dynamic set of patterns. Third, in high

utility sequential pattern mining, there are multiple factors such as the distribution of the

items and utilities, density of the database and lengths of the sequences which make the

mining process challenging. For example, it is possible that using a same minimum util-

180

ity threshold, some datasets produce a large amount of patterns while others contribute

nothing. Fourth, if a large threshold is chosen to mine HUSPs, a large number of patterns

might be produced; if a small threshold is set, very few or no high utility sequential pat-

terns might be discovered. Consequently, in practice, it is more interesting for users to

mine HUSPs whose utilities are sorted in the top k order, instead of giving a predefined

threshold. In this case, the utility threshold varies with time.

Although mining top-k HUSPs over data streams is very desirable, addressing this

topic is not an easy task due to the following challenges.

• We need to overcome the large search space problem that inherits from combina-

torial explosion of sequences. In comparison to top-k high utility itemset mining

method proposed in Section 5.1, top-k high utility sequential pattern mining is

more general but more challenging because it finds out not only all high utility

itemsets but also their sequential orders.

• In many stream mining applications, users are more interested in finding top-k pat-

terns in the most recent data. To satisfy this requirement, new records are added

to the databases and uninteresting/old ones are removed from the databases. How-

ever, it is very inefficient to apply existing algorithms designed for static databases

[67] to rerun the whole mining process on updated databases whenever a record is

added to or deleted from the databases.

181

• When mining top-k HUSPs in a sliding window, the set of patterns discovered in

the sliding window varies as the sliding window moves forward, and the utility of

the k-th high utility pattern, denoted by suk, varies with time. Therefore, it is a

challenge to accurately set the value of suk and efficiently mine the top-k HUSPs.

In this section, we propose a new method, called T-HUSP, for mining recent top-k

high utility sequential patterns over data streams to address all of the above challenges.

To our best knowledge, this topic has not been addressed so far. Our contributions are

summarized as follows.

• We propose a sliding window-based method for mining top-k high utility sequen-

tial patterns over data streams. To the best of our knowledge, existing methods for

mining HUSPs over data streams do not address the issue of mining top-k HUSPs,

and previous top-k HUSP mining methods do not work on data streams.

• We propose several strategies for initializing and dynamically adjusting the mini-

mum utility threshold during the top-k HUSP mining process. We prove that using

these strategies will not miss any top-k HUSPs.

• We conduct extensive experiments on both real and synthetic datasets to evaluate

the performance of the proposed algorithm. Experimental results show that T-

HUSP serves as an efficient solution for the problem of top-k HUSP mining over

data streams.

182

T1 T2 T3 T4 T5 T6 T7 …

S1
{(a,2)(b,3)(c,2)} {(b,1)(c,1)(d,1)} {(c,3)(d,1)} {(b,1)(c,3)(d,2)} …

S2
{(b,4)} {(a,4)(b,5)(c,1)} …

S3
{(a,2)(b,5)(e,2)} …

SW
1

SW
2

Item a b c d e

Profit 2 3 1 4 3

(b) Profit Table

(a) A Data Stream of Itemset-Sequences

SID TID

Figure 5.3: (a) An example of a data stream of itemset-sequence and sliding windows

over the data stream, (b) an example of external utility table

5.2.1 Definitions and Problem Statement

Here, we use the same notations presented in Chapter 4. For more details about prelim-

inaries, readers can refer to definitions in Chapter 4. Table 5.2 shows a list of notations

used in this chapter.

Definition 46 (Sequence Data stream) A transaction data stream of itemset-sequences

(or data stream in short) DS = 〈T1, T2, ..., TM〉 is an ordered list of transactions that

arrive continuously in a time order. Each transaction Ti ∈ DS (1≤i≤M) belongs to a se-

quence of transactions. A data stream can thus also be considered as a set of dynamically-

changing sequences.

183

Table 5.2: Notations

Notation Description

u(X,Sdr) Utility of item/itemset X in transaction Td of Sr

TU(Sdr) Utility of transaction Td of sequence Sr

α � β α is a subsequence of β, or α occurs in β

OccSet(α, Sr) Set of all the occurrences of α in sequence Sr

su(α, Sr) Utility of a sequence α in sequence Sr

α⊕ I Itemset-extended of sequence α and item I

α⊗ I Sequence-extended of sequence α and itemset {I}

Definition 47 (Transaction-sensitive sliding window) Given a user-specified window

size w and a data stream DS = 〈T1, T2, ..., TM〉, a transaction-sensitive sliding window

SW captures the w most recent transactions in DS. When a new transaction arrives,

the oldest one is removed from SW . The i-th window over DS is defined as SWi =

〈Ti, Ti+1, ..., Ti+w−1〉.

Definition 48 (Utility of a sequence α in a sequence Sr) Let õ = 〈Te1 , Te2 , ..., TeZ 〉

be an occurrence of α = 〈X1, X2, ..., XZ〉 in the sequence Sr ∈ DS. The utility of α

w.r.t. õ is defined as su(α, õ) =
Z∑
i=1

su(Xi, S
ei
r). The utility of α in Sr is defined as

su(α, Sr) = max{su(α, õ)|∀õ ∈ OccSet(α, Sr)}.

Consequently, the utility of a sequence Sr is defined as su(Sr) = su(Sr, Sr).

184

Definition 49 (Utility of a sequence α in a dataset D) The utility of a sequence α in a

dataset D is denoted and defined as su(α,D) =
∑
Sr∈D

su(α, Sr), where D is clear in the

context.

Definition 50 (Top-k high utility sequential patterns in sliding window SWi) A se-

quence α is called a top-k high utility sequential pattern in SWi, if there are less than k se-

quences whose utility in the current sliding window SWi is no less than su(α, SWi). The

optimal minimum utility threshold is denoted and defined asminUtilopt = min{su(β, SWi)|β ∈

THUSPSWi
}, where THUSPSWi

is the set of top-k high utility sequential patterns over

sliding window SWi.

Problem Statement. Given a sequence data streamDS and k, the problem of finding

the complete set of top-k high utility sequential patterns in sliding window SWi overDS

is to discover all the HUSPs whose utility is no less thanminUtilopt in the current sliding

window SWi.

5.2.2 Top-k High Utility Sequential Pattern Mining over Data streams

In this section, we propose an efficient algorithm called T-HUSP (Top-k High Utility

Sequential Pattern mining over data streams) to discover top-k HUSPs without specifying

minimum utility threshold. First, a basic approach called T-HUSPbasic is presented. Later,

we present two novel strategies to initialize and raise the threshold with respect to the

given k in T-HUSPbasic.

185

5.2.2.1 T-HUSPbasic approach

The proposed baseline approach T-HUSPbasic takes k as an input parameter and returns

the k sequences with the highest utilities over the current sliding window SWi. It is an

extended version of HUSP-Stream, the proposed method in Chapter 4 for mining high

utility sequential patterns over data streams, and it applies the idea of HUSP-Tree to keep

the information of potential top-k high utility sequential patterns over SWi.

T-HUSPbasic engages a structure called TKList to keep the information of top-k high

utility sequential patterns over the current sliding window and it is defined as follows:

Definition 51 Top-K HUSP List (TKList) is a fixed-size sorted list which maintains the

top-k high utility sequential patterns and their SeqUtilLists (See Definition 28) dynam-

ically. Each tuple in TKList has three elements: 〈α, SeqUtilList(α), util〉, where α is

the pattern and SeqUtiList(α) is the current SeqUtilList of α and util4 is the utility of

pattern α in the current sliding window SWi.

T-HUSPbasic employs a variable calledminUtil which is the current minimum utility

threshold and is set to zero at the beginning. This variable is used to prune unpromising

candidates during the mining process.

The basic idea of T-HUSPbasic is to modify the main procedure of the HUSP-Stream

algorithm to transform it in a top-k pattern mining algorithm. This is done as follows.

4Note that the utility of α can be also calculated using SeqUtilList(α).

186

In the construction phase, to find the top-k high utility sequential patterns, once the first

window forms, T-HUSPbasic first sets minUtil to 0. Then, similar to HUSP-Stream,

T-HUSPbasic constructs ItemUtilList and HUSP-Tree by applying the S-Step and I-Step

procedures. As soon as a new node is added to HUSP-Tree, the pattern represented by

the node, its SeqUtilList and its utility are added as a new tuple to TKList. Once k

valid patterns are found, the minUtil is raised to the utility of the pattern with the lowest

util value in TKList. Raising the minUtil value is used to prune the search space when

searching for more patterns. Thereafter, whenever a new node is inserted to the tree, its

pattern is added to TKList. Then, the patterns in TKList whose utility is not more

than or equal to minUtil anymore are removed from TKList, and minUtil is raised to

the util value of the kth pattern in TKList. T-HUSPbasic continues constructing HUSP-

Tree and finding more patterns until no node can be generated, which means that it has

found the top-k HUSPs in the current sliding window. In the update phase, since the

utility of patterns in TKList may change, the list will be emptied for the new window

and minUtil is set to zero to mine the correct set of top-k HUSPs in the new window.

During HUSP-Tree update, when a node is updated/added, its pattern, its SeqUtilList

and its utility are inserted as a new tuple to TKList. Once k valid tuples are inserted to

TKList, minUtil is raised to the util value of kth tuple in TKList. T-HUSPbasic continues

updating the tree until no node is updated or added to the tree.

Since HUSP-Stream is correct and complete, it is clear that T-HUSPbasic is correct

187

and will not miss any top-k HUSPs.

5.2.2.2 Effective Strategies

Although T-HUSPbasic correctly discovers the top-k high utility sequential patterns over a

sliding window, it generates too many invalid sequence candidates since minUtil starts

from 0. This directly degrades the performance of the mining task. To address this

problem, we propose two effective strategies, i.e., one for initializing the threshold in the

construction phase and one for initializing the threshold in the update phase, to improve

the performance.

Strategy 1: (PES: Pre-Evaluation using 1-sequences and sequences) The PES

strategy is applied during the construction phase of the algorithm. This strategy inserts

the utility of 1-sequences (items) and sequences in the current window to the TKList

before the mining phase. After all transactions in the first sliding window are successfully

inserted to ItemUtilList, PES calculates the utility of each item and each sequence. In

this phase, we insert every sequence and every distinct item in SW1 to TKList. Given

k = 4, in Figure 5.3 in SW1, the utility of item a in SW1 is calculated as follows:

u(a, SW1) = u(a, S1) + u(a, S2) = 4 + 8 = 12. The other utilities are u(b, SW1) = 18,

u(c, SW1) = 4 and u(d, SW1) = 4. Utility of each sequence can be easily calculated

using ItemUtilLists. For example, after SW1 is processed, S1 itself, its seqUtilList and

its utility (e.g., 30) will be inserted into the TKList. Similarly, the other sequence in

188

SW1 (e.g., S2) is scanned and it is inserted into the TKList. With the two sequences

and four items and their utilities in SW1, the utilities in the TKList are {36, 30, 18, 12},

and then minUtil = 12 after applying PES strategy.

As seen from the example, the PES strategy effectively raises the minimum threshold

to a reasonable level before the mining phase, and prevents from generating unpromising

candidates.

Strategy 2: (RTU: Raising threshold after update strategy) When a new transac-

tion Suv arrives, if the current window SWi is full, the oldest transaction Sdc expires. Sim-

ilar to HUSP-Stream, T-HUSP incrementally updates ItemUtilLists and HUSP-Tree to

find the top-k HUSPs in SWi+1. In addition to updating ItemUtilLists and HUSP-Tree, T-

HUSP updates TKListi (i.e., TKList for sliding window SWi) to initialize TKListi+1.

Our second strategy is to make use of the utility values of the top-k HUSPs in the previ-

ous sliding window to initialize the threshold when the window slides.

Let TKListi be the set of top-k HUSPs in the current sliding window SWi, TKList−i

be the updated set of top-k HUSPs after a transaction Sdc is removed from SWi. In order

to build TKList−i from TKListi, for each pattern α ∈ TKListi, T-HUSP removes all

the tuples from SeqUtilList(α) whose SID is Sc. Accordingly, util field for α is up-

dated. Given TKList−i , we define the minimum top-k utility (minTKUtil) of a sliding

window as follows.

Definition 52 Given sliding window SWi = {Ti, Ti+1, ..., Ti+w−1} and TKList−i , the

189

minimum top-k utility of a sliding window SWi is the minimum of utilities of the patterns

in TKList−i and is denoted as minTKUtili.

Lemma 12 Let utilk be the utility of the kth highest utility sequential pattern over sliding

window SWi+1, andminTKUtili be the minimum top-k utility of SWi. We have utilk ≥

minTKUtili.

Proof

Let SW be the union of the last (w-1) transactions in SWi. Then the next sliding window

SWi+1 = SW ∪ Svu where Svu is the new transaction in SWi+1. Given sequence α ∈

TKListi+1, since SW ⊂ SWi+1, then su(α, SW) ≤ su(α, SWi+1). According to

Definition 52, ∀α ∈ TKListi,minTKUtili ≤ su(α, SW) and the fact that there are k

sequences in TKListi, there are at least k sequences whose utility in SWi+1 is at least

minTKUtili.

2

According to this lemma, if the minimum utility threshold in SWi+1 is set tominTKUtili,

no top-k HUSPs will be missed.

5.2.2.3 T-HUSP

The overview of T-HUSP is presented in Algorithm 11. Similar to HUSP-Stream, it

includes three main phases: (1) Initialization phase, (2) Update phase and (3) HUSP

190

mining phase. The initialization phase applies when the input transaction belongs to the

first sliding window (i.e., when i ≤ w). In this phase, we first construct the ItemUtil-

Lists for storing the utility information for every item in the input transaction Sir. When

there are w transactions in the first window (i.e., when i = w), we initialize TKList and

minUtil by applying PES strategy based on 1-sequences in the ItemUtilLists and the

sequences in the first sliding window. Then, we construct HUSP-Tree for the first win-

dow. During the tree construction, whenever a new node is added to the tree, TKList

and minUtil are updated as explained in section 5.2.2.1. If there are already w transac-

tions in the window when the new transaction Sir arrives, Sir is added to the window and

the oldest transaction in the window is removed. This is done by the update phase of the

algorithm (lines 9-12). We first update TKList and minUtil using RTU strategy. Then

the ItemUtilLists is updated using the new transaction and the current minUtil. Given

the updated ItemUtilLists, we apply PES strategy to update TKList andminUtil based

on the 1-sequences and sequences in the current window. After the update phase, if the

user requests to find top-k HUSPs from the new window, T-HUSP returns all the patterns

and their util values in the current TKList as top-k HUSPs (i.e., THUSPSWi
).

191

Algorithm 11 T-HUSP
Input: a new transaction Sir, window size w, ItemUtilLists, HUSP-Tree, TKList

Output: ItemUtilLists, HUSP-Tree, TKList, THUSPSWi

1: if i ≤ w (when Sir is a transaction in the first window) then

2: ∀ item ∈ Sir, put(r, i, u(item, Sir)) to ItemUtilLists(item)

3: if i = w then

4: Initialize TKList and minUtil using PES strategy in the first window.

5: Construct HUSP-Tree using ItemUtilLists and minUtil, Update minUtil whenever

a new node is added to the tree

6: end if

7: else

8: Update TKList and minUtil using RTU strategy

9: Update ItemUtilLists using Sir, w and minUtil

10: Update TKList and minUtil using PES strategy in the current window

11: Update HUSP-Tree, TKList and minUtil using Sir, w

12: end if

13: if the user requests to get top-k HUSPs for the current window then

14: THUSPSWi ← all the patterns and their util values stored in TKList

15: end if

16: Return ItemUtilLists, HUSP − Tree, THUSPSWi if requested

192

5.3 Experimental Results

In this section, the proposed methods for finding top-k high utility patterns (i.e., item-

set/sequence) over a data stream are evaluated. All the algorithms are implemented in

Java. The experiments are conducted on an Intel(R) Core(TM) i7 2.80 GHz computer

with 8 GB of RAM.

5.3.1 T-HUDS Performance Evaluation

5.3.1.1 Datasets and Performance Measures

Four datasets are used in our experiments. The first one is Connect-4 from the UC-Irvine

Machine Learning Database Repository [11]. It is compiled from the Connect-4 game

state information. The total number of transactions is 67,557, while each transaction is

with 43 items. It is a dense dataset with a lot of long itemsets. The second dataset is the

IBM synthetic dataset T10I4D100K [27], where the numbers after T , I , and D repre-

sent the average transaction size, average size of maximal potentially frequent patterns,

and the number of transactions, respectively. The other two datasets are BMS-POS and

ChainStore. BMS-POS contains several years worth of point-of-sale data from a large

electronics retailer [27]. ChainStore is a dataset with over a million transactions, ob-

tained from [51]. Table 5.3 shows details of the datasets. The ChainStore dataset already

contains external utilities of the items and the frequency of each item in a transaction.

193

Table 5.3: Details of the datasets

Dataset # Trans. # Items Avg.Length batchSize winSize

Connect-4 67,557 132 43 10,000 3

IBM 100,000 870 10.1 10,000 5

BMS-POS 515,597 1,657 6.53 50,000 4

ChainStore 1,112,949 46,086 7.2 100,000 6

But the three other datasets do not provide external utility or the quantity of each item

in each transaction. Hence, we randomly generated these numbers using a method de-

scribed in [7] as follows. The external utility of each item is generated between 1 and

10 by using a log-normal distribution and the quantity of each item in a transaction is

generated randomly between 1 and 10. batchSize in Table 5.3 shows how many transac-

tions are in a batch. It is set in the same way as in [7] so that each dataset has around 10

batches. The last column, winSize, shows the number of batches in a sliding window.

We will later change the winSize setting to show the effect of winSize on performance

measures.

We use the following performance measures in our experiments: (1) number of gen-

erated candidates: the total number of generated PTKHUIs at the end of phase I among

all the sliding windows, (2) Threshold, the threshold value obtained at the end of execu-

tion, (3) Run Time (seconds): the total execution time of a method over all the sliding

194

windows, (4) First Phase Time (seconds): the total run time of a method for phase I (gen-

erating PTKHUIs) over all the windows, (5)Second Phase Time (seconds): the total run

time of a method for phase II (finding Top-HUI set) over all the windows, (6) Memory

Usage(Mega Bytes): the memory consumption of a method, average over all the sliding

windows.

5.3.1.2 Methods in Comparison

To the best of our knowledge, there does not exist a top-k high utility itemset mining

method over data streams. Hence, two modified approaches are implemented as com-

parison methods. The first one is the method proposed in [61] which discovers top-k

high utility itemsets from a static dataset based on the UP-Growth method [57]. Since

this method is not applicable to data streams, we run this method on each sliding win-

dow individually, and collect the aggregated values for the performance measures. This

method is named TKU . TKU has different versions, each employing a different set of

threshold-raising strategies [61]. Here we use TKU by employing all of the proposed

strategies for raising the threshold. TKU is able to set up its initial threshold to either

0 or the kth highest value of the lower bounds for the utility of certain 2-itemsets. Note

that we need to scan the dataset twice to compute them before mining starts, which is not

suitable for data stream mining. As will be observed, the obtained threshold using this

method is better sometimes.

195

The second method that we compare our method with is the HUPMS algorithm [7],

which discovers all the high utility itemsets over data streams given a user-input mini-

mum utility threshold. To compare with the top-k mining methods, we run the HUPMS

algorithm with a minimum utility threshold being the threshold raised at the end of the

Phase I execution of the basic version of TKU [61]. This is a fair choice of the threshold

because a too low threshold would certainly make HUPMS very time-consuming, and a

too high threshold would unfairly favor HUPMS in terms of run time. We denote this

HUPMS method that uses a threshold from TKU as HUPMST in our results.

In order to see the effect of using PrefixUtil to prune the search space in comparison

to other over-estimate utility measures, we compare our performance of PrefixUtil

with TWU and the model proposed by [57] in terms of HUI mining with different user-

specified minimum utility thresholds. In such a comparison, we do not use any threshold-

raising strategies in T-HUDS, but let it return all the HUIs satisfying the input utility

threshold.

To see how effective our threshold-setting/raising strategies is in the first phase of

the method, we use two versions of our T-HUDS method to compare with TKU and

HUPMS. The first one, denoted as T-HUDSI , uses only the 3 strategies that apply to

the first phase of our method. The second one, denoted as T-HUDS is the full version of

our method that uses all the 4 strategies, including the one in the second phase.

196

5.3.1.3 Effectiveness of the Obtained Threshold

Figure 5.4 shows the threshold values obtained from different methods on the four datasets

for differen k values, where k is the number of output HUIs specifed by the user (i.e.,

k in top-k). Since HUPMS does not raise the threshold during the mining process, we

just compare the results of TKU with the proposed methods. The results of TKU are the

average threshold values through all of the windows. This figure shows that T-HUDSI

and T-HUDS have similar performance and their final thresholds are higher than TKU

especially on the large datasets. Since none of these three methods miss any top-k HUIs,

the higher the final threshold, the better the method. Although TKU could get better or

similar results on some experiments, both T-HUDSI and T-HUDS outperform TKU in

general. Note that, as it is presented later, not only TKU is time-consuming to find top-k

HUIs, but also some of its strategies for raising the threshold requires a large amount of

memory. Between T-HUDSI and T-HUDS, T-HUDS is bit better, but not significantly.

This means that the 3 strategies used in Phase I of T-HUDS are very effective, raising

the threshold close to the exact utility of the kth highest utility itemset. Recall that the

threshold value at the end of Phase II is the exact utility of the kth itemset in the top-k

list.

The figure also shows that the threshold value decreases when k increases. It is

because the larger the k value is, the lower the threshold value needs to be to return more

197

010203040

100 300 600 900Thresh
old ×1

000
k

TKUT-HUDS_IT-HUDS
020040060080010001200

100 300 600 900Thresh
old ×1

000

k

050100150200250300

100 300 600 900Thresh
old ×1

000
k

TKUT-HUDS_IT-HUDS
020406080100120

100 300 600 900Thresh
old ×1

000

k

(a)

(c)

(b)

(d)
Figure 5.4: Reached threshold on (a) Connect-4, (b) IBM, (c) BMS-POS,(d) ChainStore

Datasets

itemsets.

5.3.1.4 Number of generated candidates

In addition to the obtained threshold, the number of generated candidates (i.e., PTKHUIs)

at the end of the first phase is another metric to assess the effectiveness of HUI mining

methods. Table 5.4 presents the numbers of generated candidates on different datasets

from different methods for different k values. The numbers show that T-HUDS signif-

icantly outperforms TKU. Although TKU could achieve better threshold on some ex-

198

periments in the previous section, since for each window, it starts from a small thresh-

old value (initial value), it generates much more candidates in comparison to T-HUDS.

The results for T-HUDSI are not shown here because they are the same as the ones

for T-HUDS. The table also shows that HUPMST method generates fewer candidates in

smaller datasets than T-HUDS, but much more candidates on larger datasets. The num-

ber of candidates generated by HUPMST is determined by the minimum utility threshold

given to the method, which is the threshold reached at the end of Phase I of TKU . Even

though the final Phase I threshold of T-HUDS is higher than that of TKU , the number

of candidates generated by HUPMST can still be smaller than that from T-HUDS. This is

because the initial threshold of T-HUDS can be lower than the final Phase I threshold of

TKU . But on very large dataset (such as ChainStore), the initial threshold of T-HUDS

can be higher than or close to the final Phase I threshold of TKU since the number of

candidates generated by HUPMST is much higher than the one by T-HUDS.

199

Table 5.4: Number of candidates generated in phase I

Dataset k TKU T-HUDS HUPMST

Connec-4

100 2280595 1189624 657934

300 2587463 1258241 717934

600 2865490 1315869 857934

900 3069445 1472473 1007934

IBM

100 103485 69959 22038

300 135998 84898 26668

600 198671 94850 54969

900 276668 100875 217874

BMS-POS

100 45054 35697 31407

300 59357 37251 35682

600 119479 47215 42112

900 177725 50189 51463

ChainStore

100 40419 19751 101435

300 140236 32213 152451

600 258318 102385 211627

900 371408 227826 282074

200

0200040006000800010000

100 300 500 700 900
Time (s

ec.)
k 020406080100120140160

100 300 500 700 900

Time (s
ec.)

k

TKUT-HUDST-HUDS_IHUPMS_T

0100200300400500600

100 300 500 700 900

Time (s
ec.)

k 050010001500

100 300 500 700 900
Time(se

c.)
k

TKUT-HUDST-HUDS_IHUPMS_T

(a) (b)

(c) (d)
Figure 5.5: Run time on (a) Connect-4, (b) IBM, (c) BMS-POS, (d) ChainStore Datasets

5.3.1.5 Efficiency of T-HUDS: Run Time

Figure 5.5 shows the total run time of each method, including the run time for both Phase

I and Phase II. On the IBM and BMS-POS datasets, the execution time of TKU is much

worse than others, and HUPMST is a bit worse than T-HUDSI and T-HUDS. On Connect-

4 and ChainStore, T-HUDSI and T-HUDS are significantly faster than both HUPMST

and TKU. On the largest dataset (ChainStore) and the most densest dataset (Connect-

4), HUPMST is the worst, even much worse than TKU. The run time for T-HUDSI and

T-HUDS are very similar, although T-HUDS is slightly faster due to its raising min util

dynamically for pruning out unpromising itemsets in Phase II. Also, it can be observed

that the run time of the proposed methods are not affected significantly by the k values,

and it increase slightly and slowly when k increases. It is also worth mentioning that

201

050100150200250

100 300 500 700 900
Time (S

ec.)
k

0510152025303540

100 300 500 700 900

Time (S
ec.)

k 0100200300400500

100 300 500 700 900
Time (S

ec.)
k

TKUT-HUDST-HUDS_IHUPMS_T

(a) (b)

(c) (d)

05
10152025

100 300 500 700 900

Time (S
ec.)

k

TKUT-HUDST-HUDS_IHUPMS_T

Figure 5.6: Run Time for Phase I: (a) Connect-4, (b) IBM, (c) BMS-POS, (d) ChainStore

T-HUDS significantly outperforms other methods in both large and dense datasets.

To see how each method works in different phases, Figures 5.6 and 5.7 present the

execution time for Phases I and II, respectively. It can be observed that in both phases

the proposed methods outperform TKU and HUMPT . In Phase I, the two proposed

methods have the same performance. But in the second phase, T-HUDS is more efficient.

This is because it dynamically increases the min util threshold in Phase II and conse-

quently the number of candidates compared with the running top-k list is fewer than that

in T-HUDSI .

202

0200040006000800010000

100 300 500 700 900
Time (S

ec.)
k

0306090120150180

100 300 500 700 900

Time (S
ec.)

k

TKUT-HUDST-HUDS_IHUPMS_T

0100200300400500

100 300 500 700 900

Time (S
ec.)

k 02004006008001000

100 300 500 700 900
Time (S

ec.)
k

TKUT-HUDST-HUDS_IHUPMS_T

(a) (b)

(c) (d)
Figure 5.7: Run Time for Phase II: (a) Connect-4, (b) IBM, (c) BMS-POS, (d) ChainStore

5.3.1.6 Efficiency of T-HUDS: Memory Usage

In this section, we report the memory usage taken by the trees, their header tables, aux-

iliary data structures and one window of transactions. Table 5.5 reports the memory

consumption on the four datasets. TKU consumes the most memory, even though the

structure of its tree node is the smallest among the three methods. This is due to the large

amount of memory that it needs to initialize the threshold and also the larger number of

conditional UP-trees recursively generated during the mining process. It is caused by the

fact that TKU starts by a low threshold value at the beginning of each window and its

strategies for raising the threshold are not very effective in the data stream environment.

Also, as TKU is not designed for mining over data streams, it cannot utilize the infor-

mation from the past windows to raise the threshold. In all cases, the proposed method

203

Table 5.5: Memory comparison (MB), k=600

Dataset TKU T-HUDS HUPMST

Connect-4 368 31.27 72.7

IBM 287 5.18 7.58

BMS-POS 301 15.2 33.5

ChainStore 4287 102 305

Table 5.6: Methods with different strategies

Method maxUtilList MIUList minTopKUtil

T -HUDS1 × X X

T -HUDS2 X × X

T -HUDS3 X X ×

T-HUDS consumes less memory than both TKU and HUPMST . Note that the node struc-

ture in HUPMST is also smaller than that in T-HUDS. But again the effective pruning

strategies used in T-HUDS lead to generation of a smaller stack of trees in the recursive

execution of the tree mining algorithm.

204

5.3.1.7 Effectiveness of the Individual Strategies

In this section we investigate the impact of each of the three threshold-setting strate-

gies used in Phase I of our method. Table 5.6 describes three different versions of

the proposed method. The first method does not use maxUtillist values to set the

threshold but uses MIUList and the minimum top-k utility from the last window (i.e.,

minTopKUtil). T-HUDS2 increases the threshold by means ofmaxUtilList andminTopKUtil,

but not by MIUList. T-HUDS3 applies the first and second strategies only.

Table 5.7 and Figure 5.8 show the number of generated candidates and run time of

these three methods on the IBM, BMS-POS and ChianStore datasets, respectively. In

general,T-HUDS3 (the method without the third strategy) is the worst among the three

methods. It means that third strategy (i.e., using the last window’s minTopKUtil) is

the most effective strategy. T-HUDS2 has better performance than T-HUDS1, meaning

that the first strategy (i.e., the use of maxUtilList) works better than the second one

(i.e., using MIUList). Since in our implementation of TKU , MIUList is used as one

of the threshold-raising strategies, this results explain in part why T-HUDS outperforms

TKU .

205

Table 5.7: Number of candidates at the end of first phase for different versions of T-

HUDS:

Dataset k T-HUDS1 T-HUDS2 T-HUDS3

IBM

100 89804 77968 224262

300 110487 87108 365500

600 113352 95988 394716

900 116889 107163 408102

BMS-POS

100 44117 39075 111172

300 51201 49870 104019

600 63544 61962 120607

900 80827 80469 149012

ChainStore

100 24409 21620 61511

300 44276 43125 89950

600 137794 134363 261534

900 366902 365277 676419

5.3.1.8 Effectiveness of PrefixUtil

Below we evaluate the use of PrefixUtil (in comparison to the use of other over-

estimate utility models) for pruning the search space during the recursive tree mining

206

020406080

100 300 500 700 900

Time (
Sec.)

k
0100200300400500

100 300 500 700 900
Time(S

ec.)
k

0500100015002000
100 300 500 700 900

Time(S
ec.)

k

T-HUDS_1T-HUDS_2T-HUDS_3
(a) (b) (c)

Figure 5.8: Run time for different versions of T-HUDS: (a) IBM, (b) BMS-POS, (c)

ChainStore datasets

process. For such a purpose, we run T-HUDS in the problem setting of HUPMS. That is,

we do not use any of the threshold raising strategies in T-HUDS and use it as a method

for finding all the high utility itemsets that satisfy an input min util threshold. TKU

mines top-k HUIs based on the UPGrowth method [57]. Hence TKU without threshold

raising strategies is UPGrowth method that finds all high utility itemsets given an input

minimum utility threshold. Since UPGrowth is not applicable to data streams directly

and we would like to evaluate the performance of its over-estimate utility model not the

method, we use its proposed over-estimate utility model as the over-estimated utility in

T-HUDS to replace prefixUtil. This method is called T-HUDSU . This is to make T-

HUDS and T-HUDSU the same as HUPMS except that T-HUDS uses PrefixUtil while

T-HUDSU uses the proposed over-estimate model in [57] and HUPMS uses TWU to

prune the search space. Hence, a comparison between these methods will illustrate the

207

110100100010000100000

1 2 3 4#Candi
date

Threshold (%) 110100100010000

0.04 0.05 0.06 0.07#Candi
date

Threshold (%)

HUPMST-HUDST-HUDS_U110100100010000100000

1 2 3 4#Candi
date

Threshold (%)(a) (b) (c)
Figure 5.9: Impact of PrefixUtil on the number of generated candidates on (a) IBM,

(b) BMS-POS, (C) ChainStore datasets

(a) (b) (c)
05

10152025

1 2 3 4 5Time (S
ec.)

Threshold (%) 050100150200250
1 2 3 4 5Time (S

ec.)

Threshold (%)
0500100015002000

0.04 0.05 0.06 0.07 0.08Time (S
ec.)

Threshold (%)

HUPMST-HUDST-HUDS_U

Figure 5.10: Impact of PrefixUtil on run time on (a) IBM, (b) BMS-POS, (c) Chain-

Store datasets

impact of PrefixUtil.

Figures 5.9 and 5.10 present the number of generated candidates in Phase one of the

three methods and their total run time with respect to different minimum utility threshold

values. The minimum utility threshold is given by the percentage of total transaction

utility values of the database. The reason why we chose a different range of the threshold

value for the ChainStore dataset is that it is a sparse dataset and the number of potential

208

0200400600800

2 4 6 8 10Run Tim
e (Sec.)

Number of batches

T-HUDST-HUDS_IHUPMS050100150200

3 5 7 9Run Tim
e (Sec.)

Number of batches010203040

3 5 7 9Run Tim
e (Sec.)

Number of batches(a) (b) (c)
Figure 5.11: Effect of the window size on the run time: (a) IBM, (b) BMS-POS, (c)

ChainStore datasets

candidates for large threshold values is too low.

These figures show that our algorithm outperforms HUPMS and T-HUDSU methods

in terms of both the number of generated candidates and the run time. Moreover, these

figures also demonstrate that the number of candidates and runtime differences increase

in general when the minimum utility threshold decreases. As discussed earlier, the reason

for PrefixUtil to be more effective in pruning the search space is that it is a closer over-

estimate of the true utility.

5.3.1.9 T-HUDS performance with different window sizes

Because T-HUDS dynamically updates the tree and the set of top-k patterns once the win-

dow slides, its performance may vary depending on the window size parameter,winSize.

In general, for a sliding window-based data stream mining algorithm, winSize is an im-

portant factor on efficiency. Therefore, in order to determine the effect of changes in

209

050100150200250300350400450500

0.5 0.6 0.7 0.8 0.9 1
Time (

sec.)

Proportion of transactions

IBMChainStoreBMS-POS

Figure 5.12: Scalability of T-HUDS on different datasets (k=500).

winSize on the run time of T-HUDS, we analyze its performance by changing the value

of this parameter. Below we present the results on the IBM, BMS-POS and ChainStore

datasets, keeping the k value fixed, but changing the number of batches in the sliding

window. We compare the performance of our algorithms with the HUPMST in this ex-

periment. Figure 5.11 shows the results for k = 300. The y-axes in the graphs represent

the overall run time (including tree construction time, update time, and mining time)

for all the windows. The x-axes represent the window size in the number of batches.

Each graph shows the trend in execution time with the variation of the window size on a

dataset. On all the winSize values, the proposed method is much faster than HUPMST ,

and its run time increases slowly as the window size increases.

210

5.3.1.10 Scalability

To evaluate the scalability of the proposed algorithms, we generate a number of subsets

of the IBM , BMS − POS and ChainStore datasets The size of a subset ranges from

50% to 100% transactions of the dataset it is generated from. Figure 5.12 illustrates

how the run time of the algorithms for producing top-600 HUIs varies with different

dataset sizes. We observe that the run time increases (almost) linearly when the number

of transactions increases. This indicates that T-HUDS scales well with the size of dataset.

Table 5.8: Parameters of IBM data generator

D Number of sequences

C Average number of transactions in a sequence

T Average number of items in a transaction

S Average number of itemsets in a potential maximal sequential pattern

I Average number of items in an itemset of a potential maximal sequential pattern

N Number of distinct items

5.3.2 T-HUSP Performance Evaluation

In this section, we evaluate the performance of T-HUSP on a variety of datasets.

211

5.3.2.1 Datasets and Performance Measures

Both synthetic and real datasets are used in the experiments. Two synthetic datasets

DS1:D10K-C10-T3-S4-I2-N10K and DS2:D100K-C8-T3-S4-I2-N1K were generated by

the IBM data generator [2]. The definition of parameters used by the IBM data generator

are shown in the Table 5.8.

Chainstore is a real-life dataset acquired from [51], which already contains internal

and external utilities. In order to use this dataset as a sequential dataset, we grouped

transactions in different sizes such that each group represents a sequence of transactions.

Another real dataset BMS is obtained from SPMF [25] which contains 3340 distinct

items and consists of 77,512 sequences of clickstream data from an e-retailer. We follow

a previous study [4] to generate internal and external utility of items. The external utility

of each item is generated between 1 and 100 by using a log-normal distribution and the

internal utilities of items in a transaction are randomly generated between 1 and 100.

Table 5.9 shows characteristics of the datasets and parameter settings in the experi-

ments. The Window Size column of Table 5.9 shows the default window size for each

dataset.

We use the following measures to evaluate the performance of the algorithms:

• Number of potential high utility sequential patterns (#PHUSP): the total number

of potential high utility sequential patterns produced by the algorithm in all sliding

212

Table 5.9: Details of parameter setting

Dataset #Seq #Trans # Items Window Size (w)

DS1 10K 100K 1000 50K

BMS 77K 120K 3340 60K

DS2 100K 800K 1000 400K

ChainStore 400K 1000K 46,086 500K

windows.

• Run Time (sec.): the total execution time of the algorithms.

• Memory Usage (MB): the average memory consumption per window.

5.3.2.2 Methods in Comparison

Since there is no algorithm can solve the problem of top-k high utility sequential pattern

mining over data streams, and it is not easy to upgrade the existing methods such as [67]

either, we thus compare T-HUSP with our proposed baseline approach as described in

subsection 5.2.2.1. Our preliminary experiments show that, T-HUSPbasic cannot return

results in a reasonable time for the large datasets. Hence, we implement another version

of T-HUSP called T-HUSPPES which applies PES strategy to initialize the threshold

when a window forms or slides. We also use the threshold-based approach (i.e., HUSP-

213

0
50000

100000
150000
200000
250000

10
0

30
0

50
0

70
0

90
0

PHUSP

(a) DS1
Minimum utility threshold (%)

#P
H

U
SP

Minimum utility threshold (%)

#P
H

U
SP

(c) DS2

(b) BMS

T-HUSP T-HUSP_PES
HUSP-Stream T-HUSP_basic

#P
H

U
SP

Minimum utility threshold (%)
(d) ChainStore

#P
H

U
SP

Minimum utility threshold (%)

0
200000
400000
600000
800000

1000000

10
0

30
0

50
0

70
0

90
0

0

500000

1000000

1500000

2000000

10
0

30
0

50
0

70
0

90
0

0
500000

1000000
1500000
2000000
2500000

10
0

30
0

50
0

70
0

90
0

Figure 5.13: Number of potential HUSPs on (a)DS1, (b) BMS, (c) DS2, (d) ChainStore

Datasets

Stream) proposed in Chapter 4 as another baseline approach. To make the top-k ap-

proaches and threshold based approaches comparable, we run top-k approaches first. Af-

ter getting the utility of the k-th pattern, that is the optimal minimum utility in Definition

50, we use this value as the minimum utility threshold for running the threshold-based

method.

214

5.3.2.3 Number of generated candidates

In this section, we evaluate the algorithms in terms of the number of potential high utility

sequential patterns (PHUSPs) produced by the algorithms. Figure 5.13 shows the re-

sults under different k values. As shown in Figure 5.13, T-HUSP produces much fewer

PHUSPs than T-HUSPPES and T-HUSPbasic. For example, on DS1, when the K = 300,

the number of PHUSPs generated by T-HUSPbasic is 8 times more than that generated by

T-HUSP. On the larger datasets, i.e., DS2 and ChainStore, the number of PHUSPs grows

quickly when K increases and T-HUSPbasic could not return results in a reasonable time.

The main reason why T-HUSP produces much fewer candidates is that T-HUSP raises

the threshold efficiently. Hence it avoids generating a large number of PHUSPs during

the mining process.

5.3.2.4 Efficiency of T-HUSP: Run Time

We compare T-HUSP with T-HUSPbasic, T-HUSPPES and HUSP-Stream on DS1, BMS,

DS2 and ChainStore datasets. The run time of mining top-k high utility sequential pat-

terns by these methods are presented in Figure 5.14. The results show that T-HUSP

is generally more than 10 times faster than T-HUSPbasic. For DS2 and ChainStore, T-

HUSPbasic cannot finish the mining with a very small k (with k = 10 and 20) in 24+

hours. In addition, T-HUSP outperforms T-HUSPPES significantly. Besides, the gap

215

Run Time

Minimum utility threshold (%)

0

2000

4000

6000

100 300 500 700 900

Ex
ec

ut
io

n
tim

e
(s

ec
.)

Minimum utility threshold (%)

Ex
ec

ut
io

n
tim

e
(s

ec
.)

Minimum utility threshold (%)

Ex
ec

ut
io

n
tim

e
(s

ec
.)

(a) DS1

(c) DS2

(b) BMS

Minimum utility threshold (%)

Ex
ec

ut
io

n
tim

e
(s

ec
.)

(c) ChainStore

T-HUSP T-HUSP_PES
HUSP-Stream T-HUSP-basic

0
1000
2000
3000
4000
5000

100 300 500 700 900

0
2,000
4,000
6,000
8,000

10,000

100 300 500 700 900

0
2,000
4,000
6,000
8,000

10,000
12,000

100 300 500 700 900

Figure 5.14: Run time on (a) DS1, (b) BMS, (c) DS2, (d) ChainStore Datasets

between T-HUSP and T-HUSPPES increases with the increase of k. The results indi-

cate that the proposed strategies, including PES and PTU, are effective for top-k pattern

mining.

5.3.2.5 Efficiency of T-HUSP: Memory Usage

The memory consumption of the algorithms on the DS1, BMS, DS2 and ChainStore

datasets is shown in Figure 5.15. It can be seen that T-HUSP uses less memory than

T-HUSPbasic and T-HUSPPES on the different datasets. The reason T-HUSP generates

less numbers of candidates is that it applies both proposed strategies, thus increases the

216

0
300
600
900

1200
1500

100 300 500 700 900
0

500
1000
1500
2000

100 300 500 700 900

Minimum utility threshold (%)

M
em

or
y

U
sa

ge
 (M

B
)

Minimum utility threshold (%)

Minimum utility threshold (%)

M
em

or
y

U
sa

ge
 (M

B
)

M
em

or
y

U
sa

ge
 (M

B
)

(a) DS1

(c) DS2

(b) BMS

Minimum utility threshold (%)

M
em

or
y

U
sa

ge
 (M

B
)

(d) ChainStore

0
500

1000
1500
2000
2500

100 300 500 700 900
0

1000

2000

3000

100 300 500 700 900

T-HUSP T-HUSP_PES
HUSP-Stream T-HUSP_basic

Figure 5.15: Memory usage on(a)DS1, (b) BMS, (c) DS2, (d) ChainStore Datasets

threshold quicker than the other top-k mining approaches. Since all the methods use

similar pruning strategies in the mining phase, the main factor in memory consumption

is the threshold used by each of them. Since HUSP-Stream uses the optimal threshold,

it can prune the search space efficiently, thus its memory usage is less than the other

methods.

5.4 Summary

In this chapter, we proposed two methods for finding top-k high utility patterns over

sliding windows of a data stream. The first proposed method, called T-HUDS, finds top-

217

k high utility itemsets over data streams. Our contributions are summarized as follows.

• Four efficient strategies to raise the threshold: a major challenge in top-k HUI

mining is that the number of itemsets is exponential and it is infeasible to compute

the utilities of all the itemsets and identify the top-k ones. A minimum utility

threshold is thus needed in the mining process to prune the search space. We

proposed four strategies for initializing and dynamically adjusting the minimum

utility threshold during the top-k HUI mining process. We proved that using these

strategies will not miss any top-k HUIs.

• Efficient search space pruning strategy: we proposed an over-estimate of the

itemset utility, which is closer to the true utility than TWU. We prove that this

estimate (i.e., prefix utility) has a special type of downward closure property, which

allows it to be used in the pattern growth method to effectively prune the search

space. Using a closer over-estimate results in fewer candidates being generated in

the first phase of the method.

• Compact data structure: we proposed a compact data structure (called HUDS-

Tree) to store the information about the transactions in a sliding window. The tree

is used to compute the prefix utility and to initialize and adjust the minimum utility

threshold. The main differences of HUDS-Tree in comparison to the existing data

structures are as follows. (1) its node stores the utility information of the itemset

218

for each batch in a sliding window to facilitate the update process. (2) Instead of

storing TWU or other over-estimate utility values in a node, a node in a HUDS-

Tree stores the PrefixUtil of the represented itemset for each batch, which is a

closer estimate of the true utility of the itemset than TWU.

• Efficient top-k high utility itemset mining algrithm: using HUDS-Tree and the

proposed strategies and prefix utility model, we designed a method for mining top-

k high utility itemsets from data streams. To the best of our knowledge, existing

methods for mining HUIs over data streams do not address the issue of mining

top-k HUIs, and previous top-k HUI mining methods do not work on data streams.

• Extensive experiments: we conducted an extensive experimental evaluation of

the proposed method on both real and synthetic datasets, which shows that our

proposed method is faster and less memory consuming than the state-of-the-art

methods.

Inspired by T-HUDS, we proposed our second method, called T-HUSP, for discov-

ering of top-k high utility sequential patterns over data streams. Our contributions are

summarized as follows.

• Three efficient strategies to raise the threshold: we proposed three strategies

for initializing and dynamically adjusting the minimum utility threshold during

the top-k HUSP mining process. We proved that using these strategies will not

219

miss any top-k HUSPs.

• Efficient top-k high utility sequential pattern mining algrithm: we proposed a

sliding window-based method for mining top-k high utility sequential patterns over

data streams. To the best of our knowledge, existing methods for mining HUSPs

over data streams do not address the issue of mining top-k HUSPs, and previous

top-k HUSP mining methods do not work on data streams.

• Extensive experiments: we conducted extensive experiments on both real and

synthetic datasets to evaluate the performance of the proposed algorithm. Experi-

mental results show that T-HUSP serves as an efficient solution for the problem of

top-k HUSP mining over data streams.

220

6 Mining Meaningful Patterns in Real Life Applications

In this chapter, we present two applications of high utility sequential pattern mining in

solving real world problems. We first conduct an analysis on a real web clickstream

dataset, called (Globe), obtained from a Canadian news web portal to extract attractive

reading behavior (to be defined later). Then, we apply one of our proposed methods (i.e.,

MAHUSP5) to a publicly available time course microarray dataset, called GSE6377 [47],

to identify disease-related gene expression sequences.

6.1 A Utility-based Users’ Reading Behavior Mining

News recommendation plays an important role in helping users find interesting pieces

of information. A major approach to news recommendation focuses on modeling web

users’ reading behavior (reading behaviour in short). This approach discovers users’

reading behaviour from web clickstreams using various data mining techniques such as

frequent pattern mining. Nonetheless, there are some common deficiencies in the fre-

5For consistency, we use MAHUSP here as the main method to discover patterns. However, the other
proposed methods are applicable for both applications

221

Table 6.1: Top-4 HUSPs versus Top-4 FSPs with respect to time spent and support

. () (.), 60, , ? 1474 152 − . . . 1471 121 ′ ′ . . .17: − 1212 116 ′ 17: ′ 994 86 , 576 286 , , 380 254 − 17: − 536 247 ; . . ′ 836 220
quent pattern based approaches to web users’ reading behavior mining. First, they dis-

cover users’ reading behavior patterns based on the frequency of the news being viewed

by users, which may not accurately capture users’ interests. Second, the news domain

is a dynamic environment. When users visit a news website, they are usually looking

for important and up-to-the-minute information. However, the frequency based pattern

mining approaches do not consider the importance (e.g., recency) of news articles.

As the first application, we analyze a real-world web clickstream dataset, called

Globe, obtained from a Canadian news web portal (The Globe and Mail6). The dataset

was created based on a random sample of users visiting The Globe and Mail during a

six-month period in 2014. It contains 116,000 sequences and 24,770 news articles. Each

sequence in the dataset corresponds to the list of news articles read by a subscribed user

6http://www.theglobeandmail.com/

222

0

1000

2000

3000

0.
09

0
0.

09
2

0.
09

4
0.

09
6

0.
09

8
0.

10
0

0.
12

0
0.

14
0 0

1000
2000
3000
4000
5000

0.
09

0
0.

09
2

0.
09

4
0.

09
6

0.
09

8
0.

10
0

0.
12

0
0.

14
0

(a)
Minimum utility threshold (%)

R
un

 T
im

e(
Se

c.
)

Minimum utility threshold (%)
(b)

M
em

or
y

U
sa

ge
(M

B
)

MAHUSP_S MAHUSP_L NaïveHUSP
RndHUSP USpan

Figure 6.1: (a) Run time, (b) Memory Usage on the Globe dataset

(a)
Minimum utility threshold (%)

Pr
ec

is
io

n
(%

)

Minimum utility threshold (%)
(c)

0
20
40
60
80

100

0.
09

0
0.

09
2

0.
09

4
0.

09
6

0.
09

8
0.

10
0

0.
12

0
0.

14
0

(b)
Minimum utility threshold (%)

R
ec

al
l (

%
)

F-
M

ea
su

re
 (%

)
MAHUSP_S MAHUSP_L NaïveHUSP RndHUSP

0
20
40
60
80

100

0.
09

0
0.

09
2

0.
09

4
0.

09
6

0.
09

8
0.

10
0

0.
12

0
0.

14
0

0
20
40
60
80

100

0.
09

0
0.

09
2

0.
09

4
0.

09
6

0.
09

8
0.

10
0

0.
12

0
0.

14
0

Figure 6.2: (a) Precision, (b) Recall and (c) F-Measure performance on the Globe dataset

in a visit.

6.1.1 Definitions

The most important entities involve in modeling reading behavior are news articles and

users. Below, we first present definitions and propose a news attractive model as the

utility model to take both news importance and user’s interest into account. Then, we

223

Session , { , , 〉 〈 , 〉S 〈 , {1, 1,14}〉〈 , {1, 0,3}〉〈 , {1, 1, 22}〉〈 , {0, 1,7}〉 〈 , 2.6〉〈 , 1.1〉〈 , 3〉〈 , 1.3〉S 〈 , {0, 0,4}〉〈 , {1, 0,15}〉〈 , {1, 1,18}〉 〈 , 0.18〉〈 , 1.6〉〈 , 2.8〉S 〈 , {1, 1,14}〉〈 , {0, 0,1}〉〈 , {1, 0,19}〉〈 , {0, 1, 3}〉 〈 , 2.6〉〈 , 0.04〉〈 , 1.86〉〈 , 1.1〉S 〈 , {1, 0,4}〉〈 , {1, 0,8}〉〈 , {0, 0,13}〉 〈 , 1.1〉〈 , 1.3〉〈 , 0.59〉S 〈 , {1, 0,9}〉〈 , {1, 0,2}〉 〈 , 1.4〉〈 , 1.09〉
Figure 6.3: An example of a web clickstream dataset

 Popularity (, 〈 , 〉)w 3 1 35 4 201 3 37 2 142 5 104 3 12
Figure 6.4: The importance of news articles based on popularity and recency

define and extract attractive reading behaviour.

Let NW = {nw1, nw2, ..., nwn} be a set of distinct news articles. A user session S

(or sessions in short) is defined as an ordered list of visited articles 〈nw1, nw2, ..., nwz〉

within a session. In this work, we define a web clickstream dataset as a set of ses-

sions {S1, S2,, SK}, where each session Sr has a unique session identifier and con-

sists of an ordered list of news articles and a set of variables associated to each visited

news article. Figure 6.3 shows an example of a clickstream dataset D with 5 sessions

{S1, S2, S3, S4, S5}. In this example, three variables Shared, Liked and Time Spent have

been captured per visited article. For example, item 〈nw1, {1, 1, 14}〉 in S1 means that

the user visited news nw1 and pressed like button and also shared nw1 in social media.

224

The user also spent 14 minutes to read nw1.

Definition 53 The importance of news nw is a score which is calculated based on one

or more domain-driven variables var1, var2, ..., vark of nw and is defined as follows.

NI(nw) = fnw(var1, var2, ..., vark), where fnw is the function for calculating the im-

portance of nw.

Table 6.4 shows values for two domain-driven variables popularity and published

date (i.e., recency) of six news articles. In this table, given news nw and the two

variables, we calculate the importance of each news article as follows. NI(nw) =

fnw(popularity, recency) = popularity × recency.

Definition 54 The interestingness of news nw to user usr in session Sr is a score cal-

culated based on user engagement measures. Given set of measures em1, em2, ..., emk,

the interestingness is denoted and defined as follows. INS(nw, Sr) = fins(em1, em2, ..., emk),

where fins is the function for calculating interestingness score.

For example in Table 6.3, three measures Shared, Liked and Time Spent are con-

sidered to calculate the interestingness score of news nw to user usr. In this example,

fins is defined as fins(Shared, Liked, T ime Spent) = val(Shared) + val(Liked) +

Norm(val(Time Spent)), where val returns the value of the measure andNorm(Time Spent)

is the normalized value of Time Spent. The last column in this table shows the converted

dataset based on the calculated scores.

225

Definition 55 (News Attractive Model) Given news nw and session Sr, news attractive

model is defined as a combination of news importance and interestingness of nw to usr

as follows. nam(nw, Sr) = fnam(NI(nw), INS(nw, Sr)), where fnam is the function

for calculating news attractiveness.

Definition 56 Given a reading behavior pattern P = {nw1, nw2, ..., nwL} where L

is the length of P , the attractiveness of P in session Sr is defined and denoted as:

nam(P, Sr) =
∑
nw∈P

nam(nw, Sr).

Definition 57 The attractiveness of reading behaviour P in clickstream dataset D is

defined and denoted as: nam(P,D) =
∑
Sr∈D

∑
nw∈P

nam(nw, Sr).

Definition 58 (Attractive reading behaviour in a web clickstream datasetD) A read-

ing behaviour P is an attractive reading behaviour iff nam(P,D) is not less than a user

specified minimum attractiveness threshold.

6.1.2 Demonstration

Our goal is to take both news importance and interestingness into account when dis-

covering users’ reading behaviours. Here, we assume that more recent news are more

important7 and the time user spends on a news article reflects his/her interest in the news,

7Other importance measures can be used. In this experiment we chose to use recency to measure the
importance of a news article.

226

that is if the user is not interested in the news, he/she does not spend much time reading

it and vice versa.

Given news nw and user usr, the interestingness of nw to usr is defined as browsing

time (in seconds) that usr spent on nw8. In addition, since the importance of nw is

dynamic and varying from time to time, the importance of nw is defined as:

NI(nw) =
1

accessDate(nw)− releasedDate(nw) + 1
,

where accessDate is the date that usr clicks on nw and releasedDate is the released

date of nw. Note that 1 in the denominator is added to avoid zero division.

Given news nw and a session Sr in the web clickstream dataset D, the attractiveness

(i.e., utility9) of nw in Sr is defined as: nam(nw, Sr) = timeSpent(nw, S)×NI(nw).

We apply MAHUSP to discover HUSPs based on the above utility model (e.g., news

attractive model). We also apply SPADE algorithm implemented by [26] to discover

frequent sequential patterns (i.e.,FSPs) from the Globe dataset. Table 6.1 presents top-4

HUSPs (i.e., attractive reading behaviour) and top-4 FSPs of length 2, sorted by time

spent and support respectively. Table 6.1 suggests that the pattern with high support is

not necessarily a pattern of users’ interest if we use time-spent as the interestingness

8We consider the time interval between two consecutive visited news articles as time spent of the former
article. The last visited news article is removed from the sequence since we cannot calculate its time spent.
We also consider the maximum time spent 15 minutes for news articles whose time spent is more than 15
minutes.

9The news attractive model can be plugged in as desired. The use of more sophisticated model may
further improve the quality of the results.

227

measure. It is because there exist less frequent patterns (e.g., HUSP1, HUSP2), which

have higher time-spent than highly frequent patterns (e.g., FSP1, FSP2). These patterns

can be directly used to produce recommendations to navigate users based on a semantic

measure (e.g., news freshness and interestingness) rather than a statistical measure (e.g.,

support). For example, in Table 6.1, if a user reads the first article of HUSP1 whose

title is ”retiree, 60, wonders how long her money will last”, we can recommend the

second article in HUSP1 with title ”which is better, a RRIF or an annuity? You may be

surprised”. These patterns are also useful for the portal designers to understand users’

navigation behavior and improve the portal design and e-business strategies.

We also evaluate the performance of MAHUSP in comparison to the other methods

implemented in Section 3.4 of Chapter 3. Figure 6.1 shows the results in terms of run

time and memory usage. NaiveHUSP is the fastest method due to the fact that it only

keeps the utility of each item over data streams. However, its utility approximation is

inaccurate and causes a high rate of false positives. USpan is the slowest, since it re-runs

the whole mining process on the current data stream to discover HUSPs. Figure 6.1(b)

shows the memory usage of the methods. Since RndHUSP, MAHUSP L and MAHUSP S

consume the same amount of memory, we only present the results of MAHUSP S, Naive-

HUSP and USpan. NaiveHUSP uses more memory than MAHUSP S on Globe since it

needs to keep a huge list of items and their utilities into the memory. Figure 6.2 shows the

Precision, Recall and F-Score values for the four methods with different δ values on the

228

Table 6.2: (a) An example of a time course microarray dataset, (b) Fold changes of

gene/probe values

 240 546 100 50321 98 454 974410 350 251 243128 786 135 344253 820 482 90290 150 256 864600 188 99 40500 555 510 80200 400 350 450

 1 2.2 −2.4 −4.81 −3.2 1.4 3.01 −1.1 −1.6 −1.61 6.1 1.0 2.61 3.2 1.9 −2.81 −1.9 −1.1 2.91 −3.1 −6.6 −151 1.1 1.0 −6.21 2 1.7 2.2() ()
Globe dataset. MAHUSP S and MAHUSP L outperform the other methods significantly

with an average Precision, Recall and F-score value of 95%, 75% and 83% respectively,

over the Globe dataset.

6.2 A Disease-related Gene Expression Sequence Discovery

Microarray has been widely used in the biomedical field for discovering differentially

expressed genes in human diseases. Recently, time course issue analysis has become

critical in illness events such as cancer formation. Such diseases have to be studied and

monitored for a period of time to identify abnormal alternations in gene expression. Such

alternations may cause an interruption of basal condition, thus ease the cell death.

Data mining techniques such as frequency-based sequential pattern mining approach

[20] have been applied on microarray datasets to identify potential gene regulations that

229

occur in a period of time. These methods mostly choose important gene expression se-

quences based on the frequency/support framework. However, as clinical studies have

shown, the frequency alone may not be informative enough to discover gene expression

sequences regarding an specific disease. For example, some genes are more important

than others in causing a particular disease and some genes are more effective than others

in fighting diseases. The sequences contain these highly valuable genes may not be dis-

covered by the frequency-based approaches because they neither consider the importance

of each gene, nor temporal behavior of genes under biological investigation.

As the second application, we propose a new approach to identifying disease-related

gene expression sequences by taking the importance of genes with respect to a specific

disease and their temporal properties under biological treatments into account. We con-

duct an analysis on a time course gene expression microarray dataset, called GSE6377[47],

downloaded from the GEMMA database10. Below we first define a utility model to dis-

cover disease-related gene expression sequences effectively and then we present how a

time-course microarray dataset is converted to a utility-based sequential database. Fi-

nally, we apply MAHUSP to find disease-related gene expression sequences from the

dataset.

10http://www.chibi.ubc.ca/Gemma/home.html

230

6.2.1 Definitions

In this section, we first adopt definitions related to high utility pattern mining to the

context of the application and then we define the utility model to discover disease-related

gene expression sequences.

Let G = {g1, g2, ..., gn} be a set of distinct genes. A geneset GI is a set of genes. A

time-course gene expression sequence dataset is a set of patients {P1, P2,, PK}, where

each patient has a patient identifier Pr and consists of an ordered list of time point (TP)

samples where each TP is a geneset. The time point sample TPd for patient Pr is denoted

as P d
r . Table 6.2(a) shows an example of time course microarray dataset obtained from

a biological investigation which consists of three patients whose IDs are P1, P2 and P3.

In this table, the gene expression values of three genes G1, G2 and G3 are presented over

four time point samples TP1, TP2, TP3 and TP4.

Definition 59 The importance of gene g is a score which is calculated based on one or

more disease-related variables var1, var2, ..., vark which is defined as follows. GI(g) =

fg(var1, var2, ..., vark), where fg is the function for calculating the importance of g.

Definition 60 (Temporal behavior of gene g in time point sample TP d
r w.r.t. disease

dis.) A real value is assigned to each gene g in time point sample TPd of patient Pr (i.e.,

P d
r) that specifies the relative abundance of that gene in the time point and is denoted as

EGSdis(g, P
d
r).

231

Definition 61 (Gene-Disease Association (GDA)) Given gene g and time point P d
r ,

Gene-Disease Association is defined as a combination of gene importance and temporal

behavior of g w.r.t. disease dis as follows. GDA(g, P d
r) = fgda(GI(g), EGS(g, Sdr)),

where fgda is the function for calculating association score.

Definition 62 The Gene-Disease Association of a geneset GI in a time point sample

TPd of a patient Pr whereGI ⊆ TPd, is defined asGDA(GI, P d
r) =

∑
g∈GI

GDA(g, Sdr).

Definition 63 (Occurrence of a gene expression sequence α in a patient Pr) Given a

patient Pr = 〈P 1
r , P

2
r , ..., P

n
r 〉 and a gene expression sequence α = 〈GI1, GI2, ..., GIZ〉

where P i
r is a time point sample and GIi is a geneset, α occurs in Pr iff there exist

integers 1 ≤ e1 < e2 < ... < eZ ≤ n such that GI1 ⊆ P e1
r , GI2 ⊆ P e2

r , ..., GIZ ⊆ P eZ
r .

The ordered list of genesets 〈P e1
r , P

e2
r , ..., P

eZ
r 〉 is called an occurrence of α in Pr. The

set of all occurrences of α in Pr is denoted as OccSet(α, Pr).

Definition 64 (Gene-disease association of a gene expression sequence α in a patient

sequence Pr) Let õ = 〈P e1
r , P

e2
r , ..., P

eZ
r 〉 be an occurrence of α = 〈GI1, GI2, ..., GIZ〉

in the sequence Pr. The gene-disease association of α w.r.t. õ is defined asGDA(α, õ) =

Z∑
i=1

GDA(GIi, P
ei
r). The gene-disease association of α in Pr is defined asGDA(α, Pr) =

max{GDA(α, õ) | õ ∈ OccSet(α, Pr)}.

Definition 65 (Gene-disease association of a gene expression sequence α in a time

course gene expression sequence datasetD) The gene-disease association of a gene ex-

232

pression sequence α in a time course datasetD is defined asGDA(α,D) =
∑
Pr∈D

GDA(α, Pr).

Definition 66 (Important Disease-related Gene Expression Sequence (IDGS)) Given

a threshold δ, a gene expression sequence α is an Important Disease-related Gene Se-

quence (IDGS) in time course dataset D, iff GDA(α,D) is no less than δ.

Utility-based Sequential Database Construction. In order to discover disease-

related gene expression sequences from a time course microarray dataset, we need to

convert the dataset into a utility based sequential database.

In each time point, each gene has a temporal behavior which is expressed by a real

value. We consider the first time point as a baseline to derive the temporal behaviour of

each gene at each time point. Hence, the expression values in each time point are divided

by the first time point values. Table 6.2(b) shows the output as a fold change matrix.

Given the fold change matrix and a threshold γ, each expression value in the dataset

is transformed as up-regulated (representing by + meaning that values are greater than

γ), down-regulated (representing by − meaning that values are less than -γ), or normal

(neither expressed nor repressed) and only the gene expressions that are up-regulated or

down-regulated are preserved. Each gene (i.e., Gx) in a sample can be thought of as

being two items, one item referring to the gene being up (i.e., Gx+), the other referring

to the gene being down (i.e., Gx−).

Given γ = 1.5, Table 6.3 shows the converted dataset. For example, in patient P1,

233

Table 6.3: Converted utility-based sequential dataset from time course microarray dataset

in Table 6.2(a)

 { 2.2 3.2 } { 2.4 1.6 } { 4.8 3.0 1.6 }{ 6.1 3.2 1.9 } { 1.9 } { 2.6 2.8 2.9 }{ 3.1 2.0 } { 6.6 1.7 } { 15 6.2 2.2 }
0.8 0.6 0.1()

()

up-regulated G1+(2.2) and down-regulated G2−(3.2) are considered to occur at the same

time point (i.e., TP2). In this dataset, a set of time points (i.e., TPs) for each patient forms

a sequence. Given gene g and time point TPi, its absolute fold change value represents

EGS(g, TPi). Table 6.3(b) shows the importance of genes with respect to a disease. In

this work, the importance of Gx represents the importance of both Gx+ and Gx− gene

items.

6.2.2 Demonstration

In order to evaluate our proposed utility model and also the performance of MAHUSP

to find disease-related gene expression sequences (i.e., IDGSs) from a time course gene

expression dataset, we mine the GSE6377 dataset. McDunn et al.[47] attempted to detect

8,793 transcriptional changes in 11 ventilator-associated pneumonia patients leukocytes

across 10 time points. Our goal is to decipher pneumonia-related gene expression se-

234

Table 6.4: Top-20 genes related to pneumonia

 1 6 2 2 11 1 162 2 2 7 2 12 1 171 3 6 8 3 13 2 184 9 2 14 2 195 3 10 2 15 17 20
quences. We also consider the score proposed by DisGeNET 11 as the importance of each

gene with respect to a disease. This score considers several variables such as number and

type of sources (level of curation, model organisms) and the number of publications sup-

porting the association to rank genes with respect to a specific disease.

We apply MAHUSP to extract HUSPs (i.e., IDGSs) based on the proposed util-

ity model. We also run a frequency-based algorithm, PrefixSpan[50], to discover fre-

quent gene expression sequences (i.e., FGSs) from the dataset. Table 6.5 shows top-4

HUSPs (e.g., disease-related gene expression sequences) extracted by MAHUSP and

top-4 FGSs extracted by PrefixSpan, sorted by the utility (i.e., GDA) value and sup-

port respectively. Given a gene expression sequence Si and disease dis, we evaluate the

quality of the results using popularity of a sequence score [13] which is defined as fol-

lows: Pop(α, dis) =

∑
i∈alpha

w(i,dis)

|α| , where w(i, dis) is the importance of popular gene

i for disease dis. We consider the genes presented in Table 6.4 as popular genes and

w(i, dis) = 20− rank(i, dis) + 1. For the genes not presented in the list, w(i, dis) = 1.

11http://www.disgenet.org/web/DisGeNET/menu

235

Table 6.5 suggests that the frequent gene expression sequences are not necessarily popu-

lar w.r.t. the disease even though their support value is more than 90%. This is due to the

fact that these patterns are discovered based on their frequency in the dataset which is not

informative enough. On the other hand, MAHUSP returns the patterns whose popular-

ity is relatively high. These patterns help biologists select relevant sequences regarding a

specific disease and also identify the relationships between important genes and the other

genes.

Table 6.5: Top-4 HUSPs versus Top-4 FGSs with respect to utility and support

. (. . ,) , (%)(2,)(2, 6,) 15.75 22%(6,)(6,) 14.5 21%()(6,)() 14.5 21%
()()() 10.5 17%. (. . ,) (,) (%)(1)(, 1, 146) 1 91%()(9, 25 3) 1 91%(1)(1, 146, 11) 1 91%(1, 11)(1) 1 91%

Figure 6.5 shows the performance of different methods on the GSE6377 dataset in

terms of run time and memory usage. The dataset is a dense dataset and as we expected

the number of HUSPs is huge. For example, given threshold 0.07, there are 5, 6542, 360

HUSPs in the dataset. In this experiment availMem is set to 2GB. The proposed meth-

ods outperform USpan significantly. NaiveHUSP is the fastest method since it works

based on item utilities in the dataset to find HUSPs. But, its false positive rate is high

236

0
3000
6000
9000

12000
15000

0.
07

0
0.

07
2

0.
07

4
0.

07
6

0.
07

8
0.

08
0 0

2000

4000

6000

0.
07

0
0.

07
2

0.
07

4
0.

07
6

0.
07

8
0.

08
0

(a)
Minimum utility threshold (%)

R
un

 T
im

e(
Se

c.
)

Minimum utility threshold (%)
(b)

M
em

or
y

U
sa

ge
(M

B
)

MAHUSP_S MAHUSP_L NaïveHUSP
RndHUSP USpan

GSE6377

Figure 6.5: (a) Run time, (b) Memory Usage on the GSE6377 dataset

due to its inaccurate approximate utility. Figure 6.6 shows Precision, Recall and F-Score

values for the four methods. In general, both proposed methods outperform the other

methods with an average Precision, Recall and F-score values of 75%, 67% and 71%

over the GSE6377 dataset.

(a)
Minimum utility threshold (%)

Pr
ec

is
io

n
(%

)

Minimum utility threshold (%)
(c)

0
20
40
60
80

100

0.
07

0
0.

07
2

0.
07

4
0.

07
6

0.
07

8
0.

08
0

(b)
Minimum utility threshold (%)

R
ec

al
l (

%
)

F-
M

ea
su

re
 (%

)

MAHUSP_S MAHUSP_L NaïveHUSP RndHUSP

0
20
40
60
80

100

0.
07

0

0.
07

2

0.
07

4

0.
07

6

0.
07

8

0.
08

0

0
20
40
60
80

100

0.
07

0

0.
07

2

0.
07

4

0.
07

6

0.
07

8

0.
08

0

GSE6377

Figure 6.6: (a) Precision, (b) Recall and (c) F-Measure performance on the GSE6377

dataset

237

6.3 Summary

In order to demonstrate the applicability of the proposed methods in practical cases, we

discover meaningful patterns in two real-life applications. Our contributions are summa-

rized as follows.

• We conducted an analysis on a real web clickstream dataset obtained from a Cana-

dian news web portal to extract web users’ reading behavior patterns.

• We analyzed a publicly available time course microarray dataset to identify gene

sequences correlated with a specific disease.

• Using several quality measures, the mined utility-based sequential patterns are

compared with the patterns in the frequency/support framework. The evaluation

results showed that our approach can effectively discover key patterns represent-

ing user reading behavior in news domain and disease-related gene expression se-

quences in biomedical domain. The results of this chapter also showed the poten-

tial value of this work in real-life applications in terms of discovering meaningful

patterns from sequence databases.

238

7 Conclusions and Future Work

Mining of streaming data for extracting novel insights is a fundamental task in many do-

mains such as market analysis, web mining, mobile computing and network analysis. One

of the important problems in such domains is identifying informative sequential patterns

with respect to a business objective, such as patterns that represent profitable purchase

sequences in market analysis, or sequences of web pages related to users’ interest in web

mining. These patterns can be discovered using high utility sequential pattern mining

(HUSP) methods. The main objective of HUSP mining is to extract valuable and useful

sequential patterns from data by considering a business objective such as profit, user’s

interest, cost, etc.

A number of studies have been conducted on mining HUSPs, but they are mainly

intended for non-streaming data and thus do not take data stream characteristics into

consideration. Mining HUSP from such data poses many challenges. First, it is infeasible

to keep all streaming data in the memory. Second, mining algorithms need to process the

arriving data in real time with one scan of data. Third, the distribution of data varies

239

over time, and hence analysis results need to be updated in real time. Last but not least,

depending on the minimum utility threshold value, the number of patterns returned by a

HUSP mining algorithm can be large and overwhelms the user. In general, it is hard for

the user to determine the value for the threshold. Thus, algorithms that can find the most

valuable patterns (i.e., top-k high utility patterns) are more desirable. Mining the most

valuable patterns is interesting in both static data and data streams.

7.1 Summary of Contributions

To address these research limitations and challenges, this dissertation proposed both

threshold-based and top-k-based algorithms for discovering high utility sequential pat-

terns over data streams. We worked on mining HUSPs over both a long portion of a

data stream and a short period of time. We made the following contributions. Origi-

nal research has been accomplished in pursuit of this degree, and the results have been

published in [72], [73], [74], [75], [76].

First, we tackled the problem of memory adaptive HUSP mining over data streams.

We proposed an approximation algorithm, called MAHUSP, to discover HUSPs over the

entire data streams. MAHUSP is based on a compressed tree structure and two memory

adaptive mechanisms that can adapt the memory usage to the available memory by prun-

ing the least promising part of the tree when necessary. We proved that MAHUSP returns

all the true HUSPs under certain circumstances. The experimental results showed that

240

our method effectively adjusts the memory usage over the course of HUSP mining with

very little overhead, and it returns more accurate results than other methods in compari-

son.

Second, we presented a novel approach for mining recent high utility sequential pat-

terns over data streams. We proposed an algorithm, called HUSP-Stream, to discover

high utility sequential patterns in a transaction-sensitive sliding window over a sequence

data stream. Two data structures named ItemUtilLists and HUSP-Tree were proposed to

dynamically maintain the essential information of potential HUSPs over data streams.

We also defined a new over-estimated sequence utility measure named Sequence-Suffix

Utility (SFU), and used it to effectively prune the HUSP-Tree. Both real and synthetic

datasets were used to show the performance of HUSP-Stream. In the experiments, we

compared HUSP-Stream with two approaches that use USpan [66], a state-of-the-art

algorithm for mining HUSPs in static databases, to learn HUSPs over data streams.

The experiments showed that HUSP-Stream substantially outperforms USpan-based ap-

proaches in the number of generated potential HUSPs, run time and memory usage es-

pecially when the size of the dataset is very large (e.g., HUSP-Stream updates the data

structures (window sliding time) up to three orders of magnitudes (1,500 times) faster

than the USpan on DS1 dataset when the minimum utility threshold is 0.1%). The exper-

imental results also showed that our proposed SFU tree-pruning strategy is much more

effective than the TSWU strategy. Our approach is scalable in both time and memory, and

241

serves as an efficient solution to the new problem of mining recent high utility sequential

patterns over data streams.

Third, we proposed an efficient algorithm, called T-HUDS, for mining top-k high util-

ity itemsets in sliding windows over streaming data. T-HUDS uses a novel over-estimate

utility model, i.e., the PrefixUtil model, to effectively prune the search space for finding

top-k HUIs. We proved that PrefixUtil satisfies a special type of the downward closure

property, which allows it to be effectively used to prune the search space in a pattern

growth process. We also addressed a major challenge in top-k pattern mining by devis-

ing several strategies for initializing and raising the minimum utility threshold during

the mining process. A FP-tree-like data structure, HUDS-tree, and two auxiliary lists,

maxUtilList and MIUList, are designed to store the information that is needed for com-

puting PrefixUtil and for initializing and dynamically adjusting the threshold. We also

designed a strategy that uses the information from the top-k patterns in the previous win-

dow to help initialize the threshold for the new window. In addition, in the second phase

of top-k HUI mining, the min util threshold is also raised to help fast find the top-k pat-

terns from the candidates. We proved that using these strategies to raise the threshold and

using PrefixUtil to prune the search space do not miss any top-k HUIs. These strate-

gies not only help find top-k high utility itemsets effectively, they also reduce the run

time and memory consumption of the algorithm significantly. Inspired by T-HUDS, we

extended HUSP-Stream and proposed a single pass algorithm, called T-HUSP, to incre-

242

mentally maintain the content of top-k HUSPs in the sliding window in a summary data

structure, named TKList, and discover top-k HUSPs efficiently. In addition, two efficient

strategies have been proposed for raising the threshold. Our experiments are conducted

on both synthetic and real datasets. The results show that both methods incorporating the

efficiency-enhanced strategies demonstrate impressive performance without missing any

high utility itemset/sequential patterns.

Moreover, in this dissertation, we showed the effectiveness and efficiency of the pro-

posed methods in real-life applications. We applied one of the proposed methods (i.e.,

MAHUSP) to a real web clickstream dataset and a real biosequence dataset to find mean-

ingful patterns. The mined utility-based sequential patterns are compared with the pat-

terns in the frequency/support framework. The results showed that high utility sequential

pattern mining provides more meaningful patterns in real-life applications.

7.2 Future Work

Although we are the first to incorporate the concept of streaming mining into high utility

sequential pattern mining and address the problem of mining high utility sequential pat-

terns over data streams in this dissertation, there are still ample room for exploration in

the future.

243

1. Dynamic landmark window: Our proposed method in the first chapter (MAHUSP)

discovers high utility sequential patterns (HUSPs) over a specific type of landmark

window in which the landmark was set to the beginning of the data stream. As fu-

ture work, we will design an approach such that users can dynamically change the

landmark and discover patterns within the updated landmark window efficiently.

2. Different approaches to calculate utility: In this work, we measured the utility

of a sequence by its maximum utility and did not consider other approaches to cal-

culate the utility of a sequence. It would be worthwhile to explore new approaches

to calculate utility. The major challenge is that the correctness of the proposed

overestimate utility models (e.g., SFU, RSU and TSWU) in this dissertation may

not hold when using other approaches. Below, we present two approaches that

we will explore to calculate utility: (1) Weighted sum of occurrences’ utility: in

some applications (e.g., market basket analysis), the first occurrence is more im-

portant than the later ones in terms of customer acquisition factors. One approach

is to assign different weights to different occurrences (e.g., based on the order of

appearance in the sequence) and define utility as a weighted sum of utility of the

occurrences. (2) Distance-based utility: in some applications (e.g., gene expres-

sion sequence discovery), we are dealing with long sequences. Considering only

one occurrence (the one with maximum utility) may not present the true utility

of a gene expression sequence and we may lose some important gene expression

244

sequences. For such applications, it is better to consider the sum of the maxi-

mum utility of occurrences within certain distances (e.g., the time distance among

items/itemsets belonging to an occurrence is no more than a threshold) or different

intervals (e.g., sum of maximum utility of occurrences for every month). In this

way, we will have better insight about the utility of a sequence.

3. Resource-aware high utility sequential pattern mining over data streams: With

the pass-through features of data streams, resources other than memory such as

computation power, bandwidth or CPU, are particularly valuable in the streaming

environment. For example, the available CPU will affect the processing speed and

consequently the performance of the algorithms. How to keep the pace with high

speed data streams while the processing speed changes is a challenging problem.

As future work, we will extend our methods to consider such resources. The over-

all goal will be to maximize effectiveness of the methods by making the best use

of available resources dynamically and adaptively.

245

Bibliography

[1] R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In VLDB,

1994.

[2] R. Agrawal and R. Srikant. Mining sequential patterns. In ICDE, pages 3–14, 1995.

[3] C. F. Ahmed, S. Tanbeer, and B. Jeong. A framework for mining high utility web

access sequences. In IETE Journal, 28:3–16, 2011.

[4] C. F. Ahmed, S. K. Tanbeer, and B. Jeong. A novel approach for mining high-utility

sequential patterns in sequence databases. In ETRI Journal, 32:676–686, 2010.

[5] C. F. Ahmed, S. K. Tanbeer, and B. Jeong. A novel approach for mining high-utility

sequential patterns in sequence databases. In ETRI Journal, 32:676–686, 2010.

[6] C. F. Ahmed, S. K. Tanbeer, and B. Jeong. A framework for mining high utility

web access sequences. In IETE Journal, 28:3–16, 2011.

[7] C. F. Ahmed, S. K. Tanbeer, and B. S. Jeong. Interactive mining of high utility

246

patterns over data streams. Expert Systems with Applications, 39:11979–11991,

2012.

[8] C. F. Ahmed, S. K. Tanbeer, B. S. Jeong, and Y. K. Lee. Efficient tree structures

for high-utility pattern mining in incremental databases. IEEE Transactions on

Knowledge and Data Engineering, 21:1708–1721, 2009.

[9] J. Ayres, J. Flannick, J. Gehrke, and T. Yiu. Sequential pattern mining using a

bitmap representation. In In Proc. of ACM SIGKDD Intl. Conf. on Knowledge

Discovery and Data Mining, pages 429–435, 2002.

[10] V. S. T. B. E. Shie, P. S. Yu. Efficient algorithms for mining maximal high utility

itemsets from data streams with different models. Expert Systems with Applica-

tions, 39:12947–12960, 2012.

[11] K. Bache and M. Lichman. UCI machine learning repository, 2013.

[12] B. Berendt and M. Spiliopoulou. Analysis of navigation behaviour in web sites

integrating multiple information systems. The VLDB Journal, 9(1):56–75, Mar.

2000.

[13] S. Bringay. Discovering novelty in sequential patterns: application for analysis of

microarray data on alzheimer disease. In Studies in health technology and infor-

matics, pages 1314–1318, 2010.

247

[14] A. G. Büchner and M. D. Mulvenna. Discovering internet marketing intelligence

through online analytical web usage mining. SIGMOD Rec., 27(4):54–61, Dec.

1998.

[15] P. P. C. Rassi and M. Teisseire. Speed : Mining maximal sequential patterns over

data streams. In In Proc. of the IEEE Int’l Conf. on Intelligent Systems, pages

546–552, 2006.

[16] L. Cao, Y. Zhao, H. Zhang, D. Luo, C. Zhang, and E. Park. Flexible frameworks for

actionable knowledge discovery. Knowledge and Data Engineering, IEEE Trans-

actions on, 22(9):1299–1312, 2010.

[17] R. Chan, Q. Yang, and Y. Shen. Mining high-utility itemsets. In Proc. of Third

IEEE Int’l Conf. on Data Mining, pages 19–26, 2003.

[18] L. Chang, T. Wang, D. Yang, and H. Luan. Seqstream: Mining closed sequential

patterns over stream sliding windows. In In Proc. of the IEEE International Conf.

on Data Mining, pages 83–92, 2008.

[19] G. Chen, X. Wu, and X. Zhu. Mining Sequential Patterns across Data Streams.

PhD thesis, University of Vermont, 2005.

[20] C.-P. Cheng, Y.-C. Liu, Y.-L. Tsai, and V. S. Tseng. An efficient method for mining

248

cross-timepoint gene regulation sequential patterns from time course gene expres-

sion datasets. BMC Bioinformatics, 14(12):1–12, 2013.

[21] J. Cheng, Y. Ke, and W. Ng. A survey on algorithms for mining frequent itemsets

over data streams. Knowledge and Information Systems, 16:1–27, 2008.

[22] Y. L. Cheung and A. W. Fu. Mining frequent itemsets without support threshold:

with and without item constraints. IEEE Transactions on Knowledge and Data

Engineering, 16:1052–1069, 2004.

[23] K. Chuang, J. Huang, and M. Chen. Mining top-k frequent patterns in the presence

of the memory constraint. The VLDB Journal, 17:1321–1344, 2008.

[24] A. Erwin, R. P. Gopalan, and N. R. Achuthan. A bottom-up projection based algo-

rithm for mining high utility itemsets. In Proceedings of 2nd International Work-

shop on Integration Artificial Intelligence and Data Mining, pages 3–11, 2007.

[25] P. Fournier-Viger, A. Gomariz, T. Gueniche, A. Soltani, C. Wu, and V. S. Tseng.

Spmf: a java open-source pattern mining library. Journal of Machine Learning

Research (JMLR), 15:3389–3393, 2014.

[26] P. Fournier-Viger, A. Gomariz, A. Soltani, and T. Gueniche. Spmf: Open-source

data mining library. http://www.philippe-fournier-viger.com/spmf/, 2013.

249

[27] B. Goethals and M. J. Zaki. Frequent itemset mining dataset repository,

http://fimi.cs.helsinki.fi/data/, 2004.

[28] L. Golab, D. Dehaan, and E. Demaine. Identifying frequent items in sliding win-

dows over on-line packet streams. In Proceedings of ACM SIGCOMM internet

measurement conference, pages 173–178, 2003.

[29] J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal, and M. Hsu. Freespan: Fre-

quent pattern-projected sequential pattern mining. In In Proc.of ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, pages 355–

359, 2010.

[30] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation.

SIGMOD Rec., 29:1–12, 2000.

[31] Y. Hirate, E. Iwahashi, and H. Yamana. Tf2p-growth: An efficient algorithm for

mining frequent patterns without any thresholds. In Proc. of IEEE ICDM’04 Work-

shop on Alternative Techniques for Data Mining and Knowledge Discoverey, 2004.

[32] C. Ho, H. Li, F. Kuo, and S. Lee. Incremental mining of sequential patterns over a

stream sliding window. In In Proc. of the ICDM Workshops, pages 677–681, 2006.

[33] L. Junqiang, W. Ke, and B. Fung. Direct discovery of high utility itemsets with-

250

out candidate generation. In 12th IEEE International Conference on Data Mining

(ICDM), pages 984–989, 2012.

[34] G.-C. Lan, T.-P. Hong, and V. S. Tseng. Tightening upper bounds of utility val-

ues in utility mining. In In Proceedings of the 28th workshop on Combinatorial

Mathematics and Computation Theory, pages 11–16, 2011.

[35] K. S. C. Leung and F. Jiang. Frequent itemset mining of uncertain data streams

using the damped window model. In Proceedings of the 2011 ACM Symposium on

Applied Computing, pages 950–955, 2011.

[36] H. F. Li, H. Y. Huang, Y. C. Chen, Y. J. Liu, and S. Y. Lee. Fast and memory

efficient mining of high utility itemsets in data streams. In Proc. of the 8th IEEE

Int’l Conf. on Data Mining, pages 881–886, 2008.

[37] Y. C. Li, J. S. Yeh, and C. C. Chang. Isolated items discarding strategy for discov-

ering high utility itemsets. Data and Knowledge Engineering, 64:198–217, 2008.

[38] W.-Y. Lin, S.-F. Yang, and T.-P. Hong. Memory-aware mining of indirect associa-

tions over data streams. In IDAM 2013. Springer Netherlands, 2013.

[39] B. Liu, W. Hsu, H.-S. Han, and Y. Xia. Mining changes for real-life applications.

In Proceedings of the Second International Conference on Data Warehousing and

251

Knowledge Discovery, DaWaK 2000, pages 337–346, London, UK, UK, 2000.

Springer-Verlag.

[40] M. Liu and J. Qu. Mining high utility itemsets without candidate generation. In

Proceedings of the 21st ACM international conference on Information and knowl-

edge management, pages 55–64, 2012.

[41] M. Liu and J. Qu. Mining high utility itemsets without candidate generation. In

Proceedings of the 21st ACM international conference on Information and knowl-

edge management, pages 55–64, 2012.

[42] Y. Liu, W. k. Liao, and A. Choudhary. A fast high utility itemsets mining algorithm.

In Proceedings of the 1st international workshop on Utility-based data mining,

pages 90–99, 2005.

[43] Y. Liu, W. Liao, and A. Choudhary. A two-phase algorithm for fast discovery

of high utility of itemsets. In Proceedings of the 9th Pacific-Asia Conference on

Knowledge Discovery and Data Mining, pages 689–695, 2005.

[44] N. R. Mabroukeh and C. I. Ezeife. A taxonomy of sequential pattern mining algo-

rithms. ACM Comput. Surv., 43(1):3:1–3:41, 2010.

[45] G. S. Manku and R. Motwani. Approximate frequency counts over data streams.

In Proceedings of VLDB, pages 346–357, 2002.

252

[46] A. Marascu and F. Masseglia. Mining sequential patterns from temporal streaming

data. In In Prc. of the ECML/PKDD Workshop on Mining Complex Data, pages

355–359, 2005.

[47] J. McDunn, K. Husain, A. Polpitiya, A. Burykin, J. Ruan, Q. Li, W. Schierding,

N. Lin, D. Dixon, and W. Zhang. Plasticity of the systemic inflammatory response

to acute infection during critical illness: development of the riboleukogram. PloS

one, 3(2):e1564, 2008.

[48] L. Mendes, B. Ding, and J. Han. Stream sequential pattern mining with precise

error bounds. In ICDM ’08, pages 941–946, 2008.

[49] S. Ngan, T. Lam, R. C. Wong, and A. W. Fu. Mining n-most interesting itemsets

without support threshold by the cofi-tree. Int. J. Business Intelligence and Data

Mining, 1:88–106, 2005.

[50] J. Pei, J. Han, B. Mortazavi-Asl, Q. Chen, U. Dayal, and M. Hsu. Mining sequential

patterns by pattern-growth: The prefixspan approach. TKDE, 16:1424–1440, 2004.

[51] J. Pisharath, Y. Liu, B. Ozisikyilmaz, R. Narayanan, W. K. Liao, A. Choud-

hary, and G. Memik. Nu-minebench version 2.0 dataset and technical report,

http://cucis.ece.northwestern.edu/projects/dms/minebench.html, 2012.

[52] B. Shie, H. Hsiao, and V. S. Tseng. Efficient algorithms for discovering high utility

253

user behavior patterns in mobile commerce environments. In KAIS journal, 37,

2013.

[53] R. Srikant and R. Agrawal. Mining sequential patterns: Generalizations and per-

formance improvements. In In Proc. of the Intel Conf. on Extending Database

Technology: Advances in Database Technology, pages 3–17, 1996.

[54] F. Tao, F. Murtagh, and M.Farid. Weighted association rule mining using weighted

support and significance framework. In Proceedings of the Ninth ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, pages 661–

666, 2003.

[55] V. Tseng, B. Shie, C.-W. Wu, and P. Yu. Efficient algorithms for mining high utility

itemsets from transactional databases. IEEE Transactions on Knowledge and Data

Engineering, 25:1772–1786, 2013.

[56] V. S. Tseng, C. J. Chu, and T. Liang. Efficient mining of temporal high-utility

itemsets from data streams. In ACM KDD Utility Based Data Mining, pages 18–

27, 2006.

[57] V. S. Tseng, C. W. Wu, B. E. Shie, and P. S. Yu. Up-growth: an efficient algorithm

for high utility itemset mining. In Proc. of Int’l Conf. on ACM SIGKDD, pages

253–262, 2010.

254

[58] P. Tzvetkov, X. Yan, and J. Han. Tsp: Mining top-k closed sequential patterns.

Knowledge and Information Systems, 7:438–457, 2005.

[59] T. H. N. Vu, K. H. Ryu, and N. Park. A method for predicting future location of

mobile user for location-based services system. Computers and Industrial Engi-

neering, 57(1):91 – 105, 2009. Collaborative e-Work Networks in Industrial Engi-

neering.

[60] R. C. W. Wong and A. W. C. Fu. Mining top-k frequent itemsets from data streams.

Data Mining and Knowledge Discovery, 13:193–217, 2006.

[61] C. W. Wu, B. E. Shie, V. S. Tseng, and P. S. Yu. Mining top-k high utility itemsets.

In Proceedings of the 18th ACM SIGKDD international conference on Knowledge

discovery and data mining, pages 78–86, 2012.

[62] B. Yang and H. Huang. Topsil-miner:an efficient algorithm for mining top-k signif-

icant itemsets over data streams. Data Mining and Knowledge Discovery, 23:225–

242, 2010.

[63] H. Yao and H. J. Hamilton. Mining itemset utilities from transaction databases.

Data and Knowledge Engineering, 59:603–626, 2006.

[64] H. Yao, H. J. Hamilton, and C. J. Butz. A foundational approach to mining itemset

255

utilities from database. In Proceeding of the 4th SIAM International Conference on

Data Mining, pages 482–491, 2004.

[65] S. J. Yen, Y. S. Lee, C. W. Wu, and C. L. Lin. An efficient algorithm for maintaining

frequent closed itemsets over data stream. In Proceedings of IEA/AIE, pages 767–

776, 2009.

[66] J. Yin, Z. Zheng, and L. Cao. Uspan: An efficient algorithm for mining high utility

sequential patterns. In In Proc. of ACM SIGKDD, pages 660–668, 2012.

[67] J. Yin, Z. Zheng, L. Cao, Y. Song, and W. Wei. Efficiently mining top-k high

utility sequential patterns. In IEEE 13th International Conference on Data Mining

(ICDM), pages 1259–1264, 2013.

[68] U. Yun. Efficient mining of weighted interesting patterns with a strong weight

and/or support affinity. Information Sciences, 177:3477–3499, 2007.

[69] U. Yun and J. J. Leggett. Wfim: Weighted frequent itemset mining with a weight

range and a minimum weight. In Proceedings of the fifth SIAM International Con-

ference on Data Mining, pages 636–640, 2005.

[70] M. J. Zaki. Scalable algorithms for association mining. Knowledge and Data

Engineering, 12:372390, 2000.

256

[71] M. J. Zaki. Spade: An efficient algorithm for mining frequent sequences. In Ma-

chine Learning, 42:31–60, 2001.

[72] M. Zihayat and A. An. Mining top-k high utility patterns over data streams. In-

formation Sciences, 285:138 – 161, 2014. Processing and Mining Complex Data

Streams.

[73] M. Zihayat, Y. Chan, and A. An. Memory-bounded high utility sequential pattern

mining over data streams. Technical Report EECS-2015-04, York university, 2015.

[74] M. Zihayat, Z. Z. Hu, and A. An. Distributed and parallel high utility sequential

pattern mining. Technical Report CSE-2016-04, York university, 2016.

[75] M. Zihayat, C.-W. Wu, A. An, and V. S. Tseng. Mining high utility sequential

patterns from evolving data streams. In ASE BD&SI ’15, pages 52:1–52:6, 2015.

[76] M. Zihayat, C.-W. Wu, A. An, and V. S. Tseng. Efficiently mining high utility

sequential patterns in static and streaming data. In Intelligent Data Analysis, Ac-

cepted, 2016.

257

