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Abstract
This thesis describes a new model for rapid physical simulation called sparse dynamics. The

method employs a simplified object representation to quickly identify likely object interactions.
These are then flagged for more detailed analysis. As actual collisions are rare in a sparsely popu-
lated environment, efficiency is greatly increased. The first phase uses deterministic Newtonian
mechanics to predict future collisions analytically, obviating the need to simulate small uniform
time steps. The detailed phase makes use of a near-constant time polyhedral distance tracker to
minimize the expense of complicated objects.

The current system can handle interactions involving linear and accelerated motions (includ-
ing gravity), wind resistance, user manipulations, and to some extent supporting contacts and fric-
tion. Methods are discussed to further extend this list. Timings indicate sparse dynamics provides

a large speed improvement over more traditional methods. In particular we are able to simulate full
collision detections for a simple environment containing 500 polyhedra at real-time speeds. Even
in highly realistic or complicated environments, we expect a speed up by an order of magnitude or

more.
The code implementing the work described here is also made available for public use.
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Story

M. Sparse Dynamics Code

1.0 Thesis Overview
This thesis describes a new method for rapid physical simulation called sparse dynamics. The

format of the document is somewhat unusual. See the following page for details.
Section 2 describes the background of the dynamics problem and the shortcomings of conven-

tional methods in attempting to address it. Section 3 introduces our new dynamics model and dis-
cusses its application to various dynamic effects. Section 4 presents the discrete simulation system
used to schedule events for the sparse phase of operation. Section 5 examines an algorithm for de-
tailed collision analysis and its integration with the sparse phase. Section 6 briefly discusses colli-
sion response. Section 7 provides timings and other empirical results of the system's operation.
Section 8 introduces a hierarchical data structure useful for tracking object proximities and improv-
ing efficiency. Section 9 discusses future directions for the work and concludes with several appli-
cations.

Each page or section may refer to appendices for additional detail. The appendices contain
specific or technical information not required in the basic flow of discussion, but useful for the in-
depth reader. Implementation details and numerical calculations will be found there.

1.0. Thesis Overview 5
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Picture
descriptions

Conceptual,- .ncetue The text in this example contains
picture sdfdfdf dsfs s sfsfs dfd

fd fdfd ad W dfsWdf f fdffsdff

a reference arrow pointing to the
sdf sd fsdfsdf sd fsd fdfsdf sd adsfd f sdf ad

Explanatory f M ft d ft df d 6 d Ndf W. oval in the picture above. The
text ,.pe i-

reference goes up, then diagonal.
Reference to appendix _ _ _ _ _______ _ ___ _ _ ___ _j

1.1 Thesis Format
The format of this thesis has been motivated by the desire to make a rather abstruse topic com-

prehensible. Each page in the main body contains a large illustration above a block of explanatory
text. The intension is for the reader to come away with one clear notion per page, as a framework
into which to integrate subsequent information. These pages are linked together to form the "story"
of the work. Many of the main pages refer to appendices in which technical details are discussed.
In addition, short descriptions are commonly placed above the illustrations to point out the main
issues to be covered.

The explanatory text may refer directly to parts of the illustration by means of reference ar-
rows. An arrowhead (-) appearing above a word or phrase can be followed directly upward to a
matching arrow just below the illustration. From there, a dotted line runs to a third arrow which
indicates the intended object. A hollow arrow indicates a region while a solid arrow indicates a spe-
cific object. The text may thus refer to elements in a picture without interrupting the flow of the
discussion. If the reader finds this reference method distracting, it may be safely ignored.

For readers wishing a quick overview of the work, study of the pictures may be sufficient. For
a thorough, nontechnical understanding, the accompanying text may be read as well. Those con-
cerned with in-depth coverage may refer to the appendices as needed.

1.0.> See Appendix A (p.40)



Reality does not look like this

2.0 Introduction
Simulated environments have been an area of increasing interest over the past few years. The

basic motivation is that some information is more easily understood in surroundings which approx-
imate our real world experience. Although the subject has received intense scrutiny, the picture
above remains an unpleasantly apt characterization of the current "state of the art." Our lack of real-
time simulation techniques is particularly hampering as interest grows in areas such as scientific
visualization.

The reality we are trying to model is governed by various physical laws. To provide an ac-
ceptable system, we must emulate these laws with sufficient accuracy. The complexity of the equa-
tions involved has given rise to a general sense that the problem can not be done "right" in real-
time. Accuracy and efficiency are commonly held to be mutually exclusive.

In fact, while some aspects of the problem will remain intractable, we can do much better than
we are presently. We intend to demonstrate methods which can be applied to make the problem
more tractable without hindering the pursuit of accuracy. Application of analytic techniques com-
mon in other fields can likewise benefit this one. Specifically, we exploit economies of spatial and
temporal coherence in much the same way as has been done with rendering in previous years. We
hope to thereby derive speed improvements which are equally as dramatic.

2.0.> See Appendix B (p.42)
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Examples of applications which would
benefit from real-time dynamics

Animation

CAD/CAM

You handle the characters, the dynamics
engine handles the background motion

Simulation

Do machine parts intersect?
Does a process collide?

Cineramic, vehicular, or
experimental rehearsal

Scientific Visuallization

0
0

o 0 
00 00 0

00 0 0 00

0 0 0 0 0 0 0

What does a process look like?

Virtual Environments

Training, remote operation

2.1 Applications
Many types of applications would benefit from the availability of real-time dynamics.

- An animator could use the dynamics engine to handle the motions of background
objects while concentrating on character movements.

- Many types of scientific visualization tasks can be depicted with Newtonian dynamics,
particularly molecular simulations.

- In both the construction and operation of machinery, there is often a need to determine
whether parts will intersect or whether there are clear paths of operation. Real-time
dynamics makes these determinations available to the designer at the time the assembly
is configured. Packages currently available can handle such interactions for only a few
moving parts at a time.

- In situations where a setup or experiment is expensive to construct, it is useful to first
prototype the system via simulation to see that it operates correctly. Refinements can
then be made at the (less expensive) virtual stage.

- Lastly, much of the work on "virtual environments" has been retarded due to the lack of
realistic physics models.

2.0. Introduction I I



The process of computer animation

CONCEPT r e
DetectionModeling obj1,obj2?

Determination

Dynamics Analysis

ResponseRendering

ANIMATION
F1, F2?

2.2 Problem Context
The field of computer graphics can be separated into three areas: modeling, dynamics, and

rendering. For a simulated environment, the modeling may usually be handled off-line, but the dy-
namics and rendering must be accomplished in real-time. Of the two, dynamics lags far behind in
terms of capability. Current hardware can render hundreds of objects within a single frame time,
but can compute the dynamics for only a few.

To model dynamic behavior, we must simulate the equations of motion for various objects.
For the most part this is an evaluation and integration task. However, discontinuities appear at the
points where objects collide. These situations are difficult to detect and so exact a high price if we
wish to handle them.

Collision handling is the business of finding the where and when of these situations. [Moor88]
divides the field into detection -- locating the where and when of a collision, and response -- deter-
mining its results. In the area of detection, we may make a further distinction between determina-
tion-- the business of deciding which of the objects in an environment come into contact, and
analysis-- finding the time and location of that contact.

Empirical tests suggest that the detection phase incurs most of the cost of collision handling.
This also makes intuitive sense-- response is only employed in the relatively uncommon event of
a collision, while detection must operate among many objects at all times. It is therefore this area
to which we will devote our attention.

2.0. Introduction

The process of collision handling
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2.3 Current State of the Art
There are currently a variety of methods for detecting object collisions. It is difficult, however,

to gauge their performance potential. Most of the work that has been done has concentrated on ac-
curacy rather than performance. As speed is not a priority, execution times commonly go unreport-
ed.

The above scatter plots contain samplings of what numbers are available. In each graph we
have grayed the area representing sub-real-time performance. These numbers are gleaned from var-
ious sources under widely different conditions. As such, they can not be considered a comparative
study. They are intended rather to give a general view of the state of the art.

The left graph plots timings for algorithms which simulate many bodies. As we can see, little
has been done for complex objects, and what has been done is in the range of tens of objects. The
right graph plots algorithms which handle a single pair of objects. Here we see a great deal of work
with complex objects, but in addition we see the reason it has not been applied to multi-body sim-
ulations. The speed of most of those methods prohibit their real-time use.

We have grouped the work into general classes, indicated by the symbols and captions. "Sim-
ple polyhedra" refers to algorithms tested on cubes and the like. "Complex polyhedra" indicates
numbers of faces in the tens or hundreds. The [Moor88] data point is derived from a local imple-
mentation.

The work described in this thesis is represented by the dotted lines. We can see that it remains
in the real-time realm well into the hundreds of objects, representing something of an improvement.

See the appendix for a detailed review of related work.

2.0. Introduction f cde itenge o tens o c



/f Basic Algorithm
At each time step

Compare each
object to all others

Various improvements

Wl'

Bounding boxes make A spatial hierarchy lets BSP trees make objects Adaptive time steps avoid
checks faster us make fewer checks faster to compare uneventful times

2.4 Conventional Methods
Most current methods are variations of a basic algorithm: time is divided into small regular

intervals. At each step, we update the position of each object and then check all others for possible
conflicts. A number of improvements can be made to this basic method. Common examples are
described in [Moor88]. Bounding boxes may be used to cheapen the cost of object comparisons,
but do not alter the basic N2 nature of the problem. A hierarchical space representation can be used
to reduce this to O(N lg N). However, the motion of objects requires that the tree be updated or
rebuilt at each clock step. This maintenance cost decreases the speed advantage gained. Hierarchi-
cal representations, e.g. BSP trees, can also be used to compare features of one object to another.
Adaptive time steps may be used as well, to concentrate on times of greater activity.

Despite these improvements, the remaining expenses are still prohibitive. Much time is spent
updating object locations, even though they are rarely examined. Also the cost of the inter-object
comparisons is unacceptably high even as rarely as it does occur. Hubbard identifies three specific
problems with the conventional method [Hub93]: the need for small time steps, the need to match
each object against all others, and the expense of making inter-object comparisons. The necessity
of addressing all three of these concerns simultaneously requires compromises in the efficacy or
abilities of each. There can be no question that these topics have been individually addressed by
previous research. However, as we see from the data on the previous page, none of these singular
optimizations has been sufficient.

2.0. Introduction



Temporal coherence

2.5 Our Approach
Our basic intuition is that objects should not have to look for collisions if they are not near any-

thing. More precisely, we wish to divide our attention unequally, giving more to those objects most
likely to interact. The fact that objects obey physical laws means their motions are predictable.
This results in a game of prediction and estimation. If our prediction of the situation can be made
accurate, we will be rewarded with reduced running time. Note that the intention is not to reduce
the accuracy of our solutions, but rather the amount of time required to arrive at them.

We take advantage of spatial and temporal continuity to make our predictions.
Space is coherent: if two objects are neighbors, they also likely share neighbors in common.

We can exploit this adjacency with hierarchical representations to decrease the number of compar-
isons which must be made. Likewise, the surfaces of objects are coherent: points near each other
on an object also share neighbor relations. We can exploit this to speed up inter-object comparisons
using graph traversal algorithms.

Time is coherent as well: things move continuously from place to place. Thus if an object had
a certain relationship to the world a short while ago, that relationship retains some validity. We can
exploit this to avoid small time steps by constructing predictive models of motion and discrete event
queues.

It is essential that our choice of methods be able to accommodate the operation of all of these
coherencies at once. The next section describes the model chosen for this.

2.0. Introduction 12
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The sparse representation is
used for initial comparisons

The detailed representation is
used for close interactions

3.0 The Sparse Dynamics Model
We wish to construct a representation to optimize the identification of pairs likely to collide.

For each object we construct a simplified representation, including a model of the object's current
motion. We then use this model to predictthe earliest time at which something could happen to
alter it's parameters. Assuming our predictions are conservative, we may safely ignore the object
until that time.

The predictions are handled using discrete event simulation. Instead of stepping by regular
time intervals, the clock moves forward from one event to the next. If the object's motion model is
accurate enough, we need not even update object positions between events as they may be derived
analytically for any specified time.

To predict the next event for an object, we compare its projected motion against that of others
and locate the first possible time of conflict. At that time, either our prediction will have been cor-
rect, or the object must again search for its next potential encounter. Each event may thus result in
additional future events. If our predictions are accurate, our attentions will remain focused on those
objects in close proximity.

When we find a situation which exceeds the accuracy of the sparse model, it is handed to the
detailed phase for analysis. The detailed phase uses a graph algorithm to track the smallest distance
between the two objects for as long as they remain in proximity. If this distance ever becomes zero,
we have detected a collision. At that point, the collision response is computed and then each in-
volved object selects a new future target.

3.0. The Sparse Dynamics Model 13
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Sparse Region: collisions rare

Dense Region: collisions common

0 0

0 0000

3.1 The Sparse Environment
Our new model is intended for use when objects are widely separated and collisions unlikely.

We term this kind of interaction sparse. The simplified representation of each object is called a
sparse element and a situation in which efficiency benefits from such analysis is termed a sparse
environment.

If objects are packed too tightly together, our predictions will become increasingly inaccurate
and the efficiency advantage will be lost. We term these environments dense. For these regions
and situations, other methods must be used. Since these areas are highly populated we may not care
as much about individual locations. If so, we can use aggregate methods to analyze them. Approx-
imate dynamics models may also be more acceptable in such situations. Section 9.4 considers this.

We characterize a region of space as sparse or dense in a qualitative manner. In a sparse en-
vironment, collisions are rare and the dominant effects are momentum and gravity. When collisions
do occur, they tend to involve high energy transfer, meaning that the objects do not remain in con-
tact for long. By contrast a dense case involves frequent collisions and the contacts are often ex-
tended. The dominant effects are then friction and support. Objects can therefore slide against each
other in complex fashions.

For those regions where the sparseness condition holds, collisions can be identified with ex-
treme rapidity. We believe that these criteria obtain in many common situations. For example,
when constructing a virtual environment, space must be mostly empty in order to allow the user to
see. The same holds true of narrative animation.

3.0. The Sparse Dynamics Model 14



An object element in the
sparse dynamics model

3.2 A Sparse Element
In the sparse model, each object is represented by an element consisting of a bounding volume

and a path the element follows.
Bounding Volume. The bounding volume B(u,v) is a shell wrapped around the object to sim-

plify predictions. The shell should be conservative in that it encounters obstacles before the object
itself does. Outside of B, the object is considered to have no effects. As such, the model can not
represent field effects such as gravitational attraction which extend beyond an object's physical lim-
its.

Bounding spheres are well suited for this purpose. They are cheap to compare, and if posi-
tioned at an object's center of mass, they can encompass all possible rotations the object can make.
For kinematic linkages, this bounding sphere must be large enough to cover all configurations of
the structure. For flexible objects, we must either place a limit on their malleability, or allow the
sphere to change size over time. Within these criteria it is desirable to make the sphere as small as
possible. The larger the sphere, the more territory that will have to be checked for its possible ef-
fects.

Path. The path function P(t) is an analytic description of the object's motion over time. We
prefer the function to be a low order polynomial to simplify predictions. As such, we maintain an
error term representing the amount the actual motion might diverge from our approximation. Ob-
viously, if the error term becomes too large, we lose predictive efficiency. This problem will be
treated in Section 9.4.

3.0. The Sparse Dynamics Model

Bounding Volume

Object's Region of possible
predicted path deviation from that path
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The evolution of an element relationship

3.3 Sparse Interaction
When two elements first come into contact, they are said to meet, and for the duration of time

they intersect, they are said to be engaged. This is to distinguish from the case of a collision which
occurs between the actual objects that the elements contain. It is important to realize that when el-
ements meet, it does not guarantee that the objects themselves will ever collide.

While an element is engaged, it still might have another sparse meeting with a third party. To
watch for this, when an element becomes engaged it must perform a new global meeting check in
the same manner as when it has a collision. A result of this is that an element may have more than
one engagement at a time. That is, its bounding sphere may be passing through a number of others,
none of which have yet made contact. If the object does undergo a collision, these other relation-
ships must be maintained despite the object's new trajectory. Thus at a collision, we must cycle
through an element's current list of engagements and update them.

The advantages of the sparse model are that exact values can be returned for collision locations
and there is no accumulation error. Also, the rate of rendering can be selected independent of the
simulation. The major disadvantage is the restricted nature of the model. If an environment is not
sparsely populated, or if objects remain in contact for extended periods, the speed advantage can be
lost. We address these concerns in subsequent sections.

3.0. The Sparse Dynamics Model 16
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The motion of an element

P(O)=p+vt+1/2 at2 +...
p+ vt - Linear motion
p+ vt+ 1/2 af2 -- Quadratic motion

(gravity, etc.)

For complex or uncertain motion, we
converge on the solution over several events

Start Check I Check 2 Check 3

The actual path the
object takes

The predicted bound
on the error in P()

0 -- Exact motion
C - Linear deviation

For some objects, the actual motion
can exceed our error bound

We must determine the first point at which
this happens end recompute a new envelope

3.4 The Path Equation
The efficiency of our method is based on being able to predict element meetings ahead of time.

To do this we require an accurate formulation for the position of each element over time. The basic
form of this function will be a polynomial in t with terms for the object position, velocity, and per-
haps acceleration. As our motion model becomes more accurate, this equation will gain additional
terms.

If equations are of low order (e.g. linear motion), intersections may be found analytically. If
not, numerical methods must be used. The value resulting from this need not be exact as long as it
is conservative. If a time is returned no later than the actual meeting, we can reliably converge on
the true solution via future events. Clearly, the better our model and the more accurately we eval-
uate its roots, the less events we will require to home in on the contact. We therefore must balance
the cost of various models and approximations with the precision to be gained from them.

In addition to the path equation, we provide an erorierm which is used to bound the object's
actual motion about P(t). The error term is meant to contain hard to characterize small effects, error
left over from approximations in P(t), and indeterminacy due to user input. The error term results
in a gradual increase in the size of the element's bounding sphere. This represents our increasing
uncertainty about the object's actual position in the future.

It is sometimes possible that an object can exceed the error bounds we set. In those cases, we
must periodically check the object position for violations.

I > See Appendix E (p.44)
3.0. The Sparse Dynamics Model
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Elements meet
Theoretical point at which elements

have passed through each other
Two possible meetings
in the quadratic case

Linear solution Quadratic solution

3.5 Analytical Solutions
To find the meeting time of a pair of elements, we need the point in time at which their bound-

ing volumes are just touching. If the object motions are of low order, we can compute this analyt-
ically.

For linear motion, the resulting equation is a quadratic. The solution has two roots, represent-
ing the time at which the objects meet and the time when they have passed through each other. If
the roots are imaginary, then the elements do not become close enough to make contact. If the roots
are real and the first of them is later than the current time, we have detected a potential future meet-
ing. We compare the element in this way to each other element in the system. The earliest of all
potential meetings found is selected as the element's next event. Note it is clearly inefficient for us
to compare against all other elements. Methods to avoid this are discussed in Section 8.

A similar derivation can be made for objects undergoing acceleration. In this case, the path
equations contain a second order term and so result in a 4th order equation. Methods exist for find-
ing the exact roots of such equations. Any higher order terms, however, will necessitate numerical
techniques.

The error term may be included in these calculations as well. As long as it is of no higher order
than the path itself, it will not increase the order of the solution.

I > See Appendix F (p.46)
3.0. The Sparse Dynamics Model



How a temporary joint is
formed

Classes of temporary joints and
their rotational degrees of freedom

Temporary joints are checked when-
ever the compound object collides

3.6 Extended Contact
The basic sparse dynamics model assumes that objects move about independently, interacting

only at instantaneous collisions. For extended object contact, which is common in the natural
world, we must augment the model.

Extended contact occurs when objects collide with a positive relative acceleration and negli-
gible relative velocity. We mark the point of impact as a temporary joint. The relative velocity com-
ponent is then removed from the object motions so that they remain in contact. For the duration of
the contact, the two objects are combined into a single articulated figure. A temporary bounding
sphere is generated to encompass the new composite "object." There are a number of methods for
determining the internal motions of such jointed figures. See for example, [Sch91].

These compound objects are generated and aIered on the fly. When such a compound object
is involved in a collision, all of its temporary joints are checked to see if they receive a force suffi-
cient to break them. Clearly this method does not scale well for large numbers of contact points.
Additionally, loops in the kinematic structure are currently not handled well. Both of these condi-
tions are indicative of a dense environment and should be handled as such.

Objects in continuous contact also bring up the issues of support and friction. See the appendix
for a discussion of these.

3.0. The Sparse Dynamics Model 19



Examples of other possible forces we can include in our model

Wind Resistance Articulated Motion User Intervention

Small, predictable Internal Large, unpredictable

3.7 Other Forces
There are a number of other effects which commonly influence the motion of real world ob-

jects. These are such forces as wind resistance, hinges and mechanical linkages, and user interac-
tion.

Our general procedure for including these will be:

- If the effect on the object motion is large, add a term for the effect to P(t). If the effect
is non-polynomial, construct a polynomial approximation and add a conservative error
term to E(t).

- If the effect is small, add the term only to the envelope E(t).

- If the effect has an unpredictable component, place a bound on it and add that bound to
E(t). Calculate a conservative bound on how quickly P(t) could escape E(t) and queue
checking events with that frequency.

- If the effect is internal to the object, determine what the aggregate behavior for the body
will be and use that in P(t). Implement a new module to determine internal configura-
tions for render purposes and detailed phase interactions.

3.0. The Sparse Dynamics Model 20



This element chooses this target for a meeting here

4.0 Sparse Event Handling
Given an environment populated with sparse elements, we need to determine which will meet,

and when. We can use a discrete simulation queue to accomplish this.
Each element maintains a prediction of its next anticipated meeting. When a collision occurs,

the object is diverted to a new trajectory. It must then make a new prediction of its next encounter.
This can be found by testing the element against all others and choosing the earliest meeting found.
When an element is looking for its next meeting, we term it an actor. The element identified by its
search is termed its target. It is possible for an element to find no future event. In that case, the
element will remain on its present course forever unless some other element is diverted into its path.

It is important to note an asymmetry in the prediction algorithm. When an actor determines
its target, the target is not notified of that fact. It is not until the time of the actual meeting that the
target is affected. It might be possible to make predictions more accurate if objects shared infor-
mation. However their independence allows us to be more confident of missing no collisions.

Likewise, it is irrelevant to the actor whether its target will be diverted before their encounter.
It must only determine that it need do nothing sooner than that time. Things may change in the
meanwhile, but that will be the responsibility of those objects doing the changing.

4.0. Sparse Event Handling 21

An actor K

The earliest
target it found

This etement may cut off the target
before it gets to the predicted

collision above. But that does not
effect the current actor's choice



Current event

Time - o

4.1 The Event Queue
Each element's predicted meeting is stored in a time-ordered event queue which will therefore

contain O(N) entries. The queue may be implemented as a heap or other efficient data structure.
When objects collide, they make new predictions which are inserted into the queue in time order.
At each collision, any object whose motion has been altered will need to predict its next target. In
a pairwise collision, this means two searches against the universe at a cost of O(N).

A similar queueing method is suggested in [Lin92]. However, their method keeps track of all
pairs of objects at all times, thus requiring O(N 2) events.

Outline of Algorithm. Before simulation begins, each element locates its first target and
queues an event for it. This initialization step is somewhat slow as it requires N2 nontrivial compar-
isons.

On each iteration of the system, we remove the earliest event from the queue and set the sim-
ulation clock to its time. The two elements and their point of contact are passed to the collision an-
alyzer (see section 5). The analyzer may elect to queue additional events to more precisely track
the collision point between the two objects. If a collision finally results, each element calls the meet-
ing predictor with its new trajectory and queues the new event found by it.

Between events, the simulation is simply stepped forward at the rendering rate. At each step,
the positions of the objects are updated according to their trajectories and the renderer is called.

4.0.> See Appendix (p.52)4.0. Sparse Event Handling 22
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4.2 Stale Events
The price of our conservative prediction method is that predictions can be invalidated by sub-

sequent events. An object will miss a predicted meeting if it is diverted from its path before the
event arrives. We term such predictions stale and must avoid acting on them.

Fortunately stale events are easily detected. Before processing each event, we check the time-
stamps of the elements involved. If any of them have been affected more recently than the time at
which the prediction was made, the prediction is now invalid. We distinguish two types of stale
events: actor-absent and target-absent.

Actor-absent. In this case, an element makes a prediction and then is struck before the predic-
tion occurs. When such an event comes up on the queue, it can be safely ignored. The target element
will continue through the predicted meeting point unaffected and the actor itself will have already
located a new target at the time it was struck.

Target-absent. In the other case, an actor makes a prediction but its target is diverted. When
the event arrives, the actor will have nothing with which to collide. At this point, the actor will need
a new target. It must therefore reinvoke the meeting predictor just as it would have if a collision had
occurred.

If there are many stale events, efficiency will suffer. This is one reason our method is applied
only to sparse environments. When events are rare, events also become invalidated more rarely.
An increase in stale events is one of the measures we can use to detect dense situations. In the tests
done for this thesis, the proportion of stale events ranged between 20% and 50%. See Appendix 1.2
for a description of how this affects performance.
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The algorithm moves along the surface of the
objects toward the smallest gap separating them

5.0 Collision Detection
When the bounding shells of elements intersect, we must analyze the situation with more de-

tailed methods. Sparse analysis can be used as a first phase for most any collision algorithm. Any
object representation which can be placed in a bounding sphere can be accommodated. The colli-
sion detection methods employed can be relatively complex as most potential collisions have al-
ready been ruled out in the sparse phase.

For this thesis, we have developed a polyhedral collision detector based on work described in
[Lin9l, Lin92, Lin93]. The method runs quickly and fits easily into the sparse model.

The Lin and Canny algorithm is based on the geometric properties of convex sets. For a given
pair of convex polyhedra, there must exist a line of minimum distance connecting them. Intuitively,
this is the gap where a spark would jump from one to the other. Note that in some situations this
line can be multiply defined. In these cases, we are free to select any connecting line having the
minimum length.

The algorithm divides each polyhedra up into its component features: faces, edges, and verti-
ces. If we start with any two points on the surfaces of the objects, we can follow the gradient along
the object's surfaces "downward" toward that gap.
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Examples of the regions
closest to various features

As P1 moves from the zone nearest the face to that nearest the
edge, P2slides continuously along the surface of the cube

5.1 Lin and Canny Distance Calculation
The tracking of points on the surface of a polyhedron can be made extremely efficient through

appropriate preprocessing. We assign a "nearness zone" to each object feature, that is, the zone of
space outside the object which is closer to that feature than any other. Each zone will be delimited
by planes.

If a point which was in a given zone has moved, we need only test it against the zone's bound-
ing planes to see if it has broken through any of them. If so, we know the point will then be in the
adjacent zone, and thus closest to that zone's feature. Each object keeps track of the point on itself
closest to the other, using this method.

The algorithm begins by selecting an arbitrary feature on each object. It then looks to see if any
bounding walls around either of the features is violated by the point on the other. If so, we move
our anchor on that object to the neighboring feature on the other side of the violated wall. This pro-
cess is repeated until no walls are violated.

Once the closest points have been established, they may be easily maintained over time. As
the objects move, we begin our search from the previous optimal points. The new closest points
will likely be nearby. Clearly if the length of the connecting line ever goes to zero, we have detected
a collision.

See the papers cited on the previous page for a more complete discussion of the algorithm.

> See Appendix J (p.56)
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P will either hit the cube's face...
...or pass through one of the walls surrounding its

zone and become closest to a new feature

5.2 Interface to the Sparse Model
When elements meet, their closest features must be tracked for as long as they are engaged.

We could do this by stepping at small time intervals and checking to see if they have collided or
changed closest feature pairs. However, we would prefer a method analogous to that of the sparse
phase-- one that allows us to identify key events in the object motions and disregard the rest.

The Lin and Canny algorithm provides this opportunity. Given objects with known closest
features, one of two things must happen: the feature pair will collide, or a new pair will become
closest. Given the deterministic nature of object motion set out in Section 3, we can predict this.
The motion of the closest feature points on each object can be projected until they encounter either
one of the zone walls or the feature itself. The soonest such encounter for either object is queued
as the next event for the pair. Barring outside influence, no collision will occur between the objects
until then. As before, if the object motions are complex, exact time predictions will not be possible.
In those cases, we resort to the same convergence techniques discussed in Appendix E.

Note that when an object pair enters into the detailed phase, each must still search for and
queue its next sparse encounter. An object can be engaged with multiple others at one time and
these situations must be detected.

> See Appendix K (p.58)
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Model of object impact using impulsive forces

m1, m2 = Object masses
01, 02 = Object center of masses Resulting impulse force
d1, d2 = Displacement of contact points from 01, 02 V1, V2 = New object velocities
V1, V2 = Object velocities u,2 = New object rotations
", o2 = Object rotations
El, E2 = Object elasticities
N = Normal to the plane of contact

6.0 Collision Response
When the detection module determines that two objects have made contact, the situation is

passed to the response routines. At this point, various methods may be used to resolve it.
Simulated springs are common. They are somewhat analogous to our conventional collision

detection algorithm in that they require small time steps and accumulate integration error. They
likewise are easy to program, but costly to simulate.

We are currently using the other common response technique -- impulse forces. This method
computes instantaneous forces at the point of impact to push the objects apart. As these forces are
not applied over time, they do not hinder a non-time-stepped simulation. Impulses provide realistic
looking motion and some level of physical validity. See [Hahn88, Moor88, Gold60, Mac60] for
more detailed discussion.

The major failing of impulse forces is that the model breaks down when contacts become ex-
tended. With current methods, we are spending about 10% of our computation time doing collision
response. As more computer power becomes available, more complicated means could be em-
ployed. Aspects of analysis could include surface compression, finite element deformation, radiat-
ed shock waves, and inelastic effects.

See [Bat85, Will87, Will88, Will92, Bai93, Bra9l, Baraff et.al.] for discussions of these.
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7.0 Results - Cost Comparisons
The various algorithms described have been coded in C on a Silicon Graphics Skywriter (33

MHz RS3000). See Appendix M for a description of the code. Timings were made for the conven-
tional and sparse methods, for various numbers of convex polyhedral objects. The polyhedra had
randomly chosen complexities from 24 to 600 faces. The graph reports the times per frame and in-
cludes rendering.

As the number of objects in the simulation increased, we increased the size of the environment
commensurately. This provided a universe of constant density (5%) so as to make timings compa-
rable. The timings indicate that the sparse model is able to maintain real-time rates for simulations
of objects numbering in the hundreds.

The sparse dynamics times above are for accelerational motion with E(t)=0. See Appendix 1.2
for a characterization of the effect that inclusion of an error term would have. If all objects have
large error envelopes, the simulation will be drastically slowed. However, in the usual case, only a
few objects, such as those under the control of the user will need this treatment.

See the appendix for pictures of the system in operation.

> See AppendixN (p.r63)
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Cost breakdown of the Sparse Dynamics algorithm for various numbers of Objects

7.1 Results - Cost Breakdown
This graph shows the proportion of time consumed by various parts of the sparse dynamics

system. The dotted line represents sparse detection only. The dashed line includes the cost of the
polyhedral algorithm. The solid line includes rendering. The top line of this graph, matches the
lowest line on the previous page.

We see that rendering and polyhedral collision detection are roughly linear in the number of
objects. As discussed in Appendix 1.3, the sparse phase increases faster than this, but with an ex-
tremely low constant. At 1000 objects, it is still an acceptable fraction of the simulation time.
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7.2 Results - Collision Counts
We also examine the number of collisions occurring in the previous simulations. This is to

verify that the sparse system is working correctly and to gain a handle on the number of events as
N increases.

We plot the number of collisions occurring in the simulation as a function of the number of
objects. A well known result from physical chemistry states that the number of collisions should
be linearly proportional to the number of particles in the system [Cas83]. The graph shows agree-
ment with this.

These numbers also closely match the collision counts from the conventional simulations. The
values do not match exactly due to differences in the location of collisions. The conventional meth-
od contains small errors due to its time stepped nature. As in any chaotic system, small deviations
can lead to a significantly different outcome.
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7.3 Results - Feature Tracking Cost
This graph presents timings for the polyhedral collision detection algorithm discussed in Sec-

tion 5. We plot the cost of the algorithm for rotating objects with various numbers of faces. The
three sets of data points are for fixed rotation angles of 10, 50, and 25' per frame. The solid lines
are each proportional to KF with differing scales. These results corroborate the order calculation
for this algorithm made in Appendix J.2.
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Region of possible
deviation from that

pathTime

An element as
represented in 4D

Region that parts of
the object might

influence

An element with spread
due to an error term

8.0 Four Dimensional Analysis
As noted in Appendix J, the majority of the cost of sparse dynamics is incurred comparing ob-

ject trajectories at event times. Clearly this could be made more efficient if we had some notion of
objects' relative proximities. The difficulty is that the nearness relations change over time. In a
moving environment, static proximity relations will require constant updates.

Four dimensional analysis provides a way to overcome this problem. As an object moves, we
can think of it as tracing out a 4D tube through time. Although complicated, this four dimensional
shape is of fixed form over all time. Use of 4D analysis reduces the space-time collision detection
problem to one of static interference detection. If we calculate the earliest time a pair of tubes in-
tersect, we have found the first possible meeting of the two objects. This idea is described in
[Cam90].

Note that 4D analysis is not the same as computing the intersections of swept volumes. Swept
volumes are compared in only three dimensions. Any intersection found in this way must still be
checked to determine if the objects were in the same place at the same time.

We can model the error term as causing an object's path to spread out into a field of possible
positions as we move into the future. This represents our growing uncertainty of the object's posi-
tion as time progresses. The tube traced by the object thus spreads into a cone. The larger our error,
the faster the cone's spread. Methods similar to this have been discussed in [Hub93, Foi90].

8.0. Four Dimensional Analysis 32



Region of possible
interference between

the objects \

Earliest point at which
the objects could come

into contact

Time

The two dimensional base in this drawing is
being used to represent all three dimensions of
the octree at left. This is the best picture of a

4D object we can draw in 3-space

8.1 The Hextree
Our path intersection method from Section 3.5 has already been doing four dimensional anal-

ysis implicitly. The new concept introduced here is that we can explicitly model the shape of the
swept cones and enter them into some form of hierarchical data structure. We can then refer to this
structure to obtain the proximity of elements both now and in the future. This structure need be
updated only in the case of collisions, which as we have noted, are rare.

A typical data structure for representing object proximities would be a spatial subdivision tree
whose leaves contained element positions (e.g. an octree). Unfortunately, this would require us to
update the tree at each frame-time.

This can be remedied by moving to the four dimensional equivalent of an octree, generally
termed a hextree [Gill8 1, Ben75]. The extra dimension of this tree is used to represent the passage
of time. Each element's representation in this space-time continua is a smear representing the space
that the element will occupy as time passes. Similar methods are explored in [Duf92].
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8.2 Hextree Use
If we use the hextree to check an object's neighbors in order of space-time proximity we can

stop as soon as the first hit is found. Methods for such searches are well established, though they
will need to be extended somewhat for four dimensions.

A preliminary hextree has been implemented as described. There is a fair amount of overhead
in keeping the tree up to date. Results show the method breaks even at about 500 objects. With
more than this, efficiency is improved. The implementation is currently quite naive and doubtless
the break even point could be lowered considerably.

The Dense Case. Sparse analysis loses efficiency in highly populated environments. In such
situations, many collisions are occurring and object positions are difficult to predict. The hextree
can be used to identify such situations. Highly populated regions of space appear as particularly
deep tree hierarchies. If the simulation is overburdened by the cost of a dense region, we can de-
grade the model of physics being applied in the region in order to maintain real-time operation. This
is discussed in more detail in Section 9.4.
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Summary of the sparse dynamics method

Wrap each object in a simplified representation Determine encounters analytically

Queue these encounters as future events
Use 4D analysis to increase efficiency

If objects make contact, calculate
impulse forces to drive them apart

K211

When objects come near each other,
use topological hill climbing to keep

track of their nearest points

9.0 Discussion

9.1 Summary
In this thesis, we have presented a system for efficiently modeling the motions of large num-

bers of polyhedra. We established that a majority of the time in such systems is spent searching for
object collisions and so introduced a new model to streamline that process. In the case where ob-
jects actually do make contact, we employed a hill climbing graph algorithm to quickly locate the
point.

We have discussed how to handle linear and accelerational motions, wind resistance, and user
interaction. We also introduced a model which attempts to handle extended contact and the effects
resulting from it. We have tested the algorithm to ascertain the validity of its operation and finally
suggested a time/space hierarchy which could be used to make the method more general and effi-
cient.
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Some directions for future research
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Hextree Additional Forces

Concave Polyhedral Algorithm Dense Algorithms

9.2 Future Work
The largest project currently underway is the completion of the hextree subsystem. A large

amount of theoretical work remains to be done to establish the various formulas of optimality asso-
ciated with the tree's operation.

We would also like to make the algorithms for predicting collisions more accurate and robust.
Many speed improvements are possible, though we are not currently well motivated in this area.
The algorithm now runs sufficiently fast for our current purposes, and in any case, faster than the
renderer.

A more important concern is to increase sparse dynamics' generality, its handling of extended
interactions, and the types of object representations it can accommodate. Dense interactions also
need a more thorough treatment.

The next few pages describe some longer term goals for the work.
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9.3 The Dynamics Engine
We envision the result of this work as a black box dynamics engine into which we feed our

simulation model, and from which issues periodic reports on the state of that world. This mecha-
nism would be similar to the rendering engine which workstations now contain and could, in fact,
precede it in the graphics pipeline. The renderer would contain a simplified dynamics model anal-
ogous to the sparse model. It would be independently capable of updating the analytic positions of
objects for rendering purposes. This would be interrupted periodically by the dynamics engine
when events or user input altered an object's predicted course. The bounding spheres would also
make the renderer's job easier, as it would know which objects were likely to overlap during ren-
dering. Some of the rendering hardware already available could likely be turned to these purposes.

The goal of providing workstations with such a dynamics engine is to allow the use of dynam-
ics to become as ubiquitous as rendering is now. Many designers would find applications for such
a capability, if it were readily available.
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9.4 Other Levels of Detail
Two levels of detail, sparse and detailed, have been described here. There could be others,

however, to take advantage of coherencies at other scales. The sparse and detailed levels were both
"exact" methods in that their efficiencies did not result in imprecision in the simulated outcome.
However, as the scale grew larger, this would be of less importance. Even if a simulation is to be
very precise, the scientist is unlikely to care about the position of every particle among thousands.
What would be important is the aggregate behavior. This behavior is suspectable to characteriza-
tion and modeling just as object trajectories are. The issue is to have a sufficient model at each scale
to accurately present the physical behavior. It is the attention of the user which should inform the
system where to expend its resources. Two example levels of detail:

- We can treat small objects as spheres with rotations. When colliding, we can look up
the objects' faces in a table to determine the proper deflection angle. This method is
analogous to the rendering technique, bump mapping.

- Dense areas can be treated as a single aggregate mass. This mass would be analytically
modeled as a single flexible body with certain properties and cohesiveness.

The ultimate goal would be to make the dynamics engine scale independent, that is, capable

of simulating a physical environment of any size, time-scale, or density. When few objects were
present, detailed and accurate motion would result. As the scale or number of objects increased,

the engine would progressively fall back on more global or aggregate techniques. Although indi-
vidual accuracy would be lost, the mass behavior of the system could still be observed.
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Less virtual...

9.5 Conclusion
We have described a new model for simulating dynamic interactions. The model takes advan-

tage of previously unexploited coherencies to make real-time simulation tractable for usefully sized
environments. In all, we believe that the widespread availability of a real-time dynamics engine
could have as much impact on graphics research as rendering advances have had in the past.

See the appendix for a description of the sparse dynamics code.
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Appendices

A.0 Discussion of Formatting Issues
The format of text has remained basically unchanged since the invention of set type [Gut1455].

Lines of text scan side to side, top to bottom, providing a linear narrative punctuated by serial head-

ings. While any discussion can be forced into such a form, some are not well served by it. Those

topics whose nature is graphical-- that is to say spatially composed-- are more likely to benefit from

a pictorial description. However, due to typographic difficulties, pictures have been relegated to a

second place status-- providing backup for what is explained in print.

Recent instrumentation has made it possible to rethink this hierarchy, and this thesis is an at-

tempted example. Our topic is particularly suited to a predominantly pictorial format as it is wholly

graphical in nature. Having spent a fair amount of time casting about for the "right way to put some-

thing" it is a relief to find that a few deft lines may often do the trick.

In addition to relieving the author of some difficult prose, the form has other virtues. Although

intended mainly for paper, this format would easily lend itself to on-line use and manipulation.

Identifying parts of illustrations with pieces of text is useful as an automated searching tool as well

as providing some description of picture contents for indexing purposes. In an age rife with visions

of multimedia and hypertext systems, it seems odd not to try applying them to this most basic of

tasks.

This is hardly a call for abandonment for the printed word in favor of pictograms, rather each

media should be used in light of its strengths. Pictures provide a quick and intuitive understanding,

while words are more specific and precise. Thus the form of this thesis, in which we lead with pic-

tures and back them up with technical appendices.

While its wild success I rather doubt, I will be content if the experiment at least does not hinder

the reader's comprehension. I feel some leeway to attempt a thing of this kind seeing as the work

was done at the Media Laboratory. Experiments in the format of written media would seem well

within its chartered territory.

A.1 Sources
My personal experience is that I can not learn a concept until I have a concrete picture to hang

it on. Even if the notion is purely mathematical, I require a terrain in which to set the concepts. I

recall technical papers by their characteristic illustrations, even if the illustrations are not germane

to the problem at hand. When reading a technical document, I suspect that we all look at the pictures

first. Yet the feeling lingers that this is "too easy," that a proper comprehension must be paid for

by slogging through difficult prose.
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I was made aware of the power of the graphical format by Gonick's series of pictorial intro-

ductions to various technical fields [Gon90, Gon91]. His Cartoon Guide to Genetics particularly,

instilled in me more lasting biological comprehension than had years of scholastic endeavor.

A particularly vivid example also comes to mind from my collegiate Algorithms course. After

spending a week puzzling through various categories of sorting methods in Sedgewick [Sed83], we

were shown a short animation entitled Sorting out Sorting. In ten minutes, the concepts went from

nebulous to obvious.

Another inspiration in this regard is Edward Tufte and his books on the pictorial display of in-

formation [Tuf83, Tuf9O]. He says "What is to be sought in designs for the display of information

is the clear portrayal of complexity. Not the complication of the simple; rather the task of the de-

signer is to give visual access to the subtle and the difficult-- that is, the revelation of the complex."

In a more practical vain is the periodical Scientific American. Its articles are written in such a

manner that their main points can be understood from study of the illustrations alone. I had read it

this way for years before I discovered this feature was intentional. I think we may therefore term

it an intuitive interface.

A source closer to hand makes a similar point. Concerning his recent book, Society of Mind

[Min86], Minsky has said that, given the thickness of his topic, he was loath to introduce more than

one concept per page. This does not mean the book reads slowly. A single idea can contain details,

corollaries, and ramifications. But by leading with a single idea, the reader is given a context in

which to place later impressions.

A skeptical reader might question whether a lavish use of illustrations serves merely bulk up

the document and so avoid some "hard work." In reply, I can say that the time spent in construction

and layout of the illustrations was at least comparable to that needed to write an equivalent body of

prose. The advantage to be gained (one hopes) was not a shortening of my time, but an improve-

ment in the reader's comprehension. As to the thickness of the document, I note that my page count

has been reduced as a result of adopting this approach. I came to realize that, with appropriate il-

lustration, descriptions could become quite succinct. As the master of eloquence William Strunk

puts it

Vigorous writing is concise. A sentence should contain no unnecessary
words, a paragraph no unnecessary sentences, for the same reason that a
drawing should have no unnecessary lines and a machine no unnecessary
parts. This requires not that the writer make all his sentences short, or
that he avoid all detail and treat his subjects only in outline, but that every
word tell.

[Str79]

No more need (or can) be said.
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B.0 Notes on Virtual Reality
The illustration on page 7 depicts the current state of the art in virtual environment research.

We hope that this may seem amusingly quaint to future readers. Removing the hyperbolic trappings

currently attending the field, we see the following themes:

- few objects (there always seems to be 3)

- crude representations

- a gesture at physics, if any

Reality, as those who have spent any time there can atest, does not look like this. The physics

problem in particular is not going to be easily cudgeled with increased processing power. We hope

in this thesis to bring subtler methods to bear.

The term virtual reality itself has taken on a somewhat unwholesome air of late. The problem

is an old one-- we have confused what we can do with what we would like to do. In this case, the

lure of the imaginary is quite strong. The notion of making dreams into reality is one of humanity's

most deeply held. We eagerly embrace any technical advance which might purport to legitimize it.

While this yearning is forgivable, when it works its way into our grant proposals and press re-

leases, it is less so. Not only do we breed false impressions, but we also impede the actual research

itself. By promising technology we can not deliver we assure a cold welcome for the hesitant in-

termediate steps resulting from our pursuit of it. The nuts-and-bolts of simulated environment re-

search seem dull by contrast to the fiction, and so languishes.

This is a case where the concept has run off independent of its applications. It has attained

cache independent of any utility. As an example, compare virtual reality technology to that of the

typewriter. Could one honestly propose that the former is a more important innovation? Yet we

see the typewriter as a humble tool, pursuant of many worthy endeavors, but itself embodying none.

As such, the industry has all the makings of a fad. Reading this in later years, you will be able

to judge whether we abandoned such conceits, or the field altogether.

C.0 Related Work
There are currently a number of algorithms to compute inter-object collisions. Moore & Wil-

helms [Moor88] give a good overview of the situation, Wilhelms also providing a valuable general

introduction in [Wilh87].

To describe the field, we divide the collision problem into parts as in Section 2.2. Collision

determination refers to establishing likely candidate pairs. Collision analysis refers to location of

the point in space and time at which the pair collide. Response deals with deriving the forces which

result from such contacts. The categories can not be said to be distinct and many of the cited papers
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deal with more than one of them. We maintain the distinction here so that algorithm costs can be

compared to others of like kind.

Collision Determination .Hopcroft introduced an O(N lg2 N) algorithm for finding intersec-

tion among a set of N static spheres [Hop83]. Cameron introduced four dimensional analysis to

handle dynamics in [Cam85] and refined it in [Cam90].

The notion of placing bounds on object motions and predicting future events was discussed by

Culley and Kempf in [Cul86]. Foisy [Foi90] follows in a somewhat similar vain. The queueing

work presented here can be seen as an outgrowth of these. Similar work is being pursued by Hub-

bard [Hub93].

Collision Analysis. Boyse described an O(N 2) algorithm in [Boy79] which used an all-to-all

comparison between the features of a pair of polyhedra. The algorithm handled static interference

and limited forms of motion. In [Cam86], Cameron and Culley reported an algorithm which ap-

plied configuration space from Lozano-P6rez [Loz83], and was estimated to be O(N lg N). Canny

also offered a configuration space method [Can86], requiring O(N 2 lg N), but able to handle arbi-

trary object motions and configurations.

Gilbert introduced a nearly linear time algorithm in [Gilb88] which converges on the smallest

distance between a pair of polyhedra by searching for optimal support planes. The method is ex-

tended to some types of curved surfaces in [Gilb90]. Bobrow used constrained minimization with

similar intent resulting in an O(N) algorithm [Bob89]. Bobrow's method was refined by [Zeg9 1]

and extended to curved surfaces in [Ma92]. [Nah93] improved on the execution times of this using

object velocities to predict future collisions.

Lin and Canny make use of preprocessing in order to reduce a search similar to Bobrow's to

nearly constant time [Lin9 1]. The collision analysis in the current work is based on this last method.

On the theoretical side, Dobkin and Kirkpatrick reported an O(lg2 N) method for detecting if
convex polyhedra intersect [Dob83] and later a linear time algorithm for finding the minimum dis-

tance between them [Dob85]. These results required a preprocessing step in order to generate hi-

erarchical object representations. Most recently they have extended this work to provide an O(lg 2

N) method for minimum distance, requiring at most linear preprocessing time [Dob90]. The suit-

ability of these algorithms for mechanical implementation, however, remains unclear.

To speed up collision identification, Thibault and Naylor use a hierarchical BSP tree to provide

efficient access to object features [Thi87]. [Van91] unifies this with boundary representation infor-

mation to simplify operation. Turk makes use of a uniform spacial subdivision coupled with bound-

ing sphere trees in [Tur9O]. Bounding sphere trees have also been employed by [Pob92] and

[Hub93] to gain a similar speed advantage. More recently, interval methods have become popular

[Duff92, Sny92, Sny93]. These provide unprecedented capability and accuracy but dramatically in-

crease computation times.
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Concerning object representations other than polyhedra, Sclaroff and Pentland report good re-

sults with deformed quadrics [Scla91]. There has also been recent interest in calculating collisions

among time dependent shapes in [Von90, Bara92, Syn93, Gas93].

Response. Although not directly pertinent to this work, the area of collision response has also

received much attention [Hahn88, Bat85, Will88, Bai93, Bra9l, Gold60, Mac60].

Baraff examines the computation of response forces for various situations [Bara89, Bara90,

Bara91, Bara92]. However, his methods encounter some difficulty due to point sampling inaccu-

racies and instability and cannot be considered generally applicable.

An earlier version of the work presented here appeared in [Dwor93].

D.0 Discussion of Sparsity
Sparse vs. dense. We may think of the two cases by analogy. Molecules in a gaseous state are

in a sparse environment. By contrast, liquid molecules are in a dense one. The line of distinction

between the two cases is arbitrary. What differs is the techniques used to analyze them. By choos-

ing the appropriate model in a given situation, we do not alter the result, but we decrease the amount

of computation needed to arrive at it.

The density of environments used for testing in this work ranged from 5% to 10%. At this

level, sparseness was greatly effective. We think it likely that typical simulated environments will

be less populated than this. A glance around your office will confirm that it is mostly air. However,

there will likely be certain regions which are far in excess of this. In such regions it is unhelpful,

and perhaps even deleterious to employ the sparse methods. Predictions will often be wrong, ne-

cessitating small time steps and frequent recomputation. Identifying such regions is addressed in

Section 8.2.

Sparse vs. detailed. We may also think of the sparse case as being "higher level". It examines

the gross movement of objects, leaving further analysis for the detailed phase. We identify only

two levels of detail for objects in this work. However, there could be more. We imagine cascading

levels of representations, each containing only the detail needed for that level of checks. We would

require adaptive methods for determining what level of detail was appropriate at any given time.

The hierarchical structure of Section 8 would also be of use for this.

E.0 Root Convergence
The actual motion of objects in a physical environment is described by ordinary differential

equations. We use a numerical integration method, such as Runge-Kutta [Pre88] to determine their
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position over time. For the predictive model, we make the simplifying assumption of constant ve-

locities or accelerations. This allows us to use algebraic root-finding methods instead. The approx-

imation is kept conservative through the use of an error bound.

For low order motion, we may solve for these roots analytically. Otherwise, convergence

must be used. We must make a distinction between the two kinds of convergence we employ. Nu-

merical root-finding is used to approximate a solution to our path equation. But the equation is in

turn an approximation of the object's true motion. Therefore, even if our root-finder is quite accu-

rate, we still may not have located the new contact point. To assure finding it, we must sometimes

home in on the time of the collision, taking progressively smaller time steps as we approach it. This

is essentially a linearization method common in nonlinear control theory [Cook86].

The use of this method allows the root-finder to be less than perfectly accurate, however. In

particular, we can indicate to it how much accuracy we need at any given invocation, depending on

how far off the event we are predicting is.

The difference between these and conventional techniques is that the convergence on each col-

lision is carried out by locally adaptive time steps. The progress of the engagement is unrelated to

other calculations occurring elsewhere. Also, the time steps used are far from uniform. They, in

fact, zero in on the event in a manner like Newton's method, typically by a factor of 2 or more per

step.

E.1 Numerical Root Finding
We require a numerical technique for locating the roots of polynomials. We implement La-

guerre's Method, a simple iterative root finder [Pre88]. Its cost is a great deal higher than the ana-

lytic solutions in the next appendix. However, its speed of convergence is not greatly affected by

increases in polynomial complexity. This allows us a great deal of freedom in adding new terms to

the path equation.

E.2 The Error Term
We use the error term to accommodate several types of deviations:

- higher order small effects

- uncharacterizable effects

- future indeterminacy

- left over error from path approximations

If the spread itself is not guaranteed conservative due to unbounded indeterminism or noise,
we must use a periodic out-of-error-envelope check. The frequency of the check will depend on

how fast the path can diverge. If we have no idea, then we must make a check each integration step

or sample.
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F.0 Analytical Solutions

Our function of motion will have the basic form

P(t) = x+xt+ at2+

As our motion model becomes more accurate, this equation will gain additional terms. To find the

meeting time of a pair of elements, we solve for the times when the distance between their position

functions is less than the sum of their radii

Dist (P (t), P2 (t)) R + R 2

Including the error term results in

Dist (PI 1(t), P 2 (t)) (R I + El (t)) + (R2 + E2 (t) )

F.1 Linear motion
Given spheres of radius R 1, R2 traveling along linear trajectories P1 +VIt, P2+V2t with possible

deviation dRI, dR2 per unit t, they intersect if

Dist (P +VIt, P2 +V 2t) r (R +dRIt) + ( R 2 +dR 2t)

Substituting R=R1+R2 and dR=dR,+dR2 this becomes

V(AP+AV) -(AP+AVt) !R+dRt

(AV -AV- dR2 ) t2 +2 (AP -AV- RdR) t + AP -AP - R 2  0

We are interested in the extrema of this case in which the spheres are just touching. This con-

verts the inequality to equality. The result is a second order equation whose zeros can be found with

the quadratic formula

-AP - AV+ RdR ±,

AV -AV-dR2

d = (AP-AV-RdR) 2 -(AVAV-dR 2)(AP-AP-R 2)

If the discriminant d is negative, the solution has no real roots, indicating the elements never meet.

Otherwise, the two solutions will represent the point at which the spheres first touch, and the point

at which they have fully passed through each other. Since we want the point of first contact, we

select the smaller root.

If the result is earlier than the current simulation time, the elements are moving away from each

F.O. Analytical Solutions 46



other. I.e., their point of first contact was in the past and they can not collide. Derivations similar

to the above can be found in [Yang, Ald59].

F.2 Gravity
In the general case, objects are in free fall, and experience a force according to the sum of the

masses around them. For a method of implementing this cheaply, see [App85]. In this environ-

ment, surface effects such as support and friction are rare. When objects make contact, they quickly

fly apart again.

Surface effects appear where objects are near a body much larger than themselves. This pro-

vides an undeviating force vector ("down") and a surface to which they are drawn (the "floor"). Al-

though atypical, this situation is of particular interest to humans and so deserves special attention.

A single gravity vector costs nothing to add to the model. In a reference frame where all ob-

jects experience the same force, the acceleration terms cancel out in the equations. It is not until an

object encounters the floor that we have difficulties. At that point, the floor exerts an addition force.

This can be treated as a special case of the next section.

F.3 Thrust
In a physical environment, objects can alter their motions by throwing away part of their mass.

We coin the term rocket for any object capable of generating its own acceleration in this manner.

Accelerating objects are harder to simulate than the linear case. The derivation is similar to

the above, but second order terms are introduced into object motions. This results in a 4th order

equation to determine the intersections of a pair of them.

Position: P1 +Vlt+ AIt 2  P2+V2t+ A2t2

Radius: R 1 +dRit+ ddRIt2 R 2 +dR 2t+ ddR2t2

Dist P1 +Vt+ A t2, P2 + V2t+ A2t2 ) !R 1 +dRt+ ddRt 2 + R2 +dRt+ ddR 2t2

Again, substituting R=R1+R2, dR=dR 1+dR2, and ddR=ddR1+ddR2 this becomes

-(AA - AA -ddR2)t4 + (AA - AV -dRddR)t 3 +
4

(AA AP + AV - AV - RddR - dR 2) t 2 +

2(AV AP-RdR)t+(AP- AP -R 2 ) 0

Exact 4th order solutions exist for this [Bey84]. As they are sufficiently complicated, we have
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found it simpler to solve this via a fast converging iterative method [Pre88]. This has the advantage

of adjustable accuracy, and generalization to the addition of higher order term.

The first and third solutions returned will represent the two times the objects meet. For pre-

diction purposes, we select the first of these that is past the current time. If neither are, then the

objects have no future meeting.

In a gravitational environment, the floor can be implemented as a "rocket object" of this type.

It exerts a constant upward thrust sufficient to cancel the effects of gravity. It appears to hold its

position in space while all objects fall toward it.

G.0 Handling Extended Contact
A non-moving floor (i.e. one which appears to receive none of our momentum on impact) in-

troduces the effects of support and friction. These can theoretically be simulated by the system al-

ready in place-- multiple small collisions will sum to the correct overall forces. However, as our

method is predicated on the rarity of collisions, it is inefficient to do this. It is preferable to sum up

these interactions over time and determine their effects analytically. The effects of these forces

have been much studied [Hahn88, Bat85, Bai93, Bara89, Bara9l].

A proper treatment of this topic is beyond the scope of the current work. The method presented

here is along the lines of Hahn's, and is intended as the first step in a more general scheme. It pro-

duces reasonable motion for small systems and is not unduly expensive. In the long run, we wish

to characterize the effect of contact forces and include them in our path-and-error model or in some

other phase of the system. We believe that the models provided by sparse analysis would facilitate

work in this direction.

Temporary Joints. We note that force is transferred among objects only at discrete regions of

contact. We can characterize these regions by object features similar to the methods of Section 5.

Each class of motion is then handled analytically.

An object in 3-space with no restrictions on it has 6 degrees of freedom: 3 translational and 3
rotational. The object's contact with another surface can constrain from 1 to 3 of these degrees.

When an object meets the conditions for such a constraint, we explicitly store the contact as a tem-

porary kinematic linkage. Its behavior about the contact will then emulate a robotic joint of that

order.

We distinguish three levels of contact "joints" (refer to the illustration on page 19):

- One-point contacts rob an object of a translational degree of freedom by forming a bar-
rier to its movements. The region of contact is a point.

- Two-point contacts remove a rotational degree of freedom by creating a hinge at the
point of contact. The region of contact becomes a line.
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- Three-point contacts remove another degree of rotation. The region of contact is a
polygon. This can also be termed a support contact. Note that the term "three-point" is
used to encompass three or more actual points of contact.

If an object establishes a contact point with an object that it already shares one, its joint class

is increased by one. If a contact point is broken, the class is decreased. Joints move up and down

between classes in this way.

In the case of three-point contacts there is the additional question of determining balance. An

object is balanced when its center of mass (in the direction of its acceleration) runs through the poly-

gon formed by its support points. If this is not the case, the object will tip in the direction of its

center of mass and at least one of its contact points will immediately break. One object's balance

on another must be considered for the whole of both kinematic structures in order to allow for tow-

ers, arches, and the like.

A useful trick to reduce the number of checks: if the relative motion energy between two ob-

jects is low, they may be checked less often, and if at rest, they may be marked as static relative to

each other. For the duration of such a contact, they act as one body and transfer external forces

between them.

G.1 Friction
Even when constrained by a surface, an object has three other degrees of freedom in which to

move: two translational axes and one spin. Objects may slide and twirl against one another, still

constrained by their contacts. Friction is the force which opposes this motion. According to the

Coulomb model [Bra91], friction is a function of the roughness of each surface, the area of contact,

and the force with which they are pressed together.

For one and two point contacts, we must apply a trick. Theoretically, these objects have no

area of contact, and thus, no friction. However, edges and corners in the real world are slightly

rounded. We therefore attribute a small surface area to edge and corner contacts in proportion to

the elasticities of the engaged objects.

We can cheaply calculate the area of the region covered by a contact. Combining this with the

contact force and the roughness of each surface, we can compute the appropriate sliding resistance.

We determine the acceleration resulting from applying this force at the contact point, perpendicular

to its vector. We then add this acceleration term to the path equation in Appendix F.3.
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Unfortunately, the area of frictional contact can

change continuously over time resulting in a differ-

ential equation that is difficult to analyze ahead of

time. We currently use a simple approximation that

computes the area at the beginning of the contact

and at the point where the contact's nature changes. Continuously chang-

We assume a linear interpolation of the friction force ing contact area

between these two times. This results in a third order term being added to P(t), requiring a sixth

order equation to predict intersections.

Each time the contact shape changes form, we must recompute the acceleration term. This in-

cludes shifts between joint levels, and changes of contacting features within a given level. We use

the path equation to predict when these will occur and queue that time as an event. As always, our

prediction may be too conservative, requiring several events to home in on the actual shape change

point.

H.0 Adding Other Forces

Additional forces can be included by adding appropriate terms to P(t) and the error term.

H.1 Mechanisms
This includes jointed figures and machinery. Under sparse dynamics, these are considered sin-

gle objects. An articulated figure can not alter its center of gravity while in free fall, it can only alter

its trajectory when in contact with another surface. This is not a problem since the sparse bounding

volumes have already been violated by the time the figure contacts another surface.

The problem is thus reduced to finding the internal motion of a jointed figure. This is easier

than the general case for the same number of sub-elements as the motions are somewhat con-

strained. For treatments of this problem, see [Sch9l, Jos90].

H.2 Aggregate Forces
Even chaotic forces can be estimated analytically in aggregate. These are forces which are un-

predictable on a small scale, but have well defined laws to express their overall effects. A common

example is motion through a viscous medium in our case, termed "wind resistance." Wind resis-

tance is a force which resists motion in proportion to its magnitude. As such, we can form an ac-

celerational approximation for it to be added to P(t). For increased fidelity, the term can be made

a function of altitude or air pressure, or it can make use of lookup tables to simulate the effects of

air currents and weather.

The ability to handle aggregate behaviors is also important in other respects. In Section 9.4,
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we wish to gain scale independence by deriving a high level model of colliding objects. The be-

havior of aggregate bodies is used as the basis for this.

H.3 Unpredictable Forces
Some forces can not be predicted due to their internal volition. That is, the objects have the

ability to accelerate from within and employ this ability according to some unknown algorithm. The

motions of these can derive from outside measurement or be handed to us by another module. Clear-

ly such objects are not amenable to exact prediction, and thus pose an efficiency problem.

The most nettlesome type of indeterminate objects are those under control of the user. Users

often desire to have a "hand" in the simulation which follows their specified movements. We term

these god objects as they have no physical basis and violate the rules of the simulation. They are

explicitly defined to be the hand of god reaching into the simulation and are unconstrained by its

physical laws. The solution is to put limits on those objects' activities. If this troubles the reader,
consider-- an environment where an unpredictable agent can reach in and change any aspect, at any

time, is not a simulation at all. Since it obeys no consistent rules, what can it be said to model? As

a simulation becomes more sophisticated, the ways in which an outside observer can effect it must

become higher level and more subtle1 .

So, the user's activities must be constrained in the ways they can affect the progress of the sim-

ulation. A workable method is to make the user a "rocket object." That is, the user becomes the

agent which makes the internal thrust decisions. For a typical "floating hand," this means that fast

movement will cause the screen hand to lag somewhat behind the real one. The user can violate

this restriction, but at the cost of efficiency. As an example, imagine the user moving instanta-

neously from one location to another. The hand's disappearance will mean that any object which

intended to encounter it will wake at that location with no engagement and have to recompute. The

appearance of the hand elsewhere will require an immediate cull of the local neighborhood to de-

termine its next encounter.

Even so, the loss of efficiency will be tolerable if the number of god objects is kept low. For-

tunately, this is generally the case. Typically, the user wants only one with which to prod and ob-

serve the progress of the simulation (a kind of cursor). The maximum number of such objects is

limited by the bandwidth of the user's attention-- perhaps, two hands and a head camera.

These restrictions can be relaxed somewhat using the analysis in Section 8.

1. Interestingly, this notion has a theological parallel, the "watchmaker hypothesis."
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1.0 Cost Analysis of the Sparse Phase

A level comparison of the cost of sparse dynamics to that of conventional methods is some-

what difficult. Conventional algorithms incur their dominant costs per frame. The sparse model

incurs cost per event. To compare these, we need a formula for the number of events occurring in

an environment. Construction of this formula requires several assumptions.

1.1 Counting collisions
Statistical Mechanics [Moor8 1] models the number of collisions, C, among spherical particles

in an environment as

C =2f2 nr 2 N2

C = 2d V 2 per unit volume, per unit time

N=the number of particles

r=the radius of each particle

V=the volume of the environment

E =the average speed of the particles

To determine the total number of collisions over a period of time t, we multiply through by t and

the volume V

C = 2,F2Zt nr2N2
V

We note that Z t is a velocity over an interval of time, and thus a distance traveled. We wish to know

the number of collisions in terms of some generic unit of distance. To make the estimate indepen-

dent of scale, it is convenient to choose the distance to be r. The formula then becomes

C = 2 t r3N2

V

for the number of collisions occurring as all objects move a distance of their own radii.

We would prefer to express the number of collisions in terms of the density of the environment.

For an environment containing only uniform spheres, the density can be expressed as

D =4 r 3N
3 V

We solve this for r and substitute into the above. The V terms cancel leaving
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3f2C 2 DN (J.1)
2

This relation states that the number of collisions in an environment of a given size is linearly pro-

portional to its density and also to the number of objects present. Note that this equation does not

keep the size of the objects constant. If the size of the objects remains constant, the extra factor of

N in D will cause the number of collisions to increase as N2.

The model from which we have derived this result is used in physical chemistry to model the

behavior of molecules in gases. As such, it assumes densities much less than 1. For higher densi-

ties, an additional factor of 1/(1-D) becomes relevant. This represents the asymptotically increas-

ing number of interactions as space becomes completely filled. However, like the statistical

mechanics of gases, sparse dynamics is intended to be used at low densities (e.g. <10%). For these

values, the extra term may be safely ignored. Indeed, when the contribution of this term becomes

significant, it is a good indication that the situation should be analyzed by other techniques.
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To verify the collision counting formula, we tested the algorithm for various N at a constant

density (D=5%) and for various densities with constant a N (N= 100). The first graph shows a direct

linear correspondence. The second shows both the expected relationship to DI(1-D) and also the

closeness of this function to linearity over our region of interest.

1.2 Cost calculation
We may now calculate the costs associated with each algorithm.

Conventional Method. From Section 2.4 we have that conventional stepped methods require

N2 operations per frame, or if using a hierarchical space representation (as we will assume here), N

lg N. The cost of each of these operations is a simple sphere or bounding box comparison. We will

treat as inconsequential the costs incurred when bounding volumes actually overlap.

The formula in the previous section calculated the number of meetings occurring as an element
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moved the length of its radius. We would like to express the cost for the conventional method in

the same terms. The question is then, how many steps are needed to simulate an element moving

the length of its radius? The answer depends on the accuracy required. If elements moves a dis-

tance d in one step, then the location of any collision will be known only to within d. In other words,
if we wish the collision to be accurate to within A digits of the length of r, then we must take 10 A

steps. This may be improved by making the step length adaptive, in which case we set the step size

to 1 / 10A1 and when a collision is found, we converge on it for A2 more digits by binary search.

So, the total cost of the conventional algorithm is

Costc = 10AINlgN - SphereComp

Note that this is not an calculation of the algorithm's order, but rather a full cost calculation. We

do this because the constants are relevant for the regions of N in which we are interested.

Sparse Method. The sparse method does a majority of its work at meetings. At these times

two elements will need to check for their next encounter. N objects must be checked for each, so

the cost of an event is 2N. Equation J.1 above gave the number of meetings as (3 f2_/2) DN .

There will also be additional stale events (Section 4.2) in half of which one element will need to

find its next meeting as well. The cost of each object-object check will be that of the time/space

calculation discussed in Appendix F.

Costs = 3 DN (2N + stale) -PathComp = 3J2 (1 + stale/4) DN 2 -PathComp

If we are using numerical convergence as in Appendix E, then PathComp in the above will be

replaced by a somewhat larger value RootComp. If elements are using error envelopes, we must

then converge on solutions as with the conventional method above. This will require an additional

factor of A for convergence events and (1 +dr+1/3 dr2) for the extra volume of the cones.

Note that a small amount of work still needs to be spent "per frame" to update object positions

for the renderer. Since this computation is required only when making pictures, we consider it part

of the rendering cost. In any event, the expense proves negligible when compared to either the ren-

dering itself or the simulation cost.

1.3 Cost comparison
We can see that sparse dynamics is of a higher order in N than the conventional method. This

indicates that its asymptotic performance will be worse. However, the constants in this case dom-

inate for those N in which we are interested. To see this, we derive the relative of speed of sparse

dynamics to that of the conventional method
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Costc _

Costs
10lAIgN -SphereComp

(3T2 (1 + stale/4)) DN -PathComp

The values for the various comparison operations were obtained empirically on a local ma-

chine. Although the actual values will vary according to platform, the relative sizes should be fairly

representative

Comparison Cost

SphereComp .003 msec

PathComp .06 msec

RootComp 3 msec

We select a sample density of 10% (rather higher than in practice) and a stale rate typical of that

density, 40%. Finally, we choose A=4 places of accuracy for the conventional method. Plotting

this for various N we get
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We see that sparse dynamics is much faster for N of reasonable size. At N=1000, for example,

the method is better by a factor of 30. In addition, we must recall that the method is returning exact,
rather than approximate values, and that no collisions can be missed via aliasing as in the conven-

tional method. It is also important to note that hierarchical methods introduced in Section 8 will

reduce one of the factors of N in Costs to lg N. We would then expect to see a much more uniform

improvement even as N became extremely large.

See Section 7.0 for more comparative timings.
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J.0 Lin and Canny Details and Improvements

J.1 Modifications
We have made several alterations to the basic distance finding algorithm to improve perfor-

mance in our application.

J.1.1 Angle tables for features
When entering a large polygon, each edge must be checked to determine what direction to

leave in. We can avoid this iterative step by preprocessing a lookup table for each polygon. The

table stores the angular direction of each edge from the polygon's center.

To use the table, we project the vector connecting the two objects onto the polygon's plane.

We look up the edge listed for that direction in the table. This results in a simple search problem on

an ordered list. We can implement this as a binary search (at a cost of O(lg E)) or a table indexed

by angle for nearly constant lookup. In either case, the extra expense associated with moving across

large polygons is largely eliminated.

The same method may be used when encountering a vertex surrounded by many faces.

J.1.2 Polyhedron feature tables
When objects first become engaged, they must determine their initial closest features. This

can be done by selecting a random point on each object and iterating until the minimum points are

found.

To make the start-up faster, we can precalculate an angle-to-feature lookup table for each ob-

ject. Essentially this is a table indexed by latitude and longitude which indicates what feature is

encountered when approaching the object from a given direction. A similar idea is termed the

"pierce point" in [Bob89].

Each object picks its starting feature by looking up the other object's centroid in its own table.

This gives a good approximation of their nearest approach and typically decreases initialization

time by more than half.

This table turns out to be quite useful in other areas and may itself be worth separate study.

J.1.3 Concave extension
As described, the method is limited to convex polyhedra. If objects are concave, there may be

more than one local distance minima and thus, hill climbing will be defeated. Lin and Canny sug-

gest a hierarchical decomposition method for concave objects which will result in a larger number

of convex ones. Each level is then wrapped in a convex hull which can be utilized by the basic al-

gorithm.

Finding optimal, or even acceptable decompositions for complex objects may prove difficult,
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however. Instead, we introduce a method for extending the basic algorithm to concave polyhedra

directly.

We do this by introducing imaginary edges to the object's representation. An imaginary edge

is a link between two vertices of the object which do not share a common polygon. An imaginary

face is then defined as a polygon formed by the process of placing a new imaginary edge.

The new algorithm is allowed to traverse these edges and faces when searching for the closest

feature, but is forbidden to halt on one of them. If an imaginary feature is found to be the closest,

we move to the nearest real bounding feature instead. Since vertices can not be imaginary, there

will always be such a feature on the current boundary. Imaginary features enable us to make all

local regions of an object convex so that the hill-climbing distance algorithm can operate.

Method. During preprocessing, we construct a convex hull around each concave object using

imaginary edges and faces to cover cavities. We then divide up any internal spaces this creates until

all are convex regions.

During operation, while objects are unengaged, the convex hulls are used to track closest fea-

tures as in the convex case. At some point, an object may penetrate one of the hull's imaginary sur-

faces. Any of the faces of the (convex) interior might be struck by the invading feature. We

therefore split our attention and track each of them separately. We run a new minimum distance

line from the invading point to each of the interior faces and keep a list of all such points for the

current engagement. On each step, we use the Lin and Canny algorithm to minimize each of them.

If further imaginary faces are broken, we split our attentions again. Obviously, both objects may

be simultaneously tracking points in the others' interiors.

As objects become disengaged, the additional search lines can be abandoned. A search line is

no longer needed when its attachment to the other object takes it outside its convex region. In this

way, minimum distance search lines will be created and destroyed as the objects move. Note that

as objects may be contained entirely inside the convex hulls of others, care must be taken as an

object emerges as well.

There are a number of optimizations possible to reduce the number of points which need to be

tracked. Tracking all interior surfaces of invaded regions is highly conservative. The majority of

these could likely be obviated with additional analysis. Also, search lines can, in some cases, merge

as well as split. In practice the number of points needing to be tracked, will usually be small, due

to geometrical considerations. Most objects will likely disengage before becoming deeply tangled.

In those cases where the connection is intended to be an enduring one, we can signal this beforehand

and so apply other methods.

The cost of this method is likely to be similar to Lin and Canny's concave extension. We pre-

fer this method however, as somewhat more in keeping with the original intent of the algorithm.

Also, the method used here for preprocessing concave objects is somewhat more straightforward.
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J.2 Cost Analysis
Lin and Canny report constant maintenance times for slow angular rotations on polyhedra with

less than 200 vertices. That is, once nearest points have been established, little work is required to

update them. To analyze the general case, we apply a constant angle of rotation to objects of vary-

ing complexity and count the number of features requiring traversal.

Theoretically, we reason thus: a 3D polyhedra is covered by a two dimensional surface. An

arbitrary walk across this surface visits a one dimensional subset of its features. For a surface with

N faces, the walk will be proportional to N of the features. The distance algorithm does a simul-

taneous walk across the surfaces of two such objects. Its cost should therefore be 0 (1N). This

increases quite slowly with N and so explains the algorithm's efficiency. Indeed, as Lin and Canny's

results show, small simulations will be fairly insensitive to changes in the value of N.

It is of interest to note how this compares with theoretical results. The best algorithm currently

known for 3D minimum distance requires O(lg 2N) time [Dob83, Dob90]. Although this is asymp-

totically better then 0 (N) , JN , is in fact smaller for practical N.

It is known that finding the closest features on 3D polyhedra cannot be cheaper than O(lg N),

as this is the proven lower bound for the analogous 2D problem [Chi83, Edel85]. The three dimen-

sional case is clearly at least as difficult.

There is some hope that an algorithm may be found of this order. With a good hierarchical rep-

resentation of each object, many types of searches become O(lg N). Work in this direction may be

found in [Bou91].

An imaginary feature extension like the one introduced above might also be useful in this re-

gard. We could construct a tree of such edges inside the object, allowing faster traversal than trav-

eling only on the surface. Determining the optimal form of such a tree (a minimum spanning tree

perhaps) would be an worthwhile direction of research.

Interestingly, O(lg N) might possibly be the lower bound for the nearest feature problem re-

gardless of the dimensionality of the objects. All higher dimensions currently share the O(lg2N)
bound. The problem requires us to walk only a linear path, regardless of the dimensionality of the

surface we traverse.

In any event, 1N compares reasonably even to lg N for N < 1000. It also represents a large

improvement over commonly reported linear methods [Gilb88, Ocon93]. See Section 7.1 for em-

pirical data.

K.0 Calculation of Zone Events
This derivation is similar to that of analytic paths in Appendix F. Likewise, we can fall back

on the same numerical techniques if the analysis becomes too complex.

We construct the equations for a plane rotating around a specified axis and a particle both mov-
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ing in space and rotating. The intersection of these two equations is our point of interest. We use

this to test the nearest point on each object against the bounding walls and normal plane of the other

objects' closest feature. The soonest intersection found along either points' trajectories will be the

time of the next event. If the intersection is with a bounding wall, then we queue a new-closest-

feature event. If it is with the normal plane, then we queue a collision.

Refer to [Nah93] for a related derivation.

L.0 Hextrees

L.1 Hextree operation
We enter the hyper-cones described into the cells of the hextree. It is easy to see that a hyper-

cone element can impinge on more than one hextree cell. We therefore make an entry for a cone

in each cell it crosses. When two elements are entered in the same cell it means that they have a

potential to collide at that place, at that time. In order to determine if they do in fact collide, we

must compare the objects' cones together as before. However, this comparison will be done far less

often as we need only check against elements contained in the cells we traverse.

When adding an entry to a cell, if it contains over a certain threshold of entries, we split the

cell. The current choice for splitting planes is a simple cycle through the dimensions. We divide

the cell in half, though more sophisticated choices are possible to keep the tree more equally bal-

anced.

This tree traversal is similar to that described in [Von90].

Method. Move along an object's future path in 4D, marking the cells we go through. In each

cell, compare against all objects already there. The first hit found must be the first in time and there-

fore, we can stop as soon as the next cell along our path has a starting time later than that.

When an object collides, the path it drew into the future becomes invalid. As with the queueing

system, we adopt a lazy update method: expired element entries are removed from cells only when

they are encountered by something else. This gains us efficiency at the cost of some extra space in

the tree.

The use of the tree reduces the algorithm cost to O(N lg N). This rises sufficiently slowly that,

with refinements, we expect to be able to manage the real-time dynamics of objects numbering in

the thousands.

L.2 Probability fields
As an object moves into the future, we can think of it as "painting" its presence into units of

space/time ([Gill8 1] terms these tixels) in much the same way that a line drawing algorithm fills in

pixels as it moves across the screen. When two objects fill the same tixel, we find a collision. When
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an object's position in the future is uncertain, we may think of the object as filling in the tixels with

a color somewhat lighter than black. I.e., it has some probability of being in that spot at that time.

In this way, the object casts a "shadow" into the future, generating a probability field which indi-

cates the likelihood that it will visit a particular region. The chance that two objects will have a

meeting at a certain point is merely the product of their probabilities at that point. The total amount

of probability energy rendered into a tixel by all objects tells us the likelihood that some event will

be occurring there. By evaluating the darker regions of this future map, we can identify those area

which require most of our attention.

This terminology is intensionally chosen to evoke analogies to various rendering methods,

specifically radiosity [Hanr9 1]. We believe there is a strong correlation between the two areas. In

the case of radiosity, we track the dispersion of energy between various elements of a scene. In

dynamics, we track a similar dispersion of energy, differing in that elements carrying the energy

are themselves in motion. Despite this difference, however, the cases are similar enough that we

believe it possible to adapt some of the algorithms and hardware currently intended for rendering

to our purposes. This is worthwhile in that rendering has received the lion's share of attention in

past years, and so has a large body of sophisticated techniques and devices to support it.

The hyper-cones we use above, are simply equiprobable surface contours drawn within the

field generated by each object. Ideally, we would like to enclose inside each cone a fixed proportion

of the probability its object generates, based on the importance of the object and the amount of mo-

mentum it is carrying. We would have to devise a formula for trading off cone volume with the

expense of checking for the object's having escaped that volume. We also may wish to place a cap

on the end of each cone so as to limit the number of cells of the hextree into which we must enter

it. Roughly, we should cut the cone at the point where the space/time density of its probability falls

below the threshold of its importance. We then queue another event for the element to recompute

at that time.

M.0 Sparse Dynamics Code

C code implementing this work is available by anonymous FTP from
media. mit. edu: sparse -dyn/ *. We have triedto make it of
generally utility. The reader is encouraged to obtain and extend it.

M.1 Sparse Dynamics Collision Detection Package
This package provides fast dynamic collision detection for many body simulations. The pack-

age can handle hundreds of complex polyhedra in real-time on reasonably sized machines. There
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are a number of limitations discussed below. We think that none of these is insurmountable and

would welcome improvements.

To Use. The code should unpack and compile on unix platforms as is. You may need to un-

comment the 'ranlib' line in the Makefile. It is written in straight C with no 11O or graphics calls.

The programs EXAMPLE.C and EXAMPLE2.C are provided to demonstrate how to call the pack-

age.

The package uses the 3D system to maintain its objects. 3D is a general simulation package

written by the Media Lab graphics group [Chen92]. I have cut out the parts of 3D that the sparse

package needs and included them in the subdirectory 3d!. 3D uses the Ohio State file format

[Crow82] for polyhedra. Examples are included in the subdirectory data!.

To embed the collision detector in a general simulation package, you will need to convert your

polyhedra to the 3D format. If you translate your disk files to the Ohio State format, the 3D routine

dyn objLcreate can be called to read them in. The other possibility is to write a conversion routine

which will fill the 3D data structures from your own in memory. See 3d/local/3d.obj.h for the data

structures required and 3d/ph-rddetail.c for the way in which they are used.

To operate the package, your code needs to use:

#include "collide.h"

and link with LIBSPARSE.A

Once you have loaded your objects into it, you call step-time() to move the simulation forward.

You can then call routines such as dyn objLget-current-position() and

dyn objgetcurrent velocity() to follow the resulting motions of the objects. The program

EXAMPLE2.C demonstrates these things.

When a collision is detected, the routine dyn-obj.c/resolve collision() is called to compute the

recoil forces. This routine is currently quite simple, but may be customized for more complex ef-

fects.

M.2 Shortcomings
- Distance bugs - currently about 2% of the cases do not converge. This is due various

special cases which haven't yet been chased down. The code detects these cases and
gives up gracefully with a best guess. Usually the best guess is close to the right dis-
tance.

- Fixed memory allocation - there is a compiled in limit on the number of various sorts
of memory objects. This should be made dynamic.
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- Convex objects only - The distance algorithm currently operates only on convex polyhe-
dra. Work is underway to extend the method to handle concave shapes. In the mean
time, you have to decompose your objects into convex pieces or put hulls around them.

- Simple trajectories -The current code will only provide perfect accuracy for linear
motion. Object rotations and accelerations will introduce small errors.

- The hextree is not fully operational.

M.3 Code Overview
The code is written in straight C and contains no graphics or I/O calls (excepting error condi-

tions). The code is divided into 4 modules, each with an associated .h file.

dyn-obj .c. Defines the object data structure DYN_OBJ and the routines to manipulate it.

DYN-OBJ contains information used by the sparse phase of the system and pointers to the struc-

tures needed for the detailed phase.

queue.c. Defines the queue data structure EVENT, and routines to manipulate it. EVENTs are

used to schedule object interactions in both phases of the system.

ph-collide.c, ph-generate.c. Defines the PHFEATURE and PHFEATUREINFO data

structures and routines to manipulate them. These hold connectivity info needed for the Lin and

Canny algorithm. ph-generate.c does the preprocessing of each ph to fill these structures. ph-col-

lide.c contains the routines needed to implement the Lin and Canny distance minimization algo-

rithm. The actual polyhedral data structures used here are imported from the 3D system mentioned

below.

hextree.c. Defines the HEXNODE data structure and routines to manipulate it. These are used

to compose the hextree, which contains predicted 4D object motions.

A subsidiary file, collidelib.c, is also present for the purpose of defining global variables and

function declarations.

The system uses the general animation package 3D [Chen92] for polyhedral data structures

and general graphics utility routines. The value of having a solid pre-implemented base of routines

from which to work can not be overstated.

M.. Sparse Dynamics Code 62



N.0 Pictures of System Operation
These are pictures of the sparse dynamics system in operation. Each sphere contains a poly-

hedra with between 24 and 600 faces. Object luminance indicates the speed of motion. Times listed
are without rendering.

10 object simulation. fps > 1000

100 object simulation. fps = 85

1000 object simulation. fps = 2
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