268 research outputs found

    ECARDM: Energy Consumption Aware Route Discovery for Multicasting in Mobile Ad hoc Networks

    Get PDF
    Consideration of energy consumption in the case of wireless ad hoc networks leads to effective reduction of energy consumption by the nodes and increases the lifetime of the batteries for nodes. It is imperative from the existing models that there is significant scope for improvement in the energy-consumption based route discovery models. A model of Fuzzy based marginal energy disbursed multicast route discovery model for MANETs can support in reducing the power consumption has been proposed in our earlier research paper. In the present paper, a contemporary solution termed 201C;Energy Consumption Aware Route Discovery for Multicasting for MANETs201D; has been proposed, which is profoundly a fuzzy reasoning and genetic algorithm based model that focus on both the energy consumption and also the element of end-to-end delay whilst discovering the route. The experimental study of the model in comparison to BWDCMR and GAEEQMR models depicted that the proposed algorithm is very effective and can certainly be result oriented

    Content-aware resource allocation model for IPTV delivery networks

    Get PDF
    Nowadays, with the evolution of digital video broadcasting, as well as, the advent of high speed broadband networks, a new era of TV services has emerged known as IPTV. IPTV is a system that employs the high speed broadband networks to deliver TV services to the subscribers. From the service provider viewpoint, the challenge in IPTV systems is how to build delivery networks that exploits the resources efficiently and reduces the service cost, as well. However, designing such delivery networks affected by many factors including choosing the suitable network architecture, load balancing, resources waste, and cost reduction. Furthermore, IPTV contents characteristics, particularly; size, popularity, and interactivity play an important role in balancing the load and avoiding the resources waste for delivery networks. In this paper, we investigate the problem of resource allocation for IPTV delivery networks over the recent architecture, peer-service area architecture. The Genetic Algorithm as an optimization tool has been used to find the optimal provisioning parameters including storage, bandwidth, and CPU consumption. The experiments have been conducted on two data sets with different popularity distributions. The experiments have been conducted on two popularity distributions. The experimental results showed the impact of content status on the resource allocation process

    A note on the data-driven capacity of P2P networks

    Get PDF
    We consider two capacity problems in P2P networks. In the first one, the nodes have an infinite amount of data to send and the goal is to optimally allocate their uplink bandwidths such that the demands of every peer in terms of receiving data rate are met. We solve this problem through a mapping from a node-weighted graph featuring two labels per node to a max flow problem on an edge-weighted bipartite graph. In the second problem under consideration, the resource allocation is driven by the availability of the data resource that the peers are interested in sharing. That is a node cannot allocate its uplink resources unless it has data to transmit first. The problem of uplink bandwidth allocation is then equivalent to constructing a set of directed trees in the overlay such that the number of nodes receiving the data is maximized while the uplink capacities of the peers are not exceeded. We show that the problem is NP-complete, and provide a linear programming decomposition decoupling it into a master problem and multiple slave subproblems that can be resolved in polynomial time. We also design a heuristic algorithm in order to compute a suboptimal solution in a reasonable time. This algorithm requires only a local knowledge from nodes, so it should support distributed implementations. We analyze both problems through a series of simulation experiments featuring different network sizes and network densities. On large networks, we compare our heuristic and its variants with a genetic algorithm and show that our heuristic computes the better resource allocation. On smaller networks, we contrast these performances to that of the exact algorithm and show that resource allocation fulfilling a large part of the peer can be found, even for hard configuration where no resources are in excess.Comment: 10 pages, technical report assisting a submissio

    Quality of Service (QoS) routing algorithm for Software Defined Network (SDN)

    Get PDF
    Due to the use of various technologies like mobile, cloud, big data. The network traffic has increased this has resulted in the  re examination of the working of  traditional network architectures as these are built as static architectures and cannot handle the rapid growing traffic on the internet. A dynamic architecture which can be programmed according to the traffic behaviour was the need. Software Defined Networking (SDN) was emerged to address the growing needs of the dynamic traffic which has been in the moonlight since 2010. SDN increase and makes the network as flexible to program according to the programmers needs by keeping the traffic in line. It gives the user flexibility of adjusting the network resources by separating the control plane and data plane. By using SDN networks can be managed dynamically. The capacity of a network to offer good services to the selected network traffic over various technologies is termed as Quality of Service (QoS). To transfer high-bandwidth video and multimedia information continuously QoS is of particular objective.Â

    Genetic local search for multicast routing with pre-processing by logarithmic simulated annealing

    Get PDF
    Over the past few years, several local search algorithms have been proposed for various problems related to multicast routing in the off-line mode. We describe a population-based search algorithm for cost minimisation of multicast routing. The algorithm utilises the partially mixed crossover operation (PMX) under the elitist model: for each element of the current population, the local search is based upon the results of a landscape analysis that is executed only once in a pre-processing step; the best solution found so far is always part of the population. The aim of the landscape analysis is to estimate the depth of the deepest local minima in the landscape generated by the routing tasks and the objective function. The analysis employs simulated annealing with a logarithmic cooling schedule (logarithmic simulated annealing—LSA). The local search then performs alternating sequences of descending and ascending steps for each individual of the population, where the length of a sequence with uniform direction is controlled by the estimated value of the maximum depth of local minima. We present results from computational experiments on three different routing tasks, and we provide experimental evidence that our genetic local search procedure that combines LSA and PMX performs better than algorithms using either LSA or PMX only

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms

    Network coding for reliable wireless sensor networks

    Get PDF
    Wireless sensor networks are used in many applications and are now a key element in the increasingly growing Internet of Things. These networks are composed of small nodes including wireless communication modules, and in most of the cases are able to autonomously con gure themselves into networks, to ensure sensed data delivery. As more and more sensor nodes and networks join the Internet of Things, collaboration between geographically distributed systems are expected. Peer to peer overlay networks can assist in the federation of these systems, for them to collaborate. Since participating peers/proxies contribute to storage and processing, there is no burden on speci c servers and bandwidth bottlenecks are avoided. Network coding can be used to improve the performance of wireless sensor networks. The idea is for data from multiple links to be combined at intermediate encoding nodes, before further transmission. This technique proved to have a lot of potential in a wide range of applications. In the particular case of sensor networks, network coding based protocols and algorithms try to achieve a balance between low packet error rate and energy consumption. For network coding based constrained networks to be federated using peer to peer overlays, it is necessary to enable the storage of encoding vectors and coded data by such distributed storage systems. Packets can arrive to the overlay through any gateway/proxy (peers in the overlay), and lost packets can be recovered by the overlay (or client) using original and coded data that has been stored. The decoding process requires a decoding service at the overlay network. Such architecture, which is the focus of this thesis, will allow constrained networks to reduce packet error rate in an energy e cient way, while bene ting from an e ective distributed storage solution for their federation. This will serve as a basis for the proposal of mathematical models and algorithms that determine the most e ective routing trees, for packet forwarding toward sink/gateway nodes, and best amount and placement of encoding nodes.As redes de sensores sem fios sĂŁo usadas em muitas aplicaçÔes e sĂŁo hoje consideradas um elemento-chave para o desenvolvimento da Internet das Coisas. Compostas por nĂłs de pequena dimensĂŁo que incorporam mĂłdulos de comunicação sem fios, grande parte destas redes possuem a capacidade de se configurarem de forma autĂłnoma, formando sistemas em rede para garantir a entrega dos dados recolhidos. (

    • 

    corecore