37 research outputs found

    Virtual CPU state detection and execution flow analysis by host tracing

    Get PDF
    Cloud computing offers to the end user the ability of accessing a pool of resources with the Pay as Use (PaU) model. By leveraging this technology, users can benefit from hardware virtualization for on-demand resource acquisition and rapid elasticity. However, there is no effective tool to analyze virtual hardware performance, especially when isolation between these virtual resources is not adequate. The existing tools need to access and trace the whole activity of the VM and host. However, in most cases, tracing the virtual machine (VM) is not possible because of security issues and the added overhead. Therefore, there is a need for a tool to troubleshoot unexpected behavior of VMs without internal access for tracing or debugging. In this paper, we propose a new method to study the state of CPUs inside VMs without internal access. Our tool can detect unexpected delays and their root causes. We developed a virtual CPU (vCPU) state analyser to detect the state of vCPUs along with the reason for being in that state. This approach relies on host tracing, thus adding less overhead to VMs as compared to existing approaches. Then we propose a new approach for profiling threads inside the VMs by host tracing. We implemented different views for the TraceCompass trace viewer to let the administrator visually track different threads and their states inside the VMs. Our tool can detect different problems such as overcommitment of resources

    Energy-Efficient Distributed Machine Learning in Cloud Fog Networks

    Get PDF
    Massive amounts of data are expected to be generated by the billions of objects that form the Internet of Things (IoT). A variety of automated services such as monitoring will largely depend on the use of different Machine Learning (ML) algorithms. Traditionally, ML models are processed by centralized cloud data centers, where IoT readings are offloaded to the cloud via multiple networking hops in the access, metro, and core layers. This approach will inevitably lead to excessive networking power consumptions as well as Quality-of-Service (QoS) degradation such as increased latency. Instead, in this paper, we propose a distributed ML approach where the processing can take place in intermediary devices such as IoT nodes and fog servers in addition to the cloud. We abstract the ML models into Virtual Service Requests (VSRs) to represent multiple interconnected layers of a Deep Neural Network (DNN). Using Mixed Integer Linear Programming (MILP), we design an optimization model that allocates the layers of a DNN in a Cloud/Fog Network (CFN) in an energy efficient way. We evaluate the impact of DNN input distribution on the performance of the CFN and compare the energy efficiency of this approach to the baseline where all layers of DNNs are processed in the centralized Cloud Data Center (CDC)

    Sentiment Analysis of Political Tweets From the 2019 Spanish Elections

    Get PDF
    The use of sentiment analysis methods has increased in recent years across a wide range of disciplines. Despite the potential impact of the development of opinions during political elections, few studies have focused on the analysis of sentiment dynamics and their characterization from statistical and mathematical perspectives. In this paper, we apply a set of basic methods to analyze the statistical and temporal dynamics of sentiment analysis on political campaigns and assess their scope and limitations. To this end, we gathered thousands of Twitter messages mentioning political parties and their leaders posted several weeks before and after the 2019 Spanish presidential election. We then followed a twofold analysis strategy: (1) statistical characterization using indices derived from well-known temporal and information metrics and methods –including entropy, mutual information, and the Compounded Aggregated Positivity Index– allowing the estimation of changes in the density function of sentiment data; and (2) feature extraction from nonlinear intrinsic patterns in terms of manifold learning using autoencoders and stochastic embeddings. The results show that both the indices and the manifold features provide an informative characterization of the sentiment dynamics throughout the election period. We found measurable variations in sentiment behavior and polarity across the political parties and their leaders and observed different dynamics depending on the parties’ positions on the political spectrum, their presence at the regional or national levels, and their nationalist or globalist aspirations

    Sequential Tasks Shifting for Participation in Demand Response Programs

    Get PDF
    In this paper, the proposed methodology minimizes the electricity cost of a laundry room by means of load shifting. The laundry room is equipped with washing machines, dryers, and irons. Additionally, the optimization model handles demand response signals, respecting user preferences while providing the required demand reduction. The sequence of devices operation is also modeled, ensuring correct operation cycles of different types of devices which are not allowed to overlap or have sequence rules. The implemented demand response program specifies a power consumption limit in each period and offers discounts for energy prices as incentives. In addition, users can define the required number of operations for each device in specific periods, and the preferences regarding the operation of consecutive days. In the case study, results have been obtained regarding six scenarios that have been defined to survey about effects of different energy tariffs, power limitations, and incentives, in a laundry room equipped with three washing machines, two dryers, and one iron. A sensitivity analysis of the power consumption limit is presented. The results show that the proposed methodology is able to accommodate the implemented scenario, respecting user preferences and demand response program, minimizing energy costs. The final electricity price has been calculated for all scenarios to discuss the more effective schedule in each scenario.This work has received funding from Portugal 2020 under SPEAR project (NORTE-01-0247-FEDER-040224), in the scope of ITEA 3 SPEAR Project 16001 and from FEDER Funds through COMPETE program and from National Funds through (FCT) under the project UIDB/00760/2020, and CEECIND/02887/2017.info:eu-repo/semantics/publishedVersio

    Tropical Cyclone Intensity Estimation Using Multi-Dimensional Convolutional Neural Networks from Geostationary Satellite Data

    Get PDF
    For a long time, researchers have tried to find a way to analyze tropical cyclone (TC) intensity in real-time. Since there is no standardized method for estimating TC intensity and the most widely used method is a manual algorithm using satellite-based cloud images, there is a bias that varies depending on the TC center and shape. In this study, we adopted convolutional neural networks (CNNs) which are part of a state-of-art approach that analyzes image patterns to estimate TC intensity by mimicking human cloud pattern recognition. Both two dimensional-CNN (2D-CNN) and three-dimensional-CNN (3D-CNN) were used to analyze the relationship between multi-spectral geostationary satellite images and TC intensity. Our best-optimized model produced a root mean squared error (RMSE) of 8.32 kts, resulting in better performance (~35%) than the existing model using the CNN-based approach with a single channel image. Moreover, we analyzed the characteristics of multi-spectral satellite-based TC images according to intensity using a heat map, which is one of the visualization means of CNNs. It shows that the stronger the intensity of the TC, the greater the influence of the TC center in the lower atmosphere. This is consistent with the results from the existing TC initialization method with numerical simulations based on dynamical TC models. Our study suggests the possibility that a deep learning approach can be used to interpret the behavior characteristics of TCs

    Sequential Tasks Shifting for Participation in Demand Response Programs

    Get PDF
    In this paper, the proposed methodology minimizes the electricity cost of a laundry room by means of load shifting. The laundry room is equipped with washing machines, dryers, and irons. Additionally, the optimization model handles demand response signals, respecting user preferences while providing the required demand reduction. The sequence of devices operation is also modeled, ensuring correct operation cycles of different types of devices which are not allowed to overlap or have sequence rules. The implemented demand response program specifies a power consumption limit in each period and offers discounts for energy prices as incentives. In addition, users can define the required number of operations for each device in specific periods, and the preferences regarding the operation of consecutive days. In the case study, results have been obtained regarding six scenarios that have been defined to survey about effects of different energy tariffs, power limitations, and incentives, in a laundry room equipped with three washing machines, two dryers, and one iron. A sensitivity analysis of the power consumption limit is presented. The results show that the proposed methodology is able to accommodate the implemented scenario, respecting user preferences and demand response program, minimizing energy costs. The final electricity price has been calculated for all scenarios to discuss the more effective schedule in each scenario.This work has received funding from Portugal 2020 under SPEAR project (NORTE-01-0247-FEDER-040224), in the scope of ITEA 3 SPEAR Project 16001 and from FEDER Funds through COMPETE program and from National Funds through (FCT) under the project UIDB/00760/2020, and CEECIND/02887/2017.info:eu-repo/semantics/publishedVersio

    Influence Analysis towards Big Social Data

    Get PDF
    Large scale social data from online social networks, instant messaging applications, and wearable devices have seen an exponential growth in a number of users and activities recently. The rapid proliferation of social data provides rich information and infinite possibilities for us to understand and analyze the complex inherent mechanism which governs the evolution of the new technology age. Influence, as a natural product of information diffusion (or propagation), which represents the change in an individual’s thoughts, attitudes, and behaviors resulting from interaction with others, is one of the fundamental processes in social worlds. Therefore, influence analysis occupies a very prominent place in social related data analysis, theory, model, and algorithms. In this dissertation, we study the influence analysis under the scenario of big social data. Firstly, we investigate the uncertainty of influence relationship among the social network. A novel sampling scheme is proposed which enables the development of an efficient algorithm to measure uncertainty. Considering the practicality of neighborhood relationship in real social data, a framework is introduced to transform the uncertain networks into deterministic weight networks where the weight on edges can be measured as Jaccard-like index. Secondly, focusing on the dynamic of social data, a practical framework is proposed by only probing partial communities to explore the real changes of a social network data. Our probing framework minimizes the possible difference between the observed topology and the actual network through several representative communities. We also propose an algorithm that takes full advantage of our divide-and-conquer strategy which reduces the computational overhead. Thirdly, if let the number of users who are influenced be the depth of propagation and the area covered by influenced users be the breadth, most of the research results are only focused on the influence depth instead of the influence breadth. Timeliness, acceptance ratio, and breadth are three important factors that significantly affect the result of influence maximization in reality, but they are neglected by researchers in most of time. To fill the gap, a novel algorithm that incorporates time delay for timeliness, opportunistic selection for acceptance ratio, and broad diffusion for influence breadth has been investigated. In our model, the breadth of influence is measured by the number of covered communities, and the tradeoff between depth and breadth of influence could be balanced by a specific parameter. Furthermore, the problem of privacy preserved influence maximization in both physical location network and online social network was addressed. We merge both the sensed location information collected from cyber-physical world and relationship information gathered from online social network into a unified framework with a comprehensive model. Then we propose the resolution for influence maximization problem with an efficient algorithm. At the same time, a privacy-preserving mechanism are proposed to protect the cyber physical location and link information from the application aspect. Last but not least, to address the challenge of large-scale data, we take the lead in designing an efficient influence maximization framework based on two new models which incorporate the dynamism of networks with consideration of time constraint during the influence spreading process in practice. All proposed problems and models of influence analysis have been empirically studied and verified by different, large-scale, real-world social data in this dissertation

    Multi-Perspective Evaluation of Relational and Graph Databases

    Get PDF
    How to store data is an enduring topic in the computer science field, and traditional relational databases have done this well and are still widely used today. However, with the growth of non-relational data and the challenges in the big data era, a series of NoSQL databases have come into view. Thus, comparing, evaluating, and choosing a better database has become a worthy topic of research. In this thesis, an experiment that can store the same data set and execute the same tasks or workload on the relational, graph and multi-model databases is designed. The investigation proposes how to adapt relational data, tables on a graph database and, conversely, store graph data on a relational database. Similarly, the tasks performed are unified across query languages. We conducted exhaustive experiments to compare and report the performance of the three databases. In addition, we propose a workload classification method to analyze the performance of the databases and compare multiple aspects of the database from an end-user perspective. We have selected PostgreSQL, ArangoDB, Neo4j as representatives. The comparison in terms of task execution time does not have any database that completely wins. The results show that relational databases have performance advantages for tasks such as data import, but the execution of multi-table join tasks is slow and graph algorithm support is lacking. The multi-model databases have impressive support for simultaneous storage of multiple data formats and unified language queries, but the performance is not outstanding. The graph database has strong graph algorithm support and intuitive support for graph query language, but it is also important to consider whether the format and interrelationships of the original data, etc. can be well converted into graph format
    corecore