267 research outputs found

    Vehicle-to-Grid Technology: State-of-the-Art and Future Scenarios

    Get PDF
    An overview of V2G (vehicle-to-grid) technology is presented in this paper. It aims to highlight the main features, opportunities and requirements of V2G. Thus, after briefly resuming the most popular charging strategies for PEVs (plug-in electric vehicles), the V2G concept is introduced, especially highlighting its potentiality as a revenue opportunity for PEV owners; this is mainly due to the V2G ability to provide ancillary services, such as load leveling, regulation and reserve. Such solutions have been thoroughly investigated in the literature from both the economic and technical points of view and are here reported. In addition, V2G requirements such as mobility needs, charging stations availability and appropriate PEV aggregative architectures are properly taken into account. Finally, future developments and scenarios have also been reported

    Electric cars impact in the economic growth and the CO2 : case of European Union

    Get PDF
    Mestrado em EconomiaEsta dissertação apresenta uma análise do impacto dos veículos elétricos tanto no crescimento económico, como nas emissões de dióxido de carbono na União Europeia. Realizou-se um micro painel, com dados anuais de 2008 a 2016, em que se estimaram dois modelos utilizando o modelo Autoregressive Distributed Lag (ARDL). O primeiro modelo, com 26 países, tem como variável dependente as emissões de dióxido de carbono, e no segundo, com 24 países, a variável dependente é o produto interno bruto, utilizada como proxy para o crescimento económico. Os resultados deste estudo sugerem que investir em carros elétricos, no longo prazo, é benéfico para a União Europeia, ambientalmente e economicamente. Ao aumentar a frota de veículos elétricos, há uma melhoria na qualidade do ar, e o PIB aumenta.This dissertation presents an analysis of the impacts of electric vehicles in economic growth and carbon dioxide emissions in the European Union. It was executed a micro panel with annual data from 2008 to 2016, and two models were estimated using the Autoregressive Distributed Lag (ARDL) model. The first one with 26 countries, where the dependent variable is the carbon dioxide emissions, and the second one, with 24 countries, the dependent variable is the gross domestic product, as a proxy for economic growth. The findings in this study suggest that investing in electric vehicles, in the long run, is beneficial to the European Union, economically and environmentally. Increasing the fleet of EVs, improves the quality of air, and increases the GDP.info:eu-repo/semantics/publishedVersio

    Prioritizing the Chicken or Egg? Electric Vehicle Purchase and Charging Infrastructure Subsidies in Germany

    Get PDF
    To meet current targets for greenhouse gas emissions in Europe, emissions, especially those originating from the road transport sector, need to be reduced. Plans are to achieve this goal by substituting fossil fuel vehicles with electric vehicles (EVs). This article first discusses conceptually the impact of an increasing share of EVs on the electricity grid and suitable locations for charging stations with examples from a Case Study in Lower Bavaria. Secondly, the impact of purchase subsidies on EV purchases in Germany, a high-income country characterized by an important automotive industry and an increasing share of private vehicles is examined. To achieve this, yearly information on EV purchases were analyzed by applying the Synthetic Control Method. Combining data from different sources including the European Alternative Fuels Observatory, Eurostat, and the European Automobile Manufacturers' Association, an overall picture was developed. Results indicate a difference between private, semi-public, and public charging infrastructures. Its spatial distribution does not correspond to a specific development strategy. Moreover, EV subsidies have a limited effect in Germany when controlling for market size. Limiting the discussion to a trade-off between subsidizing infrastructures or EV purchases obviates the multidimensionality of the problem as neither of them may be sufficient to accelerate the transition per se. Furthermore, if electricity provided for EVs comes mainly from fossil carriers, the changes in the road transport sector will not yield the expected emission reductions. The transition towards renewables is directly intertwined with the effects of EVs on emission reductions in the road transport sector

    A Widespread Review of Smart Grids Towards Smart Cities

    Get PDF
    © 2019 by the authorsNowadays, the importance of energy management and optimization by means of smart devices has arisen as an important issue. On the other hand, the intelligent application of smart devices stands as a key element in establishing smart cities, which have been suggested as the solution to complicated future urbanization difficulties in coming years. Considering the scarcity of traditional fossil fuels in the near future, besides their ecological problems the new smart grids have demonstrated the potential to merge the non-renewable and renewable energy resources into each other leading to the reduction of environmental problems and optimizing operating costs. The current paper clarifies the importance of smart grids in launching smart cities by reviewing the advancement of micro/nano grids, applications of renewable energies, energy-storage technologies, smart water grids in smart cities. Additionally a review of the major European smart city projects has been carried out. These will offer a wider vision for researchers in the operation, monitoring, control and audit of smart-grid systems.publishedVersio

    Estudio de sistemas renovables avanzados para el desarrollo energético sostenible

    Full text link
    Tesis por compendio[ES] La energía juega un papel fundamental en el desarrollo sostenible de las comunidades. Así, proporcionar recursos energéticos fiables, económicamente aceptables, medioambientalmente respetuosos y socialmente beneficiosos, resulta esencial para el desarrollo sostenible de las mismas. A pesar de la universalidad de dicha definición, el uso de la energía está muy vinculada al nivel de desarrollo de los países. De este modo, la problemática energética de los países desarrollados contrasta enormemente con la de los países en desarrollo. En esta tesis doctoral se ha identificado la principal problemática energética de ambas realidades: grave impacto medioambiental de los modelos de generación del transporte tradicionales en los países desarrollados y pobreza energética en los países en desarrollo. A partir del compendio de artículos científicos de esta tesis doctoral se ha caracterizado el uso de sistemas renovables avanzados que permite solucionar dicha problemática de forma sostenible. En concreto, el principal problema energético en países desarrollados ha sido tratado mediante la planificación energética y el diseño óptimo de sistemas híbridos de energías renovables (HRES por sus siglas en inglés) en electrolineras, necesarios para la introducción de vehículos eléctricos como alternativa de movilidad sostenible. Por otro lado, el estudio de metodologías de diseño óptimas de HRES off grid y de las estufas para cocinar mejoradas mediante gasificación de biomasa se ha focalizado en la inaccesibilidad eléctrica y a sistemas de cocina limpia que sufren las comunidades en desarrollo. Así, esta tesis aporta una serie de metodologías para optimizar y adecuar los sistemas renovables presentados para el desarrollo energético sostenible de las comunidades. Además, no sólo demuestra la idoneidad de estos sistemas para dicho fin, sino también su versatilidad de aplicación en función del nivel de crecimiento de las comunidades.[CA] L'energia juga un paper fonamental en el desenvolupament sostenible de les comunitats. Així, proporcionar recursos energètics fiables, econòmicament acceptables, mediambientalment respectuosos i socialment beneficiosos, resulta essencial per al desenvolupament sostenibles de les mateixes. A pesar de la universalitat d'aquesta definició, l'ús de la energia està vinculada al nivell de desenvolupament dels països. D'aquesta manera, la problemàtica energètica dels països desenvolupats contrasta enormement amb la dels països en desenvolupament. A aquesta tesis doctoral s'ha identificat la principal problemàtica energètica d'ambdues realitats: greu impacte mediambiental dels models de generació del transport tradicional en els països desenvolupats i pobresa energètica en els països en desenvolupament. A partir del compendi d'articles científics d'aquesta tesis doctoral s'ha caracteritzat l'ús de sistemes renovables avançats que permet solucionar aquesta problemàtica de manera sostenible. En concret, el principal problema energètic en països desenvolupats s'ha tractat mitjançant la planificació energètica i el disseny òptim de sistemes híbrids d'energies renovables (HRES, per les seues segles en anglès) en electrolineres, necessaris per la introducció de vehicles elèctrics com alternativa de mobilitat sostenible. D'altra banda, l'estudi de metodologies de disseny òptimes de HRES off grid i d'estufes per a cuinar millorades mitjançant gasificació de biomassa s'ha focalitzat en la inaccessibilitat elèctrica i a sistemes de cuina neta que pateixen les comunitats en desenvolupament. Així, aquesta tesis aporta una sèrie de metodologies per optimitzar i adequar el sistemes renovables presentats per al desenvolupament energètic sostenible de les comunitats. A més, no tan sols demostra la idoneïtat d'aquests sistemes per a aqueix fi, sinó també la seua versatilitat d'aplicació en funció del nivell de creixement de les comunitats.[EN] Energy plays a significant role for the sustainable development of communities. Hence, supplying reliable energy resources, which result economically acceptable, environmentally friendly and socially beneficial, arises as essential for their sustainable development. Despite the universality of such definition, the energy use is highly linked to the development degree of the countries. Thus, energy problems of developed countries sharply contrast with those of developing countries. This doctoral thesis identifies the main energy issues of both realities: severe environmental impact of energy generation models for traditional transport in developed countries and energy poverty in developing countries. The compendium of scientific papers of this doctoral dissertation characterizes the use of advanced renewable energy systems to solve such problems in a sustainable way. Namely, the main energy issue in developed countries has been addressed by means of energy planning and the optimal design of Hybrid Renewable Energy Systems (HRES) in electric vehicle charging stations, which ensure the introduction of electric vehicles as a sustainable mobility alternative. Moreover, the study of methodologies for the optimal design of off grid HRES and improved cooking stoves based on biomass gasification have approached the inaccessibility to electricity and to clean cooking systems that developing communities suffer. Therefore, this thesis provides a number of methodologies to optimize and adapt the presented renewable energy systems for the sustainable energy development of communities. Furthermore, it demonstrates not only the suitability of these systems for such aim, but also their versatility of application regarding the growing degree of the communities.Bastida Molina, P. (2021). Estudio de sistemas renovables avanzados para el desarrollo energético sostenible [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/172548TESISCompendi

    Vehicle-to-Grid Technology: State-of-the-Art and Future Scenarios

    Get PDF
    An overview of V2G (vehicle-to-grid) technology is presented in this paper. It aims to highlight the main features, opportunities and requirements of V2G. Thus, after briefly resuming the most popular charging strategies for PEVs (plug-in electric vehicles), the V2G concept is introduced, especially highlighting its potentiality as a revenue opportunity for PEV owners; this is mainly due to the V2G ability to provide ancillary services, such as load leveling, regulation and reserve. Such solutions have been thoroughly investigated in the literature from both the economic and technical points of view and are here reported. In addition, V2G requirements such as mobility needs, charging stations availability and appropriate PEV aggregative architectures are properly taken into account. Finally, future developments and scenarios have also been reported

    IMPACT OF ELECTRIC VEHICLES AND NATURAL GAS VEHICLES ON THE ENERGY MARKETS

    Get PDF
    The Australian Energy Market Commission (AEMC) has commissioned AECOM to undertake a study to investigate the broad costs and benefits of Electric Vehicles (EVs) and Natural Gas Vehicles (NGVs) on their respective energy markets. The study also identifies the arrangements necessary within these energy markets to facilitate the efficient uptake of these vehicles. This report:assesses the potential uptake of EVs and NGVs and identifies the costs and benefits of EVs and NGVs to the energy markets.This study considers the impact on the National Electricity Market (NEM) and the South West Interconnected System (SWIS). As such, the study area comprises Queensland, New South Wales, Australian Capital Territory, Victoria, Tasmania, South Australia and Western Australia

    State-of-the-Art Assessment of Smart Charging and Vehicle 2 Grid services

    Get PDF
    Electro-mobility – especially when coupled smartly with a decarbonised grid and also renewable distributed local energy generation, has an imperative role to play in reducing CO2 emissions and mitigating the effects of climate change. In parallel, the regulatory framework continues to set new and challenging targets for greenhouse gas emissions and urban air pollution. • EVs can help to achieve environmental targets because they are beneficial in terms of reduced GHG emissions although the magnitude of emission reduction really depends on the carbon intensity of the national energy mix, zero air pollution, reduced noise, higher energy efficiency and capable of integration with the electric grid, as discussed in Chapter 1. • Scenarios to limit global warming have been developed based on the Paris Agreement on Climate Change, and these set the EV deployment targets or ambitions mentioned in Chapter 2. • Currently there is a considerable surge in electric cars purchasing with countries such as China, the USA, Norway, The Netherlands, France, the UK and Sweden leading the way with an EV market share over 1%. • To enable the achievement of these targets, charging infrastructures need to be deployed in parallel: there are four modes according to IEC 61851, as presented in Chapter 2.1.4. • The targets for SEEV4City project are as follow: o Increase energy autonomy in SEEV4-City sites by 25%, as compared to the baseline case. o Reduce greenhouse gas emissions by 150 Tonnes annually and change to zero emission kilometres in the SEEV4-City Operational Pilots. o Avoid grid related investments (100 million Euros in 10 years) by introducing large scale adoption of smart charging and storage services and make existing electrical grids compatible with an increase in electro mobility and local renewable energy production. • The afore-mentioned objectives are achieved by applying Smart Charging (SC) and Vehicle to Grid (V2G) technologies within Operational Pilots at different levels: o Household. o Street. o Neighbourhood. o City. • SEEV4City aims to develop the concept of 'Vehicle4Energy Services' into a number of sustainable business models to integrate electric vehicles and renewable energy within a Sustainable Urban Mobility and Energy Plan (SUMEP), as introduced in Chapter 1. With this aim in mind, this project fills the gaps left by previous or currently running projects, as reviewed in Chapter 6. • The business models will be developed according to the boundaries of the six Operational Pilots, which involve a disparate number of stakeholders which will be considered within them. • Within every scale, the relevant project objectives need to be satisfied and a study is made on the Public, Social and Private Economics of Smart Charging and V2G. • In order to accomplish this work, a variety of aspects need to be investigated: o Chapter 3 provides details about revenue streams and costs for business models and Economics of Smart Charging and V2G. o Chapter 4 focuses on the definition of Energy Autonomy, the variables and the economy behind it; o Chapter 5 talks about the impacts of EV charging on the grid, how to mitigate them and offers solutions to defer grid investments; o Chapter 7 introduces a number of relevant business models and considers the Economics of Smart Charging and V2G; o Chapter 8 discusses policy frameworks, and gives insight into CO2 emissions and air pollution; o Chapter 9 defines the Data Collection approach that will be interfaced with the models; o Chapter 10 discusses the Energy model and the simulation platforms that may be used for project implementation
    corecore