307 research outputs found

    Quad Axis Separation Framework for Bounding-Volume Hierarchies Construction

    Get PDF
    The construction of Bounding-Volume Hierarchies (BVH) for Virtual Environment application has been varied from the rigid bodies application type to the deformable bodies application. Numerous technique and specific instruction has been given from several researchers in order to make sure that the BVH can suite their application without any restriction. In this paper, we explore the capability of BVH using a technique called Quad Axis Separation Technique (QAS) that could efficiently create full-blown hierarchical tree using approximation of separating axes theorem for Virtual Environment. A theoretical implementation is carried out with standard experimental that is also been used by researcher to test their BVH in the Virtual Environment. We also believed that QAS could provide fast and efficient hierarchical tree construction and also enhance the speed and accuracy of the collision detection technique

    Efficient Collision Detection for Brittle Fracture

    Get PDF
    International audienceIn complex scenes with many objects, collision detection plays a key role in the simulation performance. This is particularly true for fracture simulation, where multiple new objects are dynamically created. In this paper, we present novel algorithms and data structures for collision detection in real-time brittle fracture simulations. We build on a combination of well-known efficient data structures, namely distance fields and sphere trees, making our algorithm easy to integrate on existing simulation engines. We propose novel methods to construct these data structures, such that they can be efficiently updated upon fracture events and integrated in a simple yet effective self-adapting contact selection algorithm. Altogether, we drastically reduce the cost of both collision detection and collision response. We have evaluated our global solution for collision detection on challenging scenarios, achieving high frame rates suited for hard real-time applications such as video games or haptics. Our solution opens promising perspectives for complex brittle fracture simulations involving many dynamically created objects

    Fast collision detection for deformable models using representativetriangles.

    Get PDF
    Abstract We present a new approach to accelerate collision detection for deformable models. Our formulation applies to all triangulated models and significantly reduces the number of elementary tests between features of the mesh, i.e., vertices, edges and faces. We introduce the notion of Representative-Triangles, standard geometric triangles augmented with mesh feature information and use this representation to achieve better collision query performance. The resulting approach can be combined with bounding volume hierarchies and works well for both inter-object and self-collision detection. We demonstrate the benefit of Representative-Triangles on continuous collision detection for cloth simulation and N-body collision scenarios. We observe up to a one-order of magnitude reduction in featurepair tests and up to a 5X improvement in query time

    Optical flow estimation via steered-L1 norm

    Get PDF
    Global variational methods for estimating optical flow are among the best performing methods due to the subpixel accuracy and the ‘fill-in’ effect they provide. The fill-in effect allows optical flow displacements to be estimated even in low and untextured areas of the image. The estimation of such displacements are induced by the smoothness term. The L1 norm provides a robust regularisation term for the optical flow energy function with a very good performance for edge-preserving. However this norm suffers from several issues, among these is the isotropic nature of this norm which reduces the fill-in effect and eventually the accuracy of estimation in areas near motion boundaries. In this paper we propose an enhancement to the L1 norm that improves the fill-in effect for this smoothness term. In order to do this we analyse the structure tensor matrix and use its eigenvectors to steer the smoothness term into components that are ‘orthogonal to’ and ‘aligned with’ image structures. This is done in primal-dual formulation. Results show a reduced end-point error and improved accuracy compared to the conventional L1 norm

    Optical flow estimation via steered-L1 norm

    Get PDF
    Global variational methods for estimating optical flow are among the best performing methods due to the subpixel accuracy and the ‘fill-in’ effect they provide. The fill-in effect allows optical flow displacements to be estimated even in low and untextured areas of the image. The estimation of such displacements are induced by the smoothness term. The L1 norm provides a robust regularisation term for the optical flow energy function with a very good performance for edge-preserving. However this norm suffers from several issues, among these is the isotropic nature of this norm which reduces the fill-in effect and eventually the accuracy of estimation in areas near motion boundaries. In this paper we propose an enhancement to the L1 norm that improves the fill-in effect for this smoothness term. In order to do this we analyse the structure tensor matrix and use its eigenvectors to steer the smoothness term into components that are ‘orthogonal to’ and ‘aligned with’ image structures. This is done in primal-dual formulation. Results show a reduced end-point error and improved accuracy compared to the conventional L1 norm

    Explicit Contact Modelling for Surgical Computer Guidance and Simulation

    Get PDF
    Realistic modelling of mechanical interactions between tissues is an important part of surgical simulation, and may become a valuable asset in surgical computer guidance. Unfortunately, it is also computationally very demanding. Explicit matrix-free FEM solvers have been shown to be a good choice for fast tissue simulation, however little work has been done on contact algorithms for such FEM solvers. This work introduces such an algorithm that is capable of handling both deformable-deformable (soft-tissue interacting with soft-tissue) and deformable-rigid (e.g. soft-tissue interacting with surgical instruments) contacts. The proposed algorithm employs responses computed with a fully matrix-free, virtual node-based version of the model first used by Taylor and Flanagan in PRONTO3D. For contact detection, a bounding-volume hierarchy (BVH) capable of identifying self collisions is introduced. The proposed BVH generation and update strategies comprise novel heuristics to minimise the number of bounding volumes visited in hierarchy update and collision detection. Aside from speed, stability was a major objective in the development of the algorithm, hence a novel method for computation of response forces from C0-continuous normals, and a gradual application of response forces from rate constraints has been devised and incorporated in the scheme. The continuity of the surface normals has advantages particularly in applications such as sliding over irregular surfaces, which occurs, e.g., in simulated breathing. The effectiveness of the scheme is demonstrated on a number of meshes derived from medical image data and artificial test cases

    Accelerating and simulating detected physical interations

    Get PDF
    The aim of this doctoral thesis is to present a body of work aimed at improving performance and developing new methods for animating physical interactions using simulation in virtual environments. To this end we develop a number of novel parallel collision detection and fracture simulation algorithms. Methods for traversing and constructing bounding volume hierarchies (BVH) on graphics processing units (GPU) have had a wide success. In particular, they have been adopted widely in simulators, libraries and benchmarks as they allow applications to reach new heights in terms of performance. Even with such a development however, a thorough adoption of techniques has not occurred in commercial and practical applications. Due to this, parallel collision detection on GPUs remains a relatively niche problem and a wide number of applications could benefit from a significant boost in proclaimed performance gains. In fracture simulations, explicit surface tracking methods have a good track record of success. In particular they have been adopted thoroughly in 3D modelling and animation software like Houdini [124] as they allow accurate simulation of intricate fracture patterns with complex interactions, which are generated using physical laws. Even so, existing methods can pose restrictions on the geometries of simulated objects. Further, they often have tight dependencies on implicit surfaces (e.g. level sets) for representing cracks and performing cutting to produce rigid-body fragments. Due to these restrictions, catering to various geometries can be a challenge and the memory cost of using implicit surfaces can be detrimental and without guarantee on the preservation of sharp features. We present our work in four main chapters. We first tackle the problem in the accelerating collision detection on the GPU via BVH traversal - one of the most demanding components during collision detection. Secondly, we show the construction of a new representation of the BVH called the ostensibly implicit tree - a layout of nodes in memory which is encoded using the bitwise representation of the number of enclosed objects in the tree (e.g. polygons). Thirdly, we shift paradigm to the task of simulating breaking objects after collision: we show how traditional finite elements can be extended as a way to prevent frequent re-meshing during fracture evolution problems. Finally, we show how the fracture surface–represented as an explicit (e.g. triangulated) surface mesh–is used to generate rigid body fragments using a novel approach to mesh cutting

    Research on real-time physics-based deformation for haptic-enabled medical simulation

    Full text link
    This study developed a multiple effective visuo-haptic surgical engine to handle a variety of surgical manipulations in real-time. Soft tissue models are based on biomechanical experiment and continuum mechanics for greater accuracy. Such models will increase the realism of future training systems and the VR/AR/MR implementations for the operating room

    Planetesimal Evolution and the Formation of Terrestrial Planets

    Get PDF
    An accurate numerical model of solar system formation requires understanding how planetesimals grow into larger bodies. Traditionally, numerical simulations of planet formation have used extrapolations of impact experiments in the strength regime to model the effects of fragmentation in planetesimal collisions. However, planetesimals, which are large enough to decouple from the gaseous nebula, are dominated by self-gravity not material strength. As a result, such extrapolations may give misleading results since much more energy is needed to disperse than to disrupt a planetesimal in the gravity regime. In order to determine the effects of collision parameters, I have completed parameter-space studies of collisions between kilometer-sized planetesimals. The planetesimals are modeled as ``rubble piles"---gravitational aggregates of particles bound together by gravity. I find that as the mass ratio departs from unity the impact angle has less effect on the collision outcome. At the same time, the probability of planetesimal growth increases. Conversely, for a fixed impact energy, collisions between impactors with mass ratio near unity are more dispersive than those with mass ratio far from unity. For an average mass ratio of 1:5, the accretion probability is ~ 60% over all impact parameters. Results are presented from a dozen direct N-body simulations of terrestrial planet formation with various initial conditions. To increase the realism of the simulations, a self-consistent planetesimal collision model was developed based on the planetesimal model developed and investigated in the parameter space studies summarized above. The results are compared to the best numerical simulations of planet formation in the literature (Kokubo and Ida 2002) in which no fragmentation is allowed---perfect merging is the only collision outcome. After 400,000 years of integration our results are virtually indistinguishable from those of (Kokubo and Ida 2002). We find that the number and masses of protoplanets, and time required to grow a protoplanet, depends strongly on the initial conditions of the disk and is consistent with oligarchic theory. In contrast to the suggestion by (Goldreich et al. 2004), there is negligible debris remaining at the end of oligarchic growth, where ``debris" is defined to be those particles smaller than our resolution limit

    Efficient collision detection for real-time simulated environments

    Get PDF
    Thesis (M.S.)--Massachusetts Institute of Technology, Program in Media Arts & Sciences, 1994.Includes bibliographical references (leaves 64-68).by Paul Jay Dworkin.M.S
    corecore