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Abstract: Evidence from forecasting research gives reason to believe that 

understanding time series complexity can enable design of adaptive 

forecasting decision support systems (FDSSs) to positively support 

forecasting behaviors and accuracy of outcomes. Yet, such FDSS design 

capabilities have not been formally explored because there exists no 

systematic approach to identifying series complexity. This study describes the 
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development and validation of a rule-based complexity scoring technique 

(CST) that generates a complexity score for time series using 12 rules that 

rely on 14 features of series. The rule-based schema was developed on 74 

series and validated on 52 holdback series using well-accepted forecasting 

methods as benchmarks. A supporting experimental validation was conducted 

with 14 participants who generated 336 structured judgmental forecasts for 

sets of series classified as simple or complex by the CST. Benchmark 

comparisons validated the CST by confirming, as hypothesized, that 

forecasting accuracy was lower for series scored by the technique as complex 

when compared to the accuracy of those scored as simple. The study 

concludes with a comprehensive framework for design of FDSS that can 

integrate the CST to adaptively support forecasters under varied conditions of 

series complexity. The framework is founded on the concepts of 

restrictiveness and guidance and offers specific recommendations on how 

these elements can be built in FDSS to support complexity. 

Keywords: Benchmark forecasting, Forecasting decision support systems, 

Structured judgment, Forecasting, Time series, Rule-based Forecasting 

1. Introduction 

Judgmental forecasting has become an increasingly appreciated 

approach and, in the process, has “undergone a significant 

transformation.”1,pg. 493 In particular, best practices have emerged 

around structuring and formalizing the use of judgment through 

integration with statistical methods. The practitioner community also 

has an extensive history with judgmental forecasting. For instance, in 

a survey of 240 US firms, only 11% used forecasting decision support 

systems (FDSSs) and, within this sub-group, over 60% judgmentally 

adjusted software-generated forecasts.2 Although best practices 

around judgmental techniques have been rapidly accumulating, many 

aspects still require further research. In this study, we address one 

such aspect — time series complexity for decision support and FDSS 

design. 

Alignment between DSS capabilities and task support needs can 

improve DSS utilization, decision maker performance, and thereby 

task outcomes.3,4 This body of research, which often classifies tasks on 

a continuum from simple to fuzzy (complex), provides support for 

design of adaptive DSS. Adaptive systems can support judgment by 

presenting and processing information in ways that adjust to task 
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context and characteristics, cognitive needs of forecasters, and 

patterns of information use5,6 thereby debiasing the decision process.7 

The design of such adaptive systems for forecasting, however, has 

remained unexplored as there exists no formal way of characterizing 

the complexity of forecasting tasks. 

This study presents the design and validation of a rule-based 

complexity scoring technique (CST) that relies on a tested and 

validated set of time series, features, and rules. To this end, the CST is 

validated using (a) forecasts from benchmark methods on a set of 

holdback series and (b) experiments with 14 forecasters who rendered 

336 structured judgmental forecasts on series scored by the CST as 

simple or complex. The study concludes with the development of a 

framework for design of adaptive forecasting decision support systems 

(AFDSSs) that can respond to forecasting task complexity. This DSS 

framework is built upon elements of restrictiveness and guidance8 to 

limit harmful actions and improve forecaster efficacy under complexity. 

It must be noted that this study does not justify a theory. Rather, it is 

positioned in the design science paradigm and seeks to develop 

capabilities around the design of an IT artifact for series complexity,9 a 

task deemed difficult for reasons discussed in later sections. As such, 

the CST is expected to be refined over multiple design cycles. 

2. Background and motivations 

2.1. Adaptive DSS 

Adaptive DSS (ADSSs) have been defined as systems that aid 

“decision making judgments by adapting support to the high-level 

cognitive needs of the users, tasks characteristics, and decision 

contexts” (pg. 299).5 Numerous studies have conceptualized ADSSs 

that support problem formulation, interpretation of the dynamic 

problem space, and final decision outcomes in response to 

environments that are known to change within a single decision or 

across multiple decisions.5 Piramuthu & Shaw10 for instance, suggest 

that an ADSS must have a learning component that can incrementally 

renew its knowledge base through continuous feedback from the 

environment. Others have proposed that ADSS must adapt to users' 

personalities11 and decision support needs. ADSS can deliver a range 
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of problem-solving tools and interfaces that can be invoked by users 

based on decision context. Decision makers' problem space could also 

be made more flexible by providing drill-down capabilities into the 

data,12 especially as DSSs become integrated with big data. Finally, 

flexibility can relate to evaluation of decision outcomes. ADSS could be 

self-evaluative10 based on internal feedback mechanisms, such as 

neural networks, or could evaluate users by providing feedback based 

on decision optimality. 

Although numerous forecasting studies have hinted at the need 

to align forecasting tasks with FDSS capabilities,4 few have addressed 

the design and benefits of adaptive systems. Authors in13 discuss 

preliminary benefits for ADSS in the domain of water and weather 

forecasting. Similarly,12,14 address the need to adapt DSS display, 

data, and models to the nature of time series being forecast. However, 

beyond these preliminary indications, insights into design and use of 

adaptive FDSS are limited as there exists no formal framework around 

which to conceptualize such systems. 

Our review of ADSS indicates that such aids can, and should, be 

designed to adapt to three primary sources of knowledge: the problem 

domain,15 the user,16 and its own knowledge-base.10 Although the 

three elements are interlinked, the focus of our study is on the first i.e. 

the problem domain. Specifically, our proposals for design of an 

adaptive FDSS are formulated on understanding time series complexity 

such that an FDSS could be designed to adaptively support forecasters 

based on task complexity. A preliminary link between time series 

complexity and DSS capabilities was established in17 which found that 

use of a simple DSS improved forecaster performance in turbulent and 

complex markets. The challenge, however, is that our understanding 

of DSS design characteristics, as they relate to time series complexity, 

is quite dispersed and very few mechanisms currently exist to 

comprehensively identify series complexity. This is an effective point of 

departure for our study for which the central issue is the need for 

identification of series complexity as a necessary pre-condition to 

framing adaptive FDSS. 
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2.2. Time series complexity 

Drawing parallels from general decision making literature which 

finds that task-related complexity influences decision makers' 

strategies,18,19 information processing behaviors,20 DSS use,17 and 

decision outcomes and performance,19,21 one may logically suppose 

that complexity of a time series will have similar effects in forecasting. 

However, the lack of a well-defined and validated approach to 

identifying series complexity has limited our understanding of the 

implications of complexity for design and use of FDSS, related 

research, and forecasting practice. 

A small but consistent body of forecasting literature, however, 

provides useful insights into how and why time series complexity 

might impact forecast outcomes. Information seeking and processing 

vary with complexity of cues embedded in the task.20 Simple tasks 

require processing of fewer cues and, as such, place lower demands on 

decision makers' cognitive resources. In contrast, complex tasks cause 

decision makers to conserve cognitive resources by processing fewer 

cues.22 Features of time series (such as direction of trend, presence of 

variability) are task cues that can potentially condition forecaster 

behavior and performance, evidence for which does exist in the 

forecasting literature. For example, non-linear trend23 and the 

presence of randomness24 introduce systematic bias in the forecasting 

process. Forecasters also tend to dampen both increasing and 

decreasing trends25 and are particularly confused by the latter26 or by 

series with no perceptible trends.27 The presence of complex seasonal 

and cyclical patterns seems to bemuse forecasters, leading to lower 

forecast accuracy.28 The aggregate impact of these characteristics 

creates effects, such as sub-optimal use of knowledge, similar to those 

observed with complex tasks. In other words, these features interject 

challenges in the forecasting process. 

When facing complex tasks, forecasters may become 

conditioned into unwittingly relying on compensatory decision 

processes. They become frugal with cognitive resources and simplify 

the task by eliminating alternatives and processing limited 

information.29 In low complexity domains, however, they arrive at 

correct decision strategies expeditiously and consistently.18,19 While 
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some studies have found such compensatory processes to result in 

time-savings without noticeable loss in decision accuracy,30 they 

produce inconsistent results.18,31 Such effects may lead forecasters to 

overlook useful cues or to classify cues as random variations.26 

Forecasters also employ different heuristics for trended and un-

trended series where their approach to the former, often considered 

more difficult, is influenced by the extent of correlation between 

cues.27 Such anchoring is illustrative of compensatory practices. 

Outcomes for complex tasks have largely been examined in 

terms of the cumulative effect of task cues, related decision 

strategies,32 and use of decision aids.33 Findings from numerous 

domains such as auditing34 and consumer choice35 confirm that task 

complexity results in lower decision accuracy. There are, however, 

some indications that expertise and environmental factors can reverse 

these effects. Skill19 and motivation36 of decision makers can stimulate 

them in difficult situations, potentially improving outcomes. Similar 

contradictory effects are evident in forecasting where some studies 

find experts to be better at applying domain knowledge1 while others 

find novice forecasters to be as accurate as experts.37 Outcomes also 

improve when DSSs fit task needs. Although little direct evidence is 

available within the context of complexity, judgmental forecasters do 

benefit from use of FDSS38 and by the manner in which the forecasting 

task is presented.1 For instance, FDSSs improve forecast accuracy by 

increasing the slope of analysts' forecasts while decreasing variation39 

and by reducing inconsistencies in outcomes, underscoring decision 

makers' tendency to smooth to expectations.40 

The discussions above highlight the confounding processes that 

underlie complex forecasting tasks. Formalizing these findings for 

improved research and practice, however, requires simple forecasting 

tasks to be distinguishable from complex ones. The lack of protocols to 

create such distinctions warrants development of a complexity scoring 

technique that can provide a common base from which to study effects 

of complexity. The next section describes one such protocol. 
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3. Features: the context for time series 

complexity 

Most forecasting studies have focused on a small set of features 

when characterizing time series. Studying combined effects of an 

expanded set of series features on accuracy, while challenging, is 

necessary as features rarely exist in isolation and may have 

compensatory, degenerative, or worse yet, random interactions. An 

underlying process that produces a stable two-parameter linear 

trended series, for instance, may be exponentially confounded by the 

level of variation generated by contextual event-instabilities. Yet, by 

focusing on overall non-event segmented trend effects, the impact of 

these additional features may be overlooked, possibly to the detriment 

of forecast accuracy. A complexity schema based on a more inclusive 

set of features could suggest decision strategies and FDSS capabilities 

that align better with the task at hand. Use of expanded feature sets 

for complexity classification is also consistent with the call by,41 hereon 

referred to as G&W, to develop a formal characterization of time series 

to aid judgmental forecasting and “draw firm practical conclusions 

from research in this area” (p. 151). 

G&W suggest a comprehensive definition of time series 

complexity along three feature categories: (1) complexity of the 

underlying signal including seasonality, cycles, and trends; (2) level of 

noise within which the structured signal may be buried; and (3) 

instability of the underlying signal captured in sudden changes such as 

level discontinuities. This provides a useful platform upon which to 

propose a feature-based complexity schema. To do so, a well-

established and validated set of features capturing the range of series 

characteristics is necessary. We identified such a feature set in,42 

hereafter referred to as C&A. 

3.1. The Rule-Based Forecasting feature set 

C&A generated the most extensive and well-validated set of 

time series features published in peer reviewed literature. Their study 

presented the Rule-Based Forecasting (RBF) system, an FDSS that 

relies on 18 features of time series to combine forecasts from four 

accepted forecasting methods: Random Walk (Naïve 1), OLS Linear 
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Regression, Holt's two parameter exponential smoothing (ARIMA 

[0,0,2]), and Brown's exponential smoothing. These initial set of C&A 

features were validated and extended in studies such as,43,44,45 thereby 

establishing strong theoretical and empirical foundation over two 

decades. 

RBF rules relied extensively on forecasters' domain knowledge 

and, as recommended in the empirical literature, were designed to 

allow forecasters to integrate this knowledge as input to the 

forecasting process. RBF features encompassed all three trait 

categories proposed in the G&W framework. For instance, features 

such as trend, seasonality, and presence of general cycles correspond 

to underlying signal. Traits such as variation around trend, changing 

trend, and suspicious pattern align with noise around the underlying 

signal. Finally, features such as outliers, level discontinuities, and 

unusual last observations capture instabilities underlying the 

generating process. RBF features, then, empirically captured what was 

conceptually proposed in G&W. Of these 18 features, our study uses 

14 (see Appendix A) that, a priori, were deemed essential for 

developing a robust CST. c Next, we describe the development of the 

CST and its validation using both holdback and structured judgmental 

forecasts. 

4. Development and validation of the rule-based 

CST 

4.1. Overview of CST development process 

For development and validation of the CST, we relied on the 

data and rules developed for the RBF system and presented in C&A 

and.46 Three elements were culled from these two sources: (i) 126 

time series from M-competition data48 as used in these studies, (ii) 

feature codings for each of these series, and (iii) error measures for 

forecasts from two methods, RBF and Combining Ad for each series. To 

this end, the 126 series and related meta-data provided the critical 

“wind tunnel” data for benchmark comparisons49 (p. 279). Seventy 

four of the 126 series were quasi-randomly selected for development 

and refinement of the CST (development data set). Series ending in 2, 
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3, 5, and 6 were in this group. The remaining 52 series (ending in 4, 

7, and 8) were held back to validate the CST (holdback data set). 

Using data from46 and C&A was beneficial for several reasons. 

First, C&A had coded each of the 126 series along the 18 features, 

thus providing a validated set of feature codings. Inter-rater reliability 

between the authors was high at 89%,46, p. 1403 and differences were 

reconciled to yield a consistent set of series characterizations. Second, 

the feature codings were validated in several extensions.43,44,45 Third, 

forecast errors for RBF and Combining A provided a priori validated 

benchmarks for refinement and sensitivity analysis of the CST during 

development. The assumption that complex series will have lower 

forecast accuracy than simple ones formed the logical basis for 

calibrations and directional hypothesis formation and testing. 

The CST evolved over two phases. In the Development Phase, 

rules for coding complexity were derived and refined using the 74 

series in the development data set. The final forecasting error 

measures presented in later sections for this data set were generated 

only after a theoretically defensible rule set was identified. Rule 

refinements, discussed later, were conducted on this same series set. 

Upon completion of development, the Validation Phase was executed, 

wherein the CST was tested on the 52 holdback series. The final CST 

was a rule-based scoring schema that adjusts the score of a series 

based on its features and generates a customized complexity score for 

each series. Such rules could be easily integrated into any FDSS or be 

applied judgmentally by forecasters. Generating an aggregate score 

for time series may appear to contradict the extensive body of 

research that supports decomposition of forecasting tasks. However, 

we view the use of aggregate score as a precursor to forecast 

generation i.e. the complexity score can signal the difficulty of the 

series and signal the features that contribute to this complexity while 

decomposition is a subsequent step to deal with complexity when 

generating forecasts. 

CST scoring is weighted, dynamic, and independent. It is 

weighted as each feature contributes to the score but some do so 

more than others. It is dynamic because the score is modified 

incrementally as series features are identified. As such, the score for a 

series with more features will have more modifications, logically 
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leading to a higher complexity score. Finally, it is independent as there 

is no starting point in the rule set i.e., as long as the same features 

are identified, two processes will arrive at the same score irrespective 

of which feature is considered first. These rules, presented in Appendix 

B, are discussed next. 

4.2. Determination and application of the CST rules 

A variety of approaches are available to infer rules. One could 

statistically infer rules from actual data, or generate rules from 

practitioner/expert surveys, literature review, and collaborative 

scoring, or from existing rule sets within the same domain. In using 

C&A's RBF as our developmental framework, we used the last 

approach to obtain initial rules for the CST from the RBF rule set. C&A 

presented RBF as an expert system consisting of 99 “IF…THEN…” rules 

that use judgment to combine forecasts from four statistical 

forecasting methods. Their 18 time series features were used to 

weight forecasts from these methods, yielding combined forecasts 

customized according to characteristics of the series. The rule below 

from C&A is representative of how the RBF rules were structured: 

RULE 45: Unstable Recent Trend. IF there is an unstable recent 
trend, THEN add 20% to the weight on Random Walk and 

subtract it from Brown's and Holt's.e 

C&A relied on protocol analyses of experts, evidence from 

empirical literature, and comparison of forecasts from multiple 

benchmark methods to develop, refine, and validate RBF rules. These 

rules were subjected to subsequent validation in several studies.43,44,45 

RBF rules, then, captured forecasting best practices in a robust 

knowledge base and were a fitting starting point for identifying CST 

rules. The following approach was applied to generate CST rules: 

4.2.1. RBF rules related to Random Walk 

An initial set of CST rules were derived by adapting all RBF rules 

that shift weight to Random Walk from other component forecasting 

methods. Typically, this occurs under conditions of instability or 

uncertainty.42 For instance, when causal forces are unknown or are 

known but conflict with basic and recent trend, RBF rules flag the 

https://doi.org/10.1016/j.dss.2015.12.009
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series as uncertain and shift emphasis to the Random Walk while 

reducing weights from other component methods. More significantly, 

the magnitude of such shifts varies by the nature of instability or 

uncertainty. For example, signal-related uncertainty, e.g. changing 

basic trend, leads to a greater shift towards the Random Walk as 

opposed to structural instabilities such as level discontinuity. RBF rules 

were converted to CST rules as follows. For every original RBF rule 

that increased the weight on Random Walk and reduced from other 

component methods, a new complexity rule was created. For each CST 

rule, the complexity of a time series was reduced or incremented by 5. 

For instance: 

Original RBF Rule 40: IF Causal Forces are unknown, THEN 
add 5% to the weight on Random Walk and subtract it from that 

on Regression Trend estimate. 

was modified to: 

Complexity Rule 1: IF Causal Forces are unknown, THEN add 
− 5 [minus 5] to the Complexity Score of the series.f 

Incrementing by 5 was judgmentally determined and may well 

have been 1 or 10. However, increments of 5 generated sufficient 

variation across series to facilitate separation of time series into simple 

and complex for later experimental validations. Furthermore, using 

consistent adjustments of 5 across all rules prevented unintentional 

biasing of the scoring system. Such equal weighting further enhances 

robustness of the schema through its uniform application while 

supporting the Occam's razor principle of simple over complex 

methods. Other scoring weights were tested but yielded outcomes that 

did not optimize on validations and, as such, were discarded. Specific 

results for these can be made available as necessary. 

C&A developed rules for a short model, which generates 1-

ahead forecasts, and a long model, which generates 6-ahead 

forecasts. Interim forecasts are produced by blending these two 

models using a set of rules (#s 97, 98, and 99). The two models are 

identical with regard to the features of interest in this study. Similarly, 

separate rules were developed for forecasting levels and trends. These 

rules mostly differed with regard to the weights assigned to 

component methods. As such, we did not develop separate rules for 

https://doi.org/10.1016/j.dss.2015.12.009
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short and long models or for level and trend forecasts, particularly as 

complexity was expected to affect both these estimates similarly. 

Appendix B presents the eight (CRules 1–8) complexity rules 

generated. Rules are organized around the three trait categories 

proposed by G&W. 

4.2.2. Identification of additional complexity rules 

The eight rules exposed gaps related to features known to 

contribute to uncertain or unstable conditions — functional form, short 

recent run (recent run not long), and coefficient of variation about the 

trend. This gap is further highlighted by the fact that C&A used these 

features in their rule set, not to assign weights to component methods 

but rather to transform the original time series or their forecasts. In 

doing so, C&A demonstrated these features to have implications for 

uncertainty or instability. As such, three additional rules were 

developed as follows. 

a. Functional form 

According to the transformation literature, specifically the Box–

Cox family of transformations, the functional form of a series is 

multiplicative or additive based on trend-related motion. C&A also 

adopted this binary assignment. Essentially, two conditions identify a 

series as multiplicative: 

• Sectional variation differences: The variation of the series is, by 

a particular section of the overall time series, related to the 
trend or level of the series. In the continuous, as opposed to 

discrete, case this suggests that there is a functional, dynamic, 
link between a series trend and its variation. 

• Trajectory changes: The other condition for a multiplicative 

series is rapid growth or decay of the series. Consistent with 
C&A, we hesitate to use the term exponential growth or decay 

as sometimes this suggests testing for an exponential fit to 
rationalize the transformation. 

Series that do not match the above conditions are considered 

additive by default, suggesting that forces act on the series in a way 

that they produce constant motion in either direction. C&A recommend 

the log (ln) transformations for multiplicative series as such 

https://doi.org/10.1016/j.dss.2015.12.009
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transformation damps the trajectory of the series, allowing for easier 

feature detection. 

For illustration, Fig. 1 below presents two series and their log 

transformations. Series 106 was coded as additive by C&A as the 

conditions for an ln transformation were not evident for this series. Log 

transforming that series does not modify it sufficiently to improve 

feature identification or forecasting process, that is to say it maintains 

the same “noisy” profile. In contrast, series 86 was judged by C&A to 

be a multiplicative with a trajectory change around time period 9, 

making it a candidate for ln transformation. The transformation levels 

off the series, thereby simplifying feature identification, particularly 

with respect to causal forces underlying the generating process. Series 

coded as having an additive functional form were identified as more 

complex to forecast. As such, CRule 9 was inferred as: 

Complexity Rule 9: If the Functional Form of a series is 

additive THEN add − 5 to the Complexity Score of a series. 

 
Fig. 1. Original and log transformation of additive and multiplicative series. 

  

https://doi.org/10.1016/j.dss.2015.12.009
http://epublications.marquette.edu/
http://www.sciencedirect.com/science/article/pii/S0167923615002304#f0005


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be 
accessed by following the link in the citation at the bottom of the page. 

Decision Support Systems, Vol 83 (March 2016): pg. 70-82. DOI. This article is © Elsevier and permission has been granted 
for this version to appear in e-Publications@Marquette. Elsevier does not grant permission for this article to be further 
copied/distributed or hosted elsewhere without the express permission from Elsevier. 

14 

 

b. Long recent run 

C&A identify a series as having a long recent run if the period-

to-period movement for the last six observations is in the same 

direction. A long recent run suggests recent stability in the trajectory 

of the series without which historical patterns are not strong enough 

for accurate extrapolation. Although C&A's Rule 44 related to long 

recent run does not modify weights for the Random Walk, their 

empirical evidence suggested that a series lacking a long recent run 

would be more complex to forecast compared to one that has recent 

stability. The following rule was developed in response to this 

argument. 

Complexity Rule 10: If the Recent Run is Not Long THEN add 

− 5 to the Complexity Score. 

c. Variation about the trend 

Coefficient of Variation (CV) about the trend represents 

standard deviation of the series divided by mean of its linear 

regression trend. The CV is used in RBF to estimate parameters for 

Brown's exponential smoothing and not to assign weights to 

component methods. C&A suggest that when there is a high degree of 

variation about the trend (CV > 0.9),g uncertainty is high. Considering 

this, one might infer that any rule developed for this feature should be 

designed to flag a series as being more complex to forecast. In other 

words, if a rule for CV existed in RBF, it might read as: 

IF the Coefficient of Variation about the Trend > 0.9, THEN 

increase the weight on Random Walk and reduced it from Linear 

Regression, Holt's and Brown's. 

This, in fact, appears contrary to judgmental processes that 

would suggest fitting trend lines to simplify, maybe with satisficing 

outcomes, the forecasting process. Shifting the weight to Random 

Walk, in this case, would reproduce the erratic pattern reflected in the 

underlying series rather than projecting the underlying trend of the 

series, which may be more important for a series with high variation. 

As such, a rule opposite to the above would be more suited: 

https://doi.org/10.1016/j.dss.2015.12.009
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IF the Coefficient of Variation about the Trend > 0.9, THEN 

reduce weight on Random Walk and shift it to Linear Regression, 

Holt's and Brown's Exponential Smoothing. 

thereby suggesting the following complexity rule: 

Complexity Rule 11: If Coefficient of Variation about the 

Trend > 0.9 THEN add + 5 to the Complexity score of the 

series. 

This rule may initially seem anomalous as it reduces the 

complexity score when a series has high trend-related variation. 

However, the underlying assumption relates to the manner in which 

processing of extreme variation needs to be simplified by allocating 

weight to the trended methods and reducing it from Random Walk. 

This supports the satisficing adjustments that become necessary when 

there is no clear evidence that detailed feature decompositions will be 

effective in improving forecast outcomes. 

d. Number of observations 

Short series have insufficient observations to capture historical 

patterns needed to understand the series and, as such, are associated 

with higher forecast errors when compared to longer series. To identify 

the threshold that separates short and long series, we split the 72 

series in the development data set along median number of 

observations and calculated error measures for short series, i.e. series 

with number of observations below the median, and long series i.e. 

those above. Specifically, Relative Absolute Errors (RAEs)h for RBF and 

Combining A were generated only for 6-period-ahead forecasts as 

effects were expected to be more pronounced for longer horizons than 

for shorter ones. The split along the number of observations was then 

iteratively lowered from the median until there was a marked lowering 

of the p-values for the error measures. This occurred at number of 

observations of < 13. As illustrated in Table 1 below, the p-values for 

the differences were relatively high for short and long series for the 

median split. However, for series with less than 13 observations, the 

error significantly increased as compared series with 13 or more 

observations. Based on this, the following complexity rule was 

developed: 

https://doi.org/10.1016/j.dss.2015.12.009
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Complexity Rule 12: If the Number of Observations in a series 

is < 13, THEN add − 5 to the Complexity score. 

Table 1. Results from calibration on number of observations.* 
 

RBF 6-ahead 
RAE 

Combining A — 6 yr. 
RAE 

  

 
Median split # of obs. < 13 Median 

split 

# of obs. 

< 13 

Short 
series 

0.59 0.93 0.71 0.85 

Long series 0.64 0.57 0.72 0.71 

p-Values* 0.80 0.02 0.94 0.09 

*The p-values reported are directional from Wilcoxon/Kruskal–Wallis Rank Sum test. 

5. Results from development and validation 

5.1. Results from development data set 

The development data set series (72) were scored using the 12 

CST rules. Based on the feature profile, an aggregate complexity score 

was generated for each series. An initial score of 0 was assigned to 

each series. The presence of a feature adjusted the score as 

prescribed by the rule. For instance, if an anomaly exists between 

basic and recent trends, 5 would be deducted from its complexity 

score (CRule 2). As rules most often subtracted from the score, most 

series had a negative complexity score. Series with the lowest 

negative scores were, then, most complex. Complexity scores ranged 

45 units, from − 40 to + 5.i Scores for the 72 series demonstrated 

reasonable symmetry as there were no box-plot outliers for the scores, 

i.e., no values outside the ± 1.5 Tukey-whiskered inter-quartile range 

produced using the SAS/JMP v.10.2. Mean complexity score was − 8.4 

and the median, − 5, further supporting the relative symmetry and 

internal validity as major outliers or marked asymmetry are concerns 

for most calibrations. 

5.1.1. Partitioning development series by complexity 

It is not the intent of the CST to prescribe a series as simple or 

complex but rather to generate a complexity score for each series. 

Such categorizations are domain-specific and require further research. 

However, some classification was necessary in order to determine 

https://doi.org/10.1016/j.dss.2015.12.009
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effectiveness of the CST and validate it using benchmark forecasting 

methods. For this, a simple partitioning of the series into two 

categories, simple and complex, was reasonable considering the 

foundational nature of this work. Although both mean and median 

could be useful in creating such partitions, the mean was preferred for 

several reasons. First, using the median as a classifier may bias 

validations based on median error measures (e.g. median RAEs). 

Second, as the complexity scores are reasonably symmetric, there are 

likely no classification differences whether using the mean or the 

median complexity score as a partition. Finally, in the sample of 126 

series, only about 20 series had more than two instability causing 

features, 100 series had low uncertainty (CV < 0.2), and 22 had 

unknown casual forces. As such, a larger number of series were 

expected to be simple. Using the median for partitioning would split 

the sample equally and artificially create groupings at odds with the 

population profile. The mean rounded to the next whole unit of 5, 

then, was a better criterion. Specifically, series with a complexity score 

equal to or higher than − 10 was coded as simple while those lower 

were coded as complex. Given this threshold, in the development data, 

23 series were classified as complex and 49 as simple, essentially 

yielding a 1/3–2/3 split as shown in Table 2.j This split in favor of 

simple series is consistent with empirical results from studies such 

as.42,48 

Table 2. Profile of simple and complex series from development data set. 

Complexity scores Complex 
(n = 23) 

Simple 
(n = 49) 

p-Value for the 
difference 

Mean − 22.8 − 1.6 < 0.0001[Welch test] 

Median − 20.0 0.0 < 0.0001 [Wilcoxon Rank] 

95% conf. 
interval 

[− 25.9 to 
− 19.7] 

[− 3.1 to − 0.2] No CI overlap 

Table 2 shows simple and complex series to be nearly 

symmetric as the mean complexity scores are close to the medians. 

Again, for the complex-simple split, there were no box-plot outliers. 

Additionally the 95% parametric confidence intervals are placed in the 

Cartesian coordinate space with a separation that is a multiple of the 

average widths of the intervals. In sum, all measures suggest that 

simple and complex series are significantly, and meaningfully, distinct. 
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5.1.2. Error measures for the development series 

Armstrong & Collopy50 recommend the use of multiple 

independent error measures to evaluate performance of forecasting 

techniques. In consideration, our results were assessed using two 

measures — RAEs and Absolute Percentage Errors (APEs). RAEs are 

the only measures used and reported in50 and have evolved as 

definitive measures for judging forecasting models. Although RAEs are 

sufficient to provide validation for the CST,51 following the best 

practice of using multiple error measures for completeness, results 

were also evaluated using APEs. The APE is inadequate as a sole 

measure for evaluating forecasting effectiveness as a low APE and a 

high RAE will usually disqualify the forecasting model under 

consideration. Following this, the RAE was used to assess effectiveness 

of the CST while the APEs provided secondary level of validation. As 

such, APEs are reported in Appendix C, Table A. 

Benchmark comparisons were conducted with RBF and 

Combining A as RAEs and APEs were available for these methods 

from.46 In C&A, both methods outperformed other benchmark 

methods. Furthermore, RBF outperformed Combining A. It was 

expected that if the CST had captured complexity with good precision, 

forecast errors for complex series from RBF and Combining A would be 

higher than those for simple ones. Tables 3 summarizes error 

measures for the 72 development series for RAEs. Table A in Appendix 

C provides results for APEs. Following recommendations from,53 all 

error measures were winsorized using the following replacements: if 

RAE or APE is < 0.01 ➔ 0.01 or if RAE or APE is > 10 ➔ 10 for all h. 

Additionally, Wilcoxon Kruskal–Wallis Rank Sum test Chi2 version for 

inference was used because outliers and asymmetries are still possible 

even though winsorizing bounds the data [0.01 and 10]. All measures 

reported were medians of winsorized errors for 1- and 6-ahead 

forecast horizons. Finally, for p-values, all tests consistent with the a-

priori directional effects are one-tailed and shaded in Table 3 and 

Table A in Appendix C. Unshaded p-values are two-tailed. 
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Table 3. Median RAEs for development data set.* 

 
*All p-values are directional one-tailed tests. 

Results showed lower forecast accuracy for complex series on 

both RBF and Combining A for 1- and 6-year ahead forecasts. These 

results are compelling as neither of the benchmark methods are pure 

judgment and, as such, are free from human bias and inefficiencies 

derived from complex tasks. The more immediate interpretation of the 

results, however, is that on the development series, CST rules 

generated a classification of simple and complex time series tasks that 

produce the expected accuracy profiles. 

5.2. Results from validation data set 

Next, effectiveness of the CST was assessed on the 54 series 

held back as the validation data set. The 12 CST rules were applied to 

this set with no modifications. Additionally, the same cutoffs as used in 

the development data set were used to segregate simple series from 

complex, i.e., series with complexity score between + 5 and − 10 were 

categorized as simple while those lower than or equal to − 15 were 

coded as complex. Using these parameters, 22 series in the test 

sample were classified as complex and the remaining 32 as simple. 

This 1/3–2/3 split is consistent with the development data set. 

Benchmark comparisons for the validation data set were 

conducted across a larger set of methods. First, similar to the 

development data set, both RBF and Combining A were part of the 

benchmarks. Second, established forecasting methods, specifically the 

Random Walk (or Naïve), Holts' exponential smoothing, and OLS 

Linear Regression models were added for a more robust validation. 

There is no support for the belief that the Random Walk produces a 

consistent directional split for the APE. However, the same cannot be 

said for the Linear Regression or Holt's as these models are two 

parameter models and, unlike the Random Walk, are parameterized 

from the entire data set and not merely from the last observation. As 

such, it is plausible that performance of these benchmarks could differ 
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with respect to complexity. To explore this aspect, we proffer following 

hypotheses for additional non-RBF validations. 

H1. Median RAEs for RBF forecasts will be higher for complex 
series as compared to simple series on 1- and 6-period-ahead 

horizons. 
H2. Median RAEs for forecasts from Combining A will be higher 

for complex series as compared to simple series on 1- and 6-
period-ahead horizons. 
H3. Median RAEs for forecasts from OLS Regression will be 

higher for complex series as compared to simple series on 1- 
and 6-period-ahead horizons. 

H4. Median RAEs for forecasts from Holt's exponential 
smoothing will be higher for complex series as compared to 
simple series on 1- and 6-period-ahead horizons. 

Table 4 summarizes findings related to the above hypotheses. 

Table B Table 4 summarizes findings related to the above hypotheses. 

Table B in Appendix C provides related hypotheses and results for 

APEs. Again, results are consistent with the a-priori directional 

expectations. For H1, there is strong and consistent evidence that for 

both horizons, complex series are more challenging to forecast, even 

when using an extensive knowledge-based system such as RBF or a 

composite of methods (Combining A). All results presented in the 

tables confirm that the CST provides a robust and sensitive schema for 

scoring the complexity of time series. 

Table 4. Median RAEs for holdback series on all benchmarks.* 

Horizons Benchmark 

methods 

Complex series 

(n = 22) 

Simple series 

(n = 32) 

p-Values 

All horizons Random Walk N/A N/A N/A 

Linear Regression 1.25 0.53 .0004 

Holt's 0.78 0.36 < .0001 

1-Period 
horizons 

Random Walk N/A N/A N/A 

Linear Regression 1.85 0.90 0.058 

Holt's 1.18 0.19 0.017 

Combining A 0.79 0.61 0.121 

RBF 0.99 0.47 0.006 

6-Period 
horizons 

Random Walk N/A N/A N/A 

Linear Regression 1.28 0.42 0.017 

Holt's 0.80 0.27 0.025 

Combining A 0.66 0.65 0.427 

RBF 0.86 0.43 0.045 

https://doi.org/10.1016/j.dss.2015.12.009
http://epublications.marquette.edu/
http://www.sciencedirect.com/science/article/pii/S0167923615002304#t0020
http://www.sciencedirect.com/science/article/pii/S0167923615002304#t0055


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be 
accessed by following the link in the citation at the bottom of the page. 

Decision Support Systems, Vol 83 (March 2016): pg. 70-82. DOI. This article is © Elsevier and permission has been granted 
for this version to appear in e-Publications@Marquette. Elsevier does not grant permission for this article to be further 
copied/distributed or hosted elsewhere without the express permission from Elsevier. 

21 

 

*As obtained from Collopy [46] and C&A. 

For H2, H3 ;  H4, related to Combining A, OLS Regression and 

Holt's, hypotheses were only developed for RAEs as it is our primary 

error measure. However, all APE results are presented for 

completeness in Table B (Appendix C). Results are as expected across 

all three benchmarks. Median RAEs for all confirm that forecast 

accuracy for complex series is worse than for simple ones. These 

forecasting methods are each unique in terms of the underlying 

generating processes, not merely from each other but also from RBF. 

Specifically, both the individual models such as OLS, Holt's, and 

Random Walk as well as combined models i.e., Combining A and RBF, 

provide independent confirmatory evidence for effectiveness of the 

CST as well as evidence that complexity impacts forecasting practice. 

Overall, results for the RAEs are definitive — the CST produces a 

usable technique for scoring series complexity based on the general 

expectation that simple series are less demanding than complex ones. 

6. Judgmental validation of CST — preliminary 

evidence 

The CST was further validated using an experiment that asked 

forecasters to produce structured judgmental forecasts for series 

classified by the CST as simple or complex. The process was structured 

as participants judgmentally applied knowledge from RBF to generate 

forecasts for assigned series. As such, the forecasts were not 

generated using pure judgment but rather by blending judgment with 

statistical methods, a best practice supported by the judgmental 

forecasting community. For simplicity, this approach is referred to as 

“judgmental” hereon. Note that forecasters were not asked to assess 

series complexity, only to generate forecasts. In fact, they were 

unaware of any complexity classifications. 

The experiment was conducted with 14 participants and was 

designed to address the question — Do judgmental forecasts for 

simple and complex series, as scored by the CST, follow the 

hypothesized pattern i.e., lower accuracy for complex series? The 

intent was not to provide insights into judgmental forecasting of 

complex series but to provide alternate confirmatory evidence 
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validating the CST. The study was conducted after parameters of the 

CST were finalized and results were confirmed on the validation data 

set. Participants were advanced undergraduate students enrolled in a 

Business Forecasting course in Germany. They were trained in general 

forecasting knowledge and best practices, as captured in a simplified 

set of rules and features from RBF, and component forecasting 

methods in RBF. The average age was 22 and the gender mix was 

about 1/3 females and 2/3 males, typical for the gender mix in the 

program. All participants had the Excel™ and statistical skills to 

complete the experimental task. 

Twelve series from the validation data set described in previous 

sections were randomly selected, six each from the complex (series 

14, 27, 28, 37, 48, 177) and simple (series 54, 64, 104, 134, 138, 

144)k sets. Table 5 provides the complexity profile for these series. 

The 12 series were quasi-randomly assigned to the 14 participants 

such that each participant received two simple and two complex 

series. They were to produce 1- to 6-period ahead forecasts for each 

assigned series, yielding 336 [14 × 4 × 6] forecasts. Series 

assignments were adjusted to provide a 50/50 allocation of simple and 

complex series across the group. Both series allocations and forecast 

generation were conducted on the last day of the course. 

Table 5. Complexity profiles for series used for judgmental validation. 

Complex series 

 

Simple series 

 

Series # Complexity score Series # Complexity score 

14 − 25 54 − 5 

27 − 20 64 − 5 

28 − 30 104 − 5 

37 − 40 134 − 5 

48 − 20 138 0 

177 − 25 144 − 10 

Series assignments were controlled for order effects by first 

giving complex series to seven participants and simple to the 

remaining. Once these initial forecasts were delivered, the order was 

reversed. This created two test groups: Group I (n = 7): [complex, 

simple] and Group II (n = 7): [simple, complex], producing a total of 

336 forecasts, 168 each for simple and complex series. Controls for 

order effects were also factored. If, for example, Participant 1 was 
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paired for group work during the course with Participant 2, Participant 

1 received [simple, complex] and Participant 2 received [complex, 

simple]. 

All participants used a Visual Basic™/Excel based DSS to aid the 

forecasting process. This DSS is available from the authors without 

restriction on use. As has been practice in this course, participants had 

dedicated time to apply knowledge learned through the course to 

produce forecasts in the classroom, a computer lab. To do so, 2½ h 

was dedicated in the morning session followed by a mandatory break 

and a second session of 2½ h. Additional time was offered but was not 

used by any participant. 

6.1. Results from structured judgmental validation 

Forecast accuracy of participants was evaluated using 

winsorized Median RAEs and Median APEs as for earlier validations. For 

inference purposes, we used the Wilcoxon/Kruskal–Wallis Rank Sum 

Test, specifically the Chi2 version as programmed in SAS/JMP, v.10. 

Grade effects were also tested to determine whether students scoring 

in the top half of the assigned grades were of different caliber than 

students those in the lower half. Forecast errors, and errors by order 

and grade effects, are reported in Table 6 along with appropriate p-

values. 

Table 6. Median RAE and APE for judgmental forecasting results. 

Series 

blocks⁎ 

Judgmental 

forecasts 

 

Order effects test 

 

Grade effects test 

 

Complex 

series 

Simple 

series 

Simple: 

Complex 

Complex: 

Simple 

< Median > Median 

Median 

RAE 

1.22 0.61 0.860 0.831 0.796 0.898 

p-Value p-Value < 0.0001 p-Value 0.1799 p-Value 0.5824 

Median 

APE 

0.119 0.106 0.114 0.109 0.108 0.114 

p-Value p-Value 0.04625 p-Value 0.3390 p-Value 0.6286 

*The sample size for each test block is 168. 

Table 6 provides confirmatory evidence on effectiveness of the 

CST based on judgmental forecasting. Tangentially, the results also 
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provide preliminary evidence on effects of complexity on judgment as 

median RAEs for complex series are nearly twice those for simple 

series. Interestingly, using the Wilcoxon Signed-Rank as a directional 

test for Median RAE of 1.0 for the population, a Median RAE of 1.22 for 

complex series suggests that, when forecasting complex series, 

participants did worse than if they had just used Random Walk to 

produce forecasts. The related test of APE shows similarly significant 

results though the separation between error measures for simple and 

complex series is less profound as compared to RAEs. Table 6 also 

shows no evidence of order or grade effects. Finally, each participant 

was given the option to select any one series the difficulty of which 

was such that they felt the least confident in their forecasts. All series 

identified were complex. The p-value of this is < 0.0001, confirming 

that even for the recently trained, complexity is both recognizable and 

challenging. 

7. Implications for FDSS and judgmental 

forecasting 

Although the CST is preliminary, it is a crucial first step. Its 

implications are numerous, in particular for design of FDSS and for 

research in judgmental forecasting. These are summarized in Table 7 

below. 

Table 7. Summary of research opportunities related to CST and complexity. 

ID Research need Domain 

1 How will presentation of complexity information to forecasters 

influence their forecasting strategies and process? 

FDSS 

Judgment 

2 What adjustments need to be made to the CST to allow for 

short period (quarterly, monthly, weekly, hourly) data? 

CST 

3 What decomposition strategies are most suited to simple and 

complex time series tasks? 

Judgment 

Forecasting 

process 

4 To what extent do informative and suggestive guidance benefit 

and enhance forecaster strategies and mental models? 

Judgment 

FDSS 

5 In what ways do interface characteristics enhance or harm 

forecaster effectiveness on simple as opposed to complex time 

series tasks? 

FDSS 

Judgment 

6 What design and human factors must be considered for 

optimally identifying and presenting time series features to 

FDSS 

Judgment 
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ID Research need Domain 

forecasters? For instance, could big-data analytics be used to 

develop and visualize time series features? 

7 What sort of guidance and feedback are most beneficial for 

simple and complex tasks? 

FDSS 

8 How do these forms of guidance influence forecaster mental 

models and strategies? 

Judgment 

9 Can specifying confidence intervals for simple and complex 

tasks in FDSS design direct forecasters towards better 

adjustment practices? 

FDSS 

10 How does prolonged use of confidence intervals for simple and 

complex tasks modify adjustment behaviors? 

Judgment 

11 How does judgmental adjustment of simple series impact 

forecast accuracy as opposed to similar adjustment of complex 

series? 

Judgment 

12 Are FDSSs uniformly useful for supporting simple and complex 

tasks? If not, what capabilities are necessary for optimally 

supporting both? 

FDSS 

13 Do forecaster perceptions of the complexity of a time series 

align with those suggested by the CST? 

CST 

14 What additional rules might improve the efficacy of the CST? CST 

15 What additional features and feature combinations might 

improve the efficacy of the CST? 

CST 

16 Can the CST be delivered as effectively with fewer rules and 

features? 

CST 

17 Can integrating magnitude of features (e.g. level discontinuity) 

enhance CST efficacy? 

CST 

7.1. A framework for adaptive forecasting decision 

support systems 

This section elaborates on DSS enrichments possible through 

integration of CST, specifically the design of adaptive FDSS (AFDSS) 

that responds to time series complexity. Our intent is not to provide a 

technical design of AFDSS components, as has been done in.5,10 

Rather, considering the scope of this study, we focus on how the CST 

could feed into specific components of AFDSS. In essence, we specify 

the broad frameworks proposed by earlier studies to the context of 

FDSS. 
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Fig. 2 presents a conceptualization of FDSS built upon four well-

established phases of decision making and support — (i) problem 

recognition, (ii) solution formulation and rationalization of the 

proposed solution, (iii) implementing actions from alternative sets, and 

(iv) evaluating the realized outcomes [52]. These elements explicitly 

integrate forecasters' organizational, domain, and technical expertise 

with FDSS use and outcomes. The model suggests that the forecasters' 

cognitive mapping shapes, and is shaped by, their interpretation and 

knowledge of forecasting tasks. This determines how forecasters 

interact with the task, data, and analytical models when approaching 

the solution space. Forecasters' domain knowledge and conceptual 

decomposition paradigm coupled with FDSS guidance play a crucial 

role in evaluating and selecting alternatives. Finally, in an ideal design, 

forecasters' mental models can mature through active reflection on 

outcomes, FDSS feedback, and reformulation of the problem domain 

as necessary. The next few sections elaborate on the left side of this 

figure i.e., how the CST can enhance this experience by enabling 

adaptiveness in FDSS. 

 
Fig. 2. A conceptual model for adaptive FDSS design. 

7.1.1. Automate task cognition 

The CST offers a framework for a feature-based approach to 

task cognition. As a time series is input into the FDSS, automated 

feature detection routines, such as those described in C&A and,44 can 
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categorize time series based on complexity. This information about 

series complexity and its drivers could be made available to 

forecasters to allow them to draw upon relevant knowledge and 

strategies for forecast generation. This, however, raises interesting 

questions about forecasters' response to complexity-related 

information in early stages of the forecasting process. On the one 

hand, such information may enable forecasters to focus cognitive 

resources on relevant factors, but on the other, it may bias the 

judgmental processes, as through unwarranted observer effects.47 In 

executing such studies, then, care must be taken against biasing 

effects that run the risk of removing the forecaster's expertise from 

the process, something a well-designed DSS should prevent. Specific 

FDSS design elements that can positively focus cognitive resources 

and de-bias the process require exploration and testing. After 

determining a series to be more likely complex or simple, the FDSS 

could use the underlying series information to provide guidance on 

possible actions. For instance, it is empirically shown that in light of 

changing basic trend, forecasters often place more emphasis on 

smoothing methods such as Holt's and Brown's. This guidance can be 

made available to forecasters. Steering the DSS design process from 

conditioning to helpful guidance is the goal — a challenge for 

designers.9 

7.1.2. Restrict or expand solution formulation based on time 

series complexity 

Time series profiles can be used to adaptively restrict or expand 

forecasters' cognitive model during solution formulation. 

Restrictiveness is the “degree to which, and the manner in which, a 

DSS limits its users' decision-making process to a subset of all possible 

processes.”8 (pg. 52). The following three aspects of the solution space 

can be adapted to complexity (see12 for an excellent review of DSS 

restrictiveness): 

Support task decomposition according to complexity: Our 
working memories are limited53 and, as such, complex tasks 

broken into simple “chunks” are more effectively executed when 
compared to tasks not simplified thus.45 Decomposition is found 

to improve performance over unaided and intuitive judgment54 
by breaking down a complex task into sets of easier tasks that 
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are more accurately executed than the holistic task.12 Cognitive 
and information overload can be controlled by providing greater 

structure to the environment55 through decomposition strategies 
that simplify the domain. 

Although decomposition can be argued as being restrictive when 

its use is forced upon the decision maker,12 most often, an FDSS 
user may not focus on the benefits of task decomposition nor 

recognize how to proceed with it. To this end, we suggest that 
decomposition be implemented in both restrictive and decisional 
guidance mode. Specifically, we use the framework by45 who 

suggest that decomposition can be applied at three levels: 
transformation of problem space using characteristics of the 

forecasting task and domain; simplification of process, i.e., 
decomposing and understanding components of the forecasting 
process from problem formulation to forecast use;56,57 and 

decomposition for method selection i.e., applying forecasting 
knowledge and rules to selecting fitting methods. 

Transformation should be a restrictive feature in FDSS. The 

decomposition of time series into its features, when combined 
with effective displays, can enhance forecaster's ability to 
recognize meaningful patterns as opposed to random ones. So 

should be the case for simplification which could restrict early 
convergence on use of specific forecasting methods without 

adequate analysis and problem formulation. Finally, method 
selection could be implemented as decisional guidance. Users 
may be prompted with forecasts from multiple relevant 

methods, e.g. using RBF rules, to consider use of alternative 
methods and combining. Furthermore, suggestive guidance to 

on how to proceed with method selection and combination could 
be useful for simpler tasks. 

Restrict action on data and models according to task 

complexity: FDSS can make some processes easy to use while 
making other, less desirable ones, more challenging. 
Restrictiveness may be relaxed for simple tasks by increasing 

the range of available data and models. For instance, 
forecasters tend to replace missing or erroneous data with their 

own estimates rather than using estimates from quantitative 
methods.12 Such adjustments can be restricted, particularly 
when series are complex and domain knowledge is weak. 

Automating and, thereby simplifying, the application of ideal 
strategies can reduce effort associated with executing the more 

desirable ones56 and tendency to make damaging adjustments.58 
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Although restricting the range of models available to forecasters 
may be unwarranted and frustrating, under certain conditions 

when some forecasting models consistently underperform, FDSS 
may be designed to restrict availability of those models, 

especially for simple series. In contrast, a wider range of 
methods may be made available for complex series to support 
combining, which has demonstrated value in enhancing 

forecasting accuracy. In such cases, the success rate of specific 
methods on analogical series may improve choice of methods to 

be combined. 

Adapt FDSS display to task complexity: Because simple tasks 
create lower cognitive strain,29 performance on such tasks can 

be improved by increasing user awareness of forecasting cues, 
such as by displaying features underlying the time series, 
forecasts from component methods, and the forecasting process 

generating final outcomes. For instance, making available the 
long-term trend of a time series improves accuracy as it allows 

forecasters to overlook distracting patterns and apply 
knowledge consistently.59 Because decision makers tend to 
trade off accuracy in favor of cost efficiency,60 informative and 

suggestive guidance could be displayed for simple series such 
that the forecaster need not drill down to make satisficing 

decisions. As simple tasks impose less cognitive strain on 
forecasters, the processing of such displays will be less 
intrusive. In contrast, FDSS displays for complex tasks can be 

restricted because this same information presented to the 
forecaster can result in greater cognitive overload, strain, and 

over-reaction. Indeed, in complex task settings, decision makers 
ignore suggestive advice and focus on informative guidance.61 
To reduce such cognitive overload, information for complex 

tasks could be made available as layered, drill-down options. 
Such adaptive support can reduce information overload and 

related information processing challenges in the context of 
complex tasks.62 

7.1.3. Provide in-task guidance for simple tasks and post-task 

guidance for complex ones 

Decisional guidance is “the degree to which, and the manner in 

which, a DSS guides its users in constructing and executing the 

decision-making processes by assisting them in choosing and using its 

operators”8 (pg. 57). Guidance and feedback promote learning and 

behavior modification with the assumption that organizational 
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practices encourage such review. Broadly speaking, guidance can be 

offered to forecasters at two stages – during and post task execution – 

the former being critical to outcome accuracy and the latter as 

beneficial for fostering learning.12 Forecasters facing complex tasks do 

not have the time and cognitive resources to reflect adequately upon 

the impact of their actions on the forecasting environment63 and 

consequently, may fail to consider control actions. However, extensive 

feedback during execution of complex tasks can worsen information 

overload and frustrate users. As such, FDSS designers may benefit 

from focusing on post-execution feedback for complex tasks which 

improves decision quality64 and attainment of challenging goals. 

Holistic learning is possible, for instance, by supporting informative 

guidance with the ability to drill down to the components. 

Simple tasks, in contrast, are cognitively less demanding and do 

not require the same level of feedback and support as complex tasks. 

Consequently, in-task feedback may be less detrimental and could be 

designed to guide the user, for example by displaying features of time 

series and discussing their impact on forecasts, providing original 

series contrasted with series that have been cleansed of distracting 

features such as outliers and irrelevant early data, and by providing 

guidance in form of rules and relevant methods. As a case in point, 

RBF rules pertaining to a specific set of features could be displayed 

such that the user can recognize the knowledge that has gone into 

generating the forecast. 

7.1.4. Adapt outcome-related flexibility based on complexity 

Outcomes from FDSS are often adjusted to accommodate 

forecaster's domain knowledge as well as enhance ownership of 

outcomes. However, not all such adjustments improve outcomes.1 Two 

recommendations are proposed. 

Restrict where harmful judgment can be applied: When 
unrestricted, forecasters are free to apply judgmental 

adjustments at many levels in the forecasting process such as 
towards data to be used or excluded, models to be applied or 
ignored, and changes to decision outcomes, even when 

undesirable.12 While, on an average, such adjustments improve 
accuracy, studies have found specific circumstances in which 

these can be harmful. For instance, in their examination of over 
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60,000 forecasts,65 found that small adjustments, and those 
that are optimistic, are less likely to improve forecast outcomes. 

Few studies, however, tie these findings specifically to 
complexity. In ongoing extensions of this study, participants 

make smaller, positive adjustments to simple series as opposed 
to more complex ones. In doing so, they end up harming 
accuracies of simple tasks as opposed to complex ones. As such, 

while65 did not make an explicit link between series complexity 
and the nature of adjustments, preliminary evidence from our 

studies suggests the potential. Assuming that such linkage 
exists, FDSS can restrict harmful adjustment based on 
complexity drivers and also guide forecasters to specific 

forecasting processes where adjustments may be beneficial e.g. 
adjustments to data and models as opposed to outcomes. 

Restrict to impose standards and best practices: Restrictions can 

be applied when organizational best practices and standards 
need to be supported in the forecasting process. For instance, a 

critical issue in supply chain forecasting is the bullwhip effect of 
adjustments as a forecast moves down the supply chain.66 
Overly optimistic and large adjustments for simple series, for 

example, can continue to get compounded along the supply 
chain. Embedding practices that constrain the magnitude and 

directionality of adjustments in FDSS may potentially reduce 
risks associated with overcompensating for each link in the 
supply chain. These restraints may be in the form of boundaries 

or confidence intervals defined by the nature and complexity of 
series being presented to the forecaster. This is particularly true 

for complex series where forecasters may overemphasize 
random patterns in the data or for simple series where 
forecasters may want to overcompensate for seemingly 

aggressive forecasts. 

7.2. Implications for judgmental forecasting 

The use of specific time series features in the CST expands 

opportunities for studying individual and cumulative effects of series 

features on information processing behaviors of forecasters and for 

executing condition analysis.42,44 Similarly, series complexity should 

impact adjustment behaviors. We have observed in ongoing studies 

that judgmental adjustment of complex series seems not to harm 

forecast accuracy to the same extent as that of simple ones and could, 

in fact, improve accuracy for complex series. These preliminary 
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findings need further examination. FDSS studies tend to interlace task 

needs and technology capabilities in ways that make it a challenge to 

disengage the two. The CST provides a way of untangling the two and 

promoting a detailed examination of factors such as trust in 

forecasts,67 organizational and individual use of forecasts, and 

adjustment behaviors under varying conditions.68 

This study raises relevant, and perhaps troubling, questions 

about meaningful use of FDSSs and judgment for varying complexity 

levels. Many studies (e.g.69) suggest that DSSs are better for uncertain 

and complex tasks while human-centric approaches may be preferable 

for simple but equivocal and ambiguously defined tasks. One might 

question whether, at some point, complexity cannot be meaningfully 

dealt with by FDSS and requires greater forecaster intervention 

instead. In a similar vein, certain forecasting tasks may be simple 

enough that any judgmental intervention could destabilize accuracy. 

Might an inverted-U curve relationship exist between task complexity 

and forecast accuracy where complexity impacts judgmental processes 

and FDSS effectiveness positively up to a point but eventually, proves 

detrimental beyond? Moving forward on this frontier may be 

challenging but necessary to rationalize commitment of resources to 

support specific methods or FDSS. 

7.3. Considerations for enhancing and evolving the CST 

The CST is a first index of its kind. Its development is embedded 

in design science research with the intent of refining the IT artifact9 to 

solve pragmatic forecasting problems. As such, it will likely be a 

launching point for further research leading to refinements of our 

results. Most significantly, the complexity schema presented here is 

not defined around a particular domain, presenting numerous 

opportunities for domain-specific customization. Specifically, the 

twelve rules presented in Appendix B may benefit from domain-based 

calibrations, such as by modifying weights on specific rules or 

removing some rules altogether. For instance, domains that rely on 

recent consumer trends may find CRule 10 to be less relevant than 

more stable domains such as demographic forecasting. Similarly, 

public-utilities demand forecasting may find level discontinuities to be 

more destabilizing and prefer to increase the complexity score for that 
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rule. Forecasters from specific domains may also consider developing 

and calibrating rules for features prevalent in their industries. For 

instance, natural gas demand forecasters may prefer to give 

consideration to outliers as these often represent unusual demand 

days that providers may want to proactively model rather than 

suppress. 

The features represented in the twelve complexity rules are 

limited to 14. Since C&A categorization, these have been expanded to 

28 features by including features for seasonality and forecast 

horizon.52 Future research might explore the role of these additional 

features in improving precision of the CST and to develop and calibrate 

related rules. Other features may be considered for exclusion or more 

sophisticated representation in the schema. For instance, neither the 

C&A nor the CST rules consider contribution of the magnitude of an 

instability feature towards increasing the complexity of a series. A 

series with a small level discontinuity, for example, may be easily 

overlooked, both judgmentally and statistically, as compared to one 

with larger magnitude. The possibility of moving from a binary feature 

set to a scaling measure may allow for more contextual application of 

the CST. Whether this approach leads to significant gains in efficacy 

remains to be determined. 

Are series classified as simple or complex by the CST perceived 

similarly by forecasters? Currently, our evidence is anecdotal and 

based on casual observation. For instance, for several participants, we 

observed extra periods of hesitation and increased eye movement for 

complex series but not for simple ones. Future research can formally 

capture such biological interpretations of complexity using techniques 

from biological sensors such as eye trackers to self-reported measures 

of difficulty around the series. Finally, the CST is based on RBF that 

was originally developed, calibrated, and validated on annual time 

series. While we presume that the CST rules would apply similarly to 

shorter period data such as monthly or quarterly series, feature and 

weight calibrations will be necessary for short period series as the 

underlying generating processes will, in all likelihood, be different. 

The CST presented herein is a stable, validated, robust, and 

fully disclosed technique that invites the possibility of creating AFDSSs 

that respond to the forecasting environment based on task complexity. 
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Fully disclosing development of the CST provides opportunities for 

further validation and refinement at many levels. Implications for 

judgmental forecasting and AFDSS design are numerous and, as such, 

the CST seeds a new stream of forecasting research on series 

complexity and supporting processes. 
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Appendix A. Features of time series from C&A used in the CST 

Feature 
categories 

C&A features 
used 

Description of featurea 

Instabilityb Suspicious pattern Series that show a substantial change in recent 
pattern. 

Unstable recent 

trend 

Series that show marked changes in recent trend 

pattern. 

Recent run not 
long 

The last six period-to-period movements are not 
in same direction. 

Near a previous 
extreme 

A last observation that is 90% more than the 
highest or 110% lower than lowest observation. 

Changing basic 
trend 

Underlying trend that is changing over the long 
run. 

Level 
discontinuities 

Changes in the level of the series (steps) 

Uncertainty Coeff. of variation 
about the trend 
> 0.2 

Standard deviation divided by the mean for the 
trend adjusted data. 

Direction of basic 
trendc 

The direction of the trend (up or down) as 
identified by fitting linear regression to the 

historical series. 

Direction of recent 

trend 

Direction of the trend that results from fitting 

Holt's exponential smoothing to the historical 
series. 

Trend Significant basic 
trend 

The t-statistic for linear regression is greater than 
2. 

Cycles 
expected 

Cycles Regular movement of the series about the basic 
trend. 
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Feature 

categories 

C&A features 

used 

Description of featurea 

Domain 
knowledge 

Causal forces The net directional effect of the principal factors 
acting on the series. Growth exerts an upward 
force. Decay exerts a downward force. Supporting 
forces push in direction of historical trend. 

Opposing forces work against the trend. 
Regressing forces work towards a mean. When 
uncertain, forces should be Unknown. 

Functional form Expected pattern of the trend of the series. 
Multiplicative and Additive functional forms were 
considered. 

Length of 
series 

Number of 
observationsd 

Number of observations in the series, not 
including the holdout data. 

aAdapted from C&A and Forecasting Principles site — 

http://forecastingprinciples.com/index.php/features-of-time-series. 
bOutliers and unusual last observation were additional instability features used in C&A. 

However, these were not considered in this study as these features were assumed to 

be adjusted prior to the forecasting process. 
cNote that uncertainty occurs when the basic and recent trends are not in the same 

direction. 
dNot an original C&A feature. 

Appendix B. CST rules 

Characterizations as in 
Goodwin & Wright41 

Complexity rules related to characterizations 

Complexity of underlying 

signal 

Levels of complexity may vary from stationary through 

linear trend, non-linear trend to no trend. 
CRule 1: IF Causal Forces are Unknown, THEN add − 5 

to the Complexity score. 
CRule 5: IF Basic Trend is not significant (Regression T-
Stat < 2.0), THEN add − 5 to the Complexity score. 
CRule 9: IF the Functional Form of a series is additive 
THEN add − 5 to the Complexity score. 

CRule 12: IF a Number of Observations in a series 
< 13, THEN add − 5 to the Complexity score. 

Level of noise around the 
underlying signal 

CRule 2: IF Direction of Basic and Recent Trends differ 
OR they agree but differ from Causal Forces, THEN add 
− 15 to the Complexity score. 
CRule 4: IF Series is Suspicious, THEN add − 10 to the 
Complexity score. 

CRule 8: IF the Basic Trend of a series is changing, 
THEN add − 15 to the Complexity Score. 
CRule 11: IF the Coefficient of Variation about the 
Trend > 0.9 THEN add + 5 to the Complexity score. 

Stability around 
underlying signal 

There may be sudden changes to a new underlying 
mean level (steps), gradual changes to new levels 

(ramps), or a trended series might exhibit reversals in 
trend etc. 
CRule 3: IF Recent Trend is unstable, THEN add − 20 to 
the Complexity score. 
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Characterizations as in 

Goodwin & Wright41 

Complexity rules related to characterizations 

CRule 6: IF there is a Level Discontinuity, THEN add 
− 5 to the Complexity Score. 
CRule 7: IF a series is Near a Previous Extreme AND 
Cycles are present, THEN add + 10 to the Complexity 

score. 
CRule 10: IF the Recent Run is Not Long THEN add − 5 
to the Complexity score. 

Appendix C. Results and discussion from ape comparisons 

 

Table A. Median APEs for development data set.* 

 
*All p-values are directional one-tailed tests. 

For the validation data set: 

Hypothesis.  

Median APEs for RBF forecasts will be higher for complex series 

as compared to simple series on 1- and 6-period-ahead horizons. 

Median APEs are directionally consistent for RBF though errors 

for complex and simple series are not as divergent as they are for 

median RAEs. The odds for rejecting the APE nulls for H2 are non-

trivial and confirm support for the strong complexity differentials using 

the RAE. Specifically, APEs suggest that only about a third of the time 

such median results could be randomly drawn from the population 

where simple and complex errors are not different. 

Table B. Median APEs for holdback series on all validity testing benchmarks.* 

Horizons Benchmark 

methods 

Complex series 

(n = 22) 

Simple series 

(n = 32) 

p-Values 

All horizons Random Walk 0.09 0.19 < .0001 

Linear Regression 0.11 0.12 0.080 

Holt's 0.07 0.08 0.557 

1-Period 
horizons 

Random Walk 0.03 0.06 0.241 

Linear Regression 0.03 0.05 0.382 

Holt's 0.05 0.03 0.349 
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Horizons Benchmark 

methods 

Complex series 

(n = 22) 

Simple series 

(n = 32) 

p-Values 

Combining A 0.03 0.04 0.923 

RBF 0.03 0.02 0.307 

6-Period 
horizons 

Random Walk 0.09 0.31 0.004 

Linear Regression 0.13 0.16 0.316 

Holt's 0.08 0.11 0.397 

Combining A 0.06 0.21 0.012 

RBF 0.05 0.13 0.298 

*As obtained from Collopy46 and C&A. 
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practices when deemed fitting. 
dCombining A averages forecasts from the methods in Typical Method-five 
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smoothing (see 50). 
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C&A. Here the Random Walk was one of the models used in;51 the 

Random Walk is the projection of the last observed value as the 
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with a base of 0 yielded the simplest calibration. Possibly, other 

scoring schema could be considered in future replications. 
jWe did not test this mean classification relative to a possible median 

classification because of concerns that it would compromise the final 

testing of the CST. As such, we worked from the features so as to 

preserve the dataset at the development stage as a valid initial test of 

the classification. The final validity check, however, was expected to 

be the holdback test. 
kSeries numbers are those assigned by C&A. 
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