View metadata, citation and similar papers at core.ac.uk brought to you bnyORE

provided by UTHM Institutional Repository

Visualization Of Hard Disk Geometry
And Master Boot Record

'Kamaruddin Malik Mohamad, “Mustafa Mat Deris
Fakulti Sains Komputer dan Temnologi Maklumat, Universiti Tun Hussein Onn Malaysia (UTHM),
86400 Parit Raja, Batu Pahat JOHOR.
e-mail : 'malik at uthm.edu.my, *mmustafa at uthm.edu.my

Abstract. Every hard disk contains disk geometry information (size, cylinder, track, sector)
and Master Boot Record (MBR). Visualing both of these data are not something new.
However, the actual codes for obtaining these information directly from hard disk is not
much discussed or revealed. In this paper, the disk geometry information and the content of
MBR are visualized directly from a hard disk using two developed C programs. The output
from both of these programs are successfully verified by comparing their output with that of
existing tools. This paper shares the working C codes to directly obtain information of the
disk geometry and the content of MBR.

Keywords: Master Boot Record (MBR), Hard Disk Geometry, Data Visualization

1.0 Introduction

Hard disk is one of the important component in a computer for data storage. A file system
is a method for storing and organizing arbitrary collections of data, which will then be used
for manipulation and retrieval by the computer's operating system. Each discrete collection of
data in a file system is referred to as a computer file [1]. Windows makes use of FAT or
NTFS file systems. The overview of hard disk structure is illustrated in Figure 1. Each hard
disk contain information about cylinder, track, sector and disk size, which are also known as
disk geometry.

Sector Track
Figure 1. Hard disk structure [2]

When a computer is turned on, the processor has to begin processing. However, the system
memory is empty, and the processor does not have anything to execute, or does not even
know where it is. To ensure that the computer can always boot regardless of which BIOS is in
the computer, chip makers and BIOS manufacturers arrange so that the processor, once
turned on, always starts executing at the same place, at memory address FFFFOh [3]. In a
similar manner, every hard disk must have a consistent "starting point" where key
information is stored about the disk, such as how many partitions it has, what sort of
partitions they are, etc. There also needs to be somewhere that the BIOS can load the initial
boot program that starts the process of loading the operating system. The place where this

https://core.ac.uk/display/12007091?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

information is stored is called the master boot record (MBR). It is also sometimes called the
master boot sector or even just the boot sector.

The master boot record is always located at cylinder 0, head 0, and sector 1, the first sector
on the disk. This is the consistent "starting point™ that the disk always uses. When the BIOS
boots the computer, it will look at the MBR for instructions and information on how to boot
the disk and load the operating system (boot loader codes). MBR, partition entry (PE) and
PE’s sample values are illustrated in Figure 2, 3 and 4 respectively.

Each PE contains partition entry contains Master Partition Table and Master Boot Code
(or Boot Indicator). Master Partition Table is a small table contains the descriptions of the
partitions that are contained on the hard disk. There is only room in the master partition table
for the information describing four partitions. Therefore, a hard disk can have only four true
partitions, also called primary partitions. Any additional partitions are logical partitions that
are linked to one of the primary partitions.

One of the partitions is marked as active, indicating that it is the one that the computer
should use for booting up. Most computers has one primary partition, because only one
operating system is used. Even if hard disk is split into multiple FAT file system partitions,
only the first will be a primary partition, while the rest will be logical drives within an
extended partition. However, if you are using more than one operating system, the computer
may have multiple primary partitions, one per operating system. An error message "No boot
device available™ will be displayed, if no active partition is set.

Master Boot Code is a small initial boot program that the BIOS loads and executes to start
the boot process. This program eventually transfers control to the boot program stored on
whichever active partition used for booting the computer.

Due to the great importance of the information stored in the MBR, serious data loss can
occur if it ever becomes damaged or corrupted. Since the master boot code is the first
program executed when computer is turned on, this is a favorite place for virus writers to
target [3].

Visualizing the hard disk geometry information and MBR content are not something new,
but little has been discussed or revealed on the basic codes needed to obtain these information
directly from hard disk using actual C language codes.

The rest of the paper is organized as follows. Section 2 describes related work. Section 3
describes the C codes for visualizing hard disk geometry structure. Section 4 describes the C
codes for visualizing MBR content and finally section 5 concludes this paper.

Waster Boot Record S Extended Partition Boot Record
{cffaek)

020000 to O0x01BD - Firat 446 bytes (boot leocader code)
0x01BE to O0x01CD - Partition entry 1

0x01CE teo 0x010D0 - Partition entry 2

0x010E to O0x01ED - Partition entry 3

0x01EE to 0x01FD - Partition entry 4

0x01FE to O0x01FF Boot sigmature (55 Ad)

Figure 2. MBR structure [4]

http://www.pcguide.com/ref/hdd/file/struct_Viruses.htm�
http://www.pcguide.com/ref/hdd/file/struct_Viruses.htm�
http://www.pcguide.com/ref/hdd/file/struct_Viruses.htm�

Byte Count | Descripticon of contentsa

|

|

|

| 1 | Boot indicator {(0x00 off, 0x280 on)

|

| 3 | Starting head, cylinder and sector

|

| 1 | File aystem descriptor

| |
| 3 | Ending head, cylinder and sector

| |
| 4 | Starting sector (offset to disk start |
| |
| 4 | Humbker of sectors in partiticon

| |

Figure 3. PE structure [4]

ocffaet: walue explanation

0x01BE: 0xE20 bootakle flag (0x00 for flag off, O0xB0 for on)
0x01BF: 0x00 0x02 000 atarting head, cylinder and sector

Ox01C2: 0x07 file syatem deacriptor

0x01C3: Oxl1d 0x5B 0OxEC ending head, cylinder and sector

0x01C6&: 0x02 0x00 0x00 000 atarting sector (relative toc atart of disk)
0x01C&: 0x00 0x35 0x0C 000 nunber of gectors in partition

Figure 4. Sample values of PE [4]

2.0 Related Work

Many softwares for vizualization of hard disk geometry has been developed. One of the
tool is the PowerQuest Partition Table Editor (PTEDIT32.exe) from PowerQuest
Corporation [5] as shown is Figure 5. Like many available tools, the codes for this tool
application is not discussed.

€ PowerQuest Partition Table Editor E]IEIEI

Hard Disk: |RERNAEEEEANGEE ~ | 19457 cyl, 255 heads. 63 sectors per tiack

Partition Table at sector O [cyl 0, head 0, sectar 1] :

Starting Ending Sectors
Type Boot Cul Head Sector Cul Head Sector Before Sectors
S (T TV TR 1 12z [[z 63 183655457
2 [oF Joo 023 (54 [e3 1025 (254 63 [183695520 [122881185
3fo Joo o o o o o o [0 [T
a0 oo o oo (R V[V o [

o
=)
5]
Im
m
m
=}

Partitior Informatior

Partition T able Editar Yergion 1.0 Copyright © 1993 PowerQuest Corporation, &l rights reserved.

Figure 5. PowerQuest Partition Table Editor hard disk geometry information tool [4]

MBR content copied to a file by using MBRutil.exe by PowerQuest (now owned by
Symantec). The tool can be downloaded from [6]. The tool can be executed from DOS
prompt using the command "MBRutil /SA=mbr.dat” where the /SA switch means saves the

entire MBR (512 bytes) into a mbr.dat file. The content of mbr.dat is viewed using
HexAssistant hex editor [7] as illustrated in Figure 6.

© 7 Hexhssistant - [Z:\mbr. dat]
Be (ve (& Opoors Jook Cpestions Yew Window bk -8 Xx

[]we e B sC]0 F 0 +[E]L (# =k + 5 & 0= &5 &% ~S 60 N

1 0203 04 0506 0T 08 09 10 11 12 13 15
3E FE 7D B5°AR 74 OB 80 7E 10 00 74 C8 AQ | ..».}HSt..~
1E 57 8B F5 CB BF 05 00
ACl 24 3F &

a0 00
DI""LEI-II" a0 00 0
00000416 | 00 00 00 O
00000432 | 00 00

0 00 00 00 00 00 00 00 00 0O 0O 0O
00 00 00 00 00 00 00 00
4 63 BF 16 40 1F 00 00 80 01|,
00000448 | 01 00 00 00 E1 85 4E OB 00 FE
00000464 | FF F¥ € 4E 0B Al 04 53 07 00 00 |N...S...
00000480 | 00 00 00 00 00 00 00 DO 00 00
00000456 | 06 00 00 00 0O 0O 00 00 00 00 00 00 00 0O B oeonosivinii U

Ready Ol 5ol 512 Nakue- 0 256 bytes Ovrn-l
= [Todk For vRL.., @ o [RTr—— " oA "R T 21 800

Figure 6 MBR content acquwed from MBRutll exe and then V|ewed using HexAsssistant.

This paper shares the basic codes used to obtain the disk geometry information and the
MBR content; while PowerQuest Partition Table Editor and MBRutil.exe will be used to
verify the output from these introduced C programs.

3.0 C Codes for Visualizing Hard Disk Geometry Structure

The information from a hard disk such as cylinders, tracks/cylinder, sectors/track,
bytes/sector and disk size can be obtained directly from a hard disk by using
DeviceloControl() function. The C codes (infoHDD.c) is shown in Figure 7.

By referring to Figure 7, CreateFile() function is used to open the first sector of the first
hard disk using Win32 Namespace //./PhysicalDrive0 (line 13). If the drive is successfully
opened, then get the hard disk geometry information using DiskloControl() function (line
26). If the read is successful, then display the disk geometry (line 32-42). The output of
infoHDD.c is shown in Figure 8. The disk geometry information from infoHDD.c (Figure 8)
is similar as the output displayed by PowerQuest Partition Table Editor (Figure 5).

4.0 C Codes for Visualizing MBR Content

MBR s the first sector of a hard disk. The size of MBR is normally 512 bytes. The MBR
contains information on boot loader codes, Master Partition Table and Master Boot Code.
MBR stores the information used during the booting process. The detail structure of MBR is
illustrated in Figure 5. MBR contains data about a maximum of four partitions and ends with
boot signature (magic number) of 0xAA55 [8]. Each PE is made of a 16-byte data structure as
shown in Figure 6. The sample values of PE is illustrated in Figure 7. Since little endian is
used in MBR, the boot signature will be seen as 0x55AA in a hex editor software but its actual
value is OXAA55.

The C codes (infoMBR.c) for displaying MBR content is shown in Figure 8. The MBR is
located at the first sector of the first hard disk (drive) or \\.\PhysicalDrive0 in Win32
Namespace notation (line 21). CreateFile() function is used to open the first sector of the
first hard disk. If the drive is successfully opened, then read the content of the drive or MBR
using ReadFile() function(line 36). If the read is successful, then display the content of MBR
to the screen in hex format or %X (line 37-44). The output of infoMBR.c is shown in Figure
9. The last two bytes of MBR (offset 510-511 bytes) shown in the output are 0x55AA, which
is the boot signature of MBR (end of MBR).

COo~NOA~WNE

#define UNICODE 1

#define _UNICODE 1
#include <windows.h>
#include <winioctl.h>
#include <stdio.h>

int main(int argc, char *argv[])

DISK_GEOMETRY pdg;
BOOL bResult;
ULONGLONG DiskSize;

/I disk drive geometry structure

I generic results flag

I/ size of the drive, in bytes
HANDLE hDevice; /1 handle to the drive to be examined

12. DWORD junk; // discard results
13. hDevice = CreateFile(TEXT("\\.\\PhysicalDrive0"),

14. 0,

15. FILE_SHARE_READ |
16. FILE_SHARE_WRITE,
17. NULL,

18. OPEN_EXISTING,

19. 0,

20. NULL);

21.

22. if (hDevice == INVALID_HANDLE_VALUE)
{
24, return (FALSE);

26. bResult = DeviceloControl(hDevice,

// drive to open
/I no access to the drive
/Il share mode

/I default security attributes
/I disposition

/I file attributes

// do not copy file attributes

// cannot open the drive

/I device to be queried

27. IOCTL_DISK_GET_DRIVE_GEOMETRY, /I operation to perform
28. NULL, 0, /I no input buffer
29. &pdg, sizeof(pdg), // output buffer

30. &junk, Il # bytes returned
31. (LPOVERLAPPED) NULL); /I synchronous 1/0
32. if (bResult)

33.

34. printf("Cylinders = %164d\n", pdg.Cylinders);

35. printf("*Tracks/cylinder = %ld\n", (ULONG) pdg.TracksPerCylinder);

36. printf("Sectors/track = %ld\n", (ULONG) pdg.SectorsPerTrack);

37. printf("Bytes/sector = %ld\n", (ULONG) pdg.BytesPerSector);

38.

39. DiskSize = pdg.Cylinders.QuadPart * (ULONG)pdg.TracksPerCylinder * (ULONG)pdg.SectorsPerTrack *
40. (ULONG)pdg.BytesPerSector;

41, printf("Disk size = %164d (Bytes) = %164d (Gb)\n", DiskSize, DiskSize / (1024 * 1024 * 1024));
42. }

43. else

44,

45 printf ("Error %ld.\n", GetLastError ());

46.

47. getch();

48 CloseHandle(hDevice);

49, return ((int)bResult);

50. }

Figure 7. C codes (infoHDD.c) for displaying disk geometry information

infoHDD 2.exe - Ol %

Cylinders = 19457 -
Tracks/cylinder = 255

Sectorsstrack = 63

Bytes/sector = 512

Disk size = 168839272268 (Bytes)> = 149 (Gh)>

- -
4| | >

Figure 8. Disk geometry information obtained from infoHDD.c

COo~NOA~WNE

#define UNICODE 1
#define _UNICODE 1

#include <windows.h>
#include <winioctl.h>
#include <stdio.h>

int main(int argc, char *argv[])

BOOL bResult; /I generic results flag
HANDLE hDevice; /I handle to the drive to be examined
ULONG noOfDword, noOfBytes;

noOfDword=512;
noOfBytes=noOfDword * 4;

char inBuffer[noOfBytes];
DWORD nBytesRead= 0; I/l every DWORD = 4 bytes
inti;

hDevice = CreateFile(TEXT("\W.\\PhysicalDrive0"), // drive to open
GENERIC_READ,

FILE_SHARE_READ | /I share mode

FILE_SHARE_WRITE,

NULL, /I default security attributes

OPEN_EXISTING, /I disposition

0, /I file attributes

NULL); // do not copy file attributes
if (hDevice == INVALID_HANDLE_VALUE) /I cannot open the drive

return (FALSE);

// noOfDword = no of DWORDS to be read from PhysicalDrive0
bResult = ReadFile(hDevice, inBuffer, noOfDword, &nBytesRead, NULL);
if (bResult)

for (i=0; i<512; i++) // size of Master Boot Sector = 512 bytes
printf("%8X ", inBuffer[i]);
if (1%5==0) printf("\n");
}
else printf("ERROR %d",GetLastError());
getch();

CloseHandle(hDevice);
return ((int)bResult);

Figure 9. C codes (infoMBR.c) for displaying MBR content

infoMBR.exe ! E

a a a a a -

a a a a a —J

a a a a a

a a A a a

a a A a a

a a A a a

a a A a a

a a A a a

8 8 8 8 8 J

a a a a A

a 20 44 63 FFFFFFBF

16 46 1F a A
FFFFFF&A 1 1 A ?
FFFFFFFE FFFFFFFF FFFFFFFF 3F a

a B8 FFFFFFE1 FFFFFF8% 4E

B 8 FFFFFFFE FFFFFFFF FFFFFFFF

F FFFFFFFE FFFFFFFF FFFFFFFF 28
FFFFFFE6 4E B FFFFFFA1 4

&3 ? a a a

a a a a a

a a a a a

a a a a a

a a a a a

a a a a a

a a a a 55
FFFFFFAA
1| | »

Figure 10. MBR data output from infoMBR.c

MBR content displayed by infoMBR.c (Figure 9) is similar as the output of MBRutil.exe
(Figure 6). The disk geometry information and MBR content can be combined into a single
program as shown in Figure 11. It shows a more detailed visualization of PEs’ information
which are broken down into fields.

PARTITION ENTRY H1<16 Bytes?

Boot Indicator ; Hylw = FFFFFFEd
rald =

118
-7
a» = FFFFFFFE FFFFFFFF FFFFFFFF
s) = 3FB @8
s} = FFFFFFEL FFFFFFBS 4E B

FARTITION ENTRY R2{16 Bytes)}
Hant Indicater (1 Hyte "
(3

Starting Head, Cylin
Fiie fyat
Fnding Head. Gyl

2

Starting Head, Cyling weay = FFFFFFFE FFFFFFFF FFFFFFFF

e Eyat
Ending Head, Cylind, s} = FFFFFFFE FFFTFFIT FFFFFFFP

»
¥
¥
¥
St es) = 28 FFFFFF8G 4E D
Hunber of Partitions in s} = FFFFFFAL 4 53 7
FARTITION ENTEY R3<16 Bytes)}
¥
¥
¥
¥
¥
¥

Rant Indicator €1 Byte
Erarting Head. Cylin » €3
File Gyst

Ending Head. Cyli

=
=]
2
Z
E
]
=
&
=
=
£
<

¥
¥
e) =
es) =
» L
¥ L]
¥

Boot Sdignature(2 Bytead - 55 FFFFPFAA
wus HARD DISK INFORHATIONw==
s = 19457
= 25885
= &3
= Ei2
isk size = 1608839272968 (Dytes) = 147 (Gh)> |

dl | 1]
Figure 11. Sample output combining MBR data and
disk geometry information (myHDD.c)

5.0 Conclusion

Two C programs, namely infoHDD.c for obtaining disk geometry and infoMBR.c for
obtaining MBR content are developed. infoHDD.c and infoMBR.c successfully produced the
same output as those produced by PowerQuest Partition Table Editor(PEDIT32.exe) and
MBRutil.exe respectively. Thus, this paper has shown the working C codes that directly
obtain information of the disk geometry and the content of MBR from a hard disk.

References

1. Wikipedia: File system. http://en.wikipedia.org/wiki/File_system. Accessed on 26 Apr.
2011.

2. Hard Disk Sector Structures.
http://www.dewassoc.com/kbase/hard_drives/hard_disk_sector_structures.htm. Accessed
on 21 Apr. 2011.

3. Master Boot Record. http://www.pcguide.com/ref/hdd/file/structMBR-c.html. Accessed
on 26 Apr. 2011.

4. The MBR (master boot record) and the Partition Tables.
http://www.diydatarecovery.nl/kb_mbr_article.htm. Accessed on 26 Apr. 2011.

5. FREE Software Tools for Windows 95/98/NT/2000/XP .
http://thestarman.narod.ru/tool/FreeTools.html. Accessed on 26 Apr. 2011.

6. Tools and References for the MBR and OS Boot Records.
http://thestarman.narod.ru/asm/mbr/BootToolsRefs.htm. 26 Apr 2011.

7. VeryTools: HexAssistant hex editor. http://www.verytools.com. Accessed on 26 Apr
2011.

8. The logical structure of a hard disk. http://en.kioskea.net/fag/1573-the-logical-structure-
of-a-hard-disk. Accessed on 26 Apr. 2011

