1,046 research outputs found

    Enhancing Energy Production with Exascale HPC Methods

    Get PDF
    High Performance Computing (HPC) resources have become the key actor for achieving more ambitious challenges in many disciplines. In this step beyond, an explosion on the available parallelism and the use of special purpose processors are crucial. With such a goal, the HPC4E project applies new exascale HPC techniques to energy industry simulations, customizing them if necessary, and going beyond the state-of-the-art in the required HPC exascale simulations for different energy sources. In this paper, a general overview of these methods is presented as well as some specific preliminary results.The research leading to these results has received funding from the European Union's Horizon 2020 Programme (2014-2020) under the HPC4E Project (www.hpc4e.eu), grant agreement n° 689772, the Spanish Ministry of Economy and Competitiveness under the CODEC2 project (TIN2015-63562-R), and from the Brazilian Ministry of Science, Technology and Innovation through Rede Nacional de Pesquisa (RNP). Computer time on Endeavour cluster is provided by the Intel Corporation, which enabled us to obtain the presented experimental results in uncertainty quantification in seismic imagingPostprint (author's final draft

    The Parallelism Motifs of Genomic Data Analysis

    Get PDF
    Genomic data sets are growing dramatically as the cost of sequencing continues to decline and small sequencing devices become available. Enormous community databases store and share this data with the research community, but some of these genomic data analysis problems require large scale computational platforms to meet both the memory and computational requirements. These applications differ from scientific simulations that dominate the workload on high end parallel systems today and place different requirements on programming support, software libraries, and parallel architectural design. For example, they involve irregular communication patterns such as asynchronous updates to shared data structures. We consider several problems in high performance genomics analysis, including alignment, profiling, clustering, and assembly for both single genomes and metagenomes. We identify some of the common computational patterns or motifs that help inform parallelization strategies and compare our motifs to some of the established lists, arguing that at least two key patterns, sorting and hashing, are missing

    Tackling Exascale Software Challenges in Molecular Dynamics Simulations with GROMACS

    Full text link
    GROMACS is a widely used package for biomolecular simulation, and over the last two decades it has evolved from small-scale efficiency to advanced heterogeneous acceleration and multi-level parallelism targeting some of the largest supercomputers in the world. Here, we describe some of the ways we have been able to realize this through the use of parallelization on all levels, combined with a constant focus on absolute performance. Release 4.6 of GROMACS uses SIMD acceleration on a wide range of architectures, GPU offloading acceleration, and both OpenMP and MPI parallelism within and between nodes, respectively. The recent work on acceleration made it necessary to revisit the fundamental algorithms of molecular simulation, including the concept of neighborsearching, and we discuss the present and future challenges we see for exascale simulation - in particular a very fine-grained task parallelism. We also discuss the software management, code peer review and continuous integration testing required for a project of this complexity.Comment: EASC 2014 conference proceedin

    Quantum Monte Carlo for large chemical systems: Implementing efficient strategies for petascale platforms and beyond

    Full text link
    Various strategies to implement efficiently QMC simulations for large chemical systems are presented. These include: i.) the introduction of an efficient algorithm to calculate the computationally expensive Slater matrices. This novel scheme is based on the use of the highly localized character of atomic Gaussian basis functions (not the molecular orbitals as usually done), ii.) the possibility of keeping the memory footprint minimal, iii.) the important enhancement of single-core performance when efficient optimization tools are employed, and iv.) the definition of a universal, dynamic, fault-tolerant, and load-balanced computational framework adapted to all kinds of computational platforms (massively parallel machines, clusters, or distributed grids). These strategies have been implemented in the QMC=Chem code developed at Toulouse and illustrated with numerical applications on small peptides of increasing sizes (158, 434, 1056 and 1731 electrons). Using 10k-80k computing cores of the Curie machine (GENCI-TGCC-CEA, France) QMC=Chem has been shown to be capable of running at the petascale level, thus demonstrating that for this machine a large part of the peak performance can be achieved. Implementation of large-scale QMC simulations for future exascale platforms with a comparable level of efficiency is expected to be feasible

    MERIC and RADAR generator: tools for energy evaluation and runtime tuning of HPC applications

    Get PDF
    This paper introduces two tools for manual energy evaluation and runtime tuning developed at IT4Innovations in the READEX project. The MERIC library can be used for manual instrumentation and analysis of any application from the energy and time consumption point of view. Besides tracing, MERIC can also change environment and hardware parameters during the application runtime, which leads to energy savings. MERIC stores large amounts of data, which are difficult to read by a human. The RADAR generator analyses the MERIC output files to find the best settings of evaluated parameters for each instrumented region. It generates a Open image in new window report and a MERIC configuration file for application production runs

    OpenCL + OpenSHMEM Hybrid Programming Model for the Adapteva Epiphany Architecture

    Full text link
    There is interest in exploring hybrid OpenSHMEM + X programming models to extend the applicability of the OpenSHMEM interface to more hardware architectures. We present a hybrid OpenCL + OpenSHMEM programming model for device-level programming for architectures like the Adapteva Epiphany many-core RISC array processor. The Epiphany architecture comprises a 2D array of low-power RISC cores with minimal uncore functionality connected by a 2D mesh Network-on-Chip (NoC). The Epiphany architecture offers high computational energy efficiency for integer and floating point calculations as well as parallel scalability. The Epiphany-III is available as a coprocessor in platforms that also utilize an ARM CPU host. OpenCL provides good functionality for supporting a co-design programming model in which the host CPU offloads parallel work to a coprocessor. However, the OpenCL memory model is inconsistent with the Epiphany memory architecture and lacks support for inter-core communication. We propose a hybrid programming model in which OpenSHMEM provides a better solution by replacing the non-standard OpenCL extensions introduced to achieve high performance with the Epiphany architecture. We demonstrate the proposed programming model for matrix-matrix multiplication based on Cannon's algorithm showing that the hybrid model addresses the deficiencies of using OpenCL alone to achieve good benchmark performance.Comment: 12 pages, 5 figures, OpenSHMEM 2016: Third workshop on OpenSHMEM and Related Technologie
    • 

    corecore