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ABSTRACT The deployment of large-scale wireless sensor networks (WSNs) for the Internet of
Things (IoT) applications is increasing day-by-day, especially with the emergence of smart city services.
The sensor data streams generated from these applications are largely dynamic, heterogeneous, and often
geographically distributed over large areas. For high-value use in business, industry and services, these data
streams must be mined to extract insightful knowledge, such as about monitoring (e.g., discovering certain
behaviors over a deployed area) or network diagnostics (e.g., predicting faulty sensor nodes). However, due to
the inherent constraints of sensor networks and application requirements, traditional data mining techniques
cannot be directly used to mine [oT data streams efficiently and accurately in real-time. In the last decade,
a number of works have been reported in the literature proposing behavioral pattern mining algorithms
for sensor networks. This paper presents the technical challenges that need to be considered for mining
sensor data. It then provides a thorough review of the mining techniques proposed in the recent literature to
mine behavioral patterns from sensor data in IoT, and their characteristics and differences are highlighted
and compared. We also propose a behavioral pattern mining framework for IoT and discuss possible future
research directions in this area.

INDEX TERMS Association rules, behavioral patterns, data mining, frequent pattern, Internet of Things,

knowledge discovery, wireless sensor networks.

I. INTRODUCTION

In recent years wireless sensor networks have demon-
strated promising applications in many diverse areas includ-
ing precision agriculture, environment monitoring, industrial
automation, asset management, remote health monitoring,
and military applications [1]-[3]. The push towards building
smarter and smaller sensor devices, and the low-cost deploy-
ment of sensors have given rise to large scale and dense
WSNs to create diverse smart city services ranging from
traffic management, emergency incident management to pub-
lic safety [4]-[7]. The increasing adaptability and simplicity
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of deployment of sensor networks will continue to widen
their applications in many other diverse areas. The Internet
of Things (IoT) is a push towards the integration of data
providers with end-users of the Internet and various com-
munication networks [8]. The vision of IoT will lead to an
information-rich connected world [9] and WSNs in an inter-
connected way form its basic building blocks. The IoT per-
mits the interconnection of different types of everyday objects
that have identities and physical and virtual attributes, and
can be seamlessly integrated with the Internet, enabling direct
user involvement in operations of the integrated equipment
[10]. The National Intelligence Council (NIC) [11] states
that “By 2025 Internet nodes may reside in everyday things
like food packages, furniture, paper documents, and more” .
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FIGURE 1. Knowledge extraction from the physical world.

These everyday things along with numerous distributed large
scale WSNs will generate huge amounts of data, especially
in the envisaged IoT scenario, where terabytes of data are
expected from billions of sensors [12]. These voluminous
data from IoT worth little in practical terms unless useful
knowledge can be mined from the data stream. However,
this presents significant and new challenges to the knowledge
discovery process. A schematic illustration of knowledge
extraction from WSNs and the IoT is shown in Figure 1.

In traditional databases, knowledge is extracted from the
massive amount of collected data through the discovery of
useful patterns that exhibit some important information about
the system, which is often vital in making critical busi-
ness and management decisions. Knowledge discovery in
databases (KDD) is used in many fields such as banking,
retail market, manufacturing, machine condition monitoring,
health care system, marketing and science data acquisition.
Data mining, the core of KDD is an iterative and interactive
process of finding novel, substantial and valuable patterns
and models in large datasets. The models are utilized for the
comprehension of phenomena from the available information
and make predictions for the future.

In IoT applications comprising large scale WSNs, data
mining techniques are used to extract behavioral patterns
from a continuous and rapid flow of data stream. However,
here the problem is to store the whole data and process them
immediately. To handle such high speed data, data mining
models need to be fast. Existing traditional data mining tech-
niques [13], [14] are not able to process the huge amount
of sensor data in an acceptable time because of its high
dimensionality and distributed nature. Moreover, traditional
data mining models are centralized which suffers from high
computational cost due to data accumulated at a central site.
However, sensor data which flow continuously in the systems
at varying rates and in massive quantity in the IoT environ-
ment incur high storage cost. Thus it is impossible to store
the entire dataset or to scan it multiple times for mining
purposes as some of the traditional mining algorithms require
to scan through the whole dataset multiple times for them to
work. Therefore, to process such stream data, it is essential to
develop data mining techniques that can handle sensor data
in a single pass, multidimensional, and real time manner.

It should be noted that in both WSN and IoT, sensors are the
individual data sources. In WSN, sensors send their sensed
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data to the cluster heads (several sensors form a cluster) which
then sends the data to the sink/gateway which is connected
to an application through the business‘s own network or the
Internet. In the IoT, sensors may be connected directly to
the Internet and WSNs connecting to the Internet. Therefore,
once data are received from the source sensor, they are the
same for WSNs and IoT. However, depending on applica-
tions, IoT data are most likely to be larger in volume and
geographically distributed over a larger area than WSN, likely
to have real-time significance, and exhibit more variation and
experience a greater change in nature over time. WSNs have
naturally progressed towards the IoT and they are the main
building blocks of the IoT. Therefore, data mining techniques
first proposed for WSN gradually progressed toward IoT.
Discussion on data mining techniques for IoT can not be done
without discussing the techniques for WSN. Therefore, for
the systematic presentation of various approaches proposed
in the literature, our discussion on data mining techniques
for WSN and IoT are presented together in the subsequent
sections.

The knowledge discovery process in IoT (KDIoT) using
data mining techniques suitable to handle large scale and
stream sensor data can serve as an effective tool to enhance
the quality of service (QoS) of many applications and the
performance of networks [15]. The following types of knowl-
edge can be mined using KDIoT:

1) Patterns extracted from the sensor network data for

environment monitoring [16]-[18];

2) Behavioral patterns discovering sensor behavior from

the meta-data describing them.

The knowledge discovery process, in general, requires
a progression of steps, including domain understanding,
knowledge definition, data preparation and data mining [19],
[20]. The ‘evolution’ from KDD to KDIoT necessitates
enhancing most of the methods in KDD. In addition, new
techniques specifically for KDIoT need to be developed [21].
The extraction of behavioral patterns from sensor data is a
complex process. It requires extensive efforts to extract the
patterns that describe sensor activities in a WSN. Regard-
ing this matter, several issues must be addressed: i) various
aspects of behavioral patterns, ii) the impacts of these patterns
on WSNs operation, and iii) the challenges that the knowl-
edge discovery process face when generating these patterns.

Most of the existing survey papers [22]-[24] on sensor
data mining mainly focused on outlier detection from the
WSNs. Clustering based survey papers [25], [26] present
architecture and management of the sensor network instead
of information discovery. In [27], a classification based sur-
vey paper is presented where the conventional classification
techniques are evaluated over the data stream. Another survey
paper on data mining techniques [28] provides an overview
of how traditional data mining techniques are revised and
improved to enhance the performance of WSNs. Some other
works [29], [30] highlighted the data mining techniques on
the IoT environment. To the best of our knowledge, there does
not exist any comprehensive survey on behavioral pattern
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mining techniques applied to sensor data in IoT applications.
This paper presents a survey of recent research works on
behavioral patterns in sensor data to help researchers easily
locate some seminal works in this area. The main purpose of
this survey is to introduce readers with a brief overview of the
existing methods, their key characteristics, merits and limita-
tions along with the future research trends and challenges on
this topic. Here, we have highlighted the challenges of mining
behavioral patterns in such scenarios, critically analyzed the
existing techniques and proposed a knowledge-based frame-
work to mine them efficiently in an IoT environment.

The contributions of this paper are summarized as follows:

e Presenting a brief overview of past survey papers on
behavioral pattern mining on WSN/IoT data, and iden-
tifying the gap in the survey literature and underpinning
the need for the current survey.

e Identifying the challenges of extracting behavioral pat-
terns from WSN and IoT data.

e Providing detail discussion and critical analyses of the
existing behavioral pattern mining techniques developed
for WSN and IoT.

e Proposed a knowledge-based framework to overcome
the limitations of existing techniques and mine patterns
offline as well as online.

e Identifying future research challenges on this topic and
outlining directions on how those challenges can be
addressed.

The paper is organized in the following sections.
Section 2 discusses the related survey papers on data mining
techniques in WSN/IoT. Section 3 discusses the applica-
tions of behavioral patterns in IoT. Section 4 provides the
fundamentals of WSNs and the main challenges of behav-
ioral patterns mining from IoT data. Section 5 presents a
technique-based taxonomy to categorize the existing behav-
ioral patterns mining techniques developed for IoT as their
key features. Sections 6 presents a description of the cur-
rent behavioral pattern mining techniques proposed to mine
from IoT data, analysing their strengths and limitations.
Section 7 discusses some open research issues in this regard
and finally, Section 8 presents concluding remarks.

Il. RELATED SURVEY WORKS

Only a limited number of survey papers have been published
in the literature that considered data mining on WSN and/or
IoT data. In Table 1, we list the notable survey papers on data
mining in WSN/IoT and summarize the scope of their works
in brief. These papers can be categorised into two groups.

A. SURVEY PAPERS THAT DID NOT CONSIDER
BEHAVIORAL PATTERNS

In [31], Chen et al. provided an overview of traditional
data mining functionality such as classification, clustering,
association, anomaly detection and time series analysis, and
describe different applications where these functionalities are
used. They also proposed a big data mining system for IoT.
In [30], Ahsan and Bari reviewed the impact of big data in IoT
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by using its protocols and architecture. Different techniques
for verifying these protocols and their security factors are also
discussed. Marjani et al. [32] explored the existing notable
works on big IoT data analytics and discussed the association
of big data and IoT data analytics, following which they
proposed a framework for big IoT data analytics. In [29],
a brief review of data mining techniques for IoT has been
presented and a data analytics reference model to discover
meaningful information from the IoT environment has been
explored. In [33], Shadroo and Rahmani reviewed 44 research
articles to explore the data mining techniques on big IoT data
which they classified into three groups, namely, architecture
& platform, framework and applications. The above survey
papers concentrated on how data mining techniques are used
to extract the hidden knowledge from IoT [31], [33], how big
data analysis can be performed in the IoT environment [30]
and discussed a reference model for data analysis [29], [32].
However, these works do not consider behavioral patterns.

B. SURVEY PAPERS THAT CONSIDERED

BEHAVIORAL PATTERNS

In [28], Mahmood et al. provided an overview of how tra-
ditional data mining techniques (frequent mining, sequence
mining, clustering and classification) were modified and
improved to enhance the performance of WSNs. However,
this survey only considered frequent patterns-based behav-
ioral patterns and did not explore interestingness-based pat-
terns. In [34], Tsai et al. reviewed the existing data mining
techniques for IoT environments where they explored these
techniques for the infrastructure as well as services of IoT
and demonstrated pattern discovery from smart home appli-
cations. However, they did not provide details on how these
patterns can be used to recognize human activities. In [35],
data mining techniques used in the industrial IoT (IIoT) were
briefly reviewed. The present and future trends of IoT on the
aspects of data analytics were also discussed. The temporal
management of large-scale RFID applications (TMS-RFID)
and intelligent RFID examples was investigated where fre-
quent pattern-based data mining techniques have been used.
In [36], Braun et al. reviewed the data mining methods to
discover patterns from big IoT data with fog computing.
To mine patterns, they proposed two methods: firstly, pattern
mining through local networking services and secondly, pat-
terns mining on local IoT devices. They also presented a case
study of real-life applications for urban analytics based on
frequent patterns using the second method. In these meth-
ods, the computations are performed near to the end-users
which can reduce the latency and bandwidth of the network
and enhance the network security and reliability. However,
they did not investigate the data collection mechanism and
interestingness based behavioral pattern mining.

C. NEED FOR A NEW SURVEY PAPER

Most of the existing survey papers (e.g., [29], [30]) mainly
focused on general data mining techniques in sensor networks
or [oT, and only a few of them covered some aspects of
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TABLE 1. Summary of survey works on data mining in WSN/lIoT.

Survey articles Year

Scope Covered behavioral patterns mining

Data mining techniques in WSN [28] | 2013

Fundamental of data mining
in WSNs, data mining techniques
such as classification, clusterting,

sequential pattern and frequent
patterns mining in WSN

Yes, but only considered
frequent pattern-based behavioral patterns

Data mining for IoT [34] 2014 Mining algorithm from IoT Yes, but only considered
frequent pattern-based behavioral patterns
Data mining for IoT [31] 2015 Data mining functionality, No

open research issues on IoT data mining

Data analysis issue in [oT [35] 2015

The impact of cognitive
capabilities and IoT data analytics

Yes, but only considered
frequent pattern-based behavioral patterns

Big data analysis and IoT [30] 2016 The role of big data in IoT No
Big IoT data analytics [32] 2017 Overview of Big data and IoT, No
relationship between big data and IoT
Data analytics in IoT [29] 2018 Data analytic architecture No
for IoT
Big data and data mining in IoT [33] | 2018 10T big data and IoT data mining No

Pattern mining over Big [36] 2019

Pattern mining from IoT
using Fog Computing

Yes, but did not consider the issues below :
- real IoT environment
- details of data collection mechanism
- interestingness based behavioral patterns

frequent pattern-based behavioral patterns (e.g., [28] (2013),
[35] (2015)) but did not explore in details the evolving IoT
scenario and its applications. Moreover, in the last decade,
many works have been published focusing on the interest-
ingness based behavioral patterns, but there exists no survey
work in literature solely on this topic. The impact of behav-
ioral patterns in real-world scenarios such as IoT-based smart
city, industry and other areas is very significant (please see
the applications in Section 3 for more details). There are
many smart city services being launched around the world
and such services have increasing value to the communi-
ties, businesses, scientific bodies and governments around
the world. Behavioral pattern mining form these applications
will improve the quality of smart cities and other IoT based
services and lead to better real-time insights and identifica-
tion of correlated events for economically efficient resource
management by the local/state governments and businesses.
These initiatives and extensive research for efficient and
robust sensor data mining techniques in real time have created
the need for an extensive survey paper on this topic focusing
on behavioral patterns.

IIl. APPLICATIONS OF BEHAVIORAL PATTERN

MINING IN IOT

Mining behavioral patterns from IoT could be highly useful
in diverse areas such as industrial IoT, smart city services
and other applications that need real-time monitoring of the
physical environment such as smart building, remote patients
and infrastructures, and analysis of collected data for useful
knowledge. Below some application areas of behavioral pat-
terns mining are discussed.

A. INDUSTRIAL IOT
In industrial IoT (IIoT), behavioral patterns can be used to
predict the source of a future event which, in turn, can identify
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the faulty nodes of the network [37]. For example, if we
are expecting an event from a node but not receiving any
such report from that node, it suggests the node may be
malfunctioning. Moreover, behavioral patterns also can be
used to predict the next event. The reason is that behavioral
patterns are able to reveal a chain of related events, which
is very important in the industrial perspective. For example,
in the industry, an error in a particular process may lead to
other errors/faults [38].

B. HEALTH CARE

IoT has brought up new opportunities in health care, espe-
cially in eHealth. A piece of medical equipment when con-
nected to the Internet can easily send important data from
various patients to a central health care database. Mining
behavioral patterns from these data can discover vital knowl-
edge such as patients’ symptoms and trends and can make
remote care more effective using the extracted knowledge
[39]. In this way, it helps patients’ control over their diseases
and treatment plans. Behavioral patterns are also useful to
the health service providers in many ways for better planning
of patient caregiving such as better and targeted monitor-
ing of patient’s physical condition and analysis of medical
billings [40].

C. SMART CITY SERVICES

Recent research on light-weight service mashup middleware
for IoT applications that allow the physical things seamless
integration into the Web. This help the easy development
and deployment of IoT-based smart city applications [41].
In these applications, discovering behavioral patterns can
significantly improve services such as transportation, energy
consumption and security. By using the knowledge gained
through such patterns, it is possible to predict which citizens
are going to leave the city based on which factors of city
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services, and then the city authority can work to improve
on these factors in the future [31]. Another highly impor-
tant application is to identify the crime hot spots based on
crime data which can be collected from IoT visual sensor
data [31], [42].

D. 10T RESOURCE MANAGEMENT

Behavioral patterns can identify a set of temporally correlated
sensors. This information is useful to resolve the unwanted
impacts such as missed readings due to the sometimes unre-
liable wireless communications. By knowing the correlated
set, it is possible to identify which sensors can be switched
to the sleep mode to conserve energy without compromising
the network coverage area. In these ways, behavioral patterns
can be utilised for better resource management and safety
assurance in IoT [43], [44].

IV. MAJOR CHALLENGES IN RELATION TO

KNOWLEDGE DISCOVERY FROM IOT

Sensing environment, monitoring activities or detecting an
event through identifying a change in the state within the
region of interest remains the fundamental tasks of WSNss,
the primary building blocks of the IoT [45]-[47]. Detecting
these events or monitoring activities is feasible by process-
ing and analysing sensor data obtained from sensor nodes
[48]. According to Watanabe [49] a pattern is “‘opposite of
chaos”. Catania et al. [50] defines a pattern as ““a compact
and rich in semantics representation of raw data”. In this
paper, we define a pattern as the set of sensor nodes which
is extracted from the meta-data describing sensor behaviors.

Though the traditional data mining techniques have

matured over the years, they cannot be directly used to handle
sensor data from IoT for the following challenges [28]:

e Resource constraints: Due to their construct, most
sensor nodes have limited computational power, mem-
ory, energy, and bandwidth. These constraints impose
new challenges to devise efficient and accurate data
mining techniques for WSNs while utilizing minimum
resources.

e Faster stream of large data: Sensor data in many IoT
applications may arrive faster than the speed at which
those data can be mined properly. Here, the challenge
is how data mining techniques can manage the huge
volume of fast, continuous and changing data streams
while supporting user interaction at the same time.

e Real-time mining: The occurrence of new events in a
geographically distributed WSN or IoT will generate a
stream of data, which may exhibit different characteris-
tics depending on the nature of the events. Consequently,
the mining results based on the new data are likely to be
significantly different from the old data, and in critical
applications, the new data need to be mined in real time
to discover new patterns. This poses a new challenge to
mine distributed data streams in the IoT in real time.

e Capturing changes over time: The IoT data monitoring
environmental phenomenon will experience change over
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time. Therefore, only mining results from the data are
not enough, rather it is highly important to capture any
significant change in the mining results over time. Here,
the research issue is to model this change in the mining
technique with relevance to a particular application.

e Data transmission: Since WSNs suffer from resource
limitation in terms of bandwidth, transmission of gen-
erated data directly is ofetn infeasible and will cost
unnecessary energy, even with the development of low
power wide area network technologies. After extract-
ing patterns locally from a WSN, the mining results
are transmitted instead. Research needs to be done to
efficiently represent data and discovered patterns so that
they can be transmitted using low bandwidth.

e Complexity of deployment: In many cases, hetero-
geneous sensors are needed to be deployed in harsh,
inaccessible and dynamic environments. Mobile sensors
are also deployed to cover any void area or to provide
k-fold coverage for better event detection accuracy [51].
The complexity of data mining techniques is increased
by such dynamic environments.

To overcome the above issues, research works have
focused on modifying the traditional data mining approaches
as well as devising new approaches suitable for [oT. Some
works have focused on discovering patterns from the sensed
data stored in a central database [52]-[55] while others have
focused on extracting patterns from sensor nodes through
discovering association rules (SARs) among them [56]-[58].
A sensor association rule can be expressed as (si,s2 —
§3, 75%, 1). This is interpreted as, if sensors s; and s> have
reported events, then there exits 75% chance that sensor s3
will detect an event within A units of time.

Several challenges in discovering the behavioral patterns
and their aspects from WSN/IoT sensor data and networks
require major modification to the traditional knowledge dis-
covery process. These challenges include:

1) The need for an appropriate formulation to discover

a behavioral pattern that identifies the knowledge in
terms of sensor terminologies and maintains the down-
ward closure property (i.e., if a pattern is infrequent,
then all of its super patterns are also infrequent).

2) In most applications, sensor networks produce huge
volumes of data within a short duration of time. There-
fore, compact data structures are required to store the
meta-data.

3) To generate behavioral patterns, it is necessary to con-
sider every conceivable relation that can be character-
ized by sensor nodes. These relations must be checked
against the meta-data to recognize the relations of
interest to respective applications. Efficient algorithms
are required to mine these behavioral patterns in the
shortest amount of time and with the smallest memory
cost.

4) Most of the existing sensor data mining techniques
have been proposed for single processor machines.
To process huge sensor data with limited resources is
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| Behavioral Pattern (BPs) Mining in WSN/IoT |
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| Interestingness measure based |
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(Distributed)
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Process

Parallel
Process
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FIGURE 2. Taxonomy framework for behavioral patterns mining
techniques designed for WSNs, leading to loT.

a challenging task. Therefore, the development of a
suitable parallel and distributed model [59], [60] for
large scale sensor data mining is a major challenge.

V. TAXONOMY FRAMEWORK FOR BEHAVIORAL
PATTERNS MINING TECHNIQUES FOR IOT

Data mining techniques are mainly divided into four cate-
gories: (i) clustering (ii) classification (iii) sequential pattern
mining and (iv) association rules. Cluster-based methods are
K-mean, hierarchical and data correlation-based techniques
based on the distance among the data points. Classification-
based methods are the decision tree, rule-based, nearest
neighbor and support vector machine. Most of the existing
sequential pattern mining and association rules mining tech-
niques in WSN, and hence in IoT, are adapted from tradi-
tional Apriori [13] and frequent pattern (FP) growth-based
techniques [14]. Figure 2 shows the taxonomy of the mining
framework in WSNs, leading to IoT. In this survey paper,
our main focus is on mining behavioral patterns (BPs) using
association rules mining techniques. Association rules can be
further classified based on the following items:

e Data processing: Association rules mining techniques
for WSNs can be classified based on data processing
location: Centralized and Distributed. In a centralized
method, data from the entire network is stored in a
central site for further analysis. In this case, the initial
data reduction is performed in the central site [56], [58].
On the other hand, the in-network method considers the
limited resource of sensor nodes and performs some
extra computation in the nodes to limit the message and
communication energy during transferring the data to
the central site. In a nutshell, in the centralized method,
the data are transmitted to the central site without any
optimization from the sensors, while in the in-network
method [52], [53] nodes optimize the messages sent to
the central cite taking account of resource limitations.

e Pattern nature: Mining the data from the central or
decentralized method based on pattern nature can be
classified as: Frequent patterns and Interestingness mea-
sure based patterns. Support metric-based sensor fre-
quent patterns use the occurrence frequency of patterns
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as a criterion. However, support metric based behav-
ioral patterns, frequent pattern mining from real sensor
data is not simple. The rule depends on a constraint
known as minimum support threshold (min_sup). The
threshold specifies the minimum lower bound for the
support of the resulting association rules. With a high
min_sup value, only high-value knowledge in few rules
is generated. If the value of min_sup is set low, a large
number of rules are generated, but only a few of them
are informative. Since large scale WSNs generate huge
amounts of data, it is essential to use the appropriate
‘interestingness’ measure to discover sensor behavioral
patterns that have strong correlations among the data
[43]. On the other hand, the support measure value used
in the traditional mining algorithm cannot resolve prac-
tical issues. For instance, in a specific time slot, a sensor
may trigger multiple times. By analyzing these non-
binary trigger values one can extract more important
knowledge from the sensor data [61]. Another criterion
to identify the ‘interestingness’ of frequent patterns is
the shape of occurrence, i.e., whether their occurrence is
regular, irregular, or mostly in specific time intervals in
the sensor database [62].

e Computation: How the computation is performed to
mine frequent patterns and interestingness patterns can
be classified as: stand-alone process and parallel pro-
cess. Stand-alone process only considers single pro-
cessor and main memory-based machine for frequent
pattern [56] and ‘interestingness’ patterns mining [63].
As discussed earlier, resource constraints in sensor
nodes and networks present big computational chal-
lenges for real-time mining of large sensor data. There-
fore, to mine such kind of large data, more efficient
approaches such as parallel and distributed techniques
(besides serial approach) are needed [61], [64].

e Specific problem solving: The behavioral patterns can
be classified based on solving a specific problem such as
WSNs performance related and IoT applications related.
Since, sensor nodes have resource constrained, resource
aware techniques are essentials to maximize the perfor-
mance of WSNs. On the other hand, IoT applications
need to be fault tolerant, scalable, robust and accurate,
and often require abundant use of energy, communica-
tion, and redundancies.

VI. BEHAVOIRAL PATTERN MINING FROM IOT

This section represents a formal definition of the fundamental
concepts necessary to deal with behavioral sensor patterns in
the IoT.

A. PRELIMINARY

Let S = {s1,52....,5p} be the set of sensors deployed
in a WSN and the time be divided into equal-sized slots
t ={ti,n,....1q} such that 111 —t; = A, j € [1,qg — 1]
where A is the slot size. Ty = t; — 17 is the historical period
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of the data defined during the data extraction process. A set
P ={s1,s2,...,s,} C S iscalled a pattern of sensors.

An epoch is defined as a tuple e(e;s, Y) where Y is a pattern
of the event-detecting sensors that report events within the
same time slot and e is the epoch’s time slot. A sensor
database SD is a set of epochs E = {ey, e2, ..., ey} with
m = |SD|, i.e., total number of epochs in SD IfxX Cv,
it is said that X occurs in e and is denoted as e ,j € [1,m].

Let EX = jx,...,ek L, where j < k and],k € [1, m] be
the ordered set of epochs in which pattern X has occurred
in SD. Let X and eX, where j < s < t < k be the two
consecutive epochs in EX. The number of epochs or time
difference between eX and e, can be defined as a period
of X, say pX. Then a period of X, pX¥ = {ef( —e; } Let
PX = {p¥.p%.....p¥} be the set of periods for pattern X.
For simplicity in period computation, we assume the first and
last epochs (say, ef and ¢;) in SD are identified as null with
e = 0 and ¢,, with (¢; = ep,), respectively. An example of a

sensor database, SD is illustrated in Table 2.

TABLE 2. An example of a sensor database (SD).

TS Epoch

1 S1 S5 S

2 S1 82 S3 S4 S7
3 S1 S92 S4 S7
4 S92 S5 S6 ST
5 S1 S92 S3 S4 S7
6 S1 S2 S4 S5

Definition 1 (support of pattern X in SD): The support,
i.e., occurrence frequency of the pattern X in SD is defined to
be the number of epochs in SD that support it, i.e., sup(X) =
|E(Es, Y)|X € Y|. The maximum sensor support of the
pattern X can be defined as, Max_sensor_Sup(X) =
Max(Sup(s;)|Vs; € X). The interestingness measure all-
confidence denoted by « of a pattern X is defined as follows:

_ S
" Max_sensor_S up(X)

ey

Definition 2 (Associated Pattern): A pattern is called an
associated pattern, if its all-confidence is greater than or equal
to the given minimum all-confidence threshold, denoted as
min_all_conf .

Definition 3 (Regularity of pattern X): Let for a EX, PX
be the set of all periods of X i.e., PX = {pf,pé(, . ,p])f,},
where N is the total number of periods in PX. Then the
average )Perlod value of pattern X is represented as, X =

P
Z 1—1 & and the variance of periods is represented as oX =

(P¥ —X)

Zk 1

Dejﬁmtlon 4 ( Regularly frequent sensor pattern): A pattern
is called a regularly frequent pattern if it satisfies both of
the following two conditions: (i) its support value is no less
than a user-given minimum support threshold, say, min_sup
and (ii) its regularity is no greater than a user-given maximum
regularity threshold, say, max_var.
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FIGURE 3. Sensor data stream (SDS).

On the other hand, sensor data stream (SDS) is a contin-
uous, unbounded and ordered sequence of data. Therefore,
it is impossible to maintain all the elements of a sensor data
stream in a tree over a long period of time. Moreover, old
information may become obsolete and recent information
may become important from a knowledge discovery point of
view. To handle such a scenario, the sliding window model
is used to keep track of recent epochs where epochs are
maintained in a batch-by-batch manner. Fig. 3, depicts a SDS
where a window of six epochs consists of three batches. How-
ever, to facilitate such a model, appropriate data observation
window size needs to be determined.

A sensor data stream SDS can formally be defined as an
infinite sequence of epochs (e), i.e., SDS = [e1, €2, ..., ey),
where e, r € [1,n] is the r-th arrived epoch. Each epoch
is a tuple e(es, Y), where e, e, and Y are defined earlier.
A window W can be referred to as a set of all epochs between
the r-th and s-th (s > r) epochs and the size of W is |W| =
s — r. If there are M epochs and N batches in a W, then each
batch consists M /N epochs; hence, the size of each batch is
|M /N|. Here, the window slides batch-by-batch, i.e., sliding
adds newer batch and removes older batch from the current
window.

Definition 3 (support of pattern X in W): The support of a
pattern X in a W, denoted as Sup,,(X) is the number of epochs
in W that contain X. Therefore, a pattern is called frequent
in W, if its support is no less than min_sup, such that 0 <
min_sup < |W|.

Definition 5 (all-confidence of pattern X in W): The all-
confidence of a pattern X in a W, denoted by «,,(X) is defined
as follows:

Sup\(X)

Oy = 2
v Max_sensor_Sup,,(X) @

Definition 6 (associated sensor pattern X in W): A pat-
tern X is called an associated sensor pattern in W, if its
all-confidence, o,,(X) is greater than or equal to the given
minimum all-confidence threshold in W.

Definition 7 (Regularity of pattern X in W): Let for a
EwX, Pw¥ be the set of all periods of X in W. Then the
average )Perlod value of pattern X is represented as, Xy =

Nw Pk
k=1 Ny

XW _ ZNW (P _X_W)z

and the variance of periods is represented as

k
Definition 8 (Regularly frequent sensor patternX in W):
A pattern X is called a regularly frequent pattern in W,
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if its support value is no less than a user-given minimum
support threshold, say, min_sup,, and its regularity is no
greater than a user-given maximum regularity threshold, say,
max_var,, in W.

B. ASSOCIATION RULE BASED BPS

MINING TECHNIQUES

In this section, we discuss association rule based mining
techniques that employ distributed as well as centralized
processing scheme. In a distributed processing scheme, major
processing tasks are shifted towards individual sensors to
build a local model.

Loo et al. [52] considers the tasks of mining associations
among sensor data values that coexist temporally in a large-
scale WSN. Their technique relies on a data model where
continuous sensor readings are quantized to assume values
from a finite set of discrete values. The data model stores
readings reported by sensors and presents them in a way
so that Loosy counting algorithm [65] can be applied for
one-pass analysis of the data. Sensor readings are reported
at regular intervals and snapshots from the sensors’ read-
ings are recorded only when any change in the readings is
detected. A database then stores these snapshots as contexts.
Taking snapshots at state changes reduces redundancy in the
database. To overcome the problem of random state changes
in sensor nodes, each context is associated with a weight
value indicating the number of intervals for which this context
is valid. To illustrate this model, we use the same example
provided in [52]. Figure 4(A) (Figures A and B are redrawn
from [52]) depicts the states of six sensor nodes during a
period of 15 seconds. Each sensor takes a value from two
possible states (High, H; Low, L). For instance, sensor s
exhibits state L, at time 0; and state H, at time 6. The first
context is {(s1, H), (s2, L), (s3, L), (s4, H), (s5, L), (s6, H)},
which is valid for two seconds before a state change occurs.
Figure 4(B) shows the extracted database.

Their proposed data model represents the problem of min-
ing associations among sensors’ values where each possible
sensor state is considered as an object; and a pattern is a set
of sensors’ states. For example (s; = L, s4 = H) is one of
the possible patterns. The support of the pattern is formulated
by the total length of non-overlapping intervals in which the
pattern is valid. To facilitate support counting, sensor data
are represented by interval lists, where the interval list is a
list of pairs containing the start time and end time for which
the patterns are valid. For example, the interval list of the
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FIGURE 4. Example of inter-stream mining.
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pattern s5 = L is (i.e., IL(ss = L )) is [(0-7)]. A Loosy
counting algorithm [65] is then used to generate frequent
patterns. The advantage of using this algorithm is that it can
make an online analysis with one pass of the database, which
does not generate the exact frequent patterns (i.e., value sets).
However, it gives a solution with a bounded error [65].

Romer [53] proposed a method to mine spatial-temporal
event patterns from the WSN data. Considering the dis-
tributed nature of WSNs, the authors devised an in-network
data mining technique to mine frequent event patterns and
their spatiotemporal relationships within the same network.
In this way, only compact patterns need to be transmitted
from the nodes to the sink, instead of row streams of data.
This reduces the communication overhead. In this case, a sen-
sor records the events detected within its certain distance.
The distance may be expressed in terms of the number of
hops or Euclidean distance. On the collection of the events,
a sensor uses a mining technique to discover the patterns that
satisfy the given parameters. The mining parameters for this
approach include min_sup, min_conf, maximum scope, and
maximum history. Each node collects the events from the
neighbors within the maximum scope and keeps a history of
their events for the duration of the maximum history. Every
node then uses a mining algorithm to discover the frequent
patterns of the form:

ajay...ay, = e[min_sup, min_conf].

The above means that if all the predicates in the rule
antecedent become true, then event E may occur at the node
with support (S) and confidence (C). Each predicate in the
rule antecedent is in the form a; = (e;, d;, t;, n;). a; is true if
and only if event e; occurred n; times at a distance d; from the
node and ¢#; time units before the occurrence of event e [53].

To adapt Romer’s framework for the association mining
problem, a quantization technique is utilized to quantize the
continuous parameters like distance, time offset, and the num-
ber of occurrences of the events. For example, the distance
parameter can be divided into two variables, near (between
0 and 5 meters), and far (between 5 and maximum scope).
Nodes start collecting events from their neighbors at reg-
ular intervals. Each interval is called an epoch. Each node
maintains a table of the number of events times the number
of distance’s partition columns. A cell corresponding to the
column (e;, d;) is incremented once an event e, is received
from a node within the distance d;. The table contains one
row for each possible epoch in the given maximum history
and at the end of the historical period, the table is grouped
and summed based on the time partitions. A context is then
created for each epoch. Moreover, each possible event e;
occurring n times in the neighboring nodes at distance d and
time offset 7.

In [54], a mining algorithm was proposed by Chong
et al. to discover strong rules from sensor data which were
then applied for controlling the operation of the sensor net-
work. They modified the Apriori technique to execute batch
processing of the transactions in batches by, by, ..., by.
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After collecting all sensory data, a rule in the form of a, is
generated which implies a,_1, where n corresponds to the
nth batch. The feature of this algorithm is that only a, is
sent to the base station, but using the knowledge of the rule
ap—1 can be deduced. A repository stores all the rules that are
extracted in this process. The proposed method was tested
using a synthetic dataset.

Boukerche et al. have used sensor association rule to mine
patterns from sensor nodes [66]. Unlike the works in [52],
[53], Boukerche et al. used behavioral data that describe node
activities to form the association rules. Their work explored
the following two main approaches.

Direct reporting: each sensor sends its behavioral data to
the sink in the form of notification messages on the detection
of events within the current time slot, A. The nodes may not
participate in the formulation of rules, but report directly to
the base station via sinks without storing data.

Distributed extraction: each sensor is equipped with addi-
tional memory to store behavioral data over a period of time,
and thereby the computation and storage load is distributed
over the entire network.

In [66], the process initiates with the distribution of the
mining parameters, e.g, the time slot size, minimum support
and the historical period, T, among all sensor nodes through-
out the network. Once the parameters are received by the
nodes, each node allocates a local buffer B of size (T;/)) for
storing data, and the entry corresponding to the time slot
is denoted as B(#;). As a sensor in the network continuously
checks for an event, it sets the corresponding bit entry for
the time slot during which it detects an event. This way the
buffer becomes populated based on the detection of events by
the sensor over the historical period. At the end of the period,
a sensor counts the number of set bits in the buffer during
that period, and if the count exceeds the given minimum
support value, it sends a message or multiple messages to the
sink. The message will contain the identifier of the sensor
and the time slot numbers in which the buffer entry is set in
response to event occurrences. Note that, in this approach,
those sensors whose number of set bits is lower than the
minimum support value does not play any role in forming the
association rule. On receiving messages from all sensor nodes
in the network, the sink places all nodes that reported an event
occurrence at the identical time slot in the same epoch. The
database then stores the epoch, which in fact then contains
the sensor activities within that historical period.

Boukerche and Samarah in [67] further extended their
work in [66] and proposed an in-network reduction mech-
anism that reduces the amount of the behavioral data that
are extracted from a WSN. These data are required to gener-
ate sensor association rules. Experimental results show that
in-network reduction gives better performance in terms of
energy consumption and the number of messages needed
to report the behavioral data compared to the direct and
distributed extraction mechanisms of [56].

Existing most sensor association rules mining techniques
for sensor networks require the behavioral data, which
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describes the sensor behavior, to be sent to the sink node
by the sensors and then build a sensor database and apply
different algorithms to find association rules from that sensor
database. Retaining the computation at the node, in [68],
an in-network mechanism is proposed to discover sensor
patterns in the sensors themselves where sensors send only
the frequent sensor patterns to the sink, not the sensor
activity sets.

Wau et al. [69] proposed a decentralized technique to detect
events, prune the irrelative events and find their temporal cor-
relations. To mine event association rules they used MapRe-
duce based technique called MapReduce-Apriori that uses
the computational resource of multiple dedicated nodes of
the system. Performance analysis shows that this technique
attains nearly ideal speedup compared to centralized min-
ing techniques. However, this technique not tested on a real
dataset and it uses Apriori-based techniques that generate
more candidate patterns.

Many centralized association rules mining techniques are
proposed in the literature to discover meaningful patterns
from sensor data streams. One problem faced in this case
in the missing sensor data where may occur due to many
reasons, for example, sudden disturbance in the communi-
cation link. An approach to estimate such mission values,
termed Window Association Rule Mining (WARM), has been
proposed by Gruenwald [55]. Using the proposed mining
technique, WARM identifies those sensors that are related
to the sensor whose reading is missing. Since sensor data
readings are generated as a stream, it is not possible to apply
Apriori [13] like association mining technique directly to the
data stream. To adapt the Apriori algorithm for sensor stream
data they proposed a framework called Data Stream Associ-
ation Rule Mining (DSARM) in which several modifications
are made to the Apriori scheme to adapt it for sensor streams.
The modification can be listed as:

1) At first, rules are generated between pairs of sensors

instead of generating all of the possible rules.

2) Then, the association between pairs of sensors is eval-
uated with respect to a particular state of the sensors,
and this modification will lead to rules of the form
§1 = sp = st, which means that s; determines s, with
respect to state sz.

3) Finally, the sliding window technique is implemented
to generate the association among sensors within the
given window size.

In this framework, the readings of the related sensors in
the current round participate in estimating the missing values.
If a missing value cannot be estimated by using association
rule mining, it is estimated using the average of all available
readings for the sensor with the missing value.

To permit a fast estimation of the missed reading, a cube
data structure is proposed to efficiently store sensor readings.
Sensor data arrive in rounds. The cube is used to keep track
of the state of individual sensors and the pairs of sensors that
have the same reading. Figure 5 shows the proposed data
cube. The horizontal and vertical dimensions of the cubes are
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FIGURE 5. The cube model.

the sensor identifiers, and the depth dimension is the number
of rounds (i.e. window size). Cell(i,j, r) = st in the cube
means that sensors s; and s; have the same state st at round r.

For around r and a missing reading from sensor s,,, the esti-
mation process starts by deciding all the frequent states
of sensor s, (i.e., those states that have ’support’ greater
than, or equal to, the given minimum support). Then, for
each frequent state sz, all the possible rules of the form
(si = sm/st) that meet the given minimum support and
confidence, are generated. The weight of the contribution
of each sensor, appearing in the antecedent of the frequent
rules toward the missed reading with regard to state sz, is then
computed. This weight is based on the number of state match
between sensor s; and sensor s,,, within the given window
size. The missed value is then estimated, based on the weight
of each sensor.

In [70], [71], Jiang et al. propose a data estimated tech-
nique, called Closed Association Rule Mining (CARM),
which can derive the most recent association rules among
sensors based on the current closed itemsets in the sliding
window. This method, based on the closed frequent itemsets
mining algorithm in the data stream, is named CFI-stream
[72]. It maintains an in-memory data structure, called direct
update (DIU) to store closed itemsets. The extensive results
presented in their works show that the algorithm achieves
time and memory efficiency. However, the algorithm esti-
mates the missing data according to the frequent patterns
which are pre-computed based on the existing data. This
raises a problem that, if the pattern containing the missing
data does not appear in the frequent patterns, the missing
data cannot be estimated. Figure 6 shows the DIU tree after
receiving the first four transactions. It shows that currently
there are four closed item-sets: I3, I1 I, I3 I4, and I} I I3 in
the DIU tree, and their associated supports at the right upper
corner are 3, 3, 1, and 2. A basic set of rules is generated from
these frequent item-sets. All other rules can be inferred from
this basic rule set.

In [56], Boukerche et al. propose a framework to mine
the associations between the sensors in a particular sen-
sor network. Their contribution can be summarized as
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follows: first, a new formulation for the association rule
mining problem that makes it applicable to generate asso-
ciations between sensors; second, Positional Lexicographic
Tree (PLT), a new representation structure that can compress
the sensor data to store in the database; third, a mining
algorithm that can generate the frequent patterns from the
PLT efficiently. The PLT Tree construction mechanism for
the sensor set s1, s2, 53, 54 is shown in Figure 7.

In [58], a tree-based data structure called a sensor pattern
tree (SP-tree) has been proposed by Tanbeer et al. With only
one scan over the sensor database, an SP-tree generates a
set of all association rules from sensor network data. The
method calculates the frequency of event occurrences from
the sensed data, build a prefix-tree using that information
in any canonical order, and then reorganizes the tree in the
descending order of frequency. The reorganization of the tree
puts those nodes that frequently detect events at the top part
of the SP-tree, thus resulting in a compact tree structure.
To mine the set of frequent event-detecting sensors, the FP-
growth mining is applied. The construction process of SP-tree
is shown in Figure 8 for the SD presented in Table 2.

The performance of SP-tree was evaluated and compared
with PLT [56] in terms of memory consumption and runtime.
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The results reported that SP-tree performed better that PLT in
both the aforementioned metrics. One reason for such better
performance is that SP-tree construction requires only one
database scan while PLT needs two database scans, clearly an
advantage over time. The other reason is that the frequency-
descending tree structure makes the mining of SP-tree more
efficient than that of PLT.

In [73], Pan et al. introduced an improved version of the
DSARM framework which addresses the drawback of [55] by
taking consideration of the pairwise relationship between two
sensors only; in this process, their relationships with other
sensors are ignored. Neighbors’ sensed data can reveal their
spatial correlation dynamically. The improved framework
exploits this spatial correlation to estimate missing sensor
data using adaptive multiple regression.

In [74], Paik et al. proposed a technique to mine association
rules from XML stream data. It involves a reformulation of
the association rules for blockwise stream data and for the
entire stream as well as making a list-based structure for
storing XML tree labels. Woo et al. [75] proposed a technique
of generating a new type of an association rule, called a con-
text association rule, over an online sensor/actuator stream
data and also introduced a prefix tree structure that captures
all frequent context itemsets over the current data stream of
sensor networks. Context association rules can invoke proper
operations of actuators relevant to the values of the sensors.

To discover any correlation that exists among a set of
targets, Samara et al. proposed a target-based association rule
(TAR) technique in [76]. In their study, the targets were the
locations of a missed reported event in a WSN deployed in a
border area. In this technique, sensors need to use additional
memory to store event data which incurs an increased cost of
deployment.

Pal and Kumar in [77] proposed a distributed data col-
lection model where an enhanced Apriori algorithm with
MapReduce was utilized to find the frequent patterns from
real and synthetic sensor data. They used the direct and
indirect data collection mechanisms introduced in [94] to
collect the metadata from IoT applications and store these
data in the database based on timestamp. Then the MapRe-
duce framework is used to mine frequent patterns from the
database by using a distributed Apriori approach. However,
the experimental results were not extensively analysed for the
proposed method. In [83], an improved version of frequent
pattern mining technique has been proposed that targeted
IoT big data. They modified the Apriori algorithm as an
advanced Apriori algorithm (ADAA) to identify an item’s
association where the ADAA is less sensitive to the mini-
mum support threshold compared to the traditional Apriori
algorithm. However, the proposed method is not suitable to
deal with the scalability issues of IoT.

The proliferation of smart home applications and remote
monitoring has generated a number of interesting behavioral
pattern mining applications. Nazerfard [80] proposed a model
to mine the temporal aspects of activity patterns to help the
living setting in a smart home scenario by using temporal
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features to determine the temporal correlation of different
activities with the begin time and duration features. This type
of activity patterns can also be utilised in home automation,
context-aware activity reminder systems, and anomaly detec-
tion in smart environments. They used the frequent pattern
mining technique to mine activity patterns. The work, how-
ever, did not explore how the model can be extended to IoT
based smart home applications. Lee et al. in [84] proposed a
privacy detection scheme called PDS to assess privacy from
IoT based smart home applications where they used mining
results to identify elders’ movement activities by analysing
sensor data and map global sensor topology from these activ-
ities. They identified locations for deploying sensors based
on the association rule mine techniques. However, the work
lacks extensive performance analysis. In [82], Kireev et al.
proposed an association rule based predictive algorithm to
predict the need for repair of different units (e.g., heating, air
conditioning) in IoT based smart homes. The proposed model
has two steps. Firstly, the sequences of signals from sensors
are extracted by using the association rules mining technique
and secondly, a classifier is used to identify the generated
patterns to group them. This approach is yet to be adequately
evaluated through experimentation.

To mine temporal patterns over the clinical sensor data
stream and apply that knowledge for patient welfare, Banaee
and Loutfi [78] proposed a data-driven rule mining technique
to mine temporal patterns over the clinical sensor data stream.
The proposed method is divided into three phases: temporal
rules mining algorithm, temporal rule set similarity calcu-
lation and temporal rule representation. At first, the rules
mining algorithm performs prototypical pattern abstraction
and then applies temporal rule mining. A similarity measure-
ment technique is used to compare the generated rule sets
among themselves, and then based on the extracted rules it
is identified how a clinical condition is distinct from others.
Finally, a natural language generation technique is used to
represent these generated rules into text which are able to
provide physicians with significant information to guide a
patient’s treatment plan. Though promising, the semantic
model used in this work needs to be improved to represent
the temporal rules into text.

Rani and Pushpalatha [81] proposed a sliding window-
based vertical partitioning parallel and distributed algorithm
(VPPDA) that utilizes a MapReduce paradigm to discover
FPs from sensor data and can be used for remote moni-
toring applications. In the model, each window is assigned
to different nodes and each node runs the VPPDA algo-
rithm in parallel to generate FPs. VPPDA removes the
overhead of inter-process communication in the overlapped
window concept which ensures better performance. Since
this model does not remove the old information from the
window, it may accumulate garbage information as the time
progresses.

In [85], an incremental processing method has been pro-
posed for frequent subgraph detection where they modified
the data stream tree (DSTree) [97] and used a DSMatrix
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TABLE 3. Comparison of Association rules based techniques for WSN/IoT.

Author Year Method Association Application Data source Strengths Limitations
between
M. Halatchev | 2005 Apriori like Sensors Traffic Synthetic Estimate Ignore sensor
et al. [S5] Centralized Monitoring missing that report
extraction values multiple time
Loo et al. 2005 | Loosy counting Sensor WSNs Synthetic Compute the Time
[52] values monitoring exact set consuming
of rules
Romeretal. | 2006 Apriori like Sensor Environmental Real, Estimed Communication
[53] values monitoring synthetic missing overhead
values
Chong etal. |2008 Apriori like Sensor WSNs synthetic Use for Takes much
[54] values monitoring energy savings time
Boukerche 2007 Positional Sensors Monitor Real, Predict Increase
[66] et al. Lexicographic WSNss quality synthetic source of cost due
Tree (PLT) of service future events multiple
Gruenwald 2007 Freshness Sensor Environmental synthetic Estimation Unable
et al. [70] Association Rule values monitoring of missing to handle
Mining (FARM) sensor high speed
stream data
Jiang et al. 2007 FP-growth Sensor Data synthetic Compute Inefficient
[70] values Analysis exact set for handling
of patterns high-speed data
Tanbeer 2009 SP-tree sensors Generic synthetic Discover High tree
etal. [58] monitoring events patterns build cost
Boukerche et al. | 2009 | Minimum node Sensors Area Monitoring | synthetic reduce the Time
[56] data gathering amount of data candidates consuming
ree (MNDGT)
Samarah et al. | 2009 Target TAR Boarder synthetic Predict the Need extra
[76] monitoring source of the storage chip
future events for each sensor
Boukerche et al. | 2009 In-network Sensors WSN Synthetic Less message not tested
[67] performance generate on real
environment
Anjan Das 2012 In-network Sensors Generic synthetic Estimation put extra
[68] mechanism monitoring of missing load on the
sensor values sensor node
Wu et al. 2013 MapReduce Sensor value | Networking Synthetic useful in Generate huge
[69] -Apriori monitoring handing large data candidates

to store data. Finally, they used a sliding window-based
technique to mine recent frequent subgraphs from the pattern
growth approach. However, this method did not explore the
real IoT application and its performance may not be accept-
able in big data scenarios.

Behavioral pattern mining has also been explored for esti-
mating accuracy of query execution. In [79], a geometric
query intersection problem has been explored where top-k
patterns with a temporal granularity are extracted rather all
frequent patterns to save the memory. The proposed method
starts with data pre-processing where data cleaning is per-
formed by using null and missing values. In the query, the pro-
cessing module deals with user query that is based on spatial
results. In the calculation of the relevant results module,
the matched results are collectively stored and then top-k
results are generated by using the query algorithm. Lastly,
the accuracy of the query is evaluated. The main limitation
of this mechanism is it does not provide any information on
how to collect the multivariate temporal data. A comparison
of association rules based BP techniques for WSNs and IoT
is shown in Table 3 & 4.
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C. INTERESTINGNESS BASED BPS MINING

TECHNIQUES FROM WSN/IOT DATA

The previous section presented works where the generation of
sensor association rules is based on the frequency of occur-
rence of patterns. Often these techniques produce a large
number of rules, most of which may bear little significance
to the user/application or are unable to capture the actual
correlations among the sensor data. As a result, another type
of behavioral pattern called associated sensor patterns is pro-
posed by Rashid et al. in [43], [63], [98] to improve on these
aspects. This type of behavioral pattern captures association-
like co-occurrences as well as temporal correlations which
are linked with co-occurrences. These works capture patterns
in a compact tree structure, called associated sensor pattern
tree (ASP-tree) that utilizes a pattern growth-based approach
to generate all associated patterns with only one scan over the
dataset. An ASP-tree is then mined using a mining algorithm
(ASP). ASP-tree has a few similitudes with a SP-tree [58]
in the construction and reconstruction mechanism. However,
an ASP-tree performs an additional compression technique
like the Patricia tree [99] and Cantries [100]. This ensures
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TABLE 4. Comparison of Association rules based techniques for WSN/IoT, continued.

Author Year | Method Association | Application | Data source Strengths Limitations
between
Pan et al. 2014 | Multiple | Sensor values | Data Analysis Real Estimates Not efficient
[73] Regression missing for large WSNs
Algorithm sensor values
Paik et al. 2014 | FP-Growth | Sensor value Generic Not specified Generates No experiment
[74] monitoring redundant rules is done
Woo et al. 2014 | CAR-tree | Sensor value Generic Synthetic | Captures frequent Memory
[75] monitoring contexts of a user inefficient
Pal et al. 2017 | Apriori Sensor Network Synthetic, Highly Generates many
[77] MapReduce monitoring real scalable result sets
H Banaee et al. | 2015 | Similarity Sensor Clinical Real Checks Inefficient
[78] method value monitoring similarity for Big
among rules sensor data
Ramanetal. 2017 | FP-growth Sensor Generic Real Scalable Details
[79] value Monitoring missing about
sliding window
Ehsanetal. |2018 | FP-growth Sensor Smart synthetic Not generate Not
[80] value home redundant patterns suitable for
Big data
Rani et al. 2019 | MapReduce Sensor Remote synthetic Highly Not
[81] value monitoring scalable tested on
real data
Kireev etal. |2018| FP-growth Sensor Smart Real Effectively Dataset
[82] value City predicts details is
sensor state missing
Wang etal. | 2019 Apriori Sensor Generic Real Improves Generates many
[83] value IoT operational candidate
efficiency patterns
Lee et al. 2019 | Association Sensor Smart Real Finds Inadequate
[84] rules value home privacy performance
information analysis
Bok et al. 2018 | DSMatrix Sensor Generic Real Reduces Inefficient
[85] value IoT duplicate for Big data
operation

ASP-tree holds less number of nodes than SP-tree due to
residing the same support sensors in a single node. Subse-
quently, the ASP-tee memory footprint could be far less than
the SP-tree. Besides, SP-tree utilizes the FP-growth based
mining method to generate frequent patterns. FP-growth min-
ing is not directly applied to ASP-tree because an ASP-tree
not only mines the frequent sensor patterns but also frequent
associated sensor patterns. Therefore, a pattern growth min-
ing technique is devised that can handle the additional feature
of the ASP-tree. Table 6, shows the memory comparison
among ASP-tree, SP-tree, PLT and FP-tree for T1014D100K
data [101] and Intel data [102].

In a dynamic environment, recent data from sensors bear
higher significance. To accommodate this issue, the ASP-tree
construction is again improved by running a sliding window
over the data with time and updating the tree structure as
the window moves. This tree is called sliding window ASP-
tree (SWASP-tree). Both trees have the ‘build once and mine
many’ property, making it highly suitable for interactive min-
ing. The step-by-step construction process of the SWASP-
tree for window 1 and window 2 based on the sensor data
stream (SDS) of Figure 3 is shown in Figure 9. The pseudo-
code of SWASP is shown in Algorithm 1.

The proposed SWASP-tree appears to be similar to the
data stream (DSTree) [97] and compact pattern steam tree
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(CPS-tree) [103]; however, there are a few contrasts around
these trees. In spite of the fact that the construction process
of SWASP-tree is practically the same as DS-tree, there is
no restructure-compression phase in DSTree. An alternate
essential divergence between SWASP-tree and DS-tree could
be seen throughout the tree update stage when the window
slides. As stated by [97], throughout the tree update stage,
the DSTree does not traverse all nodes and does not shift
the frequency count list at every node. Consequently, the fre-
quency list is not updated for those nodes which are not
visited during the new incoming batch. Such updating is
likely to create some invalid nodes in the DSTree structure
for the present window. This may result in a tree that is
over-burdened with additional nodes carrying insignificant
information for the current window. The DSTree for window
1 and window 2 of our example SDS is shown in Figure 10.

Because of the possible additional nodes, the DSTree must
use extra computational overhead throughout the mining pro-
cess to erase or to give careful consideration to overlook
them. Conversely, SWASP-tree performs the frequency shift
operation for every node and it doesn’t hold any additional
node that will cause a burden for the present window.

The structure of SWASP-tree is very unique in relation to
the CPS-tree. CPS-tree contraction starts with the insertion of
all the items in the lexicographic item order and there are two
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TABLE 5. Comparison of Interestingness measure based techniques for WSN/IoT.

Author Year Method Association Application Data source Strengths Limitations
between
Ismailetal. [2019| TMCP-tree Sensors Body sensor Synthetic | Discovers interesting | No comparison
[86] networks patterns related to with existing
human daily life | techniques provided
Ismail et al. | 2018 | PPSD-tree and Sensors Data Analysis Synthetic | Computes productive PPSD-Tree
[87] MapReduce periodic-frequent construction may
mechanism sensor patterns takes longer time
Bhuiyan et al. | 2016 DP-tree Sensor values | IoT monitoring Real Event detection Inter node
[88] in low energy communication
consumption is very high
Rashidetal. |2017 | PASP-tree Sensors Network Synthetic Contains interval Inefficient for
[89] monitoring and real of ASP big IoT data
krishna et al. | 2016 | Dissimilarity | Sensor values Smart home - Prunes unnecessary No experiment
[90] function patterns provided
Haradaetal. {2019 | MISCELA Sensor Urban Real Useful in Does not consider
[91] values Management CAP mining big IoT data
Tianrui et al. |2018 | MapReduce Sensors Generic Synthetic Runtime Not tested on
[92] mechanism reduction | on real environment
Rashid et al. | 2013 RSP-tree Sensors Network Synthetic Captures temporal Inefficient for
[93] monitoring regularity big IoT data
Rashid et al. | 2015 ASP-tree Sensors Monitor WSNs Synthetic, Captures true Tree construction
[43] real correlation and reconstruction
among sensors takes longer time
Rashid et al. |2015 | ShrFSP-tree Sensors Monitor WSNs Synthetic, Captures Does not
[61] real share relation consider multiple
among sensors thresholds
Rashid et al. | 2017 | MapReduce Sensors Monitoring WSNs | Synthetic, Captures Increased number
[94] real temporal of result sets
regularity increase
Yassine et al. | 2017 | FP-growth Sensors Smart home Synthetic, Captures Inefficient for
[95] real irregular big IoT data
activity
Usman et al. | 2017 MMFP Sensors Generic Real Generates No real
[96] IoT fewer IoT applications
candidates considered
TABLE 6. Comparison among various mining tree structures in terms of memory usage.
Dataset Tree min_all_conf Memory (MB)
man_sup(shown as §%) (%) 1 b2 03
T10I4D100K ASP-tree 20 6.10 3.10 0.21
61 =1.0,62 =2.0,63 = 3.0 40 5.50 2.30 0.15
60 4.60 1.20 0.09
SP-tree - 7.10 3.20 0.31
FP-tree - 8.35 4.66 0.50
PLT - 7.50 3.60 0.35
Intel data ASP-tree 20 1410 480 250
01 = 30,62 = 40,93 = 50 40 1250 390 170
60 1090 320 105
SP-tree - 1470 495 270
FP-tree — 3800 1250 700
PLT - 1500 510 280

kinds of nodes accessible in each path of the tree: ordinary
node and tail node (the last node of each transaction is called
a tail node). Every node expressly holds the item id and the
total frequency count for the item in their respective paths,
whereas the tail node furthermore upholds the batch counter.
The structure comparison of SWASP-tree and CPS-tree is
shown in Figure 11.

SWASP-tree utilizes the same restructuring process like
CPS-tree. In addition, SWASP-tree performs an additional
compression technique like the one in [99]. This guarantee
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SWASP-tree catches less memory than DSTree and CPS-tree.
The objective of both DSTree and CPS-tree is to mine exact
recent frequent patterns from the current information stream
where both trees utilize FP-growth like mining system. Then
again, the target of SWASP-tree is to dig recent associated
patterns from the current stream information by using a new
pattern growth technique.

One major requirement of a sliding window based method
is the selection of window size and determination of appro-
priate size requires sufficient knowledge about the nature
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of the data stream. However, gaining sufficient knowledge
about the data stream is challenging for various reasons,
e.g., unpredictable change in the data stream or operational
condition of the application. To address the issue of win-
dow size selection, a slightly modified version of SWASP,
called Adaptive SWASP (ASWASP), is proposed. ASWASP
dynamically adjusts the window size taking computational
resources into consideration [104]. This varied window size,
in turn, varies the rate of processing of data streams and
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handles unpredictable changes in the nature of the data. The
method works on defining three parameters, namely, stream
rate (sr), memory usage (mu), and overall run time (rf) and
formulating a utilization factor in a similar way as in [105].
The rate of arrival of sensor data is defined as stream rate,
the average memory used by the sliding window epochs is the
memory usage, and the average runtime of windows during
an observation span is called runtime. The utilization factor,
UF, is formulated as

UF = [(rt(second) * sr) + sin(w /180 x mu)] 3)

In the above equation, the purpose of the sine function
is to limit the value of UF between O to 1. Depending on
the value of UF, the sliding window size is incremented or
decremented. A threshold is first set for UF, and if the cur-
rently observed UF value is lower/higher than that threshold,
the window size is then reduced/increased. Such adjustment
of window size will make better use of memory to cover
maximum epochs.

The above works by Rashid er al. [43], [63], [98] con-
sidered only the binary frequency of a pattern. However,
consideration of the binary frequency of a pattern is not a
sufficient indicator for finding meaningful patterns, rather
trigger value should be used. Rashid et al. in [61], [64]
proposed a new type of behavioral patterns called share-
frequent sensor patterns (SFSPs) by considering the non-
binary frequency values of sensors in epochs. SFSPs can find
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Algorithm 1 SWASP Algorithm
Input: SDS, min_sup, min_all_conf, current window
W, no. of batches in W,, no. of epochs in a batch (M),
Initial_Sort_Order
Output:ASP for W,

1: Begin
2: SO <« an SO-list arranged in ISO
3: SWASP-treeq < a prefix-tree with null initialization
4: for each batch B; do
5:  if j > N then then
6: Call DeleteSWASPtree(R)
7. endif
8:  for each epoch Ej in batch B; do
9: Sort the items of Ej in the order of SO
10: Update support value in the SO-list
11: Call InsertSWASPtree(Ey, I, N, R)
12:  end for
13:  Calculate Sgp from SO in frequency-descending order

using merge-sort method;
14:  for each branch in SWASP-trees do

15: Sort the branch in Srp using branch sorting method
(BSM);

16:  end for

17:  for each branch in restructured SWASP-tree4 do

18: Identify the same support sensor node in each
branch and merge them to a single node

19:  end for

20:  while any mining request from the user do

21: Input min_sup and min_all_conf from user

22: for each sensor v from bottom of SO-list do

23: Call Mining (CPB,, SO-list,,, v)

24: end for

25:  end while

26: end for

27: End

a correlation among a set of sensors and hence can improve
the performance of WSNs in a resource management process.
A share-frequent sensor pattern tree (ShrFSP-tree) has been
proposed to facilitate a pattern growth mining technique to
discover SFSPs from WSN data.

To process a large amount of data from the WSNss, a par-
allel and distributed framework that uses a multi-knapsack
optimization formulation for efficient balancing of load and
memory usage among processing nodes is also developed
which is termed as parallel ShrFSP-tree (PShrFSP-tree). This
framework significantly reduces the I/O cost by capturing the
local database contents with a single scan and uses a fully
parallel pattern growth mining technique with reduced inter-
processor communication overhead, and therefore is highly
scalable. Results demonstrate that ShrFSP-tree outperforms
its counterpart [106] in static databases in terms of execution
time by 35% and memory usage by 55%.

Figure 12 illustrates how the PShrESP-tree performs in
the homogeneous and heterogeneous environments for two
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widely used datasets, namely, the T10I4D100K and Intel
data. From Figure 12 it is evident that the runtime of the
PShrFSP-tree in the heterogeneous environment is substan-
tially lower than that of the homogeneous system. The
higher performance by the heterogeneous system is achieved
through a better distribution of load among the nodes using
the knapsack problem-based load balancing technique. Con-
sequently, the computational time required by each node is
nearly equal and the overall computational time decreases.

Temporal regularity of a pattern (i.e., whether a pattern
occurs at regular intervals, or in irregular fashion) can be
an important measure for many applications. It will be very
significant to develop a temporal regularity based sensor
data mining model. To this end, Rashid et al. [62], [93]
have proposed regularly frequent sensor patterns (RFSPs)
which are based on temporal regularity of behavioral patterns.
RFSPs can discover a set of sensors that are temporally
correlated and appear at regular intervals, revealing important
knowledge from the collected sensor data. Since distributed
schemes offer better reliability and availability, a distributed
data acquisition model [94] is proposed for collecting data
from sensor networks that are required for mining RFSPs.
The advantages of RFSP are that it requires less memory and
attains a compact tree structure, and its construction requires
only a single database scan. All these make the RFSP mining
technique highly attractive with low runtime.

Since MapReduce becomes a defacto model for big data
analysis, a parallel implementation of RFSP on the MapRe-
duce platform, called RFSP on Hadoop (RFSP-H) [94],
is proposed which can mine a large scale sensor data with
further efficiency. Figure 13 shows the proposed model for
RFSPs mining on the MapReduce platform which is capable
of handling large scale sensor data mining in the IoT scenario.
The runtime comparison of RFSP-H with a single-processor
based RFSP-tree on Intel data [102], by varying the max_var
values where min_sup was fixed at 20%, is shown in Fig. 14.
Experiments with different min_sup values show a similar
trend. These results show that, for mining data from large IoT
networks, Hadoop offers a promising and reliable platform
for efficient mining with the reduced response time.

The same authors in another work [89] proposed a new
type of behavioral pattern called periodic associated sensor
patterns (PASP) where a compact tree structure was used to
mine these patterns from WSN data. Experimental results
demonstrate that the proposed technique effectively deter-
mines the PSAPs from large WSN data.

In [87], Ismail et al. proposed productive periodic-frequent
patterns from IoT data. The patterns are called ‘productive
periodic‘ as they are the periodic patterns that exit because
of some predefined associations. Such patterns are useful for
human analysis like disease vulnerability where an individual
may often succumb to certain seasonal attacks or fashion
choices where some people have preferences for certain col-
ors or styles. To discover these patterns efficiently from large
scale IoT Healthcare data, they used a MapReduce-based
parallel mining technique. Implemented over the Hadoop

33333



IEEE Access

M. M. Rashid et al.: Survey on Behavioral Pattern Mining From Sensor Data in loT

625+

—m- PShrFSP-tree in Homogeneous System
—@- PShrFSP-tree in Heterogeneous System

(S
o
o

w

N

(8]
:

-
N
o
.
/
/
/

Execution time (s)
N
[6))
o

o
N
&)
o

minshare (%)
@)

150+

—&- PShrFSP-tree in Homogeneous System
—@— PShrFSP-tree in Heterogeneous System

100+

[6)]
o
n

10 20 30 40
minshare (%)

(b)

Execution time (s)

o

FIGURE 12. Comparison of execution time in homo and heterogeneous systems on PShrFSP-tree:

(a) T1014D100K and (b) 70 Days data.

Input Data
Partition
k] T
T T T
M‘l;I I\jIP2 1\7{5 | Mapper
— Reducer
] Phase-1
I | f
v v ¥
| rD, || RD, | | RD,
¥ ¥ ¥ T Phase-2
| RFSP |

FIGURE 13. Regularly frequent sensor patterns mining for sensor data on
MapReduce platform.

platform, experimental results show considerable execution
time efficiency of this approach. In [92], Tianrui et al. pro-
posed a MapReduce based framework to mine representative
patterns in the IoT environment. Their proposed technique
can mine the represented patterns in a reasonable time.
Though parallelism helps to reduce runtime, the total number
of result sets is increased. Two optimization strategies were
also proposed to further improve runtime efficiency. None
of these works, however, did not suggest how load can be
balanced among the processors to avoid delay in receiving
intermediate mining results from an overburdened processor.

Ismail et al. in another recent work [86] proposed a tech-
nique to mine regular human activities through discovering
patterns over a non-uniform temporal database created from
the data collected from body area sensor networks. Here the
main challenges were how to deal with different periodicity
and supports values of a pattern and find the correlations
among the identified patterns. Another aspect of this work
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is to consider contextual variation among patient activities
in mining. Mining such patterns can help to design a per-
sonalised treatment plan for patients, specially for patients
in aged-care facilities. Since context depends on the envi-
ronment, situation or action (e.g., a patient’s behavior may
change with the lighting or temperature condition), defining
context attributes properly and comprehensively still remains
a challenge. Though the work in [86] constructs a tree struc-
ture to capture context variation, its efficacy to handle such
variation has not been adequately evaluated through experi-
ments. Moreover, a semantically enhanced data from smart
wearable and environment sensors might provide the oppor-
tunity for further advancement in this area.

In [88], [107], Bhuiyan and Wu proposed a data mining
model to mine differential sensor patterns (DSP) for the IoT
environment. The proposed model considers a parallel and
distributed scenario and discovers a pattern of sensors which
contain the event information. To generate DSP they used
DP-tree. The DSP mining technique was shown to extract
event indicators where TAR [76] and MAR [56] mining failed
to detect. One aim of the work was to reduce the energy spent
to support the additional message exchanges among sensors
needed during the data preparation phase of the mining task.
Their computation of energy cost is based on equal-sized
cluster of sensor nodes, however, in practical deployment
clusers often are of unequal size.

A temporal pattern mining technique that uses a fuzzy sim-
ilarity measure to reduce the candidate patterns by pruning
based on estimated support bounds has been proposed in [90].
This approach takes less computation time since it prunes
the patterns at an early stage before the actual calculation
of support values. The main contribution of this work is the
fuzzy similarity measure and the pruning rules. However,
the authors did not present any experimental works at all to
verify the claimed computational efficiency. Yang in [108]
proposed a conceptual model to link group ranking problem,
and thereby stores group-ranking sequences in a database in
addition to the sensor database. Pattern discovery requires the
use of both databases. The mining algorithm requires the sen-
sor data to be transformed to ranking sequences before being
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used. Though the work is useful to extract frequent sensor
ranking patterns from sensor data, it was solely a conceptual
work without being tested on any simulated or real-world data
and hence its effectiveness is yet to be assessed.

K Harada et al. in [91] proposed correlated attribute pat-
tern (CAP) mining technique from sensor dataset. To discover
CAP they proposed a technique called MISCELA which can
reduce the computational cost. They also proposed a CAP
search tree structure to store data and then applied the mining
technique on it. CAP discovers patterns that are spatially
co-related and close and likely to co-evolve in time, and
therefore, it is useful in smart city applications like road traffic
and congestion monitoring in big cities. The drawback of the
technique is that the response time to a CAP search can be
very large when the number of sensors and CAP attributes
and the evolving rate of data become large. This makes it
unsuitable for large scale WSN or IoT data.

In [109], Cheng et al. proposed a robust and structured
event-driven, application-oriented platform architecture for
IoT network management that combines the merits of service-
oriented architecture (SOA) and event-driven architecture
(EDA). They also introduced a situational event pattern and a
situational event-driven service coordination behavior frame-
work that led to a detection algorithm capable of identify-
ing mismatch in the ruleset. Yassine et al. [95] proposed a
framework that uses IoT based smart home application data to
discover human activity patterns. The proposed method con-
sists of the following four steps: data preparation, extraction
of frequent patterns, incremental analysis using clustering,
and activity prediction using Bayesian networks. To find
irregular human activities, they used frequent pattern mining
integrated with cluster analysis which ultimately identifies
people having difficulties in taking care of themselves (e.g.,
not taking bath or making food, forgetting medicine). Later
the Bayesian network was used to build the activity prediction
model. The work lacks a proper comparison of the proposed
model with other similar methods.

In [96], Usman et al. proposed a model to mine malicious
frequent patterns (NMFPs) from IoT environments which
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can be utilized to detect anomalies. The proposed model
consists of three phases: feature selection, legend creations,
and frequent pattern mining, and has low computational costs.
The authors compared their model with the existing asso-
ciation rule mining techniques such as Apriori, FP-Growth,
and Prefixspan [110]. The proposed MMFP algorithm works
on two user-defined thresholds named minimum support
value (MSV) and confidence value (CV). After receiving
the input data, the MMFP algorithm mines frequent patterns
based on MSV and CV with only one scan. Then an expert
analysis is performed to extract malicious patterns. These
methods need to be optimized for the real-time data distri-
bution service for IoT applications.

A comparison of interestingness measure based BPs tech-
niques is shown in Table 5.

D. AN BEHAVIORAL PATTERN MINING

FRAMEWORK FOR IOT

The existing association rules based behavioral pattern min-
ing techniques have many limitations. Sensor association
rules suffer from the lack of appropriate methods for the
selection of appropriate support and confidence values.
Existing techniques [52], [53], [55]-[58] only consider the
homogenous data. However, for real-time decisions, homo-
geneous data may not be appropriate. Most techniques utilize
the centralized method [43], [56], [58], [61], [62], [64], [93]
where the data are sent to a central node (i.e., sink) for
pattern discovery. Since data need to travel from the source
to the sink, such methods suffer from overhead and long
response time due to this communication because the distance
might be long depending on the network size. Although the
response time and the energy consumption can be improved
by adopting distributed methods discussed in the preced-
ing section, they will suffer from similar shortcomings if
the cluster heads need to control a huge number of nodes.
Moreover, existing methods consider only temporal, spatial,
or spatiotemporal correlations [53] among data and fails to
take account of the attribute dependency among sensors.
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The lack of consideration of attribute dependency enhances
the computational cost and reduces mining accuracy. Further-
more, existing techniques (e.g., [86], [87], [90], [92]) are not
evaluated by real deployment and not tested or suitable for
IoT big data (e.g., [63], [95], [96]). To resolve these shortcom-
ings, here we propose a knowledge-based framework that can
mine the pattern in online as well as offline which is shown
in Figure 15. For example, if we consider this framework for
an IoT based smart city application scenario (e.g., parking
area monitoring), initially the sensor nodes perform mining
tasks locally and then send the processed data to the sink, if it
is required, and make a global view of the whole network.
Based on this data, the IoT application can serve an end user
query.

The proposed model has two parts: the local mode and
Global mode. In the local mode, the sensor data coming from
the IoT are collected by using direct reporting, distributed
storage, data reduction or clustering mechanisms. Depending
upon the application purpose different data collection mod-
els are used. In the direct data collection model, the data
are directly stored at the data storage location. However,
for the distributed and data reduction mechanism sensor
nodes utilize their processing capabilities to perform mining
operations locally and only forward partially processed and
required data to the storage location.

In the global mode, the data are processed by using par-
allel and distributed models to discover desired behavioral
patterns. Since IoT generated a huge amount of data, and
these data need to be processed within a short time so parallel
distributed models are very necessary. Finally, based on the
given knowledge formulation we discover behavioral patterns
from these data.

VII. OPEN RESEARCH ISSUES
Although different methods have been proposed in the liter-
ature to mine behavioral patterns from WSN data there still
remain many research issues in this area which are outlined
below:
1) Concept drift in data stream:
In data mining, unexpected changes in the underly-
ing data distribution over time are known as concept
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2)

3)

drift [111]. The changes in underlying data can happen
due to changing personal interests, changes in popula-
tion, or adverse activities. In relation to IoT, changes
can be attributed to a complex nature of the environ-
ment, the scale of activity patterns in the monitored
area, the occurrence of emergency events, etc. [112].
Existing FP mining techniques consider that the data
distribution characteristics in the sensor data stream
will not experience any drastic change and thereby,
ignore the presence of any concept drift in the data.
However, in reality, concept drift is very likely to occur
in sensor data stream [113], and if not taken into con-
sideration, the mining results will be inaccurate. There-
fore, it is essential to develop an intelligence model
that can adapt to this dynamic changing nature of data
accurately in real time and this can be an important
direction of research in behavioral pattern mining of
IoT sensor data.

In literature, several techniques are available to detect
concept drift and identify the point of change or time
interval during which changes occur [114]. Once the
amount of drift exceeds certain threshold, an already
built model can be rebuilt by adjusting the minimum
support threshold depending on that amount. Grad-
ual forgetting [115] and incremental learning [116],
[117] approaches used in machine learning can also be
explored here.

Context: Context is a very important issue in Big data.
For transforming the raw data into real information,
contextualization is crucial which not only reduces
the size of the data but also helps to discover signifi-
cant knowledge in a timely manner. This information
can be utilized as a practical perception that allows
intelligent corporate decision-making [118]. In general,
the target is to find relevant and useful information
that will enhance our intelligence. The European Union
has recognized context awareness as a vital research
area for IoT [119]. In case of IoT, a sensor’s attributes
like location, capability, time, velocity can be regarded
as context items. Many studies have demonstrates the
importance of context for IoT, such as context-aware
trust model for lightweight IoT devices [120]. Conse-
quently, it is an essential factor to consider the context
to design a knowledge-based behavioral pattern mining
technique.

Promote green IoT:

Attaining energy efficiency in any engineering sys-
tem and low energy communications have become
major research issues in recent times as they contribute
to environmental benefits [121]-[123]. Green IoT
(G-IoT) targets to implement environmental-friendly
and energy-efficient features by adopting strategies at
both hardware and software levels, and can be bene-
ficial in reducing energy consumption from IoT-based
applications [124]. Even small savings in energy in the
operation of sensors and sensor networks will result in
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large energy conservation because of the sheer number
of sensors to be deployed by IoT services in the near
future. In addition, replenishing energy in sensors is
not easy in many sensor networks because of their
inaccessible locations, and saving energy in such cases
will increase their lifetime.

How knowledge gained from WSN/IoT data mining
can be used in the energy-efficient operation of net-
works needs to be investigated to achieve G-IoT [125].
In this case, machine learning based energy optimiza-
tion techniques can be useful to predict the energy con-
sumption by identifying different activities in the IoT
applications [126]. Moreover, using distributed con-
trol, fog computing and mass transit gains can ensure
dynamic and distributed energy control model as well
as low energy consumption [127].

4) Increase the efficiency of Actuation: The operational

efficiency of standalone WSNs or multiple distributed
WSNs in IoT will bring a number of highly valued
benefits. These include early detection of events like
bush-fires or nuclear leakage in a power station, actu-
ation of actor network(s) in response to a detected
event, and better coordination among WSNs for a coor-
dinated task, like rescue operations after an accident
or natural disaster. Little work has been done to date
on how knowledge extracted from mining WSN data
can be used in increasing the efficiency of wireless
actor networks, and this remains an important research
challenge.
One way of faster detection of emergency services like
the ones mentioned above is to perform data mining
close to the event source, such as by edge devices in
the IoT. A distributed and efficient mining algorithm
can be developed which can run in the resource-limited
environment in the edge devices, and a co-ordination
and decision fusion scheme can be devised that can
fuse mining results from multiple edge devices for
increased detection accuracy of events spanning over
large spatial area. Using the mining results as part of
a query, an optimization problem can be formulated to
find and then activate the actuators in actor networks
that are in the best locations to mitigate the event.

5) Data security:

Security in the big data world is likely to present a
unique issue. Big data collected from IoT poses a num-
ber of security risks [128]-[130]. According to Analyst
Gartner [131], “The IoT, which excludes PCs, tablets
and smartphones, will grow to 26 billion units installed
in 2020 representing an almost 30-fold increase from
0.9 billion in 2009. Big data generated from the IoT
presents an absolutely new complexity when it comes
to the need of security and privacy. Every single sensor
or device that is connected to the internet represents
a potential risk and one weak link could open up
access to thousands of sensors or devices on a network
with potentially serious consequences. Another crucial
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issue to protect the confidentiality of the data gath-
ered through these sensors. In 2014, researchers from
Eurecom found 38 vulnerabilities which include weak
encryption and backdoor accessibility across 123 prod-
ucts of IoT devices [132].

In practice, when data are collected by connected
devices in 10T, one of the requirements is to provide
high privacy assurance. The implementation of the
‘defense-in-depth’ mechanism proposed by the Federal
Trade Commission (FTC) can reduce cybersecurity
threats [133]. Moreover, deep learning-based tech-
niques can be used for detection, modeling, monitoring,
analysis and defense against various attacks to security
systems [134]. Such techniques and IoT system vul-
nerability analysis [135] can be used in conjunction
with frequent pattern mining to detect anomalies and
intrusion as well as to strengthen security.

VIil. CONCLUSION

The emergence of IoT, with WSNs as its building blocks,
has created a collaborative platform for better collection,
distribution and management of sensor data, which can be
static or stream data. IoT applications, ranging from smart
city to undersea monitoring, are expanding to many other
innovative applications with the fast deployment of network-
ing infrastructures offering IoT services over long range wide
area networks. This huge amount of sensor data from IoT
will only be valuable if they can be mined for knowledge
in real time, however, this presents many new challenges for
the knowledge discovery techniques. This paper presented
an overview of behavioral patterns mining techniques from
sensor data in IoT, analysing their strengths and limitations.
It provides a very good foundation for the researchers who are
intersected to gain an insight into the knowledge discovery
techniques in [oT. Finally, open research issues related to this
topic have been discussed.

IX. ACRONYMS

ADAA Advance Apriori Algorithm
ASP-tree  Associate Sensor Pattern Tree

BPs Behavioral Patterns

CARM Closed Association Rule Mining
CAP Correlation Attribute Patterns
CPS-tree  Compact Pattern Stream Tree
DSARM Data Stream Association Rule Mining
DSTree  Data Stream Tree

DSP Differential Sensor Patterns

EDA Event Driven Architecture

FP Frequent Pattern

IoT Internet of Things

IIoT Industrial Internet of Things
G-IoT Green Internet of Things

KDD Knowledge Discovery in Database
MMFP Mine Malicious Frequent Pattern

NIC National Intelligence Council
PASP Periodic Associate Sensor Pattern
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PDS Privacy Detection Scheme

PLT Positional Lexicographic Tree

QoS Quality of Service

RFSP Regular Frequent Sensor Pattern

ShrFSP  Share-Frequent Sensor Pattern

SOA Service Oriented Architecture

TAR Target Association Rule

WARM  Window Association Rule Mining
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