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Abstract

In this work we extend to the multistage case two recent risk averse measures for two-stage stochastic

programs based on first- and second-order stochastic dominance constraints induced by mixed-integer-

linear recourse. Additionally, we consider Time Stochastic Dominance (TSD) along a given horizon.

Given the dimensions of medium-sized problems augmented by the new variables and constraints required

by those risk measures, it is unrealistic to solve the problem up to optimality by plain use of MIP solvers

in a reasonable computing time, at least. Instead of it, decomposition algorithms of some type should be

used. We present an extension of our Branch-and-Fix Coordination algorithm, so named BFC-TSD, where

a special treatment is given to cross scenario group constraints that link variables from different scenario

groups. A broad computational experience is presented by comparing the risk neutral approach and the

tested risk averse strategies. The performance of the new version of the BFC algorithm versus the plain

use of a state-of-the-art MIP solver is also reported.

Keywords: Multistage stochastic mixed 0-1 optimization, scenario clustering, mixed 0-1 deterministic

equivalent model, risk averse measures, stochastic dominance constraints.

1 Introduction

A multistage stochastic optimization model has a more complex scenario information structuring than its

related sometimes approximating two-stage model. For the general formulation of a multistage model, where

decisions on each stage have to be made stage-wise, let Ω denote the set of scenarios that are considered to be

representative of the uncertainty in the problem and T is the set of stages in the given time horizon. At every

state, i.e., node (also so-named scenario group), say g in set G t , where it is the set of nodes in stage t ∈ T in the

related scenario tree, there is information about the past that is known with certainty. That information consists
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of the realization of the uncertain parameters in the node and in its ancestor ones, say set Ag. On the other

hand, it is also known at that node g what scenarios will not happen in the future, i.e., the set of scenarios in

set Ω/Ωg where Ωg denotes the set of scenarios that belong to group g, since the realizations of their uncertain

parameters are identical up to stage t, for t ∈ T : g ∈ G t . So, the decision variables at each node g should be

based on the known information without anticipating future information although using as much information

as possible (being represented in set Ωg), i.e., the nonanticipativity (for short, NA) principle introduced in

[41] for two-stage problems should be satisfied. Additionally, at a first glance it seems appropriate to consider

that the optimal policy (i.e., the decision variables) at node g in stage t should not depend on scenarios which

do not below to set Ωg, i.e., ’cannot happen in the future’ as stated in [39]. It is so-named time consistency

principle, see [37, 39]; for slightly different contexts, see [30, 36].

Notice that the NA principle paved the way for a dual block-angular representation of the problem, intro-

duced in [42] and known as Deterministic Equivalent Model (DEM, for short). Traditionally, special attention

has been given to the DEM by optimizing (in our case, maximizing) the objective function expected value

over the set of scenarios, along the time horizon, subject to the satisfaction of all the problem constraints in

the defined scenarios, i.e., the so named risk neutral (RN) strategy. Currently, we are able to solve RN-based

medium-sized mixed 0-1 DEMs by using different types of decomposition approaches, e.g., see in [17, 18] a

description of our Branch-and-Fix Coordination (BFC) algorithm. However, the optimization of the RN-based

objective function expected value has the inconvenience of providing a solution that ignores the variability of

the objective function value over the scenarios. So, it does not hedge against the occurrence of low-probability

high-consequence events (i,e., the so named black swan events). For multistage optimization the RN mea-

sure, obviously, satisfies the time consistency principle, since it is only based on averages (expectations) in

the objective function value for feasible (implementable) decision variables (i.e., the ones satisfying the NA

principle).

Alternatively, there are some multistage approaches that also deal with the type of risk management that

provides hedging solutions against the occurrence of some non-desired scenarios, see some surveys in [2, 35],

by considering semi-deviations, scenario optimization, value-at-risk (VaR), conditional value-at-risk (CVaR),

mean-expected shortfall and mean-risk, among other risk averse measures. Our BFC approach can be easily

adapted to those strategies. Additionally, there are some other risk averse strategies as the VaR measure,

among others, that require the extension of our BFC procedure due to the requirement of considering cross

scenario group constraints, a difficult issue (see below) for multistage problems, being the subject of this

work. Note: A cross scenario constraint is a constraint where there are variables with nonzero elements that

belong to different scenarios. It also applies to scenario group that belong to the same stage.

Some risk averse measures satisfy the time consistency principle and some others not, see [39], although

all of them are implementable. Some risk averse CVaR-based approaches with time consistency have been

proposed in the literature, see [6, 9, 12, 21, 34, 36], among others.

Recently, new risk averse measures have appeared in the literature, in particular, the so named first- and

second-order Stochastic Dominance Constraints (SDC) strategies for a set of profiles, each one included by a
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threshold value on a given function and some types of shortfall related bounds on reaching it. See [14, 15] for

the case of continuous variables where the problem is considered as a semi-infinite one, [13] for the general

continuous case, and [24] for first-order and [25] for second-order SDC induced by mixed integer-linear

recourse on finite scenarios. More recently, an application in mining is presented in [2] (by plain use of a

MIP solver for a multistage problem), some applications in energy are described in [11, 16, 25] (by using

Lagrangean heuristics and cutting plane approaches for two-stage problems) and some applications in finance

are introduced in [5, 22, 31] (the first one for a multistage problem, the second one for a single stage problem

and the last one for a two stage environment, particularly for the second-order measure), among others.

By construction, SDC-based measures as well as any other measure that requires cross scenario (or sce-

nario group) constraints (as VaR [23], mean-expected shortfall [20, 26] and mean-risk [38], among others)

do not satisfy the time consistency principle as it has been enunciated above. The reason is that the optimal

values of the decision variables at any node also require to use information from scenarios that at that time is

known that will not happen but, for hedging purposes, that ’outside’ information is required. So, they do not

satisfy the time consistency principle.

Given the broad applicability of those risk averse measures we consider the time stochatic dominance (for

short, TSD) policy to cover those situations where risk reduction should be performed for hedging values of

given functions (the objective one, in our case) along the time horizon. The risk neutral strategy satisfies the

time consistency principle. However, in cases where its ’optimal’ solution results in high variability in the

objective function value over the scenarios, the TSD policy has the advantage of better risk reduction of non-

wanted scenarios. The decision on how far the objective function expected value is from a scenario solution

depends on the problem’s structure and the modeler-driven risk management safeguards.

In this work we consider a threshold value on the objective function at the end of the time horizon, as

well as at a modeler-driven subset of stages. So, our approach extends a mixture of the two recent two-stage

SDC strategies introduced in [24, 25] to the multistage risk averse environment with TSD. The new measure

requires additional variables and constraints. The new variables are binary ones for the first-order stochastic

dominance constraints strategy (FSD), and they are continuous ones for the second-order one (SSD). The dif-

ference between FSD and SSD strategies is that the former considers bounds on the probability of failure that

the objective function value reaches the thresholds, and the latter considers bounds on the expected shortfall

on reaching them. Given the dimensions of medium-sized instances augmented by the new variables and

constraints required by the risk measures to consider, it is unrealistic to solve the problem up to optimality by

plain use of MIP solvers in a reasonable computing time. Instead of it, one should use decomposition algo-

rithms of some type. However, since both strategies (FSD and SSD) require cross scenario group constraints,

the nice decomposable scenario group-based structure of the problem is partially destroyed. So, traditional

Benders-based [7] decomposition and splitting variable schemes such as scenario group-based decomposi-

tion [18], cluster Lagrangean decomposition [19] and stage-based decomposition [33] cannot be used, among

other types of decomposition algorithms. The key idea of those algorithms is that the original scenario tree-

base model can be easily decomposed in independent scenario-related or stage-related submodels and, then,
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models with cross scenario group constraints along the stages can not be solved by those schemes without an

appropriate modification.

We propose in this work the new multistage risk averse strategy so named TSD as a mixture of the soft FSD

and SSD measures, presenting its advantages as well as the computational price to be paid for using plain MIP

solvers, instead of appropriate decomposition approaches. Additionally, an extension of the BFC algorithm is

also proposed for dealing with the cross scenario group constraints that are required particularly by the risk

measures to consider in this work (besides some important refinements for branch cutting purposes). The

rationale behind considering soft versions of the measures is that it could be possible that both FSD and SSD

may not be simultaneously satisfied. Then, since they are modeler-driven risk management policies (i.e., they

are not physical requirements) and their potential violation is to be heavily penalized, the resulting solution

may still be useful for decision making, see below. So, let BFC-TSD be the name for the new proposed

algorithm. A broad computational experience is presented by comparing the risk neutral approach and the

tested risk averse strategies as well as the impact of including the TSD policy and the advantage of considering

soft SDC bounds instead of the hard ones. The performance of the new version of the BFC algorithm versus

the plain use of a state-of-the-art MIP solver is also reported.

The remainder of the paper is organized as follows. In Section 2 the multistage mixed 0-1 optimization

problem with the risk neutral (RN) strategy is presented as well as the model for the TSD strategy. Section

3 presents the corresponding original RN DEM as a mixture of the splitting variable and compact represen-

tations, and the related scenario cluster submodels on which the original model can be decomposed. Section

4 presents the BFC-TSD algorithm for problem solving. Section 5 reports computational results of using the

new algorithm for solving a test bed of medium-sized instances. A comparison between the RN and SDC

strategies (i.e., FSD, SSD and the new one, TSD) is performed as mentioned above. Finally, some conclu-

sions are withdrawn in Section 6. The appendices present additional information on model dimensions, some

illustrative graphics and the meaning of abbreviations used in the work.

2 TSD measure in multistage stochastic mixed 0-1 problems

Without loss of generality, let us consider the compact representation of the multistage mixed 0-1 model for

maximizing the objective function expected value over a set of scenarios, say Ω, in the scenario tree that is

used for representing the random parameters and decision variables. The risk neutral (RN) strategy is used.

zRN = max ∑
g∈G

wg(agxg +bgyg)

s.t. ∑
q∈Ag

(Aq
gxq +Bq

gyq) = hg ∀g ∈ G

xg ∈ {0,1}nx(g),yg ∈ IRny(g) ∀g ∈ G ,

(1)

where wg is the likelihood or probability of scenario group g to be computed as ∑ω∈Ωg wω; ω is a scenario in

set Ωg ⊆ Ω of group g; wω is the modeler-driven weight assigned to scenario ω ∈ Ω; G is the set of scenario

groups (i.e., nodes in the scenario tree); Ag is the set of indexes for the ancestor scenario groups to group g
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(including itself) whose decisions have direct influence (i.e., have non zero elements) on the constraints for

scenario group g, where A1 = {1}; xg and yg are the vectors of the 0-1 and continuous variables for scenario

group g, respectively; ag and bg are the vectors of the objective function coefficients for the 0-1 and continuous

variables, respectively; A
q
g and B

q
g are the constraint matrices of ancestor scenario group q of group g for the

vectors xq and yq with direct influence in the constraints of group g, respectively; hg is the right-hand-side

vector (rhs) for scenario group g; and nx(g) and ny(g) are the numbers of 0-1 and continuous variables, for

g ∈ G , respectively.

Notice that the constraint system in model (1) is a generalization of the traditional one, where if Ag/{g}

is singleton then q for q ∈ Ag/{g} is usually the index of the immediate ancestor scenario group of group

g. Examples of a non-singleton set Ag are frequent in transportation models where the trip starting period is

different from its arrival one, supply chain management (where the decision on suppliers’ selection and raw

material supplying commitment at the beginning of the time horizon impacts on the volume to be supplied

in later periods), site location in a dynamic setting, power unit commitment lasting for more than one period,

investment planning where the period at which the investment is made in factories, power plants, energy

transmission lines, warehouses, distributions centers, etc. is different from the period at which the investment

is made available for being used. In those situations the constraints of a given scenario group have nonzero

elements for the variables of ancestor scenario groups.

Additionally, let G t ⊆ G denote the set of scenario groups in stage t ∈ T , where T is the set of stages in

the considered horizon; t(g) is the stage from set T to which group g belongs to; T = |T |; and observe that

Ωg is a singleton for g ∈ GT . See e.g., [8] for the main concepts on stochastic optimization via scenario tree

analysis.

The RN model (1) aims to maximize the objective function expected value alone. The main criticism that

can be made to this very popular strategy, as stated above, is that it ignores the variability of the objective

function value over the scenarios and, in particular in our case, the "left" tail of the non-wanted scenarios.

However, there are some risk averse approaches that additionally deal with risk management; among them,

the TSD strategy below reduces the risk of wrong solutions in a better way than the other ones under some

hypotheses, see e.g., [2]. That strategy also aims to maximize the objective function expected value as RN (1).

Additionally, a set of given thresholds on a function value for each scenario should be satisfied with a bound

target on the probability of failure due to a shortfall on reaching each threshold as well as a bound target on

the expected shortfall on reaching it. Particularly, TSD strategy requires a set of modeler-driven profiles, say

P t , given by the n-tupla (φp, ep, βp, Sp)∀p ∈ P t , t ∈ T̃ , where φp is the objective function value (for short,

the profit) threshold to be satisfied up to node (i.e., scenario group) g in the scenario tree, ep is the upper

bound target on the expected shortfall on reaching profit threshold φp with a target on the shortfall probability

bound βp, and Sp is the maximum shortfall that is allowed on reaching the threshold for scenario group g, for

g ∈ G t , t ∈ T̃ , where T̃ denotes the set of stages in T for which the TSD policy is considered. The model can
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be expressed as follows,

zT SD = max ∑
g∈G

wg(agxg +bgyg)− ∑
t∈T̃

∑
p∈P t

(Mp
e εp

e +M
p

βε
p

β)

s.t. ∑
q∈Ag

Aq
gxq +Bq

gyq = hg ∀g ∈ G

∑
q∈Ãg

(aqxq +bqyq)+ sgp ≥ φp ∀g ∈ G t , p ∈ P t , t ∈ T̃

0 ≤ sgp ≤ Spνgp ∀g ∈ G t , p ∈ P t , t ∈ T̃

∑
g∈G t

wgsgp ≤ ep + εp
e ∀p ∈ P t , t ∈ T̃

∑
g∈G t

wgνgp ≤ βp + ε
p

β ∀p ∈ P t , t ∈ T̃

xg ∈ {0,1}nx(g),yg ∈ IRny(g) ∀g ∈ G

νgp ∈ {0,1} ∀g ∈ G t , p ∈ P t , t ∈ T̃

0 ≤ ε
p
e ≤ Sp − ep, 0 ≤ ε

p

β ≤ 1−βp ∀p ∈ P t , t ∈ T̃ ,

(2)

where Ãg is the set of indices for the ancestor scenario groups of group g and, so, Ag ⊆ Ãg ; sgp is the shortfall

(continuous) variable that, obviously, is equal to the difference (if it is positive) between threshold φp and the

profit for scenario group g, νgp is a 0-1 variable such that its value is 1 if the profit for scenario group g

has a shortfall, and otherwise, 0; and ε
p
e and ε

p

β are the slack variables that take the violation of the e- and

β-bounds, respectively, being M
p
e and M

p

β the related big enough M-parameters for penalizing those variables

in the objective function. Observe that the constraints with the rhs ep and βp are precisely the cross scenario

group constraints for the last stage T assuming that T ∈ T̃ and, any case, they are the cross scenario group

constraints for any stage in set T̃ , since the weighted variables sgp and νgp are summed up for all scenario

groups in set G t for p ∈ P t , t ∈ T̃ . Notice that the TSD policy consists of controlling the objective function

value at modeler-driven stages, instead of only performing it at the end of the time horizon. It is very useful for

applications with long horizons. The concept of the expected shortfall on reaching a given profit threshold has

its roots in the Integrated Chance Constraints concept introduced in [28], see also [29]; in different contexts,

see [32, 40].

3 Scenario clustering in risk averse modeling

In [18] we propose a decomposition of the nonsymmetric scenario tree into a set of scenario cluster subtrees.

Based on this cluster decomposition concept a splitting-compact representation of the original RN multistage

stochastic mixed 0-1 model is presented. The reason for such decomposition is based on the way in which

our BFC decomposition algorithm works. It explicitly considers the nonanticipativity constraints (NAC) of

the variables of scenario groups in different cluster subtrees. By construction, those scenario groups belong

to stages up to a given so-named break stage, t∗ (see below). On the other hand, the NAC of the variables of

scenario groups that belong from the next stage to the break one until the last stage are implicitly considered

while solving the scenario cluster submodels. Let us consider the following definitions taken from [18].
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Definition 1 A break stage t∗ is a stage such that the number of scenario clusters is C = |G t∗+1|, where

t∗+ 1 ∈ T . In this case, any cluster c ∈ C is induced by a group g ∈ G t∗+1 and contains all the scenarios

belonging to that group.

Definition 2 The scenario cluster submodels are those that result from the relaxation of the NAC until break

stage t∗.

For clarification purposes, see Figure 1, where the NAC of the variables for node 1 (res. nodes 1, 2 and 3)

in the scenario tree shown in the left part of the figure have been relaxed for break stage t∗ = 1 (res. t∗ = 2) in

the center (res. right) part of the figure.
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Figure 1: Scenario clustering for t∗ = 0 (one cluster), t∗ = 1 (two clusters) and t∗ = 2 (four clusters)

Once decided the break stage t∗, the corresponding t∗-cluster partition is given and then, the number of

scenario clusters C is fixed to |G t∗+1|, i.e., where each group in G t∗+1 belongs to just one scenario cluster in

set C = {1, ...,C}, with C = |C |. Let Ωc = Ωg for g ∈ G t∗+1 denote the set of scenarios and Gc ⊆ G the set of

scenario groups in cluster c ∈ C , respectively, where g ∈ Gc provided that Ωg ∩Ωc 6= /0; x
g
c and y

g
c denote the

replicas of the variables vectors xg and yg for scenario group g ∈ Gc in scenario cluster c ∈ C , respectively;

and xc and yc are the vectors that include the set of variables in the vectors x
g
c and y

g
c for all scenario groups

g ∈ Gc in cluster c ∈ C , respectively. Note: G t ∩Gc is singleton for t ∈ T : t ≤ t∗+1.

Now, we can formulate the cluster submodels in compact representation, such that the original RN model

(1) can be formulated via a mixture of the splitting variable and compact representations, so that the cluster

submodels are linked by the explicit NAC up to break stage t∗. So, the strategy RN via compact representation
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of each cluster submodel c for c ∈ C can be formulated as follows,

zc = max ∑
g∈Gc

wg
c(a

gxg
c +bgyg

c)

s.t. ∑
q∈Ag

Aq
gxq

c +Bq
gyq

c = hg ∀g ∈ Gc

x
g
c ∈ {0,1}nx(g),y

g
c ∈ IRny(g) ∀g ∈ Gc,

(3)

where w
g
c = ∑ω∈Ωg∩Ωc

wω, w
g
c = wq being q ∈ G t∗+1 ∩Gc for g : t(g) ∈ T1, and w

g
c = wg for g : t(g) ∈ T2.

Let us first split the set of stages T in two subsets, such that T = T1

⋃
T2, where T1 = {1, . . . , t∗}, and

T2 = {t∗+ 1, . . . ,T}. Now, in the splitting-compact representation of RN (1), the nonanticipativity principle

is implicitly taken into account for the stages t ∈ T2, since the submodel for each cluster is formulated via a

compact representation. On the other hand, the (explicit) NAC of the scenario clusters for the stages in set T1

can be formulated by observing that the clusters c and c′ have the scenario group g in common if g ∈ Gc∩Gc′ ,

and it could only happen for g ∈ G t : t ∈ T1. So, the cluster submodels (3) are linked by the NAC to be

formulated as follows,

xg
c − x

g
c′ = 0 ∀c, c′ ∈ C : c 6= c′, g ∈ Gc ∩Gc′ (4)

yg
c − y

g

c′ = 0 ∀c, c′ ∈ C : c 6= c′, g ∈ Gc ∩Gc′ . (5)

RN model (1) can be represented by a mixture of the splitting variable representation (for explicitly

satisfying the NAC between the cluster submodels) and the compact representation (for implicitly satisfying

the NAC of each cluster submodel, besides the other constraints in the submodel). So, the cluster splitting-

compact representation can be expressed

zRN = max ∑
c∈C

∑
g∈Gc

wg
c(a

gxg
c +bgyg

c)

s.t. ∑
q∈Ag

Aq
gxq

c +Bq
gyq

c = hg ∀g ∈ Gc, c ∈ C

NAC (4)− (5)

x
g
c ∈ {0,1}nx(g), y

g
c ∈ IRny(g) ∀g ∈ Gc, c ∈ C .

(6)

4 BFC-TSD algorithm

Plain use of state-of-the-art MIP optimization engines for solving the stochastic version of medium-sized in-

stances of a multistage mixed 0-1 problem may require unaffordable computing effort (in memory and elapsed

time). So, a decomposition algorithm for optimizing this type of problems is required. This requirement is

strongly influenced by the risk averse measure TSD whose modeling needs additional continuous and 0-1

variables and scenario group- and stage-based constraints as well as cross scenario group constraints.

4.1 General methodology

The general methodology consists of a branching approach through the scenario tree to be presented below. It

requires the following additional notation: t ∈ T1, current branching stage; g ∈ G t , branching scenario group;
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I g, set of indices of vector xg; and i ∈ I g, index of the current branching variable in vector xg.

The main concepts of the BFC methodology have been introduced in [3, 4] and lately refined mainly in

[17]. They are particularized here in the following elements:

1. Scenario cluster based Branch-and-Fix (BF) tree, i.e., Branch-and-Bound tree for any cluster, such that

the optimization of the submodel (3) for any scenario cluster c ∈ C is performed in a coordinated way

with the submodels for the other clusters, in order to solve up to optimality the original RN model (6).

2. Common variables, i.e., variables, say, (x
g
c)i and (x

g

c′)i for scenario clusters c and c′ where c,c′ ∈ C :

c 6= c′, i ∈ I g, g ∈ Gc ∩Gc′ . Remember that g ∈ G t , t ∈ T1.

3. Twin nodes, i.e., nodes from different BF trees whose paths from their root nodes are such that their

x-common variables (xg
c)i and (xg

c′)i, if any, have been branched on or fixed to the same 0-1 value, for

c,c′ ∈ C : c 6= c′, i ∈ I g, g ∈ Gc ∩Gc′ . The branched or fixed common variable (x
g
c)i may imply fixing

other common variables, say, (xg′

c ) j for j ∈ I g′ , g′ ∈ Gc, such that themselves, by construction, force the

replicas of those variables, say, (xg′

c′ ) j in any other scenario cluster c′ ∈ C : g′ ∈ Gc ∩Gc′ to be fixed to

the same 0-1 values, and the implications could go further.

4. Twin Node Family (TNF), i.e., set of nodes such that any node is a twin node to all the other node

members in the family (from different BF trees).

5. Candidate TNF, i.e., a TNF such that there is one x-common variable in the node members, at least, that

has not been yet branched on, nor fixed to 0-1 values.

6. Integer TNF, i.e., a TNF such that all x-common variables have already been branched on or fixed to

0-1 values.

The branching procedure BFC-TSD, Step 5, see Section 4.2, reaches a given candidate TNF for the

branching triplet (t,g, i). Let I 1 denote the set of indices of the already branched on or fixed (common)

variables at the candidate TNF, i.e., I 1 = ∪g∈Ag\{g}I g∪{i ∈ I g : i ≤ i}. Let x̂g denote the 0-1 value vector for

vector xg, where x̂g = x̂
g
c for any scenario cluster c ∈ C : g ∈ Gc.

The pruning scheme at a candidate TNF is done by comparing the incumbent value, say, zT SD for TSD

model (2) and z = ∑c∈C zc, where zc is the solution value of submodel (3) for scenario cluster c, such that

• it has been obtained for that scenario cluster c while branching on a x-variable of scenario group g ∈

Gc ∩G t : g > g at the previous stage t −1,

• it has already been obtained when branching on a x-variable of group g ∈ Gc ∩G t : g < g, or

• it has just been obtained for group g ∈ Cc.

The x-solution for an integer TNF can be obtained in procedure BFC-TSD, Step 6 as the (partial) solution

of the scenario cluster submodels (3) for all c ∈ C and, in the related candidate TNF defined by the branching

triplet (t,g, i). Notice that each NAC (4) of the x-variables in model (2):
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• either it has been algorithmically satisfied (case of already branched on or fixed variables (x)i ∀i ∈ I1)

or

• it has been implicitly satisfied while solving submodels (3) for (xg)i where i ∈ {I g, g ∈ G t , t ∈ T2}.

• Additionally, if its testing for the 0-1 (x̂g)i-values of (xg)i for i ∈ {Ig, g ∈ G t , t ∈ T1}\ I1, where those

values come from the solution of the cluster submodels, is positive (i.e., the NAC are satisfied) then an

integer TNF has been obtained.

At each integer TNF a feasible solution for the original model (2) could be obtained by fixing the x-

variables to their current 0-1 values, such that the model can be expressed

zT NF
T = max ∑

g∈G

wg(agxg +bgyg)− ∑
t∈T̃

∑
p∈P t

(Mp
e εp

e +M
p

βε
p

β)

s.t. Constraint system in TSD model (2)

xg = x̂g ∀g ∈ G .

(7)

Notice that the TSD 0-1 ν-variables are the only ones that are integer in the model. If it is feasible then the

new incumbent solution value is zT SD := max{zT NF
T , zT SD}.

In order to guarantee the optimality of the solution provided by the procedure, model (8) should be solved

for any integer TNF where the variables up to break stage t∗ have been fully branched on or fixed.

zTNF
OPT = max ∑

g∈G

wg(agxg +bgyg)− ∑
t∈T̃

∑
p∈P t

(Mp
e εp

e +M
p

βε
p

β)

s.t. Constraint system in TSD model (2)

xg = x̂g ∀g ∈ G t , t ∈ T1

xg ∈ {0,1}nx(g) ∀g ∈ G t , t ∈ T2.

(8)

Model (8) guarantees that there is not any area in the feasible region that explicitly or implicitly has

not been explored. The rationale behind it has similarities with our works [1, 17, 18], but with some main

differences: (a) The model forces the satisfaction of the cross scenario group constraints; and (b) The TSD

policy requirements force the replacement of the paradigm given by the pair stage - scenario cluster with the

paradigm given by the pair scenario group - scenario cluster.

4.2 BFC-TSD procedure for chosen t∗ and label OPT being either ′Y ′ or ′N′

The main steps of the procedure are as follows:

Step 1: (Root node)

Solve the independent scenario cluster MIP submodels (3) to obtain zc∀c ∈ C .

Compute z = ∑
c∈C

zc.

If all variables in xc and yc satisfy the NAC (4) and (5), respectively, and the linking cross scenario

group constraints in (2) are satisfied for the ε-variables equal to zero in the TSD strategy then its optimal
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solution is found, so, set zT SD := z and STOP.

Set t := 0, zT SD :=−∞.

Step 2: (Next stage)

Reset t := t +1 and i := 0. If t > t∗ then go to Step 9.

Step 3: (Next scenario group)

Select g ∈ G t , unless all the variables in its groups have already been branched, in this case go to Step

2.

Reset i := 0.

Step 4: (Next node)

Reset i := i+1. If i > nx(g) then go to Step 3.

Step 5: (Branching. Candidate TNF building)

Set (xg
c)i := 1∀c ∈ C : g ∈ Gc.

Step 6: (Integer TNF building)

(a) If the current branching value (x̂g)i has already been obtained for variable (xg)i while solving the

appropriate submodel (3) at the immediate ancestor branching variable (xg)i, where either g = g, i =

nx(g) such that g is the immediate ancestor scenario group in G t or g ∈ G t−1 then go to Step 4. (Notice

that, in this case, the solution vector x̂g∀g ∈ G and its value z (see below) have already been obtained

and then Steps 6 and 7 do not need to be executed).

(b) Solve the independent scenario cluster MIP submodels (3) for obtaining solution value zc∀c ∈ C :

g ∈ Gc, where the already branched variables in the TNF (i.e., I 1) are fixed to the related 0-1 values and

all the other x-variables (then, until the groups in GT , including themselves) keep their integrality.

(c) Compute z = ∑
c∈C

zc, where zc has already been obtained for that scenario cluster c while branching

on scenario group g ∈ Gc∩G t : g > g at the previous stage t−1, when branching on g ∈ Gc∩G t : g < g

or it has just been obtained for g ∈ Cc.

(d) If z ≤ zTSD then go to Step 8.

(e) If any variable in xc∀c ∈ C does not satisfy NAC (4) then go to Step 4.

(f) If all variables in yc∀c ∈ C do satisfy NAC (5) and the linking cross scenario group constraints in

(2) are also satisfied for the ε-variables equal to zero in the TSD strategy then update zT SD := z and go

to Step 8.

Step 7: (Satisfying the cross scenario group constraints for integer TNF)

Solve MIP model (7) for obtaining a feasible solution to the original model (2).

If it is feasible then update zT SD := max{zT NF
T , zT SD}.

If OPT =′ N ′ or t < t∗ or g is not the last group in set Gg or i < nx(g) then go to Step 4.
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Solve MIP model (8) for obtaining another feasible solution to model (2) and guaranteeing optimality.

If it is feasible then update zT SD := max{zT NF
OPT , zT SD}.

Step 8: (Branch pruning)

If variable (x
g
c)i has been branched on or fixed to 1 for any cluster c ∈ C : g ∈ Gc then go to Step 11.

(Note: The branched on or fixed to 0-1 value for variable (xg
c)i is the same one for all clusters c ∈ C :

g ∈ Gc).

Step 9: (Backward to previous node)

Reset i := i−1.

If i = 0 and t ≤ 1 then, the incumbent solution, if any, and its value zT SD has been found, STOP.

If i = 0 and the x-common variables of all the groups in G t have already been branched on or fixed then

t := t −1 and select the last group g ∈ G t .

If i = 0 and not all the x-common variables of all the groups in G t have already been branched on or

fixed then select the previous group g ∈ G t .

Step 10: (Prune checking)

If (x
g
c)i = 0 for any c ∈ C : g ∈ Gc then go to Step 9.

Step 11: (Opposite branching)

Reset (xg
c)i := 0∀c ∈ C : g ∈ Gc and go to Step 6.

It is worth to point out that procedure BFC-TSD for the modeler-driven label OPT =′ N ′ may not obtain

the optimal solution to the original model (2) and, in the worst case, it may not even find any feasible solution.

Notice that Step 6 only performs branching until break stage t∗ that could be much smaller than the last stage

of the time horizon, and model (7) to be solved in Step 7 may not be feasible for the values of the x-variables as

obtained by scenario cluster submodels (3) in Step 6. However, the elapsed time required by the procedure for

obtaining the incumbent solution could be affordable for medium-sized instances. In fact, the computational

experiment reported in Section 5 for a broad test bed of instances shows that the solutions that have been

obtained for all instances considering t∗ = 1 for label OPT =′ N ′ require very small computing time; and their

incumbent values coincide with the ones obtained by plain use of CPLEX V12.5 (even for the optimal ones)

or they are very close for the instances where CPLEX is not running out of memory. On the other hand, the

optimal solution of the original TSD model (2) could have 0-1 values for some x-variables that have not been

obtained by solving those submodels. Then, there is a guarantee for label OPT =′ Y ′ that those values are to

be found, if any, since all candidate TNFs will be implicit or explicitly explored.

5 Computational experience

The BFC-TSD algorithm has been implemented in a C++ code. It uses one of the state-of-the-art commercial

optimization engines, in particular CPLEX V12.5, see [27], within the open source engine COIN-OR v1.6.0
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[10]. This optimizer is used by the algorithm for solving the LP relaxation and the mixed 0-1 submodels; all

the tolerances have been set up to the default values.

The computational experiments were conducted in the SW/HW platform given by a workstation Dell

Precision T7600 under Linux operating system (version Debian2.6.32-48) with 64 bits, processor Intel(R)

Xeon(R) CPU E5-2630 @ 2.3 GHz, 12 Gb of RAM and 8 cores.

The algorithm has also been tested on a variety of randomly generated instances by playing with different

sets of profiles for the TSD risk averse measures. The dimensions of the compact representation (1) of RN

DEM of the stochastic problems are given in Table 1. Its headings are as follows: Instance, member in the

test bed we have experimented with; m, number of constraints; nx, number of 0-1 variables; ny, number of

continuous variables; nel, number of nonzero coefficients in the constraint matrix; dens, constraint matrix

density (in %); |Ω|, number of scenarios; |G |, number of scenario groups; and T , number of stages.

Table 1: RN (1) dimensions

Instance m nx ny nel dens |Ω| |G | T

P1 2114 453 1359 44040 1.15 113 151 4

P2 2002 429 1287 41861 1.22 80 143 5

P3 7072 1632 4896 295577 0.64 217 272 4

P4 9248 2176 6528 515768 0.64 217 272 4

P5 7072 1632 4896 295577 0.64 217 272 4

P6 12766 2946 8838 534563 0.35 340 491 5

P7 14400 3456 10368 1206875 0.60 182 288 5

P8 17380 3950 11850 606173 0.22 574 790 5

P9 24552 5580 16740 856121 0.16 844 1116 5

Let FSD (for soft first-order stochastic dominance constraints strategy) denote the particular case (9) of

TSD strategy where the constraints related to the expected shortfall e-bound target in model (2) are deleted. On

the other hand, let SSD (for soft second-order stochastic dominance constraints strategy) denote the particular

case (10) of TSD strategy where the constraints related to the shortfall probability β-bound target in model

(2) are deleted. Observe that FSD may have the drawback that it does not control the expected shortfall

over the scenario groups, although the maximum shortfall Sp is imposed up to each scenario group g at

stage t on reaching threshold φp for p ∈ P t , t ∈ T̃ . On the other hand, SSD may have the drawback that

it does not control the fraction of scenario groups with shortfall on reaching the thresholds, although the

maximum shortfall Sp is also imposed. So, TSD (2) avoids those potential drawbacks, but at a price of a

higher computing effort (in time and memory). Since it could be possible that the FSD β bound and the

SSD e bounds could not be simultaneously satisfied in TSD strategy, and since the bounds are only modeler-

driven risk management policies (i.e., they are not physical requirements), they are also considered as soft

constraints, heavily penalized in the objective function.
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zFSD = max ∑
g∈G

wg(agxg +bgyg)− ∑
t∈T̃

∑
p∈P t

M
p

βε
p

β

s.t. ∑
q∈Ag

Aq
gxq +Bq

gyq = hg ∀g ∈ G

∑
q∈Ãg

(aqxq +bqyq)+Spνgp ≥ φp ∀g ∈ G t , p ∈ P t , t ∈ T̃

∑
g∈G t

wgνgp ≤ βp + ε
p

β ∀p ∈ P t , t ∈ T̃

xg ∈ {0,1}nx(g),yg ∈ IRny(g) ∀g ∈ G

νgp ∈ {0,1} ∀g ∈ G t , p ∈ P t , t ∈ T̃

0 ≤ ε
p

β ≤ 1−βp ∀p ∈ P t , t ∈ T̃ .

(9)

zSSD = max ∑
g∈G

wg(agxg +bgyg)− ∑
t∈T̃

∑
p∈P t

Mp
e εp

e

s.t. ∑
q∈Ag

Aq
gxq +Bq

gyq = hg ∀g ∈ G

∑
q∈Ãg

(aqxq +bqyq)+ sgp ≥ φp ∀g ∈ G t , p ∈ P t , t ∈ T̃

∑
g∈G t

wgsgp ≤ ep + εp
e ∀p ∈ P t , t ∈ T̃

xg ∈ {0,1}nx(g),yg ∈ IRny(g) ∀g ∈ G

0 ≤ sgp ≤ Sp ∀g ∈ G t , p ∈ P t , t ∈ T̃

0 ≤ ε
p
e ≤ Sp − ep ∀p ∈ P t , t ∈ T̃ .

(10)

The strategies to consider in the section are FSD (9), SSD (10), TSD (2) with a singleton T̃ = {T} (risk

averse for the last stage only) and TSD with a non-singleton T̃ (that is, a subset of stages in set T ) besides

the RN strategy.

The so-named “Constraint system in TSD model (2)” of models (7) and (8) to be solved at Step 7 of

the BFC-TSD procedure should be accordingly replaced with the constraint system of models (9) and (10)

whenever the particular cases FSD and SSD are considered, respectively.

Appendix A shows in Table 9 the dimensions of the original risk averse model (2) for the strategies FSD,

SSD and TSD with a singleton T̃ for a set of |P |=4 profiles, and TSD with a non-singleton T̃ for a set of

|P |=6 profiles, two profiles for stage T −1 and four profiles for stage T .

Section 5.1 reports the main results for the Risk Neutral (RN) strategy. Sections 5.2, 5.3 and 5.4 present

the main results for the FSD, SSD and TSD strategies, respectively.

5.1 Computational results for the Risk Neutral strategy

The main computational results are presented in Table 2, which shows the LP relaxation and integer opti-

mal solution values as well as the elapsed time for the BFC-TSD algorithm versus the plain use of CPLEX.

Its headings are as follows: T , number of stages; C, number of scenario clusters in which the scenario tree

has been divided into; zRN
LP , solution value of the LP relaxation of RN model (1); z0, expected solution value
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obtained at the BF root node while solving independently the scenario cluster MIP submodels (3); nn, num-

ber of explored twin nodes up to optimality while solving the original model (1); nT NF , number of explored

TNF integer sets; zRN
BFC and zRN

CPX , solution values of the RN model (1) obtained by using BFC-TSD algorithm

and plain CPLEX, respectively; OG%, CPLEX optimality gap, defined as 100
zbn−zRN

CPX

zRN
CPX

, where zbn is the solu-

tion value of the active branch-and-bound node with the greatest solution value at the time instant at which

CPLEX execution was interrupted; GG%, goodness gap of BFC-TSD algorithm versus CPLEX, defined as

100
zRN
CPX−zRN

BFC

zRN
BFC

; and tRN
BFC and tRN

CPX , elapsed times (in secs) to obtain the related solutions of RN model by using

BFC-TSD algorithm and plain CPLEX, respectively.

Table 2: BFC-TSD performance of RN (1)

Instance T C zRN
LP z0 nn nT NF zRN

BFC zRN
CPX (OG%) GG% tRN

BFC tRN
CPX

P1 4 8 157109 156324 1 0 156324 156324(*) * 0 3

P2 5 6 6310 6068 1 0 6068 6068(*) * 1 2

P3 4 10 293677 292118 8 3 292108 292108(0.07) * 39 –

P4 4 10 285706 284151 17 7 283938 283938(0.27) * 1372 –

P5 4 6 79957 78004 10 1 78004 78004(*) * 4 8

P6 5 8 36303 35960 3 1 35960 35960(*) * 30 1037

P7 5 7 270222 269447 3 1 269441 269441(*) * 63 345

P8 5 9 155077 154813 1 0 154813 154795(0.04) -0.01 16 –

P9 5 10 226377 225752 1 0 225752 225752(0.09) * 48 –

(*): Optimality gap achieved (< 0.01%)

*: Goodness gap achieved (< 0.01%)

–: Out of memory (12Gb) or time limit (6h) exceeded

The break-stage that has been chosen is t∗ = 1 and, so, according to the scenario tree structure, C = |G2|

scenario clusters Ωc, ∀c∈ C are considered in the experiment. They are constructed by favoring the approach

that shows higher scenario clustering for greater number of scenario groups in common. Notice the very strong

upper bound z0 and the very small elapsed time to obtain the optimal RN solution by using the decomposition

BFC-TSD algorithm. Observe that the plain use of CPLEX cannot solve the instances P3, P4, P8 and P9 given

the computer platform and the allowed elapsed time.

Risk results for RN and Wait-and-See (WS) solutions

A modeler familiar with the considered multistage stochastic TSD model (2) may not have high difficulty for

providing the set of profiles for FSD, SSD and TSD risk averse strategies. However it is useful to firstly ob-

taining the RN solution value by solving model (1) and its negative semi-deviation (in case of a maximization)

for confirming and, in case, reassessing the chosen set of profiles to realizing the potentiality of the feasible

region of the TSD model (2). Moreover, based on our computational experience on dealing with this type of

risk averse strategies for the multistage case, it is very advisable that the non-familiar modeler with the TSD

strategies to work first with the solution values of the scenarios in RN (1) and WS models. In this way a
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justified set of profiles could be chosen for the TSD strategy. Notice that a RN solution satisfies the NAC but

the TSD constraints have been relaxed, and a WS solution value is the average of the solution values obtained

independently for each scenario and therefore that solution does not necessarily satisfy the NAC, nor the TSD

constraints.

Let x̂g, ŷg denote the x,y vectors related to scenario group g ∈ G in the solution of RN model (1). Given

a profile p ∈ P T and a threshold on the objective function to be satisfied, φp, the set of scenarios, say, Ω
p
RN

whose objective function value in that solution has a shortfall on reaching threshold φp can be expressed

Ω
p
RN = {ω ∈ Ωg, g ∈ GT : ∑

q∈Ag

aqx̂q +bqŷq < φp}.

So, let β
p
RN denote the probability of the set Ω

p
RN , i.e., β

p
RN = ∑

ω∈Ω
p
RN

wω, for p ∈ P T .

Similarly, let x̃g, ỹg denote the x,y vectors related to scenario group g ∈ G in the solution for the WS

approach. So, for profile p ∈ P T the set of scenarios, say, Ω
p
WS whose objective function value in that solution

has a shortfall on reaching threshold φp can be expressed

Ω
p
WS = {ω ∈ Ωg, g ∈ GT : ∑

q∈Ag

aqx̃q +bqỹq < φp}.

And, let β
p
WS denote the probability of set Ω

p
WS, i.e., β

p
WS = ∑

ω∈Ω
p
WS

wω, for p ∈ P T .

On the other hand, let e
p
W S and e

p
RN denote the expected shortfall on reaching threshold φp in the WS and

RN solutions, for profile p ∈ P T , respectively.

The risk values β
p
RN , β

p
WS, and e

p
RN , e

p
W S reported from the solution of RN model (1) (where, by construc-

tion, the NAC (4)-(5) are fully satisfied) and WS separable models (i.e., model (1) where those NAC are fully

relaxed) are shown in Table 3 and 5, respectively. They can be compared with the βp- and ep-upper bounds

imposed in risk averse strategies FSD and SSD.

5.2 Computational results for risk averse strategy FSD

5.2.1 Singleton profile sets

The RN optimal solution obviously satisfies FSD model (9) for any choice of the upper bound βp such that

βp ≥ β
p
RN . Then, we are interested on values of βp < β

p
RN for p ∈ P T .

Remark 1. For FSD maximization problems, the following inequality is satisfied: β
p
WS ≤ β

p
RN, p ∈ P . So,

it results that β
p
W S ≤ βp ≤ β

p
RN for each p ∈ P T .

From Remark 1, it can be easily shown that model (9) is infeasible for βp < β
p
WS for the pair (φp,βp).

Then, let βp
denote the smallest value of βp for which model is feasible for the pair (φp,βp).

Remark 2. For each profile p ∈ P T and given a threshold φp, the interval of feasible values for the upper

bound βp of the fraction of scenarios with shortfall is given by [βp,1], where β
p
WS ≤ βp ≤ β

p
RN .

So, the scheme consists of solving model (9) for each p ∈ P T , with βp = β
p
WS, and obtain the value of ε

p

β

such that βp
will be equal to β

p
WS + ε

p

β.
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For RN (1) and WS models, Table 3 shows the βp− computed values, i.e., the fraction of scenarios whose

optimal objective function values do not reach the modeler driven threshold φp for the last stage T in the time

horizon. The threshold is computed as φp = δpzRN , where δp is a modeler-driven multiplicative factor of the

solution value zRN reported in Table 2 for RN model (1).

Table 3: FSD risk averse strategy with T̃ = {T}. Feasible bounds for singleton profile sets

Instance p δp φp β
p
WS(|Ω

p
WS|) βp(|Ωp|) β

p
RN(|Ω

p
RN |)

P1 1 1.1 171956.4 0.708(80) 0.708(80) 0.726(82)

|Ω|= 113 2 1.0 156324.0 0.434(49) 0.443(50) 0.487(55)

3 0.9 140691.6 0.231(26) 0.231(26) 0.248(28)

4 0.8 125059.2 0.116(13) 0.116(13) 0.124(14)

P2 1 1.1 6674.26 0.538(43) 0.563(45) 0.575(46)

|Ω|= 80 2 1.0 6067.51 0.313(25) 0.4(31) 0.4(32)

3 0.9 5460.75 0.213(17) 0.25(20) 0.3(24)

4 0.8 4854.00 0.163(13) 0.175(14) 0.188(15)

P3 1 0.95 277502.6 0.309(67) 0.323(70) 0.328(71)

|Ω|= 217 2 0.9 262897.2 0.176(38) 0.185(40) 0.194(42)

3 0.85 248292.8 0.056(12) 0.06(13) 0.065(14)

4 0.8 233686.4 0.01(2) 0.019(4) 0.019(4)

P4 1 1.0 283938.0 0.48(104) 0.498(108) 0.535(116)

|Ω|= 217 2 0.95 269741.1 0.249(54) 0.272(59) 0.282(61)

3 0.9 255544.2 0.116(25) 0.143(31) 0.148(32)

4 0.8 227150.4 0(0) 0.005(1) 0.01(2)

P5 1 0.95 74104 0.194(42) 0.365(79) 0.420(91)

|Ω|= 217 2 0.9 70203.8 0.116(25) 0.189(41) 0.231(50)

3 0.85 66303.6 0.047(10) 0.07(15) 0.093(20)

4 0.8 62403.4 0.01(2) 0.014(3) 0.042(9)

P6 1 0.95 34161.8 0.656(223) 0.656(223) 0.674(229)

|Ω|= 340 2 0.9 32363.8 0.618(210) 0.618(210) 0.633(215)

3 0.85 30565.8 0.583(198) 0.583(198) 0.592(201)

4 0.8 28767.8 0.571(194) 0.571(194) 0.574(195)

P7 1 0.95 255969 0.204(37) 0.215(39) 0.275(50)

|Ω|= 182 2 0.9 242497 0.066(12) 0.072(13) 0.121(22)

3 0.85 229025 0(0) 0(0) 0.033(6)

4 0.8 215553 0(0) 0(0) 0(0)

P8 1 0.95 147072 0.345(198) 0.356(204) 0.384(220)

|Ω|= 574 2 0.9 139332 0.223(128) 0.234(134) 0.248(142)

3 0.85 131591 0.128(73) 0.131(75) 0.152(87)

4 0.8 123850 0.068(39) 0.072(41) 0.082(47)

P9 1 0.95 214464 0.368(310) 0.376(317) 0.387(326)

|Ω|= 844 2 0.9 203177 0.266(224) 0.269(227) 0.280(236)

3 0.85 191889 0.149(125) 0.157(132) 0.170(143)

4 0.8 180602 0.067(56) 0.07(59) 0.086(72)

The headings of Table 3 are as follows: p, profile; δp, multiplicative factor; threshold φp; β
p
WS(|Ω

p
WS|) and

β
p
RN(|Ω

p
RN |)), probabilities of the sets Ω

p
WS and Ω

p
RN, where those sets have been defined in Section 5.1, such

that they denote the subset of scenarios whose objective function values in the WS and RN optimal solutions

have a shortfall on reaching threshold φp, respectively; and βp(|Ωp|), the smallest bound for which model
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FSD is feasible for profile p.

Observe in Table 3 the above β-bounds and the risk averse results for T̃ = {T}, i.e., last stage, in the

test bed that we have experimented with. Notice in Table 3 the goodness quality of the solutions obtained

for singleton profile sets by FSD strategy, since the values of βp
are strongly decreasing while the values of

δp are decreasing at a substantial smaller path through the profiles in P T . For example, it can be guaranteed

that there is not more than 23.1% (β3
) and 11.6% (β4

) of the scenarios in instance P1 whose solution values

are smaller than the thresholds whose values are 90% and 80% of the RN solution value zRN (see Table 3),

respectively.

5.2.2 Non-Singleton profile sets

It is up to the modeler the decision on risk reduction with one or more profiles and, then, the modeler after

analizing the variability of the objective function values for the scenarios of the RN solution, may decide on

the aceptable risk for one or more thresholds unsatisfaction quantified by the upper bounds on the scenarios

with failure on reaching the threshold and the related expected shortfall.

The BFC-TSD algorithm considers the availability of different profiles without incrementing the compu-

tational effort due to the replacement of cross scenario constraints (singleton T̃ ) with cross scenario group

constraints (non-singleton T̃ ).

Table 4 reports our computational experience for a non-singleton profile set in the FSD risk averse strategy

taken from the singleton profiles presented in Table 3, but considering them together in the same FSD model

(9). The new headings of the table are as follows: βp(|Ωp|), upper bound on the probability of the scenarios

with shortfall (and, then, at the last stage T ); tFSD
BFC and tFSD

CPX , elapsed time (secs) to obtain the solution value

zFSD
BFC by the BFC-TSD algorithm and zFSD

CPX by plain use of CPLEX, respectively; OG%, CPLEX optimality

gap, defined as 100
zbn−zFSD

CPX

zFSD
CPX

, where zbn is as above; and GG%, goodness gap of BFC-TSD algorithm versus

CPLEX, defined as 100
zFSD
CPX−zFSD

BFC

zFSD
BFC

.

Observe in Table 4 that the feasibility of the model may require that the values of βp change slightly,

∀p ∈ P T . Notice the increase in elapsed time when considering non-singleton profiles versus the RN scheme

(see Table 2), due to the increase in model dimensions and its higher tightening. On the other side, we can

notice that the number of scenarios |Ωp
RN | with a shortfall on reaching threshold φp (and, then, the probability

β
p
RN of the set of scenarios in Ω whose profit do not reach the threshold) reported in Table 3 for RN strategy

has been reduced in FSD strategy (see |Ωp| in Table 4). Notice that βp is smaller than β
p
RN . It is is obtained

at a price of a reduction of the estimated profit (i.e., solution value) and the increase on the elapsed time. It

is worth pointing out that the estimated profit shown in Table 4 have not a high reduction when comparing it

with the profit shown in Table 2 and, otherwise, the elapsed time required by BFC-TSD algorithm shown in

Table 4 is still affordable even for the difficult instances P3, P4, P8 and P9 (while the plain use of CPLEX

cannot still provide a solution). As an example, let us consider instance P4 whose elapsed time for the FSD

model (9) is the same one (1372 secs) as for the RN model (1) (see Table 2), and the number of scenarios for

RN whose profit does not reach e.g. threshold φ1 = 283938 is |Ω1
RN |=116 (see Table 3) while this number is
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Table 4: FSD risk averse strategy with T̃ = {T}. Computational results for a non-singleton profile set

Inst. { βp(|Ωp|), p = 1, 2, 3, 4 } nn nT NF zFSD
BFC zFSD

CPX(OG%) GG% tFSD
BFC tFSD

CPX

P1 {0.726(82), 0.461(52), 0.248(28), 0.116(13)} 3 2 156210 156280(*) 0.04 4 15

P2 {0.575(46), 0.4(32), 0.3(22), 0.175(14)} 3 2 6049 6049(*) * 5 37

P3 {0.328(71), 0.185(40), 0.06(13), 0.019(4)} 12 4 292002 292034(0.12) 0.01 77 –

P4 {0.507(112), 0.277(60), 0.143(31), 0.005(1)} 17 7 283902 283902(0.37) * 1372 –

P5 {0.406(88), 0.203(44), 0.079(17), 0.037(8)} 3 1 77961 77965(*) * 18 373

P6 {0.662(225), 0.627(213), 0.586(199), 0.571(194)} 3 2 35951 35953(*) * 292 12798

P7 {0.248(45), 0.094(17), 0.017(3), 0(0)} 3 1 269396 269406(*) * 109 2229

P8 {0.366(210), 0.241(138), 0.136(78), 0.077(44)} 3 2 154655 154690(0.13) 0.02 357 –

P9 {0.381(321), 0.274(231), 0.163(137), 0.079(66)} 3 2 225746 225764(0.09) * 531 –

(*): Optimality gap achieved (< 0.01%)

*: Goodness gap achieved (< 0.01%)

–: Out of memory (12Gb) or time limit (6h) exceeded

|Ω1|=112 for FSD satisfying the β1-bound 50.7% (while β1
RN is 53.5%). Finally, observe that the goodness

gap GG% of the FSD solution given by BFC-TSD algorithm versus CPLEX is very small, in practically 50%

of the instances CPLEX is running out of memory or the time limit (6h) is exceeded, and on the contrary

BFC-TSD always obtains a solution value in all instances that is similar to the CPLEX one, being the elapsed

time very small.

5.3 Computational results for risk averse strategy SSD

5.3.1 Singleton profile sets

The Remarks 1 and 2 for FSD maximization (Section 5.2.1) also apply in a similar way for SSD maximization.

Table 5 shows the e− computed values for RN (1) and WS models, i.e., the expected shortfalls of the optimal

objective function values on reaching the modeler driven threshold φp for the last stage T in the time horizon.

The threshold is computed as φp = δpzRN , where δp is a modeler-driven multiplicative factor of the solution

value zRN reported in Table 2 for RN model (1).

Table 5 shows the expected shortfall bounds in SSD model (10) for T̃ = {T} for the singleton profile set in

the test bed we have experimented with. The headings of Table 5 are as follows: p, profile; δp, multiplicative

factor; threshold φp; e
p
W S and e

p
RN , expected shortfalls for RN and WS models; and ep, i.e., the smallest

expected shortfall upper bound for which SSD model is feasible for profile p.

Observe in Table 5 the goodness quality of the solution obtained for the SSD strategy, since the value of

ep is strongly decreasing while the value of δp is decreasing at a smaller path through the profiles in set P T .

As in the case of the β-bounds, for obtaining the value ep for each p ∈ P T , SSD model (10) has been solved

with ep = e
p
W S, and the value ep is the sum e

p
W S + ε

p
e .
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Table 5: SSD risk averse strategy with T̃ = {T}. Feasible bounds for singleton profile sets

Instance p δp φp e
p
WS ep e

p
RN

P1 1 1.1 171956.4 18454.5 19552 19573.5

|Ω|= 113 2 1.0 156324.0 9345.9 10082 10191.3

3 0.9 140691.6 4201.1 4568 4742.8

4 0.8 125059.2 1653.9 1697 1904.9

P2 1 1.1 6674.3 1948.5 2094 2099.6

|Ω|= 80 2 1.0 6067.5 1682.7 1788 1801.1

3 0.9 5460.7 1523.1 1573 1581.6

4 0.8 4854.0 1408.5 1432 1434.1

P3 1 0.95 277502.6 5594.2 6178 6277.6

|Ω|= 217 2 0.9 262897.2 2122.4 2399 2545.3

3 0.85 248292.8 487.1 535 598.2

4 0.8 233686.4 69.9 112 114.5

P4 1 1.0 283938 8630.8 9930 9979.1

|Ω|= 217 2 0.95 269741.1 3586.3 4300 4457.1

3 0.9 255544.2 1041.3 1415 1574.1

4 0.8 227150.4 0 0 21.9

P5 1 0.95 74104 1023.4 1973 2237.8

|Ω|= 217 2 0.9 70203.8 427.4 757 973.8

3 0.85 66303.6 111.3 218 408

4 0.8 62403.4 26.4 36 185.2

P6 1 0.95 34161.8 7842.4 8184 8201.1

|Ω|= 340 2 0.9 32363.8 6696.8 7004 7029.9

3 0.85 30565.8 5622.8 5891 5927.6

4 0.8 28767.8 4588.7 4832 4877.1

P7 1 0.95 255969 2159.1 3005 3498.9

|Ω|= 182 2 0.9 242497 348.6 503 886.9

3 0.85 229025 0 0 56.6

4 0.8 215553 0 0 0

P8 1 0.95 147072 4894.5 5394 5597.4

|Ω|= 574 2 0.9 139332 2741.4 3007 3235.1

3 0.85 131591 1409.5 1148 1753.4

4 0.8 123850 684.3 750 912.6

P9 1 0.95 214464 8225.7 8978 9177.8

|Ω|= 844 2 0.9 203177 4706.5 5242 5434.7

3 0.85 191889 2352.8 2656 2868.7

4 0.8 180602 1107.1 1258 1404.2

5.3.2 Non-Singleton profile sets

Table 6 reports our computational experience for a non-singleton profile set in the SSD strategy taken from

the singleton profiles presented in Table 5, but considering them simultaneously in the same SSD model. The

new headings of the table are as follows: ep, upper bound on the expected shortfall on reaching threshold φp

over the scenarios (and, then, at last stage t = T ); tSSD
BFC and tSSD

CPX , elapsed time (secs) to obtain the solution

value zSSD
BFC by BFC-TSD algorithm and zSSD

CPX by plain use of CPLEX, respectively; OG%, CPLEX optimality

gap, defined as 100
zbn−zSSD

CPX

zSSD
CPX

, where zbn is as above; and GG%, goodness gap of BFC-TSD algorithm versus
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CPLEX, defined as 100
zSSD
CPX−zSSD

BFC

zSSD
BFC

.

Table 6: SSD risk averse strategy with T̃ = {T}. Computational results for a non-singleton profile set

Inst. { ep, p = 1, 2, 3, 4 } nn nT NF zSSD
BFC zSSD

CPX(OG%) GG% tSSD
BFC tSSD

CPX

P1 {19560, 10170, 4720, 1900} 3 2 156304 156304(*) * 2 5

P2 {2097, 1790, 1576, 1434} 3 2 6059 6059(*) * 3 3

P3 {6250, 2520, 560, 113} 25 6 291790 291850(0.09) 0.02 118 –

P4 {9955, 4400, 1490, 5} 17 8 283802 283867(0.34) 0.02 1372 –

P5 {2137, 873, 330, 134} 3 1 77945 77968(*) 0.03 9 10

P6 {8193, 7018, 5914, 4860} 3 2 35957 35957(*) * 32 1320

P7 {3240, 650, 35, 0} 3 1 269275 269291(*) * 63 1010

P8 {5476, 3110, 1626, 885} 3 2 154549 154752(0.04) 0.13 49 –

P9 {9110, 5340, 2758, 1320} 3 2 225769 225774(0.07) * 162 –

(*): Optimality gap achieved (< 0.01%)

*: Goodness gap achieved (< 0.01%)

(-): Incumbent solution value at the time limit (6h)

Observe in Table 6 that while considering a set of profiles simultaneously, the feasibility of the whole

model may require that the values of ep∀p ∈ P T should be increased, as it happens with βp for the FSD

strategy (see Table 4), although for SSD the changes are higher. On the other hand, the performance of BFC-

TSD algorithm versus CPLEX in solution goodness as well as in elapsed time has the same pattern as for FSD

strategy such that GG% is very small, CPLEX requires an unaffordable elapsed time and, on the contrary, the

elapsed time required by BFC-TSD is very small.

5.4 Computational results for risk averse strategy TSD. Non-singleton profile set

Tables 7 and 8 report our computational experience for the TSD model (2) for T̃ = {T} and T̃ = {T −1,T},

respectively, in a non-singleton profile environment set for the test bed considered in the previous sections.

The new headings of the tables are as follows: zT SD
BFC and tT SD

CPX , solution value and elapsed time (secs) by

using BFC-TSD algorithm; zT SD
CPX and tT SD

CPX , solution value and elapsed time (secs) by plain use of CPLEX,

respectively; OG%, CPLEX optimality gap, defined as 100
zbn−zT SD

CPX

zT SD
CPX

, where zbn is as above; and GG%, goodness

gap of BFC-TSD algorithm versus CPLEX, defined as 100
zT SD
CPX−zT SD

BFC

zT SD
BFC

.

The βp- and ep-upper bounds shown in the tables are not the bounds shown in Tables 4 and 6 for FSD

and SSD, respectively, since TSD (2) is infeasible taken them together. So, while simultaneously considering

a set of β- and e-upper bounds, the feasibility of the whole model may require that the values of ep∀p ∈ P T

are higher than the values for SSD strategy (see Table 6), but the values of βp∀p ∈ P T only change slightly

with respect to the values for FSD (see Table 4). In any case, BFC-TSD algorithm provides the solution in

very small elapsed time for all instances even for the very difficult ones P3, P4, P8 and P9. On the contrary,

CPLEX is running out of memory (12Gb) or time limit (6h) exceeded in all instances but P1, P5 and P7 in

Table 7 and P1, P2 and P5 in Table 8.
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The profile set used for the results reported in Table 7 continues only considering the last stage, so T̃ =

{T}. However the table also shows, as an illustrative example, a modeler-driven non-wanted profit threshold

φp at stage T − 1 for p = 1,2 in case that the TSD solution is accepted. The table also shows (in boldface

symbols) the columns βββ
p
TSD(|ΩΩΩ

p
TSD|) and e

p
TSD for the probability of scenarios (number of scenarios) in set

Ω with shortfall on reaching profit threshold φp ∀p ∈ P T−1 = {1,2} and the expected shortfall, respectively.

Those values have been computed from the TSD solution with T̃ = {T} for the profit obtained up to stage

T −1, say zT−1 = ∑
g∈GT−1

wg ∑
q∈Ãg

(aqxq +bqyq).

Table 8 reports the main results for TSD model (2) with T̃ = {T −1,T}, where |P T |= 4 and |P T−1|= 2.

The βp- and ep-upper bounds are shown in the first two columns for set P T and the third and fourth columns

for set P T−1.

Observe that the profile set P T in Table 8 is as in Table 7. However, profile set P T−1 reduces the risk of

non-wanted scenarios, so that TSD is considered, since βp < βββ
p

and ep < ep for the profit threshold φp shown

in Table 7 for all p ∈ P T−1.

The values of the slack variables ε
p
e and ε

p

β for all p ∈ P t , t ∈ T̃ , where T̃ = {T} in Table 7 and T̃ =

{T −1,T} in Table 8, have been zero in the reported solutions. Additionally, the solution value (i.e., expected

profit) zT SD
BFC for TSD when T̃ = {T,T − 1} (Table 8) is slightly worse than the profit for TSD for T̃ = {T}

(Table 7). On the other hand, the results shown in both tables have the same pattern observed in the other

tables (for the FSD and SSD strategies). Notice that the goodness gap GG% of BFC-TSD algorithm versus

CPLEX is very small, CPLEX has difficulties on solving the instances in the test bed and, on the contrary,

BFC-TSD algorithm requires a very small elapsed time.

Finally, Appendix B presents the risk reduction trajectory from WS, through RN, FSD, SSD and TSD,

with singleton and non-singleton T̃ , by using instance P7 as an illustrative example. In what follows the same

instance P7 is used for clarifying the results shown in Tables 7 and 8. Observe that the optimal solution of

RN model (1) gives the expected profit zRN=269441 whose number of scenarios with shortfall on reaching

the modeler-driven thresholds φp = δp × zRN , for p ∈ P T , where φ1=255969, φ2=242497, φ3=229025 and

φ4=215553 (in decreasing order) are|Ω1
RN |=50, |Ω2

RN |=22, |Ω3
RN |=6 and |Ω4

RN |=0 (in decreasing order as well)

out of 128 scenarios, respectively (see Table 3), and the related expected shortfall is e1
RN=3498.9, e2

RN=886.9,

e3
RN=56.6 and e4

RN=0.0, respectively (see Table 5).

For illustrative purposes, let me assume that the risk neutral picture is carrying out an excessive profit

risk, and consider that it has been decided that the upper bound on the number of scenarios with shortfall

(i.e., at the last stage T = 5) has been reduced from 50 to |Ω1|=45, from 22 to |Ω2|=17, from 6 to |Ω3|=3 and

the zero scenario policy is kept for profile 4 (i.e., |Ω4|=0). Additionally, assume that the upper bound on the

expected shortfall has been reduced from 3498.9 to e1=3240.0, from 886.9 to e2=650.0, from 56.6 to e3=35.0

and the zero shortfall policy is obviously kept for profile 4 (i.e., e4=0.0). The optimal solution of TSD model

(2) is shown in Table 7. Let us consider the expected profit zT SD
CPX =269273 obtained by plain use of CPLEX

(observe that the BFC-TSD algorithm gives a close value, zT SD
BFC=269247 whose goodness gap is smaller than

0.01%). Observe that the expected profit of RN model (1), zRN=269441 has only been slightly reduced by
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Table 7: TSD risk averse strategy with T̃ = {T}. Computational results for a non-singleton profile set

Inst. p ∈ P T = {1,2,3,4} p ∈ P T−1 = {1,2} nn nTNF zT SD
BFC zT SD

CPX (OG%) GG% tT SD
BFC tTSD

CPX

βp(|Ωp|) ep βββp(|ΩΩΩp|) ep/φp

P1 0.726(82) 19570 0.646(73) 5601 3 2 156269 156269 (*) * 3 52

0.478(54) 10170 0.407 (46) 1363

0.248(28) 4710 φ1 =15632.4

0.115(13) 1870 φ2 =7816.2

P2 0.575(46) 2097 0.500(40) 1747 3 2 6052 6052 (0.31%) * 5 –

0.400(32) 1797 0.375(30) 1474

0.275(22) 1579 φ1 = 4247.26

0.188(15) 1434 φ2 =3640.51

P3 0.327(71) 6270 0.382(83) 1770 12 3 292048 292049 (0.18%) * 67 –

0.189(41) 2540 0.083(18) 110

0.060(13) 590 φ1 =11684.3

0.018(4) 113 φ2 =5842.16

P4 0.526(114) 9957 0.903(196) 13201 17 8 283875 283878 (0.31%) * 1432 –

0.277(60) 4430 0.516(112) 2438

0.148(32) 1560 φ1 = 28393.8

0.005(1) 21 φ2 =14196.9

P5 0.410(89) 2100 0.737(160) 3847 3 1 77882 77956 (*) 0.09 13 108

0.212(46) 900 0.424(92) 1659

0.083(18) 390 φ1 =50702.7

0.032(7) 160 φ2 =46802.5

P6 0.665(226) 8193 0.621(211) 3185 3 2 35938 35938 (0.11%) * 178 –

0.626(213) 7018 0.409(139) 1248

0.591(201) 5914 φ1 = 14383.9

0.571(194) 4860 φ2 = 10787.9

P7 0.248(45) 3240 0.495(90) 5839 3 1 269247 269273 (*) * 77 3135

0.094(17) 650 0.181(33) 1063

0.017(3) 35 φ1 = 67360.2

0(0) 0 φ2 = 53888.2

P8 0.378(217) 5479 0.131(75) 215 3 2 154557 154748 (0.06%) 0.12 272 –

0.240(138) 3110 0.016(9) 31

0.146(84) 1627 φ1 = 6192.52

0.077(44) 885 φ2 = 3096.26

P9 0.381(321) 9110 0.254(214) 862 3 2 225741 225712 (0.12%) -0.01 630 –

0.274(231) 5340 0.070(59) 147

0.163(137) 2758 φ1 = 9030.08

0.079(66) 1320 φ2 = 4515.04

(*): Optimality gap achieved (< 0.01%)

*: Goodness gap achieved (< 0.01%)

–: Out of memory (12Gb) or time limit (6h) exceeded

the model TSD (2) and, on the other hand, the profit risk of non-wanted scenarios has been reduced to the

modeler-driven bounds.

However, let us assume that the above risk averse TSD picture is also carrying out an excessive profit risk

on the number of scenarios with shortfall and expected shortfall on reaching modeler-driven thresholds on an

intermediate stage, say T −1 = 4, being the thresholds φ1 =67360.2 for its profile p = 1 and φ2 =53888.2 for
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Table 8: TSD risk averse strategy with T̃ = {T − 1,T}. Computational results for a non-singleton profile set

Inst. p ∈ P T = {1,2,3,4} p ∈ P T−1 = {1,2} nn nT NF zT SD
BFC zT SD

CPX (OG%) GG% tT SD
BFC tT SD

CPX

βp(|Ωp|) ep βp(|Ωp|) ep

P1 0.726(82) 19570 0.619(70) 5550 3 2 156240 156242 (*) * 4 21

0.478(54) 10170 0.363(41) 1300

0.248(28) 4710

0.115(13) 1870

P2 0.575(46) 2097 0.463(37) 1690 3 2 6020 6020 (*) * 5 362

0.400(32) 1797 0.350(28) 1450

0.275(22) 1579

0.188(15) 1434

P3 0.327(71) 6270 0.359(78) 1586 12 5 291881 291969 (0.20%) 0.03 102 –

0.189(41) 2540 0.046(10) 73

0.060(13) 590

0.018(4) 113

P4 0.526(114) 9957 0.894(194) 12600 17 9 283253 283619 (0.32%) 0.13 1466 –

0.277(60) 4430 0.475(103) 1889

0.148(32) 1560

0.005(1) 21

P5 0.410(89) 2100 0.737(160) 3846 3 2 77799 77955 (*) 0.20 29 75

0.212(46) 900 0.424(92) 1658

0.083(18) 390

0.032(7) 160

P6 0.665(226) 8193 0.591(201) 2900 3 2 35882 35891 (0.08%) 0.03 338 –

0.626(213) 7018 0.379(129) 1025

0.591(201) 5914

0.571(194) 4860

P7 0.248(45) 3240 0.440(80) 5400 3 1 269204 269222 (0.01%) * 225 –

0.094(17) 650 0.143(26) 800

0.017(3) 35

0(0) 0

P8 0.378(217) 5479 0.111(64) 181 3 2 154527 154729 (0.07%) 0.13 291 –

0.240(138) 3110 0.009(5) 11

0.146(84) 1627

0.077(44) 885

P9 0.381(321) 9110 0.243(205) 755 3 2 225712 225733 (0.11%) * 1208 –

0.274(231) 5340 0.058(49) 98

0.163(137) 2758

0.079(66) 1320

(*): Optimality gap achieved (< 0.01%)

*: Goodness gap achieved (< 0.01%)

–: Out of memory (12Gb) or time limit (6h) exceeded

its p = 2, the number of scenarios with shortfall are |Ω1Ω1Ω1|= 90 and |Ω2Ω2Ω2|= 33, and the expected shortfall is

e1 =5839 and e2 =1063 (see Table 7). In order to reduce the non-admissible profit risk up to stage T −1 = 4

within the feasible region restricted by the risk bounds already imposed for stage T = 5, let us also assume

that it has been decided that the upper bound on the number of scenarios with shortfall for stage T − 1 = 4

has been reduced from 90 to |Ω1|=80 and from 33 to |Ω2|=26, and the upper bound on the expected shortfall

24



has been reduced from 5839 to e1=5400 and from 1063 to e2=800. The optimal solution of TSD model (2)

is obtained where the profiles above are set up in the sets P t for t ∈ T̃ = {4,5}, see the results in Table 8.

Let us consider the solution value zT SD
CPX =269222 obtained by plain use of CPLEX (observe that the BFC-

TSD algorithm gives a close value, zT SD
BFC=269204 whose goodness gap is also smaller than 0.01%). Observe

also that the expected profit of TSD model (2) with T̃ = {5}, 269273, has only been slightly reduced by TSD

model (2) with T̃ = {4,5} and, on the other hand, the profit risk of non-wanted scenarios up to stage T −1= 4

has been reduced to the modeler-driven bounds without modifying the also modeler-driven profit risk bounds

for last stage T = 5.

6 Conclusions

In this work we have presented an extension of the Branch-and-Fix Coordination BFC algorithm that we have

proposed elsewhere [18] for solving multistage mixed 0-1 models where the uncertainty appears anywhere

and is represented via nonsymmetric scenario trees. The extension allows to consider some risk averse strate-

gies, namely the first- and second-order stochastic dominance constraints (SDC) measures induced by mixed

integer-linear recourse, say FSD and SSD, respectively. Those strategies have been recently proposed in

[24, 25] for dealing with the two-stage problem and their implementation requires cross scenario constraints.

Additionally, our multistage model (2) considers the Time Stochastic Dominance policy requirements for

those measures, so that a new SDC strategy has been introduced, so named TSD, by simultaneously consid-

ering bound targets on the probability of failure and the expected shortfall over the scenarios on reaching the

modeler-driven thresholds.

The treatment of the related FSD and SSD constraint systems has been performed in a similar way as

it is done for the nonanticipativity constraints (NAC) (4)-(5) for the stages up to the so-named break stage

t∗ introduced in [18], where they are algoritmically satisfied. That is, relaxing those risk averse constraint

systems in the original model (2) and solving the scenario cluster submodels (3) in a coordinated way for the

so-named candidate Twin Node Families (TNF) along the execution of the algorithm. As a result, a so-named

integer TNF is obtained such that the 0-1 problem variables are fixed to their 0-1 values. At that point, model

(7) is solved for satisfying the NAC (5) for the continuous variables as well as satisfying the cross scenario

group constraint systems for the 0-1 x-solution from submodels (3). Finally, for guaranteeing optimality a

modeler-driven label allows to solve model (8). As a result, the extension of the BFC algorithm, so named

BFC-TSD, paves the way for considering other risk averse strategies, see [2]. In any case, the TSD strategies

are much more computationally complicated than the other ones.

The TSD strategy (2) for multistage stochastic mixed integer recourse problems (considering singleton

as well as non-singleton sets T̃ ) has been tested against the risk neutral strategy RN (1), i.e., maximization

of the objective function expected value over the scenarios along a time horizon, such that a risk reduction

profile set is modeled for given functions (in our case, the objective function) up to selected stages along the

time horizon. Additionally, since the risk reduction constraints system considered in the TSD strategy is a
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managerial type of system (as opposed to physical constraints, balance equations, etc.), the model considers

those constraints as soft ones. So, the fraction of scenarios with shortfall and the expected shortfall related

bounds are not considered as hard bounds, but as targets to reach, so that appropriate slack variables (highly

penalized in the objective function) avoid potential policy infeasibility and, in case, help to identify feasible

bounds.

A definitive conclusion that can be drawn from the analysis of our computational experience is that solving

the original TSD model (2) by plain use of a MIP solver may require so much computing effort for medium-

sized instances that a type of decomposition scheme should be used. The algorithm that is proposed in

this work allows to decompose the original model (2) by a scheme based on scenario cluster submodels,

whose main ingredients are the Twin Node Family [17] and break stage [18] concepts. For that purpose

we represent the original model as a mixture of the splitting variable and compact representations. A BFC

scheme [3, 4] has been used for handling the splitting variable representation to obtain the solution value of

the original stochastic MIP problem. The compact representation of the independent MIP submodels related

to the scenario clusters for the stages from the break one until the last stage has been optimized by plain use

of CPLEX (where 8 threads have been used).

From our computational experiment we can conclude that the risk averse TSD strategy with |T̃ |> 1 has

higher risk reduction than the risk neutral (RN) strategy in case of high variability in the objective function

value over the scenarios for the RN solution. It is not easy to draw conclusions from the computational

comparison of the risk averse strategies FSD, SSD and TSD, but the computational requirements by the TSD

strategy seems not to be an inconvenience (by using appropriate decomposition approaches) on performing

better risk management on the problem. However, more computational experience is required to draw a

definitive conclusion about the issue.

Appendix A. Dimensions of FSD, SSD and TSD models

Table 9 shows the dimensions of the models for the risk averse strategies that are treated in the work, such

that models FSD (9), SSD (10) and TSD (2) for |P T | = 4 profiles where T̃ = {T} (TSD1). The table also

shows the dimensions of model TSD (2) for |P T |= 4 and |P T−1|= 2 profiles where T̃ = {T −1,T} (TSD2).

Its new headings are as follows: nν and ns, additional number of 0-1 and continuous variables, respectively;

and nεβ
and nεe

, number of slack εβ- and εe-variables, respectively.

Appendix B. Performance of the models WS, RN, FSD, SSD, TSD1 and TSD2. Illustrative

instance

Let us consider instance P7 (|Ω| = 128 scenarios), and zM be the objective function expected value and zω
M

be the related value for scenario ω from the solution of model M, where it could be the reference WS or

RN (1) models; the risk averse models FSD (9), SSD (10), TSD (2) with T̃ = {T} (TSD1) or TSD (2) with

T̃ = {T − 1,T} (TSD2). Figure 2 depicts the left tail of the probability density and cumulative distribution
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Table 9: DEM (2) dimensions for FSD, SSD and TSD1 (with T̃ = {T}) and TSD2 (with T̃ = {T −1,T})

Inst. Risk Measure m nx ny nν nεβ
ns nεe nel dens |Ω| |G | T

P1 FSD 2570 453 1359 452 4 0 0 66640 1.145 113 151 4

SSD 2570 453 1359 0 0 452 4 66640 1.145 113 151 4

TSD1 3026 453 1359 452 4 452 4 68004 0.825 113 151 4

TSD2 3146 453 1359 510 6 510 6 70386 0.787 113 151 4

P2 FSD 2326 429 1287 320 4 0 0 61701 1.303 80 143 5

SSD 2326 429 1287 0 0 320 4 61701 1.303 80 143 5

TSD1 2650 429 1287 320 4 320 4 62669 1.000 80 143 5

TSD2 2814 429 1287 400 6 400 6 66913 0.941 80 143 5

P3 FSD 7944 1632 4896 868 4 0 0 380641 0.648 217 272 4

SSD 7944 1632 4896 0 0 868 4 380641 0.648 217 272 4

TSD1 8816 1632 4896 868 4 868 4 383253 0.526 217 272 4

TSD2 8996 1632 4896 956 6 956 6 390033 0.513 217 272 4

P4 FSD 10120 2176 6528 868 4 0 0 628608 0.649 217 272 4

SSD 10120 2176 6528 0 0 868 4 628608 0.649 217 272 4

TSD1 10992 2176 6528 868 4 868 4 631220 0.550 217 272 4

TSD2 11172 2176 6528 956 6 956 6 640112 0.539 217 272 4

P5 FSD 7944 1632 4896 868 4 0 0 359808 0.612 217 272 4

SSD 7944 1632 4896 0 0 868 4 359808 0.612 217 272 4

TSD1 8816 1632 4896 868 4 868 4 362420 0.497 217 272 4

TSD2 8996 1632 4896 956 6 956 6 367616 0.483 217 272 4

P6 FSD 14130 2946 8838 1360 4 0 0 700451 0.377 340 491 5

SSD 14130 2946 8838 0 0 1360 4 700451 0.377 340 491 5

TSD1 15494 2946 8838 1360 4 1360 4 704539 0.313 340 491 5

TSD2 15950 2946 8838 1586 6 1586 6 727369 0.305 340 491 5

P7 FSD 15132 3456 10368 728 4 0 0 1383051 0.628 182 288 5

SSD 15132 3456 10368 0 0 728 4 1383051 0.628 182 288 5

TSD1 15864 3456 10368 728 4 728 4 1385243 0.571 182 288 5

TSD2 16164 3456 10368 876 6 876 6 1414403 0.561 182 288 5

P8 FSD 19680 3950 11850 2296 4 0 0 840249 0.236 574 790 5

SSD 19680 3950 11850 0 0 2296 4 840249 0.236 574 790 5

TSD1 21980 3950 11850 2296 4 2296 4 847145 0.189 574 790 5

TSD2 22652 3950 11850 2630 6 2630 6 875539 0.183 574 790 5

P9 FSD 27932 5580 16740 3376 4 0 0 1200301 0.167 844 1116 5

SSD 27932 5580 16740 0 0 3376 4 1200301 0.167 844 1116 5

TSD1 31312 5580 16740 3376 4 3376 4 1210437 0.133 844 1116 5

TSD2 32184 5580 16740 3810 6 3810 6 1247331 0.129 844 1116 5

curves of the objective function of models M. Figure 3 shows the comparison between the objective function

values of the WS and RN strategies and each risk averse strategy in particular.

We can observe in Figure 2 that the objective function of the risk averse strategies have more scenarios

with value close to the expected one than the RN strategy has and, on the other hand, they have fewer scenarios

with a value in the "left tail" of the probability density function. It means a smaller probability of having a

non-wanted scenario (for a maximization of the objective function, as it is our case) and, then, higher risk

reduction. It can also be observed that the TSD1 solution has higher risk reduction than the FSD or SSD

solutions, and the TSD2 solution has higher risk reduction than the TSD1 solution. The kurtosis vector is as
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follows: (W S,RN,FSD,SSD,T SD1,T SD2) = (−0.2638, −0.2552, −0.2447, −0.2485, −0.2362, −0.2176).

On the other hand, observe that the cumulative distribution curves for the risk averse strategies are below the

other curves.

P7 (probability density)
WS
RN
FSD
SSD
TSD1
TSD2

220000 230000 240000 250000 260000 270000

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5 P 7  (cumulative distribution)

WS
RN
FSD
SSD
TSD1
TSD2

Figure 2: Probability density and cumulative distribution curves of WS, RN, FSD, SSD, TSD1 and TSD2

Given the threshold φp as the multiplicative factor δp times the solution value zRN for p = 1,2,3,4, i.e.,

(φ1,φ2,φ3,φ4) = (0.95,0.90,0.85,0.80) · zRN , the abscissa of Figure 3 gives the objective function value for

the scenarios up to 1.0 · zRN , the thresholds are depicted in vertical and the ordinate gives the cumulative

fraction of the scenarios, say β, whose objective function values are smaller than the value in abscissa, in

particular βp = P(zM < φp) for M ∈ {FSD,SSD,T SD1,T SD2}, i.e., fraction of scenarios with shortfall on

reaching threshold φp. Notice that

P(zW S < φp)≤ P(zM < φp)≤ P(zRN < φp) ∀M ∈ {FSD,SSD,T SD1,T SD2}, p = 1,2,3,4,

that is, the fraction of scenarios with shortfall on reaching the thresholds has significatively been reduced in

the risk averse solutions versus the RN solution.

Appendix C. Meaning of abbreviations

BF, Branch-and-Fix.

BFC, Branch-and-Fix Coordination.

BFC-TSD, Branch-and-Fix Coordination procedure with Time Stochastic Dominance strategy.

CVaR, Conditional Value-at-Risk.

DEM, Deterministic Equivalent Model

FSD, First-order Stochastic Dominance.

MIP, Mixed Integer Programming.
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Figure 3: Cumulative distributions curves of FSD, SSD, TSD1 and TSD2 versus WS and RN

NAC, Nonanticipativity Constraints.

RN, Risk Neutral.

SDC, Stochastic Dominance Constraints.

SSD, Second-order Stochastic Dominance.

TNF, Twin Node Family.

TSD, Time Stochastic Dominance.

TSD1, Time Stochastic Dominance for |T̃ |= 1.

TSD2, Time Stochastic Dominance for |T̃ |= 2.

WS, Wait-and-See.

Acknowledgements

This research has been partially supported by the projects Grupo de Investigación EOPT (IT-567-13) from the

Basque Country Government, BETS UPV/EHU Research and Training Unit (UFI), Project P711RT0278 in

29



the Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo (CYTED), and MTM2012-31514

from the Spanish Ministry of Economy and Competitiveness. The authors would like to thank to the two

anonymous reviewers for their help on clarifying some concepts presented in the manuscript and strongly

improving its presentation.

References

[1] U. Aldasoro, L.F. Escudero, M. Merino and G. Pérez. An algorithmic framework for solving large scale

multistage stochastic mixed 0-1 problems with nonsymmetric scenario trees. Part II: Parallelization.

Computers & Operations Research, 40:2950-2960, 2013.

[2] A. Alonso-Ayuso, F. Carvallo, L.F. Escudero, M. Guignard-Spielberg, J. Pi, R. Puranmalka and A. Wein-

teraub. Medium range optimization of copper extraction planning under uncertainty in future copper

prices. European Journal of Operational Research, 233:711-726, 2014.

[3] A. Alonso-Ayuso, L.F. Escudero and M.T. Ortuño. BFC, a Branch-and-Fix Coordination algorithmic

framework for solving some types of stochastic pure and mixed 0–1 programs. European Journal of

Operational Research, 151:503-519, 2003.

[4] A. Alonso-Ayuso, L.F. Escudero, A. Garín, M.T. Ortuño and G. Pérez. A Stochastic 0-1 Program based

approach for Strategic Supply Chain Planning under Uncertainty. Journal of Global Optimization, 26:97-

124, 2003.

[5] L. Aranburu, L.F. Escudero, A Garín and G. Pérez. Stochastic models for optimizing immunization

strategies in fixed-income security portfolios under some sources of uncertainty. In H. Gassmann, S.W.

Wallace and W.T. Ziemba (eds.), Applications in Finance, Energy, Planning and Logistics. World Sci-

entific Publishers, 2012, pp. 173-220.

[6] N. Bauerle and A. Mundt. Dynamic mean-risk optimization in a binomial model. Mathematical Methods

of Operations Research, 70219-239, 2009.

[7] J.F. Benders. Partitioning procedures for solving mixed variables programming problems. Numerische

Mathematik, 4:238–252, 1962.

[8] J.R. Birge and F.V. Louveaux. Introduction to Stochastic Programming. Springer, 2nd edition 2011.

[9] K. Boda and J. Filar. Time consistent dynamic risk measures. Mathematics of Operations Research,

63:169-186, 2006.

[10] COIN-OR Foundation. COIN-OR: COmputational INfrastructure for Operations Research. http://

www.coin-or.org, 2010.

30



[11] M. Carrión, U. Gotzes and R. Schultz. Risk aversion for an electric retailer with second-order stochastic

dominance constraints. Computational Management Science, 6:233-250, 2009.

[12] D. Cuoco, H. He, S. Issaenko. Optimal dynamic trading strategies with risk limits. Operations Research,

56:358-368, 2008.

[13] D. Dentcheva and G. Martinez. Two-stage stochastic optimization problems with stochastic ordering

constraints on the recourse. European Journal of Operational Research, 219:1-8, 2012.

[14] D. Dentcheva and A. Ruszczynski. Optimization with stochastic dominance constraints. SIAM Journal

on Optimization, 14:548-566, 2003.

[15] D. Dentcheva and A. Ruszczynski. Robust optimization dominance and its application to risk-averse

optimization. Mathematical Programming, Ser. B, 123:85-100, 2010.

[16] D. Drapkin, R. Gollmer, U.Gotzes, F. Neise and R. Schultz. Risk management with Stochastic Dom-

inance models with disperse generation. In M. Bertochi, G. Consigli and M.A.H. Dempster (eds.),

Stochastic Optimization methods in Finance and Energy. Springer, 2011, pp. 253-271.

[17] L.F. Escudero, A. Garín, M. Merino and G. Pérez. On BFC-MSMIP strategies for scenario cluster

partitioning and Twin Nodes Families branching selection and bounding for multistage stochastic mixed

integer programming. Computers & Operations Research, 37:738-753, 2010.

[18] L.F. Escudero, A. Garín, M. Merino and G. Pérez. An algorithmic framework for solving large scale

multistage stochastic mixed 0-1 problems with nonsymmetric scenario trees. Computers & Operations

Research, 39:1133-1144, 2012.

[19] L.F. Escudero, A. Garín and A. Unzueta. Cluster Lagrangean decomposition in multistage stochastic

optimization. Submitted for publication.

[20] G.D. Eppen, R.K. Martin, L. Schrage. Scenario approach to capacity planning. Operations Research

34:517-527, 1989.

[21] C. Fabian and A. Veszpremi. Algorithms for handling Cvar constraints in dynamic stochastic models

with applications in Finance. Journal of Risk, 10:111-131, 2008.

[22] C. Fabian, G. Mitra, D. Roman and V. Zverovich. An enhanced model for portfolio choice with SSD

criteria: a constructive approach Mathematical Programming, Ser. B, 108:541-569, 2010.

[23] A.A. Gaivoronski, G. Pflug. Finding optimal portfolios with constraints on value-at-risk. In B. Green,

editor, Proceedings of the Third International Stockholm Seminar on Risk Behaviour and Risk Manage-

ment. Stockholm University, 1999.

31



[24] R. Gollmer, F. Neise and R. Schultz. Stochastic programs with first-order stochastic dominance con-

straints induced by mixed-integer linear recourse. SIAM Journal on Optimization, 19:552-571, 2008.

[25] R. Gollmer, U. Gotzes and R. Schultz. A note on second-order stochastic dominance constraints induced

by mixed-integer linear recourse. Mathematical Programming, Ser. A, 126:179-190, 2011.

[26] V. Guigues. SDDP for some interstage dependent risk-averse problems and application to hydro-thermal

planning. Computational Optimization and Applications, 57:167-203, 2014.

[27] IBM ILOG. CPLEX 12.5. http://www.ilog.com/products/cplex, 2011.

[28] W.K. Klein Haneveld. Duality in stochastic linear and dynamic programming. Springer-Verlag, 1986.

[29] W.K. Klein Haneveld and M.H. van der Vlerk. Integrated chance constraints: reduced forms and an

algorithm. Computational Management Science, 3:245-269, 2006.

[30] R. Kovacevic and G. Pflug. Time consistency and information monotonicity of multiperiod acceptability

functionals. Radon Series on Computational and Applied Mathematics, 8:1-24, 2008.

[31] A. Lizyayev. Stochastic dominance efficiency analysis of diversified portfolios: classification, compari-

son and refinements. Annals of Operations Research, 196:391-410, 2012.

[32] J. Luedtke. A branch-and-cut decomposition algorithm for solving chance-constrained mathematical

programs with finite support. Mathematical Programming, Ser. A, 146:219-244, 2014.

[33] A. Martin, D. Morgenstern and A. Zelmer. A scenario tree-based decomposition for solving multistage

stochastic programs with applications. Submitted for publication

[34] A. Philpott and V.L. de Matos. Dynamic sampling algorithms for multi-stage stochastic programs with

risk avesion. European Journal of Operational Research, 218:470-483, 2012.

[35] G.Ch. Pflug and W. Römisch. Modeling, measuring and managing risk. World Scientific, 2007.

[36] B. Rudloff, A. Street and D.M. Valladäo. Time consistency and risk averse dynamic decision mod-

els: Definition, interpretation and practical consequences. European Journal of Operational Research,

234:743-750, 2014.

[37] A. Ruszczynski. Risk-averse dynamic programming for Markov decision processes. Mathematical

Programming, Ser. B, 125:235-261, 2010.

[38] R. Schultz, S. Tiedemann. Risk Averse via excess probabilities in stochastic programs with mixed-

integer recourse. SIAM Journal on Optimization 14:115-138, 2003.

[39] A. Shapiro. On a time consistency concept in risk averse multistage programming. Operations Research

Letters, 37:143-147, 2009.

32



[40] S. Shen, J. Smith and S. Ahmed. Expectation and chance-constrained models and algorithms for insuring

critical paths. Management Science, 56:1794-1814, 2010.

[41] R. J-B. Wets. Stochastic programs with fixed recourse: The equivalent deterministic program. SIAM

Review, 16:309-339, 1974.

[42] R. J-B. Wets. On the relation between stochastic and deterministic optimization. In A. Bensoussan

and J.L. Lions (eds), Control Theory, Numerical Methods and Computer Systems Modelling. Springer-

Verlag, 1975, pp. 350-361.

33


	caratula_dt201105
	BBFC-TSD

