
University of Massachusetts Amherst
ScholarWorks@UMass Amherst
Computer Science Department Faculty Publication
Series Computer Science

2011

Corrective Gradient Refinement for Mobile Robot
Localization
Joydeep Biswas
University of Massachusetts Amherst

Manuela M. Veloso
Carnegie Mellon University

Brian Coltin
Carnegie Mellon University

Follow this and additional works at: https://scholarworks.umass.edu/cs_faculty_pubs

Part of the Artificial Intelligence and Robotics Commons

This Article is brought to you for free and open access by the Computer Science at ScholarWorks@UMass Amherst. It has been accepted for inclusion
in Computer Science Department Faculty Publication Series by an authorized administrator of ScholarWorks@UMass Amherst. For more information,
please contact scholarworks@library.umass.edu.

Recommended Citation
Biswas, Joydeep; Veloso, Manuela M.; and Coltin, Brian, "Corrective Gradient Refinement for Mobile Robot Localization" (2011).
Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Conference. 1329.
Retrieved from https://scholarworks.umass.edu/cs_faculty_pubs/1329

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarWorks@UMass Amherst

https://core.ac.uk/display/77513818?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.umass.edu?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F1329&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/cs_faculty_pubs?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F1329&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/cs_faculty_pubs?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F1329&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/cs?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F1329&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/cs_faculty_pubs?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F1329&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F1329&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/cs_faculty_pubs/1329?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F1329&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

Corrective Gradient Refinement for Mobile Robot Localization

Joydeep Biswas
The Robotics Institute

Carnegie Mellon University
Pittsburgh, PA 15213, USA

joydeepb@ri.cmu.edu

Brian Coltin
The Robotics Institute

Carnegie Mellon University
Pittsburgh, PA 15213, USA
bcoltin@andrew.cmu.edu

Manuela Veloso
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA 15213, USA

mmv@cs.cmu.edu

Abstract— Particle filters for mobile robot localization must
balance computational requirements and accuracy of local-
ization. Increasing the number of particles in a particle fil-
ter improves accuracy, but also increases the computational
requirements. Hence, we investigate a different paradigm to
better utilize particles than to increase their numbers. To
this end, we introduce the Corrective Gradient Refinement
(CGR) algorithm that uses the state space gradients of the
observation model to improve accuracy while maintaining low
computational requirements. We develop an observation model
for mobile robot localization using point cloud sensors (LIDAR
and depth cameras) with vector maps. This observation model
is then used to analytically compute the state space gradients
necessary for CGR. We show experimentally that the resulting
complete localization algorithm is more accurate than the
Sampling/Importance Resampling Monte Carlo Localization
algorithm, while requiring fewer particles.

I. INTRODUCTION

Particle filters have proven to be successful at state esti-
mation and tracking for nonparametric stochastic processes.
However, for every particle filter implementation, the mantra
to reach higher accuracy has traditionally been “add more
particles.” This approach does work, but the required number
of particles scales exponentially with the number of dimen-
sions. Therefore, significant work has gone into developing
algorithms that work with fewer particles but do more with
the same particles, such that the desired accuracy is still met.

In this paper we introduce one such novel algorithm,
Corrective Gradient Refinement (CGR), which reduces the
required number of particles for a particle filter by using
the gradients of the observation model. This results in
more efficient sampling of the robot’s localization belief by
sampling less along directions of low uncertainty given an
observation, while densely sampling along directions of high
uncertainty. For example, if the LIDAR scans of the robot
detect parallel walls, there will be fewer samples along the
direction perpendicular to the walls (the direction of low
uncertainty), and more samples parallel to the walls (the
direction of high uncertainty).

We apply Corrective Gradient Refinement to the task of
indoor mobile robot localization with point cloud sensors.
By point cloud sensors, we refer to sensors that generate
2D or 3D points corresponding to the surfaces of detected
obstacles. We use both a 2D LIDAR scanner and a 3D
Microsoft Kinect sensor to generate point clouds. To compare
our algorithm with existing approaches, we first review the
concept of particle filtering in general, and then discuss

existing algorithmic improvements and extensions. Next, we
describe the Corrective Gradient Refinement algorithm in
detail and experimentally demonstrate its effectiveness.

II. BACKGROUND AND RELATED WORK

Bayesian filters are used to track the probability distribu-
tion of a d-dimensional state variable x ∈ Rd over time given
the history of observations y1:t and control inputs u1:t−1.
The resulting probability distribution of x is called the
belief, Bel(xt) = p(xt|y1:t, u1:t−1). The belief is recursively
updated using the equation:

Bel(xt) = ηp(yt|xt)
∫
p(xt|xt−1, ut−1)Bel(xt−1)dxt−1

(1)
The true belief (the probability distribution given all the

observations) is often called the posterior distribution. To
simplify the terminology, in the rest of the paper, we will
refer to the true belief as the “posterior,” and the estimated
belief simply as the “belief.”

Particle filters, and in particular, Monte Carlo Localization
(MCL)[1] represent the belief by a set of weighted samples,
or “particles,” Bel(xt) =

{
xit, w

i
t

}
i=1:m

, where xit is the
state of the particle i at time t and wit its associated weight.
Recursive updates of the particle filter can be implemented
via a number of methods, notably among which is the
sampling/importance resampling method (SIR) [2]

In the SIR algorithm for MCL, m samples xit− are
drawn with replacement from the prior belief Bel(xt−1)
proportional to their weights wit−1. These samples xit− are
used as priors to sample from the motion model of the
robot p(xt|xt−1, ut−1) to generate a new set of samples xit
that approximates p(xt|xt−1, ut−1)Bel(xt−1). Importance
weights for each sample xit are then computed as

wit =
p(yt|xit)∑
i p(yt|xit)

. (2)

Although SIR is largely successful, several issues may still
create problems:

1) Observations could be “highly peaked”, i.e. p(yt|xit)
could have very large values for a very small subspace
ε ⊆ Rd and be negligible everywhere else. In this
case, the probability of samples xi overlapping with
the subspace ε is diminishingly small.

2) If the posterior is no longer being approximated well
by the samples xi, recovery is only possible by chance,
if the motion model happens to generate new samples
that better overlap with the posterior.

3) The required number of samples necessary to over-
come the aforementioned limitations scales exponen-
tially in the dimension of the state space, d.

These problems are well known, and a number of algo-
rithmic improvements address them successfully with several
assumptions.

KLD-Sampling [3] adapts the number of samples based
on the Kullback-Liebler Distance between the belief and
the posterior, thus reducing the computational requirements
when the belief accurately models the posterior, and increas-
ing the number of particles when the posterior distribution
is likely to spread out. However, this approach does not
refine the samples based on observations, but only varies
the number of samples.

Sensor resetting [4] takes into account mismatch between
observations and the belief by drawing samples from the
observation model, p(yt|xt) to incorporate into the belief.
However, this assumes that p(yt|xt) can be sampled effi-
ciently over the map, which may not be possible (e.g. for
observation models of LIDAR scans on a map).

Monte Carlo Markov Chain (MCMC) [5], [6] based ap-
proaches, and in particular, the Hybrid Monte Carlo (HMC)
filter [7], [8] have been shown to be successful at main-
taining the belief with small sample sets, even in large
dimensional state spaces. In the HMC filter, the posterior
p(xt|y1:t, u1:t−1) is modeled as a hypothetical potential
energy term E = − log(p(xt|y1:t, u1:t−1)), and for each
sample xit, a Markov Chain (MC) is evolved using Hamilto-
nian dynamics over the Hamiltonian H = E + K where
K is the potential energy of the sample, K = 1

2 ẋ
T ẋ.

The disadvantages of this method are that it is slow (the
MCMCs requires a minimum number of steps of evolution
before they reach equilibrium), and it assumes that the state
space gradient of the full posterior, δ

δxp(xt|y1:t, u1:t−1) can
be computed, which is often impossible or computationally
infeasible.

The Auxiliary Particle Filter (APF) [9] improves the
proposal distribution by “simulating” the evolution of the
samples xit using the observation yt to generate a new sam-
pling xit− , which is then used to generate samples xit using
the motion model. Since the simulation step is performed
prior to applying the motion model, the simulation model
must account for the motion model as well.

In FastSLAM 2.0 [10], the proposal distribution is refined
by linearizing the observation model with respect to pose
and landmark locations, and then performing a single EKF-
like update step. The GMapping [11] algorithm refines its
proposal distribution by sampling the observation likelihood
around every particle, and fitting a Gaussian to the sampled
points. The proposal distribution is then updated using this
Gaussian estimate.

The Corrective Gradient Refinement (CGR) algorithm,
which we introduce, addresses the aforementioned problems

in a computationally efficient manner. It refines samples
locally to better cover neighboring regions with high observa-
tion likelihood, even if the prior samples had poor coverage
of such regions. Since the refinement takes into account the
gradient estimates of the observation model, it performs well
even with highly peaked observations. This permits CGR to
track the location of the robot with fewer particles than MCL-
SIR, although for the task of global localization, the number
of particles would still have to be scaled up as in the case of
MCL-SIR to cover the entire map. The approach of KLD-
Sampling, if used along with CGR, is likely to provide the
same dynamic reduction of particles as in the case of MCL-
SIR once the localization belief collapses to a unimodal
distribution. Unlike the HMC and APF algorithms, CGR
does not require computation of the transition function of
the full posterior (such as the simulation model in the APF)
or the gradients of the motion model (such as the evolution of
Hamiltonian dynamics in HMC). We formulate the gradient
estimates of the observation model in a manner that allows
analytical computation of the gradient using a vector map,
unlike the approaches of FastSLAM 2.0 and GMapping.
Similar approaches to improving the proposal distribution
using gradients have been applied to vision-based tracking
(e.g.[12]). We show experimentally that CGR has higher
accuracy and lower variance across trials than MCL-SIR.
Furthermore, for the same level of desired accuracy, CGR
requires far fewer particles than MCL-SIR for localization
tracking.

III. CORRECTIVE GRADIENT REFINEMENT

The CGR algorithm iteratively updates the past belief
Bel(xt−1) using observation yt and control input ut−1 to
estimate the latest belief Bel(xt) as follows:

1) Samples of the belief Bel(xt−1) are evolved through
the motion model, p(xt|xt−1, ut−1) to generate a first
stage proposal distribution q0.

2) Samples of q0 are “refined” in r iterations (which
produce intermediate distributions qi, i ∈ [1, r − i])
using the gradients δ

δxp(yt|x) of the observation model
p(yt|x).

3) Samples of the last generation proposal distribution qr

and the first stage proposal distribution q0 are sampled
using an acceptance test to generate the final proposal
distribution q.

4) Samples xit of the final proposal distribution q are
weighted by corresponding importance weights wit,
and resampled with replacement to generate Bel(xt).

We explain the four steps of the CGR algorithm in detail.

A. The Predict Step

Let the samples of the past belief, Bel(xt−1) be given
by xit−1. These samples are then evolved using the motion
model of the robot to generate a new set of samples q0 ={
xiq0
}
i=1:m

as xiq0 ∼ p(xt|xit−1, ut−1). This sample set q0

is called the first stage proposal distribution, and takes time
complexity O(m) to compute.

B. The Refine Step

The Refine step is central to the CGR algorithm. It corrects
sample estimates that contradict the observations (e.g. when
the LIDAR scan shows the robot to be in the center of
the corridor, but the sample is closer to the left wall). This
results in the CGR algorithm sampling less along directions
that have low uncertainty in the observation model while
maintaining samples along directions of high uncertainty.

For the CGR algorithm, estimates of the first order differ-
entials (the gradients) of the observation model, δ̂

δxp(yt|x)
must to be computable. Given these gradients, the Refine
step performs gradient descent for r iterations, generating at
iteration i the i-th stage proposal distribution. Algorithm 1
outlines the Refine step.

Algorithm 1 The Refine step of CGR

1: Let q0 =
{
xjq0
}
j=1:m

2: for i = 1 to r do
3: qi ← {}
4: for j = 1 to m do
5: xjqi ← xjqi−1 + η

[
δ̂
δxp(yt|x)

]
x=xj

qi−1

6: qi ← qi ∪ xjqi
7: end for
8: end for

The computation of δ̂
δxp(yt|x) for localization using point

cloud sensors is described in detail in Section IV-B. Per-
forming multiple iterations of gradient descent allows the
estimates of the gradients of the observation model to be
refined between iterations, which results in higher accuracy.
The computation time required for the Refine step scales as
O(rm). In general, smaller values of the step size η, paired
with larger values of r result in higher accuracy.

The Refine step performs rm total iterations, each of
which requires the computation of the gradient of the obser-
vation model. Therefore, the time complexity of the refine
step is O(rmf(. . .)) where f is a function that depends on
the observation model.

After the Refine step, samples from the r-th stage dis-
tribution are compared to the samples from the first stage
proposal distribution by an acceptance test to generate the
final proposal distribution q, as we now present

C. The Acceptance Test Step

To generate the final distribution q, Samples xiqr from
the r-th stage distribution are probabilistically chosen over
the corresponding samples xiq0 of the first stage distribution
proportional to the value of the acceptance ratio ri, as:

ri = min

{
1,
p(yt|xiqr)
p(yt|xiq0)

}
(3)

This Acceptance Test allows the algorithm to probabilisti-
cally choose samples that better match the observation model
p(yt|x). If the Refine step does not produce samples with

higher observation likelihood than the samples in the first
stage distribution, the final proposal distribution q will have
a mixture of samples from q0 and qr. Furthermore, if the
Refine step results in most samples having higher observation
likelihood than the samples in the first stage distribution, the
final proposal distribution q will consist almost entirely of
samples from qr.

Samples from the final proposal distribution q thus gen-
erated are weighted by importance weights, and resampled
to compute the latest belief Bel(xt) in the Update step.
The acceptance test step has time complexity O(m) since
it reuses the cached values of the observation likelihood
computed on the first and last iterations of the Refine step.

D. The Update Step

The importance weights for the CGR algorithm are differ-
ent from those of the MCL-SIR algorithm, since in the CGR
algorithm, the proposal distribution q is not the same as the
samples of the motion model. To derive the expression for
the importance weights of the CGR algorithm, we first factor
out the belief update (Eq. 1) as:

Bel(xt) ∝ p(yt|xt)p(xt|ut−1, Bel(xt−1)) (4)
p(xt|ut−1, Bel(xt−1)) =∫

p(xt|xt−1, ut−1)Bel(xt−1)dxt−1 (5)

The proposal distribution from which the belief Bel(xt)
is computed, is q. Hence, the (non-normalized) importance
weights wit for samples xit in q are given by:

wit =
p(yt|xit)p(xit|ut−1, Bel(xt−1))

q(xit)
(6)

In this expression, p(yt|xit) is computed using the
observation model (see Section IV-B), and the terms
p(xit|ut−1, Bel(xt−1)) and q(xit) are computed by kernel
density estimates at the locations xit using the samples from
q0 and q for support of the kernel density respectively. Since
the importance weight accounts for the motion model (from
the term p(xit|ut−1, Bel(xt−1))) as well as the refined pro-
posal distribution (q(xit)), the CGR algorithm avoids “peak
following” behavior which contradict the motion model.

The samples in q are resampled in proportion to their
importance weights using low variance resampling [13] to
obtain the samples of the latest belief, Bel(xt). The update
step has time complexity O(m2). It is quadratic in the
number of particles since it requires computation of kernel
density functions.

Thus, given the motion model p(xt|xt−1, ut−1), the ob-
servation model p(yt|x), the gradients of the observation
model δ

δxp(yt|x) and the past belief Bel(xt−1), the CGR
algorithm computes the latest belief Bel(xt). Adding the
runtime of all the steps together, the CGR algorithm is
performed in O

(
rmf(. . .) +m2

)
time. The formulation of

the observation model and its gradients is the subject of the
next Section.

IV. VECTOR LOCALIZATION OBSERVATION MODELS

We are interested in localizing an indoor mobile robot
using the CGR algorithm applied to point cloud sensors and
a vector map.

A. Vector Map Representation
The map M used by our localization algorithm is a set

of s line segments li corresponding to all the walls in the
environment: M = {li}i=1:s. Such a representation may be
acquired by mapping (e.g. [14]) or (as in our case) taken
from the blueprints of the building. The reason we use a
vector map for localization is three-fold:

1) A vector map allows higher precision than an occu-
pancy grid map, in a more compact representation.

2) Ray casts can be performed analytically on a vector
map, and thus are much faster than ray casts on an
occupancy grid map.

3) The gradients of the observation model (which are
required for CGR) can be computed analytically on
a vector map.

Using the vector map, we next develop an observation
model for 2D point cloud sensors.

B. 2D Point Cloud Observation Model
The 2D point cloud observation model is used for sensors

like a planar LIDAR scanner, which generate point clouds
in 2D space.

Let the 2D point cloud generated by the sensor (e.g. 2D
LIDAR scanner) be denoted by the set of 2D points P =
{pi}i=1:n. Without loss of generality, we assume that the
origin of the sensor coincides with the origin of the robot.
Let the observation be y = P , and the pose of the robot
x be given by x = {xl, xθ} where xl is the 2D location
of the robot, and xθ its orientation angle. The observation
likelihood p(y|x) is then computed as follows:

1) For every point pi in P , line li (li ∈ M) is found by
ray casting such that the ray in the direction of pi−xl
and originating from xl intersects li before any other
line.

2) The perpendicular distance di of pi from the (extended)
line li is computed.

3) The total (non-normalized) observation likelihood
p(y|x) is then given by:

p(y|x) =
n∏
i=1

exp

[
− d2i
2fσ2

]
(7)

Here, σ is the standard deviation of the distance measure-
ments of a single ray, and f (where f > 1) is a discounting
factor to discount for the correlation between rays. The
gradient of the observation model is therefore given by:

δ

δx
p(y|x) = −p(y|x)

fσ2

n∑
i=1

[
di
δdi
δx

]
(8)

The term δdi
δx in this equation has two terms, corresponding

to the translation component δdi
δxl

and the rotational compo-
nent δdiδxθ

. These terms are computed by rigid body translation

(a) (b)

Fig. 1. 3D Point clouds captured by the Kinect sensor: (a) Unfiltered and
(b) Plane filtered, with plane normals estimates shown as blue arrows.

and rotation of the point cloud P respectively. Due to errors
in the pose of the robot, the point to line correspondences
may be incorrect for some points, which would lead to
errors in the gradient estimate. Hence, some estimated outlier
rejection is necessary before evaluating Eq. 8 for all the
points. Outlier rejection is performed by two checks:

1) If the distance di is greater than a threshold dmax, the
corresponding point pi is rejected.

2) If the angle between the line joining successive points
pi, pi+1 and either of the corresponding lines li, li+1 is
greater than a threshold θmax, then the points pi, pi+1

are rejected.
Performing the ray cast operation from the estimated pose

takes time O(s+n), and the computation of the observation
likelihood and gradients is O(n). So the total complexity for
the observation model is f(s, n) = O(s+n). Hence the com-
plexity of vector-based 2D point cloud localization with CGR
is O

(
rm(s+ n) +m2

)
. In comparison, the time complexity

of MCL-SIR using a vector map is O (m+m · (s+ n)).
Thus, for the same number of particles, CGR is generally
slower than MCL-SIR. However, since CGR-localization
provides greater accuracy than MCL-SIR, it can be run with
far fewer particles, as we will demonstrate experimentally.

C. 3D Point Cloud Observation Model

The 3D point cloud observation model is used for sensors
like depth cameras that generate point clouds in 3D space.
Let the 3D point cloud be denoted by the set of 3D points
P = {pi}i=1:n. The observation model does not use all
the 3D points since this computation would be slow, and
there are many detected points that would not correspond to
features on the map. Hence, the points in P are sampled by
a RANSAC [15] based algorithm that only accepts points
grouped in local neighborhoods corresponding to planes.
Thus, points that do not belong to vertical planes (walls on
the map) are rejected. Figure 1 shows a sample scene with
the raw unfiltered point cloud, and after filtering. The non-
planar objects (two humans in this scene) are completely
absent in the filtered scene.

The filtered points and their corresponding plane normal
estimates are then projected onto 2D to yield the set of points
P ′ = {p′i, r′i}i=1:n′ where p′i are the projected 2D points, and

CGR

MCL-SIR

O
ff

se
t

E
rr

o
r

(m
e
te

rs
)

Number of Particles

20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

CGR

MCL-SIR

A
n

g
u

la
r

E
rr

o
r

(d
eg

re
e
s)

Number of Particles

20 40 60 80 100 120 140 160 180 200
0

0.5

1

1.5

2

2.5

3

(a) (b)
Fig. 2. The offset (a) and angular (b) errors from the true robot locations for the MCL-SIR and CGR algorithms

CGR

MCL-SIR

O
ff

se
t

E
rr

o
r

C
I

S
iz

e
(m

e
te

rs
)

Number of Particles

20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

CGR

MCL-SIR

A
n

g
u

la
r

E
rr

o
r

C
I

S
iz

e
(d

eg
re

e
s)

Number of Particles

20 40 60 80 100 120 140 160 180 200
0

0.5

1

1.5

2

2.5

3

3.5

(a) (b)
Fig. 3. The size of the 70% confidence intervals for the offset (a) and angular (b) errors for the MCL-SIR and CGR algorithms

CGR

MCL-SIR

S
u

c
c
e
ss

R
a
te

Number of Particles

20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

Fig. 4. Success rates of the CGR and MCL-SIR algorithms

r′i the corresponding 2D normals. The projected points in P ′

are then be used to compute the observation model using the
2D observation model (Section IV-B). The only difference
is that the outlier rejection for points p′i in P ′ is estimated
using the normals r′i and the point to line correspondences
li, instead of using pairs of points.

V. EXPERIMENTAL RESULTS

Our experiments were performed on our custom built
omnidirectional indoor mobile robot, which is equipped
with a Hokuyo URG-04LX planar LIDAR scanner (which
produces 2D point clouds) and a Microsoft Kinect sensor
(which produces 3D point clouds).

We ran a series of experiments to compare the perfor-
mance of the CGR algorithm with the MCL-SIR algorithm

and to test the effectiveness of the CGR algorithm alone
over extended periods of time. The MCL-SIR algorithm
was implemented using the same map representation and
observation models as those used for the CGR algorithm.
The only difference is that for the MCL-SIR algorithm, there
were no refine step, and the usual MCL-SIR update equations
were used.

A. Comparison of CGR and MCL-SIR

In the first series of experiments, we logged sensor data
while driving the robot around the map, traversing a path
374m long. The true robot location was manually annotated
by aligning the sensor scans to the map. This data was
then processed offline with varying number of particles to
compare success rates, accuracy and run times for CGR as
well as MCL-SIR. At the begining of every trial, the particles
were randomly initialized with errors of up to ±4m and
±40◦. The number of particles m was varied from 2 to 302,
with 80 trials each for CGR and MCL-SIR for each value of
m. The values of f (the observation discount factor) and r
(the number of iterations in the Refine step) were 2000 and
3 respectively for all trials.

1) Accuracy: Figure 2 shows the mean localization errors
for the two algorithms for different numbers of particles.
Both graphs show that localization using CGR is consistently
more accurate than when using MCL-SIR. In particular,
localizing using CGR with 20 particles has smaller mean
errors than localizing using MCL with even 200 particles.

Another advantage of the CGR algorithm over MCL-SIR
is that the CGR algorithm has lower variance across trials.
Figure 3 shows the 70% confidence interval sizes for the two
algorithms, for different numbers of particles. The variance
across trials is consistently smaller for the CGR algorithm.

2) Success Rates: A trial was counted as being “success-
ful” if the estimated end location was within 1m of the true
robot location and if the error at every time step was less
than 1m. Figure 4 shows the success rates of the CGR and
MCL-SIR algorithms for varying numbers of particles.

3) Computational Tradeoffs: Figure 5 shows the compu-
tational tradeoff for running CGR and MCL-SIR as a scatter
plot of the localization offset error and the average run time
of the complete belief update. Different data points represent
different numbers of particles. This figure indicates that for
any desired maximum computational runtime, CGR provides
lower mean localization errors than MCL-SIR.

B. Long Run Trials

We have been using the CGR localization algorithm on
our robot over deployment, and have been logging the local-
ization data over all these runs. The localization algorithm
used data from both the LIDAR scanner as well as the Kinect
sensor, and ran in real time on the robot with 20 particles,
updating at 30Hz. In total, over a span of 19 days, the robot
had an autonomous run time of 52 hours, and traversed a total
distance of over 13km, traversing a variety of environments
including corridors, open areas and areas with clutter and
pedestrian traffic. Figure 6 shows the combined trace of the
robot’s location, as reported by CGR localization.

VI. CONCLUSION AND FUTURE WORK

We introduced the Corrective Gradient Refinement algo-
rithm to refine the samples of the belief in particle filters. We
developed an observation model using point cloud sensors
for the task of indoor mobile robot localization. By exper-
imental evaluation, we showed that the CGR localization
algorithm using this observation model outperforms Sam-
pling/Importance Resampling Monte Carlo Localization in
terms of accuracy and computational requirements.

In the future, we are interested in applying CGR to higher
dimensional state estimation, where we believe its advantages
over standard particle filters will be even more pronounced.
In addition, we intend to extend the work of 3D point cloud
localization to fuse data from multiple depth cameras and
perform complete 6 degree of freedom localization.

REFERENCES

[1] D. Fox, W. Burgard, F. Dellaert, and S. Thrun. Monte carlo localiza-
tion: Efficient position estimation for mobile robots. In Proceedings
of the National Conference on Artificial Intelligence, pages 343–349.
JOHN WILEY & SONS LTD, 1999.

[2] D. Salmond, N. Gordon, and A. Smith. Novel approach to
nonlinear/non-gaussian bayesian state estimation. In IEE Proc. F,
Radar and signal processing, volume 140, 1993.

[3] D. Fox. KLD-sampling: Adaptive particle filters and mobile robot
localization. Advances in Neural Information Processing Systems,
2001.

[4] S. Lenser and M. Veloso. Sensor resetting localization for poorly
modelled mobile robots. In Int. Conf. on Robotics and Automation,
2000.

CGR

MCL-SIR

O
ff

se
t

E
rr

o
r

(m
e
te

rs
)

Run Time (s)

0 0.01 0.02 0.03
0

0.1

0.2

0.3

0.4

Fig. 5. Tradeoff between mean localization offset error and normalized
computational run times.

20m

Fig. 6. Combined trace of robot location over all deployments

[5] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller,
E. Teller, et al. Equation of state calculations by fast computing
machines. The journal of chemical physics, 21(6):1087, 1953.

[6] W.K. Hastings. Monte Carlo sampling methods using Markov chains
and their applications. Biometrika, 57(1):97, 1970.

[7] S. Duane, A.D. Kennedy, B.J. Pendleton, and D. Roweth. Hybrid
monte carlo. Physics Letters B, 195(2):216 – 222, 1987.

[8] K. Choo and D.J. Fleet. People tracking using hybrid Monte Carlo
filtering. In Proc. of Int. Conf. on Computer Vision (ICCV). IEEE,
2001.

[9] M.K. Pitt and N. Shephard. Filtering via simulation: Auxiliary particle
filters. Journal of the American Statistical Association, 1999.

[10] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. FastSLAM
2.0: An improved particle filtering algorithm for simultaneous local-
ization and mapping that provably converges. In International Joint
Conference on Artificial Intelligence, volume 18. Citeseer, 2003.

[11] G. Grisetti, C. Stachniss, and W. Burgard. Improved techniques for
grid mapping with rao-blackwellized particle filters. Robotics, IEEE
Transactions on, 23(1):34–46, 2007.

[12] Z. Chen, T. Kirubarajan, and M.R. Morelande. Improved particle
filtering schemes for target tracking. In Acoustics, Speech, and Sig-
nal Processing, 2005. Proceedings.(ICASSP’05). IEEE International
Conference on, volume 4, pages iv–145. IEEE, 2005.

[13] S. Thrun, W. Burgard, and D. Fox. Probabilistic robotics. 2005.
[14] L. Zhang and B.K. Ghosh. Line segment based map building and

localization using 2D laser rangefinder. In IEEE Int. Conf. on Robotics
and Automation, 2000.

[15] M.A. Fischler and R.C. Bolles. Random sample consensus: A
paradigm for model fitting with applications to image analysis and
automated cartography. Communications of the ACM, 24(6), 1981.

	University of Massachusetts Amherst
	ScholarWorks@UMass Amherst
	2011

	Corrective Gradient Refinement for Mobile Robot Localization
	Joydeep Biswas
	Manuela M. Veloso
	Brian Coltin
	Recommended Citation

	tmp.1473272670.pdf.PQABR

