132,739 research outputs found

    Evolutionary connectionism: algorithmic principles underlying the evolution of biological organisation in evo-devo, evo-eco and evolutionary transitions

    Get PDF
    The mechanisms of variation, selection and inheritance, on which evolution by natural selection depends, are not fixed over evolutionary time. Current evolutionary biology is increasingly focussed on understanding how the evolution of developmental organisations modifies the distribution of phenotypic variation, the evolution of ecological relationships modifies the selective environment, and the evolution of reproductive relationships modifies the heritability of the evolutionary unit. The major transitions in evolution, in particular, involve radical changes in developmental, ecological and reproductive organisations that instantiate variation, selection and inheritance at a higher level of biological organisation. However, current evolutionary theory is poorly equipped to describe how these organisations change over evolutionary time and especially how that results in adaptive complexes at successive scales of organisation (the key problem is that evolution is self-referential, i.e. the products of evolution change the parameters of the evolutionary process). Here we first reinterpret the central open questions in these domains from a perspective that emphasises the common underlying themes. We then synthesise the findings from a developing body of work that is building a new theoretical approach to these questions by converting well-understood theory and results from models of cognitive learning. Specifically, connectionist models of memory and learning demonstrate how simple incremental mechanisms, adjusting the relationships between individually-simple components, can produce organisations that exhibit complex system-level behaviours and improve the adaptive capabilities of the system. We use the term “evolutionary connectionism” to recognise that, by functionally equivalent processes, natural selection acting on the relationships within and between evolutionary entities can result in organisations that produce complex system-level behaviours in evolutionary systems and modify the adaptive capabilities of natural selection over time. We review the evidence supporting the functional equivalences between the domains of learning and of evolution, and discuss the potential for this to resolve conceptual problems in our understanding of the evolution of developmental, ecological and reproductive organisations and, in particular, the major evolutionary transitions

    Embodied Evolution in Collective Robotics: A Review

    Full text link
    This paper provides an overview of evolutionary robotics techniques applied to on-line distributed evolution for robot collectives -- namely, embodied evolution. It provides a definition of embodied evolution as well as a thorough description of the underlying concepts and mechanisms. The paper also presents a comprehensive summary of research published in the field since its inception (1999-2017), providing various perspectives to identify the major trends. In particular, we identify a shift from considering embodied evolution as a parallel search method within small robot collectives (fewer than 10 robots) to embodied evolution as an on-line distributed learning method for designing collective behaviours in swarm-like collectives. The paper concludes with a discussion of applications and open questions, providing a milestone for past and an inspiration for future research.Comment: 23 pages, 1 figure, 1 tabl

    Evolutionary Robotics: a new scientific tool for studying cognition

    Get PDF
    We survey developments in Artificial Neural Networks, in Behaviour-based Robotics and Evolutionary Algorithms that set the stage for Evolutionary Robotics in the 1990s. We examine the motivations for using ER as a scientific tool for studying minimal models of cognition, with the advantage of being capable of generating integrated sensorimotor systems with minimal (or controllable) prejudices. These systems must act as a whole in close coupling with their environments which is an essential aspect of real cognition that is often either bypassed or modelled poorly in other disciplines. We demonstrate with three example studies: homeostasis under visual inversion; the origins of learning; and the ontogenetic acquisition of entrainment

    The organisation of sociality: a manifesto for a new science of multi-agent systems

    No full text
    In this paper, we pose and motivate a challenge, namely the need for a new science of multi-agent systems. We propose that this new science should be grounded, theoretically on a richer conception of sociality, and methodologically on the extensive use of computational modelling for real-world applications and social simulations. Here, the steps we set forth towards meeting that challenge are mainly theoretical. In this respect, we provide a new model of multi-agent systems that reflects a fully explicated conception of cognition, both at the individual and the collective level. Finally, the mechanisms and principles underpinning the model will be examined with particular emphasis on the contributions provided by contemporary organisation theory

    Associative memory in gene regulation networks

    No full text
    The pattern of gene expression in the phenotype of an organism is determined in part by the dynamical attractors of the organism’s gene regulation network. Changes to the connections in this network over evolutionary time alter the adult gene expression pattern and hence the fitness of the organism. However, the evolution of structure in gene expression networks (potentially reflecting past selective environments) and its affordances and limitations with respect to enhancing evolvability is poorly understood in general. In this paper we model the evolution of a gene regulation network in a controlled scenario. We show that selected changes to connections in the regulation network make the currently selected gene expression pattern more robust to environmental variation. Moreover, such changes to connections are necessarily ‘Hebbian’ – ‘genes that fire together wire together’ – i.e. genes whose expression is selected for in the same selective environments become co-regulated. Accordingly, in a manner formally equivalent to well-understood learning behaviour in artificial neural networks, a gene expression network will therefore develop a generalised associative memory of past selected phenotypes. This theoretical framework helps us to better understand the relationship between homeostasis and evolvability (i.e. selection to reduce variability facilitates structured variability), and shows that, in principle, a gene regulation network has the potential to develop ‘recall’ capabilities normally reserved for cognitive systems

    Development of bipedal and quadrupedal locomotion in humans from a dynamical systems perspective

    Get PDF
    The first phase in the development 0f locomotion, pr,öary variability would occur in normal fetuses and infants, and those with Uner Tan syndrome. The neural networks for quadrupedal locomotion have apparently been transmitted epigenetically through many species since about 400 MYA.\ud The second phase is the neuronal selection process. During infancy, the most effective motor pattern(s) and their associated neuronal group(s) are selected through experience.\ud The third phase, secondary or adaptive variability, starts to bloom at two to three years of age and matures in adolescence. This third phase may last much longer in some patients with Uner Tan syndrome, with a considerably delay in selection of the well-balanced quadrupedal locomotion, which may emerge very late in adolescence in these cases

    ‘The Action of the Brain’. Machine Models and Adaptive Functions in Turing and Ashby

    Get PDF
    Given the personal acquaintance between Alan M. Turing and W. Ross Ashby and the partial proximity of their research fields, a comparative view of Turing’s and Ashby’s work on modelling “the action of the brain” (letter from Turing to Ashby, 1946) will help to shed light on the seemingly strict symbolic/embodied dichotomy: While it is clear that Turing was committed to formal, computational and Ashby to material, analogue methods of modelling, there is no straightforward mapping of these approaches onto symbol-based AI and embodiment-centered views respectively. Instead, it will be demonstrated that both approaches, starting from a formal core, were at least partly concerned with biological and embodied phenomena, albeit in revealingly distinct ways

    Development and Validation of a Rule-based Time Series Complexity Scoring Technique to Support Design of Adaptive Forecasting DSS

    Get PDF
    Evidence from forecasting research gives reason to believe that understanding time series complexity can enable design of adaptive forecasting decision support systems (FDSSs) to positively support forecasting behaviors and accuracy of outcomes. Yet, such FDSS design capabilities have not been formally explored because there exists no systematic approach to identifying series complexity. This study describes the development and validation of a rule-based complexity scoring technique (CST) that generates a complexity score for time series using 12 rules that rely on 14 features of series. The rule-based schema was developed on 74 series and validated on 52 holdback series using well-accepted forecasting methods as benchmarks. A supporting experimental validation was conducted with 14 participants who generated 336 structured judgmental forecasts for sets of series classified as simple or complex by the CST. Benchmark comparisons validated the CST by confirming, as hypothesized, that forecasting accuracy was lower for series scored by the technique as complex when compared to the accuracy of those scored as simple. The study concludes with a comprehensive framework for design of FDSS that can integrate the CST to adaptively support forecasters under varied conditions of series complexity. The framework is founded on the concepts of restrictiveness and guidance and offers specific recommendations on how these elements can be built in FDSS to support complexity
    corecore