89 research outputs found

    Autonomous personal vehicle for the first- and last-mile transportation services

    Get PDF
    This paper describes an autonomous vehicle testbed that aims at providing the first- and last- mile transportation services. The vehicle mainly operates in a crowded urban environment whose features can be extracted a priori. To ensure that the system is economically feasible, we take a minimalistic approach and exploit prior knowledge of the environment and the availability of the existing infrastructure such as cellular networks and traffic cameras. We present three main components of the system: pedestrian detection, localization (even in the presence of tall buildings) and navigation. The performance of each component is evaluated. Finally, we describe the role of the existing infrastructural sensors and show the improved performance of the system when they are utilized

    Real-time performance-focused on localisation techniques for autonomous vehicle: a review

    Get PDF

    FedVCP: A Federated-Learning-Based Cooperative Positioning Scheme for Social Internet of Vehicles

    Get PDF
    Intelligent vehicle applications, such as autonomous driving and collision avoidance, put forward a higher demand for precise positioning of vehicles. The current widely used global navigation satellite systems (GNSS) cannot meet the precision requirements of the submeter level. Due to the development of sensing techniques and vehicle-to-infrastructure (V2I) communications, some vehicles can interact with surrounding landmarks to achieve precise positioning. Existing work aims to realize the positioning correction of common vehicles by sharing the positioning data of sensor-rich vehicles. However, the privacy of trajectory data makes it difficult to collect and train data centrally. Moreover, uploading vehicle location data wastes network resources. To fill these gaps, this article proposes a vehicle cooperative positioning (CP) system based on federated learning (FedVCP), which makes full use of the potential of social Internet of Things (IoT) and collaborative edge computing (CEC) to provide high-precision positioning correction while ensuring user privacy. To the best of our knowledge, this article is the first attempt to solve the privacy of CP from a perspective of federated learning. In addition, we take the advantages of local cooperation through vehicle-to-vehicle (V2V) communications in data augmentation. For individual differences in vehicle positioning, we utilize transfer learning to eliminate the impact of such differences. Extensive experiments on real data demonstrate that our proposed model is superior to the baseline method in terms of effectiveness and convergence speed

    On the Enhancement of the Localization of Autonomous Mobile Platforms

    Get PDF
    The focus of many industrial and research entities on achieving full robotic autonomy increased in the past few years. In order to achieve full robotic autonomy, a fundamental problem is the localization, which is the ability of a mobile platform to determine its position and orientation in the environment. In this thesis, several problems related to the localization of autonomous platforms are addressed, namely, visual odometry accuracy and robustness; uncertainty estimation in odometries; and accurate multi-sensor fusion-based localization. Beside localization, the control of mobile manipulators is also tackled in this thesis. First, a generic image processing pipeline is proposed which, when integrated with a feature-based Visual Odometry (VO), can enhance robustness, accuracy and reduce the accumulation of errors (drift) in the pose estimation. Afterwards, since odometries (e.g. wheel odometry, LiDAR odometry, or VO) suffer from drift errors due to integration, and because such errors need to be quantified in order to achieve accurate localization through multi-sensor fusion schemes (e.g. extended or unscented kalman filters). A covariance estimation algorithm is proposed, which estimates the uncertainty of odometry measurements using another sensor which does not rely on integration. Furthermore, optimization-based multi-sensor fusion techniques are known to achieve better localization results compared to filtering techniques, but with higher computational cost. Consequently, an efficient and generic multi-sensor fusion scheme, based on Moving Horizon Estimation (MHE), is developed. The proposed multi-sensor fusion scheme: is capable of operating with any number of sensors; and considers different sensors measurements rates, missing measurements, and outliers. Moreover, the proposed multi-sensor scheme is based on a multi-threading architecture, in order to reduce its computational cost, making it more feasible for practical applications. Finally, the main purpose of achieving accurate localization is navigation. Hence, the last part of this thesis focuses on developing a stabilization controller of a 10-DOF mobile manipulator based on Model Predictive Control (MPC). All of the aforementioned works are validated using numerical simulations; real data from: EU Long-term Dataset, KITTI Dataset, TUM Dataset; and/or experimental sequences using an omni-directional mobile robot. The results show the efficacy and importance of each part of the proposed work
    corecore