8,980 research outputs found

    Nano complementary metal oxide semi-conductor (CMOS) using carbon nanotube

    Get PDF
    Complementary Metal Oxide Semiconductor (CMOS) is normally used to describe small measure of memory on a Computer motherboard that stores the Basic Input and Output Settings (BIOS) settings. Some of these BIOS settings include the system time and date and in hardware settings. CMOS is also used for constructing integrated circuits. It is normally used for microprocessors, micro controller and other digital circuits. In this review paper of Nano CMOS, its VI characteristics, data analysis and performances are discussed and graphs are depicted

    CSP design model and tool support

    Get PDF
    The CSP paradigm is known as a powerful concept for designing and analysing the architectural and behavioural parts of concurrent software. Although the theory of CSP is useful for mathematicians, the programming language occam has been derived from CSP that is useful for any engineering practice. Nowadays, the concept of occam/CSP can be used for almost every object-oriented programming language. This paper describes a tree-based description model and prototype tool that elevates the use of occam/CSP concepts at the design level and performs code generation to Java, C, C++, and machine-readable CSP for the level of implementation. The tree-based description model can be used to browse through the generated source code. The tool is a kind of browser that is able to assist modern workbenches (like Borland Builder, Microsoft Visual C++ and 20-SIM) with coding concurrency. The tool will guide the user through the design trajectory using support messages and several semantic and syntax rule checks. The machine-readable CSP can be read by FDR, enabling more advanced analysis on the design. Early experiments with the prototype tool show that the browser concept, combined with the tree-based description model, enables a user-friendly way to create a design using the CSP concepts and benefits. The design tool is available from our URL, http://www.rt.el.utwente.nl/javapp

    Typical performance of low-density parity-check codes over general symmetric channels

    Get PDF
    Typical performance of low-density parity-check (LDPC) codes over a general binary-input output-symmetric memoryless channel is investigated using methods of statistical mechanics. Theoretical framework for dealing with general symmetric channels is provided, based on which Gallager and MacKay-Neal codes are studied as examples of LDPC codes. It has been shown that the basic properties of these codes known for particular channels, including the property to potentially saturate Shannon's limit, hold for general symmetric channels. The binary-input additive-white-Gaussian-noise channel and the binary-input Laplace channel are considered as specific channel noise models.Comment: 10 pages, 4 figures, RevTeX4; an error in reference correcte

    A PC-based bus monitor program for use with the transport systems research vehicle RS-232 communication interfaces

    Get PDF
    Experiment critical use of RS-232 data busses in the Transport Systems Research Vehicle (TSRV) operated by the Advanced Transport Operating Systems Program Office at the NASA Langley Research Center has recently increased. Each application utilizes a number of nonidentical computer and peripheral configurations and requires task specific software development. To aid these development tasks, an IBM PC-based RS-232 bus monitoring system was produced. It can simultaneously monitor two communication ports of a PC or clone, including the nonstandard bus expansion of the TSRV Grid laptop computers. Display occurs in a separate window for each port's input with binary display being selectable. A number of other features including binary log files, screen capture to files, and a full range of communication parameters are provided

    Design and simulation of low power consumption polymeric based MMI thermo-optic switch

    Get PDF
    In optical communication system, optical cross connect devices particularly an optical switch has become the main attraction for research due to its ability to route optical data signals without the need for conversion to electrical signals. Thus, it is important to develop optical devices such as optical switch with low power consumption and crosstalk for Wavelength Division Multiplexing (WDM) lightwave communication system. This project aims towards the design and simulation work of a polymeric based thermo-optic switch using Multimode Interference (MMI) structure to achieve low switching power capability and reduce crosstalk figure. The optical switch is designed on the 2x2 MMI cross coupler architecture of optical switch based on the general interference mechanism. Light propagation and thermal distribution through the optical switch is modeled using Finite Difference Beam Propagation Method (FD-BPM). Photosensitive SU-8 epoxy polymeric based waveguide material at core layers with PMGI at upper and lower cladding layer were chosen due to its low thermal conductivity and high thermo-optic coefficient. Further analysis has been performed by exploring the effect of heater‟s structure and its placement in order to reduce switching power. It is observed that by applying well-designed of heater‟s structure and suitable placement of heater, low power consumption as low as 9.05 mW with crosstalk level of -36.52 dB can be achieved

    EyeRIS User's Manual

    Full text link
    corecore