53 research outputs found

    Lagrangean decomposition for large-scale two-stage stochastic mixed 0-1 problems

    Get PDF
    In this paper we study solution methods for solving the dual problem corresponding to the Lagrangean Decomposition of two stage stochastic mixed 0-1 models. We represent the two stage stochastic mixed 0-1 problem by a splitting variable representation of the deterministic equivalent model, where 0-1 and continuous variables appear at any stage. Lagrangean Decomposition is proposed for satisfying both the integrality constraints for the 0-1 variables and the non-anticipativity constraints. We compare the performance of four iterative algorithms based on dual Lagrangean Decomposition schemes, as the Subgradient method, the Volume algorithm, the Progressive Hedging algorithm and the Dynamic Constrained Cutting Plane scheme. We test the conditions and properties of convergence for medium and large-scale dimension stochastic problems. Computational results are reported.Progressive Hedging algorithm, volume algorithm, Lagrangean decomposition, subgradient method

    A two-stage stochastic integer programming approach

    Get PDF
    We present an algorithmic approach for solving two-stage stochastic mixed 0-1 problems. The first stage constraints of the Deterministic Equivalent Model have 0--1 variables and continuous variables. The approach uses the Twin Node Family (TNF) concept within the algorithmic framework so-called {Branch-and-Fix Coordination} for satisfying the {nonanticipativity} constraints, jointly with a Benders Decomposition scheme for solving a given {LP} model at each {TNF} integer set. As an illustrative case, the structuring of a portfolio of Mortgage-Backed Securities under uncertainty in the interest rate path along a given time horizon is used. Some computational experience is reported.This research has been partially support by the grant Grupo consolidado de alto rendimiento 9/UPV 00038.321-13631/2001 from UPV, the project MEC2001-0636 from the DGCIT, the Researchers’ Education grant program 2000 from Gobierno Vasco, and the grant GRUPOS79/04 from the Generalitat Valenciana, Spain

    On parallel computing for stochastic optimization models and algorithms

    Get PDF
    167 p.Esta tesis tiene como objetivo principal la resolución de problemas de optimización bajo incertidumbre a gran escala, mediante la interconexión entre las disciplinas de Optimización estocástica y Computación en paralelo. Se describen algoritmos de descomposición desde la perspectivas de programación matemática y del aprovechamiento de recursos computacionales con el fin de resolver problemas de manera más rápida, de mayores dimensiones o/y obtener mejores resultados que sus técnicas homónimas en serie. Se han desarrollado dos estrategias de paralelización, denotadas como inner y outer. La primera de las cuales, realiza tareas en paralelo dentro de un esquema algorítmico en serie, mientras que la segunda ejecuta de manera simultánea y coordinada varios algoritmos secuenciales. La mayor descomposición del problema original, compartiendo el área de factibilidad, creando fases de sincronización y comunicación entre ejecuciones paralelas o definiendo condiciones iniciales divergentes, han sido claves en la eficacia de los diseños de los algoritmos propuestos. Como resultado, se presentan tanto algoritmos exactos como matheurísticos, que combinan metodologías metaheurísticas y técnicas de programación matemática. Se analiza la escalabilidad de cada algoritmo propuesto, y se consideran varios bancos de problemas de diferentes dimensiones, hasta un máximo de 58 millones de restricciones y 54 millones de variables (de las cuales 15 millones son binarias). La experiencia computacional ha sido principalmente realizada en el cluster ARINA de SGI/IZO-SGIker de la UPV/EHU

    A parallel Branch-and-Fix Coordination based matheuristic algorithm for solving large sized multistage stochastic mixed 0-1 problems

    Get PDF
    A parallel matheuristic algorithm is presented as a spin-off from the exact Branch-and-Fix Coordination (BFC) algorithm for solving multistage stochastic mixed 0-1 problems. Some steps to guarantee the solution’s optimality are relaxed in the BFC algorithm, such that an incomplete backward branching scheme is considered for solving large sized problems. Additionally, a new branching criterion is considered, based on dynamically-guided and stage-wise ordering schemes, such that fewer Twin Node Families are expected to be visited during the execution of the so-called H-DBFC algorithm. The inner parallelization IH-DBFC of the new approach, allows to solve in parallel scenario clusters MIP submodels at different steps of the algorithm. The outer parallel version, OH-DBFC, considers independent paths and allows iterative incumbent solution values exchanges to obtain tighter bounds of the solution value of the original problem. A broad computational experience is reported for assessing the quality of the matheuristic solution for large sized instances. The instances dimensions that are considered are up to two orders of magnitude larger than in some other works that we are aware of. The optimality gap of the H-DBFC solution value versus the one obtained by a state-of-the-artMIP solver is very small, if any. The new approach frequently outperforms it in terms of solution’s quality and computing time. A comparison with our Stochastic Dynamic Programming algorithm is also reported. The use of parallel computing provides, on one hand, a perspective for solving very large sized instances and, on the other hand, an expected large reduction in elapsed time.MTM2015-65317-P, MTM2015-63710-P, IT928-16; UFI BETS 2011; IZO-SGI SGIke

    Lagrangean decomposition for large-scale two-stage stochastic mixed 0-1 problems

    Get PDF
    In this paper we study solution methods for solving the dual problem corresponding to the Lagrangean Decomposition of two stage stochastic mixed 0-1 models. We represent the two stage stochastic mixed 0-1 problem by a splitting variable representation of the deterministic equivalent model, where 0-1 and continuous variables appear at any stage. Lagrangean Decomposition is proposed for satisfying both the integrality constraints for the 0-1 variables and the non-anticipativity constraints. We compare the performance of four iterative algorithms based on dual Lagrangean Decomposition schemes, as the Subgradient method, the Volume algorithm, the Progressive Hedging algorithm and the Dynamic Constrained Cutting Plane scheme. We test the conditions and properties of convergence for medium and large-scale dimension stochastic problems. Computational results are reported.This research has been partially supported by the projects ECO2008-00777 ECON from the Ministry of Education and Science, Grupo de Investigación IT-347-10 from the Basque Government, grant FPU ECO-2006 from the Ministry of Education and Science, grants RM URJC-CM-2008-CET-3703 and RIESGOS CM from Comunidad de Madrid, and PLANIN MTM2009-14087-C04-01 from Ministry of Science and Innovation, Spain

    Some experiments on solving multistage stochastic mixed 0-1 programs with time stochastic dominance constraints

    Get PDF
    In this work we extend to the multistage case two recent risk averse measures for two-stage stochastic programs based on first- and second-order stochastic dominance constraints induced by mixed-integer linear recourse. Additionally, we consider Time Stochastic Dominance (TSD) along a given horizon. Given the dimensions of medium-sized problems augmented by the new variables and constraints required by those risk measures, it is unrealistic to solve the problem up to optimality by plain use of MIP solvers in a reasonable computing time, at least. Instead of it, decomposition algorithms of some type should be used. We present an extension of our Branch-and-Fix Coordination algorithm, so named BFC-TSD, where a special treatment is given to cross scenario group constraints that link variables from different scenario groups. A broad computational experience is presented by comparing the risk neutral approach and the tested risk averse strategies. The performance of the new version of the BFC algorithm versus the plain use of a state-of-the-artMIP solver is also reported

    Solving Electric Market Quadratic Problems by Branch and Fix Coordination Methods

    Get PDF
    The electric market regulation in Spain (MIBEL) establishes the rules for bilateral and futures contracts in the day-ahead optimal bid problem. Our model allows a price-taker generation company to decide the unit commitment of the thermal units, the economic dispatch of the bilateral and futures contracts between the thermal units and the optimal sale bids for the thermal units observing the MIBEL regulation. The uncertainty of the spot prices is represented through scenario sets. We solve this model on the framework of the Branch and Fix Coordination metodology as a quadratic two-stage stochastic problem. In order to gain computational efficiency, we use scenario clusters and propose to use perspective cuts. Numerical results are reportedPeer Reviewe

    On modelling planning under uncertainty in manufacturing

    Get PDF
    We present a modelling framework for two-stage and multi-stage mixed 0-1 problems under uncertainty for strategic Supply Chain Management, tactical production planning and operations assignment and scheduling. A scenario tree based scheme is used to represent the uncertainty. We present the Deterministic Equivalent Model of the stochastic mixed 0-1 programs with complete recourse that we study. The constraints are modelled by compact and splitting variable representations via scenarios

    Modelling and solution methods for stochastic optimisation

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.In this thesis we consider two research problems, namely, (i) language constructs for modelling stochastic programming (SP) problems and (ii) solution methods for processing instances of different classes of SP problems. We first describe a new design of an SP modelling system which provides greater extensibility and reuse. We implement this enhanced system and develop solver connections. We also investigate in detail the following important classes of SP problems: singlestage SP with risk constraints, two-stage linear and stochastic integer programming problems. We report improvements to solution methods for single-stage problems with second-order stochastic dominance constraints and two-stage SP problems. In both cases we use the level method as a regularisation mechanism. We also develop novel heuristic methods for stochastic integer programming based on variable neighbourhood search. We describe an algorithmic framework for implementing decomposition methods such as the L-shaped method within our SP solver system. Based on this framework we implement a number of established solution algorithms as well as a new regularisation method for stochastic linear programming. We compare the performance of these methods and their scale-up properties on an extensive set of benchmark problems. We also implement several solution methods for stochastic integer programming and report a computational study comparing their performance. The three solution methods, (a) processing of a single-stage problem with second-order stochastic dominance constraints, (b) regularisation by the level method for two-stage SP and (c) method for solving integer SP problems, are novel approaches and each of these makes a contribution to knowledge.Financial support was obtained from OptiRisk Systems

    Convex approximations for a class of mixed-integer recourse models

    Get PDF
    We consider mixed-integer recourse (MIR) models with a single recourse constraint. We relate the second-stage value function of such problems to the expected simple integer recourse (SIR) shortage function. This allows to construct convex approximations for MIR problems by the same approach used for SIR models
    corecore