
Master’s thesis
Master’s Programme in Data Science

Multi-Perspective Evaluation of Relational
and Graph Databases

Cheng Chen

March 11, 2022

Supervisor(s): Prof. Jiaheng Lu

Examiner(s): Assoc. Prof. Michael Mathioudakis

University of Helsinki
Faculty of Science

P. O. Box 68 (Pietari Kalmin katu 5)
00014 University of Helsinki

Faculty of Science Master’s Programme in Data Science

Cheng Chen

Multi-Perspective Evaluation of Relational and Graph Databases

Master’s thesis March 11, 2022 51

Relational Database, Graph Database, Database Benchmark, Database Comparison

How to store data is an enduring topic in the computer science field, and traditional relational
databases have done this well and are still widely used today. However, with the growth of non-
relational data and the challenges in the big data era, a series of NoSQL databases have come into
view. Thus, comparing, evaluating, and choosing a better database has become a worthy topic of
research.

In this thesis, an experiment that can store the same data set and execute the same tasks or
workload on the relational, graph and multi-model databases is designed. The investigation proposes
how to adapt relational data, tables on a graph database and, conversely, store graph data on
a relational database. Similarly, the tasks performed are unified across query languages. We
conducted exhaustive experiments to compare and report the performance of the three databases. In
addition, we propose a workload classification method to analyze the performance of the databases
and compare multiple aspects of the database from an end-user perspective.

We have selected PostgreSQL, ArangoDB, Neo4j as representatives. The comparison in terms of
task execution time does not have any database that completely wins. The results show that
relational databases have performance advantages for tasks such as data import, but the execution
of multi-table join tasks is slow and graph algorithm support is lacking. The multi-model databases
have impressive support for simultaneous storage of multiple data formats and unified language
queries, but the performance is not outstanding. The graph database has strong graph algorithm
support and intuitive support for graph query language, but it is also important to consider whether
the format and interrelationships of the original data, etc. can be well converted into graph format.

ACM Computing Classification System (CCS):
Information systems → Data management systems → Database administration → Database per-
formance evaluation
Information systems→ Data management systems→ Query languages
Information systems→ Data management systems→ Database design and models

HELSINGIN YLIOPISTO — HELSINGFORS UNIVERSITET — UNIVERSITY OF HELSINKI
Tiedekunta — Fakultet — Faculty Koulutusohjelma — Utbildningsprogram — Degree programme

Tekijä — Författare — Author

Työn nimi — Arbetets titel — Title

Työn laji — Arbetets art — Level Aika — Datum — Month and year Sivumäärä — Sidantal — Number of pages

Tiivistelmä — Referat — Abstract

Avainsanat — Nyckelord — Keywords

Säilytyspaikka — Förvaringsställe — Where deposited

Muita tietoja — Övriga uppgifter — Additional information

Contents

1 Introduction 2

2 Background and Related Work 5
2.1 Relational Database . 5
2.2 Graph Database . 6
2.3 Multi-model Database . 6
2.4 Database Benchmarks . 7
2.5 Comparison of Databases . 8

2.5.1 Data Science Support . 8
2.5.2 GUI and Graph Visualization . 9
2.5.3 Toward Cloud Database . 10

3 Methodology 12
3.1 Data Sets . 12

3.1.1 TPC-DS Set (Table-like) . 12
3.1.2 Twitch Set (Graph-like) . 15

3.2 Quantitative Analysis . 15
3.2.1 Table Data . 16
3.2.2 Graph Data . 21

4 Experiments and Results 25
4.1 Environment and Configuration . 25
4.2 Data Production and Import . 26

4.2.1 TPC-DS Data . 26
4.2.2 Twitch Data . 26

4.3 Tasks Execution Time . 27
4.4 Workload Classification . 32

4.4.1 Original Data Description . 32
4.4.2 Dimensionality Reduction . 32
4.4.3 Clustering . 34

ii

1

5 Discussion 38
5.1 Performance . 38

5.1.1 Execution Times . 38
5.1.2 Cache . 39

5.2 Which One Should I Choose? . 39

6 Conclusions 41

Acknowledgement 42

Bibliography 43

Appendix A TPC-DS Data ERD Supplementary and Edge Schema 47
A.1 ER-Diagram for TPC-DS Web/Store Parts 47
A.2 TPC-DS Data Graph Relationship Mapping Table 48

Appendix B Experiments Raw Results 49

1. Introduction

This century is an era of dramatic data growth. The Big Data industry has proposed the
6-Vs: Volume, Variety, Velocity, Value, Veracity, and Variability, and how to store and
use these data has become a hot topic. A good example is that within the recent decade,
In addition to the common table data, the rapid growth of emerging applications such as
social networks, cryptocurrencies, bioinformatics network analysis, and traffic navigation
has brought about extensive graphical data. With large scale, complex internal structure,
and diverse query requirements in different domains.

As one of the most common and popular data storage solutions in recent decades,
relational databases represent data with relationships, use constraints to control data
consistency and completion, and have SQL to perform a range of operations. Although
storing graph data in a relational database has proven to be feasible [9], it was evident that
it can’t meet everyone’s requirements anymore in the face of the increasing complexity of
large-scale graphs and diverse demands on graph algorithms.

Some NoSQL databases are starting to make their mark, Neo4j, a native graph
database, supports graph data storage built from the ground up. It can not only store
data but also exploit data and even relationships between data. It even proposes a new
declarative language to work with the database for operations such as querying. According
to Neo4j itself [26], the speed and efficiency advantage of the graph database has driven
dozens of game-changing use cases in crime identification such as fraud detection, life
sciences, data science, knowledge graphs, etc.

More than that, a number of multi-model databases are being introduced and used,
which, as the name suggests, are designed to solve the problem of how to store many
different types of data within a single database. ArangoDB as a representative, its CEO
called it a native multi-model database. It is both a document storage database and a
key-value storage database and a graph storage database. Multiple formats in a single
database engine, only one query language which can be used in all data models, even
allowing them to be integrated and simultaneous queries in the same database [4].

For a long time, it has been discussed whether NoSQL databases can replace SQL
databases as the mainstream because of better query performance and support for more
data storage types. A certain number of researchers have the view that SQL may fade

2

3 Chapter 1. Introduction

into history because it only supports table data storage. This does not fit with the variety
of data formats today [5]. On the other hand, some researchers say that SQL databases
can also be used to store a variety of data types, such as graph data, which requires only
some conversion work, and that SQL databases also did not lose in performance aspect
to graph databases [29]. A question at hand is that there is no convincing test to prove
which is faster and better - the lack of uniform benchmarking.

This thesis will conduct an exploration of such a unified benchmarking perspective,
try to solve a simple but comprehensive coverage problem; which database should I choose
to store my data? The contributions of this thesis are as follows:

• We designed a unified comparison experiment on PostgreSQL (relational),
ArangoDB (multi-model), and Neo4j (graph) from the perspective of both tabu-
lar data and graph data.

• We applied graph algorithms (graph traversal and shortest path) on a relational
database.

• We proposed a method to transform relational data into graph data, present a way
to store graph data into a relational database, and store the same data in three
databases for testing with the same workload.

• We explore three databases by analyzing the workloads regarding unsupervised clus-
tering using both the experiment results and features we defined related to multiple
executions.

In detail, We select TPC-DS, a relational database benchmark test for big data, for
the relational data generated by TPC-DS; we also select a graph data set from the real
world. We can numerically compare the advantages and disadvantages between them.
Meanwhile, we will also compare the three databases: relational database, graph database,
and multi-model database in new trendy perspectives such as visualization, database
science, and Cloud service.

The results show that databases that natively support graph data storage have
significant performance advantages when dealing with graph algorithms, but converting
relational data into graph type and importing it takes a lot of time. A relational database
is faster than graph and multi-model databases when importing data. Still, it does not
perform as well as graph databases when faced with multi-table join workloads. The
multi-model database does not have significant performance advantages over the other
two, but the support for a unified query language and native multi-data type storage is
impressive.

Chapter 2 of this paper introduces the research background and related work, pro-
vides a detailed description of the two data sets involved in the experiments. Chapter 3

4 Chapter 1. Introduction

shows our proposed methods and algorithms on how to conduct the experiments. Chapter
4 shows the specific implementation of the experiments and the results, also an unsuper-
vised learning-based clustering analysis of the results. Chapter 5 presents our analysis of
the experimental results, as well as a comparison of the three databases.

2. Background and Related Work

2.1 Relational Database

As early as the 1960s, a kind of special computer program was proposed to perform the
task of storing and managing data in a computer and help users to organize and structure
their data, namely a database management system (DBMS) [15]. Twenty years later, in
the 1980s, relational database management systems (RDBMS) became popular for a long
time. Since then, RDBMS, which organized data in a simple tabular format, has become a
database standard. Accordingly, a relational database language, SQL (Structured Query
Language), was proposed to handle relational databases [15].

RDBMS stores data in a database object called a table which consists of many
columns and rows, where a row is a piece of data, and a column is a corresponding name
or label. A database can consist of multiple tables, and some constraints are followed,
which are imposed on data columns so that the database can ensure the legality and
accuracy reliability of the data in the table. Some common constraints:

UNIQUE - All values in this column are unique and cannot be repeated;
PRIMARY Key - Uniquely identifies each row in the table. A table should only

have one primary key, but a primary key does not necessarily contain only one column;
FOREIGN Key - A foreign key is the primary key of another table and is used to

establish relationships between different tables;
NOT NULL - The value of the column cannot be null.
In addition, the RDBMS will ensure the integrity of the data. There are no exact

duplicate rows in the table, protect the rows used by other records, or some rules defined
by the users.

There are many kinds of RDBMS commonly used. MySQL is one of the most
popular open-source SQL databases, widely used in web development. PostgreSQL is an
open-source SQL database not controlled by any institution or company, typically used for
various open-source application development has a large and active developer community,
also used in our experiment. There are also some commercial versions of RDBMS, such
as Oracle Database, SQL Server, etc., that charge for using the service.

5

6 Chapter 2. Background and Related Work

2.2 Graph Database

Graph database management systems (GDBMS) are designed to store and process graph
data that could not be well represented by tables natively. The components of a graph are
edges and vertices, and it is a data structure that focuses on node-to-node relationships.

Most network data is inherently graphical in structure, such as social networks, traf-
fic road networks, collaborative networks, etc. We can seamlessly model it through graph
databases. And some data stored in tabular form can also be represented as graphs after
transformation. We can consider a row in a table as a node and then create edges based
on the relationship between tables, so graph databases are not only applicable to web
data. The characteristics of graphs determine that they are more suitable for modeling
data where the connections between data points or the topology are more important [23].
In practical applications, graphs are divided into attribute and non-attribute graphs. The
nodes or edges of an attribute graph will store certain information, and similarly, if there
are directions or weights for the edges, they will be called directed or weighted graphs [1].

Neo4j is a java-based GDBMS that provides a graphical interface and introduces
a declarative query language for attribute graphs, Cypher [14]. Neo4j uses native graph
storage and is utilized in many industries, not only with Cypher to model, query, and
modify complex data, but also to implement other definitions and even provide plug-ins
for data science and graph algorithms, such as graph machine learning [13].

2.3 Multi-model Database

A common point of RDBMS and GDBMS is that they can only store one type of data,
while multi-model database management systems (MMDBMS) is proposed to achieve
storage of multiple data models, such as documents, graphs, key-value stores, within one
integrated backend, and to perform operations such as query and modification. Although
the number of multi-model databases has been growing, many of them are not currently
mature enough to become a commonly used storage solution. There are still many fields to
improve for MMDBMS, such as in data representation: coexistence of single-model and
multi-model models; query language: how to design a query language with reasonable
syntactic semantics across storage models; switching storage between different models for
the same data set, or support for data science features [17, 20].

ArangoDB is a native multi-model database management system with three storage
models, document, graph, and key-value. ArangoDB proposes a declarative query lan-
guage AQL (ArangoDB Query Language), common across the three storage schemas and
similar to SQL. AQL allows different types of storage to be involved in a single query.

7 Chapter 2. Background and Related Work

2.4 Database Benchmarks

RDBMS Benchmark

RDBMS has a long history and is widely used, so there are many benchmark tests for it,
the most common of which is the series proposed by TPC. This series of benchmarking
involves transaction processing, big data, IoT, virtualization, decision support, artificial
intelligence aspects. In this thesis, we use the TPC-DS test, which is a benchmark for
decision support [31]. It involves modeling, maintaining, and querying the data of a de-
cision support system and provides a holistic assessment of the performance of this type
of system. Specific tests include query execution time (single-user), query throughput
(multi-user), and measurement of hardware usage under several tasks and given con-
straints. TPC-DS is designed to provide a database benchmark reference for emerging
areas such as Big Data in the era of data explosion [8, 35].

GDBMS Benchmark

Similar to RDBMS, for graphs, there is also a popular test series, the Linked Data Bench-
mark Committee (LDBC). It is an organization that wants to set the standards for graph
benchmarking and hopes to use this to advance the communication and development of
the graph community. There are currently three standards for graph-related evaluation, a
benchmark for graph algorithms; a semantic data testing benchmark based on RDF, and
a comprehensive evaluation for GDBMS based on social network data in a hypothetical
system for interaction and business intelligence; this system is still under development
[12].

MMDBMS Benchmark

There is no absolutely prevalent benchmarking framework for multi-model databases, but
some mainstream ones, such as Unibench. UniBench is a complete MMDBMS bench-
mark that contains an internal data generator that can generate a multi-model data set
(JSON, XML, key-value, table, and graph) and a set of social commerce-based workloads,
including multi-model queries and transactions [42, 41].

In addition, some multi-model databases officially do some benchmark tests to high-
light their database performance excellence; for example, ArangoDB made a performance
comparison involving four databases in 2018 [4], and the test results are shown in the
Figure 2.1.

8 Chapter 2. Background and Related Work

Figure 2.1: NoSQL Performance Benchmark by ArangoDB 2018.

2.5 Comparison of Databases

Comparisons for several DBMSs are a common area of research. One study for an actual
healthcare data application scenario [34] stated that compared to PostgreSQL, Neo4j pro-
vides better data visibility and is cleaner in query language and faster in query speed, but
data modeling requires a lot of extra work. On the other hand, a study [29] has proposed
a benchmarking architecture based on LDBC-SNB and evaluated a range of RDBMS and
GDBMS, with the result that no performance advantage was found for GDBMS. Some
researchers have compared Neo4j and MySQL through the data provenance perspective
and concluded that there are mutual advantages and disadvantages to their performance
[38]. There are also studies aiming to design a unified benchmark test standard for both
RDBMS, GDBMS and MMDBMS [8].

2.5.1 Data Science Support

Unfortunately, PostgreSQL, an old and classic relational database, does not support or
include machine learning internally. Some researchers embed data mining algorithms such
as rule induction and decision trees into SQL extensions [39]; some scholars integrated
PostgreSQL with interactive data science platforms in designing a platform [43], but none
of these is a well-developed data science system. But on the other hand, PostgreSQL
and Python can be seamlessly integrated so that we can seamlessly explore data science
features on the data set through powerful, versatile, and reputable libraries such as Scikit-
Learn [30] with the support of Python. In this case, the database is only playing a
traditional database role.

ArangoDB proposes a tool called ArangoML, which is a pipeline focusing on meta-

9 Chapter 2. Background and Related Work

data engineering for machine learning tasks, and it can store the metadata involved in the
middle of the whole process of machine learning tasks, provide monitoring and auditing,
and ensure repeatability [2]. Its role is shown in Figure 2.2. And ArangoDB contains a
series of operational functions that can also pre-process the data in the machine learning
feature engineering and implement some graph algorithms to complete the response to
the corresponding needs.

Figure 2.2: The Role of ArangoML in Machine Learning Pipeline

Neo4j, as a pure graph database, provides a complete cycle data science framework
that allows model training and deployment in its single environment; it offers up to 65
scalable algorithms and supervised machine learning methods[26]. Neo4j’s data science
features have been used in many areas of industry. Examples include recommender sys-
tems, fraud detection, data privacy compliance, biopharmaceuticals, etc [26].

2.5.2 GUI and Graph Visualization

All three databases support visual interfaces, with PostgreSQL through pgAdmin,
ArangoDB through a browser and port mapping, and Neo4j with powerful desktop soft-
ware. As shown in Figure 2.3, ArangoDB and Neo4j also support graph visualization,
with Neo4j’s graph-based interface being richer in reality and ArangoDB being slightly
more rudimentary.

10 Chapter 2. Background and Related Work

(a) ArangoDB

(b) Neo4j

Figure 2.3: Visual interface for ArangoDB and Neo4j

2.5.3 Toward Cloud Database

PostgreSQL is an old-school RDBMS, and almost all Cloud providers choose to support it
on the cloud, including AWS, Google Cloud, and Microsoft Azure, all support deploying
PostgreSQL on their clouds. Users can use any standard SQL client application to re-
motely access and send commands from client computers for any of these Cloud providers.
This includes pgAdmin, which we talked about in the previous section, or using the psql
command-line tool inside PostgreSQL.

ArangoDB launched a cloud database service called Oasis, and users can choose
one of AWS, google cloud, or Microsoft Azure as the running vehicle. Oasis comes with
its API, which, like a standard API, enables users to control all resources within Oasis
by writing scripts. For example, you can start the deployment of ArangoDB Oasis and
perform a series of operations during the DevOps process [28].

Similar to ArangoDB, Neo4j has its own fully managed Cloud service called AuraDB,

11 Chapter 2. Background and Related Work

allowing users to choose a Cloud service provider from AWS and Google Cloud. It is also
possible to migrate across Clouds among service providers. It’s worth discussing that
AuraDB is permanently free for small networks, while ArangoDB only offers a 14-day free
trial, and PostgreSQL has a 12-month free trial (AWS) or 300 USD credit (Google Cloud)
or 12-month free trial plus 200 USD credit (Azure) depending on the Cloud provider.

3. Methodology

We chose three databases, PostgreSQL, Neo4j, and ArangoDB, as representatives of the
relational, graph, and multi-model databases, respectively, for the comparison. In this
chapter, we present the details of the comparison methods.

3.1 Data Sets

This thesis involves two datasets, one is a tabular data TPC-DS data set while the other
is a graph data based on the real Twitch social network. In this chapter, we will introduce
them separately in detail.

3.1.1 TPC-DS Set (Table-like)

The TPC-DS toolkit [24] provides a data schema that models a merchant’s sales and
returns process for three sales channels: catalog, stores, and the Internet. For each table,
there are different columns, and each column is named uniquely and starts with a lowercase
acronym of the table name. Some columns are individual primary keys for a table, and
some tables have a primary key that is a composite of several columns. Some columns are
foreign keys, that is, keys that establish joins between different tables. In contrast, some
keys are called business keys in the data warehouse schema, which are neither primary nor
foreign keys. They are used only for data insertion and update during data maintenance.

For the values in the column, there are four different data types, the first is Iden-
tifier, which means that this column can represent any value generated by this column;
the second is Integer, which means an integer value from −263 to 264 − 1; the third is
Decimal (d,f), which as the name implies is a decimal value, where d represents digits
and f is the number of decimal places, the decimal value may be precise as defined or
maybe other decimals in the range; the last is Char (N), which is a string of length N
that fill the column.

Figure 3.1 is the definition description of the table Catalog Sales [35]. We can see
that this table has a composite primary key, consisting of cs_item_sk and cs_order_sk,
while the second column is a different data type. We can also see that many of the keys

12

13 Chapter 3. Methodology

are foreign keys that establish the relationship between the table and other tables. cs is
the initial lowercase abbreviation for Catalog Sales.

Figure 3.1: Definition of Table Catalog Sales.

The TPC-DS data schema contains a total of 24 tables, seven of which are fact
tables:

• For each of the three sales channels, two fact tables correspond to sales and returns
information:
Store Sales (ss): each row represents a sales record through the store sales
channel. This table has a composite primary key consisting of ss_item_sk and
ss_ticket_number, and 9 foreign keys pointing to other tables;
Store Returns (sr): each row is a record of items sold through the store sales
channel but were returned. This table also has a composite primary key, consisting
of sr_item_sk and sr_ticket_number and 10 foreign keys;
Catalog Sales (cs): similar to Store Sales (ss), except that this table repre-
sent records sold through catalog channels and have 17 foreign keys;
Catalog Returns (cr): records of catalog-sold and returning items with 17 for-
eign keys;
Web Sales (ws): similar to Catalog Sales (cs), this table represent records sold
through online channels and have 17 foreign keys;
Web Returns (wr): records of sold online and returning items with 17 foreign keys.

• The one table which stores inventory information for the two sales channels catalog
and web called:
Inventory (inv): each row indicates the number of specific items available in a

14 Chapter 3. Methodology

particular warehouse for a given week. This table has only 4 columns, inv_date_sk,
inv_item_sk, inv_warehouse_sk three columns form a composite primary key, and
they are also three foreign keys.

• For each of the three sales channels, there are two fact tables that correspond to
sales and returns information:

The remaining 17 tables are dimension tables, which are related to the tables of
the three sales channels, namely: Store (s), Call Center (cc), Catalog Page (cp),
Web Site (web), Web Page (wp), Warehouse (w), Customer (c), Customer Address
(ca), Customer Demographics (cd), Date Dim (d), Household Demographics (hd) ,
Inventory (inv), Inventory (inv), Item (i), Income Band (ib), Promotion (p) ,
Reason (r), Ship Mode (sm), Time Dim (t).

So far we have introduced all the tables, which have complex relationships with
each other, and for the seven fact tables we show their Entity Relationship Diagram (ER
diagram). The six tables for sales and returns are very similar, as shown in Figure 3.2, the
ER diagram for Catalog Sales and Catalog Returns respectively, the Appendix A.1 on
page 47 contains the ER diagram for remaining 4 tables, and Figure 3.3 is the ER diagram
for Inventory [35].

(a) Catalog Sales (b) Catalog Returns

Figure 3.2: ER-Diagrams of Catalog Sales/Returns

Figure 3.3: ER Diagram of Inventory.

15 Chapter 3. Methodology

3.1.2 Twitch Set (Graph-like)

We have selected a set of undirected and unweighted graphs from Stanford Large Network
Dataset Collection: SNAP which is a network of Twitch (a video live streaming platform)
users to users who stream in the same language [19, 33]. Nodes represent different players,
and if two players have a friend relationship with each other, then an edge will hold
accordingly. Although edges have no characteristics, each node has attributes that are
extracted from the player’s characteristics, the time spent online, and whether they are
mature. These social networks were collected in May 2018.

The authors [33] propose that these networks can be used for transfer learning
applications, as well as for supervised tasks related to binary node classification, such
as predicting whether a user uses a selected language or not. For this data set, the
attribute information can be used to predict new relationships between nodes and the
location of nodes [32]. Some researchers [10] have also used Twitch data to conduct
interesting studies, such as whether each game attracts an audience at similar points and
how closely/far from each other different mainstream gamer subcultures are connected.

Table 3.1: Dataset Statistics

DE EN ES FR PT RU
Nodes 9498 7126 4648 6549 1912 4385
Edges 153138 35324 59382 112666 31299 37304
Density 0.003 0.002 0.006 0.005 0.017 0.004

Transitvity 0.047 0.042 0.084 0.054 0.131 0.049

Table 3.1 is the statistics of the graphs corresponding to the six different languages
[19, 33]. Each node has six attributes:id, days, mature, views, partner,new_id. mature
and partner are Boolean variables, the rest are integer numbers. For each laguage, the
data set consists of two CSV files, where the egde CSV file has only two columns, the
first column is from and the second column to, and each line is the new_id of the two
corresponding nodes, while the other target CSV file stores the six attributes of the node,
where the new_id is corresponding to the edge file.

3.2 Quantitative Analysis

Performance is a core metric for comparing different databases, mainly in terms of their
execution time when faced with different tasks. We used two different types of data sets,
a table-like data set and a graph-like data set, to adapt to three databases and compare
the performance.

16 Chapter 3. Methodology

We selected 14 evaluation tasks for the table-like data, while for the graph-like data,
we selected three. For each evaluation task, the execution time of ten consecutive runs
will be recorded, starting from the first, and the median, mean and minimum values were
taken for one task.

3.2.1 Table Data

Storage Schema

• For Postgresql, TPC-DS toolkit [24] provides a SQL file that defines the storage
schema for the relational database, defining constraints and primary keys, etc. We
just need to import the 25 tables as needed.

• For ArangoDB, similarly, as a multi-model database, it also natively supports docu-
ment type file storage, and we can directly store 25 tables in collections on demand.

• For Neo4j, as a graphical database, it does not support the direct import of relational
or table data. Refer to the paper by Yijian and other researchers [8] and the guidance
for migrating relational databases to graph databases provided in Neo4j’s developer
documentation [27]. We propose a method to store this tabular data in Neo4j:
import the desired table as a node first, where each row in each table is a node,
and the name of the table is the label of that node, and the attributes of the node
have column attributes defined for each row. After importing all the nodes, we then
create the edges without any attribute based on foreign key dependencies, as shown
in the algorithm in Algorithm 1. The Appendix A.2 on page 48 contains the edge
mapping and naming samples.

Data Selection

Six of the seven fact tables are comprised of sold and returned records from three different
sales channels, so they have strong similarities. Due to the limitation of my experimental
equipment performance, we selected the data of two of the sales channels and a part of the
definition tables to form the final table data of this experiment, a total of 14 tables, the
ER relationship is shown in Figure 3.4. The four nodes in the blue dashed box represent
the four fact tables selected for this time, while the red dashed boxes are the three similar
definition tables that share relationships with all other nodes (tables).

However, since the Neo4j import took too long in the experiment, we performed a
secondary extraction, involving only five tables, with the ER diagram shown in Figure
3.5, and the same subset of data was used in PostgreSQL, ArangoDB, and Neo4j if they
have the evaluation tasks (Task 1 to Task 10 in the Evaluation Tasks Section 3.2.1)

17 Chapter 3. Methodology

Algorithm 1: Relational Data to Graph Storage
Input: Table_set
N ← length(Table_set);
Create Nodes:
for k ← 1 to N do

N_row ← length(tablek); /* Get row number of table_k */
N_col← width(tablek); /* Get column number of table_k */
for j ← 1 to N_row do

create a node with the label: name(tablek);
for m← 1 to N_col do

add property Column(tablek)[m] to node
end

end
end
Add Edges:
for k ← 1 to N do

N_col← width(tablek)
for m← 1 to N_col do

if Column(tablek)[m]isaforeignkey then
for each node V in tablek do

create a edge from V to possible node from the foreign table
based on property matching

end
end

end
end

18 Chapter 3. Methodology

Figure 3.4: Selected TPC-DS data ER Diagram.

Figure 3.5: 5-table TPC-DS data ER Diagram.

Evaluation Tasks

SQL, as the originator of the database query language, supports very rich operations,
while AQL, on the other hand, as a derivative of SQL [3], is as close as possible to SQL’s
functionality but does not entirely cover SQL’s functionality. Cypher, as a graph query
language, has a very different usage from SQL and AQL, and all its logic is based on
graphs. The most basic use of the database can be summarized by the word CRUD,
that is, Create (C), Read (R), Update (U), Delete (D). Some researchers have proposed

19 Chapter 3. Methodology

some CRUD testing tasks for NoSQL databases [36]. Considering the above, we propose
ten basic query tasks that can compose complex statements and cover most of the tasks
in production work. In addition, TPC-DS provides 100 query statements by itself, and
we selected 4 of them and translated them into AQL and Cypher languages for cross-
database performance comparison. We also measure a total of fourteen different tasks
multiple times to see if the query is affected by repeated execution. We take the average
(Ave), median (Med), fastest, slowest, range, and the standard deviation for each query’s
execution time.

Ave(TQ) = TQ1 + TQ2 + ... + TQN

N

Med(TQ) =

TQN+1

2
if N is odd

T Q N
2

+T Q N
2 +1

2 if N is even

Range(TQ) = Max(TQ)−Min(TQ)

where TQn is the execution time of query Q for the nth time and N is the number of
execution times for query Q.

The specific tasks are defined as follows:

1. Create:
PostgreSQL Insert 1 row on the customer table with only c_customer_sk and

c_customer_id at one time, 100000 rows in total;
ArangoDB Insert a document to the customer collection at one time with only

c_customer_sk and c_customer_id attributes at a time, 100000
documents in total;

Neo4j Add a customer node with c_customer_sk, c_customer_id as
node properties at a time, 100000 nodes in total.

2. Read:
PostgreSQL Select all rows in customer table;
ArangoDB Return all documents in customer collection;
Neo4j Return all nodes with label customer.

3. Update:

PostgreSQL Update the c_birth_day column of the 100000 rows created in
task Create from null to 1, one row at a time;

ArangoDB Update the c_birth_day attribute of the 100000 documents cre-
ated in task Create from null to 1, one document at a time;

Neo4j Update the c_birth_day node property of the 100000 nodes cre-
ated in task Create from null to 1, one node at a time.

20 Chapter 3. Methodology

4. Delete:
PostgreSQL Delete all 100000 rows created previously, one row at a time;
ArangoDB Delete the the 100000 documents created previously, one document

at a time;
Neo4j Delete the 100000 nodes created previously, one node at a time.

5. Projection:
PostgreSQL Select first three columns from customer table;
ArangoDB Return the same three attributes from customer collection;
Neo4j Return the same three node properties of nodes with label

customer.

6. Sorting:
PostgreSQL Select all rows from customer table, order by age, i.e. birthday,

with month and year;
ArangoDB Return all documents from customer collection, order by birthday,

with month and year;
Neo4j Return all nodes with label customer, order by order by birthday,

with month and year.

7. Counting:

PostgreSQL/ArangoDB/Neo4j:

Count how many customer were born in January and February.

8. Grouping:

PostgreSQL/ArangoDB/Neo4j:

Count how many customer were born in the same year, month.

N.B. For Neo4j, since there is no Group By in Cypher, we return the year and
month as combination and calculate the frequency instead.

9. Min/Max:

For three databases:

Report both the maximum and minimum born year of customer.

10. Join:

PostgreSQL/ArangoDB/Neo4j:

Return inner join of all columns/attributes/node properties from catalog_returns
and data_dim where cr_returned_date_sk equals to d_date_sk

21 Chapter 3. Methodology

11. TPC-DS Q15:

Report total sales via catalog for customers in chosen geographic areas or for cus-
tomers who made significant acquisitions in a given quarter (2) of a given year
(2001).

12. TPC-DS Q20:

Calculate the total income and the ratio of total income to income from the specified
item category (Sports, Books, Home) for a time period (from February 20, 1999 and
inside 1999)

13. TPC-DS Q29:

Report all items sold via store channel in a specific month (September) in a specific
year (1999) and returned within the following 6 months from the purchase in the
same year (1999) and these items have been purchased again by the same customer
within the next three years but via the catalog sales channel.

After selecting the items, calculate the total number of items sold via the store
sales channel, the number returned, and the number purchased via the catalog sales
channel and group all the results by store and item.

14. TPC-DS Q72:

Calculate and report the amount of sales with promotions or not for each warehouse,
item and weekly mix in 1999.

The Task 11 to Task 14 are not applicable for Neo4j due to the data selection.

3.2.2 Graph Data

Storage and querying of graph data in relational databases have been an interesting and
heavily researched topic, researchers focus on graph matching queries over SQL, but these
are often accompanied by a relatively complex schema for storing graph data [21, 18]. In
this study we stored graph data in a simple and straightforward schema and propose three
evaluation tasks to compare the performance. Similar to the table data, we also test the
different tasks several times and calculate some indices.

Storage Schema

• For Postgresql, We store the edge csv and node property csv as two separate tables,
table link and table account, then set new_id column of table account as the
primary key and foreign key to establish a relation with the table link, while the

22 Chapter 3. Methodology

two columns in table link, id_1 and id_2, consist of a composite primary key.
Figure 3.6 shows the corresponding entity relationship diagram.

Figure 3.6: Entity Relationship Diagram of twitch data set.

• For ArangoDB, the graphical functionality is similar to that of a graph database,
for each document in a collection of stored nodes, a unique _id attribute is auto-
matically stored. To establish a relationship (i.e., an edge) between two documents
(i.e., nodes), both _id attributes are stored in special edge documents called _from
and _to attributes, thus forming a directed edge between two arbitrary nodes. The
edges are then stored in another special collection.

ArangoDB achieves efficient and scalable graph query performance by using special
hash indexes for the _from and _to attributes (i.e., edge indexes). This allows
constant lookup times. Using edge indexes, ArangoDB can handle graph queries
very efficiently. Figure 3.7 shows two collections of twitch, account storing node
attributes and links is for edges.

Figure 3.7: Twitch collections in ArangoDB

• For Neo4j, as a native graph database, we can import the twitch data directly as a
graph, where the nodes have the corresponding properties.

Evaluation tasks

1. N-hop Friends:

23 Chapter 3. Methodology

An N-hop friends problem, understood theoretically, is to find all nodes that are N

or less distant from the initial node. It is a ubiquitous algorithm, some algorithms,
such as machine learning k-nearest neighbors, also use a similar principle, but there
are some differences in the distance calculation. This algorithm is very useful for
search and basically, it is a traversal of the graph so we can use it to evaluate the
performance of different databases.

Neo4j has a native Breadth-First Search (BFS) API called gds.alpha.bfs.stream
to achieve this function, as results, it will return all the nodes within a certain
distance and the route how to get there from starting node. This function also
supports multiple termination conditions, for example, based on reaching one of a
given set of target nodes, reaching the maximum depth (hops), or having no more
cost budget for a given traversal relationship.

Similarly, ArangoDB, a database that natively supports graph structure storage, also
supports graph traversal functionality, i.e., how to accomplish N-hop friends search.
After searching all the compliant vertices visited in the running, the function will
return a set containing three items: first, all the vertices visited; second. the edge
pointing to it; third, the complete path from the initial node to the visited node as
an object, for this object there are two different attributes, edges and vertices, each
of them is a list of respective components. These lists will be sorted from the initial
node to the last node.

As a traditional relational database, PostgreSQL does not natively support graph
traversal operations. Thus, reference related research [11], we propose an algorithm
to complete the n-depth traversal of the graph to solve the related problem, as
shown in Algorithm2. This function has two inputs, the starting node node_1
and the depth (hops) n, while the return will contain all the nodes that meet the

24 Chapter 3. Methodology

requirements and the route from the starting node to that node.

Algorithm 2: N-hop friend search in PostgreSQL
Input: node1: the starting node, n: n hop

1 WITH RECURSIVE n_hop_search (
2 node_1 , -- a vertex from graph , the starting node
3 node_2 , -- another vertex from graph
4 hop , -- hop , by default is 1
5 route -- the route from node_1 , an array
6) AS (
7 SELECT -- root query
8 graph.node_1 , -- node 1
9 graph.node_2 , -- ndoe 2

10 1 as hop , -- by default , set hop as 1
11 ARRAY[graph. node_1] as route -- the first route
12 FROM link AS graph -- read edge table link
13 WHERE
14 node_1 = ? -- starting_node , INPUT
15 UNION ALL
16 SELECT -- recursive query
17 graph.node_1 , -- node 1
18 graph.node_2 , -- node 2
19 rec_graph .hop + 1 as hop , -- hop +=1
20 route || graph. node_1 as route -- update the route
21 FROM link AS graph , n_hop_search AS rec_graph -- recursive
22 WHERE
23 graph. node_1 = graph. node_2 -- new node 1 = old node 2
24 AND (graph. node_1 <> ALL(rec_graph .hop)) -- avoid loop
25 AND rec_graph .hop <= n -- n hop , INPUT
26)

2. Shortest Path:

The shortest path problem is easy to understand, i.e., finding the shortest path
between two nodes. While Neo4j and ArangoDB still have native support for this
task, PostgreSQL needs to be modified from our Algorithm2 by setting node_2
as the destination node, removing the maximum depth termination condition, and
finally using the LIMIT 1 to get the first row of the returned table, i.e. the shortest
path.

4. Experiments and Results

4.1 Environment and Configuration

The experiments were all conducted on one single laptop, and in order to remain impartial,
there was no operation been performed after installing the operating system but only
installed the components and software necessary for the experiments. The details of the
laptop are described as follows:

Processor (CPU) AMD Ryzen 5 4600U (6C 12T) @2.1GHz
Memory 16 GB, 3200 MHz DDR4
Operating System Ubuntu 20.04.3 LTS 64-bit
Storage Pioneer APS-SE10N-Pcie3*2 M.2 NVMe SSD 256G
Video AMD Radeon RX Vega 6
Network 100 Mbps Wired Connection

Three database versions and other extensions were used for this experiment, the
relevant software versions are as follows:

PostgreSQL 12.9 (pgAdmin4 6.4)
ArangoDB 3.8.5-1 (Vpack 0.1.35, RocksDB 6.8.0)
Neo4j Community Edition 4.4.1 (Desktop App Version 1.4.12)

As previously stated, we test all evaluation tasks multiple times, recording the ex-
ecution time for each one. For PostgreSQL, this is done using psql within the terminal;
for ArangoDB, it is achieved via the web API, and for Neo4j, it is done via its officially
provided desktop software. For timing, both ArangoDB and Neo4j automatically report
the execution time at the end of each query; in PostgreSQL, we set \timing as ON to
obtain the execution time for each query.

Between tasks or when switching databases we clear the cache through
command: sudo sh -c "/usr/bin/echo 3 > /proc/sys/vm/drop_caches" and
require("@arangodb/aql/cache").clear();. Run only one database at a time.

25

26 Chapter 4. Experiments and Results

4.2 Data Production and Import

4.2.1 TPC-DS Data

We used the data generator dsdgen from TPC-DS tool-kit (Version 2.10.0) to generate
the data sets for our tests, there is a Scale Factor we can set to 1 as the minimum valid
input, then a data set of 1G size will be generated, detailed statistics can be found in
Table 4.1.

TPC-DS Data 1GB Row Counts [35]
Table Average Row Size (b) Rows
catalog_sales 226 1441548
catalog_returns 166 144067
store_sales 164 2880404
store_returns 134 287514
customer 132 100000
customer_address 110 50000
customer_ demographics 42 1920800
date_dim 141 73049
household_ demographics 21 7200
warehouse 117 5
inventory 16 11745000
item 281 18000
promotions 124 300
store 263 12

Table 4.1: TPC-DS Data 1GB Statistics

When importing the corresponding nodes into the database, PostgreSQL provides
the psql COPY command, ArangoDB has the arangoimport command, and Neo4j re-
quires script writing to create the nodes. Subsequently, it is also necessary to establish
corresponding relationships/edges between nodes with different labels. Using the date
dim table as an example, PostgreSQL and ArangoDB both took less than 5 seconds to
import, while Neo4j took a staggering 1990 seconds, shown in Figure 4.1.

4.2.2 Twitch Data

The Twitch database consists of 6 graphs, and since our task is to evaluate database
performance rather than exploring transfer learning, we chose the largest relational graph

27 Chapter 4. Experiments and Results

Figure 4.1: Import date dim Table to Neo4j

of German-speaking players. In total, there are 9498 nodes and 153138 edges.
Unlike the TPC-DS data, there is no defined schema for PostgreSQL out of the box

this time, we create two tables and import the node data and edge data separately as
described in the previous chapter.

1 CREATE TABLE account
2 (new_id INTEGER ,
3 days INTEGER ,
4 mature BOOLEAN ,
5 views INTEGER ,
6 partner INTEGER ,
7 PRIMARY KEY (new_id));

1 CREATE TABLE link
2 (id1 INTEGER ,
3 id2 INTEGER ,
4 PRIMARY KEY (id1 , id2)
5);

One thing to note about ArangoDB is that its collection for storing edge information
is a specialized form, and we need to add the additional option –create-collection-type
edge when importing edge information. For Neo4j we just need to import the nodes and
edges with command LOAD CSV and CREATE [25].

4.3 Tasks Execution Time

Besides the metrics we defined in Section 3.2.1, We define the following metrics here:

1. Percentage of range (Perc):

Perc(TQ) = Range(TQ)/Max(TQ)

where TQ is the execution time series of query Q and Range(TQ) is the fluctuation
range of all the execution times of query Q while Max(TQ) is the slowest of all

28 Chapter 4. Experiments and Results

execution times. This metric can be used to measure the volatility of continuous
queries.

2. Coefficient of Variation (CoV):

CoV (TQ) = Std(TQ)/Ave(TQ)

where TQ is the execution time series of query Q and Std(TQ) is the Standard
deviation of all the execution times of query Q while Ave(TQ) is the average value
of all execution times. This is another metric that can also be used to measure the
volatility of continuous queries, and it shows the degree of variation associated with
the overall mean. Unlike Perc, it eliminates the effect of absolute values to some
extent and focuses more on the relative intensity of fluctuations, a higher the CoV,
means the dispersion is greater.

3. Time Reduction value of the 10th verse the 1st (TR(1-10)):

TR(1− 10) = TQ10 − TQ1

TQ1

where TQ10 is the execution time of query Q for the 10th time, similarly, TQ1 is for
the first execution. This metric is used to measure the execution time improvement
of the database from the first to the tenth query. To eliminate the effect of the
absolute value of the different query times, similar to CoV, we divide by the first
query time spent.

We performed automated tests using scripts to time 16 tasks and three databases,
and the execution time results for all tests are in Appendix B. For the calculation of the
measurement metrics, we did it with Python and the corresponding libraries, where Table
4.3 shows the first execution time and the fastest execution time for the three databases
on 16 tasks, and the best performance among the three is marked with a color. Figure
4.4 shows the comparison of CoV.

It is also a good way to perform cross-database comparisons for the same query to
perform database performance evaluation; for example, for Table Task 1: Create, Table4.2
is its performance metrics statistics for on three databases. Figure 4.2 shows a line graph
of the change in time spent on ten queries for each of the three databases, noting that the
y-axis range is not uniform. Again with this example, we can see from the performance
metrics that the average time difference between the three databases for this task is very
large, with PostgreSQL taking significantly less time than ArangoDB, which in turn is an
order of magnitude faster than Neo4j. On the other hand, by analyzing the ten execution
times, we can see that PostgreSQL has a significant degradation between the first and
the third time, which means that PostgreSQL is probably doing some optimization or

29 Chapter 4. Experiments and Results

Ave Med Std Max Min Perc CoV TR(1-
10)

PostgreSQL 361.3 349.5 40.1 457 324 0.291 0.111 0.232
ArangoDB 8573.4 8570.5 143.5 8829 8367 0.052 0.017 -0.002

Neo4j 18700.7 18959.5 786.5 19890 17014 0.145 0.042 -0.060

Table 4.2: Table Task 1 Metrics.

1 2 3 4 5 6 7 8 910

350

400

450

Execution Sequence

Ex
ec
ut
io
n
tim

e
(m

s)

PostgreSQL

1 2 3 4 5 6 7 8 910

8,400

8,600

8,800

Execution Sequence

ArangoDB

1 2 3 4 5 6 7 8 910
1.7

1.8

1.9

2
·104

Execution Sequence

Neo4j

Figure 4.2: Table Task 1 Execution Times

"learning." Figure 4.3 then shows a simultaneous comparison of 3x10=30 execution times.
With this figure, we can see that PostgreSQL is in an absolute advantageous position for
this task, as we discussed before, but on the other hand, due to the y-axis scaling, we
cannot clearly see the comparison within the database itself.

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

·104

Execution Sequence

Ex
ec
ut
io
n
T
im

e
(m

s)

Table Task1: Create

PostgreSQL
ArangoDB

Neo4j

Figure 4.3: Table Task 1 Excution Time Comparison

30
C

hapter
4.

E
xperim

ents
and

R
esults

First Execution Time & Minimum Execution Time Comparison

Pos.(1st) Ara.(1st) Neo.(1st) Pos.(Min) Ara.(Min) Neo.(Min)

Table Task 1: Create 457.00 8704.00 17014.00 324.00 8367.00 17014.00

Table Task 2: Read 360.00 663.00 542.00 249.00 583.00 20.00

Table Task 3: Update 765.00 3133.00 524.00 765.00 3015.00 524.00

Table Task 4: Delete 379.00 4728.00 278.00 330.00 4273.00 255.00

Table Task 5: Projection 145.00 864.00 514.00 96.00 354.00 204.00

Table Task 6: Sorting 407.00 632.00 40.00 367.00 632.00 10.00

Table Task 7: Counting 116.00 209.00 42.00 70.00 209.00 5.00

Table Task 8: Grouping 122.00 156.00 42.00 89.00 136.00 42.00

Table Task 9: Min/Max 92.00 275.00 152.00 59.00 217.00 5.00

Table Task 10: Join 846.00 2732.00 142.00 758.00 2132.00 4.00

Table Task 11: TPC-DS Q15 1409.00 9428.00 N/A 185.00 8932.00 N/A

Table Task 12: TPC-DS Q20 1363.00 15478.00 N/A 151.00 14237.00 N/A

Table Task 13: TPC-DS Q29 5364.00 27382.00 N/A 925.00 27382.00 N/A

Table Task 14: TPC-DS Q72 3952.00 20619.00 N/A 387.00 20574.00 N/A

Graph Task 1: N-hop Friends 2832.00 2414.00 15.00 242.00 2287.00 1.00

Graph Task 2: Shortest Path 2932.00 0.80 4.00 253.00 0.64 1.00

Table 4.3: The first execution time and the minimum (fastest) time of each task for three databases, the better performance records have been marked

31
C

hapter
4.

E
xperim

ents
and

R
esults

Create Read Update Delete Projection Sorting Counting Grouping
0

2

4

6

C
oe
ffi
ci
en
t
of

Va
ria

tio
n

PostgreSQL ArangoDB Neo4j

(a)

Min/Max Join TPC-DS Q15 TPC-DS Q20 TPC-DS Q29 TPC-DS Q72 N-hop Friends Shortest Path
0

2

4

6

C
oe
ffi
ci
en
t
of

Va
ria

tio
n

PostgreSQL ArangoDB Neo4j

(b)

Figure 4.4: The coefficient of variation of each task for three databases. (a) Table Task 1 - Table Task 8. (b) Table Task 9 - Graph Task 2.

32 Chapter 4. Experiments and Results

4.4 Workload Classification

The experimental results and measurement metrics show databases have somewhat dif-
ferent response patterns when faced with those same tasks. For example, the coefficient
of variation indicates that Neo4j has more significant fluctuations in executions time for
many tasks than the other two. Meanwhile, considering only one database may have
different processing patterns when faced with different workloads; for instance, when
PostgreSQL was in the execution of the TPC-DS Q15, the time dropped sharply, but this
didn’t happen when it dealt with the Update task. In this chapter, we perform unsu-
pervised learning on the results to determine whether the workload can be classified or
clustered and explore the processing patterns of databases from a workload aspect.

4.4.1 Original Data Description

First, for each database, we put the 10 execution times and standard deviation (Std), av-
erage (Ave), maximum (Max) and minimum (Min) values, the difference between the first
and tenth query times (TR(1-10)), as well as the percentage of execution time fluctuation
range (Perc) and coefficient of variation (CoV) into one data frame, thus, we have two
of 16*17 and one 12*17 data frames. Figure 4.5 shows the Pearson correlation coefficient
analysis for these 3 data sets.

(a) PostgreSQL (b) ArangoDB (c) Neo4j

Figure 4.5: Correlation Coefficient of Three original data sets (Pearson)

4.4.2 Dimensionality Reduction

Feature Selection

The 17-dimensional raw data is high-dimensional and has many redundant variables.
Based on the related research and literature, we first implement dimensionality reduction
in the 17-dimensional data by correlation analysis and feature selection [40, 16].

33 Chapter 4. Experiments and Results

As shown in Figure 4.5, the data for the ten execution times, are highly correlated
with each other (correlation coefficient > 0.90), but PostgreSQL differs slightly from the
rest of the two databases in that the correlation between the first execution time and
the second to tenth time is less than the intercorrelation within the latter set. On the
other hand, the execution time of PostgreSQL from the second to the ninth time is highly
correlated with the average execution time. Therefore, we extract the execution time for
the three datasets by keeping only the first execution time (1st). The original data is
now reduced from 17 to 8 dimensions.

For all the three original data, Min and Ave features are highly correlated, while Max
is highly correlated with the first execution time 1st, so we can remove Min and Max from
the data and won’t lose much information. Both CoV and Std are used to measure the
dispersion of the data set, and CoV is referenced to Std and removes some of the effect
of the absolute size of the original data, so we can choose to keep CoV and remove Std.
At this point, we now have a 16*5 or 12*5 feature-selected data set for three databases
where the five features are {1st, Ave, CoV, TR(1-10), Perc}.

Principal Component Analysis (PCA)

Although five-feature looks not like a very high dimension, we can still perform further
dimensionality reduction by Principal Component Analysis (PCA) [7]. PCA is a dimen-
sionality reduction method that projects the data onto the directions drawn according
to the features by looking at the eigenvectors of the covariance matrix as indicators and
starting from the lines that cross the data along the direction of maximum variance [22].

We perform PCA analysis by using the PCA() function in the scikit-learn Python
library [30], the visualization provided in the book [37] was used to analyze the number
of components chosen for PCA concerning the explained variance it covers. We normalize
all features by the minimum-maximum at the beginning.

The results of the PCA about the number of components verse cumulative ex-
plained variance analysis are shown in Figure 4.6. With only one PCA component, Post-
greSQL’s cumulative explained variance ranges from 0.75 (75%) to less than 0.8 (80%),
while ArangoDB and Neo4j are below 0.7 (70%). When two PCA components are se-
lected, the cumulative explained variance of the three covers more or almost 0.9 (90%),
so we set the number of components for PCA as 2, and then we will use this 2-component
PCA data for clustering.

34 Chapter 4. Experiments and Results

1 2 3 4 5

0.7

0.8

0.9

1

Number of Components

C
um

ul
at
iv
e
Ex

pl
ai
ne

d
Va

ria
nc

e
PostgreSQL
ArangoDB
Neo4J

Figure 4.6: PCA Cumulative Explained Variance Analysis

4.4.3 Clustering

The workload or task classification now becomes a straightforward clustering analysis
of two-feature data. In this section, we make use of the K-means clustering method
in the scikit-learn library [30], which is a very classical unsupervised learning method.
The results are represented graphically using the visualization methods mentioned in the
book [37]. In addition, We also plot PCA biplots with the method provided in bioinfokit
software [6], which will be used to analyze the clustering results.

PostgreSQL

Figure 4.7: PCA Biplot of PostgreSQL

From Figure 4.7 we can see that the
PCA analysis of PostgreSQL, Ave and CoV
TR(1-10) Perc almost perfectly account
for the direction of the two components,
while 1st is showing almost half and half
positive correlation with both components.
We then performed 4-class K-means clus-
tering on the 16 or 12 task points, and the
results are shown in Figure 4.8. The results
of clustering show that the four clusters are
respectively then 4 corners.

35 Chapter 4. Experiments and Results

−0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.5

0

0.5

1

Create

Read

Update
Delete

Projection

Sorting

Counting

Grouping

Min/Max

Join

TPC-DS Q15

TPC-DS Q20

TPC-DS Q29

TPC-DS Q72

N-hop Friends
Shortest Path

PCA Component 1

PC
A

C
om

po
ne

nt
2

−0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.5

0

0.5

1

PCA Component 1
PC

A
C
om

po
ne

nt
2

Figure 4.8: PostgreSQL Workload K-means Clustering Results. On the left is the projection of each
data point on a 2-dimensional PCA, and on the right is the clustering result for 4-class K-means, where
the center of each cluster represented by a larger point.

• Group 1: {TPC-DS Q29}
• Group 2: {TPC-DS Q20, TPC-DS Q15, Shortest., N-hop., TPC-DS Q72}
• Group 3: {Join, Update}
• Group 4: {Count., Min., Proj., Crea., Del., Sort., Group., Read}

It is distinct that Group 1 is the one with a long average time and a large time variation
in 10 executions; Group 2 is with a small average time, but there is some variation with
multiple executions; Group 3 is on the small side of both; Group 4 is the one with a long
time but no big fluctuations in execution time;

Figure 4.9: PCA Biplot of ArangoDB

36 Chapter 4. Experiments and Results

ArangoDB

The PCA biplot of ArangoDB is shown in Figure 4.9, where Ave and 1st are in one
direction, while Perc and CoV are in the other direction, and TR (1-10) is also in the
middle of that tow direction but not very well projected.

−0.4 −0.2 0 0.2 0.4 0.6

−1

−0.5

0

0.5

1

Create

Read

Update

Delete

Projection

Sorting

Counting

Grouping

Min/Max

Join

TPC-DS Q15

TPC-DS Q20

TPC-DS Q29

TPC-DS Q72

N-hop Friends
Shortest Path

PCA Component 1

PC
A

C
om

po
ne

nt
2

−0.4 −0.2 0 0.2 0.4 0.6

−1

−0.5

0

0.5

1

PCA Component 1

PC
A

C
om

po
ne

nt
2

Figure 4.10: ArangoDB Workload 4-class K-means Clustering Results.

• Group 1: {TPC-DS Q29, TPC-DS Q20, TPC-DS Q72}
• Group 2: {Create, TPC-DS Q15, Update, Sorting, Read, N-hop Friends.}
• Group 3: {Join, Grouping, Min/Max, Counting, Delete}
• Group 4: {Projection, Shortest Path}

Figure 4.10 shows the result of 4-class K-means clustering, the data points are distributed
in a ’V’ shape, where the ends of two edges, Group1 and Group4, have a high average
time/first execution time and a large time variation in multiple executions respectively,
respectively. At the bottom of the V, Group2 and Group3 have relatively small those two
dimensional metrics.

Neo4j

Figure 4.11 shows the PCA biplot for Neo4j, and we can see that the angle between the
two components is acute. At the same time, the average time spent and the first execution
time lead one direction and the time variation indicate the other. Figure 4.12 is the results
of 4-class K-means clustering.

37 Chapter 4. Experiments and Results

Figure 4.11: PCA biplot of Neo4j

−0.4−0.2 0 0.2 0.4 0.6 0.8

−0.5

0

0.5

1
Create

Read

Update
Delete

Projection

Sorting

Counting

Grouping

Min/Max

Join

N-hop Friends

Shortest Path

PCA Component 1

PC
A

C
om

po
ne

nt
2

−0.4−0.2 0 0.2 0.4 0.6 0.8

−0.5

0

0.5

1

PCA Component 1

PC
A

C
om

po
ne

nt
2

Figure 4.12: Neo4j Workload K-means Clustering Results.

• Group 1: {Create}
• Group 2: {Delete, Update, Grouping}
• Group 3: {Projection, Shortest Path, Counting, Sorting}
• Group 4: {Min/Max, Read, N-hop Friends, Join}

We can see that only one task, Create, is exclusive to a cluster because of high
execution time, while the rest of the tasks can be said to be evenly distributed in the
dimension of execution time variation.

5. Discussion

5.1 Performance

5.1.1 Execution Times

First of all, for the Create task, PostgreSQL has the best performance among the three
databases in terms of both first query time and fastest time, ArangoDB has the second-
best performance, and Neo4j has the longest time. In fact, this is also positively related to
the time we spent importing data into the three databases, the reason for this difference
is each time a new record (node) is created, Neo4j needs to generate many edges based on
node dependencies, while in the relational or multi-model databases it is only necessary
to update the table by constraints. The storage logic of different databases determines
this, and the graph database maintains all relationships for each piece of data separately.
Also, in terms of first execution time and fastest execution time, PostgreSQL is optimized
for the Create task with multiple executions, while ArangoDB and Neo4j do not change
in multiple significantly.

On the other hand, the execution time of the Join task on Neo4j is notably lower
than on PostgreSQL and ArangoDB, where PostgreSQL is faster than ArangoDB. This
is because we do not need to do too much computation in the graph database when we
do the Join operation. After all, the relationship between the nodes is already apparent.
However, relational databases still need to perform Join based on a series of inter-table
links such as primary key foreign key, and the computation is greater than that of graph
databases.

For Read and Min/Max tasks, PostgreSQL is the fastest in first execution time, but
Neo4j wins in the fastest execution time. For Update, Delete, Sorting, Counting, and
Grouping tasks, Neo4j achieves the fastest of all three in both first execution time and
fastest execution time. In the tasks based on TPC-DS workload queries, we tested only
PostgreSQL and ArangoDB because the time to import the entire data set into Neo4j was
too long, with PostgreSQL having an advantage in both first execution time and fastest
execution time.

In two graph task experiments, Neo4j is faster than both PostgreSQL and ArangoDB

38

39 Chapter 5. Discussion

in N-hop Friends. At the same time, ArangoDB is faster than the remaining two in the
shortest path, both in first execution time and fastest execution time. The speed advan-
tage of a graph database in applying graph algorithms is obvious, and it also supports a
variety of graph algorithms. We do not need to write complex statements like the ones
designed for PostgreSQL in this experiment.

5.1.2 Cache

For PostgreSQL, we can see that it gets a significantly faster execution time on the
second, third execution than on the first for many tasks. In particular, it shows impressive
optimization capabilities for Table Tasks 11 to 15. Access to system tables and standard
table schema is persistent for a typical PostgreSQL system. To improve the efficiency of
these accesses, PostgreSQL has set up a cache to improve access efficiency. The results
prove that this cache mechanism can optimize some tasks that have already been queried.

ArangoDB’s cache mechanism is to cache query strings as keys. When running two
queries with identical values, the database will query from the cache to see if there is
an exact cache key match, and if so, return the result corresponding to that cache key.
But ArangoDB’s cache has many restrictions. The query string must be identical, case,
space-sensitive, and must be a read-only query, streaming cursor is not applied, has the
same bind parameter values, etc.; we can see some tasks in ArangoDB. The first query is
cached to provide a faster response for the second execution of the same job.

Similarly, Neo4j has impressive caching features. When we use its query language
Cypher, Neo4j will compute a hash of the string of the Cypher statement as a cache key.
Similarly, two Cypher statements perform the same operation but have different hash
cache keys due to case differences or spaces. The last query will not get results from the
cache as quickly. It is also necessary to note that although Neo4j’s execution time looks
fast if it is in the cache, there is a considerable delay between the end of execution and
the return of results. It isn’t easy to appreciate the performance advantage in practice.

5.2 Which One Should I Choose?

As we got in all comparisons, no database is better for every item, so there is no best
choice. We also did not get results entirely consistent with any other literature. The
answer to this question is that it needs to be case-specific, or the user needs to set up
their tests.

As a traditional relational database, PostgreSQL has both wins and losses in perfor-
mance with the other two databases. And relational databases have a strong guarantee
of maintaining data consistency (transaction processing). Because of the premise of stan-

40 Chapter 5. Discussion

dardization, all use table structure, the overhead of data update is tiny. Easy to maintain.
Ease of use is also a significant advantage; SQL query language is prevalent and can be
used for complex queries; for example, it can be used for very complex queries between a
table and multiple tables. But at the same time, the performance disadvantage of han-
dling multi-table join loads compared to graph databases is also evident. As a classical
language, SQL is powerful but still seems insufficient when facing non-relational data.
For example, for the two graph tasks tested in this experiment, we need to write complex
SQL functions that are only oriented to simple undirected unweighted graphs and were
not general methods, which is very inconvenient for users to try graph algorithms.

ArangoDB’s native support for data storage and querying in multiple formats is
impressive, and it also provides a unified query language AQL that allows users even to
involve data from different models in a single query and as a query language similar to
SQL, AQL is not too difficult for users to learn. Its storage and query for graph data
are also very powerful, with rich graph algorithm support. However, ArangoDB has some
performance gaps compared to single format databases, its queries on relational data are
not as fast as PostgreSQL, and some are not as fast as Neo4j when it comes to graph
queries.

The three databases have different query languages, among which, Cypher, as a
declarative graph query language, has the most intuitive representation when querying
graphs. And for Neo4j, If the origin data is natively graph-structured, such as road
networks, social networks, etc., it is not difficult to convert from the original table data
to graph format. Then this graph database has a series of advantages over the traditional
relational database, such as graph data storage schema, powerful graph query language
support, graph algorithm library, and excellent performance in the face of the "multi-
table join" problem. However, when the user needs to model table data to graph and
there are a large number of types for nodes and complex relationships, then the workload
and import time will increase exponentially, for example, in Appendix A.2, this is only
the dependency of the first three tables and other tables, and it takes several minutes or
even hours to build each relationship, which is unacceptable to the regular users.

In summary, the choice of which database to store the data is still a slightly complex
issue, and it is closely related to the format of the original data. If the original data is of
network or graph type, then using a graph database for storage is primarily supported by
richer graph algorithms and can use a more intuitive graph query language. When the
original data is tabular data, you need to consider the cost of converting the format to
graph and what kind of tasks you usually need to perform. Sometimes, blindly choosing
a graph database will not bring the desired faster, better and easier user experience.

6. Conclusions

The purpose of this thesis is to propose a reasonable and credible experimental compar-
ison of three different types of databases. We evaluate databases on the same data set
under the same metrics. The interconversion of Cypher between SQL and graph query
languages and the multi-model query language AQL is implemented in PostgreSQL and
Neo4j and ArangoDB. We performed various tasks based on a big data benchmark stan-
dard TPC-DS, which is commonly used in RDBMS for decision support, and another
graph data set from the real world; in the end, we report our results in detail. We also
compare the three databases by end-user analysis and give our summary. Among the
performance advantages, PostgreSQL has a performance advantage in import, read, etc.
operations, while Neo4j has a clear advantage in multi-table join tasks, graph algorithms,
and ArangoDB natively supports many different formats of data storage and a unified
query language, as well as having impressive support for graph algorithms as well. We
also propose an unsupervised workload classification model to explore the tasks involved
in the benchmarking, which helps design benchmark tests and evaluate database behavior
and property.

For future work, I think it is interesting to evaluate performance and price/cost
towards Cloud databases. All three databases support Cloud deployment and migration,
then the price or cost would be a very interesting topic of discussion in the face of the
same data set and workload. We also did not cover SQL-based graph databases for this
experiment, such as AgensGraph, and since ArangoDB is not the only MMDBMS, our
future direction is to cover more databases for benchmarking and to provide multiple data
sets and corresponding tasks support.

41

Acknowledgement

I would like first to thank Professor Jiaheng Lu and doctoral student Zhengtong Yan
for providing me with such an interesting and practical thesis topic. They have been
accommodating and caring during my thesis works. I also would like to sincerely thank
Associate Professor Michael Mathioudakis for taking precious time to help me review this
thesis.

My master’s study started, continued, and now is going to finish with the COVID-
19, I haven’t taken even one lecture in contact teaching. However, that doesn’t affect me
as much as I expected since I got a bunch of help and support from the teachers, staff,
and classmates here in Helsinki, thanks to you all (not including you, COVID).

The last and most important people I would like to thank are my family, thank you
for everything you have given me, I couldn’t have made those tough days through without
your encouragement and support, I love you all!

42

Bibliography

[1] R. Angles and C. Gutierrez. Survey of graph database models. ACM Computing
Surveys (CSUR), 40(1):1–39, 2008.

[2] ArangoDB. Arangodb for machine learning. https://www.arangodb.com/machine-
learning/. Online; accessed 19-February-2022.

[3] ArangoDB. SQL/AQL Comparison. https://www.arangodb.com/community-
server/sql-aql-comparison/. Online; accessed 12-February-2022.

[4] ArangoDB. NoSQL Performance Benchmark 2018 - MongoDB, PostgreSQL, Ori-
entDB, Neo4j and ArangoDB. https://www.arangodb.com/2018/02/nosql-
performance-benchmark-2018-mongodb-postgresql-orientdb-neo4j-
arangodb/, 2018. Online; accessed 12-February-2022.

[5] P. Atzeni, C. S. Jensen, G. Orsi, S. Ram, L. Tanca, and R. Torlone. The relational
model is dead, sql is dead, and i don’t feel so good myself. ACM Sigmod Record,
42(2):64–68, 2013.

[6] R. Bedre. reneshbedre/bioinfokit: Bioinformatics data analysis and visualization
toolkit, May 2020.

[7] G. Chandrashekar and F. Sahin. A survey on feature selection methods. Computers
& Electrical Engineering, 40(1):16–28, 2014.

[8] Y. Cheng, P. Ding, T. Wang, W. Lu, and X. Du. Which category is better: bench-
marking relational and graph database management systems. Data Science and
Engineering, 4(4):309–322, 2019.

[9] E. I. Chong, S. Das, G. Eadon, and J. Srinivasan. An efficient sql-based rdf querying
scheme. In Proceedings of the 31st international conference on Very large data bases,
pages 1216–1227, 2005.

[10] B. C. Churchill and W. Xu. The modem nation: A first study on twitch.tv social
structure and player/game relationships. In 2016 IEEE International Conferences

43

https://www.arangodb.com/machine-learning/
https://www.arangodb.com/machine-learning/
https://www.arangodb.com/community-server/sql-aql-comparison/
https://www.arangodb.com/community-server/sql-aql-comparison/
https://www.arangodb.com/2018/02/nosql-performance-benchmark-2018-mongodb-postgresql-orientdb-neo4j-arangodb/
https://www.arangodb.com/2018/02/nosql-performance-benchmark-2018-mongodb-postgresql-orientdb-neo4j-arangodb/
https://www.arangodb.com/2018/02/nosql-performance-benchmark-2018-mongodb-postgresql-orientdb-neo4j-arangodb/

44 Bibliography

on Big Data and Cloud Computing (BDCloud), Social Computing and Networking
(SocialCom), Sustainable Computing and Communications (SustainCom) (BDCloud-
SocialCom-SustainCom), pages 223–228, 2016.

[11] Digoal. PostgreSQL Graph Search Practices - 10 Billion-Scale Graph with Millisec-
ond Response. https://www.alibabacloud.com/blog/postgresql-graph-search-
practices---10-billion-scale-graph-with-millisecond-response_595039,
2019. Online; accessed 12-February-2022.

[12] O. Erling, A. Averbuch, J. Larriba-Pey, H. Chafi, A. Gubichev, A. Prat, M.-D.
Pham, and P. Boncz. The ldbc social network benchmark: Interactive workload. In
Proceedings of the 2015 ACM SIGMOD International Conference on Management of
Data, pages 619–630, 2015.

[13] D. Fernandes and J. Bernardino. Graph databases comparison: Allegrograph,
arangodb, infinitegraph, neo4j, and orientdb. In Data, pages 373–380, 2018.

[14] N. Francis, A. Green, P. Guagliardo, L. Libkin, T. Lindaaker, V. Marsault, S. Plan-
tikow, M. Rydberg, P. Selmer, and A. Taylor. Cypher: An evolving query language
for property graphs. In Proceedings of the 2018 International Conference on Man-
agement of Data, pages 1433–1445, 2018.

[15] J. R. Groff, P. N. Weinberg, and A. J. Oppel. SQL: the complete reference, volume 2.
McGraw-Hill/Osborne, 2002.

[16] M. A. Hall et al. Correlation-based feature selection for machine learning. 1999.

[17] I. Holubova, P. Contos, and M. Svoboda. Multi-model data modeling and repre-
sentation: State of the art and research challenges. In 25th International Database
Engineering & Applications Symposium, pages 242–251, 2021.

[18] C. Krause, D. Johannsen, R. Deeb, K.-U. Sattler, D. Knacker, and A. Niadzelka. An
sql-based query language and engine for graph pattern matching. In International
Conference on Graph Transformation, pages 153–169. Springer, 2016.

[19] J. Leskovec and A. Krevl. SNAP Datasets: Stanford large network dataset collection.
http://snap.stanford.edu/data, June 2014.

[20] J. Lu and I. Holubová. Multi-model databases: a new journey to handle the variety
of data. ACM Computing Surveys (CSUR), 52(3):1–38, 2019.

[21] H. Ma, B. Shao, Y. Xiao, L. J. Chen, and H. Wang. G-sql: Fast query processing
via graph exploration. Proceedings of the VLDB Endowment, 9(12):900–911, 2016.

https://www.alibabacloud.com/blog/postgresql-graph-search-practices---10-billion-scale-graph-with-millisecond-response_595039
https://www.alibabacloud.com/blog/postgresql-graph-search-practices---10-billion-scale-graph-with-millisecond-response_595039
http://snap.stanford.edu/data

45 Bibliography

[22] A. Malhi and R. X. Gao. Pca-based feature selection scheme for machine defect
classification. IEEE transactions on instrumentation and measurement, 53(6):1517–
1525, 2004.

[23] J. J. Miller. Graph database applications and concepts with neo4j. In Proceedings
of the southern association for information systems conference, Atlanta, GA, USA,
volume 2324, 2013.

[24] R. O. Nambiar and M. Poess. The making of tpc-ds. In VLDB, volume 6, pages
1049–1058, 2006.

[25] Neo4j. Getting started / introduction to cypher / import data. https:
//neo4j.com/docs/getting-started/current/cypher-intro/load-csv/. Online;
accessed 12-February-2022.

[26] Neo4j. Neo4j graph data science. https://neo4j.com/product/graph-data-
science/. Online; accessed 19-February-2022.

[27] Neo4j. Tutorial: Import Relational Data Into Neo4j. https:
//neo4j.com/developer/guide-importing-data-and-etl/. Online; accessed
13-February-2022.

[28] A. Oasis. Neo4j graph data science. https://cloud.arangodb.com/home. Online;
accessed 19-February-2022.

[29] A. Pacaci, A. Zhou, J. Lin, and M. T. Özsu. Do we need specialized graph databases?
benchmarking real-time social networking applications. In Proceedings of the Fifth
International Workshop on Graph Data-management Experiences & Systems, pages
1–7, 2017.

[30] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

[31] M. Poess, R. O. Nambiar, and D. Walrath. Why you should run tpc-ds: A workload
analysis. In VLDB, volume 7, pages 1138–1149, 2007.

[32] B. Ramya, N. S. Varma, and R. Indra. Recommendations in social network using
link prediction technique. In 2020 International Conference on Smart Electronics
and Communication (ICOSEC), pages 782–786, 2020.

https://neo4j.com/docs/getting-started/current/cypher-intro/load-csv/
https://neo4j.com/docs/getting-started/current/cypher-intro/load-csv/
https://neo4j.com/product/graph-data-science/
https://neo4j.com/product/graph-data-science/
https://neo4j.com/developer/guide-importing-data-and-etl/
https://neo4j.com/developer/guide-importing-data-and-etl/
https://cloud.arangodb.com/home

46 Bibliography

[33] B. Rozemberczki, C. Allen, and R. Sarkar. Multi-scale attributed node embedding.
Journal of Complex Networks, 9(2):cnab014, 2021.

[34] J. A. Stothers and A. Nguyen. Can neo4j replace postgresql in healthcare? AMIA
Summits on Translational Science Proceedings, 2020:646, 2020.

[35] TPC. TPC Benchmark DS - Standard Specification, Version 2.10.0
. http://tpc.org/tpc_documents_current_versions/pdf/tpc-ds_v2.10.0.pdf,
2018. Online Standard Specification; accessed 12-February-2022.

[36] C.-O. Truica, F. Radulescu, A. Boicea, and I. Bucur. Performance evaluation for crud
operations in asynchronously replicated document oriented database. In 2015 20th
International Conference on Control Systems and Computer Science, pages 191–196,
2015.

[37] J. VanderPlas. Python data science handbook: Essential tools for working with data.
" O’Reilly Media, Inc.", 2016.

[38] C. Vicknair, M. Macias, Z. Zhao, X. Nan, Y. Chen, and D. Wilkins. A comparison
of a graph database and a relational database: a data provenance perspective. In
Proceedings of the 48th annual Southeast regional conference, pages 1–6, 2010.

[39] A. Viloria, G. C. Acuña, D. J. A. Franco, H. Hernández-Palma, J. P. Fuentes, and
E. P. Rambal. Integration of data mining techniques to postgresql database manager
system. Procedia Computer Science, 155:575–580, 2019.

[40] L. Yu and H. Liu. Feature selection for high-dimensional data: A fast correlation-
based filter solution. In Proceedings of the 20th international conference on machine
learning (ICML-03), pages 856–863, 2003.

[41] C. Zhang and J. Lu. Holistic evaluation in multi-model databases benchmarking.
Distributed and Parallel Databases, 39(1):1–33, 2021.

[42] C. Zhang, J. Lu, P. Xu, and Y. Chen. Unibench: A benchmark for multi-model
database management systems. In Technology Conference on Performance Evalua-
tion and Benchmarking, pages 7–23. Springer, 2018.

[43] Y. Zhang and Z. G. Ives. Finding related tables in data lakes for interactive data
science. In Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data, pages 1951–1966, 2020.

http://tpc.org/tpc_documents_current_versions/pdf/tpc-ds_v2.10.0.pdf

Appendix A. TPC-DS Data ERD Supplementary and Edge
Schema

A.1 ER-Diagram for TPC-DS Web/Store Parts

(a) Web Sales (b) Web Returns

Figure A.1: ER-Diagrams of Web Sales/Returns

(a) Store Sales (b) Store Returns

Figure A.2: ER-Diagrams of Store Sales/Returns

47

48 Appendix A. TPC-DS Data ERD Supplementary and Edge Schema

A.2 TPC-DS Data Graph Relationship Mapping Ta-
ble

TPC-DS data graph relationship mapping table (sample)
From key To key Relationship/Edge
ss_sold_date_sk d_date_sk ss_to_d
ss_sold_time_sk t_time_sk ss_to_t
ss_item_sk i_item_sk ss_to_i
ss_customer_sk c_customer_sk ss_to_c
ss_cdemo_sk cd_demo_sk ss_to_cd
ss_hdemo_sk hd_demo_sk ss_to_hd
ss_addr_sk ca_address_sk ss_to_ca
ss_store_sk s_store_sk ss_to_s
ss_promo_sk p_promo_sk ss_to_p
sr_returned_date_sk d_date_sk sr_to_d
sr_return_time_sk t_time_sk sr_to_t
sr_item_sk i_item_sk sr_to_i
sr_item_sk ss_item_sk sr_to_ss_item
sr_customer_sk c_customer_sk sr_to_c
sr_cdemo_sk cd_demo_sk sr_to_cd
sr_hdemo_sk hd_demo_sk sr_to_hd
sr_addr_sk ca_address_sk sr_to_ca
sr_store_sk s_store_sk sr_to_s
sr_reason_sk r_reason_sk sr_to_r
sr_ticket_number ss_ticket_number sr_to_ss_ticket
cs_sold_date_sk d_date_sk cs_sold_to_d
cs_sold_time_sk t_time_sk cs_to_t
cs_ship_date_sk d_date_sk cs_ship_to_d
cs_bill_customer_sk c_customer_sk cs_bill_to_c
cs_bill_cdemo_sk cd_demo_sk cs_bill_to_cd
cs_bill_hdemo_sk hd_demo_sk cs_to_hd
cs_bill_addr_sk ca_address_sk cs_bill_to_ca
cs_ship_customer_sk c_customer_sk cs_ship_to_c
cs_ship_cdemo_sk cd_demo_sk cs_ship_to_cd

Appendix B. Experiments Raw Results

PostgreSQL Results (ms):
1s
t

2n
d

3r
d

4t
h

5t
h

6t
h

7t
h

8t
h

9t
h

10
th

Ta
bl
e
Ta

sk
1

45
7.
00

41
4.
00

32
4.
00

33
4.
00

32
5.
00

34
2.
00

36
4.
00

35
4.
00

34
8.
00

35
1.
00

Ta
bl
e
Ta

sk
2

36
0.
00

25
4.
00

24
9.
00

25
9.
00

28
7.
00

26
2.
00

28
7.
00

26
9.
00

27
3.
00

26
0.
00

Ta
bl
e
Ta

sk
3

76
5.
00

81
6.
00

88
1.
00

85
3.
00

85
5.
00

90
4.
00

87
3.
00

86
7.
00

86
1.
00

86
1.
00

Ta
bl
e
Ta

sk
4

37
9.
00

37
1.
00

41
3.
00

33
0.
00

37
1.
00

35
4.
00

37
5.
00

36
8.
00

38
2.
00

38
1.
00

Ta
bl
e
Ta

sk
5

14
5.
00

10
6.
00

12
1.
00

10
5.
00

10
4.
00

96
.0
0

10
1.
00

97
.0
0

10
4.
00

10
8.
00

Ta
bl
e
Ta

sk
6

40
7.
00

37
5.
00

38
5.
00

38
6.
00

37
5.
00

37
3.
00

38
0.
00

36
7.
00

39
6.
00

37
5.
00

Ta
bl
e
Ta

sk
7

11
6.
00

83
.0
0

74
.0
0

72
.0
0

85
.0
0

70
.0
0

73
.0
0

74
.0
0

73
.0
0

75
.0
0

Ta
bl
e
Ta

sk
8

12
2.
00

94
.0
0

10
7.
00

89
.0
0

99
.0
0

94
.0
0

10
4.
00

95
.0
0

93
.0
0

89
.0
0

Ta
bl
e
Ta

sk
9

92
.0
0

68
.0
0

71
.0
0

70
.0
0

71
.0
0

74
.0
0

62
.0
0

59
.0
0

77
.0
0

67
.0
0

Ta
bl
e
Ta

sk
10

84
6.
00

77
3.
00

78
6.
00

76
7.
00

77
8.
00

76
9.
00

76
8.
00

75
8.
00

76
3.
00

77
2.
00

Ta
bl
e
Ta

sk
11

14
09
.0
0

19
2.
00

19
3.
00

20
3.
00

18
9.
00

19
9.
00

19
3.
00

18
5.
00

19
4.
00

18
5.
00

Ta
bl
e
Ta

sk
12

13
63
.0
0

16
9.
00

18
3.
00

17
2.
00

17
6.
00

19
2.
00

18
2.
00

15
5.
00

15
1.
00

17
1.
00

Ta
bl
e
Ta

sk
13

53
64
.0
0

98
4.
00

93
0.
00

93
0.
00

93
0.
00

93
6.
00

92
5.
00

92
8.
00

94
3.
00

93
7.
00

Ta
bl
e
Ta

sk
14

39
52
.0
0

45
6.
00

43
9.
00

42
8.
00

39
5.
00

41
3.
00

42
3.
00

41
5.
00

38
7.
00

40
9.
00

G
ra
ph

Ta
sk

1
28
32
.0
0

24
2.
00

24
3.
00

24
5.
00

26
1.
00

24
8.
00

24
6.
00

25
0.
00

27
6.
00

25
1.
00

G
ra
ph

Ta
sk

2
29
32
.0
0

25
6.
00

25
3.
00

29
3.
00

28
2.
00

30
6.
00

25
7.
00

28
7.
00

29
5.
00

30
4.
00

49

50 Appendix B. Experiments Raw Results

ArangoDB Results (ms):

1s
t

2n
d

3r
d

4t
h

5t
h

6t
h

7t
h

8t
h

9t
h

10
th

Ta
bl
e
Ta

sk
1

87
04
.0
0

86
42
.0
0

84
23
.0
0

85
63
.0
0

85
78
.0
0

84
23
.0
0

88
29
.0
0

83
67
.0
0

84
82
.0
0

87
23
.0
0

Ta
bl
e
Ta

sk
2

66
3.
00

61
4.
00

60
4.
00

60
3.
00

60
5.
00

60
3.
00

62
9.
00

61
3.
00

60
5.
00

58
3.
00

Ta
bl
e
Ta

sk
3

31
33
.0
0

30
15
.0
0

31
30
.0
0

30
76
.0
0

31
17
.0
0

31
19
.0
0

31
64
.0
0

32
25
.0
0

33
47
.0
0

31
57
.0
0

Ta
bl
e
Ta

sk
4

47
28
.0
0

42
73
.0
0

49
23
.0
0

58
32
.0
0

43
78
.0
0

63
89
.0
0

49
82
.0
0

53
62
.0
0

53
98
.0
0

52
64
.0
0

Ta
bl
e
Ta

sk
5

86
4.
00

46
8.
00

35
4.
00

36
2.
00

39
1.
00

42
3.
00

43
2.
00

37
1.
00

40
9.
00

48
2.
00

Ta
bl
e
Ta

sk
6

63
2.
00

64
5.
00

67
3.
00

65
2.
00

69
2.
00

66
2.
00

65
3.
00

68
3.
00

70
5.
00

65
2.
00

Ta
bl
e
Ta

sk
7

20
9.
00

23
5.
00

30
1.
00

27
4.
00

23
4.
00

33
2.
00

27
5.
00

26
2.
00

34
1.
00

22
4.
00

Ta
bl
e
Ta

sk
8

15
6.
00

16
2.
00

14
2.
00

15
2.
00

13
6.
00

17
3.
00

14
6.
00

13
6.
00

17
4.
00

15
2.
00

Ta
bl
e
Ta

sk
9

27
5.
00

25
3.
00

28
5.
00

25
3.
00

26
2.
00

27
0.
00

21
7.
00

27
4.
00

26
3.
00

28
5.
00

Ta
bl
e
Ta

sk
10

27
32
.0
0

26
38
.0
0

25
82
.0
0

23
48
.0
0

26
42
.0
0

24
27
.0
0

23
49
.0
0

24
27
.0
0

21
32
.0
0

24
89
.0
0

Ta
bl
e
Ta

sk
11

94
28
.0
0

89
32
.0
0

93
24
.0
0

92
83
.0
0

91
37
.0
0

94
73
.0
0

93
27
.0
0

95
12
.0
0

89
93
.0
0

92
38
.0
0

Ta
bl
e
Ta

sk
12

15
47
8.
00

14
23
7.
00

15
92
3.
00

15
23
7.
00

15
65
7.
00

15
39
2.
00

15
23
8.
00

15
20
7.
00

16
52
4.
00

15
29
4.
00

Ta
bl
e
Ta

sk
13

27
38
2.
00

28
32
9.
00

28
23
4.
00

28
69
1.
00

27
38
2.
00

27
69
1.
00

28
27
0.
00

28
62
2.
00

28
47
1.
00

27
39
7.
00

Ta
bl
e
Ta

sk
14

20
61
9.
00

20
78
7.
00

20
78
3.
00

20
79
0.
00

22
06
8.
00

21
55
8.
00

21
26
4.
00

20
57
4.
00

20
98
7.
00

21
11
5.
00

G
ra
ph

Ta
sk

1
24
14
.0
0

24
82
.0
0

25
18
.0
0

22
87
.0
0

24
32
.0
0

23
50
.0
0

23
72
.0
0

23
63
.0
0

24
66
.0
0

23
79
.0
0

G
ra
ph

Ta
sk

2
0.
80

0.
87

1.
35

0.
99

0.
83

0.
79

0.
64

0.
84

0.
78

0.
98

51 Appendix B. Experiments Raw Results

Neo4j Results (ms):

1s
t

2n
d

3r
d

4t
h

5t
h

6t
h

7t
h

8t
h

9t
h

10
th

Ta
bl
e
Ta

sk
1

17
01
4.
00

19
14
9.
00

19
38
0.
00

18
28
3.
00

18
16
8.
00

19
89
0.
00

19
16
6.
00

19
04
9.
00

18
87
0.
00

18
03
8.
00

Ta
bl
e
Ta

sk
2

54
2.
00

20
.0
0

23
.0
0

24
.0
0

25
.0
0

24
.0
0

23
.0
0

24
.0
0

25
.0
0

24
.0
0

Ta
bl
e
Ta

sk
3

52
4.
00

59
4.
00

60
1.
00

54
3.
00

55
5.
00

52
5.
00

54
9.
00

63
2.
00

62
5.
00

57
4.
00

Ta
bl
e
Ta

sk
4

27
8.
00

28
9.
00

25
5.
00

26
6.
00

38
6.
00

31
2.
00

41
3.
00

31
7.
00

26
5.
00

42
8.
00

Ta
bl
e
Ta

sk
5

51
4.
00

21
2.
00

26
5.
00

26
4.
00

27
5.
00

21
3.
00

27
1.
00

25
0.
00

20
4.
00

24
5.
00

Ta
bl
e
Ta

sk
6

40
.0
0

10
.0
0

19
.0
0

13
.0
0

13
.0
0

15
.0
0

14
.0
0

15
.0
0

13
.0
0

16
.0
0

Ta
bl
e
Ta

sk
7

42
.0
0

8.
00

6.
00

5.
00

5.
00

6.
00

5.
00

7.
00

8.
00

6.
00

Ta
bl
e
Ta

sk
8

42
.0
0

94
.0
0

10
7.
00

89
.0
0

99
.0
0

94
.0
0

10
4.
00

95
.0
0

93
.0
0

89
.0
0

Ta
bl
e
Ta

sk
9

15
2.
00

6.
00

7.
00

7.
00

7.
00

7.
00

6.
00

5.
00

7.
00

6.
00

Ta
bl
e
Ta

sk
10

14
2.
00

8.
00

6.
00

5.
00

5.
00

4.
00

7.
00

7.
00

9.
00

4.
00

G
ra
ph

Ta
sk

1
15
.0
0

1.
00

2.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

G
ra
ph

Ta
sk

2
4.
00

1.
00

1.
00

1.
00

1.
00

1.
00

2.
00

1.
00

1.
00

1.
00

	Introduction
	Background and Related Work
	Relational Database
	Graph Database
	Multi-model Database
	Database Benchmarks
	Comparison of Databases
	Data Science Support
	GUI and Graph Visualization
	Toward Cloud Database

	Methodology
	Data Sets
	TPC-DS Set (Table-like)
	Twitch Set (Graph-like)

	Quantitative Analysis
	Table Data
	Graph Data

	Experiments and Results
	Environment and Configuration
	Data Production and Import
	TPC-DS Data
	Twitch Data

	Tasks Execution Time
	Workload Classification
	Original Data Description
	Dimensionality Reduction
	Clustering

	Discussion
	Performance
	Execution Times
	Cache

	Which One Should I Choose?

	Conclusions
	Acknowledgement
	Bibliography
	Appendix TPC-DS Data ERD Supplementary and Edge Schema
	ER-Diagram for TPC-DS Web/Store Parts
	TPC-DS Data Graph Relationship Mapping Table

	Appendix Experiments Raw Results

