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Abstract

We present a modelling framework for two-stage and multi-stage mixed 0−1 problems under
uncertainty for strategic Supply Chain Management, tactical production planning and operations
assignment and scheduling. A scenario tree based scheme is used to represent the uncertainty.
We present the Deterministic Equivalent Model of the stochastic mixed 0−1 programs with complete
recourse that we study. The constraints are modelled by compact and splitting variable representations
via scenarios.
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1 Introduction

1.1 Motivation and organization of the work

Very frequently, mainly in problems with a given time horizon to exploit, some
coefficients in the objective function and the right-hand-side (rhs) vector and, to a lesser
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extent, the constraint matrix are not known with certainty when decisions are to be made,
but certain information is available. The paper deals with important manufacturing
problems. With this objective we follow the classic taxonomy of planning/scheduling
problems in strategic, tactical and operational problems proposed by [11]. The models
of most of the problems require 0−1 variables and, so, we will use a modelling
methodology based on Stochastic Integer Programming (SIP). It has a broad field
of application, mainly, in production planning and logistics of transportation and
distribution, see [2–4, 6, 7, 38, 41, 52, 56, 57, 61, 73, 82], among others. See in [54] a
good survey of coordination mechanisms of supply chain systems.

Many of the SIP approaches represent the uncertainty by a set of scenarios. The
problem is formulated by the so-called Deterministic Equivalent Model (DEM), and
use Benders decomposition [10, 17, 20, 23, 36, 53, 73], Lagrangian decomposition
[22, 42, 45, 51, 72, 75–77, 84], disjunctive decomposition [63, 79], stochastic branch-
and-cut [78], Benders decomposition based branch-and-bound [80], branch-and-fix
coordination [3, 5, 7, 37] and stochastic dynamic programming [26], among others. See
also [74].

Most of the approaches deal with the optimization of the objective function expected
value alone. However, there are some approaches that additionally deal with mean-
risk measures, by considering semi-deviations [66], excess probabilities [76] and
conditional value-at-risk [70, 77] as risk measure-based functions to optimize. See also
[1, 7, 57, 74, 86, 89], among others.

The remainder of the paper is organized as follows. Sections 1.2 and 1.3 present the
objective functions min expected value and min mean-risk to optimize. Subsections 1.4
and 1.5 introduce the stochastic modelling paradigm to use in the rest of the work.
Section 2 presents the problem and modelling approach for strategic Supply Chain
Management determining the production topology and product selection via a two-
stage complete recourse mixed 0−1 DEM. Section 3 presents the strategic Multiperiod
Single Sourcing Problem (MPSSP) and its modelling as a two stage complete recourse
mixed 0−1 problem. Section 4 presents the tactical single level Production Planning
and Raw Material Supplying problem as a multi-stage mixed 0−1 problem. Section 5
deals with the difficult tactical multilevel Supply Chain Management problem as a multi-
stage complete recourse continuous problem. Section 6 presents the difficult operational
Stochastic Sequencing and Scheduling (S3) problem for assigning the operations to
a time schedule with limited resources as a multi-stage complete recourse pure 0−1
problem. Finally, Section 7 concludes.
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1.2 Objective function expected value

Consider the following deterministic model

min cx + ay

subject to (s.t.) Ax + By = b

x ∈ {0, 1}n, y ≥ 0,

(1)

where c and a are the n- and nc-row vectors of the objective function coefficients,
respectively, b is the column right-and-side rhs m-vector, A and B are the m × n and
m×nc constraint matrices, respectively, x and y are the n– and nc–vectors of the 0−1 and
continuous variables to optimize over a set of stages T , respectively, and m, n and nc are
the number of constraints, and the 0−1 variables and continuous variables, respectively.
The model must be extended in order to deal properly with the uncertainty in the values
of some parameters. Thus, an approach to model the uncertainty in the problem data is
needed.

Definition 1 A stage of a given time horizon is a set of time periods where the realization
of the uncertain parameters takes place.

Definition 2 A scenario is one realization of the uncertain parameters along the stages
of the given time horizon.

Definition 3 A scenario group for a given stage is the set of scenarios with the same
realization of the uncertain parameters up to the stage.
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Figure 1: Scenario tree
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Many approaches at present for stochastic programming and, certainly, SIP are
scenario-based approaches to deal with the uncertainty. To illustrate this concept, see
[4], consider Figure 1: each node in the figure represents a point in time where a decision
can be made. Once a decision has been made, some contingencies can occur (e.g., in this
example the number of contingencies is three for time period t = 2), and information
related to these contingencies is available at the beginning of the stage (here, time
period). This information structure is visualized as a tree, where each root-to-leaf path
represents one specific scenario and corresponds to one realization of the whole set of
the uncertain parameters. Each node in the tree can be associated with a scenario group,
such that two scenarios belong to the same group in a given stage, provided that they
have the same realizations of the uncertain parameters up to the stage. Accordingly with
the non-anticipativity principle, see [20, 71], both scenarios should have the same value
for the related variables with the time index up to the given stage.

Let the following notation related to the scenario tree:

T , set of stages along the time horizon. T− ≡ T − {|T |}.

Ω, set of scenarios.

G, set of scenario groups, so that we have a directed graph where G is the set of nodes.

Gt, set of scenario groups in stage t, for t ∈ T (Gt ⊆ G).

Ωg, set of scenarios in group g, for g ∈ G (Ωg ⊆ Ω).

γ(g), immediate ancestor node of node g, for g ∈ G.

Ng, set of scenario groups {k} such that Ωg ⊆ Ωk, for g ∈ G (Ng ⊂ G). That is, set of
ancestor scenario groups to scenario group g, including itself.

Ng, set of successor nodes to node g. That is, set of successor scenario groups to
scenario group g, including itself.

wg, weight factor representing the likelihood that is associated with scenario group g,
for g ∈ G. Note: wg =

∑
ω∈Ωg

wω, where wω gives the likelihood that the modeller
associates with scenario ω, for ω ∈ Ω, and

∑
ω∈Ω wω = 1 and

∑
g∈Gt

wg = 1∀t ∈ T .

Let ω′ be a given scenario in Ωg for g ∈ G.
Different types of models can be presented depending upon the type of recourse

to consider, namely, simple, partial and complete recourse. Let us consider the
minimization of the objective function expected value with complete recourse. In this
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case, the stochastic version of program (1) has the following DEM,

min QE =
∑
ω∈Ω

wω(cωxω + aωyω)

s.t. Axω + Byω = bω ∀ω ∈ Ω

(x, y) ∈ N

xω ∈ {0, 1}n, yω ≥ 0 ∀ω ∈ Ω,

(2)

where cω and aω are the row vectors of the objective function coefficients, xω and yω

are the vectors of the related variables and bω is the rhs vector for scenario ω, and N
is the so-called feasible space to satisfy the non-anticipativity constraints for the x– and
y–variables, such that

v ∈ N = {vωt |vωt = vω
′

t ∀ω ∈ Ωg, g ∈ Gt, t ∈ T −}, (3)

where v = (x, y) and vωt is such that vω = (vωt , ∀t ∈ T ).
Two approaches can be used to represent the constraints (3), namely, splitting

variable and compact representations. The first approach has two types of formulations.
One is so-called node-related (or scenario group related) representation. It requires to
produce siblings of the variables that have nonzero elements in the constraints that
belong to different stages. Another, so-called scenario-related representation, requires
siblings of all variables in the model. In both cases, the non-anticipativity constraints
must be explicitly added, but the second type preserves the model’s structure in a more
amenable way for the approach considered in this work; its model is as follows,

min QE =
∑
ω∈Ω

wω(cωxω + aωyω)

s.t. Axω + Byω = bω ∀ω ∈ Ω

vωt − vω
′

t = 0 ∀ω ∈ Ωg, g ∈ Gt, t ∈ T −

xω ∈ {0, 1}n, yω ≥ 0 ∀ω ∈ Ω.

(4)

The compact representation requires to model the relationships of the variables in
more detail. For illustrative purposes, assume that the variables vector vωt has nonzero
coefficients in the constraints related to the stages t and t + 1, such that the deterministic
model can be written as follows,

min cx + ay

s.t. A−t xt−1 + At xt + B−t yt−1 + Btyt = bt ∀t ∈ T

xt ∈ {0, 1}n
′
, yt ≥ 0 ∀t ∈ T ,

(5)
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where xt and yt are the vectors of the variables for stage t such that x = (xt ∀ ∈ T ) and
y = (yt ∀ ∈ T ), n′ gives the dimension of the vectors xt, and A−t , At, B−t and Bt are the
related constraint matrices. By slightly abusing the notation, the stochastic version of
the model can be expressed

min QE =
∑
g∈G

wg(cgxg + agyg)

s.t. A−t xγ(g) + At xg + B−t yγ(g) + Btyg = bg ∀g ∈ Gt, t ∈ T

xg ∈ {0, 1}n
′
, yg ≥ 0 ∀g ∈ G,

(6)

where cg and ag are the row vectors of the objective function coefficients, bg is the
rhs vector, and xg and yg are the vectors of the variables for scenario group g, such
that cg = cωt , ag = aωt and bg = bωt where, in general, dω = (dωt ∀t ∈ T ), for
ω ∈ Ωg, g ∈ Gt, t ∈ T .

1.3 Mean-risk objective function

The models that we have considered in the previous section aim to minimize the
objective function expected value. However, there are some other approaches that
additionally deal with the risk measures by also considering, e.g., semi-deviations [66],
excess probabilities [76] and conditional value-at-risk [77] as we mentioned above.
Those approaches are more amenable than the classical mean-variance schemes, mainly
in the presence of 0−1 variables.

Let φ denote a prescribed threshold for the excess probability, say, QP, such that

QP = P(ω ∈ Ω : cωxω + aωyω > φ). (7)

So, alternatively to min QE (2), the mean-risk function to minimize is as follows,

QE + ηQP, (8)

where η is a positive weighting parameter.
A more amenable expression of (8) for computational purposes, at least, can be

min
∑
ω∈Ω

wω(cωxω + aωyω + ηνω)

s.t. cωxω + aωyω ≤ φ + Mνω ∀ω ∈ Ω

νω ∈ {0, 1} ∀ω ∈ Ω,

(9)

where νω is a 0−1 variable, such that its value is 1 if the objective function value for
scenario ω is greater than threshold φ and, otherwise, is 0, and M is a parameter,



A. Alonso-Ayuso , L.F. Escudero and M.T. Ortuño 115

preferably, the smallest one which does not eliminate any feasible solution of the
stochastic program under any scenario.

1.4 Branch-and-Bound bounding

The instances of the mixed 0−1 DEM (4) can have such large dimensions that the
plain using of a state-of the-art optimization engine can make it unaffordable. Benders
Decomposition schemes can be used as we mentioned above. Alternatively, we can
execute a Branch-and-Bound (BB) scheme for optimizing the DEM, such that a
Lagrangean Decomposition approach can be used at each BB node by dualizing the
nonanticipativity constraints

vωt − vω
′

t = 0 ∀ω ∈ Ωg, g ∈ Gt, t ∈ T −, (10)

see references above. In any case, heuristic Lagrangeans should be used.
The Lagrangean model is as follows,

min
∑
ω∈Ω

wω(cωxω + aωyω + βνω) +
∑

t∈T −,g∈Gt ,ω∈Ωg

μωt (vωt − vω
′

t )

s.t. cωxω + aωyω ≤ φ + Mνω ∀ω ∈ Ω

Axω + Byω = bω ∀ω ∈ Ω

0 ≤ xω ≤ 1, 0 ≤ νω ≤ 1, yω ≥ 0 ∀ω ∈ Ω,

(11)

where μωt , ∀ω ∈ Ωg, g ∈ Gt, t ∈ T − denotes the row vector of the Lagrange multipliers
associated with the non-anticipativity constraints (10). Notice that the number of
Lagrange multipliers depends on the number of variables in the v–vector and the number
of scenarios in each group.

1.5 Scenario clusters and Twin Node Families

Alternatively to a Branch-and-Bound framework, we consider a variant of the Branch-
and-Fix Coordination (BFC) approach, such that it treats in a coordinate way the |Ω|
independent models (12) that result from the relaxation of the constraints (10).

min cωxω + aωyω + βνω

s.t. cωxω + aωyω ≤ φ + Mνω

Axω + Byω = bω

xω ∈ {0, 1}n, νω ∈ {0, 1}, yω ≥ 0.

(12)



116 On modelling planning under uncertainty in manufacturing

Moreover, Lagrangeans can be used on the top. BFC is specially designed to coordinate
the selection of the branching variable and branching node for each scenario-related
Branch-and-Fix (BF) tree, such that the relaxed constraints (10) are satisfied when
fixing the appropriate variables to either one or zero. The approach also coordinates and
reinforces the scenario-related BF node pruning, the variable fixing and the objective
function bounding of the subproblems attached to the nodes.

The presentation of the scheme below is an extension of the scheme presented in [5].
See [3,4,6,8] for applications to the two-stage mixed 0−1 problem, where the first stage
is only included by 0−1 variables, [37] for an application to the two-stage mixed 0−1
problem where the first stage is included by 0−1 variables and continuous variables
and [7] for an application to the multistage pure 0−1 problem.

For the presentation of the BFC approach, let Rω denote the BF tree associated with
scenario ω, Aω be the set of active nodes in Rω for ω ∈ Ω, I the set of indices of the
variables in any vector xωt , and (xωt )i the i-th variable in xωt , for t ∈ T , ω ∈ Ω, i ∈ I.

Definition 4 Two variables, say, (xωt )i and (xω
′

t )i are said to be common variables for
the scenarios ω and ω′, if ω,ω′ ∈ Ωg, g ∈ Gt, for ω � ω′, t ∈ T −, i ∈ I. Notice that two
common variables have nonzero elements in the non-anticipativity constraint related to
a given scenario group.

Definition 5 Any two nodes, say, a ∈ Aω and a′ ∈ Aω′ are said to be twin nodes with
respect to a given scenario group if the paths from their root nodes to each of them in
their own BF trees Rω and Rω

′
, respectively, either having not yet branched on/fixed their

common variables, if any, or having the same 0−1 value for their branched on/fixed their
common variables (xωt )i and (xω

′

t )i, for ω,ω′ ∈ Ωg, g ∈ Gt, t ∈ T −, i ∈ I.

Definition 6 A Twin Node Family (TNF), say, J f is a set of nodes such that any node
is a twin node to all the other node members in the family, for f ∈ F , where F is the set
of the families. Note: For practical reasons, all BF nodes belong to one TNF, at least,
even if its cardinality is one.

Definition 7 A candidate TNF is a TNF whose members have not yet branched on/fixed
all their common variables.

Definition 8 A TNF integer set is a set of TNFs where all x– and ν–variables take
integer values, there is one node per each BF tree and the nonanticipativity constraints
(xωt )i − (xω

′

t )i = 0 are satisfied, ∀ω,ω′ ∈ Ωg, g ∈ Gt, t ∈ T −, i ∈ I. Note: The cardinality
of each TNF is one in any integer set.

Let us consider the scenario tree and the BF trees shown in Figure 2, where xωh
denotes a given variable subscripted h under scenarioω and xh gives the generic notation
for the variable. For illustrative purposes, let the branching ordering be x1, x2, . . . , x6. We
can see that the first candidate TNF is J1, since the variables from stage 1 are common
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variables to all nodes. Additionally, J2 is a family that has already been branched on
the same value of the common variable x1. It is also a candidate TNF since the common
variable x2 has not been branched on (and, suppose that it has not been fixed either).
Similarly, J3 is another candidate TNF. However, J4 is not a candidate TNF since all the
common variables for their node members have been already branched on. The family
J4 is split into the families J5 and J6 to branch independently on the variables x3 and
x4, since the nodes 10 and 11 are twin nodes for these variables, while node 12 is not.
Finally, note that J7 and J8 are also candidate TNFs, since the variable x4 is not yet
branched and, on the other hand, it is a common variable for the node members of those
families.

It is clear that the relaxation of the non-anticipativity constraints (10) is not required
for all pairs of scenarios in order to gain computational efficiency. The number of
scenarios to consider in a given model basically depends on the dimensions of the
scenario related model (12).

Definition 9 A scenario cluster is a set of scenarios whose non-anticipativity constraints
are explicitly considered in the model.

The criterion for scenario clustering in the sets, say, Ω1, . . . ,Ωq, where q is the
number of scenario clusters, is instance dependent. However, we favour the approach
that shows higher scenario clustering for greater number of scenario groups in common.
In any case, notice that Ωp⋂Ωp′ = ∅, p, p′ = 1, . . . , q : p � p′ and Ω = ∪q

p=1Ω
p.

The model to consider for scenario cluster p = 1, . . . , q can be expressed by the
compact representation (13), where ω for d ∈ G|T | is the unique scenario such that
ω ∈ Ωd and, on the other hand, Gp = {g ∈ G : Ωg

⋂
Ωp � ∅}.

min
∑

d∈G|T |
⋂
Gp

wω
∑
g∈Nd

(
cgxg + agyg

)
+ β
∑
ω∈Ωp

wωνω

s.t.
∑
g∈Nd

(
cgxg + agyg

) ≤ φ + Mνω ∀d ∈ G|T |
⋂
Gp

A−t xγ(g) + At xg + B−t yγ(g) + Btyg = bg ∀g ∈ Gt

⋂
Gp, t ∈ T

xg ∈ {0, 1}n
′
, yg ≥ 0, ∀g ∈ Gp

νω ∈ {0, 1} ∀ω ∈ Ωp.

(13)

Remind thatNd gives the set of nodes in the ancestor path from leaf-node d to root node
1. Note: n′ ≡ |I|.

The scenario cluster models (13) are linked by the non-anticipativity constraints:

xgp − xgp′ =0 (14)

ygp − ygp′ =0, (15)

for p, p′ = 1, . . . , q : p � p′, where gp ∈ Gp, gp′ ∈ Gp′ and gp = gp′ .
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2 Strategic Supply Chain Management

2.1 Introduction

Supply Chain Management SCM is concerned with determining supply, production
and stock levels in raw materials, subassemblies at different levels of the given Bills
of Material (BoM), end products and information exchange through (possibly) a set
of factories, depots and dealer centres of a given production and service network to
meet fluctuating demand requirements, see [38, 43, 61], among others. Four key aspects
of the problem are identified, namely, supply chain topology, time, uncertainty and
cost. The uncertainty aspect of the problem is due to the stochasticity inherent in
some parameters for dynamic (multiperiod) planning problems; in our case, the main
uncertain parameters are product demand and net profit, raw material supply cost and
production cost. See [3, 5, 6].

The tactical supply chain planning problem consists of deciding on the best
utilization of the available resources included by vendors, factories, depots and dealer
centers along the time horizon, such that given targets are met at a minimum cost. It
assumes that the supply chain topology is given, see Section 5. The subject of this section
is the strategic planning for supply chains and, so, the problem consists of deciding on
the production topology, plant sizing, product selection, product allocation among plants
and vendor selection for raw materials. The objective is the maximization (in constant
terms) of the expected benefit given by the product net profit over the time horizon minus
the investment depreciation and operation costs.

There is an extensive literature on dynamic production/scheduling planning. See
hierarchical approaches in [21]; single level based systems in [49]; multi-level based
systems in [32]; systems for line balancing in [69]; and systems with lot sizing, inventory
holding and setup considerations in [28,81,91,94], among others. See in [25,81] models
for global optimization of multi-level supply chains. These references present models
and algorithmic schemes for deterministic environments. So, the uncertainty inherent to
most of the important parameters is not dealt with.

This section presents a two stage complete recourse mixed 0−1 model that considers
the uncertainty in the parameters. See other approaches in [2, 13, 24, 29, 35, 61, 62, 85,
90, 95], among others.

2.2 Problem Statement

A time horizon is a set of (consecutive and integer) time periods of non necessarily
equal length where the operations planning will be considered. A product is any item
whose production volume, location and scheduling is decided by the Supply Chain
Management (SCM). An end product is the final output of the supply chain network. A
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subassembly is a product that is assembled by the supply chain and, together with other
items, is used to produce other products. By the term product we will refer to both end
products and subassemblies. Their own BoM is a concern of the SCM. Multiple external
demand sources for a product (either an end product or a subassembly) are also allowed.
We will name raw material any storable item that is required in the products’ BoM,
but whose own BoM is not a concern of the SCM, i.e., the supply is only from outside
sources. Let us use the term component to describe any storable item that is required for
the production. We may observe that a subassembly is a component in a given BoM of
some other product. So, subassemblies and raw materials are components. The stock of
an item (either a product or a raw material) is its available volume at the end of a given
time period. Let us assume that the cycle time (i.e., lead time) of any unit product is
smaller than the length of the given periods in the time horizon.

We may notice that the BoM of a product is the structuring of the set of components
that are required for its manufacturing/assembly, see Figure 3. The BoM can be
described as a set of tiers, i.e., a set of levels in the supply chain. A so-called first tier
component in a BoM of a given product is a component that is directly required for its
manufacturing/assembly.

Let us term vendor any external source for the supplying of raw materials. A
warehouse within the supply chain can be associated to any item. A plant is a capacitated
physical location where the products are processed. The plants may have different
capacity production levels. The term plant investment for level k will be used for the
amount of a given currency that is needed for expanding a plant from, say, level k − 1
to level k. We may observe that the expansion to level k = 1 means that a plant will be
open.

Note that single-level production requires that the components of a given BoM are
assembled sequentially along the cycle time of the product, see Section 4. On the
contrary, multilevel production, as it is in supply chain environments, allows the subsets
of components to be assembled independently and then, the production resources can
be better utilized.
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Figure 3: Bill of Material



A. Alonso-Ayuso , L.F. Escudero and M.T. Ortuño 121

Some parameters are deterministic by nature or the optimal solution may not be very
sensitive to their variability. However, the product net profit and demand, as well as the
raw material cost (and, with less intensity, the production cost) are uncertain parameters,
mainly for long time horizons, as is usually the case for strategic planning. The available
information for the uncertain parameters is structured in a set of scenarios.

The goal of the strategic SCM problem that is addressed in this work, consists of
determining the production topology, plant sizing, product selection, product allocation
among plants and vendor selection for raw material. The objective is the maximization
(in constant terms) of the expected benefit given by the product net profit minus the
operation costs and the plant investment depreciation cost over the time horizon, by
considering the set of given scenarios for the uncertain parameters.

Two stages are considered in the problem. The first stage is devoted to the strategic
decisions involving plant sizing, product allocation to plants and raw materials vendor
selection. The second stage is devoted to the tactical decisions involving the raw
material volume to be supplied from vendors, product volume to be processed in plants,
stock volume of product/raw material to be stored in plants/warehouses, component
volume to be transported from origin plants/warehouses to destination plants and
product volume to be shipped from plants to market sources at each time period
along the time horizon, given the supply chain topology decided on at the first stage.
Obviously, the strategic decisions, besides satisfying their related first stage constraints,
will take into consideration the product net profit and operation cost related to the
tactical environment besides the investment depreciation cost.

We use the following notation.

Sets:

I, set of plants.
J , set of products (end products and subassemblies).
C, set of components (raw materials and subassemblies).
L, set of subassemblies (L = J

⋂
C).

R, set of raw materials.
E, set of items (raw materials and products).
V, set of vendors (or zones) for the supply of raw materials.
C j, set of first tier components required by product j, ∀ j ∈ J .
I j, set of plants that are available to process product j, ∀ j ∈ J , (I j ⊆ I), and set of

candidate vendors (or zones) for raw material j, ∀ j ∈ R, (I j ⊆ V).
Ti, set of time periods where a capacity expansion for plant i is allowed, ∀i ∈ I(Ti ⊆

T ), besides time period t = 0 (i.e., first stage).
Ki, set of capacity expansion levels for plant i, ∀i ∈ I.
M j, set of market sources for product j, ∀ j ∈ J .
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Deterministic parameters:

Ñ, maximum number of plants that can be open.
N̂, maximum number of end products that can be processed.
N j,N j, minimum and maximum number of plants where product j can be processed,

respectively, if any, ∀ j ∈ J , and minimum and maximum number of vendors for
raw material j, respectively, if any, ∀ j ∈ R.

N
i
, maximum number of products to be processed in plant i at any time period, ∀i ∈ I,

and maximum number of raw materials to be supplied by vendor (or zone) i,
∀i ∈ V.

Pt, available budget for plant capacity building/expansion at time period t, for t ∈
{0} ∪ T . Note: By convention, plant building (i.e., capacity expansion level k = 1)
can only occur at time period t = 0.

Xi
j, X

i

j, minimum and maximum volume of raw material j that can be supplied from
vendor i at any time period, respectively, if any, ∀i ∈ I j, j ∈ R, and minimum and
maximum volume of product j that can be processed in plant i at any time period,
respectively, if any, ∀i ∈ I j, j ∈ J .

S i
jt, S

i

j minimum and maximum volume of raw material j that can be in stock from
vendor (or zone) i at the end of time period t and at any time period, respectively,
if any, ∀i ∈ I j, j ∈ R, t ∈ T and minimum and maximum volume of product j
that can be in stock in plant i at the end of time period t and at any time period,
respectively, if any, ∀i ∈ I j, j ∈ J , t ∈ T .

oi
j, unit capacity usage of plant i by product j, ∀i ∈ I j, j ∈ J .

p
i
, minimum capacity usage of plant i at any time period, if any.

pk
i , production capacity increment from level k − 1 to level k in plant i, ∀k ∈ Ki, i ∈ I.

Ng j, volume of component g required by one unit of product j in its BoM, ∀g ∈ C j, j ∈
J .

Dm
jt, demand of product j from market source m at time period t, ∀m ∈ M j, j ∈ J , t ∈ T .

Cost parameters:

ak
it : budget required for the capacity expansion from level k − 1 to level k in plant i at

time period t, ∀k ∈ Ki, t ∈ {0} ∪ Ti, i ∈ I.
qk

it : depreciation cost (along the time horizon) of the investment ak
it related to the kth

capacity expansion level in plant i at time period t, ∀k ∈ Ki, t ∈ {0} ∪ Ti, i ∈ I.
pim

jt : net unit profit of selling product j from plant i to market source m at time period t,
including product price, local taxes, transport cost and others, ∀i ∈ I j,m ∈ M j, j ∈
J , t ∈ T .

ci
jt : processing unit cost of product j in plant i at time period t, ∀i ∈ I j, j ∈ J , t ∈ T ,

and supplying unit cost of raw material j from vendor i at time period t, ∀i ∈
I j, j ∈ R, t ∈ T .
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hi
jt : holding unit cost of product/raw material j in plant/warehouse i at time period t,
∀i ∈ I j, j ∈ E, t ∈ T .

bf i
g : transport unit cost of component g from plant/ warehouse f to plant i at any time

period, ∀ f ∈ Ig, g ∈ C j, i ∈ I j, j ∈ J .

The goal consists of determining the production topology (i.e., location of plants to
open), plant sizing, end product selection, product allocation among plants and vendor
selection for raw materials to maximize the total expected net revenue.

2.3 Scenario-based modelling

This section is devoted to the scenario version of the strategic supply chain management
model and, so, the goal is to obtain the optimal solution for a problem where all
parameters are known. The so-called step variables are considered. The basic idea for
this type of representation of the variables is taken from [18] for scheduling air traffic in
a network of airports.

Strategic variables:

α j, 0−1 variable such that its value is 1 if product/raw material j is selected for
processing/supplying, and 0 otherwise, ∀ j ∈ E.

βi
j, 0−1 variable such that its value is 1 if product/raw material j is processed in plant

i/supplied by vendor i, and 0 otherwise, ∀i ∈ I j, j ∈ E.
γk

it, 0−1 variable such that its value is 1 if plant i has capacity level k at least at period
t, and 0 otherwise, ∀k ∈ Ki, i ∈ I, t ∈ {0} ∪ T . Notice that the capacity level k can
be reached either at period t or earlier, for γk

it = 1.

Tactical variables:

xi
jt, volume of product j to be processed in plant i at time period t, ∀i ∈ I j, j ∈ J , t ∈ T ,

and volume of raw material j to be supplied from vendor i at time period t,
∀i ∈ I j, j ∈ R, t ∈ T .

si
jt, stock volume of product/raw material j in plant/warehouse i at (the end of) time

period t, ∀i ∈ I j, j ∈ E, t ∈ T .
ef ji

gt , volume of component g to be transported from plant/warehouse (origin) f to
plant (destination) i at time period t for processing product j, ∀ f ∈ Ig, g ∈ C j,

i ∈ I j, j ∈ J , t ∈ T .
yim

jt , volume of product j to be shipped from plant i to market source m at time period t,
∀i ∈ I j,m ∈ M j, j ∈ J , t ∈ T .
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Objective
Maximize the total net revenue, given by z2 − z1, see below.

Stage 1 (Strategic) Submodel

z1 =
∑
i∈I

∑
k∈Ki

qk
i0γ

k
i0 (16)

subject to
∑
i∈I

γ1
i0 ≤ Ñ (17)

γk−1
i0 ≥ γk

i0 ∀k ∈ Ki \ {1}, i ∈ I (18)∑
i∈I

∑
k∈Ki

ak
i0γ

k
i0 ≤ P0 (19)

∑
j∈J\L

α j ≤ N̂ (20)

α j ≤ αg ∀g ∈ C j, j ∈ J (21)

N jα j ≤
∑
i∈I j

βi
j ≤ N jα j ∀ j ∈ E (22)

βi
j ≤ γ1

i0 ∀i ∈ I j, j ∈ J (23)
∑

j∈J/i∈I j

βi
j ≤ N

i
γ1

i0 ∀i ∈ I (24)

∑
j∈R/i∈I j

βi
j ≤ N

i
∀i ∈ V (25)

α j ∈ {0, 1} ∀ j ∈ E (26)

βi
j ∈ {0, 1} ∀i ∈ I j, j ∈ E (27)

γk
i0 ∈ {0, 1} ∀k ∈ Ki, i ∈ I (28)

Constraints (17) ensure that the number of plants in the supply chain will not
exceed the allowed maximum. Constraints (18) ensure that the γ–variables are
well defined. Constraints (19) take into account the investment budget. Constraints
(20) restrict the number of end products for processing. Constraints (21) determine
the production/supplying of the first tier components of any product selected. By
considering the BoM requirements in the operation submodel, see below specifically
constraints (39), it is easy to see the redundancy of (21). However, this type of
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cuts reduces the linear programming (LP) solution space and, then, helps to tighten
the model. Constraints (22) conditionally lower and upper limit the number of
plants/vendors for each product/raw material. Constraints (23) restrict the processing
of products to those plants that are in operation. Constraints (24) and (25) ensure that
the number of products/raw materials for processing in plant/supplying from vendor i
will not exceed the allowed maximum.

We can observe that the rhs of (24) has been reinforced by multiplying it by γ1
io. On

the other hand, enlarging the model by appending the variable upper bound βi
j ≤ α j,

i ∈ I j, j ∈ E results in a 0−1 LP equivalent stronger model as well. However, given
the potentially high number of β-variables, the appending should only be performed for
violated cuts by the current LP solution.

Stage 2 (Operation) Submodel

Stage 2 submodel. Time period indexed profit function to maximize

z2 =
∑
t∈T

∑
j∈J

∑
i∈I j

∑
m∈M j

pim
jt yim

jt −
∑
t∈T

∑
j∈E

∑
i∈I j

(ci
jt x

i
jt + hi

jt s
i
jt)−

−
∑
t∈T

∑
j∈J

∑
g∈C j

∑
f∈Ig

∑
i∈I j

b f i
g e f ji

gt −
∑
i∈I

∑
k∈Ki\{1}

∑
t∈Ti

qk
it(γ

k
it − γk

i,t−1) (29)

Stage 2 submodel. Time period indexed capacity expansion constraints

γ1
i,t−1 = γ

1
it ∀i ∈ I, t ∈ T (30)

γk
i,t−1 = γ

k
it ∀k ∈ Ki \ {1}, t ∈ T \ Ti, i ∈ I (31)

γk
i,t−1 ≤ γk

it ∀k ∈ Ki \ {1}, t ∈ Ti, i ∈ I (32)

γk−1
it ≥ γk

it ∀k ∈ Ki \ {1}, i ∈ I, t ∈ T (33)∑
i∈I

∑
k∈Ki\{1}

ak
it(γ

k
it − γk

i,t−1) ≤ Pt ∀t ∈ T (34)

p
i
γ1

i0 ≤
∑

j∈J/i∈I j

oi
jx

i
jt ≤
∑
k∈Ki

pk
iγ

k
it ∀i ∈ I, t ∈ T (35)

Stage 2 submodel. Time period indexed operation constraints

si
j,t−1 + xi

jt = ρ
i
jt + σ

i
jt + si

jt ∀i ∈ I j, j ∈ E, t ∈ T (36)

Xi
jβ

i
j ≤ xi

jt ≤ X
i

jβ
i
j ∀i ∈ I j, j ∈ E, t ∈ T (37)
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S i
jtβ

i
j ≤ si

jt ≤ S
i

jβ
i
j ∀i ∈ I j, j ∈ E, t ∈ T (38)

∑
f∈Ig

e f ji
gt = Ng jx

i
jt ∀g ∈ C j, i ∈ I j, j ∈ J , t ∈ T (39)

∑
i∈I j

yim
jt ≤ Dm

jt ∀m ∈ M j, j ∈ J , t ∈ T (40)

yim
jt ≥ 0 ∀i ∈ I j,m ∈ M j, j ∈ J , t ∈ T (41)

ef ji
gt ≥ 0 ∀ f ∈ Ig, g ∈ C j, i ∈ I j, j ∈ J , t ∈ T (42)

where

ρi
jt ≡

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∑
�∈J/ j∈C�

∑
f∈I�

ei� f
jt , for j ∈ C

0, for j ∈ J \ L

and

σi
jt ≡

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∑
m∈M j

yim
jt , for j ∈ J

0, for j ∈ R

The constraints have been divided into two blocks, namely, capacity expansion related
constraints (30)-(35) and operation related constraints (36)-(42). Constraints (30) ensure
that the plants are only open at time period t = 0. Constraints (31) ensure that the
capacity expansion of the plants will only occur at permitted time periods. Constraints
(32) and (33) assure that the γ-variables are well defined. Constraints (34) take into
account the capacity expansion budget. Constraints (35) limit the production from
each plant to a conditional minimum, as well as to the maximum capacity given
by the expansion plan. Constraints (36) are the stock balance equations for products
and raw materials. Constraints (37) and (38) define the semi-continuous character of
the production and stock variables. These constraints imply the non-negativity of the
variables xi

jt and si
jt, ∀i ∈ I j, j ∈ E, t ∈ T . Constraints (39) define the BoM requirements

for the products. Constraints (40) ensure that the product shipment to the market sources
will not exceed the related demand.

The objective of the strategic SCM is to maximize the expected benefit over the
scenarios, given the uncertainty in the production/supplying cost ci

jt, product demand Dm
jt

and net profit pim
jt . So, the uncertain parameters and all the variables have the superindex

ω in the splitting variable representation for ω ∈ Ω, such that the following non-
anticipativity constraints are satisfied,
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αωj − αω′j = 0 (43)

βiω

j − βiω′

j = 0 (44)

γkω

i0 − γkω′

i0 = 0. (45)

Let an instance with |I| = 6 plants, |Ki| = 3 capacity levels each, |J| = 12 products,
where |L| = 8 are subassemblies, |R| = 12 raw materials, |V| = 24 vendors, |M j| = 2
markets for each of the products, |T | = 10 time periods and |Ω| = 23 scenarios. The
dimensions of DEM, compact representation are 69871 constraints, 56785 continuous
variables and 895 0−1 variables.

Given the large dimensions of the real-life instances, the plain use of state-of-the-art
optimization engines cannot provide the solution in affordable computing time. So, we
propose to use the Branch-and-Fix Coordination approach given in [3, 5].

3 Multi-Period Single Sourcing problem

3.1 Introduction

In this section we deal with a modelling of a two-stage stochastic mixed 0−1
problem where the continuous variables only appear in the second stage, the so-
called Multi Period Single Sourcing Problem (MPSSP) under uncertainty, where the
objective function is included by the mean function and the weighted excess probability
functional. Given a time horizon, a set of retailers and a set of facilities (e.g., production
plants), the MPSSP is concerned with assigning each retailer to a unique facility at
the beginning of the time horizon. The aim is to minimize the composite function of
the expected assignment, inventory holding and backlogging costs and the weighted
function of the probability of the excess cost with respect to a given target subject
to the satisfaction of retailers’ demands and the production capacity constraints at
the facilities. The assignment cost includes the production and distribution costs. The
problem can be viewed as an assignment problem where the goodness of the retailers’
assignment can be measured against its performance along the time horizon. There
are substantial differences between the procedures for solving the expected objective
function minimization and the mean-risk functional minimization. See [9].

3.2 Problem statement

Consider a production/distribution network of a single product including a set of
facilities and a set of retailers. Each facility can be interpreted as a production plant
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with an associated warehouse. Each retailer needs to be served by (assigned to) a
unique facility. The product demand and all costs along a given time horizon are
unknown, but it is assumed that the uncertainty can be represented by a set of scenarios.
Each production plant has a finite, known production capacity. We assume that each
warehouse has sufficient capacity to be able to store the cumulative excess production of
its corresponding production plant, even if this production plant produces to complete
capacity in each time period. We assume that the product can only be stored at the
facilities. Backlogging is also allowed at the facilities. The aim is to allocate the retailers
to the facilities so that the objective function value is minimized.

Sets:

I, set of facilities.
J , set of retailers.

Deterministic parameter:
bit, production capacity of facility i at time period t, for i ∈ I, t ∈ T .

Uncertain parameters:
Dωjt, product’s demand from retailer j at time period t under scenario ω, for j ∈ J ,

t ∈ T , ω ∈ Ω.
cωi j, assignment cost of retailer j to facility i under scenario ω, consisting of the total

production and distribution costs, for i ∈ I, j ∈ J , ω ∈ Ω.
h+ωit , unit inventory holding cost in facility i at time period t under scenario ω, for i ∈ I,

t ∈ T , ω ∈ Ω.
h−ωit , unit backlogging cost in facility i at time period t under scenarioω, for i ∈ I, t ∈ T ,

ω ∈ Ω.

Strategic variables:

xi j, 0−1 variable such that its value is 1 if retailer j is assigned to facility i and 0
otherwise, for ∀i ∈ I, j ∈ J

Tactical variables:
s+ωit , s

−ω
it , product’s inventory and backlogging in facility i at (the end of) time period t
under scenario ω, respectively, for i ∈ I, t ∈ T , ω ∈ Ω.

3.3 Mixed 0−1 DEM. Expected cost function minimization

The following is a compact representation of the mixed 0−1 DEM for the two-stage
stochastic MPSSP with complete recourse to minimize the expected cost.
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min QE =
∑
ω∈Ω

wω
(∑

i∈I

∑
j∈J

cωi j xi j +
∑
i∈I

∑
t∈T

(h+ωit s+ωit + h−ωit s−ωit )
)

(46)

subject to
∑
i∈I

xi j = 1 ∀ j ∈ J (47)

∑
j∈J

Dωjt xi j + s+ωit + s−ωi,t−1 ≤ bit + s+ωi,t−1 + s−ωit ∀i ∈ I, t ∈ T , ω ∈ Ω (48)

s+ωi0 = s−ωi0 = 0 ∀i ∈ I, ω ∈ Ω (49)

xi j ∈ {0, 1} ∀i ∈ I, j ∈ J (50)

s+ωit , s
−ω
it ≥ 0 ∀i ∈ I, t ∈ T , ω ∈ Ω. (51)

The objective function (46) consists of the expected assignment, inventory holding
and backlogging costs along the time horizon over the scenarios. Constraints (47),
together with constraints (50), ensure that each retailer is assigned to exactly one facility.
Constraints (48) ensure that the production capacity of the facilities is not violated.
Notice that the model (46)–(51) is always feasible.

We propose in [8] an equivalent formulation of the compact representation (46)–(51)
based on splitting the assignment variables. In particular, we replace each variable xi j by
xωi j ∀w ∈ Ω and append to the model the so-called non-anticipativity constraints (52) to
ensure that the assignments are not subordinated to any of the scenarios.

xωi j − xω+1
i j = 0 ∀i ∈ I, j ∈ J , ω ∈ Ω − {|Ω|}. (52)

Let an instance with |I| = 10 facilities, |J| = 150 retailers, |T | = 6 time
periods and |Ω| = 400 scenarios. The dimensions of DEM, compact representation
are 24150 constraints, 48000 continuous variables and 1500 0−1 variables. See in [8]
the specialization of the Branch-and-Fix Coordination approach used for minimizing
the expected cost as well as the computational experience. The proposed approach
outperform a state-of-the-art optimization engine as well as the approach based on the
average scenario.

3.4 Mixed 0−1 DEM. Mean-risk function minimization

The above model aims to minimize the objective function expected value. However,
one of the approaches that in addition deals with the risk measure considers the excess
probability functional [76] as we mentioned above.
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Recall that φ denotes a prescribed threshold for the excess probability, say, QP, such
that

QP = P(ω ∈ Ω : cωxω + hωsω > φ). (53)

where cω and hω are the row vectors of the objective function coefficients for the x and
s variables, respectively, So, alternatively to min QE (46), we propose to minimize the
mean-risk function

QE + ηQP. (54)

A more amenable expression of (54) for computational purposes at least, can be

min QE + η
∑
ω∈Ω

wωνω

s.t.
∑
i∈I

∑
j∈J

cωi j xi j +
∑
i∈I

∑
t∈T

(h+ωit s+ωit + h−ωit s−ωit ) ≤ φ + Mνω ∀ω ∈ Ω

νω ∈ {0, 1} ∀ω ∈ Ω,

(55)

where η, νω and M as above, see Section 1.3.
Let the synthesized model of the splitting variable representation of the mixed 0−1

DEM min (55) subject to (47)–(51) be expressed

ZIP = min
∑
ω∈Ω

wω
(
cωxω + hωsω + ηνω

)

s.t. cωxω + hωsω ≤ φ + Mνω ∀ω ∈ Ω∑
i∈I

xωi j = 1 ∀ j ∈ J , ω ∈ Ω

Dωxω + Bsω = b ∀ω ∈ Ω

xωi j − xω+1
i j = 0 ∀i ∈ I, j ∈ J , ω ∈ Ω − {|Ω|}

sω0 = 02m ∀ω ∈ Ω

xω ∈ {0, 1}mn ∀ω ∈ Ω

sω ≥ 0r ∀ω ∈ Ω

νω ∈ {0, 1} ∀ω ∈ Ω,

(56)

where cω and hω are as above, Dω is the time indexed constraint matrix for the product’s
demand from the retailers, B is the time indexed constraint matrix (+1,−1, 0) for the
product’s inventory and backlogging, b is the rhs vector, xω = (xωi j)i∈I, j∈J gives the m×n-
vector of the 0−1 variables, S ω gives the r-vector for the continuous variables, where
m = |I|, n = |J| and r = 2m|T |, for ω ∈ Ω, M and ν are as above and S ω0 gives the
vector for the continuous variables when t = 0.
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Consider an example with |I| = 10 facilities, |J| = 100 retailers, |T | = 6 time
periods and |Ω| = 100 scenarios. The dimensions of DEM, compact representation are
6200 constraints, 12000 continuous variables and 1100 0−1 variables. Due to the type
of objective function in model (56), the computational experience with plain use of a
general state-of-art optimization engine does not give good results, nor the plain use
of the Branch-and-Fix Coordination approach [5]. Moreover, the implementation of the
heuristic algorithm so-called the Fix-and-Relax Coordination introduced in [9] provides
better results in an affordable computing time.

4 Single level Production Planning and Raw Material Supplying under
4 Uncertainty

4.1 Problem statement

The planning of the production capacity utilization and the supplying of raw material
is one of the most important managerial tactical responsibilities in manufacturing. In
particular, the problem consists of deciding how much production and raw material
supply, and how much product demand loss and backlogging can be expected at each
period along a time horizon. The production capacity constraints, the product stock
limitations, some logistic constraints related to the production lot sizing and the product
demand requirements should be satisfied at a minimum cost.

There is a vast amount of literature on the deterministic version of the problem. See
the seminal paper of [91] for considering only continuous variables. See [16, 28, 60,
69, 81, 83, 94], among others, for considering lot sizing limitations and other logical
constraints (and, then, considering 0−1 variables). But there are not too many papers on
the stochastic version of the problem.

However, very frequently the production decisions must be made in the presence of
uncertainty in several important parameters, such as raw material and production cost,
product demand and resource availability along a multi-stage time horizon.

We present below a mixed 0−1 model for production planning and raw material
supplying, where the uncertainty is treated via a scenario tree based scheme, such that
the occurrence of the events is represented by a multi-stage scenario tree. In particular,
the 0−1 variables as well as the continuous variables appear at any stage along the time
horizon.

The unit cost of the raw material supplying is not constant but it is decreasing while
the supplying volume is increasing. This nonlinear separable function can be modelled
via a function with linear segments.
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4.2 Complete recourse mixed 0−1 DEM

The following is the notation for the sets and parameters used in the tactical production
planning model.

Sets:

I, set of raw materials.
I j, set of raw materials required by product j, for j ∈ J .
J , set of products.
R, set of resources.

Deterministic parameters:

N̂, maximum number of products to be produced in a single time period.
X jt, X j, minimum and maximum volume of product j that can be produced at time

period t, respectively, if any, for j ∈ J , t ∈ T .
S j, maximum volume of raw material or product j that can be in stock at any time

period, for j ∈ I
⋃
J .

σ j, fraction of the accumulated non-served demand that is lost.
or j, unit capacity consumption of resource r by product j, for r ∈ R, j ∈ J .
Ni j, volume of raw material i required by one unit of product j, for i ∈ I j, j ∈ J .
hj, unit holding cost of raw material or product j at any time period, for j ∈ I

⋃
J .

aj, unit demand backlog penalty for product j, for j ∈ J .
ρ j, unit lost demand penalty for product j, for j ∈ J .
f j, fixed cost to be incurred for producing product j at any time period, for j ∈ J .
di, delay time since the ordering of raw material i until its availability for processing,

for i ∈ I.

Uncertain parameters under scenario group g ∈ G:

Og
r , available capacity of resource r at time period t(g), for r ∈ R.

Dg
j , demand of product j at time period t(g), for j ∈ J .

cg
j , unit supplying cost of raw material j, for j ∈ I, and unit processing cost of product

j at time period t(g), for j ∈ J .
(cg

ip, aip), pair of points (ordinate supplying cost, abscissa supplying volume) to define
the supplying cost function of raw material i at time period t(g), where p = 1, . . . , q
is a given pair and q is the number of pairs.
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Variables under scenario group g ∈ G:

δg
j , 0−1 variable such that its value is 1 if product j is produced under scenario group g,

and 0 otherwise, for j ∈ J .
xg

j , ordering volume of raw material j at (the end of) time period t(g), for j ∈ I, and
production volume of product j at time period t(g), for j ∈ J .

sg
j , stock volume of raw material j, for j ∈ I and product j, for j ∈ J at (the end of)

time period t(g).
zg

j , served demand of product j at time period t(g), for j ∈ J .
yg

j , lost demand of product j from time period t(g), for j ∈ J .
bg

j , demand backlog of product j from time period t(g), for j ∈ J .

Raw material supplying cost function:

Alternative 1
The cost function is modelled by using the special ordered sets of type 2, or S2 sets.
These are sets of ordered continuous nonnegative variables, say, λg

ip for each pair
p = 1, . . . , q of which no more than two members may be nonzero with the further
condition that if there are many as two they must be adjacent, for g ∈ G, i ∈ I,
see [14, 15]. The formulation is as follows,

cg
i xg

i ≡
∑

p=1,...,q

cg
ipλ

g
ip ∀g ∈ G, i ∈ I

xg
i ≡
∑

p=1,...,q

aipλ
g
ip ∀g ∈ G, i ∈ I

∑
p=1,...,q

λg
ip = 1 ∀g ∈ G, i ∈ I

(57)

Alternative 2
The cost function is modelled by using the 0−1 variables, say, λg

ip for each pair
p = 1, . . . , q and the continuous variables xg

ip, for g ∈ G, i ∈ I. The formulation is
as follows,

cg
i xg

i ≡
∑

p=1,...,q

(
(cg

ip − cg
i,p−1)/(a

g
ip − ag

i,p−1)
)
xg

ip ∀g ∈ G, i ∈ I

where cg
i0 = 0 and ag

i0 = 0

xg
i ≡
∑

p=1,...,q

xg
ip ∀g ∈ G, i ∈ I

ag
i1λ

g
i2 ≤ xg

i1 ≤ ag
i1

(ag
i2 − ag

i1)λ
g
i3 ≤ xg

i2 ≤ (ag
i2 − ag

i1)λ
g
i2

. . .

0 ≤ xg
iq ≤ (ag

iq − ag
i,q−1)λ

g
iq

(58)
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The following is a compact representation of the DEM for the multi-stage stochastic
problem with complete recourse.

Objective
Determine the production, supplying and stock management policy to minimize the
expected production, supply and stock cost, the demand backlog penalty and the lost
demand penalty plus the production fixed cost over the scenarios along the time horizon,
subject to the constraints (60)- (69). Note: cg

j x
g
j and xg

j below can be represented by either
(57) or (58).

min
∑
g∈G

wg

( ∑
j∈I
⋃
J

[cg
j x

g
j + hjs

g
j] +
∑
j∈J

[ajb
g
j + ρ jy

g
j + f jδ

g
j]
)

(59)

Constraints

sγ(g)
i + xπ(g)

i =
∑

j∈J :i∈I j

Ni jx
g
j + sg

i ∀i ∈ I, g ∈ G (60)

∑
j∈J

or jx
g
j ≤ Og

r ∀r ∈ R, g ∈ G (61)

X j,t(g)δ
g
j ≤ xg

j ≤ X jδ
g
j ∀ j ∈ J , g ∈ G (62)∑

j∈J

δg
j ≤ N̂ ∀g ∈ G (63)

sγ(g)
j + xg

j = zg
j + sg

j ∀ j ∈ J , g ∈ G (64)

bγ(g)
j + Dg

j = zg
j + bg

j + yg
j ∀ j ∈ J , g ∈ G (65)

yg
j ≡ σ j(b

γ(g)
j + Dg

j − zg
j) ≥ 0 ∀ j ∈ J , g ∈ G (66)

0 ≤ sg
j ≤ S j ∀ j ∈ I

⋃
J , g ∈ G (67)

zg
j , b

g
j ≥ 0 ∀ j ∈ J , g ∈ G (68)

δg
j ∈ {0, 1} ∀ j ∈ J , g ∈ G (69)

where π(g) for a given i is the scenario group whose time period t(π(g)) is the ordering
time period of raw material i, so that t(π(g)) + di + 1 = t(g) and π(g) = Gt(π(g))

⋂
Ng.

Constraints (60) define the balance equations of the (internal) demand of the raw
materials. The knapsack constraints (61) ensure that the consumption of the resources
does not exceed the availability. Constraints (62) define the semi-continuous character of
the production volume. The cover induced constraints (63) do not allow to produce more
products in a single time period than the maximum allowed. Constraints (64) define the
production and served product demand. Constraints (65) define the product demand
balance equations, such that the demand deficit is either backlogged or lost. Constraints
(66) define the nonnegative product lost demand. Constraints (67) give the upper bounds
of the raw materials and product stock.
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The instances of the mixed 0−1 DEM (59)-(69) can have such large dimensions that
the using of state-of the-art optimization engines can make it unaffordable. Benders,
Lagrangian and Branch-and-Fix Coordination decomposition schemes can be used,
although the instances dimensions should be medium-sized.

It is well known that the deterministic version of model (59)-(69) is weaker than
the version of the model where the x–variables de-aggregate the production to satisfy
the demand at different time periods and, then, the s–variables are only implicit in the
model, see [94]. However, the stochastic version of the above model gives better results
than the other model. Its optimization can be performed by using a stochastic dynamic
programming approach (SDP), see [26].

Consider an example with |J| = 50 products, |R| = 10 resources, |T | = 13 time
periods, |G| = 855 scenario groups and |Ω| = 432 scenarios. The dimensions of DEM,
compact representation are 158805 constraints, 106650 continuous variables and 42750
0−1 variables. CPLEX, a state-of-the-art optimization engine, obtains a solution in a
time limit, 8 hours, that is 0.8 per cent better than the solution obtained by using a
SDP approach, but this one requires only 22.35 seconds. An instance with |J| = 100
products, |R| = 50 resources, |T | = 16 time periods, |G| = 11684 scenario groups and
|Ω| = 7776 scenarios cannot be solved by CPLEX (it does not produce any solution) in
the time limit, but a solution is provided by the SDP approach in 75 minutes. The DEM
dimensions are 4258204 constraints, 2727600 continuous variables and 1168400 0−1
variables.

5 Tactical multilevel Supply Chain Management (SCM)

5.1 Problem statement

A company with multiple suppliers at different production levels and multiple markets
may seek to allocate demand quantities to different plants over a given time horizon. Its
objective can be to determine the production, supplying and stock policy that best utilize
the available resources in the whole supply chain system.

Let the problem elements be those presented in Section 2.2. Additionally, let the
cycle time of a product be the set of consecutive and integer time periods that are
required for its completion from its release in the assembly line until its availability
for use. A production period is a time period in the cycle time of the product. Multiple
market sources for end-products are allowed. A LP modelling approach is presented
in [32] for the deterministic case. See also [25, 81], among others.

The uncertain parameters at the time of the planning are the product demand and
the lost demand fraction, the resource availability, the unit production cost and the raw
material supply cost. A two-stage stochastic LP model is introduced in [35]. It also
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includes some other features, such as different modes for component procurement, say,
standard and expediting modes, effective period segments where the components are
required in the BoM (a very interesting structure for modelling engineering changes),
alternate components of the so-called prime components, raw material and product
groups, etc. See also [6].

One of the important decisions to be made in tactical supply chain management
consists of determining the ordering time period for raw material supplying and product
manufacturing/assembling along the time horizon. There is usually a time interval
between ordering and delivering the components in the supply chain. In the case that
the interval is not subject to specific constraints, a deterministic model can consider that
the ordering time is the same as the delivering time. However, in the stochastic setting
the related time interval is important, since the production and market environments can
vary along the interval as we can also see in Section 4.

In this section we present a LP DEM for the multi-stage stochastic problem with
significant time interval between the component ordering and delivering times.

5.2 LP DEM

The following is additional notation for the sets and parameters used in the tactical
multilevel supply chain model.

Sets:

J , set of products.
JE, set of end products.
JS , set of subassemblies. Note: J = JE

⋃
JS .

DS j, set of market sources for end product j, for j ∈ JE. Note: It is assumed that no
subassembly has external demand, but the assumption can easily be removed.

I, set of components.
IR, set of raw materials. Note: I = JS

⋃
IR.

I j, set of first tier components for product j, for j ∈ J .
R, set of resources.
DS =

⋃
j∈J DS j.

Deterministic parameters market:

Bdt, maximum backlog from market source d that is allowed at time period t, for
d ∈ DS , t ∈ T .

τd, delivery lag time, i.e., number of time periods after its completion to deliver the
related product to market source d, for d ∈ DS . Note: It is assumed that the
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delivery time is the same for all plants where the product is produced, but the
assumption can easily be removed.

ρdt, σdt, unit lost demand penalty and backlog penalty for market source d at time period
t, respectively, for d ∈ DS , t ∈ T .

Bill of Material (BoM):

cj, cycle time of product j, for j ∈ J .
pi j, production time period in the cycle time of product j, where first tier component i

is needed, for i ∈ I j, j ∈ J .
Ni j, volume of first tier component i that is needed per unit of product j, for i ∈ I j, j ∈

J .
τi j, number of time periods required to deliver component i from its depot to the plant

where product j is manufactured/assembled, for i ∈ I j, j ∈ J . Note: It is assumed
that the delivery time is the same for all sites where the components and products
are produced, but the assumption can easily be removed.

Component availability:

Xit, maximum volume of raw material i that can be ordered at time period t, for
i ∈ IR, t ∈ T .

τi, number of time periods required to supply raw material i to its depot, for i ∈ IR.

Production and stock restrictions:

Z jt, maximum volume to release that is allowed for product j at time period t, for
j ∈ J , t ∈ T .

S jt, S j, minimum and maximum volume of item j that can be in stock at (the end of)
time period t, respectively, for j ∈ J

⋃
IR, t ∈ T .

or j, unit capacity consumption of resource r by product j, for r ∈ R, j ∈ J . It is
assumed that the resource is required at the time the product is released. Again
this restriction can easily be removed, see Section 6.

Cost coefficients:

hj, unit holding cost of item j at any time period, for j ∈ J
⋃
IR.

Uncertain parameters under scenario group g ∈ G:

Dg
d, demand from market source d at time period t(g), for d ∈ DS .

f g
d , lost fraction of nonserved accumulated demand from market source d, for d ∈ DS .
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Og
r , available capacity of resource r, for r ∈ R.

pcg
j , unit production cost for product j, for j ∈ J .

scg
i , unit supply cost for raw material i, for i ∈ IR.

Variables under scenario group g ∈ G:

zg
j , volume of product j that is released in the production line at (the beginning of) time

period t(g), for j ∈ J .
xg

i , volume of raw material i that is ordered at (the end of) time t(g), for i ∈ IR.
yg

d, volume of served demand from market source d that is being shipped at (the end of)
time period t(g), for d ∈ DS .

sg
j , stock volume of item j at (the end of) time period t(g), for j ∈ J

⋃
IR.

bg
d, backlog volume from market source d at (the end of) time period t(g), for d ∈ DS .
�gd, lost demand from market source d at time period t(g), for d ∈ DS .

The following is a compact representation of the DEM for the multi-stage stochastic
problem.

Objective

Determine the master production planning to minimize the expected production, supply
and stock cost plus the expected penalty due to demand loss and backlogging over the
scenarios along the time horizon, subject to the constraints (71)-(79).

min
∑
g∈G

wg

[∑
j∈J

pcg
jz

g
j +
∑
i∈IR

scg
i xg

i +
∑

j∈J ⋃IR

h js
g
j +
∑
d∈DS

(ρd,t(g)�
g
d + σd,t(g)b

g
d)
]

(70)

Constraints

sγ(g)
j + zn

j =
∑

d∈DS j

yg
d + sg

j ∀ j ∈ JE, g ∈ G (71)

where n ∈ Ng : t(n) = t(g) − cj + 1

sγ(g)
i + qn

i =
∑

j∈J :i∈I j

Ni jz
h
j + sg

i ∀i ∈ I, g ∈ G (72)

where qn
i ≡
⎧⎪⎪⎨⎪⎪⎩

zn
i , for i ∈ JS where n ∈ Ng : t(n) = t(g) − ci + 1

xn
i , for i ∈ IR where n ∈ Ng : t(n) = t(g) − τi + 1

h ∈ Ng : t(h) = t(g) − cj + pi j + 1

bγ(g)
d + Dg

d = ye
d + �

g
d + bg

d ∀d ∈ DS , g ∈ G (73)
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�gd ≡ f g
d (bγ(g)

d + Dg
d − ye

d) ≥ 0 (74)∑
j∈J

or jz
g
j ≤ Og

r ∀r ∈ R, g ∈ G (75)

0 ≤ zg
j ≤ Z j,t(g) ∀ j ∈ J , g ∈ G, (76)

S j,t(g) ≤ sg
j ≤ S j ∀ j ∈ J ∪ IR, g ∈ G (77)

0 ≤ xg
i ≤ Xi,t(g) ∀i ∈ IR, g ∈ G (78)

0 ≤ bg
d ≤ B

g

d ∀d ∈ DS , g ∈ G (79)

where e ∈ Ng : t(e) = t(g) − τd. Notice that ye
d gives the served demand that is shipped

at time period t(e) (under scenario group e) to satisfy the product demand from market
source d at time period t(g) under any scenario in group Gt(g)

⋂
Ng.

Constraints (71) and (72) are the stock balance equations for the end products and
the components, respectively. Constraints (72) define the BoM requirements. Notice that
t(h) gives the time period for the release of product, say, j under scenario group h such
that h belongs to the ancestor path Ng. Constraints (73) and (74) define the balance
equations of the product demand. Constraints (75) ensure that the consumption of the
resources (to be used at the release time of the products) does not exceed its availability.
Finally, the system (76)-(79) restricts the variables.

The compact representation (70)-(79) can be transformed in a splitting variable
representation, such that the variable, say, xg

i is replaced with its sibling, say, xωit for
t = t(g), ω ∈ Ωg, etc. Additionally, the non-anticipativity constraints (80)-(84) are
appended to the model, for ω,ω′ ∈ Ωg : ω � ω′, g ∈ Gt, t ∈ T .

xωit − xω
′

it = 0 ∀i ∈ IR (80)

zωjt − zω
′

jt = 0 ∀ j ∈ J (81)

sωjt − sω
′

jt = 0 ∀ j ∈ J ∪ IR (82)

yωdt − yω
′

dt = 0 ∀d ∈ DS (83)

bωdt − bω
′

dt = 0 ∀d ∈ DS . (84)

The instances of the compact representation (70)-(79) can have such big dimensions
that decomposition approaches are needed. For illustrative purposes let the dimensions
of a real-life instance from the automation sector: |T | = 13 time periods, |JE| = 23
end products, |JS | = 104 subassemblies, |IR| = 5821 raw components and |DS | =
525 market sources. The related dimensions of the compact DEM for the two-stage
stochastic version with two periods in the first stage, 11 periods in the second stage and
|Ω| = 100 scenarios are 2893683 constraints, 6014547 variables and 83304251 nonzero
constraint elements.

See in [33] the Lagrangean based approach that we propose for solving multi-stage
Stochastic Linear Programming problems.
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6 Stochastic Sequencing and Scheduling problem

6.1 Introduction

Sequencing and Scheduling Problems (SSPs) arise in many practical circumstances
when planning the utilization of a production/manufacturing system. Many problems
are basically optimization problems having the following form: given a set of operations
to be executed along a time horizon, find a schedule to minimize the value of a
given objective function subject to various constraints. Typical elements are: limited
availability of the resources, multiperiod operations, subsets of jobs with exclusivity
constraints, precedence relationships in the execution of the operations, etc. See [6, 7].

This type of problems can be formulated as 0−1 models and fall into the category
of NP−hard problems. Traditional branch-and-bound methods have proved to be very
inefficient to solve them. Instead, heuristic and meta-heuristic approaches have been
found to obtain satisfactory solutions for special classes of this type of problems, such as
problems with single period operations and special objective functions (e.g., makespan
minimization). See [12, 44] for a survey and research potentials in project scheduling
under uncertainty, among others.

On the other hand, there is a vast amount of literature on the polyhedral analysis
of the problem and, then, on tightening 0−1 models and facet defining inequalities
identification for the deterministic version of the problem, see [93, 94], among others.

Application cases of the SSP considered in this paper can be found in investment
planning, see [39], and production units maintenance planning, see [30], besides the
proper application in production/manufacturing, see [31, 93, 94], among others. All
of these works only consider the deterministic version of the problem. However,
very frequently the resource availability as well as the resource consumption by
the operations execution and, as a consequence, their execution cost are uncertain
parameters.

6.2 Problem statement

Consider a set of jobs, each of them comprises a set of operations to be executed
along the given time horizon. Each operation has a time window for its execution. The
operations must be executed during a given number of consecutive so-called production
time periods without preemption. Some jobs are alternative in the sense that one and
only one of these jobs can be executed. Let us call a class to a set of alternative jobs. If a
job is executed then the operations of the other jobs that belong to the same class cannot
be executed (i.e., they cannot be assigned).

It is assumed that some operations have assigned a dedicated machine (or working
station) for their execution. Let us say that the operations with the same dedicated
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machine belong to the same type, such that the simultaneous execution of these
operations is not allowed. A setup in a dedicated machine can be required between the
consecutive execution of two operations. It is allowed that one operation can belong to
more than one type.

There are precedence relationships in the execution of the operations. They can be
expressed by a directed acyclic graph, where the nodes are associated with the operations
and the arcs refer to the existence of a direct precedence between the execution of the
operations represented by the from-node and the to-node of the arcs. The precedences
have the transitivity property. Two types of precedences are considered, such that a
minimum number (type 1) and a maximum number (type 2) of time periods are required
between the starting of the executions.

A set of resources with uncertain availability along the time horizon is considered.
The operations’ execution can require resource consumption in each of its production
periods. The resource amount to be utilized depends on several factors and it is also an
uncertain parameter. Although the resource availability is uncertain at the planning time
period, it is assumed to be known at the (beginning of the) period where the resource is
required. However, the resource consumption by the operations execution is only known
at the consumption time, what means that the occurrence of the resource consumption
scenario at a given time period is not known in advance.

The goal consists of determining the time period at which each operation will start
its execution (i.e., assignment), if any, such that a set of constraints is satisfied along
the scenario tree. The objective function to minimize consists of the expected execution
cost of the operations over the scenarios.

6.3 Pure 0−1 DEM

The following is additional notation for the sets and parameters to be used in the section.

Sets:

R, set of resources.
I, set of operations.
J , set of jobs.
C, set of classes of jobs.
Ti, set of feasible time periods to start the execution of operation i, for i ∈ I (Ti ⊆ T ).
I j, set of operations included in job j, for j ∈ J (I j ⊆ I).
Jc, set of jobs that belong to class c, for c ∈ C (Jc ⊆ J).
M, set of types of operations.
Im, set of operations that belong to type m, for m ∈ M (Im ⊆ I).
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A1 (resp., A2), set of ordered pairs of operations with precedence relationship type 1
(resp., type 2).

Deterministic parameters:

ei, �i, earliest and latest time periods for starting the execution of operation i,
respectively, for i ∈ I. Note: ei, �i ∈ Ti and Ti ⊆ {ei, ei+1, . . . , �i}.

di, number of the so-called production time periods that are required for the execution
of operation i, for i ∈ I. Note: t ∈ Ti implies that 1 ≤ t ≤ |T | − di + 1.

dm, setup time between the ending and the starting of the execution of two operations
that belong to type m, for m ∈ M.

p1
ab and p2

ab, minimum and maximum number of time periods (so-called time lag)
between the starting of the execution of the operations a and b, for (a, b) ∈ A1

and (a, b) ∈ A2, respectively.

Uncertain parameters under scenario group g ∈ G:

og
rih, amount of resource r that is required by the execution of operation i during its hth

production time period under scenario group g, for r ∈ R, h = 1, 2, . . . , di, i ∈ I.
Og

r , available capacity of resource r at time period t(g), for r ∈ R.
cg

i , execution cost of operation i at time period t(g), for i ∈ I.

Among the different alternatives to model the problem, we use the step variable
based formulation given in [18].

Strategic variables:

yj, 0−1 variable such that its value is 1 if job j is selected for execution, and 0 otherwise,
∀ j ∈ J .

Sequencing and scheduling variables:

zg
i , 0−1 variable such that its value is 1 if operation i starts its execution by time period

t(g) under scenario group g, and 0 otherwise, ∀g ∈ Gt, t ∈ T : ei ≤ t, i ∈ I.

The execution time interval for operation i is t(g), t(g)+ 1, . . . , t(g)+ di − 1 for zg
i = 1

and zγ(g)
i = 0.

The following is a compact representation of the DEM for the multi-stage stochastic
problem with complete recourse.
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Objective
Determine the execution sequencing and scheduling of the operations in order to
minimize the expected cost of the operations’ execution over the scenarios along a time
horizon, subject to the constraints (86)– (96). It can be expressed

min
∑
i∈I

∑
t∈Ti

∑
g∈Gt

wgc
g
i (z

g
i − zγ(g)

i ). (85)

Constraints
∑
j∈Jc

y j = 1 ∀c ∈ C (86)

zg
i = yj ∀g ∈ G�i , i ∈ I j, j ∈ J (87)

zγ(g)
i ≤ zg

i ∀g ∈ Gt, t ∈ Ti \ {ei} (88)

zγ(g)
i = zg

i ∀g ∈ Gt, t ∈ T \ Ti : ei < t < �i, i ∈ I (89)

zg′

i = zg
i ∀g′ ∈ Ng \ {g}, g ∈ G�i , i ∈ I (90)∑

i∈Im

ρit(z
g
i − μitz

g′

i ) ≤ 1 ∀m ∈ M, g ∈ Gt, t ∈ T (91)

where ρit ≡
⎧⎪⎪⎨⎪⎪⎩

1, ei ≤ t < �i + di + dm

0, otherwise

μit ≡
⎧⎪⎪⎨⎪⎪⎩

1, ei + di + dm ≤ t

0, otherwise

g′ = Ng ∩ Gt−di−dm

zg′

a ≥ zg
b ∀g ∈ Gt, t ∈ Tb : t < �a + p1

ab, (a, b) ∈ A1 (92)

where g′ = Ng ∩ Gt−p1
ab

zg
a ≤ zg′

b ∀g′ ∈ Ng ∩ Gt+p2
ab
, g ∈ Gt, t ∈ Ta : t < �b − p2

ab, (a, b) ∈ A2

(93)∑
i∈I

∑
k∈Fi

og
rih(z

k
i − αitz

γ(k)
i ) ≤ Og

r ∀r ∈ R, g ∈ Gt, t ∈ T (94)

where Fi ≡
{
k ∈ Ng : t(k) ∈ Ti, t − di < t(k)

}

αit =

⎧⎪⎪⎨⎪⎪⎩
1, ei < t

0, otherwise

h = t − t(k) + 1
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zg
i ∈ {0, 1} ∀g ∈ Gt, t ∈ T : ei ≤ t, i ∈ I (95)

yj ∈ {0, 1} ∀ j ∈ J . (96)

Constraints (86) force the assignment (i.e., the execution) of one and only one job
for each class.

Constraints (87) force the execution of all operations that are required by the selected
jobs under any scenario, and prevent the execution of the operations that are required by
the jobs that have not been selected. Notice that it is enough that g ∈ G�i in the domain
of the constraints.

Constraints (88) ensure that the value 0 for the variable zg
i is propagated through

the ancestor path from node g down to node k for t(k) = ei in the scenario tree, for
t(g) ∈ Ti \ {ei}. The constraints also ensure that the value 1 for the variable zγ(g) is
propagated through the subtree with root node γ(g) in the scenario tree.

Constraints (89) avoid the operations starting their execution in non-feasible time
periods, independently of the scenario being considered. Note: From a computational
point of view, the constraints (89) are not included in the model and the variable zg

i ,

g ∈ Gt, t ∈ T \ Ti : ei ≤ t < �i is replaced with the variable zg
i , g ∈ Gτ, τ ∈ Ti in any other

constraint, where τ = max t′ ∈ Ti : t′ < t.
Constraints (90) formally state the propagation of the z-value to the scenario groups

in the subtrees whose root nodes are the latest start of the operations’ execution. Note:
From a computational point of view, the constraints (90) are not included in the model
and the variable zg′

i , g
′ ∈ Ng \ {g} is replaced with the variable zg

i , g ∈ G�i in any other
constraint. Let us name configuration system to the constraint system (86)–(90) and
(95)-(96).

Constraints (91), jointly with the configuration system, prevent the assignment of
more than one operation of a given type at the same time period. Notice that the
difference zg

i −zg′

i equals 1 (and, so, the assignment of operation i prevents the assignment
of any other operation of the same type at time period t(g)) if operation i starts its
execution in the time interval given by the periods t(g) − di − dm + 1 and t(g).

Constraints (92) and (93) ensure that the precedence relationships types 1 and 2 are
not violated, respectively. By constraints (92), if operation b starts at time period t(g),
then operation a must start p1

ab periods earlier, at least, under the given ancestor scenario
group from Gt(g)−p1

ab
, for (a, b) ∈ A1. By constraints (93), if operation a starts at time

period t(g), then operation b must start p2
ab periods later, at most, under any successor

scenario group from Gt(g)+p2
ab
, for (a, b) ∈ A2.

Constraints (94), jointly with the configuration system, ensure that the consumption
of the resources does not exceed their availability.

The compact representation (85)–(96) can also be transformed into a splitting
variable representation by replacing the y– and z–variables with their respective siblings,
where yj is replaced with yωj ∀ω ∈ Ω and zg

i is replaced with zωit ∀ω ∈ Ωg, for t = t(g),
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so that there is a submodel for each scenario ω ∈ Ω. The non-anticipativity constraints
(97)-(98) are appended to the new model.

yωj − yω
′

j = 0 ∀ω,ω′ ∈ Ω : ω � ω′, j ∈ J (97)

zωit − zω
′

it = 0 ∀ω,ω′ ∈ Ωg : ω � ω′, g ∈ Gt, t ∈ T : ei ≤ t, i ∈ I. (98)

Consider an example with |C| = 20 classes, |J| = 31 jobs, |I| = 399 operations,
|T | = 7 time periods, |Ω| = 128 and |G| = 255 scenario groups. The dimensions of
DEM, compact representation are 208170 constraints and 185015 0−1 variables.

From a practical point of view, due to the large-scale of the problem and its
combinatorial nature, it cannot be solved up to optimality in affordable computing
time but for moderated size instances, mainly in the number of scenarios. So, efficient
heuristic approaches should be used. We consider in [7] an heuristic based on a
mixture of a Fix-and-Relax approach, see [28, 39], for providing good solutions
to the scenario–related sequencing and scheduling problem, and a Branch-and-Fix
Coordination scheme, see [3, 5], for coordinating the branching phase in the scenario
cluster–related Branch-and-Fix trees, so that the constraints (97)–(98) are satisfied. The
results reported in [7] for large-scale instances are very encouraging, outperforming a
state-of-the-art optimization engine.

7 Conclusions

We have presented some modelling schemes in supply chain management and
production planning under uncertainty by using a sample set of problems. The
uncertainty is represented by a scenario tree. All the problems lie within the complete
recourse environment. In any case, the presence of 0−1 variables is very frequent,
mainly, for modelling the either-or decisions and the operations assignment, sequencing
and scheduling. Two approaches can be used depending basically upon the amount of
information that is available on the uncertain parameters, namely, two-stage Stochastic
Integer Programming (SIP) (where the continuous variables only appear in the second
stage) and multi-stage SIP (where the continuous variables and the 0−1 variables appear
at any stage). There are good exact solutions for the two-stage and good heuristic
approaches for the multi-stage, but there are very few exact algorithms for large-scale
multi-stage problems. In any case, the SIP discipline has been proved to be essential for
modelling and solving real-life Supply Chain and production planning and assignment
problems.
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strategic supply chain planning based on stochastic 0−1 programming. Journal of Global Optimiza-
tion, 26, 97-124.

[4] Alonso-Ayuso, A., Escudero, L.F., Garı́n, A., Ortuño, M.T. and Pérez, G. (2005). On the product
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[36] Escudero, L.F., Garı́n, A., Merino, M. and Pérez. G. (to appear 2007). On multistage Stochastic
Integer Programming for incorporating logical constraints in asset and liability management under
uncertainty. Computational Management Science.

[37] Escudero, L.F., Garı́n, A., Merino, M. and Pérez, G. (2007). On structuring Mortgage-Backed
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This paper shows how to approach uncertainty in various aspects of manufacturing,
both at a strategic and at a tactical level. It considers a number of specific problems,
from strategic to tactical multilevel supply chain management, with in between single
sourcing, production planning, raw material supplying, and sequencing and scheduling.
All involve a number of critical decisions that must often be made in a very uncertain
environment. After presenting a broad picture of possible ways to represent uncertainty
via scenarios and scenario trees, and two possible objectives, namely minimizing
expected costs or maximizing expected benefits, and minimizing a mean-risk function,
the authors turn to specific problems. These are often complicated by the fact that in
addition to uncertainly, they contain 0-1 variables, which would make them difficult
to solve even in a deterministic environment. For each problem, the authors carefully
define the data/decision variables and present models for complete recourse for 2-
stage or multi-stage Stochastic Integer Programming. In most instances, then, they refer
the readers to their numerous contributions to the field, or to some other papers in
the literature, for more detailed solution approaches, such as Benders, Lagrangean or
Branch-and-Fix coordination decomposition, or Fix-and-Relax schemes.

This paper is thus a very nice introduction to modelling for several important
problems in manufacturing under uncertain conditions, and the reader is directed to a
number of important papers on the topic, making it at the same time a valuable survey
paper.

I have three questions for the authors.

1. Much of the optimization is related to choosing a set of scenarios. While scenario
generation schemes may present themselves naturally in problems related to, say,
interest rates, for the problems considered here, it is not clear how to generate
them. Yet, the results obtained will probably critically depend upon this initial
decision. Could the authors discuss how they would suggest generating scenarios,
including their number, and how they think this choice will affect the solutions to
their models? Are more scenarios better? In general, what characterizes a ”better
set” of scenarios?

2. In this as well as in some other papers on stochastic optimization, one finds
statements to the effect that a certain approach “outperforms” other approaches,
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or that a particular model “gives better results” than another model. Could the
authors expand on this concept?

3. What other alternative approaches are there? In particular, what role do/can
approximation algorithms play for solving such problems?
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This paper contains a splendid review of the supply chain planning under uncertainty.

A family of planning models is introduced taking into consideration the taxonomy
of planning problems introduced by Anthony and covering Strategic, Tactical and
Operational decision making.

The models are carefully constructed and clearly set out. The models provide
considerable details encompassing bill of materials, supply chain topology, vendor
contributions and cost uncertainties in the supply side and depots, and demand
uncertainties in the demand side.

At the modelling level the authors consider both the expected value and the mean-risk
as objective functions of their models. The consideration of the risk objective is quite
insightful. It is our opinion that in future supply chain management models will take
into consideration the risk exposure of the raw material supply, their volatile prices and
risk of disruption in the network. Indeed a special issue (January 2008) of the Journal of
the Operational Research Society (GB) has been edited by us and devoted to this topic:
Risk Based Methods for Supply Chain Planning and Management.

The authors quite justifiably highlight the importance of computational algorithms
in general and stochastic integer programming in particular.

In our paper (Chandra, Lucas and Mitra, 2008) we consider a strategic supply chain
planning problem formulated as a two-stage Stochastic Integer Programming (SIP)
model. The large-scale SIP problem is solved through Benders’ decomposition, and we
approximate the probability distribution of the random varibles using the Generalised
Lambda distribution and through simulations, calculate the performance statistics and
the risk measures for the two models, namely the expected-value of the here-and-now.

In conclusion, the authors Alonso-Ayuso, Escudero and Ortuno have made a
substantial contribution and provided insights into supply chain modelling under
uncertainty and risk which is going to be the central theme of the future developments
in this domain.
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1 Introduction

This paper presents and discusses several formulation approaches to relevant production
planning problems, with a particular emphasis on the treatment of uncertainty and risk
within the corresponding frameworks.

These are relevant and timely contributions, presented in a careful and detailed
manner. While, as illustrated in the references for the paper, a significant amount of
work has been carried out on the modelling of production and logistics problems for
the deterministic case, a more limited effort has been devoted to the treatment of the
uncertainty in these problems. In many practical applications within this context, issues
related to the robustness of the solutions are very relevant; in a production world of small
inventories and tight schedules, unforeseen disruptions can have a large impact on final
results for any company. In this production context, robustness is possibly much more
relevant than financial risk as a criterion to be modelled.

Many improvements have taken place in recent years both regarding solvers
for mixed integer programs and in approximation and decomposition algorithms,
including several contributions from the authors ([6] or [10], for example). These
improvements have brought the corresponding problems much closer to gaining
widespread consideration within normal production planning processes. Perhaps in the
near future it will be possible to see tools based on these models, and the corresponding
solution techniques, incorporated as part of the most common decision support systems
for production planning and business software in general. By giving a complete,
clear and coherent presentation of these problems, this paper provides a significant
contribution to this end.

2 Some comments

The model descriptions and comments presented by the authors unavoidably give rise to
many related and interesting issues. While they do not directly affect the contents of the
paper, they may help to provide additional insights on these models and their practical
application.
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• One important issue that might merit some additional discussion is that of two-
stage vs. multi-stage formulations for the uncertainty. This modelling decision
has implications on several aspects: the choice of a solution procedure, as
any decomposition approach would depend significantly on the structure of the
resulting problem; the uncertainty representation through the scenario trees: while
its dependence structure would be in principle richer in the multi-stage setting, it
would also require additional computational effort to generate and to handle; and
the quality of the solution, as a better adapted set of values of the variables would
potentially provide a more realistic solution.
In the paper, the two-stage approach is preferred in most cases, except for the
Production Planning and Raw Material Supplying problem and the Stochastic
Sequencing and Scheduling problem. Nevertheless, in both these cases the
temporal structure of the decisions is similar to that of the other problems,
including both decisions taken now (without considering any future information)
and future decisions adapted to the uncertainty, that can be reevaluated and
optimized again later on.
It is not clear that there is any significant advantage gained by not treating these
problems also as two-stage ones. This approach would not seem to compromise
much of the quality of the solutions, and might simplify (and homogenize) the
modelling, while presenting computational advantages.

• In most approaches to uncertainty planning in the literature, the uncertain values
are associated to highly variable parameters, such as prices/costs or demand. This
seems reasonable for everyday situations where the variability in the optimal
decisions is mostly associated to these values, but in the production setting
considered in the paper it could be argued that it would be as important to take into
account the variability associated to unforeseen changes in capacity availability.
For example, in model (10)–(22) both Pt and N̄i could be treated as stochastic
parameters, and similarly for X̄i

j in (23)–(36).
This consideration raises an interesting issue: the treatment of low-probability
situations within a scenario framework, such as those indicated above, as their
treatment may have a significant impact on the quality of the solution. Using a
MonteCarlo simulation analogy, there may be a problem with the variance of the
estimates, as in principle only a few of these situations would be considered within
the usual scenario generation approaches. Variance reduction techniques, such as
importance sampling, could be helpful to improve the quality of the solutions in
these cases.
Additionally, scenario-tree reduction techniques based on moment-approximation
may give results that are not particularly precise, as they are fitting a distribution
for the input variables not knowing in advance which parts of that distribution
are more relevant for the precise characterization of the distribution for the output
variables.
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Other approaches, such as dynamic scenario generation strategies, may be able
to adapt to these situations and provide better answers in these settings (low-
probability but significant events). Of course, they would also have an impact on
problem formulation and solution techniques, as the structure of the problem could
be modified from iteration to iteration, and they may present significant difficulties
in multi-stage settings.

• Another question raised by the models in the paper is related to its prevalent use of
an objective function based on a profit or cost criterion, possibly augmented with
the inclusion of measures for excess probabilities associated with them.
In manufacturing problems it is quite often the case that the goal is obtaining
production/distribution schedules that are robust, that is, do not require much
modification in the presence of perturbations. Also, in the uncertainty setting
contemplated in the paper, other criteria related to quality become also relevant
for the objective function. This raises the issue of the use of different objective
functions/risk measures in this context.
For example, and regarding the objective functions considered in several of the
models, such as for example that of Section 2, it might be reasonable to include
in them explicit measures of the delay in the satisfaction of the demand. In that
particular case, a possible modification of the model might introduce variables
covering separately the demand whose satisfaction has been delayed k periods at
time t, and updating them through an expanded conservation law similar to (30).
In the case of the model in Section 6 it might be of interest to relax its formulation
to allow for delays (that would otherwise be associated with infeasible solutions in
the formulation presented in the paper), and to account for the number of periods
that the execution extended beyond the latest time period allowed to complete it.
This would require an extensive and complex modification of the model.
Note that under uncertainty infeasibility becomes a more likely end result for
formulations that are not sufficiently flexible to accommodate extreme outcomes
in the values of the variables.
The definition of robust solutions is also very relevant in this context. The
objective function could include measures for the changes in solutions for different
scenarios, and look for those that require smaller modifications between scenarios.
For example, this could be done by considering the deterministic solutions for each
scenario as references. Of course, a question open to debate would be the choice
of an appropriate metric to compare these changes.

• On a more specific topic, and regarding the models used in Sections 2 and 4
(Strategic Supply Chain Management and Single Level Production Planning), their
treatment in an uncertain setting would suggest the possibility of giving explicit
consideration within the model to futures and other instruments, to hedge some
purchasing decisions against price (and availability) changes. In practice, this
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would make particular sense at least regarding those raw materials that are traded
in open markets (gas, fuel or electricity, for example).
The additional terms required would not need to complicate the model
significantly. It might be enough to introduce a portfolio of contracts with
predefined time availabilities and costs, and zero-one variables related to the
purchasing of the contracts and/or their usage within the model. That is, there
would be additional suppliers with availabilities linked to stage-one decisions and
having deterministic parameters in the model.



Andres Weintraub

Dpto. de Ingenierı́a Industrial, Universidad de Chile, Santigao, Chile

The issue of incorporating uncertainty explicitly is becoming increasingly central in
modelling, driven largely by research sophistication, but also due to needs for more
robust planning.

There are several ways in which to incorporate uncertainty, and also to evaluate the
need to actually do it explicitly.

In this excellent paper by Alonso-Ayuso, Escudero and Ortuno,the authors present
a summary, an integration of their important work in this field, in relation to modelling
problems in manufacturing.

Here they consider several levels of planning, going from strategic to tactical to
operational decisions. Uncertainty is considered, depending on the level of decision in
parameters dealing with demand, production costs, costs for raw materials, resource
availability. Their approach to uncertainty is to consider tree scenarios, assigning
probabilities to the scenarios, and finding deterministic equivalents with complete
recourse. Given that the models they present deal with discrete decisions, all models
have a MIP structure, and the approaches proposed are based on the non-anticipativity
constraints to force same decisions for same scenarios up to any point in time. This can
be represented by splitting variable or a compact representation, which allows to solve
the problems in a decomposed form. I see here several main contributions. First, the form
of representing uncertainty. While in theory probability distribution functions can be
defined to represent uncertainty, in practice in most cases it is very difficult to determine
such functions with accuracy. But planners can feel more comfortable thinking of
scenarios, and assign probabilities to them. In some cases, there is a reasonably rigorous
basis for establishing probabilities for scenarios. In other cases, the scenarios defined,
and the probabilities are more like guesses. One open problem here could be analyzing
the robustness of the decisions to variability in the probabilities of the scenarios.

Considering the scenario approach, expressed in equation (2), there is ample
experience to show that for large scale problems, which are usually the real ones,
it is computationally infeasible to solve the problem as stated. Here comes the main
contribution of the authors in their different works. They propose a successful way to
decompose the problems, based on the non-anticipativity constraints. Perhaps here the



162

authors should help the reader by expanding Section 1.2, to clearly show how the two
approaches work, the solution process, in particular for the compact representation. A
small example might be of help here.

It should be noted that the approaches proposed require a limited number of scenarios
to be computationally tractable. While this condition on the number of scenarios in
some cases can be a significant limitation, it can be considered to fall in line with the
difficulties of planners of thinking of too many scenarios.

The authors present several specific models for manufacturing. The models are
not simple, can be considered similar to real, simplified cases, and uncertainty is
incorporated into them where logic would indicate.

Here we need to view two aspects I think. One is the way uncertainty is approached.
The second are the models themselves. While these models need to be represented as
they are, in some cases they are not easy to read. Maybe the relative complexity of
the model formulation can overshadow the main result, which is the consideration of
uncertainty.

As for uncertainty, I believe the authors could present their results in a stronger
way, by explaining more explicitly why they used a given approach for each problem.
For example, in Section 2, why propose to use Branch and Fix Coordination, what are
the results obtained? What is gained by the proposed approach as compared to more
traditional approaches, including not considering uncertainty in an explicit form. So,
in this case, there are two issues to consider, one is in relation to the improvement in
robustness of the solutions when uncertainty is considered explicitly, and what is the
cost due to this insurance. Note that these approaches by requiring to satisfy feasibility
under all scenarios, have a component of being conservative. The second issue is related
to the comparison of the proposed approaches with other alternatives.

In Section 3.4, the Fix and Relax Coordination approach is presented. Again the
paper I think would gain by explaining the method, why it was proposed and a short
discussion of the results obtained through the use of this approach. The same comment
applies to the approaches mentioned as solution methods in the other sections, and other
problems presented.

Basically the objective function is expressed in terms of expected value, and in some
cases as excess probabilities. The latter adds another component to variability, trying to
avoid solutions where the objective under certain scenarios are above a certain threshold
value (this is used in Section 3.4, for example.). I believe a discussion is needed on
why consider excess probability, why in specific problems, and what is gained by this
consideration in Section 3.4 compared to Section 3.3.
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I think the conclusion could be enriched by commenting in a general way on what
are the conclusions of their work. How can they can link the different problems and
models conceptually.

These comments should be considered as a way to enrich the presentation of this
work of very high quality, which opens a novel way to look at uncertainty and how to
deal with it. It should be noted that the approaches presented in this paper are useful in
other problem settings also.





Rejoinder

First of all we would like to thank all the discussants for their comments and suggestions
that we appreciate.

To the remarks from prof. Monique Guignard

On Question #1. The discussant addresses one of the most important issues in stochastic
programming, namely, the generation of a set of enough representative scenarios and
their probabilities. She offers a very comprehensive set of references that deal with the
issue. We are not specialists on the matter and little more we can add, except to remark
that there are approaches, see [26] as one example, that allow to generate thousands of
scenarios to provide approximate solutions where state-of-the art optimization engines
cannot provide any.

On Question #2. Effectively, in most of the papers dealing with the computational
aspects of algorithmic proposals, one finds statements related to one approach
“outperforms” another. In deterministic environments it is an easy task, the approach
with a better objective function value is “better” than the other one. In stochastic
environments it is not so easy. One approach can be better than the other one for one
scenario but worse and much worse for another one. Most of the approaches in stochastic
programming deal with two-stage problems. For these approaches the methodology
for deciding what approach outperforms some other is simple. Here, the result of
the stochastic approach, say RP, that provides a solution for the first and the second
variables, can be compared with the average scenario solution. The value of the first
variables obtained by the average scenario approach is simulated for each scenario to
consider, and the expected result of using the average solution, say EEV [20] is obtained.
And, then, the values RP and EEV can be compared.

A more difficult question is related to the value of the stochastic solution in
multistage problems, and to what extend a solution “outperforms” another. An approach
to the problem can be seen in Escudero et al. (2007), see below, where the definition of
the bounds for the optimal value of the objective function is generalized to multistage
stochastic problems. The definition of the parameters EVPI=RP-WS and VSS=EEV-RP
for the two stage problems [20], where WS is the expected value of the scenarios treated
in an independent form, is extended to the multistage stochastic problem. It is proved in
Escudero et al. (2007) a similar chain of inequalities as for two-stage environments, with
the lower and upper bounds depending substantially on the structure of the problem.
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On Question #3. Approximation algorithms are one of the future directions of research
in stochastic programming, mainly for solving combinatorial problems of realistic size.
The Fix-and-Relax Coordination (FRC) approach introduced in [7] and mentioned in
Section 6 of the paper while dealing with the Stochastic Sequencing and Scheduling
problem is a good example of approximation algorithms. Note how difficult it is to solve
most of the combinatorial optimization problems, NP and, on the other hand, some of
their parameters refer to a time horizon and, then, probably, are also uncertain.

To the remarks from prof. Gautam Mitra

We completely agree with the remarks of the discussant about the objective function.
The expected value to optimize should be replaced most of the times by risk exposure
measures, such as the mean-risk objective function. We agree to consider the risk
exposure of the raw material supply disruption and prices volatility. Besides the excess
probability measure [76], we suggest in the paper some other risk measures to use such
as semi-deviations [66] and conditional value-at-risk [77]. Unfortunately, this type of
measures requires extra 0-1 variables that sometimes can make impractical some of the
current algorithms. However, it is important to continue working in that direction.

To the remarks from prof. Francisco J. Prieto

On comment #1. We agree that one of the important issues in today stochastic
programming is the discussion about the two-stage setting versus the multi-stage setting.
Most of the algorithmic approaches are related to the two-stage setting. It is partly due
to the difficulty on tackling algorithms for problem solving in the multi-stage setting,
partly due to the difficulty on estimating representative scenario trees. In our approach
we preferred in all cases, but two, two-stage environments due to the real-life type
of problems that we were studying where the scenario estimation is a hard problem.
However, it is our opinion that it is more accurate to represent the uncertainty by multi-
stage scenario trees. An exercise to be done is a computational comparison between
two-stage and multi-stage settings for the same problem. In this way we could assess
if two-stage approaches do “not compromise much of the quality of the solutions”;
certainly, they present problem solving advantages.

On comment #2. The discussant’s observation is well taken. We agree that some of
the uncertainties on today production planning setting are the unforeseen changes
in capacity availability. In this regard, the parameters available “budget for plant
generation / expansion”, “maximum number of products to be processed in the plants”
and “maximum number of raw materials to be supplied by the vendors” as well
as “maximum volume of raw materials” and “maximum volume of products to be
processed by the plants” in Section 2 of the paper: Strategic Supply Chain Management
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should have been considered as stochastic parameters. Moreover, we consider the
available capacity of the resources as an uncertain parameter in the models presented
in Sections 4, 5 and 6.

We agree with the discussant that special care has to be taken for considering low-
probability extreme scenarios to occur. Certain types of scenario generation approaches
consider them as outliers and, then, not worthy of consideration. We agree that
importance sampling type of approaches, see Dantzig and Thapa (2003), helps to
consider them. One of the future directions of research in stochastic programming is
the dynamic scenario generation strategies in multi-stage settings. We agree with the
discussant about the difficulty that the modification of the structure of the problem from
iteration to iteration, has in multi-stage settings.

On comment #3. We agree that in manufacturing planning one of the considerations
in the objective function should be a measure to reduce the impact of the delay on
the satisfaction of the product demand and the tardiness (i.e., the delay on the project
finishing) in sequencing and scheduling problems. The price to be paid is a possible
increase in the number of 0-1 variables to consider, but it is worthy to try it.

Another relevant issue pointed out by the discussant, although beyond the scope of
our paper, is the robustness of the solution. And, in particular, the treatment of measures
to favour solutions that require small modifications between scenarios. It is another
future direction of research.

On comment #4. Another very important issue is the relevance of futures and other
financial instruments to hedge the solutions against the uncertainty in the parameters,
mainly regarding the price volatility and delivery disruptions of the raw materials traded
in open markets as it is pointed out by the discussant. Again, the possible price to be
paid could be the increase in the number of 0-1 variables to consider. Precisely, we are
currently working on a stochastic model for structuring bilateral trading (selling and
purchasing) energy contract portfolios in competitive markets, where financial futures
are implicitly considered.

To the remarks from prof. Andres Weintraub

We completely agree with the remarks of the discussant about the need to incorporate
uncertainty in the models, in particular, for the strategic and tactical supply chain
management, and sequencing and scheduling. We also prefer to represent the uncertainty
by “thinking of scenarios and assigning probabilities to them”. We also agree on future
research directions for analyzing the robustness of the decisions to the variability of the
scenario weights.
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According to the suggestions from the discussant we expanded Section 1 to explain
our approach for using the non-anticipativity principle to handle the uncertainty in
problems with 0-1variables.

After presenting each stochastic model we have added, based on his suggestion,
some comments on the dimensions of the models and the performance of our approach
Branch-and-Fix Coordination (BFC) [5]. Sometimes, in particular for the Stochastic
Sequencing and Scheduling problem, an exact solution cannot be obtained for a practical
solving of real-life problems. In this case, we proposed the heuristic FRC [7], which
based on BFC, produces quasi-optimal solutions clearly without guaranteeing the
optimality.

We give the appropriate references where the specialization of BFC and FRC are
presented for each of the models discussed in the paper. The computational comparisons
are performed against the plain using of state-of-the-art optimization engines and the
scenario average approach (i.e., the using of the deterministic solution offered by the
average of the different scenarios to consider).

The discussion on the reason for using the excess probabilities concept as a risk
measure instead of using the expected value alone may require more space than allowed
but, agreeing with the discussant, it reduces the risk (i.e., probability) of occurring
scenarios whose objective function is greater (for a minimization) than a given non-
desired threshold.

Additional references

Dantzig, G.B. and Thapa, M.N. (2003). Linear Programming 2: Theory and Extensions, Springer, chapter
12.

Escudero, L.F., Garı́n, A., Merino, M. and Pérez, G. (2007). The value of the stochastic solution in
multistage problems. TOP, 15, 48-64.
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