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Abstract

In this thesis we consider two research problems, namely, (i) language constructs

for modelling stochastic programming (SP) problems and (ii) solution methods

for processing instances of different classes of SP problems. We first describe a

new design of an SP modelling system which provides greater extensibility and

reuse. We implement this enhanced system and develop solver connections. We

also investigate in detail the following important classes of SP problems: single-

stage SP with risk constraints, two-stage linear and stochastic integer program-

ming problems. We report improvements to solution methods for single-stage

problems with second-order stochastic dominance constraints and two-stage SP

problems. In both cases we use the level method as a regularisation mechanism.

We also develop novel heuristic methods for stochastic integer programming based

on variable neighbourhood search. We describe an algorithmic framework for im-

plementing decomposition methods such as the L-shaped method within our SP

solver system. Based on this framework we implement a number of established

solution algorithms as well as a new regularisation method for stochastic linear

programming. We compare the performance of these methods and their scale-up

properties on an extensive set of benchmark problems. We also implement several

solution methods for stochastic integer programming and report a computational

study comparing their performance. The three solution methods, (a) processing

of a single-stage problem with second-order stochastic dominance constraints, (b)

regularisation by the level method for two-stage SP and (c) method for solving

integer SP problems, are novel approaches and each of these makes a contribution

to knowledge.
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Chapter 1

Introduction

1.1 Motivation

Since the seminal work of Dantzig (1955) which introduced linear programming

under uncertainty, it has been widely recognised that real world problems often

include some degree of uncertainty. Several modelling frameworks have been es-

tablished that rely on different types of information available about the uncertain

parameters. One such framework is stochastic programming (SP) with recourse

which assumes that the probability distribution of random parameters is known.

Another approach which only assumes that the random parameters are known

within certain bounds is robust optimisation.

The history of the development of SP can be traced in the following way. In

1980s linear programming (LP) as a decision model became established as meth-

ods for solving large linear programs evolved (Karmarkar, 1984). The theory of

SP was well developed by the end of 1970s (Prékopa, 1973; Wets, 1974). How-

ever, only after the success of the application of LP was interest focused on these

applications where uncertainty in model parameters could not be ignored. We

set out below a range of papers and case studies which are examples of optimum

decision making under uncertainty and illustrative applications of SP.

Transportation and logistics

Transportation problems are among the first applications of stochastic program-

ming starting with the problem of optimal allocation of aircraft to airline routes

under uncertain demand (Ferguson and Dantzig, 1956). Ermol’ev et al. (1976)

describe a stochastic network model for planning of empty container shipment.

SP has also a long history of applications in railroad car distribution problems.
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These problems are inherently stochastic due to uncertain supply, demand and

travel times over the railroad network. Jordan and Turnquist (1983) describe a

model for distribution of empty freight cars. A comprehensive review of freight

vehicle transportation problems is given by Dejax and Crainic (1987). Powell

(1986) address a more general multistage model that is applicable in the context

of truckload motor carriers.

Supply chain

In supply chain management models some parameters such as customer demands,

prices, and resource capacities are uncertain which makes it a sensible application

area for SP. Many stochastic models have been proposed both at strategic and

tactical levels. At the strategic level much research has focused on facility loca-

tion problems. Eppen et al. (1989) describe a model for finding optimal strategic

investment decisions on types and locations of facilities. The model is motivated

by the application in the automobile industry. An extensive review of strate-

gic facility location models is given by Owen and Daskin (1998). A two-stage

stochastic integer programming (SIP) problem for optimal design of production

system topology under uncertainty is studied by Alonso-Ayuso et al. (2003a).

Santoso et al. (2005) propose both an SP model and a solution method for an

optimal design of real-scale supply chain networks.

Energy

Escudero et al. (1999) propose a modelling and solution framework for opti-

misation of oil supply, transformation and distribution under uncertainty. The

stochasticity in this model is due to uncertain product demand, spot supply cost

and spot selling price. A recent gas portfolio planning model by König et al.

(2007) is formulated as a two-stage SP problem with recourse. Wallace and

Fleten (2003) give a review of SP models in energy sector.

Finance

Bradley and Crane (1972) formulate a portfolio model as a multistage decision

problem which incorporates uncertainty in future interest rates and cash flows.

Kallberg et al. (1982) and Kusy and Ziemba (1986) develop basic concepts of

asset-liability management (ALM) models under uncertainty. Their work has

been followed by a number of sophisticated practical applications, such as the
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Russel-Yasua Kasai model by Cariño et al. (1994) which is formulated as a mul-

tistage SP problem for optimising investment strategy. Consigli and Dempster

(1998) describe the CALM model, a multistage stochastic programming model

for asset-liability management ”designed to deal with uncertainty in both assets

(in either the portfolio or the market) and liabilities (in the form of scenario

dependent payments or borrowing costs)”.

1.2 Taxonomy of stochastic programming prob-

lems

In this section we introduce preliminary definitions and outline the following

classes of stochastic programming models:

• single-stage SP,

• two-stage SP with recourse,

• multistage SP with recourse,

• chance constraints,

• integrated chance constraints,

• robust optimisation.

Here we use the term stochastic programming in a broad sense to denote optimi-

sation under uncertainty in general.

In the SP setting some of the problem components, that is, model parameters

such as constraint matrix elements, objective function coefficients, variable or

constraint bounds may take random values. To distinguish these from decision

variables we use the term random parameters.

Consider a probability space (Ω,F , P ), where

• Ω is the set of all possible outcomes,

• F is the σ-algebra on Ω,

• P : F → [0, 1] is the probability measure.

The σ-algebra F is a collection of events, where each event F ∈ F is a subset

of Ω. As a σ-algebra F satisfies the following three properties:



4

1. ∅ ∈ F ,

2. F is closed under the set complement operation:

if A ∈ F , then Ω \ A ∈ F ,

3. F is closed under the union of a countable number of sets:

if Ai ∈ F , i = 1, 2, . . ., then
∞⋃
i=1

Ai ∈ F .

Define by A the set of naturally measurable sets in Rk. A k-dimensional

random vector ξ defined on the probability space (Ω,F , P ) is a function ξ : Ω→
Rk such that ξ−1(A) = {ω|ξ(ω) ∈ A} ∈ F , ∀A ∈ A. A random vector induces

a probability measure Pξ on A. The support of the probability space for the

random vector ξ is defined as the smallest closed set Ξ ⊆ Ω such that Pξ(Ξ) = 1.

General SP problem

A general stochastic programming problem is stated as

”minimize” g0(x, ξ)

subject to gi(x, ξ) ≤ 0, i = 1, . . . ,m,

x ∈ X ⊂ Rn,

(1.1)

where ξ is a vector of random parameters defined on the probability space

(Ω,F , P ). It is assumed that the probability measure P does not depend on x

and that at the time the decision is made the probability distribution, but not

the actual realisations, is known. The functions gi(x, ·) : Ξ → R are random

variables for every x and i = 0, . . . ,m.

However, the meaning of optimisation with unspecified realisation of ξ is not

clear. Hence the problem (1.1) is not well-defined and we need to further specify

it in the following alternative formulations.

Single-stage SP problem

A single stage SP problem involves one set of decisions which are made before

the uncertainty is disclosed. This type of problem is often used in finance, in par-

ticular in portfolio management, where preferences between random returns of

portfolios are established in a single-stage environment. Mean-risk and stochas-

tic dominance models are classical examples of single-stage models. Chance con-

straints and integrated chance constraints are also often considered in the context

of single-stage problems. In Chapter 3 we consider this class of models.
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Two-stage SP problem with recourse

A two-stage stochastic programming problem with recourse consists of two sets

of decisions. The sequence of events in this problems is as follows:

1. the first-stage or ”here-and-now” actions are made,

2. uncertainty is revealed,

3. the second-stage or recourse actions are made.

The two-stage linear stochastic programming problem with recourse is defined

as
minimize cTx+ Eξ[Q(x, ω)]

subject to Ax = b,

x ∈ Rn1
+ ,

(1.2)

where the n1-dimensional vector x represents the first-stage decisions, A is a

fixed m1 × n1 matrix, b ∈ Rm1 and c ∈ Rn1 are fixed vectors and Q(x, ω) is the

value function of the recourse problem

minimize q(ω)Ty

subject to T (ω)x+W (ω)y = h(ω),

y ∈ Rn2
+ .

(1.3)

In (1.3) the n2-dimensional vector y represents the second-stage recourse de-

cisions and ω ∈ Ω represents a random outcome. For a given realisation ω, T (ω)

is a fixed m2 × n1 matrix, W (ω) is a fixed m2 × n2 matrix, h(ω) ∈ Rm2 and

q(ω) ∈ Rn2 are fixed vectors.

The problem (1.2)-(1.3) can be generalised to a non-linear case. Consider the

general problem formulation (1.1). The i-th constraint is violated for realisation ξ̂

if and only if gi(x, ξ̂)+ > 0, where the plus sign in a superscript denotes a positive

part, i.e. gi(x, ξ̂)+ = max(gi(x, ξ̂), 0). For each violated constraint a recourse

action defined by decision yi(ξ) can be taken such that gi(x, ξ̂)− yi(ξ̂) ≤ 0.

Generalising the recourse functions to be nonlinear and introducing the costs

for the recourse actions leads to the following formulation:

minimize Eξ[g0(x, ξ) +Q(x, ξ)]

subject to x ∈ X ⊂ Rn1 ,
(1.4)

where Q(x, ξ) is a value function of the recourse problem
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minimize q(y)

subject to Hi(y) ≥ gi(x, ξ)+, i = 1, . . . ,m,

y ∈ Y ⊂ Rn2 .

(1.5)

In (1.5) the function Hi(y) represents a recourse action for the i-th constraint

and q(y) is the recourse cost function.

Multistage SP problem with recourse

In a multistage stochastic programming problem there is a set of decisions as-

sociated with each stage and between the stages realisation of random events

take place. It is assumed that at each stage t the decisions at previous stages

x1,x2, . . . ,xt−1 and the realisations of the random vectors ξ2, ξ3, . . . ξt are known.

A multistage linear SP with recourse is stated as

minimize cT1x1 + Eξ2 [min c2(ω)Tx2 + · · ·+ EξK [min cK(ω)TxK ] . . .]

subject to

W1x1 = h1,

T1(ω)x1 + W2(ω)x2 = h2(ω),

T2(ω)x2 + W3(ω)x3 = h2(ω),
. . .

...

TK−1(ω)xK−1 + WT (ω)xK = hK(ω),

xt ∈ Rnt
+ , t = 1, . . . , K,

(1.6)

where W1 is a fixed m1×n1 matrix, h1 ∈ Rm1 and c1 ∈ Rn1 are fixed vectors and

for each realisation of (ξ2, . . . ξt), t = 2, . . . , K, Wt(ω) is a fixed mt × nt matrix,

Tt−1(ω) is a fixed mt × nt−1 matrix, ht(ω) ∈ Rmt and ct(ω) ∈ Rnt are fixed

vectors.

The random vector ξt(ω) consists of random components of vectors ct(ω) and

ht(ω) and matrices Tt−1(ω) and Wt(ω). In the case of discrete finite distribution

of random parameters the structure of the model can be represented in the form

of a scenario tree or an event tree.

Figure 1.1 illustrates the scenario tree of a 4-stage SP problem. Each arc

represents a realisation of a random vector of parameters between the two stages.

Each node represents a subproblem corresponding to a given stage and a sequence

of realisations of random parameters determined by a path from the root node.

A path from the root to a leaf node represents a particular scenario.
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Figure 1.1: Example of a scenario tree

Chance constraints

In SP problems with recourse it is assumed that a constraint must be satisfied

almost surely. Within the chance-constrained (CC) programming framework this

is replaced with the requirement that a constraint must be satisfied with some

probability. Consider the i-th constraint of a general SP problem:

gi(x, ξ) ≤ 0. (1.7)

It can be restated as a chance or probabilistic constraint as

P{ξ|gi(x, ξ) ≤ 0} ≥ αi, (1.8)

where αi ∈ (0, 1) is a parameter which specifies the minimum probability of

satisfying the constraint (1.7).

A joint chance constraint is stated as

P{ξ|gi(x, ξ) ≤ 0, i ∈ I} ≥ α, (1.9)

where α ∈ (0, 1) is a parameter which specifies the minimum joint probability of

satisfying the constraints with indices in I ⊆ {1, . . . ,m}.
Chance constraints are based on qualitative risk concept in a sense that they

take into account only the fact of constraint violation but not the amount by

which it is violated.
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Integrated chance constraints

Integrated chance constraints (ICC) introduced by Klein Haneveld (1986) are

related to probabilistic constraints. Both CC and ICC allow violation of the

underlying constraints. In integrated chance constraints instead of dealing only

with the probability of this realisation, the expected amount of violation (ex-

pected shortfall or surplus) is also restricted. Therefore ICCs are considered to

be based on quantitative risk concept.

Consider the i-th constraint of a general SP problem:

gi(x, ξ) ≤ 0. (1.10)

It can be restated as an integrated chance constraint as

Eξ[gi(x, ξ)+] ≤ βi, (1.11)

where βi ∈ R+ is a parameter which specifies the maximum expected amount of

violation of constraint (1.10).

A joint integrated chance constraint is stated as

Eξ

[
max
i∈I

gi(x, ξ)+

]
≤ β, (1.12)

where β ∈ R+ is a parameter which specifies the maximum expected amount of

violation of constraints with indices in I ⊆ {1, . . . ,m}.

Robust optimisation

A general form of a robust formulation problem is as follows:

minimize g0(x)

subject to gi(x, ξ) ≤ 0, i = 1, . . . ,m,

x ∈ X ⊂ Rn,

ξ ∈ Ξ.

(1.13)

Unlike models considered earlier in this section, robust optimisation does not

assume the knowledge of the distribution of the uncertain parameters represented

by the vector ξ. It only assumes that ξ belongs to a known set Ξ.

There are several models that rely on different representation of uncertainty

set Ξ. For instance in the classic model of Soyster (1973) the columns of a

constraint matrix belong to convex sets. Alternative formulations of robust opti-

misation models are considered in Chapter 2.



9

1.3 Structure of the thesis

In this thesis we consider optimisation under uncertainty both from the perspec-

tive of modelling and that of solving such models. We recognise the importance

of having a choice of modelling constructs because different problems may require

different modelling approaches. It may depend on the availability of information

about the random parameters as discussed above or it may be due to some relia-

bility requirements as is the case of risk constraints. Therefore we do not focus on

one particular modelling paradigm but propose a number of modelling language

extensions that facilitate the development of optimisation models using different

frameworks.

In addition to two-stage and multistage SP with recourse we have identified

the following important modelling approaches:

• chance constraints,

• integrated chance constraints,

• robust optimisation.

In Chapter 2 we describe extensions for expressing these additional types of

models and discuss the interface between a modelling system and an SP solver.

There are several reasons why it is important to have an algebraic modelling

language (ALM) support for additional classes of models.

First it frees the modeller from the necessity of using deterministic equiva-

lent formulations of corresponding constructs, which are often error-prone and

verbose, cluttering the model with auxiliary variables and constraints. Instead

direct representation of such constructs in an ALM allows the model to be kept

clean with the modeller’s intent clear. It is then the responsibility of a translator

or a solver to reformulate a problem introducing extra variables and constraints.

Second it allows the translator to capture important information about the

structure of the model and pass it to the solver facilitating the use of specialised

algorithms which exploit this information. Advantages of such explicit formu-

lation and capturing special problem structures has been discussed by Fourer

and Gay (1995) for the case of network and piecewise-linear constructs and by

Colombo et al. (2009) for problems with block structure such as two-stage SP

problems. In Chapter 3 we illustrate both the modelling and computational ben-

efits of this approach on a portfolio choice model formulating it directly with the

extensions for representing integrated chance constraints and using a specialised

cutting-plane algorithm of Klein Haneveld and van der Vlerk (2006) to solve it.
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Although we recognise the practical importance of scenario generation we do

not try to address it in this thesis and refer the reader to Mitra et al. (2007)

and Di Domenica et al. (2009) for a discussion of this aspect of an SP modelling

system.

In Chapter 3 we consider problems with risk constraints. By risk we mean

the possibility and impact of undesirable outcomes. It is often assumed that a

decision maker exhibits risk averse behaviour. We describe a portfolio choice

model based on second-order stochastic dominance (SSD) criterion which is con-

sistent with this assumption. The portfolio selection problem is an example of

decision making under risk and it is of great importance in the area of quantita-

tive fund management. In this problem which is formally set out in Chapter 3

an investor has to decide what proportion of the initial wealth to invest in each

asset with uncertain return distributions. Our model is based on the one by Ro-

man, Darby-Dowman, and Mitra (2006). We discuss the relationship between

SSD, Conditional Value-at-Risk (CVaR) and integrated chance constraints and

present alternative formulations of this model.

The computational results presented in Section 3.6 demonstrate that our

model gives higher overall outcomes at the cost of being slightly more risky than

the model of Roman et al. (2006) although optimal portfolios constructed by

both models are SSD efficient, meaning that there are no other portfolios domi-

nating them. We use a cutting-plane method to solve the model and investigate

the advantages of using regularisation by the level method of Lemaréchal et al.

(1995).

In Chapter 4 we focus on solution methods for two-stage stochastic program-

ming problems with recourse. Significance of this class of problems is easily seen;

for instance, in the review of the application in Section 1.1 most of the models

reported are two-stage SPs. So the solution methods for two-stage SP remain an

important research topic.

SP problems are known to be computationally challenging and the recent

study of Dyer and Stougie (2006) shows that their complexity is primarily de-

termined by the computation of a multidimensional integral. There are several

approaches to solving two-stage SP problems. One approach relies on the solu-

tion of the deterministic equivalent problems (DEP) and it has received attention

recently due to the advances in interior point methods (IPM) which are especially

suitable for solving such large-scale problems with block structure.

Another approach which can be traced back to (Dantzig and Wolfe, 1960) and

Dantzig and Madansky (1961) is decomposition. We describe a computational
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framework for implementing decomposition-based methods. Based on this infras-

tructure we implement a classic L-shaped method of Van Slyke and Wets (1969)

and several regularisation methods such as regularised decomposition and trust

region method. We also propose a regularisation approach which is based on the

level method.

We carry out an empirical study comparing the performance of the above

methods to each other and to the DEP solution with an IPM and simplex solver.

One of the aspects of this study is evaluation of scale-up properties of the algo-

rithms. The tests are performed on a large number of benchmark problems from

several established collections and to make the results comprehensible we use

performance profiles (Dolan and Moré, 2002). This provides a clear visualisation

allowing comparison of the algorithms across the whole set of test problems.

Stochastic integer programming problems are known to be computationally

challenging; at the same time there is a practical need to solve this type of prob-

lems (some applications are given by Midler and Wollmer (1969), Subrahmanyam

et al. (1994) and Sen et al. (1994)). Over the last two decades significant progress

has been made both in exact and heuristic solution methods for two-stage and

multistage stochastic integer programming (Laporte and Louveaux, 1993; Alonso-

Ayuso et al., 2003b; Sen and Higle, 2005; Cristóbal et al., 2009; Escudero et al.,

2011). The research team led by Escudero has reported successful application

of SIP solution methods to large-scale two- and multistage problems (Escudero

et al., 2007a,b; Escudero, 2009; Escudero et al., 2009a,b,c, 2010a,b). In this work

we focus on a heuristic approach and consider a variant of variable neighbour-

hood search which has been successfully applied in a deterministic environment

(Brimberg and Mladenović, 1996; Aouchiche et al., 2006; Dražić et al., 2008).

In Chapter 5 we investigate the applicability of variable neighbourhood de-

composition search to stochastic integer problems. We implement a classic integer

L-shaped method of Laporte and Louveaux (1993) and use it both in performance

benchmarks comparing it with our heuristic method and as an underlying solu-

tion method to solve subproblems. We also describe out implementation of the

integer L-shaped method which is interesting because it to a large extent reuses

existing branch-and-cut infrastructure.

In Chapter 6 we summarise the findings reported in the thesis and present

our conclusions.
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Chapter 2

Stochastic programming

modelling constructs and

extensions

In this chapter we consider the language structure and syntax for presenting al-

ternative stochastic programming (SP) models to an SP modelling system. In

Section 2.1 we discuss existing formats for representing SP problems and in par-

ticular SMPS and SP extensions to established modelling languages. We compare

several extensions of the AMPL modelling language and describe one of them,

SAMPL, in more details. Design and implementation of a new SAMPL translator

is discussed in Section 2.2. The three remaining sections give details for one par-

ticular set of extensions. Section 2.3 is devoted to describing chance-constrained

modelling constructs. Section 2.4 describes the syntax of integrated chance con-

straints. In Section 2.5 we introduce language constructs for alternative robust

optimisation models.

2.1 Introduction to the SAMPL modelling lan-

guage

AMPL is an algebraic modelling language (AML) for mathematical programming

(Fourer, Gay, and Kernighan, 2003) designed for representing linear and nonlinear

optimisation problems in discrete or continuous variables. One of the notable

features of AMPL is the similarity of its syntax to the mathematical notation for

describing optimisation models. Stochastic AMPL or SAMPL (Valente, Mitra,

Sadki, and Fourer, 2009) is an extension of the AMPL language that enables
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formulation of stochastic programming problems. SAMPL supports two-stage

and multistage scenario-based SP problems with recourse. SAMPL is used in

Stochastic Programming Integrated Environment (SPInE) which is an integrated

development environment for SP modelling (Valente, Mitra, and Poojari, 2005).

SAMPL is a relatively new language. The most important among earlier

formats is arguably SMPS that was introduced by Birge, Dempster, Gassmann,

Gunn, King, and Wallace (1987). In a way comparable with the role of the

MPS format for linear programming, SMPS has become a de facto standard

representation of stochastic programming problems. The following established

collections of benchmark problems for stochastic linear and integer programming

use this format:

• POSTS (Holmes, 1995)

• Test Set for Stochastic Linear Programming (Ariyawansa and Felt, 2004)

• Test problems by Linderoth, Shapiro, and Wright (2002)

• SIPLIB (Ahmed, 2004)

However SMPS has certain limitations most of which are inherited from MPS.

For instance, in both formats the direction of optimisation (minimisation or max-

imisation) is not specified and the precision is limited due to fixed width of nu-

meric fields. Also both MPS and SMPS are column-oriented which is different

from usual equation-oriented algebraic formulation of MP problems.

In the last decades algebraic modelling languages have gained wide acceptance

of the OR community. This is supported by the statistics of the NEOS Server

for Optimisation (Czyzyk et al., 1998) given in Table 2.1. Figures show that

algebraic modelling languages (AMPL and GAMS) together account for almost

90% of the NEOS submissions in January 2011. Interestingly MPS is used in less

than 1% of cases despite being supported by most solvers. Among other low-level

formats LP (IBM Corp., 2009a) leads by a wide margin.

At the same time stochastic programming has become an important decision

tool as suggested by various developments in this field reflected on the active

website http://stoprog.org of the SP community and the triennial interna-

tional conference on stochastic programming. The edited volume by Wallace and

Ziemba (2005) describes many applications of stochastic programming in diverse

domains and outlines the SP modelling systems. Our analysis of the SP modelling

and solver requirements reveals that modelling support, scenario generation and

http://stoprog.org
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Table 2.1: Solver inputs statistics for January 2011 from the NEOS Server for

Optimization

Solver Input Submissions Percentage

AMPL 7199 59.4

GAMS 3602 29.7

LP 714 5.9

CPLEX 110 0.9

MATLAB BINARY 101 0.8

SPARSE SDPA 98 0.8

MPS 94 0.8

TSP 90 0.7

SMPS 27 0.2

Other 76 0.6

solution methods are three important aspects of a working SP system. In the

current chapter we focus entirely on the first aspect and we refer the readers to

Mitra et al. (2007) and Di Domenica et al. (2009) for scenario generation and

Chapters 3, 4 and 5 of this thesis for solution methods.

The developments in the SP field, together with growing popularity of AMLs,

have resulted in a number of extensions to the modelling systems providing facil-

ities to express stochastic programming problems. Major vendors of optimisation

software, namely, XPRESS, AIMMS, MAXIMAL, and GAMS have started offer-

ing such extensions to their optimisation suites (Dormer et al., 2005; Roelofs and

Bisschop, 2010; Dirkse, 1998).

Several SP extensions to the AMPL modelling language have been proposed

by different authors:

• Stochastic programming extensions to AMPL by Fourer (1996),

• SML (Colombo et al., 2009),

• StAMPL (Fourer and Lopes, 2009) - multistage stochastic programming

problem with recourse.

• SAMPL (Valente et al., 2009),

The extensions proposed by Fourer introduce a concept of scenarios into

AMPL allowing the association of different data within the same model. To-

gether with a new statement for defining a stochastic framework for a model and
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scenarios, this enables formulation of stochastic programming problems with re-

course. At the time of writing, these extensions have not been implemented in

the AMPL translator whereas Fourer has participated with the CARISMA team

to define SAMPL (Valente, Mitra, Sadki, and Fourer, 2009).

SML is described by Colombo et al. as a structure-conveying algebraic mod-

elling language for mathematical programming based on AMPL. Unlike the previ-

ous set of extensions SML is implemented, although not in the AMPL translator

itself but as a sequence of pre- and post-processing passes for AMPL. This mod-

elling language allows the block structure of a problem to be preserved and passed

to the solver which can exploit this information. SML also provides modelling

facilities to express SP problems with recourse based on the nodal description of

the scenario tree.

StAMPL is an extension of the AMPL modelling language for multistage

stochastic programming problems with recourse. It is based on the idea that every

such problem contains a filtration process and provides a notation for representing

this process.

SAMPL is an algebraic modelling language based on AMPL which allows

representation of two- and multistage SP problems with recourse. The language

supports scenario-based formulation and compact representation of several com-

mon tree structures as well as arbitrary scenario trees.

In this research we further develop the SAMPL modelling language providing

support for additional classes of SP modelling constructs involving uncertainty

and risk. Apart from stochastic programming with recourse which is already

supported in SAMPL we have identified the following important approaches to

handling uncertainty and risk in SP models:

• chance constraints which are closely related to Value at Risk (VaR),

• integrated chance constraints (ICCs) which are closely related to Condi-

tional Value at Risk (CVaR),

• robust optimisation.

For a detailed description see CARISMA lecture notes on stochastic programming

(CARISMA, 2010). The first two are important as they provide risk measures

and can be used in scenario-based recourse problems thus complementing existing

features of the SAMPL language. Computational aspects of solving problems with

risk constraints are discussed in Chapter 3.
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To introduce the extensions we first briefly describe the basic concepts and

syntax of SAMPL. The latter inherits five types of entities from AMPL:

• sets,

• parameters,

• variables,

• objectives,

• constraints.

The entity names are self-descriptive, we should only clarify that variables denote

decision variables and parameters are problem parameters. Each entity is either

a single value or a collection indexed over a set called indexing set.

Listing 2.1 gives an example of an AMPL model which illustrates all five

types of constructs mentioned above. This example is a deterministic version of

the farmer’s problem from Birge and Louveaux (1997).

An algebraic formulation of the farmer’s problem is as follows:

Given C a set of crops (element 3 denotes sugar beets),

and a total area (acre),

bc c ∈ C: yield of crop c (T / acre),

dc c ∈ C: planting cost of crop c ($ / acre),

ec c ∈ C: selling price of crop c ($ / T),

f selling price of sugar beets produced above quota ($ / T),

gc c ∈ C: purchase price of crop c ($ / T),

rc c ∈ C: minimum requirement of crop c (T),

q quota for sugar beets (T),

define xc ≥ 0 c ∈ C: acres of land devoted to crop c,

wc ≥ 0 c ∈ C: tons of crop c sold (at favourable price),

z ≥ 0 tons of sugar beets sold at the lower price,

yc ≥ 0 c ∈ C: tons of crop c purchased,
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Listing 2.1: Deterministic version of the farmer’s problem formulated in AMPL

### SETS ###

set Crops;

### PARAMETERS ###

param TotalArea; # acre

param Yield{Crops}; # T/acre

param PlantingCost{Crops }; # $/acre

param SellingPrice{Crops }; # $/T

param ExcessSellingPrice; # $/T

param PurchasePrice{Crops }; # $/T

param MinRequirement{Crops}; # T

param BeetsQuota; # T

### VARIABLES ###

# Area in acres devoted to crop c

var area{c in Crops} >= 0;

# Tons of crop c sold (at favourable price)

var sell{c in Crops} >= 0;

# Tons of sugar beets sold in excess of the quota

var sellExcess >= 0;

# Tons of crop c bought

var buy{c in Crops} >= 0;

### OBJECTIVE ###

maximize profit:

sum{c in Crops} (SellingPrice[c] * sell[c] -

PurchasePrice[c] * buy[c] - PlantingCost[c] * area[c]) +

ExcessSellingPrice * sellExcess;

### CONSTRAINTS ###

subject to totalArea: sum{c in Crops} area[c] <= TotalArea;

subject to requirement{c in Crops}:

Yield[c] * area[c] - sell[c] + buy[c] >= MinRequirement[c];

subject to quota: sell[’beets ’] <= BeetsQuota;

subject to sellBeets:

sell[’beets ’] + sellExcess <= Yield[’beets ’] * area[’beets ’];
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maximize
∑
c∈C

(ecwc − gcyc − dcxc) + fz

subject to
∑
c∈C

xc ≤ a,

bcxc − wc + yc ≥ rc, c ∈ C,

w3 ≤ q,

w3 + z ≤ b3x3.

(2.1)

This example shows one of the main AMPL features, that is, the similarity of

its syntax to mathematical notation. Indeed, it is straightforward to obtain the

AMPL formulation in Listings 2.1 from the algebraic formulation (2.1).

In addition to the entities mentioned above SAMPL introduces extensions

involving new entities which are

• scenario information:

– scenario set,

– tree structure,

– scenario probabilities,

• random parameters,

• aggregation of variables into stages.

The SAMPL formulation of the farmer’s problem restated as a two-stage SP

model with recourse is shown in Listing 2.2. This model illustrates the additional

constructs.

The SAMPL model is similar to the deterministic equivalent problem ex-

pressed in AMPL. However, the model in SAMPL has some important features

that convey the underlying SP structure of the problem to the solver. First, the

stage of each variable is specified with the help of stage suffixes. Second, the sce-

nario set is clearly identified which allows subproblems for each specific scenario

to be distinguished. Finally, the structure of the scenario tree is given explicitly.
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Listing 2.2: Stochastic version of the farmer’s problem formulated in SAMPL

### SETS ###

set Crops;

### SCENARIO INFORMATION ###

scenarioset Scenarios; # Scenario set

probability P{s in Scenarios }; # P[s] is a probability

# of scenario s

tree Tree := twostage; # Scenario tree structure

### PARAMETERS ###

param TotalArea; # acre

param PlantingCost{Crops }; # $/acre

param SellingPrice{Crops }; # $/T

param ExcessSellingPrice; # $/T

param PurchasePrice{Crops }; # $/T

param MinRequirement{Crops}; # T

param BeetsQuota; # T

### RANDOM PARAMETERS ###

random param Yield{Crops , Scenarios }; # T/acre

### VARIABLES ###

# Area in acres devoted to crop c

var area{c in Crops} >= 0;

# Tons of crop c sold (at favourable price) under scenario s

var sell{c in Crops , s in Scenarios} >= 0, suffix stage 2;

# Tons of sugar beets sold in excess of the quota under

# scenario s

var sellExcess{s in Scenarios} >= 0, suffix stage 2;

# Tons of crop c bought under scenario s

var buy{c in Crops , s in Scenarios} >= 0, suffix stage 2;

### OBJECTIVE ###

maximize profit: sum{s in Scenarios} P[s] * (

ExcessSellingPrice * sellExcess[s] +

sum{c in Crops} (SellingPrice[c] * sell[c, s] -

PurchasePrice[c] * buy[c, s])) -

sum{c in Crops} PlantingCost[c] * area[c];
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Listing 2.3: Stochastic version of the farmer’s problem formulated in SAMPL

(continued)

### CONSTRAINTS ###

subject to totalArea:

sum {c in Crops} area[c] <= TotalArea;

subject to requirement{c in Crops , s in Scenarios }:

Yield[c, s] * area[c] - sell[c, s] + buy[c, s]

>= MinRequirement[c];

subject to quota{s in Scenarios }:

sell[’beets ’, s] <= BeetsQuota;

subject to sellBeets{s in Scenarios }:

sell[’beets ’, s] + sellExcess[s]

<= Yield[’beets ’, s] * area[’beets ’];

A corresponding algebraic formulation of this two-stage SP problem in the

deterministic equivalent form is given below.

Given the sets

C a set of crops (element 3 denotes sugar beets),

S a set of scenarios,

and the parameters

a total area (acre),

bcs c ∈ C, s ∈ S: yield of crop c under scenario s (T / acre),

dc c ∈ C: planting cost of crop c ($ / acre)

ec c ∈ C: selling price of crop c ($ / T)

f selling price of sugar beets produced above quota ($ / T)

gc c ∈ C: purchase price of crop c ($ / T)

rc c ∈ C: minimum requirement of crop c (T)

q quota for sugar beets (T),

ps s ∈ S: probability of scenario s,

define the decision variables

xc ≥ 0 c ∈ C: acres of land devoted to crop c,

wcs ≥ 0 c ∈ C, s ∈ S: tons of crop c sold (at favourable price)

under scenario s,
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zs ≥ 0 s ∈ S: tons of sugar beets sold at the lower price

under scenario s,

ycs ≥ 0 c ∈ C, s ∈ S: tons of crop c purchased under scenario s,

maximize
∑
s∈S

ps

(∑
c∈C

(ecwcs − gcycs) + fzs

)
−
∑
c∈C

dcxc

subject to
∑
c∈C

xc ≤ a,

bcsxc − wcs + ycs ≥ rc, c ∈ C, s ∈ S,

w3s ≤ q, s ∈ S,

w3s + zs ≤ b3sx3, s ∈ S.

(2.2)

In the proposed extensions we mostly deal with the syntax of constraint dec-

larations, therefore let us consider it in more detail. A simplified syntax of the

AMPL/SAMPL constraint declaration is as follows:

[subject to] name [indexing] [: constraint-expr] ;

where the optional indexing expression defines a single- or multidimensional

set over which the constraint is indexed.

The constraint-expr construct takes one of the following forms:

expr = expr

expr <= expr

expr >= expr

const-expr <= expr <= const-expr

const-expr >= expr >= const-expr

The following conventions are used in the syntax definition above and later

in this chapter. Syntactic categories are printed in an italic font, while literal

text such as a keyword is printed in a monospaced font. Constructs enclosed

in slanted brackets [ ] are optional. The expr construct denotes an arithmetic

expression while const-expr denotes a constant expression, the one that may not

contain decision variables.
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2.2 Design and implementation of the SAMPL

translator

In this section we describe a new version of the SAMPL translator. A previous

version (OptiRisk Systems, 2009) was implemented in a way similar to SML with

pre- and post-processing passes that used the standard AMPL translator. The

latter approach had certain limitations, in particular due to the fact that the

AMPL translator was designed as an end-user tool and therefore its extensibility

is limited. The new translator is designed with extensibility in mind.

The architecture of the SAMPL translator is shown in Figure 2.1. The trans-

lator consists of the following modules:

• lexical analyser that converts input into a sequence of tokens such as key-

words or strings,

• parser that takes a sequence of tokens as an input, recognizes various gram-

mar constructs and reports syntax errors,

• semantic analyser that checks for semantic errors and constructs abstract

syntax trees (AST),

• AST module that provides classes to represent the SAMPL AST,

• bytecode emitter that converts AST into the Java bytecode,

• interpreter that passes ASTs corresponding to the top-level SAMPL dec-

larations and statements to the bytecode emitter and then forwards the

generated bytecode to the Java Virtual Machine (JVM) for execution,

• runtime library that provides support code required at runtime such as

implementations of various AMPL functions,

• driver program connecting other modules together and providing a command-

line interface to the translator,

• error handler that receives error messages from other modules, formats them

and presents to the user.

The SAMPL translator is written in Java which makes it portable to a wide

range of platforms including GNU/Linux, Mac and Windows. Also the translator

produces Java bytecode which enables use of just-in-time compilation techniques
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Figure 2.1: Architecture of the SAMPL translator
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Figure 2.2: The Eclipse IDE showing an SAMPL file opened in the editor

available in modern Java implementations (Suganuma et al., 2000) for improving

runtime performance.

Modular architecture of the SAMPL translator allows to reuse its components

in other applications. In particular, the parser has been reused to implement

syntax highlighting for the AMPL/SAMPL plug-in in Eclipse, an open-source

integrated development environment (IDE) supporting a large number of pro-

gramming languages (Des Rivières and Wiegand, 2004). A screenshot of the

Eclipse IDE showing an opened SAMPL file with syntax highlighting is given in

Figure 2.2. It is also possible to embed the complete SAMPL translator available

as a software library in a client application.

During the development of the extensions our design goals have been to make

proposed new language constructs

• close to established mathematical notation where one exists,

• consistent with other language features,

• compatible with existing models.
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2.3 Chance constraints

Probabilistic or chance constraints are constraints that must hold with a given

probability level. Chance-constrained programming has been extensively studied

by Charnes and Cooper (1959), Prékopa (2003) and others. It has a wide range

of applications from agricultural problems (Van de Panne and Popp, 1963) to

portfolio selection (Agnew et al., 1969).

A chance constraint can be formulated as follows:

P{Ai(ω)x ≥ hi(ω)} ≥ αi,

where 0 < αi < 1 and i = 1, 2, . . . , I is an index of the constraints that must hold

jointly.

In this section we propose SAMPL extensions for expressing individual chance

constraints. The case of joint chance constraints is postponed as a direction for

future development.

We reuse the keyword probability in a new context of the chance constraint

definitions. This keyword is introduced in SAMPL (OptiRisk Systems, 2009)

to specify the parameter that provides scenario probabilities; this is a natural

extension that does not break compatibility with existing models. Under the

proposed extension the constraint expression takes one of the following forms:

basic-constraint-expr

probability { scenario-index : basic-constraint-expr } >= const-expr

const-expr <= probability { scenario-index : basic-constraint-expr }

where the basic-constraint-expr construct is one of the following:

expr = expr

expr <= expr

expr >= expr

const-expr <= expr <= const-expr

const-expr >= expr >= const-expr

and scenario-index is

dummy-member in scenarioset-name
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Having the additional basic-constraint-expr construct that represents the orig-

inal constraint-expr ensures that expressions containing probability cannot be

nested. The scenario-index expression consists of a scenario set name and a

dummy index whose scope covers basic-constraint-expr.

Consider the following chance-constrained problem:

Given the sets

F a set of factories,

P a set of products,

D a set of dealers,

S a set of scenarios,

and the parameters

T number of time periods,

qji j ∈ P, i ∈ F : cost of production of a unit of product j

at factory i,

cik i ∈ F, k ∈ D: cost of transportation of one unit of product

from factory i to dealer k,

aji j ∈ P, i ∈ F : production capacity of product j at factory i,

hji j ∈ P, i ∈ F : cost of holding one unit of product j

at factory i,

lji j ∈ P, i ∈ F : initial inventory of product j at factory i,

nji j ∈ P, i ∈ F : storage capacity of product j at factory i,

rjkt j ∈ P, k ∈ D, t = 1, . . . , T : minimum acceptable probability

that the demand for product j is satisfied at dealer k and

time period t,

djkts j ∈ P, k ∈ D, t = 1, . . . , T, s ∈ S: demand for product j at

dealer k and time period t under scenario s,

ps s ∈ S: probability of scenario s,

define the decision variables

xjits ≥ 0 j ∈ P, i ∈ F, t = 1, . . . , T, s ∈ S: number of units of product

j manufactured at factory i in period t under scenario s,

yjits ≥ 0 j ∈ P, i ∈ F, t = 1, . . . , T, s ∈ S: number of units of product

j stored in inventory at factory i in period t under scenario s,

zjikts ≥ 0 j ∈ P, i ∈ F, k ∈ D, t = 1, . . . , T, s ∈ S: number of units of

product j sent from factory i to dealer k in period t

under scenario s,
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minimize
∑
s∈S

ps

(∑
j∈P

∑
i∈F

T∑
t=1

qjixjits +
∑
j∈P

∑
i∈F

∑
k∈D

T∑
t=1

cikzjikts

+
∑
j∈P

∑
i∈F

T∑
t=1

hjiyjits

)

subject to P

{
s ∈ S :

∑
i∈F

zjikts ≥ djkts

}
≥ rjkt,

j ∈ P, k ∈ D, t = 1, . . . , T,

xji1s + lji = yji1s +
∑
k∈D

zjik1s, j ∈ P, i ∈ F, s ∈ S,

xjits + yji(t−1)s = yjits +
∑
k∈D

zjikts,

j ∈ P, i ∈ F, t = 2, . . . , T, s ∈ S,

yjits ≤ nji, j ∈ P, i ∈ F, t = 1, . . . , T, s ∈ S,

xjits ≤ aji, j ∈ P, f ∈ F, t = 1, . . . , T, s ∈ S,

xji1s = xji1s′ , j ∈ P, f ∈ F, s ∈ S, s′ ∈ S,

yji1s = yji1s′ , j ∈ P, f ∈ F, s ∈ S, s′ ∈ S,

zjik1s = zjik1s′ , j ∈ P, f ∈ F, k ∈ D, s ∈ S, s′ ∈ S.

(2.3)

Problem (2.3) is based on a two-stage SP formulation of a production planning

model from Valente et al. (2009). The objective is defined as the expected cost and

the shortage penalty is replaced by a chance constraint limiting the probability

of not satisfying the demand. The SAMPL formulation of problem (2.3) is given

in Listings 2.4 - 2.6.

The last three sets of constraints in (2.3) represent nonanticipativity restric-

tions. Note that these constraints are not used in the SAMPL formulation because

nonanticipativity is implied by the structure of the scenario tree and partitioning

of variables into stages.

Consider the chance constraint from problem (2.3):

P

{
s ∈ S :

∑
i∈F

zjikts ≥ djkts

}
≥ rjkt, j ∈ P, k ∈ D, t = 1, . . . , T.
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Listing 2.4: Production model with chance constraints

### SETS ###

set Prod; # products

set Fact; # factories

set Deal; # dealers

### SCENARIO INFORMATION ###

param S; # number of scenarios

scenarioset Scen = 1..S; # scenario set

tree scen_tree := twostage; # scenario tree

probability P{Scen} = 1 / S; # P[s] is the probability of

# scenario s

### PARAMETERS ###

param T; # number of production periods

# prod_cost[p, f] is the cost of production of a unit

# of product p at factory f

param prod_cost{Prod , Fact} >= 0;

# send_cost[f, d] is the cost of transportation of one

# unit of product from factory f to dealer d

param send_cost{Fact , Deal} >= 0;

# prod_cap[p, f] is the production capacity of product

# p at factory f

param prod_cap{Prod , Fact} >= 0;

# inv_cost[p, f] is the cost of holding one unit of

# product p at factory f

param inv_cost{Prod , Fact} >= 0;

# init_inv[p, f] is the initial inventory of product p

# at factory f

param init_inv{Prod , Fact} >= 0;

# inv_cap[p, f] is the storage capacity of product p

# at factory f

param inv_cap{Prod , Fact} >= 0;

# reliability[p, d, t] is the minimum acceptable probability that

# the demand for product p is satisfied at dealer d and time

# period t

param reliability{Prod , Deal , 1..T};
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Listing 2.5: Production model with chance constraints (continued)

# random demand

random param demand{Prod , Deal , 1..T, Scen};

### VARIABLES ###

# make[p, f, t, s] is the number of units of product p

# manufactured at factory f in period t under scenario s

var make{Prod , Fact , t in 1..T, Scen} >= 0,

suffix stage if t = 1 then 1 else 2;

# hold[p, f, t, s] is the number of units of product p

# stored in inventory at factory f in period t under

# scenario s

var hold{Prod , Fact , t in 1..T, Scen} >= 0,

suffix stage if t = 1 then 1 else 2;

# send[p, f, d, t, s] is the number of units of product

# p sent from factory f to dealer d in period t under

# scenario s

var send{Prod , Fact , Deal , t in 1..T, Scen} >= 0,

suffix stage if t = 1 then 1 else 2;

### OBJECTIVE ###

# expectation of total cost which is the sum of

# production , transportation and inventory costs

minimize cost: sum{s in Scen} P[s] *

(sum{p in Prod , f in Fact , t in 1..T}

prod_cost[p, f] * make[p, f, t, s] +

sum{p in Prod , f in Fact , d in Deal , t in 1..T}

send_cost[f, d] * send[p, f, d, t, s] +

sum{p in Prod , f in Fact , t in 1..T}

inv_cost[p, f] * hold[p, f, t, s]);

### CONSTRAINTS ###

# definition of the constraint satisfy_demand as a

# chance constraint

subject to satisfy_demand{p in Prod , d in Deal , t in 1..T}:

probability{s in Scen:

sum{f in Fact} send[p, f, d, t, s] >= demand[p, d, t, s]}

>= reliability[p, d, t];
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Listing 2.6: Production model with chance constraints (continued)

subject to inv_balance_init{p in Prod , f in Fact , s in Scen}:

make[p, f, 1, s] + init_inv[p, f] =

hold[p, f, 1, s] + sum{d in Deal} send[p, f, d, 1, s];

subject to inv_balance

{p in Prod , f in Fact , t in 2..T, s in Scen}:

make[p, f, t, s] + hold[p, f, t - 1, s] =

hold[p, f, t, s] + sum{d in Deal} send[p, f, d, t, s];

subject to inv_capacity

{p in Prod , f in Fact , t in 1..T, s in Scen}:

hold[p, f, t, s] <= inv_cap[p, f];

subject to prod_capacity

{p in Prod , f in Fact , t in 1..T, s in Scen}:

make[p, f, t, s] <= prod_cap[p, f];

The formulation in SAMPL using the proposed extension is

subject to satisfy_demand{p in Prod , d in Deal , t in 1..T}:

probability{s in Scen:

sum{f in Fact} send[p, f, d, t, s] >= demand[p, d, t, s]}

>= reliability[p, d, t];

One can see that SAMPL formulation of a chance constraint is nothing more

than a transcription of the algebraic one that takes into account the conventions of

the AMPL language. For consistency with the rest of SAMPL, the scenario set is

specified explicitly. So the proposed syntax allows expressing chance constraints

in a natural way following the design goals stated in Section 2.2.

We have also considered alternative representations of chance constraints in

the SAMPL modelling language. The most notable alternative is probably the

one suggested in SAMPL/SPInE manual (OptiRisk Systems, 2009). In this rep-

resentation the above example is formulated as follows:

subject to satisfy_demand

{p in Prod , d in Deal , t in 1..T, s in Scen}:

sum{f in Fact} send[p, f, d, t, s] >= demand[p, d, t, s];

chance{p in Prod , d in Deal , t in 1..T, s in Scen}

satisfy_demand[p, d, t, s] >= reliability[p, d, t];

This notation allows specifying only some of the constraint from a collection

probabilistic. However, the same result can be achieved by other means, e.g.

setting reliability to one for a combination of indices that correspond to the
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constraints that should always hold.

The reasons why this representation was rejected are as follows. First, it

breaks backward compatibility by introducing an additional keyword chance.

This, however, can be overcome by making this keyword context-sensitive or

replacing chance with probability. Second, it differs considerably from the

algebraic formulation. Third and the most important reason is that the scope of

the scenario set index should be different from the scopes of other indices, e.g.

reliability cannot have the subscript s, which is not consistent with the rest

of the language.

2.4 Integrated chance constraints

Integrated chance constraints (ICC) were introduced by Klein Haneveld (1986)

and have found many applications in finance; for instance, see asset-liability man-

agement model of Van der Vlerk (2003). In general, integrated chance constraints

can be used in cases when quantitative measure of risk is preferred to a qualitative

one provided by chance constraints.

An individual ICC is defined as

Eω[(Ai(ω)x− hi(ω))−] ≤ βi, (2.4)

where βi ≥ 0, i = 1, 2, . . . , I and (a)− := max{−a, 0} is the negative part of

a ∈ R or, equivalently,

Eω[(hi(ω)− Ai(ω)x)+] ≤ βi, (2.5)

where (a)+ := max{a, 0} is the positive part of a ∈ R.

In AMPL (a− b)+ can be naturally expressed as a less b using the operator

less defined as

a less b ≡ max{a− b, 0}

We propose extensions to represent integrated chance constraints as defined

in equation (2.5) in the SAMPL modelling language. Under these extensions the

constraint expression takes one of the following forms:

basic-constraint-expr

expectation { scenario-index } ( expr less expr ) <= const-expr

const-expr >= expectation { scenario-index } ( expr less expr )
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The basic-constraint-expr construct represents the original constraint-expr

which is the same as in the case of chance constraints and therefore is not re-

peated here. The scenario-index nonterminal consists of a scenario set name and

a dummy index whose scope covers the expression in brackets.

We introduce the expectation keyword, but to preserve compatibility with

existing models we allow it to be redefined as an entity name. We follow the

AMPL convention that some keywords such as product can be redefined.

# expectation is redefined as a parameter

param expectation;

As an example consider the production planning model with integrated chance

constraints. Since this model has a lot in common with its chance-constrained

version introduced in the previous section, we do not repeat the complete def-

inition of the problem but only give the algebraic and SAMPL formulation of

ICC that replace the chance constraints in problem (2.3) and Listings 2.4 - 2.6

respectively.

The integrated chance constraint in the production planning model is formu-

lated as follows:

Es

(djkts −∑
i∈F

zjikts

)
+

 ≤ βjkt, j ∈ P, k ∈ D, t = 1, . . . , T.

where βjkt is the bound on the expected shortage in respect of demand for

product j at dealer k and time period t. The integrated chance constraints above

can be formulated in SAMPL using the proposed extension as follows:

subject to satisfy_demand{p in Prod , d in Deal , t in 1..T}:

expectation{s in Scen}

(demand[p, d, t, s] less sum{f in Fact} send[p, f, d, t, s])

<= max_exp_shortage[p, d, t];

In Chapter 3 we discuss the relation between ICC, CVaR and second-order

stochastic dominance (SSD). A portfolio choice model based on SSD criterion

formulated as a SAMPL model with large number of integrated chance constraints

is presented in Section 3.6. We solve this model using the deterministic equivalent

approach and a cutting-plane method.

2.5 Robust optimisation

Robust optimization allows suboptimal solutions of the problems with nominal

data to ensure that the solution remains feasible and close to optimal when the
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data change. This modelling methodology originates from the work of Soyster

(1973) and Falk (1976). It has a wide range of applications in various domains

such as engineering (Ben-Tal and Nemirovski, 2002), finance (Costa and Paiva,

2002; El Ghaoui et al., 2003) and supply chain management (Bertsimas and

Thiele, 2006).

Consider a linear programming problem

maximize cTx

subject to Ax ≤ b,
x ∈ Rn

+,

where x is a vector of decision variables, b ∈ Rm and c ∈ Rn are fixed vectors

and A is an m× n matrix, with some coefficients aij being random.

We use the model of uncertainty described in Ben-Tal and Nemirovski (2000)

where each random element of matrix A is modelled as a symmetric bounded

random variable taking values from the range [aij − âij, aij + âij].

In order to be able to represent this kind of random parameters in SAMPL

we introduce a new form of an attribute that can only be used in the declarations

of random parameters. A simplified syntax of a parameter declaration with a

proposed new attribute is given below.

parameter-decl:

random param name [indexing] [attribute-list] ;

attribute-list:

attribute-list attribute

attribute

attribute:

dist name ( expr-list )

The dist attribute specifies the probability distribution of a random variable

represented by a parameter. The dist keyword is followed by the name of a

distribution and the list of expressions in parentheses represents its arguments.

Currently we only support one type of distribution named symmetric which de-

notes some unspecified symmetric distribution and is used only for the purpose

of representing the model of uncertainty introduced above. The symmetric dis-

tribution takes two arguments representing the lower and the upper bound of the

interval [aij − âij, aij + âij] respectively.
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This extension can be used in the future to specify univariate distributions of

random parameters in a way which is comparable with the convention defined in

the INDEP section of SMPS. For example, the following SMPS input

INDEP UNIFORM

COL1 ROW8 8.0 PERIOD2 9.0

could be expressed in SAMPL as

random param p dist uniform(8, 9);

We consider the following established robust formulations based on alternative

representation of uncertainty sets:

• Soyster (1973),

• Ben-Tal and Nemirovski (2002),

• Bertsimas and Sim (2004).

Soyster (1973) considered the case of the columns of a constraint matrix be-

longing to convex sets. As shown by Bertsimas and Sim (2004) under the model of

uncertainty described above the robust formulation of Soyster takes the following

form:
maximize cTx

subject to
n∑
j=1

aijxj +
∑
j∈Ji

âijyj ≤ bi, i = 1, . . . ,m,

−yj ≤ xj ≤ yj, j = 1, . . . , n,

x,y ∈ Rn
+,

where Ji is a set of column indices of random elements aij in row i.

The formulation of Soyster leads to an LP problem which is advantageous

from computational perspective. However its solutions can be too conservative

in a sense that the objective value may be much worse than the one of the

correspondent problem with nominal data.

Ben-Tal and Nemirovski (2002) proposed another robust formulation which
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under the current model of uncertainty takes the following form:

maximize cTx

subject to
∑
j

aijxj +
∑
j∈Ji

âijyij + Ωi

√∑
j∈Ji

â2
ijz

2
ij ≤ bi, i = 1, . . . ,m, (2.6)

− yij ≤ xj − zij ≤ yij, i = 1, . . . ,m, j ∈ Ji,

yij ≥ 0, i = 1, . . . ,m, j ∈ Ji,

x ∈ Rn
+.

The inequality (2.6) defines the interior of an ellipsoid. The formulation of

Ben-Tal and Nemirovski is thus based on ellipsoidal uncertainty sets and leads to

a second-order cone programming (SOCP) problem. The level of conservatism is

controlled through the weighting parameters Ωi. The probability of violation of

constraint i is at most e−Ω2
i /2.

The robust formulation of Bertsimas and Sim (2004) is as follows:

maximize cTx

subject to
n∑
j=1

aijxj + ziΓi +
∑
j∈Ji

pij ≤ bi, i = 1, . . . ,m,

zi + pij ≥ âijyj, i = 1, . . . ,m, j ∈ Ji,
−yj ≤ xj ≤ yj, j = 1, . . . , n,

pij ≥ 0, i = 1, . . . ,m, j ∈ Ji,
x,y ∈ Rn

+,

z ∈ Rm
+ .

The formulation of Bertsimas and Sim results in a linear programming prob-

lem based on convex polyhedral uncertainty sets similar to the model of Soyster.

However, in this model it is possible to control the level of conservatism through

the parameters Γi. The solution is feasible if no more than Γi of random coeffi-

cients change. Even if this is not the case the probability that the solution will

be feasible is high.

The parameters Ωi and Γi can be specified with the help of suffixes in the

same way as it is done to assign stages to variables in SAMPL. For this purpose

we use a predefined suffix robustness. The value of the parameter Γi should

be in the range [0, ki], where ki is the number of random coefficients in the i-th

constraint.

Given the LP constraint
n∑
j=1

aijxj ≤ bi with uncertain parameters aij ∈

[0.95āij, 1.05āij] we can specify its robust counterpart with the Γi parameter set

to n/3 in the following way:
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# random parameter with symmetric uncertainty interval

random param a{i in 1..m, j in 1..n}

dist symmetric (0.95 * abar[i, j], 1.05 * abar[i, j]);

# for a fixed i one third of a[i, j] coefficients can

# be changed without making the solution infeasible

subject to c{i in 1..m} suffix robustness n / 3:

sum{j in 1..n} a[i, j] * x[j] <= b[i];

In order to select a specific formulation we introduce the option RobustForm

which takes one of the following three values:

Soyster, Bertsimas_Sim or BenTal_Nemirovski.

As an example consider a simple portfolio management problem from Bert-

Listing 2.7: A portfolio management problem in SAMPL with robust optimisa-

tion extension

param NAssets = 150; # Number of assets

param MeanRet{i in 1.. NAssets} =

1.15 + i * (0.05 / 150);

param Delta{i in 1.. NAssets} =

(0.05 / 450) * sqrt(2 * i * NAssets * (NAssets + 1));

# Random returns

random param Return{i in 1.. NAssets}

dist symmetric(MeanRet[i] - Delta[i],

MeanRet[i] + Delta[i]);

# Fraction of the initial wealth invested in each asset

var invest {1.. NAssets} >= 0, <= 1;

var w;

maximize wealth: w;

# Robust constraint

subject to robust suffix robustness 22:

sum{i in 1.. NAssets} Return[i] * invest[i] >= w;

subject to budget: sum{i in 1.. NAssets} invest[i] = 1;

option RobustForm Bertsimas_Sim;
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simas and Sim (2004). An investor wants to construct a portfolio of assets in

order to maximize the return. There are 150 assets in total and the return of i-th

asset belongs to the interval [ri − si, ri + si], where ri = 1.15 + i(0.05/150) and

si = (0.05/450)
√

2in(n+ 1). The SAMPL formulation of the problem is given in

Listing 2.7.

Syntax Summary

The combined syntax for the extensions introduced in previous sections is given

below.

constraint-decl:

[subject to] name [indexing] [: constraint-expr] ;

constraint-expr:

basic-constraint-expr

probability { scenario-index : basic-constraint-expr } >= const-expr

const-expr <= probability { scenario-index : basic-constraint-expr }

expectation { scenario-index } ( expr less expr ) <= const-expr

const-expr >= expectation { scenario-index } ( expr less expr )

basic-constraint-expr:

expr = expr

expr <= expr

expr >= expr

const-expr <= expr <= const-expr

const-expr >= expr >= const-expr

scenario-index:

dummy-member in scenarioset-name

parameter-decl:

random param name [indexing] [attribute-list] ;

attribute-list:

attribute-list attribute

attribute

attribute:

dist name ( expr-list )
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2.6 Architecture of an integrated modelling and

solver system for stochastic programming

To make the modelling language extensions really useful it is not enough just

to define their syntax and implement parsing and semantic analysis of the new

constructs in the translator. It is equally important to have corresponding solver

support for the additional types of problems that can be formulated using these

constructs.

One possible way of providing solver support is to translate models into deter-

ministic equivalent form where one exists. In Section 2.5 we described the alter-

native robust formulations that are automatically generated during translation.

In the case of a finite discrete distribution of random parameters deterministic

equivalents exist for chance constraints and integrated chance constraints as well.

Another possibility is to use specialised algorithms designed to solve the addi-

tional types of problems that have been introduced. Having the translator capture

structural information and pass it further to the solver enables use of such al-

gorithms. To illustrate the feasibility of this approach we have implemented the

cutting plane algorithm of Klein Haneveld and van der Vlerk (2006) for inte-

grated chance constraints and applied it to a portfolio choice model formulated

in SAMPL (see Section 3.6).

Solver connectivity

In our modelling and solver system we support multiple external linear program-

ming (LP), mixed integer programming (MIP) and quadratic programming (QP)

solvers that are used to optimise the DEP and subproblems in various decompo-

sition algorithms. Each external solver implements different solution algorithms

and even for the same algorithm the performance may vary greatly across solvers

(see, for example, Mittelmann (1998)) due to implementation details. Therefore

this ability to select a solver is important from the practical point of view.

Also it is desirable to have support for multiple deterministic solvers in order

to be able to implement various classes of SP models and algorithms. For instance,

the robust formulation of Ben-Tal and Nemirovski (2002) requires a SOCP solver

and regularised decomposition requires LP and QP solvers. Figure 2.3 illustrates

the dependencies between SP models, SP solution methods and deterministic

models.

We have designed a generic solver interface which provides a uniform access
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Multistage SP

Two-stage SP

RO: Soyster

RO: Bertsimas

and Sim

RO: Ben-Tal

and Nemirovski

Chance

constraints

ICC

Nested Benders

Benders’

decomposition

Regularised

decomposition

Trust region

method

Level

decomposition

Deterministic

equivalent

Cutting-plane

method for ICC

LP

QP

MIP

SOCP

RO stands for robust optimisation

Figure 2.3: SP models and solution algorithms

to alternative solver functionality. This interface allows the problem to be incre-

mentally constructed and manipulated in the target solver format through the

following operations:

• add rows (constraints) to the problem,

• add columns (variables) to the problem,

• delete rows and columns from the problem,

• set row and column bounds,

• set linear and quadratic objective,

• change solver options,

• solve the problem,
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• get problem elements (bounds, matrix coefficients, objective), primal and

dual solution and basis.

We have successfully implemented the above solver interface for a number of

solvers, namely, CPLEX (IBM Corp., 2009b), FortMP (Ellison et al., 2008) and

Gurobi (Gurobi Optimization, 2010).
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Chapter 3

Solving single-stage stochastic

programming problems with risk

constraints

A single-stage SP problem may be viewed as a special case of two-stage SP

problem (1.2)-(1.3) where the second stage decision vector space is 0-dimensional

(n2 = 0). This problem comprises a first-stage decision, realisation of a random

vector and evaluation of the outcomes over different scenarios. In this basic form

the problem decomposes into a set of S weakly coupled deterministic problems,

where S is the number of scenarios.

This type of problem becomes a more interesting object to study when com-

bined with risk constraints. There are different models of representing risk in

a stochastic programming problem such as chance constraints and integrated

chance constraints, which were introduced in Chapter 2 in the context of mod-

elling languages. Another important class of problems are those which require

imposing stochastic dominance relations; this is considered later in this chapter.

Stochastic dominance is a fundamental concept in decision making under risk.

Its importance has been recognized by Hadar and Russell (1969), Whitmore and

Findlay (1978), Levy (1992) and many others. Of particular interest is the ap-

plication of second-order stochastic dominance (SSD) relation since it captures

risk-averse preferences (Fishburn, 1964) which is a common assumption about

investment behaviour. This makes SSD a theoretically sound and rational choice

criterion in portfolio selection models.

In Section 3.1 the notion of second-order stochastic dominance is introduced

and its alternative definitions are given. Existing portfolio choice models with

SSD criteria are described in Section 3.2. An enhanced version of one of these
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models is presented in Section 3.3. Alternative formulations of the enhanced

model in computationally tractable forms and connection between SSD con-

straints, integrated chance constraints and the conditional value-at-risk is dis-

cussed in Section 3.4. Solution methods are presented in Section 3.5 followed by

a computational study in Section 3.6.

3.1 Second-order stochastic dominance

Let R and R′ be random variables defined on the probability space (Ω,F , P ).

By definition, R dominates R′ with respect to SSD if and only if the following

condition holds:

E[U(R)] ≥ E[U(R′)] for any nondecreasing and concave

utility function U .
(3.1)

Since a concave utility function corresponds to risk-aversion, (3.1) shows that

the SSD relation is consistent with preferences of a risk-averse decision maker.

There exist alternative definitions of stochastic dominance based on pointwise

comparison of performance functions associated with distribution functions of

random variables. In particular, Fishburn and Vickson (1978) proved that (3.1)

is equivalent to the following:

F
(2)
R (t) ≤ F

(2)
R′ (t) for all t ∈ R, (3.2)

where the performance function F
(2)
R (t) =

∫ t
−∞ FR(u)du represents the area

under the graph of the cumulative distribution function FR(t) = P (R ≤ t) of a

real-valued random variable R. The performance function can be expressed as

the expected shortfall (see, for example, Ogryczak and Ruszczyński, 1999):

F
(2)
R (t) = E[(t−R)+] (3.3)

Ogryczak and Ruszczyński (2002) showed equivalence between (3.2) and the

following condition:

Tailα(R) ≥ Tailα(R′) for all 0 < α ≤ 1, (3.4)

where Tailα(R) denotes the unconditional expectation of the smallest α ·100%

of the outcomes of R.

Figure 3.1 illustrates the concept of SSD. The left diagram shows the cu-

mulative distribution functions of two random variables R and R′ and the right
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diagram shows the correspondent performance functions. The random variables

have distributions of similar shaping; they have the same expected value but R

has much lower variance. It is clear from the right diagram that R dominates

R′ with respect to SSD because the graph of the performance function F
(2)
R is

uniformly below or coincides with the graph of F
(2)
R′ .
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Figure 3.1: Illustration of second-order stochastic dominance

The notation R �
SSD

R′ is used to denote that R dominates R′ with respect

to SSD criteria. The corresponding strict relation is defined as follows:

R �
SSD

R′ ⇔ R �
SSD

R′ and R′ 6�
SSD

R. (3.5)

3.2 Portfolio selection models with SSD con-

straints

Consider the following portfolio problem. There are n assets and at the beginning

of a time period an investor has to decide what proportion xi of the initial wealth

to invest in asset i. So a portfolio is represented by a vector x = (x1, x2, . . . , xn) ∈
X ⊂ Rn, where X is a bounded convex polytope representing the set of feasible

portfolios; in particular it is defined as

X = {x ∈ Rn
+ :

n∑
i=1

xi = 1},

if short positions are not allowed and there are no other modelling restrictions.
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Let R denote the n-dimensional random vector of asset returns at the end of

the time period. Then the real-valued random variable Rx = RTx is the random

return of portfolio x.

Several portfolio models based on the concept of second-order stochastic dom-

inance have been proposed in the literature. Those considered below assume exis-

tence of a reference random return R̂ for which the distribution is known. These

are the models of Dentcheva and Ruszczyński (2003, 2006) and Roman et al.

(2006). The reference return can be the return of a stock market index such as

NASDAQ Composite, FTSE-100 or Hang Seng Index.

Portfolio x ∈ X is said to be SSD-efficient if there is no other portfolio y ∈ X
such that Ry �SSD

Rx.

Dentcheva and Ruszczyński (2006) proposed the following model with an SSD

constraint:

maximize f(x)

subject to x ∈ X,
Rx �SSD

R̂,

(3.6)

where f is a concave continuous function. They considered a special case of

f(x) = E[Rx] and described a solution method based on the regularized decom-

position by Ruszczyński (1986) applied to the dual representation of the problem.

With this method they were able to solve relatively large test problems consisting

of 719 assets with 616 realisations of their joint return rates in a reasonable time.

Dentcheva and Ruszczyński also showed that if the reference portfolio return

R̂ has a finite discrete distribution with realisations r̂(1), r̂(2), . . . , r̂(S) then the

second-order stochastic dominance constraint can be formulated as a finite set

of integrated chance constraints (Klein Haneveld, 1986) based on the equation

(3.3):

E[(r̂(i) −Rx)+] ≤ E[(r̂(i) − R̂)+], i = 1, 2, . . . , S. (3.7)

This is an important formulation because in general representing second-order

stochastic dominance relation requires continuum of inequalities as in (3.4) mak-

ing SSD constrained optimisation difficult to apply in practice.

In the model (3.6) one seeks an optimal portfolio with return distribution that

dominates the benchmark which is the reference return. The advantage of this

model is that it only requires a benchmark portfolio, unlike traditional mean-

risk optimisation (Markowitz, 1952) where one has to choose a particular risk

measure and a trade-off between risk and return which can be sometimes difficult
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to justify. Also the difficulty of selecting an appropriate utility function as in

expected utility maximisation is avoided.

Roman, Darby-Dowman, and Mitra (2006) formulated a multiobjective lin-

ear programming model, the Pareto efficient solutions of which are SSD efficient

portfolios. Subsequently Fábián et al. (2009) introduced a more efficient com-

putational model. Based on the assumption of finite discrete distributions of re-

turns with equiprobable outcomes, they proved that SSD constraint Rx �SSD
R̂

is equivalent to a finite system of inequalities Tail i
S

(Rx) ≥ Tail i
S

(R̂), i =

1, 2, . . . , S, where S is the number of outcomes (scenarios). They converted the

problem into a single-objective form by using the reference point method which

resulted in the following formulation with the Tail functions:

maximize ϑ

subject to ϑ ∈ R,x ∈ X,
Tail i

S
(Rx) ≥ Tail i

S
(R̂) + ϑ, i = 1, 2, . . . , S.

(3.8)

In the latter model one seeks a portfolio with a distribution which dominates

the reference one or comes close to it uniformly. Uniformity here means that the

smallest tail difference ϑ is maximized.

This model has the same advantages as (3.6) and in addition it provides an

SSD-efficient portfolio. Roman et al. report favourable results with the model

using the data from the Hang Seng Index.

3.3 An enhanced model

In Fábián, Mitra, Roman, and Zverovich (2010) we proposed an enhanced version

of the model (3.8) which is expressed in the following SSD constrained form:

maximize ϑ

subject to ϑ ∈ R,x ∈ X,
Rx �SSD

R̂ + ϑ.

(3.9)

In this model we compute a portfolio that dominates a sum of the reference

return and a riskless return ϑ. Depending on the reference distribution three

outcomes of optimisation are possible:

1. If there exist portfolios that dominate the reference plus some value, the

model returns one of such portfolios with maximum surplus ϑ.
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2. If the reference distribution is efficient and attainable, meaning that there

is a feasible portfolio with this return distribution, then the model returns

such a portfolio.

3. If the reference distribution is unattainable then the model provides a port-

folio that dominates the reference minus some value.

3.4 Formulation of a computational model

The number of constraints and variables in the original formulation of Roman

et al. (2006) is of the order S2, where S is the number of scenarios. Hence it is

inefficient as a computational model.

Alternative formulations of the enhanced model are presented in this section.

The main focus is on the representations that make it possible to apply efficient

solution methods. The dominance relation is expressed using tail functions ac-

cording to (3.4) in the first formulation and using integrated chance constraints

in the second one.

Formulation using tails

Assume that the joint distribution of the random vector of asset returns R and

the reference random return R̂ is a finite discrete distribution with equiproba-

ble outcomes. Let S denote the number of outcomes, r(1), r(2), . . . , r(S) - the

realisations of R and r̂(1), r̂(2), . . . , r̂(S) - the realisations of R̂.

Taking into consideration the identity Tail i
S

(R̂ + ϑ) = Tail i
S

(R̂) + i
S
ϑ, i =

1, 2, . . . , S, the model (3.9) is reformulated as

maximize ϑ

subject to ϑ ∈ R,x ∈ X,
Tail i

S
(Rx) ≥ Tail i

S
(R̂) + i

S
ϑ, i = 1, 2, . . . , S.

(3.10)

This model is referred to as a scaled model because it differs from (3.8) due

to the second term i
S
ϑ which we call a scaled tail.

There is a relation between the Tail function and the Conditional Value-

at-Risk (Rockafellar and Uryasev, 2000). If we consider a loss distribution then

Conditional Value-at-Risk (CVaR) at α level is the conditional expectation of the

largest α · 100% of the outcomes. Then, taking into account that R represents
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a random return and therefore −R represents a loss, we obtain the following

relation:

CVaRα(R) = − 1

α
Tailα(R), 0 < α ≤ 1. (3.11)

As shown by Roman et al. Tail i
S

(Rx) is the optimal value of the following

optimisation problem:

maximize
i

S
ti −

1

S

S∑
j=1

[ti − r(j)Tx]+

subject to ti ∈ R.
(3.12)

This follows from the Conditional Value-at-Risk optimisation formula of Rock-

afellar and Uryasev (2000, 2002) and relation (3.11). The problem 3.12 can be

reformulated as a linear programming problem by introducing additional variables

dij for representing [ti − r(j)Tx]+:

maximize
i

S
ti −

1

S

S∑
j=1

dij

subject to dij ≥ ti − r(j)Tx, j = 1, 2, . . . , S,

dij ∈ R+, j = 1, 2, . . . , S,

ti ∈ R.

(3.13)

Künzi-Bay and Mayer (2006) reformulated the CVaR optimisation problem

of Rockafellar and Uryasev as a two-stage stochastic programming problem with

recourse. Based on this formulation they proposed a cutting-plane algorithm for

CVaR optimisation that is a specialisation of the L-shaped method and is similar

to the the cutting-plane method of Klein Haneveld and van der Vlerk (2006) for

integrated chance constraints. Fábián, Mitra, and Roman (2009) adapted this

approach to obtain the cutting-plane representation of the Tail function:

Tail i
S

(Rx) = min
1

S

∑
j∈Ji

r(j)Tx

such that Ji ⊂ {1, 2, . . . , S}, |Ji| = i.

(3.14)

Using (3.14) the following cutting-plane representation of the problem (3.10)

can be obtained:

maximize ϑ

subject to ϑ ∈ R,x ∈ X,
1

S

∑
j∈Ji

r(j)Tx ≥ τ̂i +
i

S
ϑ, for each Ji ⊂ {1, 2, . . . , S},

|Ji| = i, i = 1, 2, . . . , S,

(3.15)
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where τ̂i = Tail i
S

(R̂).

Formulation using integrated chance constraints

Using the representation (3.7) the second-order stochastic dominance constraint

in the model (3.9) can be expressed as the following set of integrated chance

constraints (ICC):

S∑
j=1

pj[r̂
(i) + ϑ− r(j)Tx]+ ≤

S∑
j=1

pj[r̂
(i) − r̂(j)]+, i = 1, 2, . . . , S. (3.16)

For the case of a discrete finite distribution Klein Haneveld and van der Vlerk

(2006) developed a method for solving problems with integrated chance con-

straints. This method is based on a cutting-plane representation of ICC. The

authors reported computational experiments demonstrating computational effec-

tiveness of their cutting-plane approach.

Rudolf and Ruszczyński (2008) proposed an extension of the cutting-plane

representation of Klein Haneveld and van der Vlerk. Based on it they developed

primal and dual cutting-plane solution algorithms for problems with SSD con-

straints and demonstrated favourable performance characteristics of the primal

method.

Let ν̂i =
S∑
j=1

pj[r̂
(i)− r̂(j)]+ denote the right-hand side of (3.16) which does not

depend on x; then the cutting-plane representation of the i-th constraint takes

the form:

∑
j∈Ji

pj(r̂
(i) + ϑ− r(j)Tx) ≤ ν̂i for each Ji ⊂ {1, 2, . . . , S}. (3.17)

The complete model in this case can be formulated as follows:

maximize ϑ

subject to ϑ ∈ R,x ∈ X,∑
j∈Ji

pj(r̂
(i) + ϑ− r(j)Tx) ≤ ν̂i for each Ji ⊂ {1, 2, . . . , S},

i = 1, 2, . . . S.

(3.18)

The formulation using integrated chance constraints is more general than the

one using tails because the former does not rely on the assumption of equiprobable

outcomes.
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3.5 Solution methods

Consider the formulation (3.15) of the portfolio choice model. It can be trans-

formed into a problem of minimising a piecewise-linear convex function by chang-

ing the scope of optimisation:

minimize ϕ(x)

subject to x ∈ X,
(3.19)

where

ϕ(x) = max

(
−1

i

∑
j∈Ji

r(j)Tx+
S

i
τ̂i

)
,

such that Ji ⊂ {1, 2, . . . , S}, |Ji| = i,

i = 1, 2, . . . , S.

Cutting-plane method

The cutting-plane method constructs a piecewise-linear function which is an outer

approximation of ϕ(x). It evaluates the value of the objective function at the

current iterate starting from x0 and constructs a supporting linear function (cut)

at this point. If the stopping criterion is not reached it generates the next iterate

by minimizing the current approximation function which is the upper cover of

the constructed cuts.

The cut lk(x) at the iteration k is constructed in the following way:

Let xk ∈ X denote the solution of the approximation function at iteration k and

r(jk1 ) ≤ r(jk2 ) ≤ . . . ≤ r(jkS) denote the ordered realisations of Rxk .

Select ik ∈ argmax
1≤i≤S

−1

i

∑
j∈Jk

i

r(j)Txk +
S

i
τ̂i

.

Then lk(x) = − 1

ik

∑
j∈Jk

ik

r(j)Tx+
S

ik
τ̂ik .

Regularisation by the level method

We applied regularisation by the level method of Lemaréchal, Nemirovskii, and

Nesterov (1995) to the above cutting-plane method. The regularisation methods

are discussed in more detail in Chapter 4. Its main idea is that the next iterate is

obtained by projecting the current iterate on the level set of the linear approxi-

mation of the objective function. This implies that at each iteration an additional
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quadratic programming problem has to be solved to obtain the projection. The

regularised method often results in faster convergence both in terms of time and

the number of iterations.

3.6 Computational study

In this computational study the enhanced model (3.9) is compared to the orig-

inal model of Roman, Darby-Dowman, and Mitra both from the modelling and

computational perspectives. Also the effect of regularisation by the level method

on the number of iterations required to reach the given optimality tolerance is

investigated and the results of experiments with an alternative formulation using

ICC are reported.

Test problems

Scenarios for the test problems are generated using geometric Brownian motion,

which is a standard method in finance for modelling asset prices (Ross, 2002).

Parameters for scenario generation are derived from a data set of 132 historical

monthly returns of 76 stocks (all the stocks that belonged to the FTSE 100 index

during the period January 1993 - December 2003).

For the reference return R̂, the FTSE 100 index is used. Scenarios for the

FTSE 100 monthly return are generated in the same way (using geometric Brow-

nian motion and historical returns of the index during the period from January

1993 to December 2003).

We use test problems with the number of scenarios ranging from 1000 to 30000.

Every scenario consists of 77 return values: one for each of the 76 available stocks,

and one for the index.

Implementation issues

Both the scaled and original methods are implemented using the AMPL modelling

language (Fourer et al., 2003) and the AMPL Component Object Model (COM)

Library (Sadki, 2005), integrated with a C library. The problems are solved with

FortMP linear and quadratic optimiser developed at Brunel University and NAG

Ltd by Ellison et al. (2008). The architecture of the system is shown in Figure 3.2.

For efficiency reasons the cut generation is implemented in the C programming

language. The constructed cuts are added to the AMPL data at each iteration

and the AMPL translator is controlled through the COM interface.
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Figure 3.2: SSD solver architecture

Although the implementation of the methods is suboptimal and leaves many

possibilities for speed-up, the performance of the methods is reasonably good.

Even the largest problem instances with 30000 scenarios are solved within a

minute on a computer with 1.73 GHz Intel Core Duo CPU and 2 GiB of RAM

running Windows XP.

The methods are terminated when the absolute gap between the lower and

upper bound on the objective function becomes less or equal to the value of

the parameter ε which is set to 10−7 in all the experiments. The level method

parameter is set to 0.5.

We have also implemented the cutting-plane method of Klein Haneveld and

van der Vlerk and applied it to the representation of the enhanced model with

integrated chance constraints of the form (3.16). Observing that the term RTx

is repeated in S constraints we have introduced a second stage variable y to

represent it which results in the following two-stage formulation:

maximize ϑ

subject to ϑ ∈ R,x ∈ X,
E[(r̂(i) + ϑ− y)+] ≤ ν̂i, i = 1, 2, . . . , S,

y = RTx.

(3.20)

This allows us to reduce the number of nonzeros in the constraint matrix.

Using the extensions for representing integrated chance constraints introduced

in the previous chapter the problem (3.20) is expressed in SAMPL as shown in

Listing 3.1.
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Listing 3.1: Portfolio choice model with ICCs in SAMPL

# SETS

set Assets;

scenarioset Scenarios;

# PARAMETERS

probability P{Scenarios} = 1 / card{Scenarios };

random param Returns{Assets , Scenarios };

random param Reference{Scenarios }; # Reference return

param ICCRHS{Scenarios }; # Right hand side of ICC

# SCENARIO TREE

tree T := twostage;

# VARIABLES

var v;

var x{Assets} >= 0;

var y{Scenarios} suffix stage 2;

# OBJECTIVE

maximize obj: v;

# CONSTRAINTS

subject to balance:

sum{a in Assets} x[a] = 1;

subject to link{s in Scenarios }:

y[s] = sum{a in Assets} Returns[a, s] * x[a];

subject to icc{i in Scenarios }:

expectation{s in Scenarios}

(Reference[s] + v less y[s]) <= ICCRHS[i];
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Table 3.1: Iteration counts

Basic cutting-plane Regularised

Scenarios Original Scaled Original Scaled

5,000 60 74 23 39

7,000 84 79 27 45

10,000 73 97 28 45

15,000 91 74 24 39

20,000 120 97 27 45

30,000 92 97 27 48

Analysis of test results

Scale-up properties: Using a cutting-plane method allows us to solve the prob-

lems with tens of thousands of scenarios in a reasonable time (less than minute)

which is not possible to achieve with the model of Roman et al. due to quadratic

number of variables.

First we compare the performance of the basic cutting-plane method with its

regularised counterpart on problems with increasing number of scenarios. The

figures in Table 3.1 show that regularisation by the level method results in signif-

icant reduction in the number of iterations required to reach the given optimality

tolerance ε. It can be also seen that in regularised method the number of itera-

tions grows much slower with increase in the number of scenarios.

In the second set of experiments we compare the return distributions of the

optimal portfolios obtained by solving the original model of Roman, Darby-

Dowman, and Mitra and the scaled model (3.10). We observe that the main

feature of the scaled model is that its return distribution is shifted to the right

of the distribution obtained from the original model indicating overall higher

outcomes.

The first benchmark problem contained 30000 scenarios from the historical

data for the period from January 1993 to December 2003. The histograms for the

return distributions are shown in Figure 3.3. Both return distributions obtained

from the original and scaled model dominate the reference distribution (FTSE

100). But neither of them dominate the second one with respect to the second-

order stochastic dominance.
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Figure 3.3: Dataset Jan 1993 - Dec 2003. Histograms for the return distribu-

tions of the optimal portfolios of SSD based models (”original” and

”scaled”) and for the FTSE100 Index (”reference”).
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Figure 3.4: Dataset Jan 1993 - Dec 2003. Performance functions for the return

distributions of the optimal portfolios of SSD based models (”origi-

nal” and ”scaled”) and for the FTSE100 index (”reference”). Lower

is better.
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Table 3.2: Statistics of the return distributions

Original Scaled Reference

Mean 0.0115 0.0121 0.0035

Median 0.0115 0.0121 0.0034

Std. Deviation 0.0032 0.0032 0.0018

Range 0.0215 0.0233 0.0136

Minimum 0.0023 0.0017 -0.0034

Maximum 0.0238 0.0250 0.0102

The plots of the performance functions F
(2)
R also known as the Outcome-

Risk diagrams (Ogryczak and Ruszczyński, 1999) for each return distribution are

shown in Figure 3.4. The performance function of the return distribution for the

scaled model is generally lower and it may seem that it dominates the one of the

original model. However this is not the case and although it cannot be seen on

the diagram there is a small bin belonging to the histogram for the scaled model

situated at the left of the histogram for the original model in Figure 3.3. So

compared to the scaled model the original one has slightly better worst case at

the cost of lower overall outcomes.

Table 3.2 gives statistics for the return distributions. It shows that the distri-

bution for the scaled model has higher mean value and approximately the same

standard deviation as the one for the original model.

The tests are repeated using the problems with the following scenario sets:

1. 30000 scenarios from the historical data for the period from December 1992

to April 2000. Figure 3.5 depicts the histograms for the return distributions.

The performance functions are plotted in Figure 3.6.

2. 30000 scenarios from the historical data for the period from May 2000 to

September 2007. The histograms for the return distributions are shown in

Figure 3.7 and the performance functions in Figure 3.8.

The results of these experiments are similar to the results of the first one. As

can be seen from the diagrams the return distribution of the optimal portfolio for

the scaled model was shifted to the right and the performance function is mostly

lower except for the small part on the left.
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Figure 3.5: Dataset Dec 1992 - Apr 2000. Histograms for the return distributions

of the optimal portfolios of ”original” and ”scaled” models and for

the FTSE100 index (”reference”).

Taking into account the observed properties of the scaled model we believe

that the investor will prefer it to the original one.

Another computational study that analyses the effectiveness of SSD-based

portfolio selection models is given by Roman, Mitra, and Zverovich (2011).

The test results for the cutting-plane method by Klein Haneveld and van

der Vlerk on the formulation of the enhanced model using integrated chance

constraints are shown in Table 3.3. The Roman numerals in the first column

denote the type of the reference return distribution:

I index,

II unattainable,

III SSD efficient.

With the deterministic equivalent approach it was possible to solve only the

smallest problem instance with 1000 scenarios within the time limit of 5 hours.

Figure 3.9 shows the change in solution time with increase in the number of

scenarios.

The results show that while the cutting-plane algorithm for the ICC formu-

lation of the enhanced model is many times faster than solving corresponding
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Figure 3.6: Dataset Dec 1992 - Apr 2000. Performance functions for the return

distributions of the optimal portfolios of SSD based models (”origi-

nal” and ”scaled”) and for the FTSE100 index (”reference”). Lower

is better.
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Figure 3.7: Dataset May 2000 - Sep 2007. Histograms for the return distributions

of the optimal portfolios of ”original” and ”scaled” models and for

the FTSE100 Index (”reference”).
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Figure 3.8: Dataset May 2000 - Sep 2007. Performance functions for the return

distributions of the optimal portfolios of SSD based models (”origi-

nal” and ”scaled”) and for the FTSE100 Index (”reference”). Lower
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deterministic equivalent problems it is still much less efficient then the cutting-

plane method based on the formulation using the Tail functions. However the

former is more general because it does not rely on the assumption of equiprobable

outcomes.
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Figure 3.9: Performance of the ICC cutting-plane method

Table 3.3: Performance of the ICC cutting-plane method

Scenarios Iters Cuts Time, s DEP Time, s

I 1,000 40 13283 25.59 11880.60

5,000 62 95841 781.68 -

7,000 71 127394 1752.60 -

10,000 71 189596 3119.16 -

II 7,000 29 27596 691.23 -

10,000 31 42544 1493.50 -

15,000 35 59791 3875.88 -

20,000 36 92057 7128.20 -

30,000 38 118872 16767.70 -

III 7,000 3 12368 88.07 -

10,000 3 19294 194.00 -

15,000 3 20038 412.32 -

20,000 3 39873 729.68 -

30,000 3 56398 1628.44 -
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Chapter 4

Solution methods for two-stage

stochastic linear programming

This chapter is devoted to computational methods for solving two-stage stochastic

linear programming problems with recourse. These problems which originate from

the pioneering work of Dantzig (1955), Beale (1955) and Wets (1974) comprise

arguably the most important class of stochastic programming (SP) problems.

As discussed in Chapter 1 two-stage stochastic programming has a wide range

of applications which underlines the importance of having efficient and robust

solution methods for SP problems. Some multistage stochastic programming

problems such as problems with block separable recourse can be reformulated as

two-stage problems (Birge and Louveaux, 1997). Also two-stage solution methods

can be used as a basis for building algorithms for multistage SP problems such

as nested Benders’ decomposition (Louveaux, 1980).

SP problems are known to be computationally challenging. This is mainly due

to computation of a multidimensional integral which is required for evaluation of

the expected recourse function.

We consider the two-stage SP problem set out in (1.2)-(1.3). The objective

function in (1.2) is denoted by f(x):

f(x) = cTx+ E[Q(x, ω)]

We also assume that the vector of random coefficients has a finite discrete

distribution with S realisations (scenarios) ω1, ω2, . . . , ωS and probability P (ωi) =

pi, i = 1, 2, . . . , S.

The structure of this chapter is as follows. In Section 4.1 we describe imple-

mentation and improvements of several established algorithms for solving two-

stage SP problems. This is not intended to be a comprehensive review of SP
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solution algorithms but rather a detailed description of our implementations of

selected methods. First we briefly discuss the deterministic equivalent approach.

Then we consider the L-shaped method of Van Slyke and Wets (1969) and describe

the application of the level method of Lemaréchal et al. (1995) to regularisation

of the expected recourse function. We also consider two more decomposition-

based algorithms, namely regularised decomposition of Ruszczyński (1986) and

the trust region method of Linderoth and Wright (2003). In the numerical study

presented in Section 4.2 we report the results of a series of computational ex-

periments to compare the performance and scale-up properties of these methods

for an extensive set of problems taken from sources considered to be established

benchmarks for testing SP solution methods. Finally we present the results in

the form of performance profiles that are particularly useful in our case since they

provide a visual representation of a large set of test results.

4.1 Solution methods for two-stage SP

Solution of the deterministic equivalent problem

Under the assumption of finite discrete distribution of random parameters a two-

stage linear SP problem can be formulated as a large-scale LP problem with a

lower block angular structure:

minimize cTx + p1q1
Ty1 + . . . + pSqS

TyS

subject to Ax = b,

T1x + W1y1 = h1,
...

. . .
...

TSx + WSyS = hS,

x ∈ Rn1
+ ,

ys ∈ Rn2
+ , s = 1, ..., S.

(4.1)

Problem (4.1) can be solved directly using the simplex method or an interior

point method.

Benders’ decomposition for stochastic programming prob-

lems

The structure of the deterministic equivalent problem enables application of de-

composition methods. In this section we describe a selection of such methods; and
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we refer the readers to Ruszczyński (2003) for a comprehensive overview of the

state-of-the-art decomposition methods. As observed by Dantzig and Madansky

(1961), Dantzig-Wolfe decomposition (Dantzig and Wolfe, 1960) can be applied

directly to the dual of problem (4.1).

Van Slyke and Wets (1969) proposed another decomposition-based algorithm

and called it the L-shaped method. This is a cutting-plane method which is an

application of Benders’ decomposition (Benders, 1962) to the solution of the de-

terministic equivalent problem (4.1). During the iteration k the L-shaped method

solves the current problem of the following form:

minimize cTx+ θ

subject to Ax = b,

Dkx ≥ dk,

Ekx+ θ ≥ ek,
x ∈ Rn1

+ , θ ∈ R.

(4.2)

In (4.2) Dkx ≥ dk are known as the feasibility cuts and Ekx + θ ≥ ek are

known as the optimality cuts.

The L-shaped method iteratively builds approximations of the expected re-

course function Q̃(x) = E[Q(x, ω)] and the feasible region.

The optimality cuts are defined as follows (Birge and Louveaux, 1997):(
S∑
s=1

ps(π
∗
s)
TTs

)
x+ θ ≥

S∑
s=1

ps(π
∗
s)
Ths,

where π∗s is the vector of simplex multipliers associated with an optimal solution

of the recourse problem for scenario s:

minimize qs
Ty

subject to Wy = hs − Tsx∗,
y ∈ Rn2

+ ,

where x∗ is an optimal solution of the current problem.

The feasibility cuts are defined as follows:(
(σ∗s)

TTs
)
x ≥ (σ∗s)

Ths,

where σ∗s is the vector of simplex multipliers associated with an optimal solution

of the following problem for scenario s for which the recourse problem is infeasible:

minimize 1T (u+ v)

subject to Wy + I(u− v) = hs − Tsx∗,
y ∈ Rn2

+ ,u,v ∈ Rm2
+ ,
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Algorithm 1: Scenario clustering

s← 0, i← 1

while s < S do

Si ←
⌈
imax

(
S

d1/r − 0.5e
, 1

)
− s− 0.5

⌉
s← s+ Si

i← i+ 1

end while

where 1 = (1, 1, . . . , 1) and I is the identity matrix of an appropriate size.

Birge and Louveaux (1988) proposed a multicut version of the algorithm.

Unlike the original L-shaped method in the multicut version S optimality cuts

are added at each iteration where all second-stage subproblems are feasible and

instead of a single additional variable θ one such variable per scenario is used.

We consider a more general version of the multicut L-shaped method, in

particular used by Linderoth and Wright (2003), where scenarios are divided into

C clusters of sizes S1, S2, . . . , SC . The current problem at iteration k is

minimize cTx+
C∑
j=1

θj

subject to Ax = b,

Dkx ≥ dk,
Ek
j x+ θj1 ≥ ekj , j = 1, 2, . . . , C,

x ∈ Rn1
+ ,θ ∈ RC ,

(4.3)

where Dkx ≥ dk are the feasibility cuts, Ek
j x + θj1 ≥ ekj are the optimality

cuts.

The computational results reported by Gassmann (1990) and Birge and Lou-

veaux (1988) suggest that the multicut method (with the cluster size of 1) requires

in general less iterations to converge than the L-shaped method with aggregated

cuts. However the size of the current problem remains smaller in the latter which

can result in better overall solution time for problems with large number of sce-

narios.

To avoid the need of specifying the size of each cluster we provide a simple

way of dividing scenarios into clusters of approximately the same size using Al-

gorithm 1. This algorithm takes an input parameter 0 < r ≤ 1 which denotes

the cluster size relative to the number of scenarios. For a special case of r = 0

we assume Si = 1, i = 1, 2, . . . , C.

Since all of the decomposition methods considered in this chapter are to some
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Algorithm 2: Generic L-shaped method

choose iteration limit kmax ∈ Z+

choose relative stopping tolerance ε ∈ R+

solve the expected value problem to get a solution x0 (initial iterate)

k ← 0, f ∗ ←∞
initialise()

while k < kmax do

solve the recourse problems (1.3) with x = xk and compute f(xk)

if all recourse problems are feasible then

add C optimality cuts

if f(xk) < f ∗ then

f ∗ ← f(xk)

x∗ ← xk

end if

else

add a feasibility cut

end if

get-next-iterate()

k ← k + 1

end while

Here initialise and get-next-iterate are procedures to be defined by specific

methods.

extent based on the L-shaped algorithm and therefore have much in common we

do not implement them separately. Instead we implement a generic L-shaped

algorithm that is extensible through a set of procedures that can be redefined.

This is similar to the way some branch and cut frameworks provide a single

implementation of the base method which can be extended with user-defined

cuts and heuristics. In particular this approach is used in CPLEX (IBM Corp.,

2009b) and CBC, a branch and cut solver from the COIN-OR repository (Lougee-

Heimer, 2003).

The pseudo-code for this generic L-shaped method is given in Algorithm 2.

It can be used to implement various L-shaped based methods such as regularised

decomposition. The extensibility is achieved because we are able to redefine the

following procedures in alternative (L-shaped) decomposition methods:

• initialise: Perform method-specific initialisation
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• get-next-iterate: Compute the next iterate

We assume that these procedures have access to all the variables and parameters

in Algorithm 2 and initialise can introduce its own variables accessible by get-

next-iterate.

The following algorithms are implemented based on this generic framework:

• The L-shaped method

• The multicut L-shaped algorithm

• L-shaped algorithm with regularisation by the level method

• Trust region method based on l∞ norm

• Regularised decomposition

When the relative cluster size r = 1, which is the default, there is only one

cluster of size S resulting in the original L-shaped method of Van Slyke and Wets

(1969). r = 0 results in the multicut version (Birge and Louveaux, 1988) with

each cluster consisting of a single scenario. Intermediate values are also possible,

for example if S = 7 and r = 1
3
, then scenarios will be divided into 3 clusters of

sizes 2, 3 and 2.

Algorithm 3: Pseudo-code of the initialise procedure for the L-shaped method

f 0 ← −∞

Algorithm 4: Pseudo-code of the get-next-iterate procedure for the L-shaped

method

if f ∗ − fk ≤ ε|f ∗| then

stop

end if

solve the current problem (4.3) to get an optimal solution (xk+1,θk+1) and the

optimal objective value fk+1; xk+1 is the next iterate

if f ∗ − fk+1 ≤ ε|f ∗| then

stop

end if

To get the classic L-shaped method the initialise and get-next-iterate

procedures are defined as shown in Algorithms 3 and 4 respectively. The ini-

tialise procedure is trivial because most of the initialisation is performed in the
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base method. The second check of optimality condition in Algorithm 4 ensures

that the recourse problems are not solved unnecessarily when the optimality gap

becomes acceptable due to increase in the lower bound.

L-shaped method with regularisation by the level method

One of the drawbacks of the L-shaped method is that the values of the first-stage

variables may change significantly from iteration to iteration with minor, or even

zero, change in the value of the objective function. This effect is due to the linear

approximation of the expected recourse function.

Several methods have been proposed that address the above problem. Some

of these methods in addition to the sequence of iterates maintain a sequence of

stability centres and select the next iterate in a trust region around the current

stability centre or use quadratic approximation instead of linear. The methods

that use the latter approach include the proximal point algorithm of Rockafellar

(1976) and bundle methods of Lemaréchal (1978) and Kiwiel (1985).

The level method of Lemaréchal, Nemirovskii, and Nesterov (1995) is an algo-

rithm for nonsmooth convex optimisation. An inexact version of the level method

by Fábián (2000) was applied to the solution of stochastic programming problems

in the level decomposition method (Fábián and Szőke, 2007).

We propose a regularisation approach (Zverovich et al., 2010) based on the

original level method of Lemaréchal, Nemirovskii, and Nesterov. The main differ-

ence of the proposed method from the unregularised L-shaped method is the way

the next iterate is selected. Instead of using the solution of the current problem

as the next iterate, a projection of the previous iterate on the level set of the

current approximation of the objective function is used. Level set is defined as

follows:

X̂ =

{
x ∈ X : cTx+

C∑
j=1

θj ≤ (1− λ)fk + λf ∗

}
, (4.4)

where X is a feasible region of problem (4.3), fk is the optimal objective value

of a piecewise-linear convex function which is an outer approximation of the real

objective function at iteration k defined by the current set of cuts, f ∗ is the upper

bound (the best objective value found so far) and 0 < λ < 1 is a parameter.

Computing the projection requires solution of an additional quadratic pro-

gramming problem at each iteration. As will be shown in Chapter 4.2 despite

increased amount of computation per iteration the overall solution time is often

reduced when the level regularisation is used due to substantial reduction in the
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number of iterations and thus second-stage value function evaluations.

The pseudo-code of the initialise and get-next-iterate procedures for

the L-shaped method regularised by the level method is given in Algorithms 5

and 6 respectively.

Algorithm 5: Pseudo-code of the initialise procedure for the L-shaped algo-

rithm with regularisation by the level method

choose λ ∈ (0, 1)

f 0 ← −∞

Algorithm 6: Pseudo-code of the get-next-iterate procedure for the L-shaped

algorithm with regularisation by the level method

if f ∗ − fk ≤ ε|f ∗| then

stop

end if

solve the current problem (4.3) to get an optimal solution (x′,θ′) and the

optimal objective value fk+1.

if f ∗ − fk+1 ≤ ε|f ∗| then

stop

end if

solve the projection problem:

minimize ‖x− x′‖2

subject to cTx+
C∑
j=1

θj ≤ (1− λ)fk+1 + λf ∗

Ax = b,

Dkx ≥ dk,
Ek
j x+ θj1 ≥ ekj , j = 1, 2, . . . , C,

x ∈ Rn1
+ ,θ ∈ RC ,

(4.5)

let (xk+1,θk+1) be an optimal solution of the projection problem; then xk+1 is

the next iterate

The following problem is used to illustrate the L-shaped method and its reg-

ularised counterpart.
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Figure 4.1: Illustration of the initial iterations of the L-shaped method when

solving problem (4.6)
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x0 x1

l

u

x

Q̃(x)

x1x2
l

u

Figure 4.2: Illustration of the initial iterations of the L-shaped method with reg-

ularisation by the level method when solving problem (4.6)
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minimize
3∑
i=1

piq(x, ξi)

subject to x ≤ 5,

(4.6)

where

q(x, ξ) =

ξ − x, if x ≤ ξ

x− ξ, if x > ξ

and ξ takes on the values 1, 2, and 4, each with probability 1/3.

Q̃(x) =
3∑
i=1

piq(x, ξi) is the expected recourse function.

The initial iterations of the L-shaped method are shown in Figure 4.1. It

is clearly seen that the initial iterations are inefficient due to jumps around the

feasibility region.



69

On the other hand the regularised method which is illustrated in Figure 4.2

is less affected by this issue and makes faster progress towards optimality. This

is confirmed by the computational results in Section 4.2.

Trust region method based on the infinity norm

Trust region methods construct a sequence of stability centres and select the next

iterate from the trust region around the current stability centre. In general a trust

region is defined as follows:

‖x− x̂‖ ≤ ∆, (4.7)

where x̂ is the current stability centre (reference point) and ∆ is the radius

of a trust region.

Different methods can be obtained by using different norms in (4.7). Also

various strategies of adapting the trust region radius ∆ can be employed. We

implemented the trust region method of Linderoth and Wright (2003) which is

based on the infinity norm (l∞). This method operates on the following current

problem with additional bounds that define a hyper-rectangular trust region:

minimize cTx+
C∑
j=1

θj

subject to Ax = b,

Dkx ≥ dk,
Ek
j x+ θj1 ≥ ekj , j = 1, 2, . . . , C,

x ∈ Rn1
+ ,θ ∈ RC ,

x̂−∆ ≤ x ≤ x̂+ ∆.

(4.8)

The advantage of this method is that the current problem (4.8) remains linear.

Algorithms 7 and 8 show the pseudo-code of the procedures for the l∞ trust

region method of Linderoth and Wright.

Algorithm 7: Pseudo-code of the initialise procedure for the l∞ trust region

method

choose ξ ∈ (0, 1/2) and maximum trust region radius ∆hi ∈ [1,∞)

choose initial radius ∆ ∈ [1,∆hi]

counter ← 0

f̂ ←∞
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Algorithm 8: Pseudo-code of the get-next-iterate procedure for the l∞ trust

region method

if f̂ <∞ then

if f̂ − f(xk) ≥ ξ(f̂ − fk) then

if f̂ − f(xk) ≥ 0.5(f̂ − fk) and ‖xk − x̂‖∞ = ∆ then

increase the radius:

∆← min(2∆,∆hi)

end if

set a reference point:

x̂← xk

f̂ ← f(x̂)

counter ← 0

else

ρ← −min(1,∆)(f̂ − f(xk))/(f̂ − fk)
if ρ > 0 then

counter ← counter + 1

end if

if ρ > 3 or (counter ≥ 3 and ρ ∈ (1, 3]) then

decrease the radius:

∆← ∆/min(ρ, 4)

counter ← 0

end if

end if

else

set a new reference point:

x̂← xk

f̂ ← f(x̂)

end if

solve the current problem (4.8)

let (xk+1,θk+1) be an optimal solution of the problem (4.8) and fk+1 be its

optimal value

if |f̂ − fk+1| ≤ ε|f̂ | then

stop

end if



71

Regularised decomposition

Regularised decomposition (RD) proposed by Ruszczyński (1986) is an algorithm

for minimisation of a sum of piecewise linear convex functions over a convex poly-

hedron. This method operates on a multicut version of the current problem (4.9)

with an additional quadratic term that penalizes deviation from the current sta-

bility centre. RD also employs an effective cut reduction strategy to eliminate

inactive cuts and therefore keep the size of the current problem manageable even

for large number of scenarios.

We implemented deletion of inactive cuts and dynamic adaptation of the

penalty parameter σ as described by Ruszczyński and Świȩtanowski (1997). Algo-

rithms 9 and 10 give the pseudo-code of the initialise and get-next-iterate

procedures for regularised decomposition as implemented in our generic frame-

work.

Algorithm 9: Pseudo-code of the initialise procedure for the regularised decom-

position method

x̂← x0

f 0 ←∞
choose σ and γ

Implementation issues

Preliminary experiments showed that keeping all the cuts in regularised decompo-

sition, while resulting in a smaller number of iterations, increases overall solution

time due to current problem becoming much more difficult to solve. At the same

time the trust region method based on l∞ norm is exposed to this issue to a less

extent and therefore no cut deletion was done.

The relative stopping tolerance ε = 10−5 was used for the L-shaped method

with and without regularisation by the level method. The stopping criteria in the

trust region algorithm and regularised decomposition are different because these

methods do not provide global lower bound. Therefore ε was set to a lower value

of 10−6 for the latter methods.

To speed up the solution of multiple second stage subproblems we used warm

start facilities of the underlying LP solver.
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Algorithm 10: Pseudo-code of the get-next-iterate procedure for the regu-

larised decomposition method

if k = 0 or |f(xk)− fk| ≤ ε|f(xk)| then

set a new reference point:

x̂← xk

f̂ ← f(x̂)

end if

if f(xk) <∞ then

if f(xk) > γf̂ + (1− γ)fk then

σ ← σ/2

else if f(xk) < (1− γ)f̂ + γfk then

σ ← 2σ

end if

end if

solve the current problem with an additional quadratic term in the objective:

minimize cTx+
C∑
j=1

θj +
1

2σ
‖x− x̂‖2

subject to Ax = b,

Dkx ≥ dk,
Ek
j x+ θj1 ≥ ekj , j = 1, 2, . . . , C,

x ∈ Rn1
+ ,θ ∈ RC ,

(4.9)

let (xk+1,θk+1) be an optimal solution of the problem (4.9) and

fk+1 = cTxk+1 +
C∑
j=1

θk+1
j

if |f̂ − fk+1| ≤ ε|f̂ | then

stop

end if

delete constraints that have corresponding dual variables zero in the solution

of (4.9), keeping the last C added constraints intact
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4.2 Numerical study

Experimental setup

The computational experiments are performed on a Linux machine with 2.4 GHz

Intel CORE i5 M520 CPU and 6 GiB of RAM. Deterministic equivalent problems

are solved with CPLEX 12.1 dual simplex and barrier optimisers. Crossover to a

basic solution is disabled for the barrier optimiser and the number of threads is

limited to 1. For other CPLEX options the default values are used.

The times are reported in seconds with the times of reading input files not

included. For simplex and IPM the times of constructing deterministic equivalent

problems are included though these times only amount to small fractions of the

total. CPLEX linear and quadratic programming solver is used to solve the

current problems and subproblems in the decomposition methods. All the test

problems are presented in SMPS format introduced by Birge et al. (1987).

All solution methods considered in the current study are implemented within

the FortSP stochastic solver system (Ellison et al., 2010) which includes the exten-

sible algorithmic framework for creating decomposition-based methods described

in the previous section.

We consider the following methods:

• Solution of the DEP with the simplex method (DEP - Simplex),

• Solution of the DEP with IPM (DEP - IPM),

• Benders’ decomposition for two stage SP problems (Benders) known as the

L-shaped method,

• Benders’ decomposition with regularisation by the level method (Level),

• the trust region method based on l∞ norm (TR),

• regularized decomposition (RD).

The short names in parentheses are used to refer to these methods in the

tables and figures.

The first-stage solution of the expected value problem is taken as a starting

point for the decomposition methods. The values of the parameters are specified

below.

• Benders decomposition with regularisation by the level method:

λ = 0.5,
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Table 4.1: Sources of test problems

Source Reference Comments

1. POSTS

collection

Holmes (1995) Two-stage SP problems from the

(PO)rtable (S)tochastic program-

ming (T)est (S)et (POSTS)

2. Slptestset

collection

Ariyawansa and Felt

(2004)

Two-stage problems from the col-

lection of stochastic LP test prob-

lems

3. Random

problems

Kall and Mayer

(1998)

Artificial test problems generated

with pseudo random stochastic

LP problem generator GENSLP

4. SAMPL

problems

König et al. (2007) Problems instantiated from the

SAPHIR gas portfolio planning

model formulated in Stochastic

AMPL (SAMPL)

• Regularised decomposition:

σ = 1, γ = 0.9.

• Trust region method based on l∞ norm:

∆ = 1 (initial), ∆hi = 103 (except for the saphir problems where ∆hi = 109),

ξ = 10−4.

Data sets

We consider test problems which are drawn from four different sources described

in Table 4.1. Table 4.2 gives the dimensions of these problems.

Most of the benchmark problems have stochasticity only in the right-hand

side (RHS). A notable exception is the SAPHIR family of problems which has

random elements both in the RHS and the constraint matrix.

Table 4.2: Dimensions of SP test problems

Stage 1 Stage 2 Deterministic Equivalent

Name Scen Rows Cols Rows Cols Rows Cols Nonzeros

fxm
6 92 114 238 343 1520 2172 12139

16 92 114 238 343 3900 5602 31239
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Dimensions of test problems (continued)

Stage 1 Stage 2 Deterministic Equivalent

Name Scen Rows Cols Rows Cols Rows Cols Nonzeros

fxmev 1 92 114 238 343 330 457 2589

pltexpa
6 62 188 104 272 686 1820 3703

16 62 188 104 272 1726 4540 9233

stormg2

8 185 121 528 1259 4409 10193 27424

27 185 121 528 1259 14441 34114 90903

125 185 121 528 1259 66185 157496 418321

1000 185 121 528 1259 528185 1259121 3341696

airl-first 25 2 4 6 8 152 204 604

airl-second 25 2 4 6 8 152 204 604

airl-randgen 676 2 4 6 8 4058 5412 16228

assets
100 5 13 5 13 505 1313 2621

37500 5 13 5 13 187505 487513 975021

4node

1 14 52 74 186 88 238 756

2 14 52 74 186 162 424 1224

4 14 52 74 186 310 796 2160

8 14 52 74 186 606 1540 4032

16 14 52 74 186 1198 3028 7776

32 14 52 74 186 2382 6004 15264

64 14 52 74 186 4750 11956 30240

128 14 52 74 186 9486 23860 60192

256 14 52 74 186 18958 47668 120096

512 14 52 74 186 37902 95284 239904

1024 14 52 74 186 75790 190516 479520

2048 14 52 74 186 151566 380980 958752

4096 14 52 74 186 303118 761908 1917216

8192 14 52 74 186 606222 1523764 3834144

16384 14 52 74 186 1212430 3047476 7668000

32768 14 52 74 186 2424846 6094900 15335712
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Dimensions of test problems (continued)

Stage 1 Stage 2 Deterministic Equivalent

Name Scen Rows Cols Rows Cols Rows Cols Nonzeros

4node-base

1 16 52 74 186 90 238 772

2 16 52 74 186 164 424 1240

4 16 52 74 186 312 796 2176

8 16 52 74 186 608 1540 4048

16 16 52 74 186 1200 3028 7792

32 16 52 74 186 2384 6004 15280

64 16 52 74 186 4752 11956 30256

128 16 52 74 186 9488 23860 60208

256 16 52 74 186 18960 47668 120112

512 16 52 74 186 37904 95284 239920

1024 16 52 74 186 75792 190516 479536

2048 16 52 74 186 151568 380980 958768

4096 16 52 74 186 303120 761908 1917232

8192 16 52 74 186 606224 1523764 3834160

16384 16 52 74 186 1212432 3047476 7668016

32768 16 52 74 186 2424848 6094900 15335728

4node-old 32 14 52 74 186 2382 6004 15264

chem 2 38 39 46 41 130 121 289

chem-base 2 38 39 40 41 118 121 277

lands 3 2 4 7 12 23 40 92

lands-blocks 3 2 4 7 12 23 40 92

env-aggr 5 48 49 48 49 288 294 876

env-first 5 48 49 48 49 288 294 876

env-loose 5 48 49 48 49 288 294 876

env

15 48 49 48 49 768 784 2356

1200 48 49 48 49 57648 58849 177736

1875 48 49 48 49 90048 91924 277636

3780 48 49 48 49 181488 185269 559576

5292 48 49 48 49 254064 259357 783352

8232 48 49 48 49 395184 403417 1218472

32928 48 49 48 49 1580592 1613521 4873480

env-diss-aggr 5 48 49 48 49 288 294 876

env-diss-first 5 48 49 48 49 288 294 876

env-diss-loose 5 48 49 48 49 288 294 876
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Dimensions of test problems (continued)

Stage 1 Stage 2 Deterministic Equivalent

Name Scen Rows Cols Rows Cols Rows Cols Nonzeros

env-diss

15 48 49 48 49 768 784 2356

1200 48 49 48 49 57648 58849 177736

1875 48 49 48 49 90048 91924 277636

3780 48 49 48 49 181488 185269 559576

5292 48 49 48 49 254064 259357 783352

8232 48 49 48 49 395184 403417 1218472

32928 48 49 48 49 1580592 1613521 4873480

phone1 1 1 8 23 85 24 93 309

phone 32768 1 8 23 85 753665 2785288 9863176

stocfor1 1 15 15 102 96 117 111 447

stocfor2 64 15 15 102 96 6543 6159 26907

rand0

2000 50 100 25 50 50050 100100 754501

4000 50 100 25 50 100050 200100 1508501

6000 50 100 25 50 150050 300100 2262501

8000 50 100 25 50 200050 400100 3016501

10000 50 100 25 50 250050 500100 3770501

rand1

2000 100 200 50 100 100100 200200 3006001

4000 100 200 50 100 200100 400200 6010001

6000 100 200 50 100 300100 600200 9014001

8000 100 200 50 100 400100 800200 12018001

10000 100 200 50 100 500100 1000200 15022001

rand2

2000 150 300 75 150 150150 300300 6758501

4000 150 300 75 150 300150 600300 13512501

6000 150 300 75 150 450150 900300 20266501

8000 150 300 75 150 600150 1200300 27020501

10000 150 300 75 150 750150 1500300 33774501

saphir

50 32 53 8678 3924 433932 196253 1136753

100 32 53 8678 3924 867832 392453 2273403

200 32 53 8678 3924 1735632 784853 4546703

500 32 53 8678 3924 4339032 1962053 11366603

1000 32 53 8678 3924 8678032 3924053 22733103

It should be noted that the problems generated with GENSLP do not possess

any internal structure inherent in real-world problems. However they are still

useful for the purposes of comparing scale-up properties of algorithms.



78

Computational results

The computational results are presented in Tables 4.3 and 4.4. Iter denotes the

number of iterations. For decomposition methods this is the number of master

iterations.

There were multiple solver failures on the saphir problems due to numerical

difficulties. This is probably due to a very wide range of data values which is

inherent in this gas portfolio planning model.

Table 4.3: Performance of DEP solution methods and level-regularised decompo-

sition

DEP - Simplex DEP - IPM Level Optimal

Name Scen Time Iter Time Iter Time Iter Value

fxm
6 0.06 1259 0.05 17 0.15 20 18417.1

16 0.22 3461 0.13 23 0.15 20 18416.8

fxmev 1 0.01 273 0.01 14 0.13 20 18416.8

pltexpa
6 0.01 324 0.03 14 0.02 1 -9.47935

16 0.01 801 0.08 16 0.02 1 -9.66331

stormg2

8 0.08 3649 0.25 28 0.16 20 15535200

27 0.47 12770 2.27 27 0.31 17 15509000

125 5.10 70177 8.85 57 0.93 17 15512100

1000 226.70 753739 137.94 114 6.21 21 15802600

airl-first 25 0.01 162 0.01 9 0.03 17 249102

airl-second 25 0.00 145 0.01 11 0.03 17 269665

airl-randgen 676 0.25 4544 0.05 11 0.22 18 250262

assets
100 0.02 494 0.02 17 0.03 1 -723.839

37500 1046.85 190774 6.37 24 87.55 2 -695.963
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Performance of DEP solution methods and level-regularised decomposition (con-

tinued)

DEP - Simplex DEP - IPM Level Optimal

Name Scen Time Iter Time Iter Time Iter Value

4node

1 0.01 110 0.01 12 0.06 21 413.388

2 0.01 196 0.01 14 0.10 42 414.013

4 0.01 326 0.02 17 0.11 45 416.513

8 0.03 825 0.05 18 0.10 45 418.513

16 0.06 1548 0.11 17 0.15 44 423.013

32 0.16 2948 0.40 15 0.22 51 423.013

64 0.72 7185 0.44 17 0.36 54 423.013

128 2.30 12053 0.50 26 0.47 50 423.013

256 7.69 31745 1.05 30 0.87 48 425.375

512 57.89 57200 2.35 30 2.12 51 429.963

1024 293.19 133318 5.28 32 3.95 53 434.112

2048 1360.60 285017 12.44 36 7.82 49 441.738

4096 t - 32.67 46 9.12 46 446.856

8192 t - 53.82 45 22.68 55 446.856

16384 t - 113.20 46 45.24 52 446.856

32768 t - 257.96 48 127.86 62 446.856

4node-base

1 0.01 111 0.01 11 0.04 16 413.388

2 0.01 196 0.01 14 0.06 29 414.013

4 0.01 421 0.02 14 0.07 30 414.388

8 0.03 887 0.04 15 0.10 35 414.688

16 0.06 1672 0.11 17 0.10 30 414.688

32 0.15 3318 0.40 15 0.16 37 416.6

64 0.49 7745 0.36 13 0.22 33 416.6

128 1.58 17217 0.33 19 0.35 37 416.6

256 4.42 36201 0.81 23 0.53 31 417.162

512 22.44 80941 2.20 29 1.45 37 420.293

1024 141.91 187231 5.21 32 3.33 41 423.05

2048 694.89 337082 11.12 32 6.13 42 423.763

4096 t - 27.03 37 10.60 39 424.753

8192 t - 51.29 40 24.99 48 424.775

16384 t - 177.81 73 47.31 41 424.775

32768 t - 242.91 48 102.29 49 424.775

4node-old 32 0.20 3645 0.49 18 0.09 20 83094.1

chem 2 0.00 29 0.00 11 0.03 15 -13009.2

chem-base 2 0.00 31 0.00 11 0.05 14 -13009.2

lands 3 0.00 21 0.00 9 0.02 10 381.853
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Performance of DEP solution methods and level-regularised decomposition (con-

tinued)

DEP - Simplex DEP - IPM Level Optimal

Name Scen Time Iter Time Iter Time Iter Value

lands-blocks 3 0.00 21 0.00 9 0.02 10 381.853

env-aggr 5 0.01 117 0.01 12 0.04 16 20478.7

env-first 5 0.01 112 0.01 11 0.02 1 19777.4

env-loose 5 0.01 112 0.01 12 0.02 1 19777.4

env

15 0.01 321 0.01 16 0.05 15 22265.3

1200 1.38 23557 1.44 34 1.73 15 22428.9

1875 2.90 36567 2.60 34 2.80 15 22447.1

3780 11.21 73421 7.38 40 5.47 15 22441

5292 20.28 102757 12.19 42 7.67 15 22438.4

8232 62.25 318430 m - 12.58 15 22439.1

32928 934.38 1294480 m - 75.67 15 22439.1

env-diss-aggr 5 0.01 131 0.01 9 0.05 22 15963.9

env-diss-first 5 0.01 122 0.01 9 0.04 12 14794.6

env-diss-loose 5 0.01 122 0.01 9 0.03 5 14794.6

env-diss

15 0.01 357 0.02 13 0.10 35 20773.9

1200 1.96 26158 1.99 50 2.80 35 20808.6

1875 4.41 40776 3.63 53 4.49 36 20809.3

3780 16.94 82363 9.32 57 8.87 36 20794.7

5292 22.37 113894 16.17 66 12.95 38 20788.6

8232 70.90 318192 m - 22.49 41 20799.4

32928 1369.97 1296010 m - 112.46 41 20799.4

phone1 1 0.00 19 0.01 8 0.02 1 36.9

phone 32768 t - 50.91 26 48.23 1 36.9

stocfor1 1 0.00 39 0.01 11 0.03 6 -41132

stocfor2 64 0.12 2067 0.08 17 0.12 9 -39772.4

rand0

2000 373.46 73437 9.41 33 6.10 44 162.146

4000 1603.25 119712 34.28 62 10.06 32 199.032

6000 t - 48.84 60 21.17 51 140.275

8000 t - 56.89 49 28.86 50 170.318

10000 t - 98.51 71 52.31 71 139.129
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Performance of DEP solution methods and level-regularised decomposition (con-

tinued)

DEP - Simplex DEP - IPM Level Optimal

Name Scen Time Iter Time Iter Time Iter Value

rand1

2000 t - 39.97 24 52.70 74 244.159

4000 t - 92.71 28 72.30 59 259.346

6000 t - 158.24 32 103.00 58 297.563

8000 t - 228.68 34 141.81 65 262.451

10000 t - 320.10 39 181.98 63 298.638

rand2

2000 t - 102.61 22 145.22 65 209.151

4000 t - 225.71 24 170.08 42 218.247

6000 t - 400.52 28 369.35 52 239.721

8000 t - 546.98 29 369.01 44 239.158

10000 t - 754.52 32 623.59 52 231.706

saphir

50 269.17 84727 n - 341.86 43 129505000

100 685.50 152866 n - 700.44 46 129058000

200 t - 549.45 167 t - 141473000

500 t - t - 608.48 44 137871000

1000 t - n - 804.11 46 133036000

Table 4.4: Performance of decomposition methods

Benders Level TR RD

Name Scen Time Iter Time Iter Time Iter Time Iter

fxm
6 0.08 25 0.15 20 0.09 22 0.05 5

16 0.09 25 0.15 20 0.11 22 0.07 5

fxmev 1 0.08 25 0.13 20 0.08 22 0.05 5

pltexpa
6 0.02 1 0.02 1 0.02 1 0.03 1

16 0.02 1 0.02 1 0.02 1 0.03 1

stormg2

8 0.14 23 0.16 20 0.08 9 0.10 10

27 0.47 32 0.31 17 0.18 10 0.23 11

125 1.73 34 0.93 17 0.50 8 0.89 12

1000 11.56 41 6.21 21 3.38 6 7.30 11

airl-first 25 0.04 16 0.03 17 0.03 6 0.03 10

airl-second 25 0.02 10 0.03 17 0.02 4 0.03 5

airl-randgen 676 0.22 18 0.22 18 0.22 6 0.29 6
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Performance of decomposition methods (continued)

Benders Level TR RD

Name Scen Time Iter Time Iter Time Iter Time Iter

assets
100 0.02 1 0.03 1 0.03 1 0.02 1

37500 87.68 2 87.55 2 172.23 2 114.38 1

4node

1 0.03 24 0.06 21 0.03 8 0.03 15

2 0.04 38 0.10 42 0.02 16 0.05 29

4 0.04 41 0.11 45 0.03 14 0.05 19

8 0.07 64 0.10 45 0.03 13 0.05 16

16 0.11 67 0.15 44 0.04 12 0.05 13

32 0.23 100 0.22 51 0.05 10 0.07 13

64 0.27 80 0.36 54 0.08 11 0.12 14

128 0.39 74 0.47 50 0.15 11 0.19 14

256 0.95 71 0.87 48 0.20 7 0.29 9

512 3.72 92 2.12 51 0.46 7 0.62 9

1024 5.14 70 3.95 53 0.42 3 1.23 10

2048 11.78 83 7.82 49 1.30 4 1.22 5

4096 18.46 89 9.12 46 2.79 3 2.03 4

8192 46.56 106 22.68 55 9.87 3 6.59 4

16384 99.00 110 45.24 52 38.28 3 27.50 4

32768 194.68 122 127.86 62 299.85 3 222.61 4

4node-base

1 0.03 31 0.04 16 0.03 21 0.03 14

2 0.04 44 0.06 29 0.03 19 0.05 19

4 0.06 58 0.07 30 0.04 20 0.07 34

8 0.05 47 0.10 35 0.04 19 0.08 28

16 0.08 56 0.10 30 0.06 21 0.11 28

32 0.17 63 0.16 37 0.07 13 0.18 22

64 0.23 61 0.22 33 0.17 19 0.30 21

128 0.39 65 0.35 37 0.34 19 0.63 23

256 0.89 66 0.53 31 0.45 11 1.81 26

512 3.27 84 1.45 37 1.84 14 4.98 29

1024 9.57 115 3.33 41 5.53 13 9.17 17

2048 19.72 142 6.13 42 21.82 13 31.08 21

4096 38.51 174 10.60 39 85.68 12 146.50 18

8192 133.45 290 24.99 48 354.05 14 t -

16384 164.07 175 47.31 41 1430.72 13 t -

32768 314.31 191 102.29 49 t - t -

4node-old 32 0.08 30 0.09 20 0.04 7 0.09 10

chem 2 0.04 7 0.03 15 0.03 13 0.04 19

chem-base 2 0.02 6 0.05 14 0.02 13 0.04 22
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Performance of decomposition methods (continued)

Benders Level TR RD

Name Scen Time Iter Time Iter Time Iter Time Iter

lands 3 0.02 8 0.02 10 0.02 5 0.03 17

lands-blocks 3 0.01 8 0.02 10 0.02 5 0.03 17

env-aggr 5 0.02 3 0.04 16 0.02 3 0.03 5

env-first 5 0.02 1 0.02 1 0.02 1 0.02 1

env-loose 5 0.01 1 0.02 1 0.02 1 0.02 1

env

15 0.04 3 0.05 15 0.03 3 0.03 5

1200 0.34 3 1.73 15 0.48 3 0.76 5

1875 0.57 3 2.80 15 0.90 3 1.50 5

3780 1.26 3 5.47 15 2.48 3 3.79 5

5292 1.96 3 7.67 15 4.51 3 5.89 5

8232 3.70 3 12.58 15 10.67 3 12.54 5

32928 39.88 3 75.67 15 211.90 3 212.05 5

env-diss-aggr 5 0.03 9 0.05 22 0.03 9 0.03 17

env-diss-first 5 0.02 14 0.04 12 0.02 4 0.03 4

env-diss-loose 5 0.03 15 0.03 5 0.02 4 0.02 4

env-diss

15 0.05 27 0.10 35 0.05 18 0.07 12

1200 1.13 24 2.80 35 2.25 18 3.45 19

1875 2.50 29 4.49 36 5.52 19 4.52 15

3780 5.04 29 8.87 36 20.23 19 8.98 11

5292 8.14 34 12.95 38 40.39 17 17.90 13

8232 14.21 35 22.49 41 119.88 16 99.19 23

32928 79.52 35 112.46 41 t - t -

phone1 1 0.02 1 0.02 1 0.02 1 0.02 1

phone 32768 48.34 1 48.23 1 73.45 1 73.75 1

stocfor1 1 0.02 6 0.03 6 0.02 2 0.02 2

stocfor2 64 0.10 7 0.12 9 0.18 14 0.23 18

rand0

2000 10.42 80 6.10 44 30.33 9 93.78 16

4000 19.97 69 10.06 32 82.75 8 591.45 14

6000 41.82 108 21.17 51 275.97 9 t -

8000 65.51 127 28.86 50 423.51 9 t -

10000 153.07 230 52.31 71 871.00 10 t -
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Performance of decomposition methods (continued)

Benders Level TR RD

Name Scen Time Iter Time Iter Time Iter Time Iter

rand1

2000 265.14 391 52.70 74 155.81 12 361.54 17

4000 587.22 502 72.30 59 508.18 11 t -

6000 649.58 385 103.00 58 937.74 11 t -

8000 917.24 453 141.81 65 1801.43 9 t -

10000 1160.62 430 181.98 63 t - t -

rand2

2000 1800.00 818 145.22 65 334.36 12 794.31 17

4000 1616.56 414 170.08 42 813.49 11 t -

6000 t - 369.35 52 t - t -

8000 t - 369.01 44 t - t -

10000 t - 623.59 52 t - t -

saphir

50 733.37 128 341.86 43 578.87 110 n -

100 1051.89 123 700.44 46 n - n -

200 t - t - t - n -

500 1109.48 122 608.48 44 1283.97 99 n -

1000 1444.17 124 804.11 46 n - n -

t - time limit, m - insufficient memory, n - numerical difficulties

Comments on scale-up properties and on accuracy

We perform a set of experiments recording the change in the relative gap between

the lower and upper bounds on objective function in the decomposition methods.

The results are shown in Figures 4.3 – 4.6. These diagrams show that level

regularisation provides consistent reduction of the number of iterations needed to

achieve the given precision. There are a few counterexamples, however, such as

the env family of problems.

Figure 4.7 illustrates the scale-up properties of the algorithms in terms of the

change in the solution time with the number of scenarios on the 4node problems.

It shows that Benders’ decomposition with the level regularisation scales well at

some point overtaking the multicut methods.

The computational results given in the previous section are obtained using

the relative stopping tolerance ε = 10−5 for the Benders decomposition with

and without regularisation by the level method, i.e. the method terminated

if (f ∗ − f∗)/(|f∗| + 10−10) ≤ ε, where f∗ and f ∗ are, respectively, lower and

upper bounds on the value of the objective function. The stopping criteria in
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Figure 4.3: Gap between lower and upper bounds for storm-1000 problem

the trust region algorithm and regularised decomposition are different because

these methods do not provide global lower bound. Therefore ε is set to a lower

value of 10−6 with the following exceptions that are made to achieve the desirable

precision:

• env-diss with 8232 scenarios: ε = 10−10 in RD,

• saphir: ε = 10−10 in RD and TR.

For CPLEX barrier optimiser the default complementarity tolerance is used as a

stopping criterion.
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Figure 4.4: Gap between lower and upper bounds for 4node-32768 problem
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Figure 4.5: Gap between lower and upper bounds for rand1-10000 problem
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Figure 4.8: Performance profiles

4.3 Performance profiles

Finally we present the results in the form of performance profiles. The perfor-

mance profile for a solver is defined by Dolan and Moré (2002) as the cumulative

distribution function for a performance metric. We use the ratio of the solution

time versus the best time as the performance metric. Let P and M be the set

of problems and the set of solution methods respectively. We define by tp,m the

time of solving problem p ∈ P with method m ∈ M . For every pair (p,m) we

compute performance ratio

rp,m =
tp,m

min{tp,m|m ∈M}
,

If method m failed to solve problem p the formula above is not defined. In

this case we set rp,m :=∞.

The cumulative distribution function for the performance ratio is defined as

follows:

ρm(τ) =
|{p ∈ P |rp,m ≤ τ}|

|P |
We calculated performance profile of each considered method on the whole set

of test problems. These profiles are shown in Figure 4.8. The value of ρm(τ)

gives the probability that method m solves a problem within a ratio τ of the best

solver. For example according to Figure 4.8 the level method is the first in 25%

of cases and solved 95% of the problems within a ratio 11 of the best time.
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The notable advantages of performance profiles over other approaches to per-

formance comparison are as follows. Firstly, they minimise the influence of a small

subset of problems on the benchmarking process. Secondly, there is no need to

discard solver failures. Thirdly, performance profiles provide a visualisation of

large sets of test results as we have in our case. It should be noted, however,

that we still investigated the failures and the cases of unusual performance. This

resulted, in particular, in the adjustment of the values of ε, ∆hi and ξ for the RD

and TR methods and switching to a 64-bit platform with more RAM which is

crucial for IPM.

As can be seen from Figure 4.8, Benders’ decomposition with regularisation

by the level method is robust, as it successfully solves the largest fraction of test

problems, and efficient as it compares well with the other methods in terms of

performance.
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Chapter 5

Solution methods for two-stage

stochastic integer programming

5.1 Two-stage stochastic integer programming

problem

Two-stage stochastic programming problems with recourse comprise an impor-

tant class of problems which has a wide range of practical applications (Wallace

and Ziemba, 2005). A two-stage SP problem consists of a first-stage (here and

now) decision, followed by a realisation of a random vector and a second-stage

(recourse) decision.

The focus of this chapter is on problems where some or all of the decision

variables are integer. This results in a stochastic integer programming problem

that can be formulated as follows:

minimize cTx+ E[Q(x, ω)]

subject to Ax = b,

x ∈ Zr1+ × Rn1−r1
+ ,

(5.1)

where the n1-dimensional vector x represents a first-stage decision partitioned

into r1 integer and n1 − r1 continuous components, A is a fixed m1 × n1 matrix,

b ∈ Rm1 and c ∈ Rn1 are fixed vectors and Q(x, ω) is the value function of the

recourse problem

minimize q(ω)Ty

subject to T (ω)x+W (ω)y = h(ω),

y ∈ Zr2+ × Rn2−r2
+ .

(5.2)
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In (5.2) the n2-dimensional vector y represents a second-stage decision parti-

tioned into r2 integer and n2− r2 continuous components and ω ∈ Ω represents a

random event. For a given realisation ω, T (ω) is a fixed m2×n1 matrix, W (ω) is a

fixed m2×n2 matrix h(ω) ∈ Rm2 and q(ω) ∈ Rn2 are fixed vectors. We only con-

sider problems with the vector of random parameters (i.e. random components

of T , W , h and q) having a discrete finite distribution.

Let f(x) denote the objective function in (5.1):

f(x) = cTx+ Q̃(x),

where Q̃(x) = E[Q(x, ω)] denotes the expected recourse function.

In this chapter we consider several algorithms for solving stochastic integer

programming (SIP) problems. These methods have different additional assump-

tions such as presence of binary variables in the first stage. These are discussed

later in the sections designated to each algorithm.

If the vector of random parameters has S outcomes (scenarios), that is |Ω| =
S, with probability of ith outcome pi then a SIP problem can be formulated as a

large-scale MIP problem with a special structure

minimize cTx + p1q1
Ty1 + . . . + pSqS

TyS

subject to Ax = b,

T1x + W1y1 = h1,
...

. . .
...

TSx + WSyS = hS,

x ∈ Zr1+ × Rn1−r1
+ ,

ys ∈ Zr2+ × Rn2−r2
+ , s = 1, ..., S.

A general-purpose MIP solver can be applied to the solution of this problem.

Stochastic integer programming problems are well known to be computation-

ally challenging. According to the study of Dyer and Stougie (2006) the com-

plexity of SIP problems is primarily determined by the computation of a multi-

dimensional integral. This occurs during the evaluation of the expected recourse

function. The second difficulty which is less significant from the theoretical point

of view but nevertheless considerable in practice is caused by the integrality re-

strictions. Unlike the continuous case, the expected recourse function in SIP is

non-convex in general and can be discontinuous. The discontinuities appear as

a result of the value function of an integer programming problem being lower

semi-continuous as shown by Blair and Jeroslow (1982). Even if the integrality

restriction is limited to the first stage only and the expected recourse function
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is convex applying decomposition or optimising the DEP requires solving MIP

problems which are NP-hard (Garey and Johnson, 1979).

Despite the aforementioned difficulties there is a practical need in solving

these problems in many application areas such as

• airlift operations scheduling (Midler and Wollmer, 1969),

• batch type chemical plant design (Subrahmanyam et al., 1994),

• telecommunication network planning (Sen et al., 1994),

• cargo transportation scheduling (Mulvey and Ruszczyǹski, 1995),

• semiconductor tool purchase planning (Barahona et al., 2001).

Several more recent examples can be found in Section 5.5 where they are used

as benchmark problems.

In this work we bring together the advantages of heuristics from the area

of deterministic MIP that lead to feasible solutions and therefore upper bounds

quickly with exact solution methods for stochastic integer programming. Such

algorithms that combine heuristics and exact methods have been successful in

the deterministic context (Ahuja et al., 2002; Danna et al., 2005; Fischetti and

Lodi, 2003).

First we introduce the neighbourhood structures into the space of the first-

stage decision variables. This allows us to apply heuristics based on variable

neighbourhood search (Mladenović and Hansen, 1997). In particular, we use

variable neighbourhood decomposition search (Hansen et al., 2001).

We apply variable neighbourhood decomposition search (VNDS) to the solu-

tion of stochastic integer programming problems (Lazić, Mitra, Mladenović, and

Zverovich, 2010) and use the deterministic equivalent approach to solve the in-

termediate SIP and SP problems. We call this method VNDS-SIP. For the most

difficult instances that were not solved to optimality this heuristic is able to find

much better solutions than the DEP solver within the same time limit. Addi-

tional experiments performed in the current study show that despite being less

efficient for proving optimality, VNDS-SIP leads to good solutions (often the best

DEP solutions) quickly.

VNDS-SIP is applicable to SIP problems containing binary variables in the

first stage. The second stage can be either continuous or mixed integer. The

method exploits the information from the solution of the linear relaxation of the

first-stage subproblem to build a sequence of SP and SIP problems which can be
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solved using traditional exact methods, for example the L-shaped method (Van

Slyke and Wets, 1969) for SP considered in Chapter 4. The intermediate SIP

problems are usually easier to solve than the original problem because some of

the binary variables are fixed. Also it is not necessary to solve these problems to

optimality.

Our approach enhances the original VNDS-SIP heuristic by using the integer

L-shaped method of Laporte and Louveaux (1993) to solve the SIP problems

constructed during the optimisation process instead of solving their deterministic

equivalents with a MIP solver. To distinguish between these two methods we

call the first one VNDS-DEP and the second VNDS-ILS. We perform a set of

numerical experiments comparing their performance and include the integer L-

shaped algorithm itself into consideration.

The structure of this chapter is as follows. In Section 5.2 we give a review of

several solution methods for two-stage stochastic integer programming. In partic-

ular we discuss the integer L-shaped method of Laporte and Louveaux (1993), an

enumeration method of Schultz et al. (1998), the decomposition based branch and

bound algorithm of Ahmed and Garcia (2004) and the disjunctive decomposition

algorithm of Sen and Higle (2005). The implementation of the integer L-shaped

method within the existing branch-and-cut framework is described in Section 5.3.

In Section 5.4 we describe two variants of a heuristic method based on variable

neighbourhood decomposition search applied to stochastic integer programming.

In Section 5.5 we present a computational study comparing the two variants of

the heuristic method to the solution of the deterministic equivalent problems with

a state-of-the-art mixed integer programming solver and to the integer L-shaped

method on a range of benchmark problems from the SIPLIB collection. In this

section we also give the performance profiles which provide a summary of the

results in a graphical form.

5.2 Review of alternative solution methods for

two-stage SIP

The integer L-shaped method

In one of the early papers on solution algorithms for stochastic integer program-

ming Wollmer (1980) observed that both continuous stochastic programming

problems and 0-1 MIP problems can be solved with Benders’ decomposition.
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The author proposed an algorithm which combines these two approaches within

an implicit enumeration scheme for solving two-stage SIP problems with binary

first-stage and continuous second-stage variables. He successfully applied this

algorithm to a network investment problem.

Extending the approach of Wollmer, Laporte and Louveaux (1993) described

the integer L-shaped method for solving two-stage SIP problems with complete

recourse. Their method is similar to the L-shaped method of Van Slyke and Wets

(1969) for stochastic linear programming.

The method operates on the current problem based on the first-stage subprob-

lem with added feasibility and optimality cuts. The current problem at iteration

k can be defined as follows:

minimize cTx+ θ

subject to Ax = b,

Dkx ≥ dk,

Ekx+ θ ≥ ek,
x ∈ Rn1

+ , θ ∈ R,

(5.3)

where Dkx ≥ dk are the feasibility cuts and Ekx+ θ ≥ ek are the optimality

cuts.

The main difference of this algorithm from its continuous counterpart is

branching on the first-stage binary variables which results in a branch and cut

procedure. As in the L-shaped method the second-stage subproblems are solved

only during the evaluation of the expected recourse function when computing the

optimality cuts. In this way both decomposition of stages and decomposition of

scenarios are achieved.

The integer L-shaped method is applicable to a wide range of SIP problems

with binary first stage, continuous second stage and complete fixed recourse. A

restricted class of problems with discrete second-stage variables is supported.

Additional assumptions are as follows:

• Expected recourse function is computable given the first-stage solution vec-

tor. This holds in particular when the random parameters have finite dis-

crete distribution.

• Expected recourse function is bounded from below.

Laporte and Louveaux stated that valid feasibility cuts can be taken from the

deterministic context and derive different kinds of optimality cuts. One type of

optimality cuts comes from the original L-shaped method. Also the cuts that
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provide a valid set of optimality cuts in the presence of discrete second-stage

variables are derived.

Finite convergence was proven for the integer L-shaped method in the case of

pure binary first stage.

Another extension of the classical L-shaped method was proposed by Carøe

and Tind (1998) based on the generalised Benders’ decomposition and general

duality theory. They showed that the integer L-shaped method of Laporte and

Louveaux is a special case of their proposed algorithm.

The method of Carøe and Tind applies to two-stage SIP problems with integer

second-stage variables. First stage variables can be continuous or discrete. The

random parameters should have discrete distributions with finite support and the

continuous relaxation of the second-stage subproblem should be dual feasible.

Unlike some other methods for SIP which require complete or relatively com-

plete recourse generalised L-shaped decomposition can handle infeasible second-

stage subproblems.

The underlying concept of the algorithm is the same as the one of the L-shaped

method, that is to use dual information from the second-stage subproblems to

approximate the expected recourse function. However in case of discrete second-

stage variables nonlinear dual price functions have to be considered. It results in

nonlinear feasibility and optimality cuts in the master problems.

Carøe and Tind considered two approaches to solving the second-stage sub-

problems:

1. cutting plane methods,

2. branch and bound.

In the first case the usage of Gomory cutting planes is applied. These cuts

can be transformed by introducing auxiliary variables, representing round-up

operations with integrality restrictions and incorporated into the current problem

as cuts. However this results in a mixed integer problem with a potentially large

number of discrete variables making it computationally unattractive.

In the second case, when the branch and bound technique is applied to solve

the second-stage subproblems, the master problem becomes a disjunctive pro-

gramming problem. Therefore this approach is also computationally difficult.

For both cases the finite convergence is proved, provided that a master prob-

lem can be solved with a finite method.
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Solving SIP problems by enumeration

Schultz et al. (1998) describe an algorithm for solving two-stage SIP problems

with integer variables in the second stage. This algorithm is applicable to prob-

lems with

• continuous first stage,

• complete integer recourse,

• finite discrete distribution of random parameters,

• fixed rational second-stage constraint matrix,

• dual feasible relaxation of the second-stage problem.

First Schultz et al. prove that at least some optimal first-stage solutions

belong to a countable set. It follows from the study of the structural properties

of the expected integer recourse function. Moreover, they show that under mild

conditions this set can be restricted to a finite one. This result is obtained

by considering the intersections of the set of solution candidates and level sets

constructed by solving the continuous relaxations of a SIP problem.

Based on the previous result an enumeration scheme for finding an optimal

solution is proposed.

Addressing the difficulty of solving multiple second-stage MIP problems a

technique based on the Gröbner basis methods from computational algebra is

applied. However using this technique is not inherent in the algorithm and other

MIP solution methods such as branch and bound can be employed instead.

While computing the Gröbner basis is computationally expensive and there-

fore impractical for a single MIP problem it can be efficient for solving a family of

problems which differ only in the right-hand side. Though using this technique is

not essential it justifies the assumption that multiple evaluations of the expected

recourse function are possible. This is taken for granted in some other solution

algorithms for SIP such as the integer L-shaped method.

Schultz et al. also report the results of comparing their enumeration method

with a commercial MIP solver. They show that the former is able to solve more

problems to optimality within the specified limits.

The decomposition based branch and bound algorithm

Ahmed and Garcia (2004) address the problem of dynamic capacity acquisition

and assignment often arising in supply chain applications. They formulate it as
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a two-stage multiperiod SIP problem with mixed-integer first stage, pure binary

second stage and a discrete distribution of random parameters. Special care is

taken to ensure that the formulation has the complete recourse property.

The authors observe that most existing branch and bound approaches to the

solution of stochastic integer programming problems, such as those by Laporte

and Louveaux (1993), Carøe and Tind (1998) and others, guarantee finite termi-

nation only in the case of pure integer first stage. Based on the work of Ahmed

et al. (2004) a decomposition based branch and bound algorithm (DBB) for solv-

ing dynamic capacity acquisition and assignment problems is proposed. This

algorithm guarantees finite termination even if the first stage contains continuous

variables.

The main idea of the DBB algorithm is based on the observation that existing

branch and bound methods for SIP partition the first-stage variable space into

hyperrectangles while the discontinuities may not be orthogonal to the coordi-

nate axes. In the case of continuous first-stage variables, infinite partitioning

of the space may be required. The discontinuities are caused by the fact that

the second-stage value function in SIP is not necessarily convex but only lower

semi-continuous (Blair and Jeroslow, 1982). To address this issue Ahmed et al.

propose a transformation that makes the discontinuities orthogonal to the axes.

It is applied to the general two-stage SIP with mixed-integer first stage and pure

integer second stage. The problem structure imposed by this transformation is

exploited to ensure finiteness of the branch and bound algorithm.

To make the DBB algorithm applicable, the problem should have

• finite discrete distribution of random parameters,

• pure integer second-stage variables,

• non-empty and compact first-stage feasibility set,

• relatively complete fixed recourse,

• integral second-stage constraint matrix for each scenario.

The last requirement can be satisfied by scaling if the matrix elements are rational.

Also there exist extensions to the algorithm for the case when the requirements

of pure integer second stage and fixed recourse do not hold.

Finally Ahmed and Garcia give computational results of comparing their de-

composition based algorithm with the application of a commercial MIP solver

(CPLEX) to the solution of deterministic equivalent problems. They apply both
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methods to randomly generated instances of the dynamic capacity acquisition

and assignment problem. The results suggest that the DBB algorithm compares

favorably to the deterministic equivalent approach and the decomposition based

algorithm is much less sensitive to the increase in the number of scenarios.

The disjunctive decomposition algorithm

Sen and Higle (2005) consider two-stage SIP problems with focus on binary vari-

ables in the second stage and propose a decomposition algorithm for such prob-

lems. They call it disjunctive decomposition (D2) due to the fact that it is to a

large extent based on the theory of disjunctive programming (Blair and Jeroslow,

1978; Balas, 1979; Sherali and Shetty, 1980). The key feature of this algorithm is

iterative convexification of the second-stage subproblems. Though these convex-

ifications depend on scenario they may have common structure that is exploited

in the algorithm.

The requirements imposed on the problems are as follows:

• finite discrete distribution of random parameters,

• pure binary first-stage variables,

• mixed binary second-stage variables,

• compact feasibility set of the first-stage relaxation,

• relatively complete fixed recourse if the first-stage integrality restrictions

are not taken into account.

One of the original requirements is that the first-stage feasibility set has to be

contained in a unit hypercube; this can be achieved by the appropriate scaling.

Based on the theory of valid inequalities from disjunctive programming Sen

and Higle formulate and prove a common cut coefficients (C3) theorem. This

theorem provides the connection between the valid inequalities for the second-

stage subproblems under different scenarios given that the SIP problem has fixed

recourse. It is related to the earlier work of Carøe (1998) where similar results

were obtained in the context of deterministic equivalents of SIP problems.

From the C3 theorem it follows that the lower bound approximations of the

second-stage value functions for different scenarios and first-stage solution vectors

differ only in the right-hand sides. However these approximations are not convex

in general and Sen and Higle develop convexifications to make a decomposition

algorithm such as the L-shaped method of Van Slyke and Wets (1969) applicable.
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On the basis of the results of the common cut coefficients theorem the dis-

junctive decomposition algorithm is developed. It consists of iterative invocation

of two steps:

1. Solution of the master problem.

2. Refinement of the convex approximations of the second-stage subproblems

and update to the representation of the recourse function.

5.3 A computational framework for the integer

L-shaped method

In this section we describe an implementation of the integer L-shaped method

within an existing branch and cut framework for mixed integer programming.

MIP infrastructure enables reuse of existing heuristics and cuts for the solution

of the current problem (5.3). Unlike Laporte and Louveaux (1993) we do not

simulate the algorithm by restarting branch and bound after a new iterate is

found. Instead the branch and bound process is continued with special care

taken to ensure proper fathoming rules which are discussed below. We use the

implementation of the integer L-shaped method to improve the performance of the

VNDS-SIP heuristic and also compare it to other methods in a computational

study in Section 5.5. The algorithm shows good performance on the class of

problems where it is applicable.

Unlike usual fathoming rules for MIP, the strategy used in the integer L-

shaped method is such that the node is not always fathomed when the integrality

restrictions hold. This is due to the addition of the optimality cuts which can

cut off an optimal solution of the current problem. We have taken this strategy

into account when implementing the algorithm based on existing branch and cut

infrastructure.

In our implementation we use continuous L-shaped optimality cuts. Since

these do not provide a valid finite set of optimality cuts in general (Laporte and

Louveaux, 1993), we consider only the case of continuous second stage.

These aggregated optimality cuts are defined as follows (Birge and Louveaux,

1997): (
S∑
s=1

ps(π
∗
s)
TTs

)
x+ θ ≥

S∑
s=1

ps(π
∗
s)
Ths,

where π∗s is the vector of simplex multipliers associated with an optimal solution

of the (continuous) recourse problem corresponding to scenario s:
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Figure 5.1: Flowchart of the integer L-shaped method within a branch and cut

framework

minimize qs
Ty

subject to Wy = hs − Tsx∗,
y ∈ Rn2

+ ,

where x∗ is an optimal solution of the current problem.

We also implemented the L-shaped feasibility cuts that are defined as follows:(
(σ∗s)

TTs
)
x ≥ (σ∗s)

Ths,

where σ∗s is the vector of simplex multipliers associated with an optimal solution

of the following problem for scenario s where the recourse problem is infeasible:

minimize 1T (u+ v)

subject to Wy + I(u− v) = hs − Tsx∗,
y ∈ Rn2

+ ,u,v ∈ Rm2
+ ,

where 1 = (1, 1, . . . , 1) and I is the identity matrix of an appropriate size.

A simplified flowchart of the method is shown in Figure 5.1. In this flowchart

U denotes the best upper bound on the value of the objective function initially

set to ∞.

To implement the integer L-shaped method we use the branch-and-cut infras-

tructure of the CPLEX MIP solver (IBM Corp., 2009b) extended through the

following callbacks:

• Incumbent callback is called when an integer solution has been found but

before this solution replaces the incumbent. Here the recourse problem is
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solved for each scenario, the optimality or feasibility cut is constructed and

stored.

• Cut callback is called for every node. Here the stored cut if any is added

to the problem.

• Branch callback which ensures that the node is not fathomed if there is a

pending cut which has not been added to the problem yet.

5.4 Application of variable neighbourhood de-

composition search to SIP

Variable neighbourhood search (Hansen and Mladenović, 2001) is a metaheuristic

which combines local search with a systematic exploration of the neighbourhoods

of the incumbent solution to find better solutions. It has been successfully applied

in various areas (Brimberg and Mladenović, 1996; Aouchiche et al., 2006; Dražić

et al., 2008).

Variable neighbourhood decomposition search (VNDS) is a two-level variant

of the variable neighbourhood search based on decomposition of the problem

(Hansen et al., 2001). It was first applied to the 0-1 mixed integer programming

by Lazić., Hanafi, Mladenović, and Urošević (2010) and further extended for 0-1

MIP feasibility by Lazić, Hanafi, and Mladenović (2010).

We apply VNDS to the solution of SIP problems and propose a heuristic

method for solving this class of problems. We investigate two variants of the

VNDS method for stochastic integer programming; these variants use different

underlying SIP algorithms for optimising the intermediate problems constructed

during the solution process.

Consider the case of mixed binary first stage (x ∈ {0, 1}r1 × Rn1−r1
+ ).

To describe the method we first define the distance between two integer feasi-

ble first-stage solutions. Let x′ and x′′ be two arbitrary integer feasible solutions

of the first-stage subproblem in (5.1). Then the distance between x′ and x′′ is

defined as

∆(x′,x′′) =

r1∑
j=1

|x′j − x′′j |. (5.4)

If J ⊆ {1, 2, . . . , r1} then the partial distance between x′ and x′′, relative to

J , is defined as

∆(J,x′,x′′) =
∑
j∈J

|x′j − x′′j |, (5.5)
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or, equivalently,

∆(J,x′,x′′) =
∑
j∈J

x′j(1− x′′j ) + x′′j (1− x′j). (5.6)

Based on the above definition of the distance we introduce the neighbourhood

structures in the solution space. Let Nk, 1 ≤ kmin ≤ k ≤ kmax ≤ n1, denote the

kth neighbourhood of the solution x′, x′ ∈ X. The neighbourhood is defined as

a set of all solutions lying within the distance k of x′:

Nk(x′) = {x′′ ∈ X|∆(x′,x′′) ≤ k}, (5.7)

where X denotes the feasibility region of the first-stage decision variables

X = {x|Ax = b,x ∈ {0, 1}r1 × Rn1−r1
+ }.

Having defined the neighbourhood structures (5.7) it is now possible to use

various heuristics based on the variable neighbourhood search principle (Mlade-

nović and Hansen, 1997). In particular we apply the variable neighbourhood

decomposition search (Hansen et al., 2001) to the solution of a two-stage SIP

problem (5.1)-(5.2).

Numerical experiments have shown the effectiveness of VNDS in finding high

quality solutions of difficult MIP test problems. This is the rationale for choosing

VNDS among other heuristic methods such as local branching (LB) of Fischetti

and Lodi (2003) and relaxation induced neighbourhood search (RINS) of Danna

et al. (2005) as well as other variants of VNS metaheuristic such as variable

neighbourhood search branching (VNSB) of Hansen et al. (2006). Lazić., Hanafi,

Mladenović, and Urošević (2010) performed an extensive comparison of these

methods showing favourable performance of VNDS and managed to improve the

best known solutions for 8 instances of well-known MIP benchmark problems

using a combination of VNDS and an exact solution method.

An important feature of the algorithm is that it operates on the first-stage

variables only which means that the distance constraints which are added do not

destroy scenario independence. Therefore not only the deterministic equivalent

approach can be used to solve the intermediate problems but also decomposition

methods. We use this feature later to devise two variants of the heuristic based

on different underlying SIP solution methods.

The pseudo code for the VNDS-SIP method is given in Algorithm 11. Note

that at each iteration the intermediate SIP problem is not necessarily solved to

optimality. In our implementation a time limit is imposed on the solution of each
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Algorithm 11: Pseudo-code of variable neighbourhood decomposition search al-

gorithm for two-stage SIP

1: Given: SIP problem instance P , integer feasible solution x∗,

stopping tolerance ε

2: L← −∞, U ← f(x∗)

3: while time limit is not reached do

4: Solve the LP relaxation of P to obtain the solution x̄

5: L← f(x̄)

6: if x̄ ∈ {0, 1}r1 × Rn1−r1
+ then

7: x∗ ← x̄, U ← L

8: stop

9: end if

10: ∆j = |x∗j − x̄j|, j = 1, . . . , r1

11: Index xj so that ∆j ≤ ∆j+1, j = 1, . . . , r1 − 1

12: k ← r1

13: while time limit is not reached and k ≥ 0 do

14: Jk ← {1, . . . , k}
15: Add constraint ∆(Jk,x

∗,x) = 0 to P

16: Solve the problem P to obtain the solution x′

17: if optimal solution found or problem is infeasible then

18: Replace the last added constraint with ∆(Jk,x
∗,x) ≥ 1

19: else

20: Delete the last added constraint

21: end if

22: if f(x′) < f(x∗) then

23: x∗ ← x′, U ← f(x′)

24: if |U − L| ≤ ε|U | then

25: stop

26: end if

27: end if

28: k ← k − 1

29: end while

30: end while
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of these problems. L and U denote the lower and the upper bound on the value of

the objective function respectively. ε denotes the relative stopping tolerance. The

starting point x∗ can be obtained by solving the problem using the underlying

SIP method until the first integer feasible solution is found. This also provides

the initial upper bound.

First we solve the continuous relaxation of the SIP problem P . Unlike the

intermediate SIP problems the relaxations are solved to optimality. This provides

the lower bound on the value of the objective function and also gives the opti-

mal solution x̄ which is used to iteratively choose the subsets of variables from

the incumbent integer solution x∗. The variables are selected according to the

distance between their values in the incumbent solution and in the solution of

the relaxed problem. These variables are fixed resulting in intermediate problems

with smaller number of binaries and therefore often easier to solve.

It is possible to use any SIP solution algorithm for optimising the intermedi-

ate problems. We consider two variants of the VNDS heuristic for SIP by using

different underlying SIP algorithms. In the first variant, we solve the DEP prob-

lems using a general purpose MIP solver. In the second variant we use the integer

L-shaped method described in Section 5.2. To distinguish between the two we

call the first variant VNDS-DEP, while the second is called VNDS-ILS.

It is easy to see that the constraint ∆(Jk,x
∗,x) = 0 in line 15 and the con-

straint ∆(Jk,x
∗,x) ≥ 1 in line 18 of Algorithm 11 are linear taking into account

that x∗ is fixed and using the representation (5.6).

The constraint ∆(Jk,x
∗,x) = 0 effectively fixes a subset of the first-stage

variables corresponding to Jk. This results in a problem with fewer binary vari-

ables which can be usually solved much faster then the original one. In the best

case when Jk = {1, 2, . . . , r1} and there are no second-stage integer variables the

resulting problem is a continuous SP and can be solved efficiently using one of

the methods discussed in Chapter 4. The number of the first-stage variables to

be fixed is changed systematically. This gives a VNDS scheme for two-stage SIP

problems.

We observe that VNDS for 0-1 MIP problems of Lazić., Hanafi, Mladenović,

and Urošević (2010) can be considered a special case of VNDS-SIP for problems

with an empty second stage (n2 = 0).

In this chapter we limit our consideration to SIP problems with binary and

possibly continuous variables in the first stage. However the method can be

easily extended to make it applicable to problems with general integer variables

in the first stage. This can be done by defining the distance between the integer
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solutions appropriately.

5.5 Numerical study

We implemented VNDS-DEP, VNDS-ILS and the integer L-shaped method in

FortSP (Ellison et al., 2010), a solver system for stochastic programming. The

FortSP system already had the ability to construct and solve the deterministic

equivalent problems.

The tests are performed on a 64-bit Linux machine with Intel CORE i5 2.4

GHz CPU and 6 GiB of RAM. Deterministic equivalents as well as LP and MIP

subproblems in decomposition algorithms are solved with CPLEX 12.2. The

relative MIP-gap tolerance of 0.01% and the time limit of 1800 seconds are used

in all the methods. If the reported solution time is less than the time limit then

the problem has been solved to optimality (up to the given tolerance). Otherwise

we report the objective value of the best integer feasible solution found.

The time limit of 150 seconds is used when solving the intermediate SIP

problems. An initial integer feasible solution is obtained by solving the SIP

problem with the underlying method (DEP or integer L-shaped) until the first

such solution is found.

Since parallelisation of the algorithms is out of scope of the current study the

thread limit is set to 1 in CPLEX.

Problem set

The benchmark problems that we use in our experiments are listed in Table 5.1.

They are available in SIPLIB, a stochastic integer programming test problem

library (Ahmed, 2004) in the SMPS format (Birge et al., 1987).

The problem type is given using notation a/b/c where

a characterises the first-stage variables and is either

C (continuous), B (binary) or M (mixed);

b characterises the second-stage variables and is either C, B or M;

c specifies the distribution type and is either D (discrete) or

C (continuous).

This notation was introduced by Laporte and Louveaux (1993).

The application areas of the test problems are as follows:

• SIZES: product substitution applications,
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Table 5.1: SIP problems

Name Instances Type References

DCAP 12 M/B/D Ahmed and Garcia (2004)

Ahmed et al. (2004)

SIZES 3 M/M/D Jorjani et al. (1999)

SSLP 10 B/M/D Ntaimo and Sen (2005)

• DCAP: dynamic capacity acquisition and assignment arising in supply chain

applications,

• SSLP: stochastic server location.

Table 5.2: Dimensions of SIP test problems

Stage 1 DEP

Name Scen Cols Ints Rows Cols Nonzeros Ints

dcap233

200 12 6 3006 5412 11412 5406

300 12 6 4506 8112 17112 8106

500 12 6 7506 13512 28512 13506

dcap243

200 12 6 3606 7212 14412 7206

300 12 6 5406 10812 21612 10806

500 12 6 9006 18012 36012 18006

dcap332

200 12 6 2406 4812 10212 4806

300 12 6 3606 7212 15312 7206

500 12 6 6006 12012 25512 12006

dcap342

200 12 6 2806 6412 13012 6406

300 12 6 4206 9612 19512 9606

500 12 6 7006 16012 32512 16006

sizes

3 75 10 124 300 795 40

5 75 10 186 450 1225 60

10 75 10 341 825 2300 110

sslp-5-25
50 5 5 1501 6505 12805 6255

100 5 5 3001 13005 25605 12505
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Dimensions of test problems (continued)

Stage 1 DEP

Name Scen Cols Ints Rows Cols Nonzeros Ints

sslp-10-50

50 10 10 3001 25510 50460 25010

100 10 10 6001 51010 100910 50010

500 10 10 30001 255010 504510 250010

1000 10 10 60001 510010 1009010 500010

2000 10 10 120001 1020010 2018010 1000010

sslp-15-45

5 15 15 301 3465 6835 3390

10 15 15 601 6915 13655 6765

15 15 15 901 10365 20475 10140

Results and discussion

In this section we use the following abbreviations to refer to the methods:

• DEP: solution of the deterministic equivalent problems with CPLEX,

• ILS: the integer L-shaped method,

• VNDS-DEP: VNDS heuristic for SIP with intermediate SIP problems solved

using the DEP approach,

• VNDS-ILS: VNDS heuristic for SIP with intermediate SIP problems solved

with the integer L-shaped method.

We perform two sets of experiments. In the first set we compare the per-

formance of VNDS-DEP with DEP solution on problems containing first-stage

binary variables. The results are given in Table 5.3. In this table t1 denotes the

time to reach the best DEP objective value and t2 denotes the total solution time.
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Table 5.3: Performance of the DEP and VNDS-DEP solution methods

DEP VNDS-DEP

Name Scen t1 t2 Obj t1 t2 Obj

dcap233

200 0.85 1.26 1834.58 2.24 8.93 1834.58

300 1622.56 T 1644.36 137.00 T 1644.36

500 3.23 3.23 1737.52 8.05 38.33 1737.52

dcap243

200 5.14 5.15 2322.49 4.48 24.94 2322.52

300 10.31 10.89 2559.45 16.63 30.91 2559.55

500 35.45 64.60 2167.36 22.68 63.85 2167.35

dcap332

200 31.83 T 1060.70 25.61 T 1060.70

300 111.72 125.17 1252.88 82.90 T 1252.88

500 1674.13 T 1588.81 241.03 T 1588.82

dcap342

200 96.40 101.67 1619.57 93.53 128.00 1619.57

300 487.29 487.34 2067.71 672.46 T 2067.70

500 1669.14 T 1904.66 T T 1905.45

sizes

3 0.58 0.59 224434 1.11 4.73 224434

5 1.24 2.27 224486 8.38 40.87 224486

10 1624.38 T 224564 430.74 T 224564

sslp-5-25
50 1.36 2.46 -121.60 0.33 1.05 -121.60

100 1.11 8.05 -127.37 0.80 2.64 -127.37

sslp-10-50

50 325.63 334.33 -364.64 4.80 T -364.62

100 1655.76 T -354.18 10.15 T -354.19

500 1477.25 T -327.97 49.32 T -349.14

1000 1590.45 T 123411 7.67 T -327.53

2000 302.32 T 315655 2.59 T -330.38

sslp-15-45

5 4.91 5.62 -262.40 2.64 58.02 -262.40

10 10.84 14.52 -260.50 165.29 T -260.50

15 102.31 102.32 -253.60 4.92 T -253.60

t1 - time to reach the best DEP solution, t2 - total solution time,

T - time limit reached

According to the results in Table 5.3 VNDS-DEP is not able to reach the best

DEP solution only in one case and it returns much better solutions within the
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given time limit for 3 most difficult problems. The time to solve the problem to

optimality is generally higher for VNDS-DEP and it does not prove optimality

more often than the DEP solver. However the time to reach the best DEP solu-

tion is generally lower for the heuristic method especially for difficult problems

like dcap233 with 300 scenarios. We think that t1 is a more important perfor-

mance measure for a heuristic method because its purpose is to get good solutions

quickly.

In the second set of experiments we compare the performance of all four meth-

ods considered in this study. Since our implementation of the integer L-shaped

method requires continuous second stage we relax the second-stage integrality

in the DCAP and SSLP problems. The SIZES problems are excluded from the

second test run because relaxing second-stage integrality makes them trivial to

solve.

The test results for the four methods are given in Table 5.4. The integer L-

shaped method shows good performance on all DCAP and most SSLP problems

except sslp-15-45 where it is outperformed by other methods. As expected using

the integer L-shaped method instead of solving the DEP improved the perfor-

mance of the VNDS heuristic in most cases.

Table 5.4: Solution times for the SIP methods on problems with relaxed second-

stage integrality

DEP ILS VNDS-DEP VNDS-ILS

Name Scen t1 t2 t1 t2 t1 t2 t1 t2

dcap233∗

200 0.07 0.18 0.08 0.08 0.37 0.44 0.27 0.35

300 0.13 0.27 0.12 0.12 0.60 0.70 0.39 0.51

500 0.35 0.43 0.20 0.20 1.14 1.36 0.63 0.87

dcap243∗

200 0.09 0.18 0.12 0.12 0.32 0.41 0.37 0.46

300 0.15 0.18 0.18 0.18 0.49 0.64 0.49 0.63

500 0.30 0.36 0.29 0.30 0.88 1.12 0.83 1.10

dcap332∗

200 0.10 0.17 0.11 0.11 0.30 0.35 0.26 0.33

300 0.21 0.25 0.16 0.16 0.53 0.62 0.35 0.45

500 0.20 0.38 0.24 0.24 0.89 1.05 0.58 0.77

dcap342∗

200 0.10 0.19 0.12 0.12 0.27 0.34 0.33 0.40

300 0.22 0.28 0.22 0.22 0.44 0.56 0.50 0.62

500 0.33 0.72 0.32 0.32 0.82 3.18 0.82 1.04
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Solution times for the SIP methods on problems with relaxed second-stage inte-

grality (continued)

DEP ILS VNDS-DEP VNDS-ILS

Name Scen t1 t2 t1 t2 t1 t2 t1 t2

sslp-5-25∗
50 0.61 0.88 0.03 0.03 0.30 1.32 0.16 0.24

100 2.39 2.75 0.04 0.05 0.79 3.49 0.27 0.50

sslp-10-50∗

50 3.55 11.20 0.58 1.25 1.17 28.58 0.54 2.73

100 28.70 36.84 1.13 2.44 1.57 79.44 0.66 4.14

500 278.00 1089.80 5.11 11.30 14.47 T 5.70 25.42

1000 315.28 T 2.46 21.70 33.23 T 12.46 61.25

2000 1435.25 T 4.87 42.27 70.70 T 28.56 118.19

sslp-15-45∗

5 0.14 0.19 1.53 1.65 0.17 1.14 0.14 1.51

10 0.04 0.68 0.81 2.29 0.26 4.41 0.20 3.23

15 0.15 0.70 5.12 5.12 0.47 5.97 0.41 4.59

t1 - time to reach the best DEP solution, t2 - total solution time,

T - Time limit reached

Table 5.5 gives the best objective values found by each of the method on

problems with relaxed second stages within the given time limit. This table only

gives the results for the SSLP problems because other problems are solved to

optimality and their objective values are the same (up to the relative stopping

tolerance).

Both the integer L-shaped method and VNDS-ILS are able to solve all the

test problems to optimality. The DEP solver and VNDS-DEP are not able solve

two and three most difficult SSLP instances respectively. However even in these

cases VNDS-DEP returns solutions with objective values better or equal to those

returned by solving the DEP as can be seen from Table 5.5.

Table 5.5: Final objective values returned by the SIP methods on the SSLP prob-

lems with relaxed second-stage integrality

Name Scen DEP ILS VNDS-DEP VNDS-ILS

sslp-5-25∗
50 -121.60 -121.60 -121.60 -121.60

100 -127.37 -127.37 -127.37 -127.37
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Final objective values returned by the SIP methods on the SSLP problems with

relaxed second-stage integrality (continued)

Name Scen DEP ILS VNDS-DEP VNDS-ILS

sslp-10-50∗

50 -365.44 -365.44 -365.44 -365.44

100 -354.87 -354.87 -354.87 -354.87

500 -349.92 -349.92 -349.92 -349.92

1000 -287.36 -352.49 -352.49 -352.49

2000 -285.81 -348.09 -342.18 -348.09

sslp-15-45∗
5 -265.57 -265.57 -265.57 -265.57

10 -261.90 -261.90 -261.90 -261.90

15 -254.71 -254.71 -254.71 -254.71

Performance profiling

In this section we present a graphical representation of the above results as per-

formance profiles. Dolan and Moré (2002) defined performance profile as a cu-

mulative distribution function (CDF) for some performance measure. For each

problem p and method m we define the performance measure as follows:

rpm =
tpm

minm∈M tpm
, p ∈ P,m ∈M,

where P is a set of test problem, M is a set of solution methods and tpm is the

time taken by the method m to reach the best DEP solution when solving the

problem p.

Then the cumulative distribution function for rpm is defined as follows:

ρm(τ) =
|{p ∈ P |rpm ≤ τ}|

|P |

We think that the the time to reach the best DEP solution is a more appropri-

ate measure of performance for the VNDS heuristic than the total solution time,

because the main purpose and strength of this heuristic is to find good solutions

quickly, not to prove optimality.

By plotting the performance profile of each solver we get a clear visual repre-

sentation that illustrates the performance of each method across the whole set of

benchmark problems.

The performance profiles for the DEP and VNDS-DEP on the original test

problems are shown in Figure 5.2. They correspond to the results in Table 5.3.
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Figure 5.2: Performance profiles for the DEP and VNDS-DEP methods

As can be seen from this diagram VNDS-DEP shows overall better performance

being the first in almost 70% of cases. However the right tail of the graph shows

that VNDS-DEP was not always able to reach the best DEP solution. This was

the case of the dcap342 problem with 500 scenarios.

Figure 5.3 shows the performance profiles for all four methods on the prob-

lems with relaxed second-stage integrality. These correspond to the results in Ta-

ble 5.5. The profile of VNDS-ILS dominates the one of VNDS-DEP confirming

our hypothesis that using an alternative solution method may improve perfor-

mance of the VNDS-SIP heuristic. However, unlike the case with second-stage

integer variables, here VNDS based heuristic is often outperformed by the integer

L-shaped and even by solving the DEP. Nevertheless VNDS-ILS shows the best

worst-case performance solving all the problems within the factor of about 6 of

the best method.

Figure 5.4 illustrates the convergence of the VNDS-DEP method. In this

experiment a larger time limit of 4 hours was used. It shows that given enough

time an optimal solution or a solution very close to the optimal one can be

obtained. This example also shows that the lower bound provided by the method

can remain quite loose.
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Figure 5.3: Performance profiles for the SIP methods on problems with relaxed

second-stage integrality
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Figure 5.4: Convergence of VNDS-DEP on sslp-10-50 with 2000 scenarios
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Chapter 6

Discussion and conclusions

6.1 Summary of findings and contributions

In the first part of our research reported in Chapter 2 we have set out the archi-

tecture of an extensible and reusable modelling system for stochastic program-

ming. We have designed and implemented within this system new extensions

to the SAMPL modelling language for representing the following important SP

constructs:

• chance constraints,

• integrated chance constraints,

• robust optimisation models.

We have found that direct representation of corresponding SP constructs fa-

cilitates use of specialised algorithms. In particular we have implemented the

cutting-plane method of Klein Haneveld and van der Vlerk (2006) and used it

to solve a portfolio planning model with a large number of integrated chance

constraints formulated in SAMPL. This has been possible because the SAMPL

translator captures the information about the ICCs and passes it to the solver.

In Section 3.2 we have described the model and have given some computational

results which show huge benefit in terms of performance when using the cutting-

plane algorithm compared to solving the DEP.

Also the language extensions allow the modeller to focus on the important

aspects of the model, not on the details of how to represent the constructs in the

deterministic equivalent form. The representations of alternative robust formu-

lations introduced in Section 2.5 can be rather complex; in our system the trans-

formation to deterministic equivalent representations can be done automatically
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by the translator. These extensions to language constructs make a contribution

to knowledge of computer-aided modelling for SP and robust optimisation.

In Chapter 3 we have studied a single-stage model with second-order stochastic

dominance constraints. We have further investigated the relationships between

SSD constraints, conditional value at risk and integrated chance constraints. We

have considered an application of this model to the problem of portfolio selection.

While single-stage portfolio models based on SSD choice criterion have been

known before (see, for example, Roman et al. (2006)) their applicability was

limited because existing solution algorithms could only solve problems with rel-

atively small number of scenarios. We have substantially contributed to making

this model more tractable with a new cutting-plane algorithm (Fábián, Mitra,

Roman, and Zverovich, 2010) which uses regularisation by the level method of

Lemaréchal et al. (1995). As shown in the computational results in Section 3.6

the method scales well with increase in the number of scenarios; this makes solu-

tion of practical problems with tens of thousands of scenarios computable within

tens of seconds.

We have also compared the return distributions of the optimal portfolios ob-

tained by solving the model of Roman et al. (2006) and the scaled model described

in Section 3.3. We have observed that although both models produce SSD effi-

cient portfolios the scaled model gives overall higher outcomes than the model of

Roman et al. at the cost of marginally higher risk.

In Chapter 4 we have studied solution methods for two-stage stochastic pro-

gramming. We have reported the computational framework for decomposition-

based SP solution methods. Based on this framework we have implemented the

following established solution methods:

• the L-shaped method,

• the multicut L-shaped algorithm,

• trust region method based on l∞ norm,

• regularised decomposition.

We have also applied the level method to regularisation of the expected recourse

function (Zverovich, Fábián, Ellison, and Mitra, 2010).

In Section 4.2 we have reported an extensive computational study in which

we compare performance of the above algorithms. In this study we have also

included direct application of the Simplex method and IPM to the solution of the
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DEP. For the purposes of this study we have used problems from several well-

known SP test sets as well as instances of a recent gas portfolio planning model

and generated problem instances.

Our empirical computational study has clearly shown that simple use of even

the most powerful LP solvers cannot process many practical models in the DEP

form especially when the model sizes scale up due to multiple scenarios. The

L-shaped method with regularisation by the level method has performed well

compared to other solution methods across the entire range of model sizes.

Despite more computations required per iteration it has been often faster than

unregularised method due to substantial decrease in the number of iterations.

In our experiments regularisation by the level method has also shown better

scalability than other regularisation approaches.

In Chapter 5 we have addressed two-stage stochastic integer programming

problems. In recent times there has been considerable progress in solution meth-

ods and software which can process difficult instances of MIP problems (IBM

Corp., 2009b; Gurobi Optimization, 2010; Mittelmann, 2011). Yet many prob-

lems in the SIPLIB collection still remain difficult to solve by direct application

of a MIP solver to the DEP. We have developed novel heuristic methods for

stochastic integer programming (Lazić, Mitra, Mladenović, and Zverovich, 2010)

bringing together the advantages of heuristics from the area of deterministic MIP

that lead to feasible solutions and therefore upper bounds quickly with exact solu-

tion methods for stochastic integer programming. These new methods are based

on variable neighbourhood decomposition search which has proven successful in

deterministic context.

We have provided a detailed description of our VNDS heuristic method for

SIP. A numerical study in Section 5.5 has shown that this method gives much

better solutions to the most difficult SSLP problem instances with up to a mil-

lion binary variables than those obtained by solving the deterministic equivalent

problems.

We have also confirmed that the performance of the VNDS heuristic for

stochastic integer programming can be improved by the appropriate choice of

an underlying SIP solution method. To this end we have implemented the classic

integer L-shaped method and used it to solve SIP subproblems. Although the

performance of the resulting VNDS-ILS method has often been dominated by

other algorithms, our empirical study shows that this method has the best worst

case performance and improvement over VNDS-DEP.
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The three solution methods, (a) processing of a single-stage problem with

second-order stochastic dominance constraints, (b) regularisation by the level

method for two-stage SP and (c) method for solving integer SP problems, are

novel approaches and each of these makes a contribution to knowledge.

6.2 Suggestions for future research

In our work on the modelling system and language extensions in Chapter 2 we

have considered only the case of individual chance constraints and integrated

chance constraints. This can be naturally extended to support joint CCs and

ICCs. Also the dist attribute which we have introduced there could be used to

specify distributions of random parameters and extend the scope of the SAMPL

modelling language to represent not only scenario-based models, but distribution-

based models as well. So far we have only used it for the parameters following

the uncertainty model of robust optimisation.

Our translator for the algebraic modelling language the architecture of which

is described in Chapter 2 allows embedding in other software and provides ap-

plication programming interfaces that give access to modelling objects such as

variables, objectives and constraints. This opens a lot of possibilities for develop-

ment of advanced modelling tools. We have shown in Section 2.2 one example of

such a tools, an IDE with precise context-sensitive syntax highlighting for AMPL

and SAMPL models. However much more can be done in terms of modelling

instruments for rapid development and debugging of optimisation models. This

includes data visualisation, model analysis and transformation, etc.

In Chapter 3 we have studied single-stage models with second-order stochas-

tic dominance constraints. However we have not suggested any way to directly

represent these models in an algebraic modelling language apart from the formu-

lation with integrated chance constraints. Recently some alternative SIP mod-

els incorporating risk measures have been proposed and discussed by Escudero

(1995), Schultz and Tiedemann (2006), Alonso-Ayuso et al. (2009) and others. A

computational comparison of performance of such models in two- and multistage

environments is also an interesting direction for future work.

In Chapter 4 we have described a decomposition method with regularisation

of the expected recourse function based on the level method. The computational

study suggests that this method works well for problems with complete or rel-

atively complete recourse often substantially reducing the number of optimality

cuts required to reach an optimal solution. However the number of feasibility
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cuts may remain large. Extension of this method for regularisation of feasibility

in case of incomplete recourse remains an interesting topic for future research.

In Chapter 5 we have proposed heuristics based on variable neighbourhood

decomposition search for two-stage SIP problems. In the future this approach

can be extended to multistage problems and compared to recent SIP solution

methods.
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Fábián, C. I., Mitra, G., Roman, D., and Zverovich, V. (2010). An enhanced

model for portfolio choice with ssd criteria: a constructive approach. Quanti-

tative Finance. First published on: 11 May 2010.
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