1,766 research outputs found

    Numerical Fitting-based Likelihood Calculation to Speed up the Particle Filter

    Get PDF
    The likelihood calculation of a vast number of particles is the computational bottleneck for the particle filter in applications where the observation information is rich. For fast computing the likelihood of particles, a numerical fitting approach is proposed to construct the Likelihood Probability Density Function (Li-PDF) by using a comparably small number of so-called fulcrums. The likelihood of particles is thereby analytically inferred, explicitly or implicitly, based on the Li-PDF instead of directly computed by utilizing the observation, which can significantly reduce the computation and enables real time filtering. The proposed approach guarantees the estimation quality when an appropriate fitting function and properly distributed fulcrums are used. The details for construction of the fitting function and fulcrums are addressed respectively in detail. In particular, to deal with multivariate fitting, the nonparametric kernel density estimator is presented which is flexible and convenient for implicit Li-PDF implementation. Simulation comparison with a variety of existing approaches on a benchmark 1-dimensional model and multi-dimensional robot localization and visual tracking demonstrate the validity of our approach.Comment: 42 pages, 17 figures, 4 tables and 1 appendix. This paper is a draft/preprint of one paper submitted to the IEEE Transaction

    An adaptive appearance-based map for long-term topological localization of mobile robots

    Get PDF
    This work considers a mobile service robot which uses an appearance-based representation of its workplace as a map, where the current view and the map are used to estimate the current position in the environment. Due to the nature of real-world environments such as houses and offices, where the appearance keeps changing, the internal representation may become out of date after some time. To solve this problem the robot needs to be able to adapt its internal representation continually to the changes in the environment. This paper presents a method for creating an adaptive map for long-term appearance-based localization of a mobile robot using long-term and short-term memory concepts, with omni-directional vision as the external sensor

    A reliability-based particle filter for humanoid robot self-localization in Robocup Standard Platform League

    Get PDF
    This paper deals with the problem of humanoid robot localization and proposes a new method for position estimation that has been developed for the RoboCup Standard Platform League environment. Firstly, a complete vision system has been implemented in the Nao robot platform that enables the detection of relevant field markers. The detection of field markers provides some estimation of distances for the current robot position. To reduce errors in these distance measurements, extrinsic and intrinsic camera calibration procedures have been developed and described. To validate the localization algorithm, experiments covering many of the typical situations that arise during RoboCup games have been developed: ranging from degradation in position estimation to total loss of position (due to falls, ‘kidnapped robot’, or penalization). The self-localization method developed is based on the classical particle filter algorithm. The main contribution of this work is a new particle selection strategy. Our approach reduces the CPU computing time required for each iteration and so eases the limited resource availability problem that is common in robot platforms such as Nao. The experimental results show the quality of the new algorithm in terms of localization and CPU time consumption.This work has been supported by the Spanish Science and Innovation Ministry (MICINN) under the CICYT project COBAMI: DPI2011-28507-C02-01/02. The responsibility for the content remains with the authors.Munera Sánchez, E.; Muñoz Alcobendas, M.; Blanes Noguera, F.; Benet Gilabert, G.; Simó Ten, JE. (2013). A reliability-based particle filter for humanoid robot self-localization in Robocup Standard Platform League. Sensors. 13(11):14954-14983. https://doi.org/10.3390/s131114954S1495414983131

    Long-term experiments with an adaptive spherical view representation for navigation in changing environments

    Get PDF
    Real-world environments such as houses and offices change over time, meaning that a mobile robot’s map will become out of date. In this work, we introduce a method to update the reference views in a hybrid metric-topological map so that a mobile robot can continue to localize itself in a changing environment. The updating mechanism, based on the multi-store model of human memory, incorporates a spherical metric representation of the observed visual features for each node in the map, which enables the robot to estimate its heading and navigate using multi-view geometry, as well as representing the local 3D geometry of the environment. A series of experiments demonstrate the persistence performance of the proposed system in real changing environments, including analysis of the long-term stability

    Corrective Gradient Refinement for Mobile Robot Localization

    Get PDF
    Particle filters for mobile robot localization must balance computational requirements and accuracy of localization. Increasing the number of particles in a particle filter improves accuracy, but also increases the computational requirements. Hence, we investigate a different paradigm to better utilize particles than to increase their numbers. To this end, we introduce the Corrective Gradient Refinement (CGR) algorithm that uses the state space gradients of the observation model to improve accuracy while maintaining low computational requirements. We develop an observation model for mobile robot localization using point cloud sensors (LIDAR and depth cameras) with vector maps. This observation model is then used to analytically compute the state space gradients necessary for CGR. We show experimentally that the resulting complete localization algorithm is more accurate than the Sampling/Importance Resampling Monte Carlo Localization algorithm, while requiring fewer particles
    corecore