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Abstract

Frequent sequential mining is the process of discovering frequent sequential patterns in 
data sequences as found in applications like web log access sequences. In data stream 
applications, data arrive at high speed rates in a continuous flow. Data stream mining is 
an online process different from traditional mining. Traditional mining algorithms work 
on an entire static dataset in order to obtain results while data stream mining algorithms 
work with continuously arriving data streams. With rapid change in technology, there are 
many applications that take data as continuous streams. Examples include stock tickers, 
network traffic measurements, click stream data, data feeds from sensor networks, and 
telecom call records. Mining frequent sequential patterns on data stream applications 
contend with many challenges such as limited memory for unlimited data, inability of 
algorithms to scan infinitely flowing original dataset more than once and to deliver 
current and accurate result on demand.

Recent work on mining data streams exists for classification of stream data, 
clustering data streams, mining frequent patterns over data streams, time series analysis 
on data stream. However, we rarely see a work done on mining frequent sequential 
patterns in data streams.

This thesis proposes SSM-Algorithm (sequential stream mining-algorithm) that 
delivers frequent sequential patterns in data streams. The concept of this work came from 
FP-Stream algorithm that delivers time sensitive frequent patterns. Proposed SSM- 
Algorithm outperforms FP-Stream algorithm by the use of a hash based and two efficient 
tree based data structures. All incoming streams are handled dynamically to improve 
memory usage. SSM-Algorithm maintains frequent sequences incrementally and delivers 
most current result on demand. The introduced algorithm can be deployed to analyze e- 
commerce data where the primary source of the data is click stream data.

Keywords: Data Mining, Web Mining, Large items, Candidate Sequence, Customer 
Access Sequence, Batch, Frequent Sequential Patterns, Buffer, Click Stream Data.
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1. Introduction

1.1 Data Mining

Data mining is the process of extracting knowledge from large amounts of data. This 

extraction or discovery process has to be automatic and the patterns discovered must be 

meaningful, so that it can guide decisions about future activities. Data mining discovers 

which data are important. There is no need to make assumptions about which data are 

relevant to analyze [Han & Kamber2000].

Data mining tasks can be classified as descriptive and predictive [Han & 

Kamber2000]. A descriptive model is used to discover interesting patterns based on the 

general properties in the database. On the other hand, the predictive model is used to 

make predictions based on data mining result. People can benefit from data mining in 

various ways. End users can extract business information from large databases, and 

discover interesting patterns to help make business decisions.

Various analysis or data mining functionalities are available: Concept/Class 

description, Association Analysis, Classification and Prediction, Cluster Analysis, Outlier 

Analysis, and Evolution Analysis [Han & Kamber2000]. Below is a brief description of 

each analysis.

Concept/Class Description: Concept description analysis generates descriptions 

for characterization and comparisons of data. Sometimes it is called Class Description 

Analysis. For example, a sales manager of a company may want to view the data from 

generalized to higher levels (summarized by customer groups according to geographic 

regions, frequency of products per group, and customer income) instead of examining 

individual customer transactions [Han & Kamber2000].

Association Analysis: Association rule mining finds interesting association or 

correlation relationships among a large set of data. Sometimes association rule mining is 

referred to as market basket analysis. This process analyzes customers’ buying habits by 

finding correlation between the different items in the customers’ shopping basket. For 

example, if customers are buying milk, how likely they also buy bread on the same trip to 

the supermarket. Association Rule is being used in various sectors besides super market 

basket analysis now-a-days. For example, proposes to use association rule discovery 

methods for determining associations among expression levels of different genes

1
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[Tuzhilin & Adomavicius2002]. Section 2 provides more details on Association Rule 

mining.

Classification and Prediction Analysis: Classification is the process of finding 

a set of models (or functions) that describe and distinguish data classes or concepts. 

Later, these models are used to predict the class of objects whose class labels are 

unknown (i.e. training data). The derived model may be represented in various forms, 

such as decision trees, mathematical formulae, or neural networks [Han & Kamber2000].

Cluster Analysis: Clustering is the process of grouping a set of physical or 

abstract objects into classes of similar objects. Cluster analysis has numerous uses in 

various applications. For example, [Gunduz & Ozsu2003] introduced a model that takes 

the sequences of visiting pages and time spent on each page by the users as input. It is a 

two dimensional mining approach. One dimension is page sequences and another 

dimension is time. Based on the similarities (sequences and time) of users, the proposed 

model clusters user sessions. Clustering of sessions enables to reduce search spaces. 

Clustering can be used for other purposes such as pattern recognition, data analysis, 

image processing, and market research.

Outlier Analysis: A database may contain data objects that do not fulfill with the 

general behavior (model) of the data. These data objects are outliers. Usually, data 

mining method discards outliers as noise or exceptions. However, in some applications, 

these outliers could be more interesting, for example, fraud detection. The analysis of 

outlier data is called outlier mining [Han & Kamber2000].

Evolution Analysis: This type of analysis describes regularities or trends for 

objects whose behavior changes over time. For example, an evolution analysis on stock 

exchange data may identify stock evolution regularities for overall stocks and for the 

stocks of particular companies [Han & Kamber2000].

1.2 Web Mining
Web mining is similar to data mining. When data mining techniques are applied to the 

web, data mining is called web mining [Xie & Phoha2001]. In other words, web mining 

is used to discover a set of interesting patterns from the web by applying automatic 

mining techniques [Dutta et al.2001]. Interesting patterns can be discovered from web

2
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contents or web pages, web links in the web pages and web logs. In web mining, the 

source data can be collected at the server-side, client-side, proxy-server or organization’s 

database [Srivastava et al.2000]. The benefit behind mining the web is to improve the 

web site by better understanding the users’ interests, typical paths, and the correlation 

between customer behavior and the products [Theusinger & Huber2000]. Yang et al. 

[Yang, Haining, & Li2001] have suggested an interesting method to reduce network 

latency by applying web mining techniques. The method finds frequent access patterns 

from web logs by analyzing click stream data. Once frequent access pattern is found, it 

can be used in web caching and pre-fetching system in order to improve the hit rate and 

reduce unnecessary network traffic.

Web mining are classified into 1) Web content mining, 2) Web stmcture mining, 

3) Web usage mining [Cooley, Mobasher & Srivastaval997] [Liu, Chen & Song2002] 

[Zhang & Chang2002] [Woon, Ng, & Lim2002] [Mah, Hoek & Li2001] 

[Srivastavaetal2000] [Kosala & Blockeel2000],

Web Content Mining: Web content is the content or information of a web page. 

This content information can be in an HTML or XML file format. They are usually in 

unstructured or semi structured format. Basically, web content mining aims to extract / 

mine useful information or knowledge from the content of the web pages [Liu & 

Chang2004],

The basic framework for mining web content is to structure the data from the 

unstructured or semi structured data format and discover interesting relationships from 

the structured data. Web content mining is still a new area in knowledge discovery and a 

little work has been done so far.

Web Structure Mining: Web pages are connected to each other by hyperlinks. 

Web structure mining is the process of discovering interesting patterns from hyperlinks 

structure within the web itself. The hyperlink structure in the web can be used by web 

structure mining to apply social-network analysis [Kosala & Blockeel2000]. It is possible 

to discover specific types of pages with social-network analysis based on incoming and 

outgoing links.

Web Usage Mining: Web usage mining is the process of discovering interesting 

relationships and global patterns in large access-log files [Masseglia, Teisseire &

3
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Poncelet2002]. When a user visits a web site, the web server usually keeps some 

important information about the user in the log file, for example, the client’s IP address, 

the URL requested by the client, and the date and time for that request [Masseglia, 

Teisseire & Poncelet2001], This log file is a flat file. Three types of log files are 

available on a web server: server-logs, error-logs, cookie-logs [Buchner &

Mulvennal998]. Analyzing data on the web server-logs is called “click stream analysis” 

[Dutta et al.2001]. E-commerce or e-business can highly benefit from this click stream 

analysis. It provides important information to understand better the marketing and 

merchandising efforts, for example, how customers find the store, what products they 

search for, and what products they purchase [Lee & Podlaseck2000]. There are more 

discussion is ahead about various techniques of click stream data analysis.

The possible sources of Web Usage Data are below:

• Click stream Data: when a user visits a web site, it is possible to keep the record 

of IP-Address, requested URL from users, time stamp of the event from each 

click. This record is stored in common log format in web server log [Dutta et 

a.2 0 0 1 ].

• Cookie Logs Data: The use of click stream data alone is not enough for mining 

for all of the cases. Dynamic IP-Address changes from session to session. The 

same user may visit several times with different IP-Addresses, which may reduce 

the accuracy of mining result. By placing a cookie on a user’s computer, it is 

possible to trace the same user from the cookie logs in web server when the user 

uses dynamic IP-Addresses [Buchner & Mulvennal998] [Srivastava et al.2000].

• TCP / IP packets are an alternative source of web usage data. Packet sniffers 

monitor incoming traffic to the web servers and extract data from the TCP/IP 

packets [Srivastava et al.2000].

• Query Data: Query data are usually generated when a customer searches for 

products on an e-commerce site [Buchner & Mulvennal998].

4
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1.2.1 Phases of Web Usages Mining
Web usage mining has three phases: preprocessing, knowledge or pattern discovery and 

patterns analysis [Zhang & Chang2002] [Srivastava et al.2000].

Preprocessing Pattern
Discovery

Pattern
Analysis

Figure 1.1.3-1: The phases of Web Usage-mining

1.2.1.1 Preprocessing
Ansari et al. [Ansari et al.2001] state that preprocessing constitutes about 80% of the 

work of data mining tasks. The following tasks may be included in the preprocessing 

phase: data-cleaning, user-identification, session-identification, path-completion,

transaction-identification, formatting [Cooley, Mobasher & Srivastava1999] [Woon, Ng, 

& Lim2002] [Nahm, Bilenko & Mooney2002], However, the tasks will be included in 

preprocessing phase based on the mining interest. Let’s discuss a few tasks of the 

preprocessing phase.

1.2.1.2 Data Cleaning
Data-Cleaning is the task of removing irrelevant and noisy data from the server-logs for 

mining purposes. For instance, the HTTP protocol requires a separate connection (for 

stateless connection) for every file that is requested from the server [Cooley, Mobasher & 

Srivastaval997]. In this case, when a user requests a page to view, all of the scripts and 

files that are embedded with this particular page get recorded in the log file during the 

download process. As a matter of fact, only the HTML page should be listed in the 

navigational path for mining interest, not the graphics, music or scripts. Therefore, it is 

necessary to eliminate the entries with file name suffixes (e.g. gif, jpeg, jpg, mpg, etc).

5
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1.2.1.3 User Identification
Users are identified by their IP-Addresses. However, this simple task becomes 

complicated when users share machines or when users are connected to Internet through 

proxy servers. A proxy server sits in between a client application (i.e. web browser) and a 

real web server. All requests from clients to the real server go via proxy server. The 

proxy server interprets all requests and check whether it can fulfill the requests itself 

before it forwards the. requests to the web server. If it cannot fulfill the requests, it 

forwards the request to the real server. Proxy servers have two main purposes: improve 

performance and filter requests. To resolve this kind of issues, Cooley et al. [Cooley, 

Mobasher & Srivastava1999] have proposed log/site based method to identify users 

heuristically.

1.2.1.4 Formatting
Formatting is the end part of preprocessing phase after taking care of all necessary steps 

for cleaning the data. In this stage, a final preparation module can be used to properly 

format or transform the data for mining to be accomplished. In other words, structured 

data is used in order to run mining algorithm.

1.2.2 Knowledge Discovery
The following mining techniques or analysis can be applied during the knowledge 

discovery phase on web usage data [Srivastava et al.2000] [Woon, Ng, & Lim2002],

1.2.2.1 Mining Techniques
• Statistical Analysis is used to find statistical information, for example, the 

most frequent accessed pages and average page view duration [Woon, Ng, 

& Lim2002],

• Path Analysis is used to find the most frequent traversal paths in site for 

efficient web site design [Berkhin, Becher, & Randall2001] [Keahey & 

Eick2002],

6
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• Association Rule Mining is used to discover correlations among the web 

pages for structuring web sites [Agrawal, Imielinski, & Swamil993] 

[Agrawal & Srikantl994].

• Sequential Pattern Mining is used to discover sequential patterns for 

predicting the users visit patterns or buying habit [Agrawal & 

Srikanthl995] [Srikanth & Agrawall996] [Hin2002] [Lu & Ezeife2003] 

[Ezeife & Chen2004a] [Ezeife & Chen2004b] [Ezeife & Lu2005](More 

discussion on section 2.3).

• Clustering is used to group together the users based on their similar 

interest for web content personalization [Xiao & Zhang2001].

• Classification is used to group together into predefined classes based on 

their similar interests for customer profiling [Hu & Cercone2002],

Association Rules Mining, Sequential Pattern Mining and Clustering are most widely 

used in web usage mining [Cooley, Mobasher & Srivastaval999].

1.2.3 Pattern Analysis
This is the last stage of web usage mining. After applying all of the mining techniques or 

algorithms, it is the time to analyze the patterns and filter out uninteresting rules or 

patterns that are discovered during the knowledge discovery phase.

1.3 The motivation for this thesis
A data stream is a continuous, unbounded, and high-speed flow of data items. Many 

applications generate a large amount of data streams, for example, network monitoring, 

traffic telecom, call detail records (CDR), ATM operations in banks, sensor networks, 

web logs and web click streams, transactions in retail chains and many others. Mining 

data in such a data mode is referred to as stream mining. Stream mining adds many 

complexities to traditional mining requirements. 1) The primary problem with stream 

mining is that there is a massive volume of data arriving everyday, every hour and we 

have to look for knowledge in it. As the volume of the data is too high, therefore, it is

7
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difficult to store all of them. 2) The system will run out of memory if we apply our 

traditional mining algorithm on such high volume data. 3) As data come in a continuous 

fashion, the mining algorithm would not have enough time to scan the original dataset 

more than once. 4) A method to deliver considerably accurate result on demand when 

needed. 5) As we are specifically interested in finding sequential patterns in click stream 

data, we need to keep Customer Access Sequences (CAS) intact. CAS is the access order 

by a customer. Keeping CAS intact for each transaction and mining sequential patterns in 

it is a cumbersome process. So, we envision a continuous process that extracts frequent 

CAS from incoming stream, mines sequential patterns and store the patterns compactly 

and quickly. It also important to handle everything dynamically because we assume that 

we do not know how many click stream items we have to deal with before we start 

mining. Therefore, we need a data structure that grows with incoming stream 

dynamically.

A busy website generates a huge amount of click stream data everyday. Each 

click stream data series reflects a customer’s buying interest. For an e-commerce 

company, detecting future customers based on their sequential mouse movements on the 

content page would help significantly to generate more revenue.

There are some recent studies on mining data streams, classification of stream 

data [Domingos & Hulten2000], online classification of data streams [Las2002], 

clustering data streams [Guna et al.2000] [Guna et al.2003], web session clustering 

[Gunduz & Ozsu2003], approximate frequency counts over data streams [Manku & 

Motwani2002], mining frequent patterns in data stream at multiple time granularities 

[Giannella et al.2003], a symbolic representation of time series analysis [Lin et al.2003], 

and multi-dimensional time series analysis [Chen et al.2002], Temporal pattern mining in 

data streams [Teng, Chen & Yu2003] but there is still an open area to mine frequent 

sequential patterns in data streams.

Considering the importance of sequential mining in data streams, we have 

developed SSM-Algorithm that uses three data structures to generate frequent sequences 

continuously. Our method uses a technique to process the stream data on arrival, SSM- 

Algorithm (sequential stream mining-algorithm) forms dynamic sized batches by taking

8
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data from the data stream, performs batch mining and constantly stores result on a 

compact tree that is able to deliver results on demand.

1.4 Contribution of Thesis

This thesis proposes SSM-Algorithm that uses three types of data structures (d_list, 

PLWAP and FSP-tree) to handle and solve the complexities of mining frequent 

sequential patterns in data streams.

The concept of this work came from FP-Stream [Giannella et al.2003] algorithm. FP- 

Stream [Giannella et al.2003] delivers time sensitive frequent patterns in data stream. 

Please note here, frequent patterns and frequent sequential patterns are two different 

techniques. Frequent sequential patterns require to keep customer access order intact 

prior to mining. On the other hand, frequent pattern does not care about the customer 

accessing order. Data structure d_list uses hash chain indexing in order to maintain 

incoming elements and their frequency. D_list was not introduced in FP-Stream in order 

to make the mining process fully dynamic and quick. It is very efficient if there are 

thousands of items are used in e-commerce, brand new items get posted to the e- 

commerce site and unpopular items get discontinued from the site on regular basis.

Proposed algorithm handles dynamic sized batches. FP-Stream [Giannella et al.2003] 

or Lossy Counting algorithm [Manku & Motwani2002] use fixed size batches. The 

advantages of using dynamic sized batches over fixed size batches are the size of the 

batch can grow bigger and smaller with incoming streams. If the environment is a heavy 

stream environment, then it would be efficient to have bigger batches. On the other hand, 

if the environment is a low stream environment, then it would be efficient to have smaller 

batches to avoid long time waiting period to form a batch.

SSM-Algorithm uses previously introduced PLWAP-tree algorithm to find frequent 

sequential patterns. Proposed algorithm takes the advantage of preordered linkage and 

position coding of PLWAP-tree in order to eliminate the cost of reconstruction and 

computation time of intermediate trees unlike FP-tree [Han, Pie & Yin2000] [Han et 

al.2004], FP-Stream [Giannella et al.2003] uses FP-tree to generate frequent patterns.

FSP-tree (frequent sequential pattem-tree) is used in SSM to store obtained frequent 

sequential patterns. FSP-tree is a simple form of pattem-tree [Giannella et al.2003] that is

9
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introduced in FP-Stream algorithm. FSP-tree stores and maintains frequent sequential 

patterns constantly and that is capable of delivering results on demand. On the other 

hand, pattem-tree [Giannella et al.2003] maintains and delivers frequent patterns that is 

capable of delivering time sensitive frequent queries.

The produced result by SSM-Algorithm does not cross pre-defined error threshold 

and delivers all frequent sequential patterns that have user defined minimum support. The 

use of buffer mechanism in SSM restricts memory usage to a specific size. In other 

words, we use a small fixed size buffer in the memory that handles continuous incoming 

data streams.

1.5 Outline of the Thesis Proposal
The remainder of the thesis is organized as follows: Chapter 2 reviews most related work. 

Chapter 3 describes detailed discussion of the new algorithm sequential stream mining 

algorithm (SSM-Algorithm) and the data structures that are used by SSM-Algorithm to 

discover sequential patterns in data stream. Chapter 4 presents the analysis on SSM- 

Algorithm and its implementation and testing result. Chapter 5 draws the conclusions of 

this research and discusses future work in this direction.

10
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2. Related Work 
Association Rules
An association rule has the form of X ->Y. Here X is the left side of the rule and it is 

called antecedent and Y is right side of the rule, it is called consequent. Say, X and Y are 

the sets of items (attributes) of a transaction database D. Two important features of 

association rule are: support and confidence. The support of an itemset X is the fraction 

of database transaction that contains X. The support of a rule of the form X -> Y is then 

the same as the support of X u  Y and its confidence is the ratio of the supports o f X u Y  

and X. Association rules are used to find the correlation between antecedent and 

consequent.

2.1 Apriori
Agrawal et al. [Agrawal, Imielinski, & Swamil993] have introduced the AIS algorithm 

to apply association rules to basket data and to discover interesting patterns within the 

basket items. AIS is a time consuming algorithm because it scans the database many 

times in the process of creating large itemsets. Later, Agrawal and Srikant [Agrawal & 

Srikantl994] have introduced the Apriori algorithm as a faster algorithm for mining 

association rules in a large database. Over time, the Apriori algorithm became very 

popular algorithm for mining association rules. [Agrawal & Srikantl994] introduced an 

Apriori series, composed of three algorithms: Apriori, AprioriTid, and AprioriHybrid.

The idea behind that series is to use Apriori-gen [Agrawal & Srikant1994] function to 

reduce the candidate itemsets. Apriori algorithm finds all the large itemsets iteratively. In 

the first iteration, it generates all candidate 1-itemsets (denoted as Ci). Then the database 

is scanned and only those items equal to or greater than minimum support are selected as 

large 1-itemsets (denoted as Li).

In next iteration, C 2  is generated by using apriori-gen function [Agrawal & 

Srikantl994], Apriori-gen function joins L| and Li conditionally. The conditions are as 

follows: 1) Conditional join L| and Li means when one itemset X is chosen from the first 

Li, another itemset Y is chosen from the second L| the last item of X must be less than 

the last item of Y, the rest of the items of X must be same as Y. Then, the function 

inserts those itemsets into C2 . The last step of this function is to prune out all candidate

11
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itemsets in C2  that have any of their subsets not in L\. The large 2-itemset L2  is again 

generated from C2  by selecting items that meet the minimum support threshold. This 

process stops when either Q  or L, is empty set. An example of the Apriori algorithm is 

given below. Assume Table 2.1-1 is fraction of a transactional database D, user 

specified minimum-support is 2 .

• In the first iteration, it generates all candidate 1-itemsets listed with their support 

counts as Q =  {Bread:3, Butter:!, Cheese:3, Egg:2, M ilk:3}. Next task or step

TID Items Purchased

1 Butter, Egg, Milk

2 Bread, Cheese, Milk

3. Bread, Cheese, Egg, Milk

4 Bread, Cheese

Table 2.1-1: A sample of transactional database D

in first iteration is to generate large 1 -itemsets Li from Ci by eliminating the 

items that do not have minimum support (2) in Cp From Table 2.1-1, we find 

Li={Bread:3, Cheese:3, Egg:2, Milk:3}. Item butter appeared in only one 

transaction (its support is 1) and that is less than minimum support threshold. So, 

we omited item butter in 1-large itemsets (Li).

Itemset Suport Itemset Support Itemset Support

{Bread} 3 

{Cheese} 3 

{Egg} 2 

{Milk} 3

{Bread, Cheese} 3 

{Bread, Milk} 2 

{Egg, Milk} 2 

{Cheese, Milk} 2

{Bread, Cheese, Milk} 2

u l 2 l 3

Table 2 .1-2: Large Itemsets generation

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



• During the second iteration, the first task will be to generate all candidate 2- 

itemsets C2  by joining Li with L] using Apriori-Gen function [Agrawal & 

Srikantl994], After joining, found C2  = {(Bread, Cheese):3, (Bread, Egg):l, 

(Bread, Milk):2, (Cheese, Egg):l, (Cheese, Milk):2, (Egg, Milk):2}. The next task 

or step in second iteration is to generate L2 itemset by filtering the items that have 

up to minimum-support of 2 in C2 . In our example, we omit itemsets (Bread, Egg) 

and (Cheese, Egg) because they do not meet minimum support threshold. After 

filtering, we find L2  = {(Bread, Cheese):3, (Bread, Milk):2, (Cheese, Milk):2, 

(Egg, Milk):2}.

• During the third iteration, the first task will be to generate all candidate 3-itemsets 

(C3 ) by joining L2  with L2  using Apriori-Gen function [Agrawal & Srikantl994], 

After joining, we find C3 = {(Bread, Cheese, Milk):2}. Next step is in third 

iteration, to generate L3  itemsets by filtering the items that have support greater 

than or equal to minimum-support in C3 . We find L3 = {(Bread, Cheese, Milk):2}. 

We try to generate C4, but it turns out to be empty and the process stops here.

The final Large itemsets L = Li u  L2  u  L3  (Table 2.1-2).

L = { Bread:3, Cheese:3, Egg:2, Milk:3, (Bread, Cheese):3, (Bread, Milk):2, (Cheese, 

Milk):2, (Egg, Milk):2, (Bread, Cheese, Milk):2}

Apriori and AprioriTid use the same algorithm to generate large itemsets. The 

difference between Apriori and AprioriTid is that AprioriTid keeps an auxiliary dataset 

after first pass over (transaction from Ci to Li). The auxiliary datasets keep the record of 

candidate-list for every transaction. Unlike Apriori, AprioriTid uses auxiliary database to 

count the support instead of rescanning the database. It is proven that AprioriTid is faster 

than Apriori. However, AprioriTid requires a good amount of memory and in some cases, 

it may exceed the main memory. To solve this problem, Agrawal and Srikant [Agrawal & 

Srikantl994] proposed an algorithm called AprioriHybrid. AprioriHybrid is a 

combination of Apriori and AprioriTid which takes advantages of both methods. 

AprioriHybrid starts with Apriori method and switches to AprioriTid as soon as the 

system determines that adequate memory is available for data.
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Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.2 Apriori-Growth
The Apriori series [Agrawal & Srikant1994] requires the generation of a good number of 

candidate itemsets. Generating candidate itemsets is costly. In order to reduce the cost 

and candidate itemsets, Han et al. [Han et al.2004] [Han, Pie & Yin2000] [Han & 

Kamber2000] proposed the FP-Tree algorithm to generate frequent pattern itemsets.

To review, the FP-Tree algorithm [Han et al.2004] [Han, Pie & Yin2000] assumes 

a transactional database D has the following records (Table 2.2-1, columns’ 1 and 2) and 

user specified minimum-support is 3. The transaction items need to be scanned once 

because only the frequent items will play a role during the

TID Items Purchased (Ordered) Frequent Items

1 0 0 f, a, c, d, g, i, m, p f, c, a, m, p
2 0 0 a, b, c, f, 1 , m, o f, c, a, b, m
300 b, f, h, j, o f, b
400 b, c, k, s, p c, b, p
500 f, c, e, 1 , p, m, n f, c, a, m, p

Table 2 .2-1: Ordered Frequent Items 

construction of FP-Tree. After scanning D once, we find the frequent 1-items in 

frequency descending order are {(f:4), (c:4), (a:3), (b:3),(m:3),(p:3)}. Then, the items of 

each transaction need to be ordered in frequency descending order (Table 2 .2 - 1 , column 

3). Next task will be to create the virtual root labeled ‘null’. Now, we scan the database 

again and start constructing the branch of the tree with the first transaction with TID 100. 

For TID 100, we take items <(f:l), (c: 1), (a:l), (m :l), (p:l)> as they are ordered in the 

terms of frequency rather than the order of the items appear in the transaction. In our 

example, we insert T  as first node under the root and the initial count of ‘f  is 1. Now ‘c’ 

goes under ‘f  node as child node and put initial count as 1. Similarly, we place ‘a’, ‘m ’, 

and ‘p ’ (Figure 2.2-1). We are done with TDD 100 and our next TDD is 200. As per rule, 

we take ordered items <(f:l), (c:l), (a:l), (b: 1), (m :l)> (see Table 2.2-1, column 3) to 

construct another branch. First 3 items (f, c, a) of TID 200 are matching with the first 

three items of TED 100. In this case, we increment the count of (f, c, a) by one in the 

branch and create one new node (b: 1 ) as a new branch and link it as a child of (a:2 ). 

Similarly, we create a new node (m :l) and link as a child of (b:l) node. The rest of the
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items of the transactions will be inserted accordingly. The final constructed tree looks 

like Figure 2.2-1.

Once the tree construction is completed, mining algorithm FP-Growth starts from 

the bottom of the header table. For node p, it derives a frequent pattern (p:3) from the 

path (f:4, c:3, a:3, m:2, p:2) and (c:l, b :l, p: 1) of the tree. The prefix (f,c,a,m) happened 

together two times with the event “p” and (c,b) happened once with “p”. Here, p ’s sub- 

patterns (f:2,c:2,a:2,m:2) and (c: l,b: 1) form the conditional pattern bases of p. After

r o o t

lieiaci oif 
node - luxlcs

c :  1
item

c : 3

P : l

i n : 1

Figure 2.2-1: FP-Tree constructed from TID 100, TID 200, TID 300, TID 400, TID 500

Item Conditional Pattern Base Conditional FP-tree

P {(f:2 ,c:2 ,a:2 ,m:2 ),(c:l,b:l)} {(c:3)} |P

M {(f:2 , c:2 , a:2 ), (f: 1 ,c: 1 ,a: 1 ,b: 1 )} {(f:3,c:3,a:3)}|m

B {(f: l,c: 1 ,a: 1 ,b: 1 ),(f: 1 ,b: 1 ),(c: 1 ,b: 1 )} 0

A {(f:3,c:3)} {(f:3,c:3)} |a

C {(f:3)} {(f:3)} |c

F 0 0

Table 2.2- 2: Complete conditional patterns 
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constructing a p-conditional FP-tree, we can find frequent pattern (cp:3) from only one 

branch (c:3). The p-conditional search stops and we start with the next item (m) from 

bottom to top in the header table. For item m, the frequent pattern (m:3) derived from two 

paths are (f:4, c:3, a:3, m:2) and (f:4, c:3, a:3, b :l, m :l). Similarly, m ’s sub-patterns 

(f:2,c:2,a:2) and (f: 1 ,c: 1 ,a: lb: 1) form the conditional pattern bases of m. Constructing m- 

conditional FP-tree, a single frequent pattern (f:3, c:3, a:3) is obtained. From this single 

pattern all m-conditional frequent patterns can be found by combining all of its items 

<(m:3), (am:3), (cm:3), (fm:3), (cam:3), (fam:3), (fcm:3)>. The conditional pattern base 

and conditional FP-tree for other items in the header table could be obtained in similar 

way. Table 2.2-2 shows the complete conditional pattern. The maximal frequent patterns 

{cp}, {fcam}, {b} can be obtained recursively.

Sequential Mining
Sequential patterns are used to predict the sequential order of items. For example, 

typically if a customer rents “Start Wars”, then rents “Empire Strike Back”, then “Return 

of the Jedi”. AprioriAll and AprioriSome algorithms were introduced in [Agrawal & 

Srikanthl995] for the first time to extract sequential patterns in a transaction database. 

Below is the discussion on AprioriAll and AprioriSome.

2.3 AprioriALL
The algorithm of AprioriALL is similar to basic Apriori algorithm. The only difference is 

AprioriALL is used for mining sequential patterns. Apriori ALL finds maximal large 

sequences among all sequences that have a certain user-specified minimum support (or 

large sequences). In AprioriALL the term large sequences are used unlike large itemsets 

in Apriori. In large sequences a sequence is maximal if that particular sequence is not 

contained in any other sequences. Let’s go through an example to find maximal 

sequences using AprioriALL algorithm. Consider Table 2.3-1 as a portion of a database 

D. In Table 2.3-1, there are records of items that are purchased by five customers. The 

minimum user-specified support is 40% or 2 customer sequences. We follow same 

procedure as Apriori [Agrawal & Srikantl994], In Table 2.3-3, we generate large 1-

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



sequences or Li from candidate 1-sequences or Ci (Table 2.3-2). In our example, all of Ci 

have minimum-support (Table 2.3-2). Therefore, they are in Li as well. Next task to 

generate candidate 2-sequences (C2 ) by joining Li with Li using apriori-generate function 

[Agrawal & Srikantl994] (Table 2.3-4). Sequence (2 5) is filter out from C2  (because it 

does not have minimum-support) to generate large 2-sequences or L2  (Table 2.3-5).

Sequence Support

(1) 4
(2) 2
(3) 4
(4) 4
(5) 2

Sequence Support

(1) 4
(1) 4
(2) 2
(3) 4
(4) 4

TID ITEMS

1 0 0 ({15} {2} {3} {4})
2 0 0 ({1} {3} {4} {3 5})
300 ({1} {2} {3} {4})
400 ({1} {3} {5})
500 ({4} {5})

Table 2 .3 -1 : Customer Sequences

Table 2.3- 2: Ci

Table 2.3- 3: L!

Sequence Support
( 1 2 ) 2

(13) 4
(14) 3
(1 5) 3
(2 3) 2

(2 4) 2

(2 5) 0

(3 4) 3
(3 5) 2

(4 5) 2

Table 2.3-5: U

Sequence Support
(1 2  3) 2

(12  4) 2

(13 4) 3
(13 5) 2

(14  5) 1

(2 3 4) 2

(3 4 5) 1

Table 2.3- 6: C3

Sequence Support
( 1 2 ) 2

(13) 4
(14) 3
(15) 3
(2 3) 2

(2 4) 2

(3 4) 3
(3 5) 2

(4 5) 2

Table 2.3- 4: C2

Sequence Support
(12  3) 2

(12  4) 2

(13 4) 3
(13 5) 2

(2 3 4) 2

Sequence Support
(1 2 3 4) 2

Table 2.3-8: C4

Table 2.3-7: L3
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We generate candidate 3-sequences (C3 ) by joining L2  with L2  using apriori-generate 

function (Table 2.3-6). Sequence (1 2 5) is pruned out in C3 because its subsequence (2 

5)

SupportSequence
(1 2 3 4)

Table 2.3-9: L4

Sequence Support
(1 2 3 4) 2

(13 5) 2

(4 5) 2

Table 2.3-10: Maximal Large Sequences
is not in L2 . Sequences (1 4  5) and (3 4 5) are filtered out to generate L3 in C3  because

they do not have minimum-support (Table 2.3-7).

Next generate candidate 4-sequences (C4 ) by joining L3 with L3 using apriori-gen 

function (Table 2.3-8). Sequence (1 3 4 5) is pruned out in C4  because its subsequence (3 

4 5) is not in L3 . The only sequence (1 2 3 4) is found as candidate 4-sequence or C4  

(Table 2.3-8). Sequence (1 2 3 4) is also considered as large 4-sequence (L4) because it 

has minimum-support (Table 2.3-9). The process stops generating sequences at C5 

because it is an empty set.

Now is the time to generate maximal sequences among all large sequences that 

we have generated so far. Sequence (1 2 3 4) is maximal sequence in L4  because it is not 

a subsequence of any other sequences, the only sequence (1 3 5) is selected in L3 as 

maximal large sequence because it is not a subsequence of (1 2 3 4). Similarly, sequence 

(4 5) is maximal sequence in L2  because other sequences in L2  are the subsequences of (1 

2 3 4) and (1 3  5) that are selected as maximal large sequences previously. The final 

maximal large sequences are (1 2 3 4), (1 3 5) and (4 5).

2.4 AprioriSome
This algorithm works through two phases: forward pass phase and backward pass phase 

[Srikanth & Agrawal 1996], We will go through sample example that is used in 

AprioriALL to understand AprioriSome. In the forward pass phase, first task to generate 

Ci and compute Li from Ci (Table 2.3-3). Second, task to generate C2  by joining Li and 

Lj using apriori-gen function and we compute L2  from C2  (Table 2.3-5).

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Sequence Support Sequence Support

(1 2 3 4) 2

(1 3 4 5) 1

Sequence Support (13 5) 2

(1 2 3 4) 2 (1 4 5) 1

(3 4 5) 1

Table 2.4-1: C4

Table 2.4- 2: L4

Table 2.4- 3: C3 (after pruning)

C 3 is generated by joining L2  and L2  using apriori-gen function (Table 2.3-6). Now, we 

do not compute L3 from C3 because we do not generate L3. Instead we generate C4  by 

joining C3 and C 3 using Apriori-gen function (Table 2.4-1). L4  is computed from C4  

(Table 2.4-2). Next, C5 turns out to be an empty set. The process starts backward phase, 

nothing gets deleted from L4  because sequence (1 2 3 4) is the only sequence in L4  and it 

counted as maximal large 4-sequence. As per rule, the sequences get deleted in C3 if they 

are the subsequences of (1 2 3 4) (Table 2.4-3). In AprioriALL, a total of seven candidate 

3-sequences are generated but in AprioriSome, a total of three candidate 3-sequences are 

generated. Sequence (1 3 5) get selected as maximal large 3-sequence in C3 (Table 2.4-3). 

All of the sequences are deleted in L2  except (4 5) sequence because the deleted 

sequences are contained in maximal large-4 sequence and maximal large 3-sequence. For 

the same reason all sequences in Li are also deleted. The final maximal large sequences 

are (1 2 3 4), (1 3 5) and (4 5).

2.5 GSP-Algorithm (Generalized Sequential Patterns-Algorithm)
Srikanth & Agrawal presented GSP algorithm [Srikanth & Agrawal 1996] that 

incorporates three important issues in sequential patterns:

1) Absence of time constraints: a minimum and a maximum time gap require for a 

particular sequence. For example, if a customer bought a book named “Foundation”, 

followed by another book named “Foundation and Empire” three years later, then, there 

should be a time constraint that the above customer sequence would be counted if 

adjacent elements occur within a specified time interval, say four months.

2) Sliding time window: for some applications, it is acceptable if items in an 

element of a sequential pattern were present in two different transactions as long as the
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difference between the maximum and minimum transaction times is less than the size of a 

sliding time window or sliding time frame. For example, if a bookstore specifies a time 

window of a week, a customer who purchased “Foundation” on Monday “Ringworld” on 

Saturday and in few weeks later, the same customer purchased at the same time 

“Foundation and Empire” and “Ringworld Engineers” would still support the pattern 

“Foundation and Ringworld” followed by “Foundation and Empire” and “Ringworld 

Engineers”.

3) Absence of taxonomies: many datasets have a user-defined taxonomy 

(hierarchy) over the items in the data and users may want to find patterns that include 

items across different levels of the hierarchy. For example, if a customer bought “Coke” 

followed by “Potato Chips”, would support the patterns, “Coke”, followed by “Potato 

Chips”, “Soft Drinks” followed by “Potato Chips”, “Drinks” followed by “Crackers” 

(Figure 2.5-1 and 2.5-2).

SnacksDrinks

CrackersHard DrinksSoft Drinks

Mixed ChipsCoke Sprite 7UP Potato Chips

Figure 2.5-1: Taxonomy 2Figure 2.5-1: Taxonomy 1

GSP algorithm’s main advantage over AprioriALL is that GSP counts fewer candidates 

than AprioriALL. AprioriALL prunes candidate sequences by checking if the 

subsequences obtained by dropping an element have minimum support. On the other 

hand, GSP checks if the subsequences obtained by dropping an item have minimum 

support. Therefore, GSP always counts fewer candidates than AprioriALL. For the same 

reason, GSP performs several times faster than AprioriALL.

2.6 WAP Tree
Pei at al. [Pei et al.2000] stated that GSP [Srikanth & Agrawal 1996] is efficient if 

sequences and transactions are not too long. When the length of the sequences increases
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and the transactions are large, the number of candidate sequences may increase very 

substantially and GSP may meet difficulties.

Pei et al. have introduced Web Access Pattern tree or WAP-tree [Pei et al.2000] 

for mining web logs efficiently. This tree stores highly compressed and critical 

information for access pattern mining. The construction of WAP-tree is similar to FP- 

tree, but WAP mine algorithm is incorporated with WAP-tree algorithm for sequential 

mining from large web logs. Moreover, the performance of WAP-tree is faster than its 

Apriori based counterparts for mining web access patterns. The steps for WAP-mine 

algorithm are:

1) Find all frequent events. 2) Construct a WAP-tree over the set of frequent events.

3) Mine the WAP-tree using conditional search recursively.

Below given a web-log sequence:

<100,a><100,b><200,a><300,b><200,b><400,a><100,a><400,b><300,axl00,c>
<200,c><400,a><200,a><300,b><200,c><400,c><400,c><300,a><300,c>

User ID Web Access Sequences Frequent Subsequences
1 0 0 abdac abac
2 0 0 eaebcac abcac
300 babfaec babac
400 afbacfc abacc

Table 2.6-1: A transformed database of web access sequences (WAS)

After the preprocessing phase, we find Candidate 1- Sequences are <a:4, b:4, c:4, d: 1, 

e:2, f:2>. The minimum-support is 3. So, the Large -1 sequences are (a:4, b:4, c:4) and 

the transformed database will look like Table 2.6-1.

A WAP tree can be constructed from Table 2.6-1. Only the frequent subsequences 

data will be the input of WAP tree. The others will be discarded. The frequent 

subsequences are filtered from web access sequences by predefined support threshold. 

The construction of WAP tree is similar to FP tree. It starts with a virtual root and all of
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Root Header TableHeader TableHeader Table RootRoot

a:4a:3
a :3

Figure 2.6-3:
Conditional 

WAP tree |bc

b:3

a:3a:2

c:2

Figure 2.6-2: Conditional WAP tree | c

Figure 2.6-1: WAP tree

the frequent subsequences go under the Root as children. For example, if we insert abac

sequence (column 3, Table 2.6-1), we will insert “a” as first node under the Root and the 

count for “a” will be 1, then (b: 1), then (a: 1) and (c: 1). Next, for the sequence abcac, 

we will start with node “a”. Node “a” is already created under Root on the tree and first 

sequence “a” of the sequence (abcac) is matching with the existing node, we increment 

the count of “a” by 1 (total 2 at this point). We repeat same task for next sequence “b” in 

(abcac), we increment the count of node “b” by 1. But we need to create a new branch 

for node (c :1) under (b:2) because it is not matching with the previous order. Node (a :1)

RootRoot
Header TableHeader Table RootHeader Table

a:3 a:4

Figure 2.6-6: 
Conditional WAP tree laac

&
Figure 2.6-5:Conditional WAP tree 

|bac
Figure 2.6-4: Conditional WAP tree | ac

and (c : 1) will fall under new “c” node. For the sequence babac, a new node (b:l) will be 

created under Root and the rest of the sequence abac will go under node (b:l) 

accordingly. The final tree looks like Figure 2.6-1. So far we have completed step 1 and
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2. We calculated frequent subsequences and constructed a WAP tree using frequent 

subsequences. Below is the discussion of how to mine the tree based on its conditional 

search recursively.

The process starts with the lowest entry ‘c’ from the header table and mine the 

tree (Figure 2.6-1). We first find all sequences that have last event c. It is called the 

conditional sequence base of c. We find the following sequences: aba : 2; ab : 1; abca : 1; 

ab : -1; baba:l; abac : 1; aba : -1. Here, sequences ab and aba have count -1  because aba 

is the prefix sequence of conditional sequence abac and ab is the prefix sequence of 

conditional sequence abca. Therefore, we deduce the count of this subsequence. The 

count we need to deduct from the subsequences is same as the count we add of super­

sequence. After deducting, new counts will be: a:4, b:4, c:2. The minimum-support is set 

to 3. So, ‘c’ will be deleted from the sequences. The rest of the sequences are: aba: 2; ab 

: 1; aba : 1; ab : -1; baba:l; aba : 1; aba : -1. We construct c conditional WAP tree or 

WAP-tree|c using above sequences (Figure 2.6-2) and obtain pattern “c”.

In this intermediate tree (WAP-tree|c), prefix sequences based on b (lowest 

element in the header of the intermediate tree) are: a:3; ba:l. The counts are a:4, b :l. We 

delete b and construct WAP-tree|bc (Figure 2.6-3) and obtain pattern “be”. Now only one 

branch is left in Figure 2.6-3, we obtain pattern “abc”. Here, the mining process stops 

because only Root is left. Thus, the mining process goes back to WAP-tree|c to count 

prefix sequences based on a from header table. They are ab:3, b :l, bab:l, b :-l. Here, the 

counts are a:4, b:4. WAP-tree|ac (Figure 2.6-4) is constructed using above sequences 

(ab:3, bab:l) and obtain frequent sequence “ac”.

We use the previous procedure, prefix sequences based on b on WAP-tree|ac are 

a:3, ba:l. The counts are a:4, b :l. We construct WAP-tree|bac (Figure 2.6-5) and obtain 

“bac”. Now, only one branch is left, we obtain pattern “abac”, it stops sub mining 

process. The mining process goes back to WAP-tree|ac, prefix sequence based on a is b :l. 

We delete b because it does not have minimum support. We construct a WAP-tree|aac 

(Figure 2.6-6), now only root is left, the output is “aac”. Here stops the sub mining 

process.

The mining process goes back to WAP-tree|ac and finds nothing left for next sub 

mining. The process goes back to WAP-tree|c and finds that c conditional mining have
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been completed {c, be, abc, ac, bac, abac, aac}. It goes back to main WAP-tree and 

constructs another conditional WAP-tree|b, the process goes through the sub mining 

process and completes mining. The obtained result is {b, ab} from WAP-tree|b.

The process goes back to the main WAP-tree and construct next conditional tree 

(WAP-tree|a). It goes through sub mining process and obtains frequent sequences {a, ba, 

aba, aa} from WAP-tree|a. Then, it goes back to main WAP-tree and finds that the job is 

completed. The final pattern is {c, be, abc, ac, bac, abac, aac, b, ab, a, ba, aba, aa}.

2.7 PL WAP TREE
Pre-ordered Linked WAP-tree was proposed by Ezeife and Lu in [Ezeife & Lu2005][Lu 

& Ezeife2003]. The basic idea behind the PLWAP tree algorithm is to add pre-ordered 

link on a WAP-tree. In that way, several intermediate WAP-tree constructions can be 

avoided and reduce memory load that usually happens during the WAP-tree mining. We 

discuss the PLWAP-tree in details next.

Step 1: First PLWAP scans DB (Table 2.6-1, we use same table as WAP-tree for 

our example) to generate all Candidate 1-sequences. As per Table 2.6-1, candidate 1- 

sequences are (a:4, b:4, c:4, d :l, e:2, f:2). The minimum-support is set to 3. The large 1- 

sequences are (a:4, b:4, c:4).

Step 2: Second PLWAP scans DB for another time to discover frequent 

subsequences of each transaction (column 3 of Table 2.6-1). In the mean time, PLWAP 

tree is constructed in Figure 2.7-1 based on WAP-tree algorithm. In addition, a position 

code is added to each node to indicate the position of the nodes in the PLWAP- tree.

The rules for defining position for each node are if n is a node of the WAP tree and if 

node n is the root, then n has null position code. If n is the left most child of a parent 

node, then it obtains position code 1  that is equal to appending “ 1 ” to the position code of 

its parent. The position code of any other node is same as appending “0” to the position 

code of the node’s closest left sibling. For example, if we apply frequent sequences ( a b a  

c) from Table 2.6-1 on PLWAP tree, then ‘a’ will be the child of ROOT and the value of 

‘a’ is (a: 1  : 1 ), here a’s initial count is 1  and the position code 1  is obtained because ‘a’ is 

the left most child of root (Figure 2.7-1). Then, create node (b: 1: 11) as a child of ‘a’.
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Root

[01101
11101110

101111101 1011 11101

111011 10111111011 10111

C:1
101111

C:1
101111

b: {11, 10, 1011)
c:{ 1 1 1 1 , 1 1 1 1 1 , 1 1 1 0 , 1 1 1 0 1 1 } {b: 1  l,b: 1 0 1 1 }
Figure 2.7-1 : PLWAP-Tree

Figure 2.7- 2: a | suffix tree

Here, the initial count is 1 and position code is 11. ‘b ’ is the left most child of ‘a’, 

therefore, ‘b’ has obtained 11. It obtained position code 1 from parent and another 1 for 

being parent’s left most children. Then create (a: 1: 111) as the child of ‘b’. Similarly, 

we insert (c: 1 : 1 1 1 1 ) as the left most child of node (a: 1 : 1 1 1 ).

Next we can move on to second frequent subsequences (a b c a c) to insert on 

PLWAP tree. Since node (a) and (b) are existing, therefore, we just increment the count 

of them by 1 as (a: 2: 1) and (b: 2: 11) respectively. Then, we insert sequence ‘c’ on the 

tree. Sequence ‘c’ will create new branch under (b: 2: 11) as per rules and it will obtain 

(c: 1: 1110). Here the count is 1 because it is inserted for the first time on the tree but it 

obtained position code 1110 because it is the sibling of node (a: 1: 111). Sibling ‘a’ has 

position code 111. As per rule, additional 0 will add at the end for the closest leftmost 

sibling. Next insert (a: 1:11101) and (c: 111011) under (c: 1: 1110) respectively. Similarly, 

we insert (b a b a) and (a b a c c) sequences and build the tree (Figure 2.7-1).
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Once the construction of PLWAP is completed, a pre-order traversal mechanism 

is used to add a pre-order linkage on the tree. In pre-order traversal mechanism, the 

mining process visit root first, visit left subtree and visit right subtree. Starting from the 

root, travel the left most node first (Figure 2.7-1) and find (a : 3 :1) that is a root of its 

suffix tree. So, linkage with same event label of ‘a’ is created. Continues to travel and 

find (b:3:11) and create the linkage too. After that, travel to ‘b ’s left child and find (a : 2: 

111). A ’s linkage is already created that points to (a : 3: 1). So, create a link from (a: 3: 1) 

to (a : 2 : 111) and also create a linkage from linkage table to (a : 2 : 111). It continues the

Rooi

101101
1110 11101 1 1

1111 11101 1 0 1 111101 10111111 -

1111111111
1011110111 U10II111011

C 1C: 1 
101111

Figure 2.7- 3: aa | suffix tree

Figure 2.7-4: aac | suffix tree 

travel, at node (c:2:1111) and creates the linkage for the table. It continues travel and 

creates a link from (c:2 : 1 1 1 1 ) to (c:2 :1 1 1 1 1 ). (c:2 :1 1 1 1 ) is located at the leaf node 

because there is nothing after this node. So, it looks for siblings and finds nothing. It 

goes back to its parent (c:2:1111), looks for siblings, finds nothing. It goes back to
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(c:2:111l)’s parent (a:2:111) and finds its sibling is (c: 1:1110). It creates a link from 

(c: 1:11111) to (c: 1:1110) and repeat this process to create linkage on the entire PLWAP- 

tree.

Step 3: In this stage, PLWAP starts finding frequent sequences with the frequent 

1-sequence in the set of events {a b c}. It starts following the header linkage of the first 

element ‘a’. Since the two suffix trees of PLWAP tree are rooted at a:3:l and b:l:10 

respectively (Figure 2.7-2) have the first occurrence of ‘a’ node with support of 4 (sum of 

a:3:l and a:l:101 counts). Minimum support is set to 3, therefore ‘a’ is considered as 

frequent 1-sequence and it will be listed in frequent sequence list. The PLWAP process 

looks for 2-seqeunces that start with event ‘a’. Using the position codes, the process 

continues to mine all frequent events in the suffix tree of a:3:l and a: 1:101 that are rooted 

at b:3:11 and b: 1:1011 respectively (Figure 2.7-1). From Figure 2.7-1, we keep finding 

the first occurrence of ‘a’ for each suffix tree. We find (a :2 :lll , a: 1:11101 and 

a: 1:10111) that give us ‘a’ as a sequence event (Figure 2.7-3). Now, ‘a’ is added to the 

last list of frequent sequence ‘a’ to form the new frequent sequence ‘aa’. The process 

continues to mine the conditional PLWAP tree in Figure 2.7-3. The suffix trees of these 

nodes that are rooted at c:2 :1 1 1 1 , c: 1 : 1 1 1 0 1 1  and c: 1 : 1 0 1  1 1 1  give another ‘c’ frequent to 

obtain the sequence ‘aac’. The last suffix tree Figure 2.7-4 is no longer frequent and form 

‘aac’. It terminates this leg of recursive search.

PLWAP searches for other frequent events by backtracking in the order of 

previous conditional suffix tree mined. Since no more frequent events are found in the 

conditional PLWAP tree in Figure 2.7-3, it further backtracks to Figure 2.7-1, b :3 :ll, 

b: 1 : 1 0 1 1  and yields a frequent event for ‘b ’ to give the next frequent sequence as ‘ab’. 

The algorithm keeps moving and finds next frequent sequences as aba, abac, abc. The 

algorithm does not find any more frequent sequences, it terminates this leg of recursive 

search. The algorithm backtracks to Figure 2.7-3, c :2 : l l l l ,  c: 1:111011 and c: 1:101 111 

and yields a frequent event for ‘c’ to give the next frequent sequence as ‘ac’. So far, we 

found all frequent sequences starting with ‘a’. Similarly, we find frequent sequences 

starting with ‘b’ {b, ba, bac, be} and ‘c’ {c}. PLWAP gives the final mining result as {a, 

aa, aac, ab, aba, abac, abc, ac, b, ba, bac, be, c } and that is same as WAP-tree [Pei et 

al.2 0 0 0 ] result.
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2.8 Revised-PL4UP
Ezeife and Chen [Ezeife & Chen2004a] introduced Re-PL4UP for mining frequent 

sequential patterns incrementally using PLWAP tree structure. In the paper, old database 

denoted as DB, new database as db, updated database as U = (DB + db). F and S 

represent previous large items and previous small items in the DB respectively; F ' and S ' 

represent updated large items and updated small items in the updated database. Each 

event in U belongs to one of the six categories (or cases) below:

TID Web Access Sequence Frequent Subseq. with s = 50%

1 0 0 A b d a c a b a c

2 0 0 A e b c a c e a b c a c

300 B a b a b a b  a

400 A f  b a c f c a b a c c

500 A b e g f h a b

Table 2.8-1: Original Database DB

Root

101

11101 1011

111011 1 0 1 11

Figure2.8-1: Re-PLWAP tree for DB with support s
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Category 1: The items that were large in ‘DB’ are still large in ‘U ’ (F~>F').

Category 2: The items that were large in ‘DB’ became small in ‘U ’ (F->S').

Category 3: The items that were small in ‘DB’ became large in ‘U ’ (S-^F").

Category 4: The items that were small in ‘DB’ are still small in ‘U ’ (S->S').

Category 5: New and frequent in ‘U ’ (0 -^F ').

Category 6 : New and small in ‘U ’ (0 -> S ').

Re-PL4UP algorithm scans only the incremental part of database (db), then, it uses 

frequent items that are generated from db to update the old pattern. The significant 

changes will occur on old PLWAP tree if cases 2 (F->S ') and cases 3 (S-^F ') happen.

For case 2, old frequent items will be deleted and for case 3, previous small items 

will be inserted on the tree. Re-PL4UP takes the advantages of the position code of the 

PLWAP tree. It stores the list of all small items’ position code. During the update 

process, the unique codes are used to re-insert the previous small items in the proper 

positions in the tree without rescanning the old database. The Re-PL4WAP algorithm is 

discussed next with an example. Assume original or old database DB (Table 2.8-1) with 

the set of items I = {a, b, c, d, e, f, g, h} and minimum support is set to 50%. The first 

process is to build initial Re-PL4WAPDB tree using the frequent subsequences (support is 

> 50%). The construction of Re-PL4UPDB tree is the same as PLWAP tree construction. 

To build the tree, we scan the DB and generate candidate 1-itemsets as Q  = {a:5, b:5, 

c:3, d :l, e:2, f:2, g; 1, h: 1}. Here, Fj = (a:5, b:5, c:3} and S, = {e:2, f:2, d :l, g :l, h: 1}. 

Then, scan the DB second time to generate frequent subsequences (column 2 in Table 

2.8-1). Insert each frequent subsequence in the tree, count, position code and construct 

the tree (Figure 2.8-1). While inserting frequent items in the sequence, the algorithm 

checks the original transaction to mark location of small items in the transaction. For 

example, small event ‘d’ in the first transaction ‘abdac’ would have the position (d: 1 :1 1 1 ) 

in the created branch if ‘d ’ were frequent. This will write this position code in the small 

item code profile for item d as S-coded={ 111}. The complete small item code profiles for 

all small items will be S-Coded= { ll l}  or {3}, S-codee={ 110, 11011111, 1110} or {6 , 

223, 14}, S-codef={ 1100, 11001111, 111011} or {12, 207, 59}, S-codeg={11101} or
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{29}, S-codeh={ 1110111} or {119}. After building the tree a pre-order traversal 

mechanism (visit root, visit left sub-tree, visit right sub-tree) is used to add a pre-order 

linkage on the tree for all frequent 1-items, Fi = {a, b, c}. The broken lines are used to 

show the linkage of the frequent items in Figure 2.8- 1.

TID Web Access Sequence Frequent Subseq. with s = 50% Frequent subseq. with t=0.8s

700 B a h e f g b a h  e f g b a h e f  g

800 A e g f  h a e g f h a e g f h

Table 2.8- 2: Inserted Database db

Once the linkage is created, Re-PL4UPDB begins mining process. By applying the 

same mining process as PLWAP algorithm and support threshold 50% (3 transactions), 

we find frequent patterns on old database FPDB = {a:5, aa:4, aac:3, ab:4, ac:3, abc:3, 

abcc:2, ac:3, acc:2, b:4, ba:4, bac:3, bc:3, bcc:2, c:3, cc:2}

Now by assuming that original database DB (Table 2.8-1) is updated with inserted
DRdb (records are in Table 2.8-2). 1). The objective of Re-PL4UP is to reuse previous FP 

as much as possible with the new changes to the database. Re-PL4UP algorithm works as 

follows:

1). Update all intermediate candidate lists: C'\= Ci U Cidb. C\ = {a:5, b:5, c:3, d :l, 

e:2, f:2, g ;l, h :l} . Cidb = {a:2, b :l, e:2, f:2, g:2, h:2}, thus C \  = {a:7, b:6 , c:3, d :l, e:4, 

f:4, g:3, h:3}. F 'i ={a:7, b:6 , e:4, f:4} and Fidb = C ,db fl F >  {a:2, b :l, e:2, f:2}. S ={c:3, 

d u ^ h ^ . s ^ c ^ n s ^ g ^ } .
2) Classify items in U (updated database), into one of the defined six categories as

1) F, n  F ', = {a, b}, 2) F , n s >  {c}, 3) S, 0  F >  {e, f}, 4) S! FI S ', = {d, g, h}, 5) F V  

F,= 0 , 6 )S V S i= 0 .

3) Modify the old Re-PL4UPDB tree by deleting the items for category 2 (F -^S ') 

= {c} and insert items into the tree for category 3 (S->F') = {e, f} using the small code 

profile. The position of small item in the current tree will be determined by any matching 

prefix of its binary position code that is listed in the profile. For example, if an item has 

the position profile code is 1 1 1 0 1 1  and we find a node position in the current tree for the 

prefix 1110, then, we insert small to large item there. The new code profile of the item is
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Figure2.8- 2 : Modified Revised PL4WAP tree

the physical code in the tree. Then, the small code profile is updated. Thus, after tree 

modification, the updated codes for the small-to-large items {e, f} will be S-codee={110, 

1101, 1110} andS-codef = {1100, 11001, 11101}. The last task will be to re-construct the 

frequent header linkage.

4) Mine only the modified branches of the Re-PL4UP tree. We only modified the 

left branch of the tree. We obtain frequent sequences called Re-FPDB as {aee:l, abef:l, 

aff: 1 , ae:2 , af:2 , be:l, bf: 1 , bef:l, ef: 1 , ee:l, ff:l, e:2 , f:2 }.

5) Construct Re-PL4UPdb using only changes to the database (db). The 

construction of the tree is based on Fidb=C]db f l F '| = {a, b, e, f}. Mine Re-PL4UPdb to 

obtain FPdb patterns. We find frequent patterns FPdb={b:l, a:2, h:2, e:2, f:2, g:2, ba:l, 

be:l, b f;l, aef:2 , bef:l, ae:2 , af:2 , ef:2 , bf: 1 }.

6 ) Combine old frequent pattern FPDB, pattern of the modified branches of the old 

tree Re-FPDB and the pattern of the changes to the database FPdb. Keep those items that 

have new support (s') greater or equal to 4. Thus, F P ' = FPDB f l Re-FPDB f l  FPdb > s'. 

FP'={a:7, aa:4, ab:5, aba:4, b:6 , ba:5, ae:4, af:4, e:4, f:4}.
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7) Finally, the frequent sequences in the incremental part (db) that are {baef, aef} 

are inserted into the main Re-PL4UP tree to keep it up-to-date. Small code profiles are 

updated by adding new small items and the codes of the deleted nodes in the tree.

2.9 Lossy Counting Algorithm
Lossy counting algorithm [Manku & Motwani2002] is very prominent frequency 

counting algorithm in data streams. The proposed algorithm finds frequent items in data 

streams when a maximum acceptable error e  e  (0 , 1 ) as well as maximum support s € 

(0, 1) are given where e  «  s. Let N denote the current length of a stream. The authors 

used a landmark model that counts frequent items in data streams by assuming that 

patterns are measured from the start of the stream up to current moment. The process 

waits until the fixed sized buffer gets filled with the frequent data stream. Once the buffer 

is filled, the incoming stream is conceptually divided into buckets. The buckets are 

labeled with bucket ids, starting from 1. The width of each bucket w = [He ] transactions. 

Then, run Lossy Counting-algorithm on buckets one after another to find frequent items.

The algorithm uses support s and error e  to determine frequent items. If user 

specified minimum support s = . 1  ( 1 0 %), then the method suggests to keep e = . 0 1  ( 1 %) 

that is one tenth of s. Thus, size of the bucket or window will be 1/.01=100 single item 

transactions. After counting the frequency of first window or bucket, the e  -frequent items 

(items that have frequency more than e ) are stored into a data structure D. The items are 

stored in D  in the form of (e,f, A ) where e is an element, f is the count of e and A is the 

maximum possible error count of the items.

Algorithm: Initially, D  is empty. Whenever a new element e arrives, it checks D whether 

e already in D. If e found, it increments e’s frequency f  by 1. Otherwise, it creates a new 

entry of the form (e, 1 , bcurrent - 1 ).

At the boundary of the bucket or window, it performs two types of pruning.

1) It decrements all elements by 1 % ( e ’s value) in D.

2) It deletes items from the structure D if f + A < bCUrrent- Here bCUrrent is current bucket. 

Whenever, a user requests a list of items that have support s, the algorithm generates 

output for items that have frequency f > (s- e ) N. Here, N is current length of a stream. 

We will run their algorithm with our example for better understanding.
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b, = 1 b2 = 2 b3 = 3

Figure 2 .9 -1: Data Stream in a buffer

Assume Figure 2.9-1 is a buffer that is filled by data stream. Data stream is nothing but 

incoming items or elements from a source (web, stream generator program). As per 

algorithm, we divide the data of buffer into several windows or buckets. We have three 

buckets (bi, b2 , b3 , Figure 2.9-1). Minimum support is s = .50 (50%) and e  =.25 (25%, we 

took higher percentage of e than recommended to reduce calculation). We determine the 

size of the bucket w = [1/.25 = 4] single transactions. We 

labeled the bucket as bi = 1, b2  = 2 and b3 = 3 (Figure 2.9-1).

Figure 2.9- 2: Empty structure D  

Initially, we have an empty data structure D (Figure 2.9-2). As per algorithm, we start 

with first bucket or bi. We take first element “a” 

from bi (left to right) and insert into D as (e f  bCUrrent-l) form 

= (e f  bi-1) = (a 1 0). As we know, bcurrent = bi = 1.

Then, we insert next element “a”, as “a” already in D,

Figure 2.9- 3: Data structure D  

we increment its frequency in D. Similarly, we increment third element “a” in D. Now, 

when we insert “b” from bi into D, we insert in the form (b 1 0) for the first time. After 

insertion of bi, D looks like Figure 2.9-3.

After finishing counting one bucket, the algorithm marks this point as boundary. 

At the boundary, the algorithm performs two types of pruning before start processing 

next batch (in our case b2 ).

Pruning 1: it decrements all entries in D by the threshold of e (25%) (or 1 out of 4 

single transactions).

Pruning 2: the algorithm performs pruning if any items have frequency f + A < bcurrent- 

Here, bCUrrent is current bucket that is bi= 1. In other words, an item (items) will be deleted 

in D if its frequency f + A is less than or equal to bcurrent = 1- We do not find any 

elements to delete them in D  based on pruning 2 after
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performing pruning 1 on D (Figure 2.9-3).

After processing bi and performing two types of 

pruning methods at the boundary, it starts processing

Figure 2.9- 4: D  after b) boundary

next bucket b2 . Now, b2  becomes current bucket or bCUrrent and it is already labeled 2. We 

start with the first element “b” (reading elements from left to right in Figure 2.9-1 in b2 ). 

Before we insert “b” into D, we lookup D and check whether element “b” already exists 

in D. We find nothing. We insert “b” into D  in the data structure form (e f A).

Thus, we insert (e f bcuirent -1) = (e f 2-1) = (b 1 1).

Similarly, we insert other elements (d e ) into D but 

algorithm treats last element “a” differently 

because “a” already exist in D. In that case, the

frequency of “a” gets incremented by 1 but the value of A remain same for “a” in D. 

After inserting all elements of b2  in D, it looks like Figure 2.9-5.

Before it processing b3 , it performs two types of pruning methods that occurs at 

the boundary. It decrements all entries in D by 25% (or 1 out of 4 single transactions) 

because e =.25. The algorithm performs second pruning that is if any items’ frequency 

f + A < bCurrent- bcurrent is current bucket that is b2  and we labeled it 2. So, an item 

(items) will be deleted in D  if its frequency 

f + A is less than or equal to bcurrent = 2. After 

performing both pruning, D looks like Figure 2.9-6.

Figure 2.9- 6: D after processing b2

Similarly b3 ,.. .,bn can be processed.

Now, if a user requests a list of items that have support s, the algorithm generates 

output those items have frequency f  > (s -£ ) N or (.50-.25) * 8  = 2 = {a}. At this point, 

the current length of a stream N = 8  because we have completely processed b] and b 2  and 

each of them has 4 single transactions.

Similarly, lossy counting algorithm can be used to count when the buffer will be 

loaded by frequent patterns instead of single items.
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Discussion: lossy counting algorithm uses decrement mechanism from the beginning. At 

the boundary, it decrements all entries by the percentage of maximum error tolerance 

threshold or value of e . Small items with counts less than or equal to e get eliminated by 

this decrement method from the beginning. As a matter of fact, a huge number of small 

items required to be processed in the process of finding large items. It is efficient to keep 

decrementing items in the data structure rather than incrementing items.

The items with higher frequencies would remain in D after all of the decrements 

at each boundary. However, all the items would not have true counts at the end. For 

example, we have processed up to b2  bucket and the true count of element “a” is 5. After 

two times decrements, its current count or frequency is 3. The formula lowers the support 

threshold as much as it decremented during the process. In other words, the formula is 

lowered from .50 to (.50-.25=.25). By using the formula, we can identify large items. As 

a matter of fact, at the end, we can find large elements or items using lossy counting 

algorithm. In many cases, we might do not need true frequency of items or elements.

The algorithm also prunes individual items if they go below a threshold. 

However, if those trimmed items come back later, it would compensate an approximate 

loss frequency with the items that were pruned earlier.

2.10 FP-Stream
FP-Stream algorithm [Giannella et al.2003] is introduced to mine frequent patterns in 

data stream. Previously, landmark model [Manku & Motwani2002] was introduced that 

mines frequent patterns in data stream by assuming that patterns are measured from the 

start of the stream up to current moment. The authors of FP-Stream [Giannella et al.2003] 

extended their framework to answer time-sensitive queries over data stream. For 

example, if itemset “ab” becomes large at the end after several incremental processes, as 

per theory, it is possible to say what time period “ab” was large and what time period 

“ab” was small even though its end result is large. In order to facilitate time-sensitive 

queries, FP-Stream uses a pattem-tree, FP-tree and a fixed-time window frame with FP- 

Stream structure.
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FP-tree: This tree was introduced in [Han et al.2004] [Han, Pie & Yin2000] earlier to 

mine frequent patterns using FP-Growth [Han et al.2004] [Han, Pie & Yin2000] 

algorithm.

Pattern-tree: It stores frequent patterns instead of data stream and each node of this tree 

maintains a time-window table. For example, we can tell what were the frequencies of 

the pattern “ac” in different time periods (t0, ti, ..., t3 ) from the Figure 2.10-4.

Tilted Time Window: The design of the tilted-time window [Chen et al.2002] is based 

on the short term period facts. There are two types of tilted-time window that can be used 

to provide time-sensitive queries: 1) Natural Tilted-Time Window and 2) Logarithmic 

Tilted-Time Window.

31 days 24 hours

I I I  II

4 qtrs

M I L

Figure 2.10-1: Natural Tilted-Time Window Frame

1) Natural tilted-time window frame (Figure 2.10-1) for holding one month’s data which 

has 4+24+31=59 units. First four units are 15 minutes each, next 24 units are one hour 

each and the last 31 units are 1 day each. This window can hold up to 31 days data. When 

first four units are filled with data, they merge together to form an hour unit, similarly, 24 

hours units form a day unit. Based on this model, it is possible to compute in the last hour 

with the precision of quarter of an hour, the last day with the precision of hour, ...., until 

the whole month.

2) Logarithmic tilted-time frame can be constructed based on logarithmic time scale 

(Figure 2.10-2, with ratio 2). Here, we have [Log2 (n)]+l frequencies. As per this model, 

with one year of data and the smallest precision at quarter, we need log2(365 x 24 x 4)+l 

= 17 units instead of 366 x 24 x 4 = 35,136 units.
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Figure 2.10- 2: Tilted-Time Window Frame with Logarithmic Partition

Algorithm:

We will go through a detailed discussion of the algorithm in this section. Let the 

minimum support be (7, an error rate £ (or maximum support error), an FP-Stream 

structure, incoming batch B; are arriving one after the other, and transactions t. The 

process waits about 15 minutes to form a batch. Once the time is expired, (say the first 

batch B i), it computes all of the items frequencies and stores them in the main memory in 

a descending order in a data structure named f_list. The ordering remains fixed for all 

remaining batches. Then, it constructs an FP-tree, pruning all items with frequency less 

than £ |Bi|. The algorithm finds £  -frequent itemsets (itemsets with frequency more than 

£ )  from the FP-tree. The £ -frequent itemsets are stored into pattem-tree. All remaining 

batches Bi where i > 2  are processed according to algorithm below.

Algorithm with an example and discussion:

1) Algorithm forms a batch Bi of data stream after waiting 15 minutes.

2) The elements and their frequency are listed in a data structure in descending order 

named f_list.

3) Construct a FP-tree [Han et al.2004] [Han, Pie & Yin2000] by extracting each 

incoming transaction t from Bj according to f j i s t  and inserting into the FP-tree without 

pruning any items for the first time.
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Figure 2.10- 3: Frequent Patterns for Tilted-Time Windows

4) Run FP-Growth algorithm [Han et al.2004] [Han, Pie & Yin2000], and mine £-  

frequent itemsets (itemsets that have frequency more than £).

5) Store the pattern into tilted time-window, Figure 2.10-3 shows that it found £  -frequent 

itemsets from batch B3 that are stored under to time slot (right to left). As we know that 

B3 was holding data streams that were collected after 15 minutes of waiting period. Thus, 

we can say that to has last 15 minutes £ -frequent patterns.

Update Method

1) Initialize the FP-tree to empty.

2) When all of the transactions in B2  are accumulated, update as follows:

3) Update elements and their frequency in f j i s t  in descending order with batch Ba’s 

elements.

4) Construct a FP-tree [Han et al.2004] [Han, Pie & Yin2000] by extracting each 

incoming transaction t that are £  -frequent or frequency has more than £  from B2  

according to f_list and insert into the FP-tree.

5) Mine the FP-tree using FP-Growth algorithm [Han et al.2004][Han, Pie & Yin2000] 

and find all frequent patterns.

6 ) Update tilted time-window with frequent patterns that are found after mining B2  as 

follows:

Check each itemsets I in tilted time window.

If yes,
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i) Add each fi(B2 ) to the tilted time window for I. Keep repeating this process.

If I is not in the window and if fi(B2 ) > £ IB2 I, then insert I into the time window.

Once, we are done with update process in the tilted time-window, then updated frame 

slides to the next time slot and the new frame sits in the current time slot. Here, in Figure 

2.10-3, time slot ti is holding two batches mined patterns (batch Bi and B2 ) and we know 

each batch was holding 15 minutes long data. Therefore, we know time slot t| is storing 

last 30 minutes mined pattern. Similarly, t2  is holding last 45 minutes mined pattern 

(Figure 2.10-3). From Figure 2.10-3, we can say that pattern “ac” had frequency 75 at last 

45 minutes, we can also say that pattern “ac” had frequency 63 in last 30 minutes and 29 

in last 15 minutes. Now, we can easily calculate against predefined minimum user 

support and find out whether “ac” was frequent or infrequent at last 45, 30 or 15 minutes. 

The authors referred this kind of query as time sensitive queries. This tilted time window 

keeps short term period data because it maintains several time slots and the data of slots 

slides from right to left when new data arrive. Therefore, it requires a big storage.

To speed up searching and updating the tilted time window, the authors embedded this 

tilted time window in a tree called pattern tree. Figure 2.10-4 is a Pattem-tree. The 

construction of pattem-tree is similar to FP-tree [Han et al.2004] [Han, Pie & Yin2000] 

but pattem-tree stores frequent patterns instead of frequent elements. Each node has a 

label, a tilted time window table. This tilted time window table maintains frequency of 

frequent patterns and their time slots as well.

Similarly, batch B3,....Bn can be stored into Pattem-tree. The compact structure 

of the pattem-tree and embedded tilted time window are referred to as FP-Stream 

structure.

When a user wants to see the result, the pattem-tree is mined against the user 

defined minimum support threshold.
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Figure 2.10- 4: Pattern-tree

Mine Pattern-tree: We read pattern tree from top to down. For example, from the root 

node, we visit left child first and that is “a”. We find the frequency of ‘a” is 100. We visit 

its left child “b” and find frequency 78. This 78 is the count or frequency of “ab” pattern 

(not the count of “b”). Similarly, we find the frequency of “abc” that is 63 from the tree. 

Once it reaches to the leaf node, it goes back to its parent and checks for its siblings to 

mine. As a matter of fact for our example, it finds nothing. It moves back to its parent and 

that is “a” and find sibling “c” is not mined yet. It finds frequency 75 for “ac’ pattern. 

Similarly, all other nodes of the tree can be mined recursively.

2.11 FTP-DS Algorithm
Teng et al. proposed FTP-Algorithm [Teng, Chen & Yu2003] to mine frequent temporal 

patterns of data streams. FTP-DS scans online transaction flows and generate frequent 

patterns in real time. Sliding window model is used in this paper. Data expires after N 

time units after its arrival. Here, N is the user specified window size. As per FTP-DS 

rules, a temporal pattern is frequent if its frequency in the current window is no less than 

user defined support threshold.
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5 (i) (c) <g)

TxTimei
0

Figure 2.11-1: An example of online transaction flow

The transaction flow of an application is shown in Figure 2.11-1 where items (a to g) are 

purchased by five customers. Third customer (Figure 2.11-1) bought item c during time t 

= [0,1], item c, e, and g during t = [2,3] and item g during t = [4,5], In such a data stream 

environment it is very difficult to conduct frequent pattern identification due to limited 

time and space. In order to handle this kind of computation in data streams Teng et al. 

designed a sliding window model. Say, the window size is given and that is N =3, three 

sliding windows w[0,3], w[l,4] and w[2,5] are shown in Figure 2.11-1. Table 2.11-1 

shows that the temporal frequent pattern result found against Figure 2.11-1 based on 

support 0.4. Table 2.11-1 (c) item d found frequent from Figure 2.11-1 because d
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t = l t — 2

M  0 & / 1 { c }  1 . 2 / 2

( a ) { g }  0 . 4 / 1

2 4 / 4

1 . 6 / 3

t = 3

{ c } 2 / 3

W 0 . 4 / 1

{ g } 1 / 2

{ c . g } 0.6/1
(c )

Table 2.11-1: Generation of frequent temporal itemsets (MinSup=0.4)

occurred two times up to time point t = 3, (see TxTime in Figure 2.11-1, TxTime shows 

time point). As per rule accumulated support / number of transcations = 2 / 5 = .4. Thus, 

d became frequent from the time point t = 3. However, it could not maintain its minimum 

support .4 at the end. So, it discarded in Table 2.11-1(e). As time advances patterns those 

support fall below the minimum support threshold are removed from the records. At the 

end, only frequent patterns are recorded. In practice, if a pattern does not maintain a 

steady frequency above the threshold for a certain time can become frequent later. It 

would be appropriate to make the remove process delay for a pattern once it was recorded 

as frequent in the record. A linear estimate function fn = a  + pt is used to correspond with 

frequency variation of the temporal pattern, a and P are computed as oo = f -  pt where P = 

Stf/ Stt- Here, f stands for frequency and t for time. Stf= X t 1 -  {(X 0  2 }/ n and Su= V t f -  

{ (1 0  (X f)} /n.
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3 Mining Frequent Sequential Patterns in Data Stream

3.1 Introduction

A data stream is a continuous, unbounded, and high-speed flow of data items. To mine a 

data stream, we must switch from “one-time” traditional approach to a new approach that 

is able to mine continuous, high volume and open-ended data as they arrive. The previous 

techniques ([Agrawal & Srikanthl995][Srikanth & Agrawall996][Hin2002][Ezeife & 

Lu2005][Lu & Ezeife2003][Ezeife & Chen2004a][Ezeife & Chen2004b]) could be 

modified with new requirements such as unbounded data with bounded memory, scan 

original data only once, online process, and deliver result on demand in order to use them 

in the stream environment. By considering stream environment requirements, we have 

developed a method that uses SSM-Algorithm (sequential stream mining algorithm) to 

collect data stream into a buffer from web applications, forms dynamic sized batches by 

taking data stream from the buffer and mines each batch to deliver results. A batch is a 

group or a number of customer access sequences. SSM-Algorithm maintains three data 

structures (d_list, PLWAP-tree, FSP-tree) in order to handle and generate result for click 

stream data. Click stream data can be generated from the clicks of users on the net. Each 

data stmcture has its own algorithm to update and retrieve data from the structures.

D_list is a hash chain based data structure that stores all incoming items’ ID and 

their frequency if they are above a threshold. D_list is very efficient when there are huge 

numbers of items that are used at the e-commerce site. Brand new items get posted to the 

e-commerce site very often. It is very realistic that each e-commerce site introduces new 

items as soon as they get items from the vendors. We assume that we do not have any 

information on number of items and their IDs for our algorithm. In other words, our 

d_list is totally dynamic, it grows with incoming data stream.

PLWAP-tree [Ezeife & Lu2005] [Lu & Ezeife2003] gets constructed by selecting 

frequent sequences from batches. PLWAP-mining algorithm uses preordered linkage and 

position coding method to avoid costly reconstruction of intermediate trees to generate 

frequent sequential patterns unlike WAP-tree [Pei et al.2000].

The process of mining frequent sequences continues batch by batch. Once we find 

frequent patterns from first batch, we keep incrementing frequent patterns onto frequent 

sequential pattem-tree (FSP-tree) batch by batch. The construction process of FSP-tree is
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similar to Pattem-tree that was introduced in [Giannella et al.2003] but the structure of 

FSP-tree is simpler that pattem-tree. We made FSP-tree simpler to do our tasks 

efficiently and quickly. FSP-tree stores frequent patterns instead of customer access 

sequences. Whenever we need to view the results, we are able to generate updated 

frequent patterns from the FSP-tree.

The proposed method is very memory efficient and ideal for click stream 

environment. As the mining process moves only forward and there is no way to go 

backward and rescan previous data stream, therefore we do not keep any items that have 

support less than maximum support error threshold in d_list structure where we store 

updated candidate 1-sequences. The items less than maximum support error threshold are 

very small and chances are very slim for them to become large items later. Therefore, we 

get rid of those small items from the beginning. However, there are some small items 

that are potentially large items (very close to large items) and have chances to be large 

later, we do not ignore them as we keep all of the items in the d_list that have support 

equal to or more than maximum support error.

Maximum support error is a predefined threshold that gives a tolerance of error in 

the result. It is standard now in stream mining to have support and error. It is obvious that 

if maximum support error is very small compared to user defined support, then the error 

in the result will be very nominal. By keeping all items that have support more than or 

equal to maximum support error in the d_list, we assure that our result does not cross 

error boundary.

3.2 Problem Domain
Assume that we are mining frequent sequential patterns for a busy e-commerce site 

XYZ. Our intension is to mine online weekly store flyer. Big corporations spend a lot of 

money on their flyers if they are in retail business. They want to make their flyers as 

attractive as possible in order to get attention of the customers and to increase their 

revenue. Our intention is to find frequent sequential patterns in click stream data from 

XYZ’s website. The click stream data can be captured of the customers when they click 

on a particular product or products on the website. By analyzing click stream data, XYZ 

can predict the products that are being considered by the customers as future buying
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products or the customers are interested in knowing more about. By identifying the 

frequent sequential products based on customers’ interest, XYZ can increase their 

revenue by taking some of the following steps. For example:

1) XYZ can reorganize their site based on the result of the analysis such that frequent 

sequential products are placed on each other’s site to make finding them easy.

2) XYZ can always remind customers about the future products when they buy products 

through their site based on the analysis. For instance, if a customer buys a printer, the site 

can give a pop up message to the customer that you will be needing ink cartridge soon 

because all of the printers come with a starter cartridge. If you buy an additional cartridge 

now, you can save shipment cost. This kind of effective message always helps to have 

more products in the shopping baskets of the customers.

If we consider to mine a website like XYZ, we need to consider the following issues:

1) Every click stream data is important because it reflects a customer’s buying interest. 

On the other hand, it is impossible to store all of the click stream data when thousands of 

customers generate click stream data every day.

2) If we wait long enough to perform mining tasks, mining algorithm will run out of 

memory when it will try to generate interesting patterns on extremely large dataset.

3) As data come continuously from XYZ’s website, we are required to mine with the 

arrival of the data. In other words, we need to perform mining tasks while the customers 

are generating click stream data because this is an ongoing online process.

4) The management of XYZ may want to see the result from time to time. In other words, 

we need to keep updated results and be able to deliver while the mining process is on 

going.

5) The result has to be considerably accurate even though it is stream mining procedure. 

These are very crucial issues we have considered before building our model.
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3.3 Main Components

The main components of our model are given below (Figure 3.3-1).

Min­
ing

Eng­
ine

Buffer

lOOabdac
lOlabcac

PLWAP-
tree

D listResult
Structure
FSP-tree

Data
stream

Figure 3.3-1: Sequential Stream Mining Process

Buffer is basically a staging area where preprocessed transaction IDs and customer 

access sequences (CAS) arrive. We can envision a buffer as a long empty string initially. 

Once the stream started coming, we add stream into buffer. For example, <100, a b d a

c>, <101, a b c a c>, < ..... >. Here, 100 is the transaction ID and the letters (a b d a c)

followed by transaction 100 are item IDs. Similarly, 101 is transaction ID and letters 

followed by 101 are item IDs (Figure 3.3-1). Lossy Counting Algorithm [Manku & 

Motwani2002] has used buffer mechanism to deal with incoming data stream. On the 

other hand, FP-Stream [Giannella et al.2003] used main memory to handle data stream. It 

is important to mention here that our mining work start from the buffer. In other words, if 

we receive sessionID and the sequential web pages visited by a user for that particular 

session instead of transaction ID followed by the item IDs, we would treat same. Our 

model can be used to find frequent sequential patterns of visiting pages for a site as well.

Mining Engine forms batches of the CAS (customer access sequences) data from the 

buffer. A batch is a group of customer access sequences. The size of the batch depends on 

the incoming stream. We do not keep our batch size fixed unlike Lossy Counting 

Algorithm [Manku & Motwani2002] or FP-Stream [Giannella et al.2003]. The size of the 

batches in our method changes dynamically. The size of the batch can grow bigger and 

smaller with incoming streams. If the environment is a heavy stream environment, then it 

would be efficient to have bigger batches. On the other hand, if the environment is a low 

stream environment, then it would be efficient to have smaller batches to avoid long time 

waiting period to form a batch. Before we form a batch, our mining engine waits for a
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certain time. We can set this wait period time to 5 minutes, more or less. Once the 

predefined time elapses, it checks two thresholds (or variables) that are min_CAS and 

max_CAS. Min_CAS is a minimum number of customer access sequences and 

max_CAS is a maximum number of customer access sequences to form a batch. For 

example, we can set min_CAS = 4 and max_CAS = 1000 to form a batch. The engine 

follows two rules to form a batch.

Batch creating rules

Rule 1: After the elapsed time, if the buffer does not contain a minimum number of CAS 

(min_CAS), the batch creating process waits for a certain time. Here, time is a variable 

and it can be set to 20 minutes or 1 minute based on the requirements of the stream 

environment. For this example, say time = 5 (minutes). Here, the batch creating process 

retries to form a batch after 5 minutes and it continues this process as long as there are 

not a minimum numbers of transactions in the buffer.

For example, after elapsing five minutes, if there are two transactions or CAS 

waiting in the buffer but we set min_CAS to 4, it would wait another five minutes and try 

to form a batch at the second round. If there are still two transactions after a second 

round, it would go for third wait and continues this process until buffer does not contain a 

minimum number of transactions. Rule 1 prevents a continuous search to form a on the 

buffer if there are not enough transactions waiting in the buffer. This rule is ideal for a 

low stream environment.

Rule 2: After the elapsed time (say five minutes) if buffer has minimum number of 

batches, the process forms a batch and checks immediately whether the remaining 

transactions are more than maximum number of CAS or max_CAS threshold.

Otherwise, the process goes for a wait period after forming a batch.

For example, suppose there are 1800 transactions waiting in the buffer after elapsed time, 

the process takes 1000 transactions to form the first batch because we set maximum 

number of CAS or max_CAS to 1000 records for a batch. It checks immediately how 

many is remaining in the buffer and finds 800 is waiting to be batched. The process goes 

for a second wait and tries to form the next batch after second wait.
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If yes, then it forms a next batch immediately and there is no wait period for this 

case. An example of case 2: suppose there are 5000 transactions waiting in the buffer 

after elapsed time, the process takes 1000 transactions to form the first batch. It checks 

immediately how many is remaining in the buffer, it finds 4000 left. It forms next batch 

right after taking care of first batch. There is no waiting period and it continues this 

process as long as the transactions in the buffer are not below the max_CAS threshold.

Batching and processing immediately based on Rule 2 minimizes system time and 

prevents waiting when there are enough transactions waiting in the buffer. If the process 

takes 5 minutes break regardless after forming a batch, and if the stream rate is higher 

than mining rate, then the buffer has chances to be over flooded at some point. At the 

same time, we do not want to keep the system always busy on the off pick hours when 

the traffic is slow.

Our intention is to utilize the systems efficiently compared to other proposed 

mechanism. For example, Lossy Counting Algorithm [Manku & Motwani2002] waits 

until the fixed sized buffer gets filled with data stream, then incoming stream is 

conceptually divided into batches to be processed. Now, if the buffer size is big and 

incoming traffic is slow, then there is a long waiting period. On the other hand, FP- 

Stream [Giannella et al.2003] waits 15 minutes regardless to form a batch. Now, if the 

environment is a heavy stream environment (say Google, Amazone.com), then every 15 

minutes wait will accumulate millions of data and the mining algorithm has a risk to fall 

behind with the speed of incoming data stream.

Mining Algorithm or SSM-algorithm uses three data structures: D_list, PLWAP-tree 

and FSP-tree. It scans each batch to find frequent items. The frequent items are stored in 

d_list structure, PLWAP-tree is constructed by taking frequent subsequences from the 

batch, PLWAP-algorithm is used to mine frequent sequential patterns and the sequential 

patterns are stored into FSP-tree incrementally. This is an ongoing process. When the 

next batch arrives, we extract frequent items from the batch and update frequencies in 

d_list if they are already in d_list. Otherwise, we insert them as new elements. Perform 

PLWAP-mining by extracting frequent subsequences from the current batch. If the
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obtained frequent patterns are already in FSP-tree, we update the frequencies in the tree. 

Otherwise, we insert them into tree as new patterns.

D Jist is a data structure that keeps each items’ ID and their frequency. We store items’ 

ID and their frequency into this structure. A hash chained based indexing is implemented 

to update this structure. A detailed explanation is given about this indexing below in 

construction of d_list paragraph in section 3.4. Hash based indexing is used in d_list to 

speed up the search process.

PLWAP-tree or Pre-ordered Linked WAP-tree was introduced by Ezeife and Lu in 

[Ezeife & Lu2005][Lu & Ezeife2003]. The basic idea behind of PLWAP tree algorithm is 

to add pre-ordered linkage on a WAP-tree [Pei et al.2000]. In that way, the several 

intermediate WAP-tree reconstruction can be avoided that reduces storage as well as I/O 

computation time.

FSP-tree: Frequent Sequential Pattem-tree or FSP-tree is a simple form of Pattem-tree 

[Giannella et al.2003]. A detailed explanation is given about FSP-tree in section 3.4. 

Pattem-tree [Giannella et al.2003] is a part of FP-Stream [Giannella et al.2003] structure 

and we discussed earlier about this tree in section 2.10.

3.4 Discussion of SSM-Algorithm
In our example, we use the following symbols:

I = items

f = frequency (occurrences of a items)

Is = itemsets (a set of items)

Ci = candidate 1-sequence (length of the sequence is 1 of items before pmning).

Li = large 1-sequences (the length of the sequence is 1 of items after pmning).

Required input:

(1) Minimum support threshold (s) where (0<s<l).

(2) Maximum support error threshold (e) where (0<e<s). The value of “e” gives us 

flexibility to have an error tolerance in our result up to that level. As stream mining 

algorithm moves forward with incoming stream and does not have flexibility to go
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backward and scan previous data stream because of that it does not guarantee 100% 

accurate result. Therefore, a certain level of error is tolerable in the result. However, this 

tolerance varies from application to application. When the support error (e) is very small 

compared to minimum support (s) threshold, then the result will have very minimal 

errors. There is a rule of thumb from [Manku & Motwani2002] for “e” of one tenth of 

the value of “s”. For our example, we have set s =.75 (75%) and e = .25 (25%) in order 

to show less calculations and make it easy for the readers to follow our example. For our 

experimental analysis, we followed the rule of thumb.

Required variables

(1) Maximum number of CAS or max_CAS, (2) Minimum number of CAS or min_CAS,

(3 )  An incoming batch Bj. The batches arrive one after another. Our method, groups 

transactions and form a batch and send the batch to be mined to the next level.

Output: (1) FSP-tree. This structure stores all of the sequential frequent patterns.

Method

i) Form the first batch B] (Figure 3.4-1) from the buffer where |Bi| = 4.

ii) Scan Bi and generate CiB1={a:4, b:4, c:3, d :l, e :l, f:2, g: 1}.

iii) Construct data structure d_list and insert Q B1 into d_list without pruning any items 

(elements) for the first batch (Figure 3.4-2). The construction and insertion method of 

d_list is described below.

Construction of d_list: Build a hash table (hash array) with a number of buckets. In our 

case, we decided to have 100 buckets so that hash array size would be 100. They are 

labeled 0 to 99 by default. Initialize each bucket that points to null value. We already 

found CiB1={a:4, b:4, c:3, d: 1, e :l, f:2, g:l}from  batch Bj. We take first element (a:4) 

from C ,B1 where “a” is the item ID and “4” is the frequency and pass item’s ID to the 

hash function.

Create hash function: We create a function that takes an 

integer value and returns an integer. For instance, in this case, 

we pass item’s SKU to a hash function that returns SKU 

mod hash array size. SKU number is a unique number for 

an item. SKU numbering is used in retail or e-commerce for

Table 3.4-1 : Items SKU value
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Item lD SKU
a 2
b too
c 0
d 202
e 10
f 110
g 99
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items to identify them. As a matter of fact, item “a” has a unique SKU number. Item “a” 

is the name of an item but we find its SKU from Table 3.4-1. We pass integer 2 (SKU of 

“a”) to the hash function. It returns SKU % hash table size = 2 % 100 = 2.

Insertion into d jist:  returned value 2 from hash function is matching with third array 

element of the hash table (Figure 3.4-2). We insert a node that is labeled “a” and its 

frequency “4” into the third array’s chain. We create a linkage that points to the new 

node from the third array of hash table and the new node points to the null value (Figure 

3.4-2). We take next element (b:4) and pass the item’s SKU that is 100 (from Table 3.4-

1) to the hash function. It calculates as 100 % 100 = 0 and returns 0 that matches with the 

first bucket of hash table. We place a node that has label “b” and frequency ‘4” into that

CAS FS

a b d a c a b a c

a b c a c a b c a c

b a b  f  a e b a b  f a

a f b a c f c g a f b a c f c

Figure 3 .4-1: Bj (first batch)

hash table

null

null

null

null

Figure 3.4- 2: d_list

bucket chain (the chain grows longer when more nodes arrive in the same bucket). We 

create a linkage for bucket 0 or first bucket that points to this new node and new node 

points to null value. Now, we take next element (c:3) from CiB1 and pass its SKU to the 

hash function. Hash returned value (0 % 100 = 0) matched with bucket 0 because its SKU 

is 0 (from Table 3.4-1). Now, the new node that has label c and frequency 3 get placed 

into bucket 0. We modify linkage, bucket 0 points to this new node and new node points 

to node that was pointed to by bucket 0 before. Similarly, we pass the SKU of item “d” to 

the hash function. Hash function returns value 2 by calculating its SKU value. There is 

another node “a” and its frequency 4 is already in this chain. We place new node “d” with

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



frequency 1 before node “a”(Figure 3.4-2). In other words, we modify the linkage just the 

way we have done before for element “b”, bucket 2 points to the new node and new node 

points to node that was pointed to by bucket 2 before. Similarly, next elements “e” and
D 1

“f  ’ goes to bucket 10 and element “g” goes to bucket 99 from Ci .

Once d_list is constructed, the performance of insertion, update and delete of 

nodes becomes faster through this hash chain structure. D_list guarantees to limit the 

search nodes by number of items divided by number of buckets when there are update 

requires. For example, if we have 100 buckets and 1000 distinctive items, d_list restricts 

the search within 10 nodes (number of items / size = 1000 / 100). For the worst case, it 

would search 10 nodes to find the appropriate node and for the best case, it search only 

one node.

Root

110
101

1101
1110

1011

11101 11011
1 01 11

111011 110111
101111

1101111

Figure 3.4- 3: PLWAP-Tree for B,
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We have constructed d_list and inserted all elements into d_list from CiBI into d_list that 

was found from first batch Bj. Now, we need to find large 1-sequences from d_list in
B1order to find frequent sequential patterns. Note, we do not need Ci anymore because we

B1will be updating d_list from now on. So, we drop Ci .

iv) We scan d_list select items as Large 1-sequences or L |B1 from d_list if f > num_CAS 

* (s-e) = 4 * (.75 - .25) = 4 * .50 = 2. Here, num_CAS is number of customer access
D 1

sequence and that is 4 because we had 4 transactions in batch Bi. We find Li = {a:4, 

b:4, c:3, f:2}.

Note: this large 1-sequence can be selected during the insertion process of elements into 

d_list rather than selecting after inserting all elements into d_list. We recommend to 

perform Li selection process during the insertion process of d_list because it saves a scan.

v) Scan each row of Bi (CAS) and delete the items that are not in L iBI to generate 

frequent subsequence or FS in Figure 3.4-1, FS column.

vi) Select each FS from Figure 3.4-1 and construct a PLWAP-tree [Ezeife & Lu2005][Lu 

& Ezeife2003] (Figure 3.4-3). The construction of PLWAP-tree and mining algorithm of 

PLWAP-tree is described in [Ezeife & Lu2005][Lu & Ezeife2003] and in section 2.7 of 

this thesis.

Construction of PLWAP-tree for Bi: We create root of the tree with null value. Insert 

fiirst frequent subsequence ( a b a c )  into the tree. We take first element “a” from the 

subsequences and label it “a” node and place it under the root node. It becomes child 

node of Root node. We enter value 1 and acquire position 1. Similarly, next element “b” 

from the subsequences becomes “b” node that has frequency 1 and position code 11 goes 

right under node “a” as its child. We insert rest of the sequences (a c) in a similar fashion. 

We move on to the next sub sequences (a b c a c) and insert them into the tree. If a new 

node matches with an existing node in the tree, we increment its frequency, otherwise we 

create a new branch from that point and enter rest of the elements under that branch. By 

entering all of the frequent subsequences from batch Bi, we construct PLWAP-tree
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(Figure 3.4-3). Once the construction of PLWAP is completed, a pre-order traversal 

mechanism is used to add a pre-order linkage on the tree.

vii) Mine PLWAP-tree to generate frequent sequences using PLWAP-mining algorithm 

[Ezeife & Lu2005] [Lu & Ezeife2003] and also discussed in section 2.7 of thesis.

Mining PLWAP-tree: The mining method recursively mines frequent sequential 

patterns from the tree. We recursively generate frequent sequential patterns for batch BI 

(or FPB1). ALL of our frequent sequential pattern or FPB1 have frequency f > (s-e) * |Bi|= 

.50 * 4 = 2. We find FPB1 = [a:4, aa:4, aac:3, ab:4, aba:4, abac: 3, abc: 3, ac: 3, acc:2, af: 

2, afa: 2, b: 4, ba: 4, bac: 3, be: 3, c: 3, cc: 2, f: 2, fa: 2}.

FSP-tree: Once the frequent patterns are found for a particular batch say Bi, then the 

next task would be to store these patterns in a structure that could be retrieved easily 

future use because this is an ongoing process and more batches are coming one after 

another. Next batch B2  will be mined and obtained patterns will contain some new 

patterns and old patterns as well. We meant new patterns that are completely new, we did 

not obtain this kind of patterns from previous batch or batches. Old patterns means, these 

patterns are found already. In that situation, we need to update the frequency of old 

patterns and insert new patterns into the structure. Similarly, batch B3 ...B n will be 

handled. At one point, some patterns will become small because the frequency of 

incoming patterns varies from batch to batch. Therefore, we need to delete small patterns 

from the structure in order to keep the structure compact, updated and able to deliver 

updated result.

We proposed to construct a tree named FSP-tree that will store only frequent sequential 

patterns to handle above issue. Please note here, we are using PLWAP-Algorithm to mine 

batch one after another and every time we are initialing PLWAP-tree empty once we find 

the patterns from a particular batch. Our FSP-tree stores obtained patterns batch after 

batch and update its structure accordingly. FSP-tree is basically result structure and we 

use FSP-tree to deliver result on demand. (Please note here in case reader is interested,

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



PLWAP-tree can be updated after every batch rather than reconstructing like FSP-tree to 

save construction time. But this is not definite that it would work in stream environment 

because this PLWAP-tree update process would require to keep all small items’ 

information and their possible position in the tree and we usually do not follow this 

mechanism in stream environment. However, the solution of updating PLWAP-tree in 

data stream could be a future work in this direction.)

As was already mentioned, frequent sequential pattem-tree or FSP-tree is a simple form 

of Pattem-tree [Giannella et al.2003]. Pattem-tree [Giannella et al.2003] is a part of FP- 

Stream [Giannella et al.2003] structure. [Giannella et al.2003] uses Pattem-tree to store 

frequent Patterns of incoming batches (a complete discussion is done of Pattem-tree in 

section 2.10). However, pattem-tree and FSP-tree differ from each other in many ways. 

The major differences in between Pattem-tree and FSP-tree are:

1) A tilted time window table is embedded into Pattem-tree. It is possible to perform time 

sensitive queries on Pattem-tree because of this tilted time window. As we are not 

interested in time sensitive queries, therefore, FSP-tree does not maintain any tilted time 

window tables.

2) Pattem-tree stores and maintains frequent patterns. FSP-tree stores and maintains 

frequent sequential patterns.

3) FSP-tree maintains a footer list unlike Pattem-tree. This footer list has linkage to each 

leaf node of the tree. We use this list for the maintenance purposes because our algorithm 

starts searching the tree from the leaf node to the root in order to save searches. However, 

for inserting new nodes or updating frequencies of existing nodes in the tree, our 

algorithm reads from the root of the tree to the leaf. This gives flexibilities to access the 

tree from the root or from the leaf. We find it is very efficient. It saves additional scans 

on the tree for maintenance purposes. As per tree construction, the lower frequency nodes 

reside at the bottom of the tree. We can get rid of the unwanted nodes easily from the 

lower part of the tree if we read the tree from the bottom to top. At the same time, it is
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quicker if we insert new nodes or read the tree from top to bottom to find supported 

nodes or patterns for result.

Now, let’s continue our example. We obtained frequent patterns from batch Bi using 

PLWAP-Algorithm [Ezeife & Lu2005] and the patterns are FP31 = [a:4, aa:4, aac:3, ab:4, 

aba:4, abac: 3, abc: 3, ac: 3, acc:2, af: 2, afa: 2, b: 4, ba: 4, bac: 3, be: 3, c: 3, cc: 2, f: 2, 

fa: 2).  Now, we need to construct FSP-tree and insert the patterns into the tree. We have 

explained above why do we need FSP-tree earlier and what are the major differences in 

between Pattem-tree and FSP-tree.

viii) Construct FSP-tree and insert all FP31 into FSP-tree without pruning any items for 

the first batch Bi. Please note, we are still handling batch Bi.

Construction of FSP-tree: The construction of FSP-tree is similar to Pattem-tree that 

was introduced in [Giannella et al.2003]. First create the root node of this tree and make

Root

a:4 c:3

b:4

c:3a:4
b:4

c:2a:4

c:3

Figure 3.4- 4: Frequent Sequential Pattern- tree
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B 1all values to NULL value. Then insert frequent patterns FP = {a:4, aa:4, aac:3, ab:4, 

aba:4, abac: 3, abc: 3, ac: 3, acc:2, af: 2, afa: 2, b: 4, ba: 4, bac: 3, be: 3, c: 3, cc: 2, f: 2, 

fa: 2} into the FSP-tree one by one. Insertion starts with the first pattern of FPB1 (a:4). 

Create a node, label it “a” and its frequency is 4. We insert node “a” with frequency 4 

under root as the left child of it. Next pattern (aa:4), we insert into the tree as flows: 

pattern (aa:4) has two elements or sequences. First element “a” of pattern (aa:4) is 

matching with existing left child of root node “a”. Therefore, we stay within the same 

branch. Now, second element “a” of pattern (aa:4) does not match with any existing 

node. Therefore, we create a new node labeled as “a” with frequency 4 and insert it as a 

left child of node “a” with frequency 4 (root’s left most child). In other words, we extend 

the same branch of the tree (Figure 3.4-4). Please note here, pattern (aa:4) has two 

elements. If a pattern has more than one element, in that case, we enter frequency of that 

particular pattern into the last element’s node.

Similarly, the first element “a” of pattern (aac:3) is matching with the left child of 

root node “a” with frequency 4, we follow the same branch. Next element also “a” is 

matching with existing node “a” with frequency 4 as well into the tree, so, we follow the 

same branch. Now, the last element “c” of pattern (aac:3) does not match with any nodes. 

We create a new node, label it “c” and enter frequency 3 into it because it is the last 

element of the pattern (aac:3). Insert this new node as a child of node “a” with frequency 

4 in the tree (Figure 3.4-4).

When we try to enter next pattern (ab:4) into the tree, the first element “a” of 

(“ab”) is matching with left child of root node “a” with frequency 4, therefore, we follow 

the same branch. But the second or last element “b” of (ab:4) does not match with any 

nodes. We create a new branch from that point, create a new node, label it “b” and enter 

frequency 4. Insert this new node into the tree as right child of (a:4) node.

After entering pattern (aba:4, abac: 3, abc: 3, ac: 3, acc:2, af: 2, afa) into the tree 

in similar fashion, when we try to enter pattern (b:4) into the tree, the only first element 

of this pattern does not match with any existing children of the root. In that case, we 

create a new branch under root and make it as next right child of the root and keep 

extending that branch as long as we receive compatible elements. We insert rest of the
B1patterns from FP into the tree and complete construction process.
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FSP-tree maintains a footer list (Figure 3.4- 4). We named it footer list because it 

has linkage to each leaf node of the tree. Footer list is a linked list that grows with the 

leaves of the tree. Our FSP-tree maintains this list in order to read the tree from the leaf 

instead of root for maintenance purpose of the tree. We discuss more about this 

maintenance process in section 3.5.

Once the construction, insertion, and linkage are done on FSP-tree for a particular 

batch, in our case Bi, then we move on to update procedure. In update procedure, we 

constantly update d_list and FSP-tree with incoming batches.

Update method: Assume next batch B2  arrived. We treat first batch differently than 

other batches because we do not perform any delete operations for the first batch.

CAS FS
a b  a c  g a b  a c g
a b a g a b  a g
b a b  a g b a b a g
a b  a g h a b a g

Figure 3.4- 5: Next batch B2 formed

i) We form the second batch B2  (Figure 3.4-5) by taking x number of records from buffer 

where min_CAS < x < max_CAS. Say IB2 I = 4. //say min_CAS=4 and max_CAS=1000

ii) Scan B2  and generate CjB2 = {a:4, b:4, c :l, g:4} from B2 . It is obvious that d_list will 

grow bigger with incoming batches when we will have thousands of items. We take the 

advantages of hash based indexing to update d_list.

Update d_Iist: The update method is simple. When a new node arrives, the hash function 

places it into appropriate bucket. The method checks the linkage for that bucket chain. If 

it finds another node has same label, it increments the frequency of that node in d_list. If 

there are no identical nodes existing in that chain, the new node gets placed right at the 

beginning position of the chain.

Read d_list: When we need to know a particular items’ frequency in the d_list, we pass 

the item ID to the hash function, it finds appropriate bucket for that item. Once the bucket
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is found, the process checks the linkage from that bucket and finds right node and returns 

its frequency.

Delete nodes in d_list: The delete process of nodes in d_list is similar to read method. 

The delete process deletes the node when it is found. On the other hand, read process 

reads the node when it is found.

Now, we have Ci32 = {a:4, b:4, c :l, g:4} and we want to update d_list. We check
R9each element in Ci sequentially and update corresponding elements in d_list. For 

example, first element a:4 in C]32 gets incremented in d_list to a: 8 because we found an 

element a:4 is existing in d_list. After incrementing its frequency or count, if the current 

frequency of the updated item is f  > num_CAS * (s-e) = 8 * (.75 - .25) = 8 * .50 = 4, we 

select that item as Li32. Thus, we select (a:8) as Li32. Similarly, we check next element 

in Ci32 (b:4), we increment its frequency to (b:8) and select it as L i32. We find (c:4) and 

(g:5) are in L]32 as well from Ci32 and Lj32 = {a:8, b:8, c:4, g:5}. However, if frequency 

of updated element in d_list is f  < num_CAS * e = 8 * .25 = 2, we delete that item from 

d_list. We did not have to delete any items because all of our updated elements have 

frequency more than num_CAS * e = 8 * .25 = 2. Here, num_CAS is the total number of 

transactions up to current batch. Bi had 4 transactions and B2  has 4 transactions. So, 

num_CAS = 4 + 4 = 8.

If any items in Q 32 do not match with the elements in d_list, we check frequency 

of that item or items. If the frequency of that items is f  > num_CAS * (s-e) = 8 * (.75 - 

.25) = 8 * .50 = 4 (say, for batch B2 ), we select that item as Lj32 and insert that element in 

the d_list. If the frequency of this item is f < num_CAS * (s-e) = 8 * (.75 - .25) = 8 * .50 

= 4 and f > num_CAS * e > 8 * .25 = 2, we insert that element in the d_list but do not
B2 r2include as Li . Otherwise, delete that item from Ci .

B2
iii) It is also need to check the status of previous large items that did not appear in Ci . 

We use our formula { —i(Li3(i1) f | Ci31)} D Li3(l l) = {f:2} to find out previous large (LiPl) 

items that did not appear in current candidate 1-sequences.
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Example of the Correctness of the Formula:

We previously found L]B1 = {a:4, b:4, c:3, f:2} for Bj

We found candidate 1-sequences for current batch B 2  or C |B2= {a:4, b:4, c:l, g:4}

For i = 2 to n (Current batch = Bj where i = 2 now, or current batch = B2 .

Thus, previous batch = B n  = Bi).

First part of the formula: NOT INTERSECTS elements in between large 1-sequences for
d / :  i \  —. g j

previous batch and candidate 1-seqeunces for current batch = { NOT (Li f 1C 1 )}=

{ -.(L !81 n C ! B2)}= { -.({a:4, b:4, c:3, f:2} f) {a:4, b:4, c :l, g:4})}={f:2,g:4}.

Second part of the formula: Result of first part that intersects with large 1-sequences for 

previous batch = {f:2,g:4} f ) U mA) = {f:2,g:4} n L ^ 1 = {f:2,g:4} fl {a:4, b:4, c:3, f:2}= 

f:2 = LiPi

Justification of formula:
P B2Element “f ’ (Li ) did not appear in current candidate 1-sequences (Cj ). Elowever,

R7element “f ’ was large previously. Even though, “f” is not in Ci but we still need to 

check its frequency to find whether it is still large. What would happen suppose the
B2frequency of “f” is 4 for Bi. In this case, we would not find “f” in Li without using our 

formula. Thus, mining result would not be accurate.

We found L ousing our formula, now we need to find where LiP belongs. If frequency of 

LiP f > num_CAS * (s-e) = 8 * (.75 - .25) = 8 * .50 = 4, then, it is large items for current 

batch. If frequency of LiP f > num_CAS * e= 8 * .25 = 2, it remain in d_list but we do 

not include it as L jB2. If frequency of LiP f < num_CAS * e = 8 * .25 = 2, we delete it. In
B2our case, element “f  ’ remain in d_list but do not get included in Li . At the end, we find 

Li82 = {a:8, b:8, c:4, g:5}. Once the update process is completed of d_list for the second
B1batch, we drop L] .

B2
iv) We scan each row of B2  (CAS) and delete the items that are not in Li to generate 

frequent subsequence or FS in Figure 3.4-5, FS column.

v) We construct PLWAP-tree and apply PLWAP-algorithm [Ezeife & Lu2005] to 

generate itemsets that have frequency f > (s-e) * size of a batch = (s-e) * |B2|=.50 * 4  = 2.
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r * 9

We find frequent sequential pattern or FP = {a:4, aa:4, aag:4, ab:4, aba:4, abag:4, abg:4, 

ag:4, b:4, ba:4, bag:4, g:4}. We delete B2 , initialize PLWAP-tree to empty.

vi) Insert frequent FP3 2  into FSP-tree, if the itemsets are already in FSP-tree, we
do _

increment their frequency. If the items are not in FSP-tree but in FP and frequency f >= 

num_CAS * e = 8  * .25 = 2, we insert as new elements in the tree. Otherwise, we delete 

them from FPB2.

CAS FS
a b c g a b g
a e g d a g
a b f a g a b a g
a f e g a g

Figure 3.4- 6: Batch B3

Figure 3.4- 7: updated partial frequent sequential pattern -tree  (FSP-tree)

Similarly, we form next batch B3 (Figure 3.4-6) and follow all of the steps as we have 

performed for batch B2 . We find FPB 3  = { a:4, ag:4, ab:2, abg:2, b:2, bg:2, g:4} from 

batch B3 using PLWAP-Algorithm. Now, we need to insert them in FSP-tree. We insert
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FP8 3  into FSP-tree, increment the frequencies of itemsets in FSP-tree if they are in FP83.
DO

If the items are in FP but not in FSP-tree, we insert as new elements in FSP-tree if the 

frequency of items f > num_CAS* e = 12*.25 = 3. Otherwise, we delete the items in 

FP83. This result structure or FSP-tree basically maintains updated result (Figure 3.4-7).

vii) So far, we have taken care of batch Bj, B2  and B 3 and updated d_list and FSP-tree 

accordingly. Suppose our user wants to view the result. In that case, we find itemsets 

from FSP-tree that have frequency f > (s -e) * num_CAS = .5 * 12 = 6 . We recursively 

find FP = {a: 12, aa:8 , ab:10, aba:8, abg:7, ag:9, b:10, ba:8 , bg:7, g:9}from FSP-tree 

using FSP-Mining algorithm.

FSP-Mining algorithm: Suppose we are mining FSP-tree in Figure 3.4-7. The mining 

algorithm starts mining from root node of the tree recursively. Move to the left most child 

of the root first. It finds node “a” and its frequency is 12 that is more than 6 , so, the 

algorithm selects it as FP. Next it goes down to its left child. The left child is “a” with 

frequency 8 . Select (aa:8 ) as FP because its frequency is more than 6 . Now, node (a:8 ) is 

a leaf node. So, the process goes back to its parent to check its sibling. Parent (a: 12) has 

next right child to be mined. The process visit next right child of node (a: 12). Find 

(b:10), so, it selects (ab:10) as FP. The process goes one level down to its left child (a:8 ) 

and select (aba:8 ) as FP. Now, node (a: 8 ) is a leaf node. Therefore, the mining process 

goes back to its parent node (b:10) and find its right child to be mine. The process visit its 

right child and find pattern (abg:7). Similarly, it finds rest of the pattern (ag:9, b:10, ba:8 , 

bg:7, g:9) recursively.

Property 1: The parent nodes always have frequency more than or equal to its children 

in FSP-tree. Therefore, if parent node does not have minimum support, its children are 

ignored during mining process. While the mining algorithm searching frequent pattern or 

FP in FSP-tree from root to down to leaf node for a particular branch during the journey, 

if it finds any node that does not have minimum support, it does not go further down. It 

cuts the suffix sequence of the branch from that point. We name it Suffix Pmning I.
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For example, we are mining a branch of a FSP-tree (Figure 3.4-8) where minimum 

support is set to 6 . We start with root and visit its 

left child node “a” with frequency 8 . We select (a:8 ) 

as FP. Now, the process moves one level down, it find 

node “d” and its frequency 4. Node “d” does not 

have minimum support. Therefore, it does not select 

(ad:4) pattern as FP rather it drops the mining process 

for that particular branch based on property 1 .

3.5 Maintenance of FSP-tree
We use the footer list of FSP-tree for deleting nodes or maintaining the structure of the 

tree. In order to delete a node or nodes that do not have minimum support or a defined 

threshold, we read from the leaf of the tree (footer list has linkage to the leaf nodes) and 

keep going up toward the root. The reason we want to delete from the bottom to the top 

because as per our design construction of FSP-tree, the lower nodes of the tree usually 

have lower supports. For this reason, our delete operation will be quicker and we do not 

need to visit the entire structure. Once it deletes a node, it moves to the next level up and 

checks its frequency. After several search operations or an operation when the algorithm 

finds a node that has minimum support (or required support), it stops searching that 

branch, comes back to the next element of the footer list and continues deleting the nodes 

that was pointed from the next element of the list.

Property 2: The children nodes always have lower or equal frequency than its parent in 

FSP-tree. Therefore, if children have minimum support, there is no need to check its 

parent’s frequency. Property 2 is the vice versa of property 1.

While the algorithm is moving from the leaf to the root of the tree, it checks the 

frequency of each node during the journey. If it finds any node has minimum support, it 

would not move forward to check its parent’s support. As per our tree construction, the 

children node always have lower or equal frequency to its parent and parent nodes always 

have frequency higher or equal to its children. We named it Suffix Pruning II.
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For example, we are performing delete operation in order to keep the size of the 

tree small during the maintenance process. Here, predefined minimum support is set to 6 . 

We use footer list for this purpose (Figure 3.4-8). We start with the leaf node of the tree 

that was pointed from the first element of the list. Suppose, we node “1” from the list and 

it has frequency 2 which is less than minimum support. So, we delete this node and move 

up. In Figure 3.4-8, we find node “k” has frequency 8 . As we know from property 2 that 

its parent, parent’s parent up to root will have equal frequency or higher (not lower) than 

the frequency of “k”. So, the algorithm does not check the branch above node “k”. 

Instead, it comes back to the footer list and start deleting next node if it is pointed from 

the next element of the list.

Maintenance Method:

i) Perform suffix pruning II in FSP-tree after a boundary. Boundary is a variable and we 

can set this to 10000 transactions for our experiment. In other words, we perform suffix 

prune II in FSP-tree after taking care of 10000 transactions in order to reduce the size of 

the structure. The footer list has linkage to all leaf nodes to the FSP-tree. We prune those 

elements that do not have support f  < num_CAS* e. Above we discussed with an 

example about Suffix Prunning II in Property 2 (section 3.5 of thesis).

ii) Perform a Sequential Pmning on d_list once we are done with suffix pruning II at the 

boundary. Sequential pmning is the process that checks the frequency of each element in 

d_list sequentially. If the frequency of elements f < num_CAS* e, we delete them from 

d_list.

Now, if we take Bi, B2 , and B3  as one piece and mine to generate frequent sequential 

pattern with support s (.75), using PLWAP-algorithm, we find FP' = { a: 12, aa:9, ab:10, 

ag:9, b:10, ba:9, g:9}. We assume that FP' is 100% accurate because this mining process 

is already proven its accuracy by the authors.

Claiml: If we compare itemsets in between FP (frequent sequentially patterns generated 

by SSM-Algorithm incrementally from FSP-tree) and FP' (sequential pattern generated
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by PLWAP-Algorithm), we find that FP has all itemsets that FP' have, in addition FP has 

some additional itemsets (aba:8, abg:7, bg;7) that FP' does not have. We can refer them 

as false positive itemsets. As per result, we can claim that FP' is a subset of FP. Thus, we 

claim that our result (FP) contains all itemsets that have support s.

Claim 2: It is true that we have some false positive itemsets with our result because we 

had to lower our support threshold from s (.75) to (s-e=.75-.25=.50) during the mining 

process as we do not keep any records for small items from the beginning. Now if we 

deduct the maximum support error from user defined support, the acceptable result is 

50%. If we calculate required support (or acceptable support) after error tolerance in 12 

transactions is (s-e=.75-.25=50% or (.5 * 12 = 6). That means an item has to occur 6 

times in 12 transactions in order to be accepted as large itemset if we utilize error 

tolerance threshold. We do not have any itemsets in our result that occurred less than 6 

times. Therefore, we can claim that our result does not cross the maximum error support 

threshold or error tolerance boundary.
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Algorithm 0: Main Algorithm
Input: (1) Minimum support threshold (s) where 0<s<l, (2) Maximum support error
threshold (e) where 0<e<s
Output: 1) Frequent sequential patterns
Begin
Temp variables boolean exit = true, boundary;
1. Create_Batch(CAS) //Batch create method
1.1 Scan B; and generate candidate 1-sequences or C)Bl // C\ generation
2. Create D_list[Size] // Hash index based structure creation
3. Generate_Frequent_Pattem(FS) // FP generation
4. Construct_FSP_tree (FP) // construct method for FSP-tree
5. Update_FSP_tree(P) // Update method for FSP-tree

While (exit){ // exit when user wants
6. Continuous_Update(CAS) // continuous update of FSP-tree
7. If user wants to view result, then Result(Size) //result on demand
8 If i ==boundary, then Maintain_Structures() // run maintain method at boundary
9 If user wants to exit, exit = false;

}
End__________________________________________________________________________

Algorithm 1: Batch Creation Program 
Create_Batch (CAS)
Input: (1) Customer Access Sequences (CAS), Incoming data stream into Buffer 
Output: A Batch
// Static Variables: min_CAS, max_CAS;
Begin 
For 1 to m
Create a Batch B; by taking number of records from Buffer 
where |B;| > min_CAS && |Bi| < max_CAS)
End

Algorithm 2: Create d_list, a hash chain based data structure 
d_list[size]
Input: (1) Size
Output: 1) LiBl
l/Temp Variable LiBl = 0;
Begin
1 Create d_list [size] (a hash array) with buckets initialize to Null.
For i to q
Insert (M)
2 For each item (M) in Q B1
2.1 Find hash bucket in d_list [size] using hash function (fn) r = M % size, then 

insert into appropriate bucket
R  I R 12.2 If element of bucket d_list [r] has count > num_CAS * (s-e), then L] = Lj U M 

End
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Algorithm 3: Generate Frequent Sequential Pattern 
Generate_F requent_Pattern(FS)
Input: (1) Frequent Subsequences (FS), incoming batch Bi
Output: 1) Frequent Sequential Pattern
Begin
1. Scan each row of B;, delete items that are not in LiBl to generate FS
2 Select each FS and construct a PLWAP-tree [Ezeife & Lu2005 ] (in section 2.7 of thesis).
2.1 Apply PLWAP-algorithm [Ezeife & Lu2005] (section 2.7of thesis) to generate (FPBl) 
for B i where each FPBl > (s-e) * |Bi|
3 Initialize PLWAP-tree to empty and delete B;
End

Algorithm 4: Construct FSP-tree (FPB1)
Construct_FSP_tree (FP61)

p  t
Input: 1) Frequent patterns or FP
Output: 1) Frequent Sequential Pattern -tree (FSP-tree) T
// Construct method of FSP-tree
Begin
1 Create a root node of tree T and set all value to NULL, make root as current_node
2 For each pattern p in FPB1 do
2.1 Create a node by taking 1st element of p as a child of root, then 

make new node as current_node
2.2 If length of p > 1

keep extending current branch until comes to the last element of p.
2.3 Enter count of the pattern at the last element of p, then 

make it current_node.
2.4 Else
2.5 Enter count and make it current_node 
End

Algorithm 5: Update FSP-tree (P)
Update_FSP_tree(P)
Input: 1) Frequent patterns or FPBl
Output: 1) Frequent Sequential Pattern -tree (FSP-tree) T
Begin
//Update method of FSP-tree
3 If child of current_node == first element of p, then node Found ()
3.1 If node Found()
3.2 Keep following and matching current branch with pattern p
3.3 Add count at the last element of p, make it current_node
3.3.1 If pattern does not match with current branch, then

create a new branch from that point, extend current branch until last element of p
3.3.2 Enter count at the last element of p, make it current_node
3.4 Else if node NOT Found()
3.4.1 Create a new branch under root,
// continue algorithm 5

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.4.1.1 Keep extending current branch until comes to the last element of p
3.4.1.2 Enter count at the last element of p, make it current_node.
4 Maintain a footer list that points to each leaf_node of T
End

Algorithm 6: Update FSP-tree for incoming batches 
Continuous_Update(CAS)
Input: Customer Access Sequences (CAS)
Output: (1) Update FSP-tree structure
Begin
For 2 to r
1 Create_Batch (CAS)
2 Compute candidate list CiBl from batch B;
3 For each item M in C iBl do
3.1 Find hash bucket in d_list [size] using hash fn r = M % size, 

increment appropriate element in d_list[r] if M found
3.1.1 If the appropriate element of bucket d_list[r] containing M has count > num_CAS * 
(s-e), then Li = LjBi U M //initially LjBi = 0
3.1.2 If M has count < num_CAS * e, delete that element in d_list[r]
3.2 Else If M not found in appropriate bucket in d_jist[r]
3.2.1 If count of M > num_CAS * (s-e), then L]Bl = LiBl U M, insert M in d_list [r]
3.2.2 Else if count of M < num_CAS * (s-e) && f > num_CAS * e, insert M in d_list [r]
4 Find previous large items Lipi using formula {—i (LiBl_1 ft C iBl) f | L]31' 1}
4.1 If count of Lip > num_CAS * (s-e), then Li3' = L iBl U Lip
4.2 Else if count of Lip < num_CAS * e, delete Lip in d_list[r]
5 drop L iBM
6. Scan each row of B, (CAS) and generate FS.
7. Select each FS, construct a PLWAP-tree [Ezeife & Lu2005] with FS, then 

generate (FPBl) with count > (s-e) * N  for Bj // | Bj| = size of current batch
8. Initialize PLWAP-tree to empty, delete Bj.
//Insert frequent sequential patterns or FPBl into FSP-tree
9. Update_FSP_tree(P) ( Algorithm 5 of this thesis)

Algorithm 7: Result 
Result()
Input: Use previously defined input (1) support s (0<s<l) (2) error e (0<e<s)
Output: 1) Result from FSP-tree
//Mine FSP-tree using count > (s -e ) * num_CAS
// Temp variable num_CAS = total number of customer access sequences
Begin
While (Parent NOT Found()) {
1 Visit left child of root node, make current_node = child_node
1.1 If count of current_node > (s -e ) * num_CAS, then 
// continue algorithm 7
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1.2 save pattern from root to current_node
1.3 Visit left child of current_node, make current_node = child_node,

Repeat process from 1.1 until 2.1 is true
2.1 Else if current_node == leaf_node or count of current_node < (s -e) * num_CAS
2.2 Move up to its parent

If Parent Found(), make current_node = parent_node
2.3 Check current_node has any siblings
2.3.1 If sibling Found ()
2.3.2 Visit the sibling, make current_node = sibling_node 
// continued algorithm 5
2.3.3 Repeat from 1.1 until 2.1 is true
2.3.5 Else if sibling NOT Found ()
2.3.5 Repeat from 2.2 to until end of the loop.}
End

Algorithm 8: Maintain FSP-tree and d_list structure 
Maintain_Structures (Size)
Input: Size
Output: updated d_list and FSP-tree T 
Begin
// Perform Suffix Pruning II on FSP-tree at boundary 
//Footer_list() is a list that maintains linkage to each leaf_node of T 
I N ariable h points to the head of Footer_List()
While (h != Null) {
1 Find leaf_node using h of T, then current_node = leaf_node
1.1 If count of current_node < num_CAS* e, then

delete current_node, move up to its parent, make current_node = parent_node, 
continue until 1.2 is true

1.2 If count of current_node > num_CAS* e or current_node == root of T
Then h = h.next

1.3 Find next leaf_node using h of T, make current_node = leaf_node}

//Sequential Pruning 
//Temp variable y = 0;
While (!d_list[size]){
1 Find start_node from d_list [y], make current_node = start_node 
While (current_node != Null) {
1.1 if count of current_node < num_CAS* e, then
1.2 delete current_node, make current_node = current_node.next
1.3 Else
1.5 make current_node = current_node.next} y = y +1;}
End
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4 Experimental Evaluation and Performance Analysis

4.1 FP-Stream VS SSM-Algorithm

The concept of SSM-Algorithm came from FP-Stream [Giannella et al.2003]. The 

differences of FP-Stream and SSM-Algorithm are as follows:

1) FP-Stream mines frequent patterns. Time sensitive queries can be performed using FP- 

Stream. On the other hand, SSM-Algorithm is used for finding frequent sequential 

patterns. FP-Stream uses FP-tree [Han et al.2004] to mine frequent patterns. SSM- 

Algorithm uses PLWAP-tree [Ezeife & Lu2005] to mine frequent sequential patterns.

2) FP-Stream maintains an ordering list f j i s t  is created in which items are by decreasing 

frequencies (as done in [Han et al.2004] [Han, Pie & Yin2000] this list). SSM maintains a 

dynamic structure named d_list that stores items and frequencies without any orders. A 

hash chain based indexing is used in d_list to boost performance. When incoming 

elements arrive, d_list gets updated using hash function and at the same time the 

eligibility of updated elements gets checked to see whether it can be considered as large 

1-sequences.

3) FP-Stream forms a batch after 15 minutes elapsed time. The batch size changes 

dynamically in SSM-Algorithm. We gave a range for a batch, in other words, the 

algorithm constantly forms bigger batches at the pick time and at the slow time, it forms 

smaller batches by staying within the range to utilize resources efficiently.

4.2 Algorithm Analysis

We compare FP-Stream with our proposed algorithm.

Say, batch Bi, (Table 4.2-1) as an input data 

for both algorithms and Table 4.2-2 shows the 

comparisons in between two algorithms from various

Table 4 .2-1: A Batch with 4 transactions
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aspects. Based on the comparisons, the conclusion can drawn that computation time for 

mining of FP-Stream will constantly go higher than the computation time of SSM-

FP-Stream SSM-Algorithm

Index Mechanism for stream items No Yes

Pattern Frequent Pattern Frequent Sequential Pattern

Batch Size Fixed (15 minutes wait) Dynamic

Time Sensitive Queries Yes No

Batch Scan 2 2

Construct tree 1 1

Construct Intermediate Trees 7 0

Save and Calculate Intermediate DB 

Calculate Frequent Event in

7 0

Conditional patterns 7 /

Position Coding No Yes

Table 4.2- 2: Comparisons in between FP-Stream and SSM-Algorithm

Algorithm when both FP-Stream and SSM-Algorithm will be running simultaneously for 

mining more batches (B2,B3 ,B4 ,  Bn) using similar data.

4.3 Experimental Setup
In this chapter, we report the performance of our algorithm. SSM is written in Java. The 

experiment is performed on a 2.8 GHz (Celeron D processor) machine with 512 MB 

main memory. The operating system is Windows XP professional.

4.3.1 Dataset
The synthetic datasets are generated using the publicly available synthetic data generation 

program of the IBM Quest data mining project at:

http://www.almaden.ibm.com/software/quest/. A data loader program is incorporated
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with SSM to loads datasets into the Buffer from the source. The loader loads a 

transaction, waits 1 ms and then load the next transaction. Below is the description of the 

dataset.

The parameters shown below are used to show datasets.

[T] = Number of transactions

[S] = Average Sequence length for all transactions

[I] = Number of distinctive items

For example, T20K,S5,I1K represents 20000 transactions, 5 is average sequence length 

of all transactions, 1000 distinctive items.

4.3.2 Experimental Results
The test was performed by running a series of experiments using five different datasets 

(T10K,S3,I2K, T20K,S3,I2K, T40K,S3,I2K, T60K,S3,I2K, T80K,S3,I2K}. The first

SSM-Algorithm FP-Stream Alg.
Dataset Average 

CPU 
Time per 

batch
(sec)

Total
CPU
Time
(sec)

Average 
CPU 

Time per 
batch
(sec)

Total
CPU
Time
(sec)

T10K,S3,I2K 4.85 9.7 7.25 14.5
T20K,S3,I2K 4.5 18.03 6.5 26
T40K,S3,I2K 4.37 35.01 5.75 46
T60K,S3,I2K 6.25 75 11.66 139.92
T80K,S3,I2K 5.69 91.04 10.56 168.99

Table 4 .3-1: Result against support s= .0045 (.45%) and error e = .0004(.04%)

dataset has 10K transactions, average transaction sequence length is 3 and 2000 

distinctive items. Similar pattern follows rest of the datasets with higher number of 

transactions. User defined support is set to .0045 (.45%), .004 (.4%), and .0035 (.35%) 

and minimum support error is 1/10 of each support. For testing, the support had to lower
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Figure 4.3-1: Result against support s= .0045 (.45%) and error e = .0004(.04%)

to 1% because there are no items in the datasets that have support 1%. Table 4.3-1, 

Figure 4.3-1 and Figure 4.3-2 show the computation time in between two algorithms 

using support s = .0045 (.45%) and error e = .0004(.04%). SSM requires less time than 

FP-Stream. The reason behind is, SSM-Algorithm uses PLWAP-tree structure and

time (sec)

14 -I

12

• —SSM 
A — FPStream

20k 80k10k 40k 60k

Datasets

Figure 4.3- 2: Result for average batch with support s= .0045 (.45%) and error e = .0004(.04%)

PLWAP-Algorithm to generate patterns. The main advantage of using PLWAP- 

Algorithm over FP-Growth is PLWAP does not require to construct intermediate trees to 

mine frequent sequential patterns. It needs to compare position code nodes through the 

linkage queue with that of nodes in the roots set. On the other hand, FP-Growth algorithm

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



saves conditional patterns and then read these patterns to construct intermediate trees. For 

this reason, FP-Growth requires more storage, more computation time than PLWAP.

SSM-Algorithm FP-Stream Alg.
Dataset Average 

CPU 
Time per 

batch
(sec)

Total
CPU
Time
(sec)

Average 
CPU 

Time per 
batch
(sec)

Total
CPU
Time
(sec)

T10K,S3,I2K 5.61 11.23 8.75 17.5
T20K,S3,I2K 5.75 23.02 7.5 30
T40K,S3,I2K 5.43 43.44 7 56
T60K,S3,I2K 6.66 80 11.83 142
T80K,S3,I2K 6 96.04 11.54 184.64

Table 4.3- 2: Result against support s= .004 (.4%) and error e = ,0004(.04%)

For both algorithms, the average time of batches varies batch to batch. It does not go 

higher constantly. From Figure 4.3-2, we can say that average time of a batch is 

dependant on the data of the datasets. It does not relate to the size of the datasets. In this

time (sec)

2 0 0  -i

150

—■ — SSM
100

FPStream

50

40k10k 20k 60k 80k

Datasets

Figure 4.3- 3: Result against support s= .004 (.4%) and error e = ,0004(.04%) 

experiment a batch is holding approximate 5000 transactions.
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SSM-Algorithm FP-Stream Alg.
Dataset Average 

CPU 
Time per 

batch
(sec)

Total
CPU
Time
(sec)

Average 
CPU 

Time per 
batch
(sec)

Total
CPU
Time
(sec)

T10K,S3,I2K 6.06 12.12 10.56 21.12
T20K,S3,I2K 6.81 27.27 11.77 47.08
T40K,S3,I2K 6.9 55.27 12.55 100.4
T60K,S3,I2K 7.0 84.02 12.44 149.28
T80K,S3,I2K 6.93 111.01 12.23 195.68

Table 4.3- 3: Result against support s= .0035 (.35%) and error e = .0003(.03%)

By looking at Figure 4.3-1, 4.3-3, and 4.3-4, it is clear that if support increase, the 

computation time reduces. It happens because of the datasets. If datasets have plenty of 

distinctive items and similar items are less, in that case, if support increases, the 

generation of candidate 1-sequnecs reduces, for the same reason the process finds less 

large 1-sequences. Thus tree construction and computation is quicker. This applies for 

both of the algorithms.

time(sec)

250 -1

200

150 SSM
FPStream100

50

20k 80k10k 40k 60k

Datasets

Figure 4.3- 4: Result against support s= .0035 (.35%) and error e = .0003(.03%)
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4.3.2 Correctness of Algorithm Implementations

To show that the implementations of three algorithms are correct, we used a small 

database (Table 4.3-4) is used to test the correctness of implementations.

Trans

ID

Custom er Access 

Sequences

Frequent Sequences 

(FS)

Frequent Ordered 

Items

100 10 20 30 40 10 20 30 20 30 10

200 10 20 40 30 10 20 30 20 30 10

300 20 30 50 60 20 30 20 30

400 20 10 70 30 20 10 30 20 30 10

Table 4.3- 4: Database

As shows in Table 4.3-4, database includes 4 transaction IDs (100 through 400, first 

column of the Table 4.3-4), the second column of the database shows the events (total 16 

events) in it. The third column of the Table 3.4.-4 is showing frequent subsequences (FS) 

that are generated after finding large 1-sequences from Table 3.4-4. We use FS for 

sequential mining. The fourth column is showing frequent ordered items in the above 

table that is used for frequent pattern mining. The minimum support of the database is set 

to .75 or 75%.

After running three algorithms against the database (in Table 4.3-4), the results are shown 

in Table 4.3-5. The results of PLWAP and SSM are same because they use similar

Algorithm Result o r Patterns

SSM {{10}, {20}, {20, 30}, {30}

PLW AP {{10}, {20}, {20, 30}, {30}

FP-Stream {{20}, {20,30}, {20,30,10}, {20,10}, {30}, {30,10}, {10}}

Table 4.3- 5: Results from algorithms
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algorithm. As PLWAP [Ezeife and Lu2005] is already an established algorithm and SSM 

generates same result, therefore, we claim that the implementations are correct.

On the other hand, result from FP-Stream is different. Because this algorithm 

constructs FP-tree using frequent ordered items instead of frequent sequences. Sequential 

mining method keep customer access sequences intact, therefore, the pattern (20,30,10) 

and (30, 10) were not generated by SSM and PLWAP but included in FP-Stream result.
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5 CONCLUSIONS AND FUTURE WORK

5.1 Conclusions
This thesis proposes a new algorithm (SSM-Algorithm) to mine frequent sequential 

patterns in data streams. SSM-Algorithm uses three types of data structures (d_list, 

PLWAP and FSP-tree) in order to handle and mine frequent sequential patterns in data 

streams efficiently and dynamically.

D_list is a complete dynamic data structure that stores incoming candidate 1- 

sequences. It grows bigger with incoming data streams. Hash based indexing is 

implemented to speed search and update process of this list. D_list is very useful for 

finding current large 1-sequences (Li) and we need Li to generate current frequent 

patterns.

A continuous automated batch mining process is implemented to discover 

sequential patterns so that a small amount of memory will be used constantly to handle 

unbounded data in data streams.

An existing mining algorithm and structure PLWAP [Ezeife & Lu2005] is used in 

SSM to generate sequential patterns for incoming batches. PLWAP fits well in SSM and 

it avoids several intermediate tree reconstructions in order to save I/O computation time 

and storage usage. SSM takes the advantage of PLWAP-tree [Ezeife & Lu2005],

Sequential pattern tree (FSP-tree) gets updated incrementally with incoming 

sequential patterns from batches. FSP-tree is simple form of Pattem-tree [Giannella et 

al.2003] that is able to deliver current result on demand. This is a compact tree and stores 

only elements that are above the threshold to deliver quick result.

Suffix Pruning I, Suffix Pruning II and Sequential Pruning techniques are 

introduced in this thesis. The proposed pruning techniques are used in the algorithm very 

efficiently to maintain the size of the structures in the memory.

SSM-Algorithm is introduced to support mining tasks constantly for new 

applications where the primary source of the data is click stream data. It is a complete 

system that fulfills all of the requirements for mining frequent sequential patterns in data 

streams. SSM-Algorithm can be deployed for mining ecommerce’s click stream data.
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5.2 Future Work
1). There are some important issues can be incorporated with sequential mining in data 

streams like GSP algorithm [Srikanth & Agrawall996]. Sliding window techniques can 

be added to SSM to create batches and candidate 1-sequences. Sliding window method 

will save batch creation and candidate generation time.

SSM-Algorithm generates frequent sequential patterns based on frequency of 

items. In other words, it uses only one dimension (frequency) to do its task. It is possible 

to add multiple dimensions (e.g. time dimension) or constraints along with frequency to 

discover interesting patterns in data streams.

2). In chapter 3 (section 3.2) of this thesis, we envisioned XYZ e-commerce’s site and 

intended to mine XYZ’s click stream data. Now, it would be very challenging to mine a 

several company’s click stream data at the same time to find correlations. In other words, 

a multiple streams mining techniques at the same time to discover interesting patterns.

3). Rate (R) of incoming data stream is a constraint of stream mining. Mining rate has to 

be greater than or equal to incoming data stream rate. Otherwise, stream mining will fall 

behind. An advanced algorithm and method that overcomes Rate constraint and 

guarantees to support highest bandwidth could be another future work.

4). Proposed SSM method generates sequential patterns through batch mining process. In 

other words, it groups customer access sequences and applies PLWAP-Algorithm [Ezeife 

&Lu2005] to generate frequent sequential patterns. Then, it initializes existing PLWAP- 

tree to empty set. When next batch arrives, it reconstructs another PLWAP-tree and 

applies PLWAP-Algorithm on new batch to generate frequent sequential patterns. It is an 

ongoing process. Now, it might be possible to keep first PLWAP-tree and update 

incrementally with incoming batches rather than constructing a new PLWAP-tree for 

each batch. However, this is not definite that it will work in stream environment because 

this PLWAP-tree update process would be required to keep the information of all small 

items and their possible position in the tree. Stream mining does not follow this kind of
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approach. Thus, the solution of updating main PLWAP-tree for all of the batches would 

be very challenging and could be a possible future work in this direction.

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



6 References:

[Agrawal, Imielinski, & Swamil993] Rakesh Agrawal, Tomasz Imielinski, and Arun 
Swami. Mining Association rules between sets of items in large databases. In Proc. O f 
the ACM SIGMOD conference on management o f data, Pages 207 -  216, Washington, 
DC, 1993

[Agrawal & Srikantl994] Rakesh Agrawal, Ramakrishnan Srikant. Fast Algorithms for 
Mining Association Rules, Proceedings o f the 20th VLDB conference, Pages 487-499, 
Santiago, Chile, 1994

[Agrawal & Srikanthl995] Rakesh Agrawal, Ramakrishnan Srikanth. Mining Sequential 
Patterns, Research Report, IBM Almaden ResearchCenter 650 Harry Road, San Jose, CA 
95120, IEEE Publication, Pages 1-22, 1995

[Ansari et al.2001] Suhail Ansari, Ron Kohavi, Llew Mason, Zijian Zheng. Integrating e- 
commerce and data mining: architecture and challenges, Proceedings IEEE International 
Conference on Data Mining, Pages: 27-34, San Jose, CA , USA, 2001

[Berkhin, Becher, & Randall2001] Pavel Berkhin, Jonathan D. Becher, Dee Jay Randall. 
Interactive Path Analysis of web Site Traffic, Proceedings o f  the seventh ACM SIGKDD 
international conference on Knowledge discovery and data mining table o f contents, 
Pages 414 -  419, San Francisco, California, USA, 2001

[Buchner & Mulvennal998] Alex G. Buchner, Maurice D. Mulvenna. Discovering 
Internet Marketing Intelligence through Online Analytical Web Usage Mining, SIGMOD 
Record, Vol.27, No.4. Pages 5 4 - 6 1 ,  New York, NY, USA, 98

[Chandrasekaran & Franklin2002] Sirish Chandrasekaran, Michael J. Franklin. Streaming 
Queries over Streaming Data, In Proc. O f the 2002 VLDB Conference, 28th International 
Conference on Very Large Databases (VLDB), Honk Kong, China 2002

[Chen et al.2002] Y. Chen, G. Dong, J. Han, W. B. Wah, J. Wang. Multidimensional 
regression analysis of time-series data streams, proceedings o f the 28th VLDB conference, 
pages 323-334, Hong Kong, China, 2002

[Cooley, Mobasher & Srivastaval997] R. Cooley, B. Mobasher, J. Srivastava. Web 
Mining: Information and Pattern Discovery on the World Wide Web, Proceedings o f  the 
ninth IEEE International Conference on Tools with Artificial Intelligence, Pages 558 -  
567, Newport Beach, CA, USA, 1997

[Cooley, Mobasher & Srivastaval999] R. Cooley, B. Mobasher, J. Srivastava. Data 
preparation for mining world wide web browsing patterns, Knowledge and Information 
Systems, 1(1), Pages 1-26, 1999

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[Domingos & Hulten2000] P. Domingos and G. Hulten. Mining high-speed data streams. 
proceedings o f  the 2000 ACM SIGKDD Int. Conf. knowledge Discovery in Database 
(KDD’OO), Pages 71-80, 2000

[Dutta et al.2001] Kaushik Dutta, Debra VanderMeer, Anindya Datta, Krithi 
Ramamritham. Proceedings o f the 3rd ACM conference on Electronic Commerce, pages 
65-74, Tampa, FL, USA, 2001

[Ezeife & Chen2004a] C.I.. Ezeife and Min Chen, Mining Web Sequential Patterns 
Incrementally with Revised PLWAP Tree, proceedings o f the fifth International 
Conference on Web-Age Information Management (WAIM 2004) Dalian, published in 
LNCS by Springer Verlag. UK, June 2004

[Ezeife & Chen2004b] C.I. Ezeife and Min Chen, Incremental Mining of Web Sequential 
Patterns Using PLWAP Tree on Tolerance MinSupport, proceedings o f the IEEE 8th 
International Database Engineering and Applications Symposium, Coimbra, Portugal, 
July 7th to 9th, 2004.

[Ezeife & Lu2005] C.I. Ezeife and Yi Lu, Mining Web Log sequential Patterns with 
Position Coded Pre-Order Linked WAP-tree, the International Journal o f Data Mining 
and Knowledge Discovery (DMKD), Vol. 10, No. -, pp. 5-38, Kluwer Academic 
Publishers, June 2005

[Giannella et al.2003] C. Giannella, J. Han, J. Pei, X. Yan and P.S. Yu. Mining Frequent 
Patterns in Data Streams at Multiple Time Granularities, H. Kargupta, A. Joshi, K. 
Sivakumar, and Y. Yesha (eds.), Next Generation Data Mining, 2003.

[Guna et al.2000] S. Guna, N. Mishra, R. Motwani, and L. O’Callaghan. Clustering data 
streams, proceedings o f IEEE Symposium on Foundations o f Computer Science 
(FOCS’OO), Pages 359-366, 2000

[Guna et al.2003] S. Guna, A. Meyerson, N. Mishra, and R. Motwani. Clustering data 
streams: Theory and Practice TKDE special issue on clustering, vol. 15, 2003

[Gunduz & Ozsu2003] S. Gunduz, M. T. Ozsu. A web page prediction model based on 
click-stream tree representation of user behavior, SIGKDD 2003, Page 535-540

[Han & Kamber2000] J. Han and M. Kamber. Data Mining: Concepts and Techniques, 
Morgan Kaufmann, 2000

[Han, Pie & Yin2000] Jiawei Han, Jian Pei, Yiwen Yin. Mining frequent patterns without 
candidate generation, Proceedings o f the 2000 ACM  SIGMOD international conference 
on Management o f data and Symposium on Principles o f Database Systems, Pages 1 -12 , 
Dallas, Texas, USA, 2000

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[Han et al.2004] J. Han, J. Pei, Y. Yiwen, R. Mao. Mining frequent patterns without 
candidate generation: a frequent pattern tree approach, Data Mining and Knowledge 
Discovery, 8, 1, Page 53-87, 2004

[Hin2002] Phillip Hingston. Using Finite State Automation for Sequence Mining, 
Proceeding o f  the twenty-fifth Australasian conference on computer science -  volume 4, 
Pages 105 -  110, Melbourne, Victoria, Australia, 2002

[Hu & Cercone2002] Xiaohua Hu, Nick Cercone. An OLAM framework for Web Usage 
Mining and Business Intelligence reporting, Proceedings o f the 2002 IEEE International 
Conference on Fuzzy Systems FUZZ-IEEE'02, Volume: 2, Pages 950 -955, 2002

[Karp, Shenker, & Papadimitriou2003] R. Karp, S. Shenker, and C. Papadimitriou. A 
Simple Algorithm for Finding Frequent Elements in Streams and Bags. ACM  
Transactions on Database Systems, 28(1):51—55, 2003

[Keahey & Eick2002] T. A. Keahey, S. G. Eick. Visual Path Analysis, Proceedings o f the 
IEEE symposium on Information Visualization, Pages 165-168, 2002

[Kosala & Blockeel2000] R. Kosala and H. Blockeel. Web mining research: a survey, 
ACM SIGKDD Explorations, 2. 1, ACM SIGKDD, 2000

[Kurose & Ross2003] James F. Kurose, Keith W. Ross. Computer Networking, 2nd 
Edition, Addison Wesley Longman, Inc, 2003

[Las2002] M. Last, Online classification of nonstationary data streams, Intelligent Data 
Analysis, Vol. 6, No. 2, Page 129-147, 2002

[Lee & Podlaseck2000] Juhnyoung Lee, Mark Podlaseck. Using a Starfield Visualization 
for Analyzing Product Performance of Online Stores, Proceedings o f the 2nd ACM  
conference on Electronic commerce table o f contents, Pages 168 -  175, Minneapolis, 
Minnesota, United States, 2000

[Lin et al.2003] J. Lin, E. Keogh, S. Lonardi, and B. Chiu. A symbolic representation of 
time series, with implication for streaming algorithms. In Proc. of the 8th ACM SIGMOD 
workshop on research issues in data mining and knowledge discovery, San Diego, USA, 
2003

[Liu & Chang2004] Bing liu, Kevin Chang. Special issue on web content mining, ACM  
SIGKDD Explorations, Newsletter, Volume 6 , Issue 2, pages 1-4, 2004

[Liu, Chen & Song2002] Lizhen Liu, Junjie Chen, Hantoa Song. The Research of Web 
Mining, Proceedings o f the 4th World Congress on Intelligent Control and Automation, 
vol.3, Pages 2333- 2337, Beijing, China, 2002

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[Lu & Ezeife2003] Y. Lu and C. I. Ezeife. Position Code Pre-Ordered Linked WAP-Tree 
for Web log sequential pattern mining, In Proceedings o f the 7th Pacific-Asia Conference 
on Knowledge Discovery and Data Mining (PAKDD 2003), Seoul, Korea, 2003

[Mah, Hoek & Li2001] Teresa Mah, Elank Hoek, Ying Li. Funnel Report Mining fro the 
MSN Network, Proceedings o f the seventh ACM SIGKDD international conference on 
Knowledge Discovery on Data, Pages 450 -  455, San Francisco, California, USA, 2001

[Manku & Motwani2002] Gurmeet Singh Manku and Rajeev Motwani, Approximate 
frequency counts over data streams, proceedings o f the 28th VLDB conference, Hong 
Kong, China, 2002

[Masseglia, Teisseire & Poncelet2001] Florent Masseglia, Maguelonne Teisseire, Pascal 
Poncelet, Real Time Web usage Mining: a Heuristic based Distributed Miner, 
Proceedings o f the second International conference on Web Information Systems 
Engineering, Volume: 1, Pages 288-297, 2001

[Masseglia, Teisseire & Poncelet2002] Florent Masseglia, Maguelonne Teisseire, Pascal 
Poncelet, Real Time Web usage Mining with a Distributed Navigation Analysis, 
Proceedings o f the twelfth International Workshop on Engineering E-Commerce/E- 
Business Systems, Pages 169-174, San Jose, CA, USA, 2002

[Nahm, Bilenko & Mooney2002] Un Yong Nahm, Mikhail Bilenko, Raymond J.
Mooney. Two approaches to handling Noisy Variation in Text Mining. In proceedings o f 
the ICML-2002 Workshop on Text Learning (TextML ‘2002), pages 18-27, Sydney, 
Australia, July 2002

[Pei et al.2000] Jian Pei, Jiawei Han, Behzad Mortazavi-asi, Hua Zhu. Mining Access 
Patterns Efficiently from web logs, Proceedings 2000 Pacific-Asia conference on 
Knowledge Discovery and data Mining, Pages 396-407, Kyoto, Japan, 2000

[Srikanth & Agrawal 1996] Ramakrishnan Srikanth and Rakesh Agrawal. Mining 
Sequential Patterns: generalizations and performance improvements, Research Report, 
IBM Almaden ResearchCenter 650 Harry Road, San Jose, CA 95120, Pages 1-15, 1996

[Srivastava et al.2000] J. Srivastava, R. Cooley, M. Deshpande, P. N. Tan. Web usage 
mining: Discovery and applications of usage patterns from web data, SIGKDD 
Explorations, Volume 1, Issue 2, Pages 12 -23, 2000

[Teng, Chen & Yu2003] W. Teng, M. Chen, P. Yu. A regression-based temporal pattern 
mining scheme for data streams, In proceedings o f the 29th VLDB conference, Berlin, 
Germany, 2003

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[Theusinger & Huber2000] Christiane Theusinger, Klaus-Peter Huber. Analyzing the 
foot steps of your customers, A case study by ASK-net and SAS Institute GmbH, 
Proceedings o f the WebKDD-2000 conference, 2000

[Tuzhilin & Adomavicius2002] Alexander Tuzhilin, Gediminas Adomavicius. Handling 
very large numbers of association rules in the analysis of microarray data, Proceedings o f 
the eighth ACM SIGKDD international conference on Knowledge discovery and data 
minin, pages 396-404, Edmonton, Alberta, Canada, 2002

[Woon, Ng, & Lim2002] Yew-Kwong Woon, Wee-Keong Ng, Ee-Peng Lim. Online and 
Incremental mining of Separately -  Grouped Web Access Logs, Proceedings o f the Third 
International Conference on Web Information Systems Engineering, Pages 53- 62, 
Singapore, Singapore, 2002

[Xiao & Zhang2001] Jitian Xiao, Yanchun Zhang. Clustering of Web Users Using 
Session-based Similarity Measures, Proceedings o f the 2001 International Conference on 
Computer Networks and Mobile Computing, Pages 223 -  228, Los Alamitos, CA , USA, 
2001

[Xie & Phoha2001] Yunjuan Xie, Vir Y. Phoha. Web User Clustering from Access Log 
Using Belief Function, Proceedings o f the international conference on Knowledge 
Capture, Pages 202 -  208, Victoria, BC, Canada, 2001

[Yang, Haining, & Li2001] Qiang Yang, Haining Henry Zhang, Tianyi Li. Mining web 
logs for prediction models in WWW caching and prefetching, Proceedings o f the ACM  
SIGKDD International conference, ACM Press, 2001

[Zhang & Chang2002] Feng Zhang, Hui-You Chang. Research and Development in Web 
Usage Mining System-key Issues and Proposed Solutions: A survey, Proceedings 2002 
International Conference on Machine Learning and Cybernetics, Nolume 2, Pages 986- 
990, 2002

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



VITA AUCTORIS

Mostafa Monwar was bom in 1972 in Sylhet, Bangladesh. He completed his bachelor of 
science in honors in computer information systems at Strayer University, Washington, 
DC, USA in 1998. He also worked as a systems support specialist at Intel Corporation 
from 1999 to 2001. He is currently a candidate for the master’s degree in computer 
science at the University of Windsor and expects to complete the degree in September 
2005.

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


	Mining frequent sequential patterns in data streams using SSM-algorithm.
	Recommended Citation

	tmp.1617912760.pdf.fRQWJ

