
Frequent Subgraph Mining
from Streams of Linked Graph Structured Data

Alfredo Cuzzocrea
ICAR-CNR & Uni. Calabria

Rende (CS), Italy
cuzzocrea@si.deis.unical.it

Fan Jiang
University of Manitoba
Winnipeg, MB, Canada

umjian29@cs.umanitoba.ca

Carson K. Leung
University of Manitoba
Winnipeg, MB, Canada

kleung@cs.umanitoba.ca

ABSTRACT
Nowadays, high volumes of high-value data (e.g., semantic
web data) can be generated and published at a high velocity.
A collection of these data can be viewed as a big, interlinked,
dynamic graph structure of linked resources. Embedded in
them are implicit, previously unknown, and potentially use-
ful knowledge. Hence, efficient knowledge discovery algo-
rithms for mining frequent subgraphs from these dynamic,
streaming graph structured data are in demand. Some exist-
ing algorithms require very large memory space to discover
frequent subgraphs; some others discover collections of fre-
quently co-occurring edges (which may be disjoint). In con-
trast, we propose—in this paper—algorithms that use lim-
ited memory space for discovering collections of frequently
co-occurring connected edges. Evaluation results show the
effectiveness of our algorithms in frequent subgraph mining
from streams of linked graph structured data.

Categories and Subject Descriptors
E.1 [Data]: Data Structures—graphs and networks; E.2
[Data]: Data Storage Representations—linked representa-
tions; H.2.8 [Database Management]: Database Appli-
cations—data mining

General Terms
Algorithms; Design; Experimentation; Management; Perfor-
mance; Theory

Keywords
Data mining, frequent patterns, graph structured data, linked
data, extending database technology, database theory

1. INTRODUCTION
Nowadays, high volumes of valuable semantic web, life sci-
ence, social network, or bibliographical network data can be
generated from diverse real-life applications [3, 14, 23]. For
example, semantic web data—such as blogs, forums, wikis,

c⃝2015, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2015 Joint Conference (March 27, 2015,
Brussels, Belgium) on CEUR-WS.org (ISSN 1613-0073). Distribution of
this paper is permitted under the terms of the Creative Commons license
CC-by-nc-nd 4.0.

and users’ reviewers—can be published and connected at a
high velocity as the web enables users to link related re-
sources (e.g., related documents and related data). These
linked data [19] are commonly published by using technolo-
gies like (i) uniform resource identifiers (URIs) which iden-
tify resources, (ii) hypertext transfer protocol (HTTP) which
retrieves or describes resources, and (iii) resource description
framework (RDF) which graphically models linkage among
resources. A collection of these data can be viewed as a
big, interlinked, and dynamic graph structure of linked re-
sources. Embedded in these data are implicit, previously
unknown, and potentially useful knowledge. Having tech-
niques for modelling, querying, and reasoning these linked
data [13, 15] is desirable. In this paper, we focus on min-
ing frequent subgraphs from these dynamic streaming graph
structured data. Note that some existing algorithms require
very large memory space to mine frequent subgraphs; some
others discover collections of frequently co-occurring edges
(which may be disjoint). In contrast, we propose—in this
paper—algorithms that use limited memory space for discov-
ering collections of frequently co-occurring connected edges.

1.1 Related Works
Since the introduction of the frequent pattern mining prob-
lem [2], numerous algorithms have been proposed [25, 27,
28]. For example, FP-growth [18] uses an in-memory ex-
tended prefix-tree structure called Frequent Pattern tree
(FP-tree)—which captures the content of the transaction
database—for mining sets of frequently co-occurring items
(e.g., shopper market baskets of frequently purchased mer-
chandise items) from traditional static databases (e.g., con-
taining shopper market transactions). Some works [6, 17]
use disk-based structure for mining. However, they mine
from static databases.

As technology advances, dynamic streams of graph struc-
tured data (e.g., streams of semantic web, sensor network,
social network, and road network data [10]) can be easily
generated at high velocity. When comparing with mining
from traditional static databases, mining from dynamic data
streams [20, 29, 30] is more challenging due to the following
properties of data streams: (i) Data streams are continuous
and unbounded. To find frequent patterns from streams, we
no longer have the luxury of performing multiple data scans.
Once the streams flow through, we lose them. Hence, we
need some data structures to capture the important con-
tents of the streams (e.g., recent data—because users are
usually more interested in recent data than older ones [11,
12]). (ii) Streaming data are not necessarily uniformly dis-
tributed; their distributions are usually changing with time.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Archivio istituzionale della ricerca - Università di Trieste

https://core.ac.uk/display/53748573?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A currently infrequent pattern may become frequent in the
future, and vice versa. So, we have to be careful not to
prune infrequent patterns too early; otherwise, we may not
be able to get complete information such as frequencies of
certain patterns (as it is impossible to retract those pruned
patterns). To mine frequent patterns from data streams,
both approximate and exact algorithms have been proposed.
For instance, approximate algorithms (e.g., FP-streaming
[16], TUF-streaming [24]) focus mostly on efficiency. How-
ever, due to approximate procedures, these algorithms may
find some infrequent patterns or miss frequency informa-
tion of some frequent patterns (i.e., some false positives or
negatives). An exact algorithm mines only truly frequent
patterns (i.e., no false positives and no false negatives) by
(i) constructing a Data Stream Tree (DSTree) [26] to cap-
ture contents of the streaming data and then (ii) recursively
building FP-trees for projected databases based on the in-
formation extracted from the DSTree.
The aforementioned properties play an important role in

the mining of data streams in general; they play a more chal-
lenging role in the mining of a specific class of streaming
data—namely, streams of graph structured data. State-of-
the-art solutions to these challenges include the following:
Aggarwal et al. [1] studied the research problem of mining
dense patterns in graph streams, and they proposed proba-
bilistic algorithms for determining such structural patterns
effectively and efficiently. Bifet et al. [4] mined frequent
closed graphs on evolving data streams. Their three innova-
tive algorithms work on coresets of closed subgraphs, com-
pressed representations of graph sets, and maintain such sets
in a batch-incremental manner. Moreover, Valari et al. [31]
discovered top-k dense subgraphs in dynamic graph collec-
tions by means of both exact and approximate algorithms.
Furthermore, Chi et al. [9] proposed a fast graph stream
classification algorithm that uses discriminative clique hash-
ing (DICH), which can be applicable for OLAP analysis over
evolving complex networks. We [5, 7] previously mined fre-
quent patterns—in the form of collections of frequently co-
occurring edges—from dense graph streams.

1.2 Our Contributions
Our previous solution [7] finds collections of frequently co-
occurring edges, which include connected as well as disjoint
edges. In many real-life situations (e.g., social or business
applications [21, 22]), it is desirable to obtain collections
of frequent disjoint edges so as to help the discovery of the
missing links (e.g., connect two or more disjoint groups of so-
cial entities sharing common research or business interests).
However, in some other situations, it is more efficient to find
only the collections of frequent connected edges. Hence, in
this paper, we propose algorithms that find collections of fre-
quently co-occurring connected edges from streaming graph
structured data. The algorithms either prune irrelevant (dis-
joint) edges at a post-processing step or push such a prune
step early in the mining process. Consequently, only relevant
patterns (i.e., frequent connected subgraphs) are returned to
users. Moreover, as high volumes of streaming graph struc-
tured data can be generated at a high velocity, data may be
too big to fit into memory. Our algorithms were designed in
such a way that they use limited memory.
This paper is organized as follows. Background is pro-

vided in Section 2. Section 3 presents our algorithms that
first build an on-disk data structure to capture and main-

tain relevant streaming graph structured data, recursively
discover collections of frequent edges, and then prune those
disjoint edges at a post-processing step. Section 4 presents
an improved algorithm that pushes the prune step early in
the mining process. Section 5 shows experimental results.
Finally, conclusions are given in Section 6.

2. BACKGROUND
In this section, we provide background information on three
different structures for capturing streaming data.

2.1 DSTree
When mining frequent patterns from streaming data, an
exact algorithm [26] first constructs a Data Stream Tree
(DSTree), which is then used as a global tree for recursive
generation of smaller FP-trees (as local trees) for projected
databases. Due to the dynamic nature of data streams, fre-
quencies of items are continuously affected by the insertion
of new batches (and the removal of old batches) of transac-
tions. Arranging items in frequency-dependent order may
lead to swapping—which, in turn, can cause merging and
splitting—of tree nodes when frequencies change. Hence,
in the DSTree, transaction items are arranged according to
some canonical order (e.g., alphabetical order), which can be
specified by the user prior to the tree construction or min-
ing process. Consequently, the DSTree can be constructed
using only a single scan of the streaming data. Note that
the DSTree is designed for processing streams within a slid-
ing window. For a window size of w batches, each tree node
keeps (i) an item and (ii) a list of w frequency values (instead
of a single frequency count in each node as in the FP-tree for
frequent pattern mining from static databases). Each entry
in this list captures the frequency of an item in each batch of
dynamic streams in the current window. By so doing, when
the window slides (i.e., when new batches are inserted and
old batches are deleted), frequency information can be up-
dated easily. Consequently, the resulting DSTree preserves
the usual tree properties that (i) the total frequency (i.e.,
sum of w frequency values) of any node is at least as high
as the sum of total frequencies of its children and (ii) the
ordering of items is unaffected by the continuous changes in
item frequencies.

After the construction of the (global) DSTree, it is al-
ways kept up-to-date when the window slides. The actual
mining process is “delayed” until it is needed. To start min-
ing, the algorithm first traverses relevant tree paths upwards
and sums the frequency values of each list in a node repre-
senting an item (or a set of items)—to obtain its frequency
in the current sliding window—for forming an appropriate
projected database. Afterwards, the algorithm constructs a
(local) FP-tree for the projected database of each of these
frequent patterns of only 1 item (i.e., 1-itemset) such as
an {x}-projected database (in a similar fashion as in the
FP-growth algorithm for mining static data [18]). There-
after, the algorithm recursively forms subsequent FP-trees
for projected databases of frequent k-itemsets where k ≥ 2
(e.g., {x, y}-projected database, {x, z}-projected database,
etc.) by traversing paths in these FP-trees. As a result, the
algorithm finds all frequent patterns. Note that, as items are
consistently arranged according to some canonical order, the
algorithm guarantees the inclusion of all frequent items us-
ing just upward traversals. Moreover, there is also no worry
about possible omission or double-counting of items during

the mining process. Furthermore, as the DSTree is always
kept up-to-date, all frequent patterns—which are embedded
in batches within the current sliding window—can be found
effectively.

2.2 DSTable
The success of mining with the DSTree mainly relies on
the assumption—usually made for many tree-based algo-
rithms [18]—that all tree (i.e., the global tree together with
subsequent FP-trees) fit into the memory. For example,
when mining frequent patterns from the {x, y, z}-projected
database, the global tree and three subsequent local FP-trees
(for the {x}-, {x, y}- and {x, y, z}-projected databases) are
all assumed to be fit into memory. However, there are sit-
uations (e.g., for streaming graph structured data) where
the memory is so limited that not all these trees can fit
into memory. To handle these situations, the Data Stream
Table (DSTable) [8] was proposed. The DSTable is a two-
dimensional table that captures on the disk the contents of
transactions in all batches within the current sliding win-
dow. Each row of the DSTable represents a domain item.
Like the DSTree, items in the DSTable are arranged accord-
ing to some canonical order (e.g., alphabetical order), which
can be specified by the user prior to the construction of the
DSTable. As such, table construction requires only a single
scan of the stream. Each entry in the resulting DSTable
is a “pointer” that points to the location of the table entry
(i.e., which row and which column) for the “next” item in
the same transaction. When dealing with streaming data,
the DSTable also keeps w boundary values (to represent the
boundary between w batches in the current sliding window)
for each item. By doing so, when the window slides, trans-
actions in the old batch can be removed and transactions in
the new batch can be added easily.
Once the DSTable is constructed and updated, the algo-

rithm first extracts relevant transactions from the DSTable.
Then, the algorithm (i) constructs an FP-tree for the pro-
jected database of each of these 1-itemsets and (ii) recur-
sively forms subsequent FP-trees for projected databases of
frequent k-itemsets (where k ≥ 2) by traversing the paths
of these FP-trees. On the positive side, the algorithm finds
all frequent patterns. On the negative side, to facilitate
easy insertion and deletion of contents in the DSTable when
the window (of size w batches) slides, the DSTable keeps
w boundary values for each row (representing each of the
m domain items). Hence, the DSTable needs to keep a total
of m × w boundary values. Moreover, each table entry is a
“pointer” that indicates the location in terms of row name
and column number of the table entry for the “next” item
in the same transaction. When the data stream is sparse,
only a few “pointers” need to be stored. However, when the
graph stream is dense, many “pointers” need to be stored.
Given a total of |T | transactions in all batches within the
current sliding window, there are potentially m×|T | “point-
ers” (where m is the number of domain items). Further-
more, during the mining process, multiple FP-trees need to
be constructed and kept in memory (e.g., FP-trees for all
{a}-, {a, c}- and {a, c, d}-projected databases are required
to be kept in memory).

2.3 DSMatrix
The use of a two-dimensional structure called Data Stream
Matrix (DSMatrix) [7] solves the aforementioned problems

while mining frequent patterns from data streams with lim-
ited memory because this matrix structure captures the con-
tents of transactions in all batches within the current sliding
window by storing them on the disk. The DSMatrix is a bi-
nary matrix, which represents the presence of an item x in
transaction ti by a “1” in the matrix entry (ti, x) and the
absence of an item y from transaction tj by a “0” in the ma-
trix entry (tj , y). With this binary representation of items
in each transaction, each column in the DSMatrix captures
a transaction. Each column in the DSMatrix can be con-
sidered as a bit vector. The DSMatrix keeps track of any
boundary between two batches so that, when the window
slides, transactions in the older batches can be easily re-
moved and transactions in the newer batches can be easily
added. Unlike the DSTable (in which boundaries may vary
from one row representing an item to another row repre-
senting another item due to the potentially different num-
ber of items present), boundaries in DSMatrix are the same
from one row to another because we put a binary value (0
or 1) for each transaction. Hence, the DSMatrix only keeps
w boundary values (where w ≪ m×w) for the entire matrix,
regardless how many domain items (m) are here. Moreover,
as DSMatrix uses a bit vector to indicate the presence or
absence of items in a transaction, the computation does not
require us to keep track of the index of the last item in every
row and thus incurring a lower computation cost. Given a
total of |T | transactions in all batches within the current slid-
ing window, there are |T | columns in our DSMatrix. Each
column requires only m bits. In other words, the DSMatrix
takes m × |T | bits (cf. potentially 64m × |T | bits for dense
data streams required by the DSTree).

3. FREQUENT CONNECTED SUBGRAPH
MINING WITH A POST-PROCESSING
STEP

To find collections of frequent edges in streams of graph
structured data, our proposed algorithms first construct a
DSMatrix to capture and maintain within the current win-
dow those relevant streaming data. When a new batch
of streaming graph structured data comes in, the window
slides. Transactions in the oldest batch in the sliding win-
dow are then removed from the DSMatrix so that transac-
tions in this new batch can be added. In other words, the
mining is “delayed” until it is needed. Once the DSMatrix
is constructed, it is kept up-to-date on the disk. See Exam-
ple 1.

Example 1. For illustrative purpose, let us consider a slid-
ing window of size w = 2 batches (i.e., only two batches are
kept) and the following stream of graphs, where each graph
G = (V,E) consists of |V | = 4 vertices (Vertices v1, v2, v3
and v4) and |E| ≤ 6 edges:

• At time T1, E1 = {(v1, v4), (v2, v3), (v3, v4)};
• At time T2, E2 = {(v1, v2), (v2, v4), (v3, v4)};
• At time T3, E3 = {(v1, v2), (v1, v4), (v3, v4)};
• At time T4, E4 = {(v1, v2), (v1, v4), (v2, v3), (v3, v4)};
• At time T5, E5 = {(v1, v2), (v2, v3), (v2, v4), (v3, v4)};
• At time T6, E6 = {(v1, v2), (v1, v3), (v1, v4)};
• At time T7, E7 = {(v1, v2), (v1, v4), (v3, v4)};
• At time T8, E8 = {(v1, v2), (v1, v4), (v2, v3), (v3, v4)};
• At time T9, E9 = {(v1, v3), (v1, v4), (v2, v3)}.

See Figure 1. These graphs may represent some insertions,
deletions, and/or updates on the linkages among linked data
or documents in a semantic web. For simplicity, we repre-
sent these edges by six symbols a, b, c, d, e and f . Conse-
quently, we get (i) edges E1 = {c, d, f}, E2 = {a, e, f} and
E3 = {a, c, f} in the first batch B1; as well as (ii) edges E4 =
{a, c, d, f}, E5 = {a, d, e, f} and E6 = {a, b, c} in the second
batch B2. Then, the DSMatrix stores the following infor-
mation at the end of time T6:

DSMatrix (capturing E1–E6):
Boundaries: Cols 3 & 6

Row Contents
Row a: 0 1 1; 1 1 1
Row b: 0 0 0; 0 0 1
Row c: 1 0 1; 1 0 1
Row d: 1 0 0; 1 1 0
Row e: 0 1 0; 0 1 0
Row f : 1 1 1; 1 1 0

DSMatrix keeps track of the global boundary information
(which is applicable for all rows).
When the third batch B3 of streaming graph structured

data flows in, the window slides. DSMatrix uses the bound-
ary information to remove data in all columns up to Col 3
while keeping data in Col (3+1) to Col 6 (or more pre-
cisely, shifting all columns from Cols 4–6 to Cols 1–3. After
the removal of the first three columns, DSMatrix appends
three columns representing (iii) edges E7 = {a, c, f}, E8 =
{a, c, d, f} and E9 = {b, c, d} in the third batch B3. In other
words, DSMatrix stores the following information for E4–E9

in batches B2 & B3 at the end of time T9.

DSMatrix (capturing E4–E9):
Boundaries: Cols 3 & 6

Row Contents
Row a: 1 1 1; 1 1 0
Row b: 0 0 1; 0 0 1
Row c: 1 0 1; 1 1 1
Row d: 1 1 0; 0 1 1
Row e: 0 1 0; 0 0 0
Row f : 1 1 0; 1 1 0

Again, DSMatrix keeps track of the global boundary infor-
mation (which is applicable for all rows).

3.1 Mining with Multiple FP-trees
After constructing a DSMatrix, our first algorithm extracts
columns from the DSMatrix to build a tree in memory for
each {x}-projected database (which is a collection of all the
edges containing x). Afterwards, the algorithm recursively
finds collections of frequent edges from the tree for this pro-
jected database. See Example 2.

Example 2. At the end of time T9, our first algorithm
mines frequent patterns with the DSMatrix capturing E4–E9

in Example 1 by first forming the {a}-projected database.
We examine Row a. For every column with a value “1”,
we extract its column downwards (e.g., from edges/items b
to e if they exist). Specifically, when examining Row a,
we notice that columns 1, 2, 3, 4 and 6 contain values “1”
(which means that edges a appears in those five graphs
in the two batches of streaming graph structured data in
the current sliding window). Then, from Column 1, we

Figure 1: A stream of graph structured data (Ex-
ample 1).

extract {c, d, f}. Similarly, we extract {d, e, f} and {b, c}
from Columns 2 and 3. We also extract {c, f} and {c, d, f}
from Columns 4 and 5. All these form the {a}-projected
database, from which an FP-tree can be built. From this FP-
tree for the {a}-projected database, we find that edge-pairs
{a, c}, {a, d} and {a, f} are frequent. Hence, we then form
{a, d}- and {a, f}-projected databases, from which FP-trees
can be built. (Note that we do not need to form the {a, c}-
projected database as it is empty after forming both {a, d}-
and {a, e}-projected databases.) When applying this step
recursively in a depth-first manner, we obtain frequent edge-
triplets {a, c, d}, {a, c, f} and {a, d, f}, which leads to FP-
trees for the {a, d, c}-projected database. (Again, we do not
need to form the {a, f, c}- or {a, d, f}-projected databases
as they are both empty.) At this moment, we keep FP-
trees for the {a}-, {a, d}- and {a, d, c}-projected databases.
Afterwards, we also find that edge-quadruplet {a, c, d, f} is
frequent. In the context of graph streams, this is a fre-
quent collection of 4 edges—namely, Edges a, c, d and f .
To recap, in addition to the five frequent singletons (i.e.,
edges a, b, c, d and f), a total of seven collections of fre-
quent edges were found from the {a}-projected database:
{a, c}, {a, c, d}, {a, c, d, f}, {a, c, f}, {a, d}, {a, d, f}& {a, f}.

Afterward, we backtrack and examine the next frequent
singleton {b}. For Row b, we notice that Columns 3 and 6
contain values “1” (which means that b appears in those
two graphs in the current sliding window). For these two
columns, we extract downward to get {c} and {c, d} that
appear together with b (to form the {b}-projected database).
The corresponding FP-tree contains {c}:2 meaning that c
occurs twice with b (i.e., edge-pair {b, c} is frequent with
frequency 2). To recap, a total of 1 collection of frequent
edges was found from the {b}-projected database: {b, c}.

Similar steps are applied to other frequent singletons {c},
{d} and {f} in order to discover all collections of frequent
edges. For instance, a total of 3 collections of frequent edges

were found from the {c}-projected database: {c, d}, {c, d, f}
and {c, f}. Similarly, a total of 1 collection of frequent edges
was found from the {d}-projected database: {d, f}. Conse-
quently, our first algorithm found a total of 5+7+1+3+1
= 17 collections of frequent edges, which include some con-
nected edges like {a, d} ≡ {(v1, v2), (v2, v3)} as well as some
disjoint edges such as {a, f} ≡ {(v1, v2), (v3, v4)}.

3.2 Frequency Counting on a Single FP-tree
In Example 2, the mining process requires multiple FP-trees
to be kept in the memory during the mining process. How-
ever, when the memory space is limited, not all of the mul-
tiple FP-trees can fit into the memory. One way to solve
this problem is to apply an effective frequency counting tech-
nique: Once an FP-tree for the projected database of a fre-
quent singleton is built, the algorithm traverses every tree
node in a depth-first manner (e.g., pre-order, in-order, or
post-order traversal). For every first visit of a tree node, the
algorithm generates the collection of edges represented by
the node and its subsets. We also compute their frequen-
cies.

Example 3. Revisit Example 2 but with the frequency
counting techniques applied to a single FP-tree. Specifically,
our second algorithm first constructs an FP-tree for the {a}-
projected database. It then traverses every node in such an
FP-tree. When traversing the leftmost branch ⟨c:4, b:1⟩,
we visit nodes “c:4” (which represents edge-pair {a, c} with
frequency 4) and “b:1” (which gives {a, b} with frequency 1
and {a, b, c} with frequency 1). Next, we traverse the mid-
dle branch ⟨c:4, f :3, d:2⟩. By visiting nodes “f:3” and “d:2”,
we get {a, f} and {a, c, f} both with frequencies 3, as well
as {a, d}, {a, c, d}, {a, d, f} and {a, c, d, f} all with frequen-
cies 2. Finally, we visit nodes“f:1”and“d:1” in the rightmost
branch ⟨f :1, d:1⟩, from which we get the frequency 1 for both
{a, d}, {a, d, f} and {a, f}. This frequency value is added to
the existing frequency count of 2 (from the middle branch) to
give the frequency of {a, d} and {a, d, f} equal to 3. Hence,
with the minsup threshold set to 2, we obtain frequent pat-
terns {a, c}:4, {a, c, d}:2, {a, c, d, f}:2, {a, c, f}:3, {a, d}:3,
{a, d, f}:3 and {a, f}:4. Note that, during this mining pro-
cess for the {a}-projected database, we count frequencies of
subgraphs without recursive construction of FP-trees.
Afterwards, we build an FP-tree for the {b}-projected

database and count frequencies of all frequent subgraphs
containing item b. Similar steps are applied to the FP-trees
for the {c}- and {d}-projected databases. Consequently, our
second algorithm found the same 17 collections of frequent
edges as those in Example 2. However, at any moment
during the mining process, only one FP-tree needs to be
constructed and kept in the memory (cf. multiple FP-trees
required by our first algorithm described in Section 3.1).

3.3 Mining a Single FP-tree in a Top-Down
Fashion

An alternative way to avoid the construction of multiple FP-
trees is to apply top-down tree mining (similar to that of
the TD-FP-growth algorithm [32]). Specifically, we (i) form
only a projected database for each frequent singleton (cf.
Section 3.1, in which projected databases for singletons and
non-singletons are recursively formed) and (ii) in reverse
order—i.e., the top-down order (cf. bottom-up fashion as in
the FP-growth algorithm or that described in Section 3.1).

Example 4. When applying this top-down tree-based min-
ing, our third algorithm found the same 17 collections of
frequent edges as those in Examples 2 and 3.

3.4 Vertical Mining
With the representation of relevant graph structured data in
the DSMatrix, it is logical to mine frequent subgraphs ver-
tically. Specifically, our fourth algorithm examines each row
(representing an edge). The row sum (i.e., total number of
1s) gives the frequency of the edge represented by that row.
Once the frequent singleton edges are found, we intersect
the bit vectors for two edges. If the row sum of the resulting
intersection ≥ the user-specified minsup threshold, then we
find a frequent edge-pair. We repeat these steps by inter-
secting two bit vectors of frequent patterns to find frequent
subgraphs consisting of multiple edges.

Example 5. Revisit Examples 2, 3 and 4. Our fourth al-
gorithm first computes the row sum for each row (i.e., for
each domain item). As a result, we find that edges a, b, c, d
and f are all frequent with frequencies 5, 2, 5, 4 and 4,
respectively. Afterwards, the algorithm intersects the bit
vector of a (i.e., Row a) with any one of the remaining four
bit vectors (i.e., any one of the four rows) to find frequent
edge-pairs {a, c}, {a, d} and {a, f} with frequencies 4, 3 and
4, respectively, because (i) the intersection of a⃗ and c⃗ gives a

bit vector 101110, (ii) the intersection of a⃗ and d⃗ gives a bit

vector 110010, and (iii) the intersection of a⃗ and f⃗ gives a

bit vector 110110. Next, we intersect (i) −→ac with
−→
ad, (ii) −→ac

with
−→
af and (iii)

−→
ad with

−→
af to find frequent edge-triplets

{a, c, d}, {a, c, f} and {a, d, f}. We also intersect
−→
acd with

−→
acf to find frequent edge-quadruplet {a, c, d, f}. These are
all collections of frequent edges containing a.

Afterwards, we repeat similar steps with the bit vectors

for other edges. For instance, we intersect b⃗ with c⃗, d⃗ and

f⃗ . We find out that, among them, only {b, c} is frequent

with frequency 2. We also intersect c⃗ with d⃗ and f⃗ to find
frequent edge-triplets {c, d} and {c, f}, each with frequen-
cies of 3. We also find frequent edge-quadruplet {c, d, f} by

intersecting
−→
cd and

−→
cf . Finally, we intersect d⃗ and f⃗ to find

frequent edge-pair {d, f} with frequency 3. Consequently,
our fourth algorithm found the same 17 collections of fre-
quent edges as those in Examples 2, 3 and 4.

3.5 Post-Processing Step
So far, we have described how our four algorithms find col-
lections of all frequent edges, which include connected edges
such as {a, d} ≡ {(v1, v2), (v2, v3)} as well as disjoint edges
such as {a, f} ≡ {(v1, v2), (v3, v4)}. To filter out disjoint
edges, we apply the following post-processing step to check
every frequent edges. We look up the vertex information of
each edge such as (v1, v2) for edge a. See Table 1. Let X rep-
resent a collection of multiple frequent edges. Then, for each
edge e ≡ (vi, vj) ∈ X (where |X| ≥ 2), count the frequency
(or occurrence) of vi and vj in X. If frequency of vi (or vj)
is at least 2 in X, then vi (or vj) is a vertex connecting at
least 2 edges (i.e., these 2 edges are connected):

• ∀e≡(vi, vj) ∈ X, [frequency(vi) ≥ 2 or frequency(vj)
≥ 2] ⇒ X is a connected subgraph.

Otherwise—i.e., there exists an edge e′ ≡ (v′i, v
′
j)—such that

frequency of v′i and that of v′j are both less than 2 in X, such
an edge e′ is disjoint (i.e., an isolated edge):

Table 1: Table capturing vertices of each edge
Edge Vertices

a (v1, v2)
b (v1, v3)
c (v1, v4)
d (v2, v3)
e (v2, v4)
f (v3, v4)

• ∃e′≡(v′i, v′j)∈X ′, [frequency(v′i) < 2 and frequency(v′j)
< 2] ⇒ X ′ is not a connected subgraph.

For instance, we check and keep {a, d} because it is a pair
of connected edges; we check and prune away {a, f} because
it is a pair of disjoint edges.

Example 6. Continue with Examples 2, 3, 4, or 5. Be-
fore the post-processing step, each algorithm finds a total of
17 collections of frequent edges from the streaming graph
structured data. Among them, let us consider {a, c} ≡
{(v1, v2), (v1, v4)} = X. (i) For (v1, v2), frequency(v1) =
2 (and frequency(v2) = 1); (ii) for (v1, v4), frequency(v1) = 2
(and frequency(v4) = 1). So, for each edge in X, it satisfies
the condition that [frequency(vi) ≥ 2 or frequency(vj) ≥ 2].
Hence, X is a connected subgraph.
In contrast, consider {a, f} ≡ {(v1, v2), (v3, v4)} = X ′.

For (v1, v2), frequency(v1) = 1 and frequency(v2) = 1. Hence,
there exists an edge (v1, v2) ∈ X ′ such that [frequency(v1)
< 2 and frequency(v2) < 2]. Hence, X ′ is not a connected
subgraph.
Similarly, consider {c, d} ≡ {(v1, v4), (v2, v3)} = X ′′. For

(v1, v4), frequency(v1) = 1 and frequency(v4) = 1. Hence,
there exists an edge (v1, v4) ∈ X ′′ such that [frequency(v1)
< 2 and frequency(v4) < 2]. Hence, X ′′ is not a connected
subgraph.
Applying a similar post-processing step to check all 17 col-

lections of frequent edges, we find that {a, f} ≡ {(v1, v2),
(v3, v4)} (consisting of two disjoint edges a ≡ (v1, v2) and
f ≡ (v3, v4)) and {c, d} ≡ {(v1, v4), (v2, v3)} (consisting of
two disjoint edges c≡(v1, v4) and d ≡ (v2, v3)) are both
not connected subgraphs, and thus can be pruned. Con-
sequently, only 15 frequent connected subgraphs are then
returned to the user.

4. DIRECT FREQUENT CONNECTED
SUBGRAPH MINING

So far, we have described how to mine frequent connected
subgraphs by finding all collections of frequent edges and
then pruning collections of disjoint edges in a post-processing
step. When the number of vertices increases, chances of hav-
ing disjoint edges also increase. Consequently, a lot of time
and effort may have been spent on mining all collections of
frequent edges including many disjoint edges, which are then
pruned. To deal with this issue, we propose an alternative
algorithm that mines frequent connected subgraphs directly.
Specifically, our fifth algorithm directly mines frequent

connected subgraphs vertically. First, to mine frequent sin-
gletons, we examine each row (representing an edge). The
row sum (i.e., total number of 1s) gives the frequency of the
edge represented by that row. If the row sum ≥ the user-
specified minsup threshold, then we find a frequent edge.

Table 2: Table capturing neighbors of each edge
Edge Neighboring edges

a b, c, d, e
b a, c, d, f
c a, b, e, f
d a, b, e, f
e a, c, d, f
f b, c, e, d

Once the frequent singleton edges are found, we intersect
the bit vectors for two connected edges based on the neigh-
borhood information. See Table 2. If the row sum of the
resulting intersection ≥ the user-specified minsup threshold,
then we find a frequent connected subgraph consisting of
2 edges. We repeat these steps by intersecting two bit vec-
tors of frequent connected subgraphs to find frequent con-
nected subgraph of multiple edges.

During the mining process, the neighborhood information
for frequent edge can be looked up from Table 2. The neigh-
borhood information for a frequent connected pair {x, y} can
be computed by the following:

neighbor({x, y})
= neighbor({x}) ∪ neighbor({y})− {x, y}, (1)

where y ∈ neighbor({x}). Similarly, the neighborhood infor-
mation for a frequent connected subgraph X∪{y} consisting
of k edges can be computed by the following:

neighbor(X ∪ {y})
= neighbor(X) ∪ neighbor({y})−X − {y}, (2)

where (i) y ∈ neighbor(X) and (ii) |X| = k − 1.

Example 7. Revisit Example 6. Our direct algorithm first
computes the row sum for each row (i.e., for each edge). As
a result, we find that edges a, b, c, d and f are all frequent
with frequencies 5, 2, 5, 4 and 4, respectively. Afterwards,
we intersect the bit vector of a (i.e., Row a) with bit vectors
of any of its neighbor neighbor({a}) = {b, c, d, e} to find the
following:

• connected subgraph {a, b} consisting of 2 edges a & b
and with frequency 1 and thus infrequent;

• connected subgraph {a, c} consisting of 2 edges a & c
and with frequency 4 and thus frequent; as well as

• connected subgraph {a, d} consisting of 2 edges a & d
and with frequency 3 and thus frequent.

Note that, as the algorithm only intersects vectors of fre-
quent edges, it does not intersect with infrequent edge e even
though e ∈ neighbor({a}). Moreover, when compared with
Example 5, our direct algorithm does not produce {a, f}.
Although single edge f is frequent, it is not in the neighbor-
hood of {a} and thus not connected with a.

Next, we intersect (i) −→ac with
−→
d to find frequent con-

nected edge-triplet {a, c, d} because d ∈ neighbor({a, c}),
which can be computed as neighbor({a}) ∪ neighbor({c})−
{a, c} = {b, d, e, f}. Then, we intersect (i)

−→
acd with

−→
f

to get connected edge-quadruplet {a, c, d, f} because f ∈
neighbor({a, c, d}), which is computed as neighbor({a, c})
∪neighbor({d}) −{a, c, d} = {b, e, f}. Similarly, we inter-

sect (i) −→ac with
−→
f to find frequent connected edge-triplet

{a, c, f} as f ∈ neighbor({a, c}). We also intersect (i)
−→
ad

with
−→
f to get frequent connected edge-triplet {a, d, f} be-

cause neighbor({a, d}) = neighbor({a}) ∪neighbor({d}) −
{a, d} = {b, c, e, f} contains f . These are all collections of
frequent connected edges containing a. In the above proce-
dure, we only extend on connected subgraphs.
Afterwards, we repeat similar steps with the bit vectors

for other edges. For instance, we intersect b⃗ with c⃗, d⃗ and f⃗ .
We find out that, among them, only {b, c} is frequent with

frequency 2. We also intersect c⃗ with f⃗ to find frequent
connected edge-pair {c, f} with frequency 3. Note that

we do not intersect c⃗ with d⃗ because d ̸∈ neighbor({c}) =
{a, b, e, f}. However, we find frequent edge-triplet {c, d, f}
by intersecting

−→
cf and

−→
d because d ∈ neighbor({c, f}) =

neighbor({c})∪neighbor({f})−{c, f} = {a, b, d, e}. Finally,
we intersect d⃗ and f⃗ to find frequent edge-pair {d, f} having
frequency 3.

5. EXPERIMENTAL EVALUATION
To acquire streams of linked graph structured data, we first
generated random graph models via a Java-based genera-
tor by varying model parameters (e.g., topology, average
fan-out of nodes, edge centrality, etc.). We then gener-
ated graph streams as nodes and node-edge relationships
derived from the above graph models, and obtained node
values from popular data stream sets available in literature
(stored in the projected database). In addition, we also
used many different databases including IBM synthetic data,
real-life databases (e.g., connect4) from the UC Irvine Ma-
chine Learning Depository as well as those from the Frequent
Itemset Mining Implementation (FIMI) Dataset Repository.
For example, connect4 is a dense data set containing 67,557
records with an average transaction length of 43 items, and
a domain of 130 items. Each record represents a graph of
legal 8-ply positions in the game of connect 4. All experi-
ments were run in a time-sharing environment in a 1 GHz
machine. We set each batch to be 6K records and the win-
dow size w=5 batches. The reported figures are based on the
average of multiple runs. Runtime includes CPU and I/Os;
it includes the time for both tree construction and frequent
pattern mining steps.
In the first experiment, we measured the accuracy of min-

ing with the following structures: (i) DSTree [26], (ii) DS-
Table [8], and (iii) DSMatrix. Experimental results show
that the four mining algorithms that use the DSMatrix with
the post-processing steps (Section 3) gave the same min-
ing results as the direct algorithm (Section 4) that uses the
DSMatrix without the post-processing step. Experimental
results also show that these five algorithms (which all use the
DSMatrix) gave the same mining results as any algorithms
that conduct mining with the DSTree or DSTable.
In the second experiment, we measured the space effi-

ciency. Experimental results show that mining with the
DSTree stored one global DSTree and multiple local FP-
trees in main memory, and thus took the largest main mem-
ory space. Mining with the DSTable and DSMatrix required
less memory because the DSTable and DSMatrix were kept
on disk. Among those algorithms that mine with the DS-
Matrix, the first algorithm (i.e., the one mines with multiple
FP-trees and described in Section 3.1) required the largest
amount of memory space because it keeps at most k FP-trees
in the memory during the entire mining process, where k is

Figure 2: Experimental results on vertical mining.

the maximum number of edges in any collection of frequent
edges. The algorithms that mine with a single FP-tree (Sec-
tions 3.2 and 3.3) required less space because they keep at
most one FP-tree in the memory during the entire mining
process. The two vertical mining algorithms (Sections 3.4
and 4) required the least amount of memory space because
they both work with bit vectors.

In the third experiment, we measured the time efficiency.
Among those algorithms that mine with the DSMatrix, the
first algorithm (i.e., the one mines with multiple FP-trees
and described in Section 3.1) required the longest runtime
because it recursively constructs FP-trees during the entire
mining process. The algorithms that mine with a single FP-
tree (Sections 3.2 and 3.3) required shorter runtime because
they construct at most one FP-tree for each frequent edge
(i.e., for a total of at most m FP-trees, one for each of the
|E| edges) during the entire mining process. The two vertical
mining algorithms (Sections 3.4 and 4) required the shortest
runtime because they both work with bitwise and set inter-
section operators. Between these two vertical mining algo-
rithms, as expected, the one with the post-processing step
required longer runtime than the direct algorithm because
the latter mines frequent connected subgraphs directly. Fig-
ure 2 shows the runtimes of our fourth algorithm (i.e., verti-
cal mining with post-processing step) and our fifth algorithm
(i.e., direct vertical mining).

We also performed some additional experiments (e.g., eval-
uating the effect of minsup). Results show that the run-
time decreased when minsup increased. In another exper-
iment, we tested scalability with the number of batches in
the stream of graph structured data. The results show that
the scalability of our (five) algorithms, especially the two
vertical mining algorithms.

As future work, we plan to conduct more extensive exper-
iments on various datasets (including Big data) with differ-
ent parameter settings (e.g., varying minsup, the number of
vertices and edges in graph structured data and/or linked
data).

6. CONCLUSIONS
Motivated by the demand of having algorithms that use lim-
ited memory space for discovering collections of frequently
co-occurring connected edges from big, interlinked, dynamic
graph structures of linked data, we proposed five algorithms
for frequent subgraph mining. All our algorithms use a DS-
Matrix to capture important contents of streams of graph
structured linked data. The DSMatrix is updated when the
window slides. The discovery of frequent connected sub-

graphs is “delayed” until the mining is needed. Three of
our algorithms use horizontal tree-based mining approaches:
(i) The first algorithm builds multiple FP-trees recursively
in a bottom-up fashion; (ii) the second algorithm builds FP-
trees in a bottom-up fashion, but builds only a single FP-
tree for each singleton; and (iii) the third algorithm also
builds only a single FP-tree for each singleton, but builds
in a top-down fashion. The fourth algorithm uses a vertical
bitwise mining approach. Note that all these four algorithms
mine collections of all frequent (connected or disjoint) edges,
and prune those disjoint edges at a post-processing step. In
contrast, our fifth algorithm also uses a vertical bitwise min-
ing approach, but directly mines collections of all connected
edges. Experimental results show the space and time effi-
ciency of vertical frequent subgraph mining from streams of
linked graph structured data.

7. ACKNOWLEDGEMENTS
This project is partially supported by NSERC (Canada) and
University of Manitoba.

8. REFERENCES
[1] C.C. Aggarwal, Y. Li, P.S. Yu, & R. Jin. On dense

pattern mining in graph streams. PVLDB, 3(1–2),
pp. 975–984 (2010)

[2] R. Agrawal & R. Srikant. Fast algorithms for mining
association rules. In Proc. VLDB 1994, pp 487–499.

[3] D. Bianchini, S. Castano, V. de Antonellis, A. Ferrara,
E. Quintarelli, & L. Tanca. RUBIK: proactive,
entity-centric and personalized situational web
application design. TLDKS, 13, pp. 123–157 (2014)

[4] A. Bifet, G. Holmes, B. Pfahringer, & R. Gavaldà.
Mining frequent closed graphs on evolving data
streams. In Proc. ACM KDD 2011, pp. 591–599.

[5] P. Braun, J.J. Cameron, A. Cuzzocrea, F. Jiang, &
C.K. Leung. Effectively and efficiently mining frequent
patterns from dense graph streams on disk. Procedia
Computer Science, 35, pp. 338–347 (2014)

[6] G. Buehrer, S. Parthasarathy, & A. Ghoting.
Out-of-core frequent pattern mining on a commodity.
In Proc. ACM KDD 2006, pp. 86–95.

[7] J.J. Cameron, A. Cuzzocrea, F. Jiang, & C.K. Leung.
Frequent pattern mining from dense graph streams. In
Proc. EDBT/ICDT 2014 Workshops, pp. 240–247.

[8] J.J. Cameron, A. Cuzzocrea, & C.K. Leung. Stream
mining of frequent sets with limited memory. In Proc.
ACM SAC 2013, pp. 173–175.

[9] L. Chi, B. Li, & X. Zhu. Fast graph stream
classification using discriminative clique hashing. In
Proc. PAKDD 2013, Part I, pp. 225–236.

[10] A. Cuzzocrea. CAMS: OLAPing multidimensional
data streams efficiently. In Proc. DaWaK 2009,
pp. 48–62.

[11] A. Cuzzocrea & S. Chakravarthy. Event-based lossy
compression for effective and efficient OLAP over data
streams. DKE, 69(7), pp. 678–708 (2010)

[12] A. Cuzzocrea, F. Furfaro, G.M. Mazzeo & D. Saccà. A
grid framework for approximate aggregate query
answering on summarized sensor network readings. In
Proc. OTM Workshops 2004, pp. 144–153.

[13] A. Cuzzocrea, C.K. Leung, & S.K. Tanbeer. Mining of
diverse social entities from linked data. In Proc.
EDBT/ICDT 2014 Workshops, pp. 269-274.

[14] R. de Virgilio & D. Bianchini. SeeVa: a model based
framework for semantic web service discovery.
TLDKS, 14, pp. 51–82 (2014)

[15] A. Ferrara, L. Genta, & S. Montanelli. Linked data
classification: a feature-based approach. In Proc.
EDBT/ICDT 2013 Workshops, pp. 75–82.

[16] C. Giannella, J. Han, J. Pei, X. Yan, & P.S. Yu.
Mining frequent patterns in data streams at multiple
time granularities. In Data Mining: Next Generation
Challenges and Future Directions, ch. 6 (2004)

[17] G. Grahne & J. Zhu. Mining frequent itemsets from
secondary memory. In Proc. IEEE ICDM 2004,
pp. 91–98.

[18] J. Han, J. Pei, & Y. Yin. Mining frequent patterns
without candidate generation. In Proc. ACM
SIGMOD 2000, pp. 1–12.

[19] T. Heath & C. Bizer Linked data: evolving the web
into a global data space. Synthesis lectures on the
semantic web: theory and technology, Morgan &
Claypool, 2011.

[20] R. Jin & G. Agrawal. An algorithm for in-core
frequent itemset mining on streaming data. In Proc.
IEEE ICDM 2005, pp. 210–217.

[21] F. Jiang & C.K. Leung. A business intelligence
solution for frequent pattern mining on social
networks. In Proc. IIEEE ICDM Workshops 2014,
pp. 789–796.

[22] F. Jiang, C.K. Leung, D. Liu, & A.M. Peddle.
Discovery of really popular friends from social
networks. In Proc. IEEE BDCloud 2014, pp. 342–349.

[23] W. Lee, C.K. Leung, & J.J. Song. Reducing noises for
recall-oriented patent retrieval. In Proc. IEEE
BDCloud 2014, pp. 579–586.

[24] C.K. Leung, A. Cuzzocrea, & F. Jiang. Discovering
frequent patterns from uncertain data streams with
time-fading and landmark models. LNCS TLDKS, 8,
pp. 174–196 (2013)

[25] C.K. Leung & F. Jiang. A data science solution for
mining interesting patterns from uncertain big data.
In Proc. IEEE BDCloud 2014, pp. 235–242.

[26] C.K. Leung & Q.I. Khan. DSTree: a tree structure for
the mining of frequent sets from data streams. In
Proc. IEEE ICDM 2006, pp. 928–932.

[27] C.K. Leung, R.K. MacKinnon, & S.K. Tanbeer. Fast
algorithms for frequent itemset mining from uncertain
data. In Proc. IEEE ICDM 2014, pp. 893–898.

[28] R.K. MacKinnon, T.D. Strauss, & C.K. Leung. DISC:
efficient uncertain frequent pattern mining with
tightened upper bounds. In Proc. IIEEE ICDM
Workshops 2014, pp. 1038–1045.

[29] O. Papapetrou, M. Garofalakis, & A. Deligiannakis.
Sketch-based querying of distributed sliding-window
data streams. PVLDB, 5(10), pp. 992–1003 (2012)

[30] S. Tirthapura & D.P. Woodruff. A general method for
estimating correlated aggregates over a data stream.
In Proc. IEEE ICDE 2012, pp. 162–173.

[31] E. Valari, M. Kontaki, & A.N. Papadopoulos.
Discovery of top-k dense subgraphs in dynamic graph
collections. In Proc. SSDBM 2012, pp. 213–230.

[32] K. Wang, L. Tang, J. Han, & J. Liu. Top down
FP-growth for association rule mining. In Proc.
PKDD 2002, pp. 334–340.

