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Résumé 

La localisation est essentielle pour la fonctionnalité des véhicules autonomes, dont les plus 

mentionnées sont les systèmes de sécurité d’avertissement de sortie de voie ou Lane 

Departure Warning Safety Systems (LDWSS). Les LDWSS détectent généralement les 

écarts de voie dans les environnements urbains en utilisant une variété de techniques de 

traitement de la vision ou de balayage optique. Ces LDWSS ont certaines limites; par 

exemple, ils peuvent être gênés par des conditions météorologiques défavorables ou des 

marquages au sol irréguliers. D’autres LDWSS utilisent un récepteur des systèmes de 

positionnement (GPS) et des cartes numériques avec une meilleure résolution au niveau de 

la voie pour augmenter l’efficacité du système, mais qui sont plus complexes et couteux. 

Pour compenser les pannes de caméra, cette étude propose un système alternatif qui ne 

dépend pas des marquages au sol mais les données GPS et IMU collectées à partir d’un 

smartphone installé dans le véhicule pour le localiser sur la route et compare sa trajectoire à 

une direction de référence de la route sans utiliser aucune carte numérique. Cette technique 

ne nécessite que des données au niveau par rapport au profil de la route provenant d’une base 

de données de cartographie numérique commune. De plus, des expériences démontrent que 

le système proposé est fiable et peut être complété par une caméra pour améliorer les 

estimations du positionnement du véhicules par rapport à la voie. La validation a été effectuée 

sur un véhicule électrique : KIA SOUL EV 2017, appartenant à l’Institut de recherche sur 

l’hydrogène (IRH) de l’Université du Québec à Trois-Rivières (UQTR). 

Mots-clés: Systèmes avancés d’aide à la conduite (ADAS), Système d’information 

géographique (SIG), Systèmes de navigation inertielle, Départ de voie, Filtre de Kalman, 

estimation de la trajectoire. 
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Summary 

The ego vehicle's location is critical for a variety of autonomous functions, the most notable 

of which are lane departure warning safety systems (LDWSS). LDWSS typically detect lane 

departures in urban environments by utilizing a variety of vision processing or optical 

scanning techniques. These LDWSS have some limitations; for example, they may be 

impaired by adverse weather conditions or irregular lane markings. Other LDWSS employ a 

global positioning system (GPS) receiver and digital maps with lane-level resolution to 

increase system efficiency, but at the expense of added complexity and cost. To compensate 

for camera failures, this paper proposes an alternate system that is not reliant on lane 

markings and instead uses GPS and IMU data collected from the vehicle's smartphone to 

locate the vehicle on the road and compare its trajectory to a reference road direction without 

requiring any digital maps with lane-level resolution. This technique only requires road-level 

data from a common digital mapping database. Additionally, experiments demonstrate that 

the proposed system is reliable and can be supplemented with a camera to improve vehicle 

estimates at the lane level. 

The validation was carried out on an electric vehicle: KIA SOUL EV, belonging to the 

Hydrogen Research Institute (IRH) of the Université du Québec à Trois-Rivières (UQTR). 

Keywords: Advanced Driver Assistance Systems (ADAS), Geographic Information System 

(GIS), Inertial Navigation systems, Lane departure, Kalman filter, trajectory estimation 
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automobiles étant désormais capables d'effectuer certaines manœuvres avec ou sans 

intervention manuelle. Le système de transport a été considérablement modifié par les 

systèmes avancés de sécurité d'assistance à la conduite ou Advanced Driving Assistance 

System (ADAS) et leurs applications [2-4]. Un système ADAS dans une voiture collecte des 

données dans les directions longitudinale et latérale du véhicule à l'aide d'un module de 

perception de l'environnement composé de plusieurs capteurs dont le but est de fournir les 

informations nécessaires pour interpréter les scènes environnantes à proximité du véhicule à 

l'aide d'un ordinateur central, puis d'activer une alerte ou un freinage basé sur l'analyse 

d'entrée de capteur. La figure 1 illustre la structure fondamentale d'un véhicule compatible 

ADAS.  

 

Figure 1.  Diagramme de fonctionnement de l’ADAS dans les voitures autonomes 
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En raison des progrès technologiques, les systèmes de conduite autonome sont devenus 

un intérêt de recherche dans les universités et l'industrie [5, 6]. En conséquence, la Society 

of Automobile Engineers (SAE) a défini six niveaux d'automatisation pour ces systèmes de 

sécurité, allant de 0 (conduite manuelle complète) à 5 (navigation entièrement autonome) [7]. 

Alors que les véhicules entièrement autonomes (niveau 5) sont encore prévu dans quelques 

années, les véhicules utilitaires actuels sont équipés de systèmes ADAS classés 2 et 3 dans 

les niveaux d'autonomie de SAE. Plusieurs applications ADAS de pointe bien connues qui 

fonctionnent dans le sens longitudinal du véhicule incluent le régulateur de vitesse adaptatif 

(ACC), l'évitement de collision avant (FCA), la reconnaissance des panneaux routiers et de 

signalisation et l'assistance aux embouteillages (TJA), tandis que l'assistance à la sécurité 

latérale populaire comprend le système d'avertissement de sortie de voie (LDWSS) et 

l'assistance au maintien de voie (LKA) , Assistance au changement de voie (LCA) et 

Surveillance des angles morts (BSM). La figure 2 illustre une application ADAS courante 

qui utilise une variété de capteurs pour analyser l'environnement.  

 

Figure 2 Divers applications et capteurs ADAS 

En tant que module essentiel des véhicules autonomes, la détection de voie permet à la 

voiture de maintenir une position cohérente dans les voies de circulation, ce qui est nécessaire 



4 
 

pour le contrôle et la planification ultérieurs. Maintenir la position du véhicule dans les voies 

de circulation peut être une tâche fastidieuse et aggravante, en particulier lors de longs trajets 

urbains où les sorties de voie sont courantes. Selon l'American Association of State Highway 

and Transportation Official (AASHTO), près de 60 % des accidents mortels surviennent à 

cause d'une déviation involontaire de la voie d'un véhicule sur les routes principales [8]. La 

plupart de ces collisions se produisent lorsqu'un véhicule franchit une ligne de bord, une ligne 

médiane ou s'écarte autrement de sa voie ou de sa trajectoire [9]. Selon une étude récente 

comparant les accidents avec et sans LDWSS, il a été découvert qu'un LDWSS embarqué 

était bénéfique pour réduire les accidents de tous les niveaux de gravité de 18 %, les blessures 

de 24 % et les décès de 86 % sans prendre en compte les données démographiques des 

conducteurs [10]. La technologie de vision était initialement utilisée dans les applications 

LDWSS. Comme le montre la figure 3, une caméra de vision montée sur le pare-brise du 

véhicule surveille et calcule la distance latérale entre les lignes de chaque voie ; lorsqu'un 

véhicule dévie de sa voie de circulation, le processeur LDWSS calcule l'écart et avertit le 

conducteur par des moyens audio, visuels ou autres.  

 

Figure 3 Caméra de vision installée sur le pare-brise pour suivre les marquages au sol. 

LDWSS est un vaste sujet qui englobe plusieurs fonctions critiques exécutées par son 

mécanisme de fonctionnement. Ces actions critiques sont en outre classées en deux tâches : 

diriger le véhicule en acquérant des connaissances sur l'environnement routier (par exemple, 
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détecter les marquages au sol/les obstacles/les surfaces de la route) et déterminer quand 

alerter le conducteur lors des manœuvres. Les travaux de recherche suivants se concentreront 

sur la tâche préalable du LDWSS qui consiste à comprendre l'environnement routier par la 

navigation et le positionnement du véhicule sur la route, un composant essentiel d'un véhicule 

semi- ou entièrement autonome. 

Perhaps no invention shaped the twentieth century more than the automobile. On a daily 

basis, the majority of people rely on automobiles as their primary mode of transportation. 

Indeed, over 70 million automobiles were produced globally in 2018. Due to the fact that 87 

percent of the working population commutes exclusively by car, car-related expenses are the 

second largest category of spending for the average American family. While this invention 

has been a huge success, its benefits are not without a price. Additional economic, 

environmental, and social costs are associated with mass mobilization. Additionally, it 

endangers commuter safety by resulting in harmful or fatal incidents. 

According to the National Highway Traffic Safety Administration (NHTSA), driver 

inattention is the primary cause of serious accidents [1]. This includes fatigue, drowsiness, 

distraction, and speeding. Apart from driver error, environmental factors such as weather 

conditions have been associated with automobile accidents [1]. The driving assistance system 

(DAS) was introduced in automobiles with the goal of increasing mobility efficiency and 

safety through the incorporation of inertial sensors and air bags within the vehicle [2]. 

However, this assistance was initially user-oriented and thus limited to drivers and their 

vehicles, prompting growing concern about pedestrian and vehicular safety in all weather 

conditions. This concern resulted in advancements in electronic driver assistance, with 

automobiles now capable of performing certain maneuvers with or without manual 

intervention. The transportation system has been significantly altered by advanced driver 
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assistance safety (ADAS) systems and their applications [2-4]. An ADAS system in a car 

collects data in the longitudinal and lateral directions of the vehicle using an environment 

perception module comprised of several sensors whose purpose is to provide the necessary 

information for interpreting the surrounding scenes near the vehicle using a central computer 

and then activating alerting or braking based on sensor input analysis. Figure 1 illustrates the 

fundamental structure of an ADAS-enabled vehicle. 

Due to technological advancements, autonomous driving systems have become a focus 

of research in academia and industry [5, 6]. As a result, the Society of Automobile Engineers 

(SAE) has defined six levels of automation for these safety systems, ranging from 0 

(complete manual driving) to 5 (Fully autonomous navigation) [7]. While fully autonomous 

vehicles (level 5) are still a few years away, current commercial vehicles are equipped with 

ADAS systems classified as SAE autonomy levels 2 and 3. Several well-known cutting-edge 

ADAS applications that operate in the longitudinal direction of the vehicle include Adaptive 

Cruise Control (ACC), Forward Collision Avoidance (FCA), Road and Traffic Sign 

Recognition, and Traffic Jam Assist (TJA), while popular lateral safety assistance includes 

Lane Departure Warning Safety System (LDWSS) and Lane Keeping Assistance (LKA), 

Lane Change Assistance (LCA), and Blind Spot Monitoring (BSM). Figure 2 illustrates a 

common ADAS application that makes use of a variety of sensors to scan the environment. 

As a critical module in autonomous vehicles, ego-lane detection enables the car to 

maintain a consistent position within traffic lanes, which is necessary for subsequent control 

and planning. Maintaining vehicle position within traffic lanes can be a time-consuming and 

aggravating task, especially on long trips on city streets where lane departures are common. 

According to the American Association of State Highway and Transportation Officials 

(AASHTO), nearly 60% of fatal accidents occur because of a vehicle's unintentional lane 
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drifting on major roads [8]. Most of these collisions occur when a vehicle crosses an edge 

line, a center line, or otherwise departs from its intended lane or trajectory [9]. According to 

a recent study that compared crashes with and without an LDWSS, it was discovered that an 

in-vehicle LDWSS was beneficial in reducing crashes of all severity levels by 18%, injuries 

by 24%, and fatalities by 86% without taking driver demographics into account [10]. Vision 

technology was initially widely used in LDWSS applications. As shown in Figure 3, a vision 

camera mounted on the vehicle's windshield monitors and calculates the lateral distance 

between lane lines; when a vehicle deviates from its traffic lane, the LDWSS processor 

calculates the deviation and notifies the driver via audio, visual, or other means. 

LDWSS is a broad subject that encompasses several critical functions performed by its 

operating mechanism. These critical actions are further classified into two tasks: navigating 

the vehicle by acquiring knowledge of the road environment (for example, detecting lane 

markings/obstacles/road surfaces) and determining when to alert the driver during 

maneuvers. The following research will concentrate on the LDWSS prior task of 

comprehending the road environment through navigation and vehicle positioning on the road, 

a critical component of a semi- or fully autonomous vehicle. 

1.2 Problem Statement 

A self-driving car must be aware of its surroundings as well as its own capabilities. 

Furthermore, the vehicle's position enables the estimation of its heading, which aids in the 

development of ADAS applications for autonomous longitudinal and lateral collision 

avoidance. As part of lateral collision avoidance, LDWSS application employs a critical and 

key function known as lane detection, which involves detecting lanes and tracking the 

vehicle's position in relation to the road. LDWSS currently employ a variety of technologies 

to determine lane markings and vehicle positioning, including vision cameras [11, 12] and 
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light detection and ranging (Lidar) systems [13], and in some cases, Global positioning 

systems (GPS) in conjunction with vision cameras [14].  

However, current technology systems suffer from several flaws that contribute to the low 

reliability of LDWSS. For example, the majority of lane departure warning systems detect 

an impending lane departure using a single camera and processor [15, 16]. A closer 

examination of camera-based systems reveals that vision systems use a variety of image 

processing techniques to detect lane markings and calculate the vehicle's lateral shift on the 

road in response to unexpected and sudden lane departures. In normal weather conditions, 

the vision system performs well; however, in inclement weather, the camera's image 

processing techniques for determining lane markings become difficult, time consuming, and 

dangerous, making LDWSS ineffective [17]. Moreover, the camera relies on lane markings 

and boundaries to activate LDWSS; when road conditions such as missing or 

irregular/broken lane markings exist, the camera's performance is compromised, resulting in 

the accumulation of false data for lane departure detection and activation. Additionally, 

without a distance view, the camera is incapable of interpreting lane markings on curves, 

resulting in incorrect lane marking determination. The camera's performance in various 

weather conditions is depicted in Figure 4. 
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Figure 4 (a) & (c) demonstrates the absence of lane markings at curves in snow and 
rain weather. (b) and (d) highlights missing lane markings in snow and 
normal weather. 

GPS-based solutions, in conjunction with cameras, aid in mapping the environment 

by global positioning vehicles on roads. Due to the presence of tall buildings, tunnels, and 

trees on urban roads, GPS receivers are limited by line-of-sight, resulting in signal delays 

and complicating vehicle lane positioning estimates. Although optical scanning systems, 

such as Lidar, are computationally simple, they are an expensive solution for activating the 

(a) (b) 

(c) (d) 



10 
 

imminent LDWSS. Lidar, like vision cameras, is sensitive to adverse weather conditions 

[18].  

As a result, a backup or alternative system capable of assisting with vehicle position 

estimates in the event of current technology failure, such as a vision camera that is unaffected 

by road profile or weather conditions, is required to improve LDWSS reliability and usability 

in all weather conditions, and this backup system can be developed by addressing current 

technological constraints. The following section goes into greater detail about the research 

goals and objectives. 

1.3 Methodology & Objectives 

 The overall purpose of the research was to address existing constraints in terms of data 

reliability, continuous data availability, and cost-performance ratio. Apart from meeting 

technical specifications, another hurdle was dealing with adverse climatic changes (such as 

snowfall or rain), which create wet pavement environments and impair sensor performance, 

resulting in false information and endangering commuters. The experiment was designed to 

develop a low-cost alternative to existing LDWSS solutions, specifically vision based 

LDWSS, for predicting a vehicle's lane position throughout a journey that is unaffected by 

climatic changes and independent of road lane markings. 

To achieve the main objectives, we divided our goal into two subgoals. The first 

subgoal is to find a low-cost sensor for vehicle positioning that is resistant to weather changes 

and consistent in providing information about the vehicle's location. The second subgoal was 

to develop a road reference solution that is an alternative to lane markings for guiding 

vehicles along trajectory, so that vehicles do not have to rely on lane markings to activate 
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After determining the vehicle's pose, we needed to confirm its accuracy. We needed a 

ground truth reference for the pose results, so we used Open Street Map (OSM) 

geospatial data. After processing geospatial map data in QGIS software, a geospatial street 

network model was obtained. The street network model is made up of a large amount of 

information, the majority of which is related to roads. The road-related information contained 

hints such as nodes on the road with unique latitude and longitude coordinates. We used these 

latitude and longitude coordinates to create a reference lane model, which satisfied our 

second goal of developing alternatives to lane markings. Finally, to achieve our overall goal, 

we compared and evaluated vehicle position estimates derived from vehicle roll, yaw, and 

pitch moments as measured by an in-vehicle IMU sensor against generated global reference 

points from an offline map using MATLAB. 

1.4 Significance 

In order to avoid all relevant collisions in a vehicle equipped with LDWSS technology, 

the system must be operational at all times, in all dynamic conditions, and economically 

viable. This study makes an important contribution by increasing the dependability of 

navigation solutions in environments where cameras or GPS are not available. Furthermore, 

the goal of this research is to forecast the cost-effective safety benefits of LDWSS technology 

for vehicle manufacturers, as well as to address existing research gaps in LDWSS technology. 

The developed map-assisted, low-cost, and user-friendly navigation system can be used for 

a variety of purposes, including in-vehicle navigation and location-based smartphone 

utilities. The navigation solution's accuracy has been improved, giving users a more reliable 

and robust navigation option. This improved method can also be applied to emergency or law 

enforcement navigation apps. The anticipated safety benefits of implementing the proposed 
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method may aid in increasing LDWSS adoption rates and influencing policymaking and 

regulatory approaches to improving motor vehicle safety. These policies would save lives 

and reduce the negative consequences of lane departure accidents. 

1.5 Organization of the dissertation 

This thesis is divided into seven chapters, the most recent of which introduces the study's 

context. The topic of the research, the problem statement, and the motivation for conducting 

the research are all discussed. The research objectives and methodology for moving forward 

with the research, as well as the significance of this research, are presented, and the section 

concludes with highlighting thesis organization. 

 Chapter two illustrates the literature review process. This section will describe the 

process of conducting a literature review for this thesis, followed by a discussion of the 

current state of the art and approaches used. It then discusses some of the general 

observations and limitations of the current state of the art, before presenting the approach 

taken in this thesis to resolve the existing problem by proposing an alternate solution. 

Chapter three investigates various positioning sources and their limitations in relation 

to the thesis objectives to provide information for navigation sensors. Based on a review of 

positioning sensors, this section aids in sensor selection for this research. 

Chapter four describes inertial sensors, as well as their errors and mechanisation 

equations, in a clear and precise but informative manner. subsequently investigates and 

discusses the integration of multiple mobile sensors with the algorithms and techniques used 

in this research to develop map-aided navigation systems 
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 Chapter five introduces maps for navigation. Following that, geospatial data from maps 

is discussed, and various sources of mapping data are investigated to generate useful models 

for navigation applications. The generation of a geospatial model is presented, followed by 

the presentation of the developed outdoor geospatial model for this study. 

Chapter six discusses the various field tests that were conducted and the analysis of the 

results. Each field test environment and scenario for outdoor and environmental testing is 

described in detail, as are the sensors used. The results of each field test, as well as their 

analysis, are discussed and summarized. 

Chapter seven Chapter seven summarizes the thesis' accomplishments, describes the 

research findings, and highlights the thesis' shortcomings, as well as making 

recommendations for future research and improvements to the thesis' methodology. 
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b) RQ2: What is the current state of the art and the challenges associated with vehicle 

positioning on the road? 

c) RQ3: What are the future possibilities for combining various approaches with other emerging 

technologies? The sections that follow provide elaborative approaches to answering the research 

questions, as well as highlighting gaps in the existing literature.  

2.2 Current state of art and approaches used 

When semi- or fully autonomous vehicles share the road with other vehicles, it is critical 

to keep track of the ego vehicle's movement. From a safety standpoint, autonomous vehicles 

must have reliable and accurate positions in order to navigate safely. A critical component of 

a fully autonomous vehicle is positioning the vehicle in such a way that the road, lane, and 

location within the lane are known. Additionally, the navigation of an autonomous vehicle 

requires a precise decision within a few seconds while taking into account the dynamics of 

all obstacles, the road structure, and the user's safety, which complicates the task of vehicle 

positioning. There are three widely researched approaches to vehicle positioning on roads 

classified as cooperative localization, absolute localization, and sensor-based localization. 

Cooperative localization: It is a technique for optimizing performance by utilizing data 

from adjacent sensors. For example, in [19], the authors proposed a method for determining 

the relative trajectories of vehicles travelling in multiple lanes toward a merging junction 

with an accuracy of less than half the lane width by utilizing Dedicated Short Range 

communication (DSRC) based vehicle-to-vehicle communication and standard GPS 

receivers. 

Absolute localization: To perform automated driving on real roads, an autonomous 

vehicle must secure information about its location. Absolute localization utilizes GPS 
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receivers to obtain information from at least four satellites to determine the vehicle's own 

position, that is, the starting point to begin. Essentially, autonomous vehicles are designed to 

generate global paths based on data from waypoints and then follow them. The authors of 

[20], presented two algorithms for lane departure detection and advance curve detection using 

a standard GPS receiver. Extensive field testing on the interstate was conducted to determine 

the efficacy of both algorithms on straight and curved road segments. The results of field 

testing indicate that the proposed lane departure detection algorithm is capable of detecting 

and warning the driver of a true lane departure with an accuracy of nearly 100% on both 

straight and curved road segments. 

Sensor based localization: Semi- or fully automated vehicles are equipped with a variety 

of sensors, including proprioceptive sensors that provide information about the vehicle's 

motion and exteroceptive sensors that provide information about the vehicle's surroundings. 

Odometers, velocity and steering encoders, and inertial measurement units are all examples 

of proprioceptive sensors (IMU). Exteroceptive sensors, on the other hand, include Lidar, 

Radar, and vision cameras. In the literature, it is common to combine various types of sensors 

to improve the vehicle's localization. For example, in [21], the host vehicle's ego lane was 

estimated using a Bayesian Lane estimation filter, and the vehicle was equipped with 

forward-looking radar and a camera. The camera makes an educated guess about the 

geometric shape of the lane markings. A fusion system that integrates radar and camera data 

performs target tracking and generates estimates of the kinematic states of vehicles ahead of 

the ego car. Additionally, the test vehicle was equipped with a GPS receiver to perform self-

motion estimation based on gyro measurements. Likewise, combining an offline map with 

on-board vehicle sensors demonstrated complementary benefits. For example, in [22], the 
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importance of GIS information in determining automated vehicle safety functions such as 

efficient lane change and path planning was highlighted, and an automated vehicle was 

discovered to be equipped with Lidar, camera, GPS, and inertial system. In [23], authors 

present a novel approach for lane level localization that combines visual lane information 

with topological map matching via GPS and dead reckoning. When combined with the 

proposed map matching algorithms, the experiment outline and proposed map matching 

algorithms aid in achieving lane level ego vehicle localization. 

2.3 General observations and limitations in current state of art  

According to review articles [15, 24, 25], vision camera is the most frequently used 

human sense for driving. Specifically, several researchers are working on the implementation 

of lane departure warning systems. Lane detection is a process that involves locating road 

markers (white or yellow horizontal markings) on the surface of painted roads and drawing 

lanes boundaries. Lane detection can be achieved either from the input image using 

conventional image processing techniques which involves image operations like color-based 

extraction, gray scale image conversion, edge detection and perspective transformation or by 

training the algorithm with various scenarios using neural networks. However, as 

demonstrated in [16], developing a consistent and robust lane detection system is a difficult 

and time-consuming research topic; this fact may be justified by the complexity and 

variability of case conditions. Lane and road appearance diversity is a limiting factor in lane 

detection; lane markings and lane width exist in unnormalized variants. Additionally, severe 

occlusions may be created by nearby vehicles, which cannot be ignored. Moreover, visibility 

conditions constrain the systems' performance (weather conditions, lighting, haze, and night 

conditions). Despite significant progress in the area of lane detection and tracking using 
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neural networks, there is still room for improvement [25-27]. The use of Lidar optical 

scanning systems to measure the lateral distance between road and lane markings is an 

expensive solution for studying vehicle localization on a lane and is climate sensitive [14, 

22, 28]. A standard GPS receiver's absolute position accuracy is in the range of 3-5m, which 

is insufficient to determine any lateral lane-level drift in a vehicle's trajectory required for 

lane departure detection. Moreover, GPS signals are obscured in urban areas by buildings, 

tunnels, and the effect of the atmosphere [29]. Additionally, a significant disadvantage of the 

DSRC approach is its limited scalability [30], It stems from the protocol's inability to provide 

the required time-probabilistic characteristics in dense traffic. Likewise, some systems 

integrate GPS data with a camera based LDWS to improve the reliability of lane departure 

detection in adverse road conditions [23, 31]. However, such systems require GPS 

technology, an inertial navigation sensor, and access to digital maps with lane-level 

resolution to correct the GPS position, increasing their complexity and cost of 

implementation. 

2.4 Approach used in paper 

  To overcome the limitations of vision, Lidar, and GPS as revealed in previous section, 

an alternative approach like that of [20], is proposed, in which a GIS is used in conjunction 

with in-vehicle smart phone-based inertial navigation for positioning the vehicle on an urban 

road and determining permissible lateral distance for departure warning. To calculate the 

lateral distance, a road reference must be obtained from Google Maps or another navigational 

mapping database, such as OSM [32, 33]. Typically, any mapping database includes a street 

network that contains geospatial information about the attributes and geometry of streets. 

Roads are divided into segments of individual links, each with its own distinct characteristics 
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such as street name, number of lanes, bus stops, and highways. Each of these links is 

associated with a link identification (ID) that is globally unique in the mapping database and 

is used to identify and process data about any given road segment. These mapping databases 

can provide information at the road or lane level, depending on the quality of the survey and 

the services required.  

The proposed technique requires only road-level information. A road-level map of a 

given road segment with a unique global ID is associated with a set of geographic latitude-

longitude points located in the middle of the road that approximate the shape of the actual 

physical road with some lateral error. The distribution of these shape points along a given 

road segment is directly proportional to the road geometry's acuity (see figure 21 in chapter 

5). Combining GIS reference points and vehicle position data can aid in achieving global 

positioning accuracy. In comparison to the current state of the art, the proposed method is 

independent of lane marking visibility and varying climatic conditions, works well in urban 

areas, and is a low-cost solution. Additionally, it is less complex, requires less computation, 

and details every small dynamic of the vehicle that is necessary for lane departure scenarios 

to take necessary action. 

 

Conclusion: The procedure for conducting a literature review is illustrated, followed 

by a discussion of the current state of the art and methodologies used. The following section 

discusses some general observations and limitations of the current state of the art. Using the 

studies cited previously in this section, we were able to identify gaps in the other studies, and 

finally, a proposal is formed and presented which is used in this thesis to resolve the existing 

problem through an alternate solution.
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sensors, such as ultrasonic, Radar and Lidar, work by emitting energy in the form of 

electromagnetic waves or radiation and measuring the return time to determine parameters 

such as distance and position. Instead of transmitting external signals or disruptions, passive 

sensors (infrared cameras) detect electromagnetic waves or radiation in the environment.  

3.1.1 Exteroceptive sensors 

3.1.1.1 Camera 

Market penetration: Human driving is primarily based on an analysis of the 

surrounding vehicles' characteristics, such as obstacles, lane detection, and road signs. A 

camera can provide some of this information for automated operation. Cameras are used in 

almost all SAE degrees of autonomy greater than one. Cameras are the only type of imaging 

equipment capable of seeing colours, making them ideal for lane detection tasks. Figure 6 

depicts a mono-camera from Mobileye. Mobileye is a well-known manufacturer that is 

currently leading monovision with smart technology, and the technical specifications of the 

intelligent vision-based camera can be found in [34]. 

 

Figure 6 Intelligent mono-camera by Mobileye [35] 
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Working principle: The camera is a digital lens imagery system that works by collecting 

and translating the image of an object into electrons on a pixel image sensor. Later, the 

camera capacitors convert electrons into voltages, which are later converted into an electronic 

digital signal. Two imaging sensors, the charging coupling device (CCD) and the 

complementary metal oxide semiconductor device (CMOS-D), are typically used in real-time 

applications. Brief comparisons between the CCD and CMOS-D can be found in [36, 37]. 

CCD cameras deliver excellent low-noise performance but are expensive and, as an 

alternative, the CMOS-D has been developed to reduce production costs and power 

consumption. Because of this advantage, the CMOS-D is widely preferred for automotive 

applications in the related industry. Cameras, in conjunction with computer vision and deep 

learning techniques, offer environmental information, such as detection of the target, their 

related physical descriptions (like the position of moving targets, size, and shape) and 

semantic descriptions (like recognizing and classifying trees, vehicles, traffic lights, and 

pedestrians). Camera information is easy to understand, which makes it more popular than 

other sensors. Various configurations exist in the camera and out of different configurations, 

monocular and stereo vision camera solutions are a common choice for researchers. In 

monocular systems, only one camera is used to detect, track, and measure longitudinal 

distances, based on landscape geometry. There is a downside to distance measurement in the 

monocular camera, since the distance is measured by using the position of the pixel in the 

vertical direction of the given image coordinates, which typically results in errors, due to the 

lack of direct depth measurements for the captured images. Compared to monocular cameras, 

stereo cameras with two cameras have an additional feature for measuring the distance 

between objects. Using stereo-view-based methods, two cameras can estimate the 3D 

coordinates of an object. A brief analysis of techniques for real-time obstacle detection and 
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classification linked with various algorithms using the stereo camera is presented in [38]. 

While stereo vision cameras are effective in target detection and classification, they are more 

expensive than mono-cameras, and they also have problems with calibration and 

computational complexity. In [25], vision-based techniques for activating LDW are 

discussed, with a focus on processing lane markings through a series of steps beginning with 

preprocessing of the environment, where the Region of interest (ROI) to be scanned is 

selected, later extracted scene from ROI is made to colour transformation process, followed 

by feature extraction of lane marking which shall be used for modelling lane, and then the 

modelled lane is tracked throughout the trajectory. The benefits and drawbacks of various 

vision algorithms have also been discussed. Also authors of [25], have discussed the various 

methods for defining lane departures. There have been many works done on lane detection 

using camera and interested readers are proposed to refer [39, 40], which is review covering 

various types of algorithms adapted for lane detection in varying conditions and advances in 

computer vision techniques for robust tracking of lanes on road. 

Vision-based system performance degradation: While advanced methods have 

improved recognition techniques, small variations in weather still influence camera 

measurements. The camera is very sensitive when faced with adverse climatic conditions. A 

camera in an aerosol environment experience decreased visibility and contrast, and is 

unreliable in object recognition, and a camera is not recommended for environmental 

detection and vehicle control tasks under foggy conditions, as per [41]. In the same reference 

[41], a full description of the rain and fog interactions with a camera is also provided. Camera 

sensors have an advantage over object detection and classification and are important for 

automated safety systems. However, in [42], an indoor rain simulator was used to 
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systematically investigate the effects of rain on camera data and the results outline that the 

performances of the camera sensors were mainly affected by decreased gradient magnitudes, 

resulting in a shift in the location and size of the bounding boxes during the detection process, 

leading to a decline in classification scores and resulting in uncertainty. Similarly, based on 

indoor experiments [43], the authors experimentally researched the effects of rain and 

showed that raindrops lead to an increase in the average intensity of the image and a decrease 

in contrast. The study presented in [44], develops an approach to quantifying the 

vulnerabilities of the camera, based on empirical measurements and the concluding results 

show that camera principal output loss occurs in lighting and precipitation. Lane detection 

was performed using a camera for rainy conditions in [45], and the author concluded that 

when the vision sensor is exposed to 20mm or more of precipitation, it fails to provide 

information about the lane. As a result, it is necessary to develop a technology capable of 

maintaining the bare minimum ADAS functionality during rainfall and other adverse weather 

conditions. 

3.1.1.2 Lidar 

Market Penetration: Lidar was invented in 1960 for the study of environmental 

measurements (atmospheric and oceanographic parameters), and it was later adapted for 

topographical 3D mapping applications in the mid-1990s [46]. In the Defence Advanced 

Research Projects (DARPA) challenge in 2005, lidar was used on vehicles to detect and avoid 

obstacles [47]. Commercial Lidar manufacturers include Velodyne, Quanergy, Leddartech, 

Ibeo, and others. In [48], a technical description of various lidar sensors is shown. Figure 7 

depicts a lidar image for an automobile. 
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Figure 7 Velodyne HDL 64 lidar [49] 

Working principle: Just like radars use time of flight of radio wavelengths to collect 

target information, photodiodes are used by lidar to transmit the light pulse to the target. The 

optical receiver lens in the lidar system is used as a telescope for the processing of photodiode 

fragments of light photons. The collected reflections include 3D point clouds corresponding 

to the scanned environments and the strength of the reflected laser energies provides 

information about the range, speed, and direction of the target. Lidar manufacturers use two 

wavelengths: 905 nm and 1550 nm. The former is a common option for automotive 

manufacturers due to its reliability, eye protection, and cost-effectiveness with silicone 

detectors. In [50, 51], an authoritative analysis on lidar, its waveform, and market penetration 

strategies are discussed. Lidars provide a good physical description of the target and, due to 

that, lidars have been used for target detection, tracking, and motion prediction., Filtering of 

the ground and clustering of the target [52-55] are two methods widely used by lidar for 

object detection, which provide the spatial information of the target. To classify and 

recognize objects (like pedestrians, trees, or vehicles), lidars make use of techniques such as 

machine learning based on object recognition [56-59], and additional methods such as global 
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and local extraction of features to help in providing the structure of the target. Lidar uses the 

Bayesian filtering framework and data association methods for target tracking and motion 

prediction to provide information, such as velocity, trajectory, and object positioning [60-

62]. Lidar has been widely used on a probe vehicle to extract lane-level road networks [63, 

64]. In [65],camera and Lidar imagery are used to predict a dense representation of the lane 

boundaries in the form of a thresholded distance transform. In [22], Lidar, camera, inertial 

sensor, and ultrasonic sensor are used to make the vehicle suitable for lane change and path 

planning decisions. where the local path is generated using data from a camera, a laser 

scanner, an ultrawave sensor, an intertial sensor, and other vehicle features. 

Degradation of lidar performance: Lidar performance in extreme weather conditions 

is not as strong as expected. Adverse weather conditions increase the transmission loss and 

decrease the reflectivity of the target. Under the perception category (fog, snow, and rain), 

fog has been found to have the greatest impact on the ability of lidar, due to its high expansion 

and backscattering properties, which are greater than in weather conditions like snowfall and 

rain [66]. The challenge in fog conditions is that many transmitted signals are lost, resulting 

in reduced power. Reduced power would alter the signal-to-noise ratio of the lidar sensor and 

influence its detection threshold, which leads to degraded perception performance. In [67], 

the depth of lidar performance in fog is studied and the observed light is scattered by fog 

particles, which not only reduces the detection range dramatically, but also leads to false 

detections. In the same study, the fog condition showed similar performance degradation to 

the airborne environment. In [68-70], qualitative and quantitative experimental studies of the 

fog effect on lidar in controlled environments outlined the loss of transmission phenomena 

leading to low received laser power and low target visibility. Lidar scanner capacity testing 
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has been carried out in the northern part of Finland at Sodankylä Airport [71], where fog 

creates a special problem. Results indicate that fog reduces the sensor range by 25%. In [72], 

the quantitative performance of lidar with varying rain intensity, with the help of a 

mathematical model, is presented and the results show that as rainfall intensity increases, the 

lidar cloud density is affected, increasing false-positive errors. The same effect is presented 

in [73], where the authors’ analysis showed that the varying intensities, size, and shape of 

raindrops drastically influence the attenuation rates of lidar. The effect of snow on lidar 

performances, such as reflectivity and propagation through the snowy environment, is 

evaluated in [74], using four lidars of different manufacturers. The results observed from this 

experiment highlight that the receiving power levels generated by snowflakes or water 

droplets were high (due to false-positive errors) and tended to overload the optical receiver 

chain. The lidar performances are also altered by airborne particles, such as dust, which have 

greater characteristic wavelengths than lidar. These particles prevent the sensor from imaging 

its surroundings, resulting in reduced visibility and incomplete target information. In another 

work [75], the experiment outlines that the dust particles in the air are very often detected by 

laser sensors and hide obstacles behind the cloud of dust. To address these limitations, the 

use of lidars with a 1550 nm wavelength with a strong propagation ability is suggested. 

However, this solution is of limited use, because of constraints such as high cost and high 

energy usage. The loss of efficiency due to adverse environmental conditions was examined 

in [76], and a comparison was made between lidars with wavelengths 905 nm and 1550 nm. 

The findings of [76], have also shown that lasers with a wavelength of 1550 nm have a much 

higher water absorption compared to 905 nm lidar. Furthermore, due to the advantage of the 

higher wavelength (1550 nm), higher power can be used for the transmission of lidar signals, 
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which could result in an increased range of detection in adverse climatic conditions, while 

maintaining eye safety regulations. 

3.1.1.3 Global Positioning System (GPS) 

Working and Limitations: The GPS is a satellite-based global navigation satellite 

system (GNSS) that always provides precise location and time information in all weather 

conditions and, anywhere on or near the Earth. GPS was established in 1973 by the United 

States Department of Defense [77]. The GPS system is built around a man-made constellation 

of 27 Earth-orbiting satellites (24 in operation and 3 extras in case one fails). A person or 

object can use these satellites to determine its position in terms of latitude, longitude, and 

altitude. These satellites orbit the Earth at a height of 12,000 miles and rotate twice every 24 

hours. These satellites' orbits are arranged in such a way that at any given time, anywhere on 

the planet, at least four satellites are clearly visible. A GPS receiver placed on Earth can 

determine its location by using any of the four visible satellites. To carry out the GPS 

localization process, two pieces of information are required: the distance between the GPS 

receiver and the satellites, and the position of each satellite in terms of latitude, longitude, 

and altitude. More information, such as distance calculations and related mathematical 

derivations, can be found in [78]. 
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Figure 8 GPS receiver by U-Blox [79] 

The primary benefit of GPS positioning is the extremely low level of positioning error. 

When signals from more than four satellites are received with an appropriate PDOP (Position 

Dilution of Precision), the positioning results can be guaranteed to be of high quality, that is 

errors are minimised. Additionally, the light weight and low cost are significant advantages, 

which can be visualized in figure 8. As a result, GPS positioning has gained popularity over 

the years. GPS is now ubiquitous, being integrated into cell phones, automobiles, and laptop 

computers.  

However, GPS positioning is not without flaws. The most serious issue is signal loss. 

Satellite signals are frequently interfered with in urban and mountainous areas, as well as in 

enclosed and underground spaces. Additionally, signal acquisition and tracking are 

challenging for highly dynamic movements. In these instances, it is necessary to consider the 

availability of satellite signals. In [29], an experiment is carried out for robust navigation at 

the lane level localization of vehicle using camera, lidar, GPS, and inertial sensors; various 

scenarios are presented, which affect the navigation filter, such as satellite geometry and the 

number of satellites. When GPS measurements are used for lane determination, similar 
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drawbacks are shown in [80]. For more information on GPS and positioning errors, see [81], 

which discusses GPS effects such as clock offsets, pseudorange codes, estimation error of 

broadcast ephemeris, atmospheric effects, ionospheric effect, troposcopic delays, and 

relativistic delays, all of which must be considered when developing an observation model.  

Additionally, GPS signal security is a significant concern. As is well known, satellite signals 

are susceptible to interference and spoofing. Security of wireless signals, including satellite 

signals, has always been a critical concern for electronics engineers, even more so in 

communication and military applications.  

3.1.2 Proprioceptive sensors 

Information from vehicle-based sensors is processed to estimate position, velocity, and 

attitude. The dead reckoning process is used by the vast majority of vehicle-based sensors. 

Velocity encoders, accelerometers, and gyroscopes, for example, all provide data about the 

vehicle's first- or second-order derivative position and attitude. The odometer also shows the 

distance travelled by the navigation system. As a result, converting these sensor 

measurements to position and attitude estimates will be integrative in nature, requiring 

knowledge of the vehicle's initial state as well as the accumulation of measurement errors 

over time or, in the case of the odometer, with the distance travelled.  

Furthermore, the information provided by the sensor mounted on the vehicle is 

represented in the vehicle coordinate system, with the exception of possible fixed rotations. 

As a result, before the sensor measurements can be processed to estimate position, velocity, 

and attitude, they must first be transformed into a more easily interpreted coordinate system, 

preferably the ECEF or the geographic coordinate system (see section 4.5). Furthermore, if 

sensor measurements are to be combined with data from other sources, they must be 
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expressed in a common coordinate system. The process of converting sensor measurements 

from a vehicle's mounted sensor to an estimated position and attitude of the vehicle is known 

as dead reckoning [82]. More information on vehicle sensor dead reckoning can be found in 

[83-86]. In the following section, we will look at how some of the well-known vehicle-based 

sensors work. 

3.1.2.1 Encoders 

Working: The encoders are one type of sensor that provides information about the state 

of the vehicle. The odometer, for example, is a meter that indicates the number of miles 

driven on a vehicle. An odometer calculates a vehicle's curvilinear distance by counting the 

number of full and fractional rotations of the wheels. This is done primarily using an encoder, 

which generates an integer number of pulses for each wheel revolution. The number of pulses 

generated during a time slot is then multiplied by a scale factor that varies with wheel radius 

to calculate the distance travelled during that time slot [87]. Figure 9(a) illustrates wheel 

encoder placed on side of wheel for distance reading. 

 
 (a) (b) 
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Figure 9 The wheel encoder is shown in (a) [88], the velocity encoder is shown in 
(b) [89], the steering angle encoder is shown in (c) [90], and 6 DOF 
IMU is shown in (d) [91] 

A velocity encoder, on the other hand, determines the vehicle's velocity by observing the 

wheel rotation rates. The difference in wheel speeds can be used to estimate the vehicle's 

heading change when the left and right wheels of either the rear or front wheel pair are 

encoded separately, or when the wheels on one side of the vehicle are encoded separately. 

Figure 9(b) shows velocity encoder placed on the wheel side for visualization.  Sensors in 

the antilock braking system (ABS), frequently provide information about the speed of the 

various wheels. More information can be found at [92]. Even though this information is 

provided without incurring additional sensor costs, the generally low resolution of ABS 

sensors can have a significant impact on the reliability of the calculated heading estimate. As 

a result, additional wheel encoders may be required to accurately estimate heading changes 

based on wheel speed data.  

A steering encoder also measures the angle of the steering wheel. As a result, it provides 

a measurement of the angle between the vehicle platform's front wheels and the forward 

(d) (c) 
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direction. The steering angle, along with data on the wheel speeds of the front wheel pair, 

can be used to calculate the vehicle's heading rate. Figure 9(c) depicts steering encoder. 

Limitations of encoders: All these concepts for calculating the vehicle's distance 

travelled, velocity, and heading are predicated on the assumption that wheel revolutions can 

be converted to linear displacements relative to the ground. However, there are several 

sources of error in the translation of wheel encoder readings to the travelled distance, 

velocity, and heading change of the vehicle. All terrain-dependent phenomena such as 

vehicle wheel slips, uneven road surfaces, and skidding on frictionless roads occur in an 

unstructured manner. As a result, it is difficult to predict and mitigate their detrimental effect 

on the estimated travelled distance, velocity, and heading.  

3.1.2.2 Inertial Measurement unit (IMU) 

Working: An IMU is a device that provides measurement data in an inertial navigation 

system (INS). The specific forces and angular rates measured by accelerometers and 

gyroscopes are numerically integrated based on the initial values of attitude, velocity, and 

position to obtain the estimated navigation states [93]. Figure 9(d) presents 6 DOF 

accelerometer and gyroscope built IMU sensor. Due to their high cost, size, and power 

consumption, inertial sensors have historically been used primarily in high-end navigation 

systems for missile, aircraft, and marine applications.  

Advances in micro-electromechanical systems (MEMS) technology, combined with 

electronic miniaturization, have enabled the development of chip-based inertial sensors. 

These chips are small, light in weight, consume little power, and have an extremely low cost 

and high reliability. As a result of these benefits, MEMS chips have emerged as viable 
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candidates for a variety of applications, including vehicle navigation systems. However, the 

price paid (with currently available sensors) is a lower performance characteristic [94]. 

Limitations: In contrast to odometers and velocity encoders, inertial sensor errors are 

completely independent of the terrain through which the vehicle is travelling as well as 

external factors such as tire slip due to wet roads. However, there are several error sources 

associated with inertial sensors that must be taken into account such as biases, scale factors, 

non-linearities and noise. 

 

Conclusion: There are numerous sensors that provide information about vehicle 

positioning; however, only the most used sensors, exteroceptive and proprioceptive sensors, 

have been presented in the preceding section. When we were looking for a low-cost solution, 

exteroceptive sensors were much more expensive than proprioceptive sensors [18, 94]. In 

terms of performance, as previously discussed, inertial navigation has been determined to be 

the best alternative for vehicle pose determination, and its processing is independent of the 

external environment. 
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4.2 Overview on Inertial navigation 

The INS is made up of two distinct components: 1) the IMU and 2) the computational 

unit. The former provides information on the navigation platform's accelerations and angular 

velocities in relation to the inertial coordinate frame of reference, preferably the ECI 

coordinate system (See section 4.5). 

The IMU processor converts the inertial sensor outputs to units, compensates for known 

inertial sensor errors, and performs range checks to detect sensor failure. Closed-loop force 

feedback or rebalance control for accelerometers and/or gyroscope may also be included. 

Unit conversion converts inertial sensor outputs such as potential difference, current, or 

pulses into specific force and angular rate units. The angular rotations (rates) measured by 

the gyroscopes are used to track the relationship between the vehicle coordinate system and 

the navigation coordinate frame of choice, which is typically the ECEF or geographic 

coordinate frame (See section 4.5).  

 

Figure 10 Dead-reckoning is depicted schematically in which accelerometer 
measurements (external specific force) and gyroscope measurements 
(angular velocity) are integrated to position and orientation [93] 
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This information is then used to translate the observed specific force in vehicle 

coordinates into the navigation frame, where the gravity acceleration is subtracted from the 

observed specific force,  Figure 10 depicts a dead reckoning of accelerometer and gyroscope. 

The only thing left are the accelerations in the navigation coordinates. The accelerations are 

integrated twice with respect to time to determine the vehicle's position [93]. Details on 

inertial sensors and system terminology can be found in [95] and [96].  

Since navigation calculations in INSs are integrative, the systems have a low-pass filter 

characteristic that suppresses high-frequency sensor errors but amplifies low-frequency 

sensor errors. As a result, the position error grows without bounds as a function of operation 

time or travelled distance, and the error growth is dependent on the error characteristics of 

the sensors. In general, a bias in accelerometer measurements causes error growth that is 

proportional to the square of the operation time for an INS, and a bias in gyroscope 

measurements causes error growth that is proportional to the cube of the operation time [93].  

In practise, drifts, noise, disturbances, misalignments, and manufacturing complications 

enter the equation and complicate the development of an INS. GPS is frequently 

supplemented with INS to overcome these errors. GPS remains the most widely used sensor 

in navigation systems. The combination of inertial sensors and GPS results in a system that 

outperforms either a GPS receiver or an INS alone. There are many experiments done using 

inertial navigation along with GPS. For instance, authors in [97], proposed a new vehicle 

cross-road turning method based on GPS/INS data. The vehicle turning can be accomplished 

using this method by using a predefined map generated by the line curve-fitting and 

predicting method based on the location and road condition provided by GPS/INS. In [31], 

using simulation, lane prediction was performed using INS and GPS data, as well as a vision 
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camera, and the results outline prediction with INS and GPS data were accurate and good in 

real time, compensating for camera failure. Not only have INS and GPS solutions 

demonstrated their robustness in vehicular approaches, but smartphones are increasingly 

being used to collect traffic data in some instances, and the processing power of commercial 

smartphones has increased significantly in recent years. The advantages of smartphone-based 

measurement systems include a diverse set of sensors, typically a GPS receiver and an inertial 

measurement unit (IMU), as well as their low cost, transparency, and ease of use. As a result 

of these benefits, drivers are increasingly relying on smartphones to assist them with tasks 

such as navigation [98], traffic estimation [99], vehicle condition monitoring [100], driver 

recognition [101], and manoeuvre classification [102]. 

4.3 Architecture of inertial navigation 

When implementing GPS and IMU sensors, many factors must be considered, including 

dimensions, necessity, and simplifications based on the application's required accuracy. 

There are two general methods of GPS/IMU integration: tightly coupled integration and 

loosely coupled integration shown in figure 11, which deal with the structure of the filter.  
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Figure 11 Open- and closed-loop INS correction architectures [103]. 

A loosely coupled model, in general, will have a position and velocity estimate from the 

GPS receiver and will use this as the vehicle states to model the error dynamics. Tightly 

coupled systems will augment GPS parameters such as ephemerides, error sources, and 

integer ambiguities directly into the Kalman filter as vehicle states, but this significantly 

increases the system's order [104]. Furthermore, the two main advantages of loosely coupled 

integration are simplicity and redundancy. The architecture is simple in that it works with 

any INS and any GNSS user equipment, making it ideal for retrofit applications. A separate 

GNSS navigation solution is usually available in addition to the integrated solution in a 

loosely coupled architecture. There is an independent INS solution that employs open-loop 

INS correction. This enables simple integrity monitoring of parallel solutions. 

 Positions and velocities derived from GPS are thus excellent external measurements that 

can be used to update the INS with position parameters, improving long-term accuracy. 

However, due to line of sight, GPS signal accuracy decreases on urban roads and tunnels; at 

that time, the INS can provide precise position and velocity data for GPS signal acquisition 
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and reacquisition after outages. In general, the availability of redundant measurements for 

determining vehicle trajectory parameters greatly improves system reliability. It has long 

been a fundamental truth in safety-related applications that relying on a single navigation 

technique is dangerous. For maximum safety, complementary navigation systems should 

have disjoint error mechanisms. The resulting system design is then driven by a cost-

performance trade-off. The section that follows describes the most common errors 

encountered when using IMU. 

4.4 Sources of Error  

Low-cost inertial navigation is a difficult task. To some extent, all accelerometers and 

gyroscopes exhibit biases, scale factor and cross-coupling errors, and random noise that must 

be overcome. Each systematic error source has four components: a fixed contribution, a 

temperature-dependent variation, a run-to-run variation, and an in-run variation [103]. The 

fixed contribution is present every time the sensor is used and is corrected by the IMU 

processor using laboratory calibration data. The temperature-dependent component can also 

be corrected by the IMU using laboratory calibration data. The run-to-run variation results in 

a contribution to the error source that is different each time the sensor is used but remains 

constant within any run. It cannot be corrected by the IMU processor, but it can be calibrated 

by the INS alignment and/or integration algorithms each time the IMU is used. Finally, the 

contribution of in-run variation to the error source gradually changes over the course of a 

run. It cannot be corrected by the IMU or an alignment process. In theory, it can be corrected 

by integrating with other navigation sensors, but it is difficult to observe in practise. This 

section will go over some of these issues and propose a solution to minimize these errors. 
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The error estimation Kalman filter will be used to solve the problem. The necessary equations 

will be derived and discussed. 

4.3.1 Biases 

The bias is a constant error that all accelerometers and gyroscopes exhibit. It is not 

affected by the underlying specific force or angular rate. These are the most damaging 

effectors on an IMU's accuracy. The gyroscopes drift rate and accelerometer bias are small 

offsets that the IMU incorrectly reads and must be properly accounted for. The bias has a 

quadratic effect on the IMU-derived position. The biases of accelerometers and gyroscopes 

are not usually expressed in SI units. Accelerometer biases are expressed in terms of gravity 

acceleration, abbreviated to g, where 1 g = 9.80665 m s2. 

Formula for error is given by; 𝑒𝑟𝑟𝑜𝑟 =  
1

2
 𝑏𝑖𝑎𝑠 ∙  𝑡2, Author in [105] , shows difference 

of error for 100 secs and 30 mins and recorded observation as shown in figure 13. 

 

Figure 12 Positional error that results from biases after a time of 100 sec and 30 
mins[103] 

Looking at figure 12, determining the bias is critical if any accurate measurement is to 

be expected. The drift rate has a similar and equally large impact on a system's position. If a 

drift is not properly accounted for and the IMU believes it is rotating, the navigation 
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equations will fail to account for gravity and the system will believe it is moving due to a 

maximum acceleration of 9.8 depending on how far the system has drifted. 

4.3.2 Scale factors 

The scale factor error is the deviation of the instrument's input-output gradient from unity 

after unit conversion by the IMU. Figure 13(a) shows vector-based scale factor errors in the 

form of an accelerometer and a gyroscope in an IMU. The scale factor error in the 

accelerometer output is proportional to the true specific force along the sensitive axis, 

whereas the scale factor error in the gyroscopes output is proportional to the true angular rate 

about the sensitive axis.  

  

Figure 13 Scale factor error is shown in (a) & Misalignment shown in (b) [103] 

4.3.3 Misalignment 

Cross-coupling errors, also referred as misalignment errors, occur in all types of IMUs 

due to manufacturing limitations that cause the sensitive axes of the inertial sensors to be 

misaligned with respect to the orthogonal axes of the body frame, as illustrated in figure 

13(b). Each accelerometer is sensitive to the specific force along the axes orthogonal to its 

sensitive axis, and each gyroscope is sensitive to the angular rate about the axes orthogonal 

(a) (b) 
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to its sensitive axis as a result of this. Additional scale factor errors are produced by axes 

misalignment, but these are typically two to four orders of magnitude smaller than cross-

coupling errors. Cross-coupling errors in vibratory sensors can also occur because of sensor 

crosstalk. 

4.3.4 Temperature 

The accelerometers and gyroscope in the IMU are temperature sensitive, as demonstrated 

by Nebot and Durran-Whyte [10]. As a result, as the temperature of the IMU changes, so will 

the associated bias and drift until the temperature reaches a steady state or remains constant. 

This is not critical in our application; we simply wait for the IMU to stabilise before relying 

on the readings. This would be a problem if this system was installed in an aircraft that 

changed altitude and temperature. 

4.5 Coordinate systems 

This section describes how data from vehicle-mounted sensors is processed and 

converted into an estimate of the vehicle's position, velocity, and attitude, as well as how it 

is exchanged with the system's interfacing information sources. The coordinate system must 

be defined when describing a position on or near the Earth's surface. Inertial navigation 

systems use coordinate systems such as the inertial frame (i-frame), the conventional 

terrestrial frame (e-frame), the navigation frame (n-frame), and the body frame (b-frame). 

More information and preliminary derivations about coordinate systems can be found in 

[106-110]. 
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4.5.1 Inertial coordinate system 

The ECI coordinate system is the preferred inertial coordinate system for near-Earth 

navigation. It is the coordinate system in which Newton's laws of motion apply, according to 

the physical definition of inertial frame. A global inertial system is, at best, an abstraction in 

the real world, because any frame in the vicinity of the solar system is permeated by a 

gravitational field with spatially varying gradients. The ECI coordinate system's origin is at 

the Earth's centre of gravity (viz. a geocentric coordinate system). Its z-axis is parallel to the 

Earth's spin axis, its x-axis is parallel to the vernal equinox, and its y-axis completes the right-

hand orthogonal coordinate system. Figure 14(a) depicts a visualisation of the ECI coordinate 

system, and table 1 shows the notations used in the ECI coordinate system.. The inertial 

sensors' accelerations and angular velocities are measured in relation to this coordinate 

system. 

  

Figure 14 (a) Navigation Coordinate frames ( ECI, ECEF, NED frames) and (b) shows the 
relationship between the vehicle frame and the coordinate system that is used as the 

(b)      (a) 
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navigation frame (upper). The navigation frame is the local tangent frame (lower). The origin 
of the NED coordinate axes would be at some convenient point near the area of operation for 
navigation in a local tangent frame. 

Table 1 Describes the axes arrangement for ECI, ECEF and NED frames 

Inertial Coordinate frame  
(ECI coordinate frame) axes are 
denoted by superscript “i”  

Origin - at the center of mass of the Earth 

z-axis - parallel to the mean spin axis of the Earth 

x-axis - pointing towards the mean vernal equinox 

y-axis - completing a right-handed orthogonal frame 

 

Geocentric Coordinate frame 
(ECEF coordinate frame) axes 
are denoted by superscript “e” 

The origin is at the Earth's centre of mass. 

z-axis - parallel to the mean spin axis of the Earth 

x-axis - pointing towards the mean meridian of 

Greenwich 

y-axis - completing a right-handed orthogonal frame 

 

Local coordinate frame 
(Geographic coordinate frame) 
Axes are denoted by North, 
East and Down  

Origin - at the origin of the sensor frame 

z-axis – aligned with the ellipsoidal normal at a 

point, in the down direction 

x-axis - pointing to north (parallel to the tangent to 

the meridian) 
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y-axis – pointing to the east and completing a right-

handed orthogonal frame. 

 

4.5.2  Geocentric coordinate system 

The world geodetic system (WGS) 84 datum defines a geodetic coordinate system, also 

known as the geodetic ECEF coordinate system, which is closely related to the geocentric 

ECEF coordinate system. A geodetic coordinate system is based on an ellipsoid that rotates 

around its minor axis to approximate (globally or locally) the Earth's geoid. Geocentric 

coordinate is depicted in  Figure 14(a). A location in the coordinate system is described by 

the longitude and latitude angles measured with respect to the equatorial and meridional plans 

associated with the reference ellipsoid. The reference ellipsoid's parameters, such as shape, 

size, and orientation, define the coordinate system's datum. The e-frame is an Earth-

Centered-Earth-Fixed Cartesian frame, and one of its realisations is the WGS-84 reference 

coordinate system used by GPS. Table 1 shows the notations that have been considered for 

geocentric coordinate systems. 

4.5.3  Local coordinate system 

The geographic coordinate system is a local coordinate frame whose origin is the 

projection of the origin of the vehicle coordinate system onto the geoid of the Earth. The x-

axis points true north, the y-axis points east, and the z-axis completes the right-hand 

orthogonal coordinate system, pointing perpendicular to the reference ellipsoid toward the 

interior of the Earth. Figure 14(a) depicts the coordinate system. (It should be noted that the 

z-axis does not point to the centre of the Earth, but rather along the ellipsoid, normally toward 
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one of its foci.) When expressing the velocity components of the vehicle's motion and the 

attitude of the vehicle platform, the geographic coordinate system is commonly used as a 

reference. The three Euler angles, namely 1) roll, 2) pitch, and 3) yaw, are commonly used 

to describe the vehicle attitude, and they connect the vehicle and geographic coordinate 

systems. The n-frame is commonly used to describe a vehicle's navigation in a local 

coordinate frame. It is also defined as a set of Cartesian coordinate axes, typically oriented 

north-east-down (NED), as illustrated in Figure 14 (b). Table 1 presents notations considered 

for geographic coordinates. 

4.5.4  Body coordinate system 

The vehicle coordinate system, also known as body coordinates, is the coordinate system 

associated with the vehicle. It usually, but not always, has its origin at the vehicle's centre of 

gravity, and the coordinate axes are aligned with the vehicle's forward, sideways (to the 

right), and down directions. This coordinate system is used to express the information 

provided by vehicle-mounted sensors as well as the motion and dynamic constraints imposed 

by the vehicle model. Fig 15(b) illustrates vehicle body frame in relation to geographic 

coordinate frame. The b-frame refers to the vehicle to be navigated, and the conventional 

definition moves forward, right, and through-the-floor: 

Origin - at the origin of the sensor frame 

z-axis – aligned with the ellipsoidal normal at a point, in the down direction 

x-axis - pointing to forward (the direction of instant motion) 

y-axis – pointing to the right and completing a right-handed orthogonal frame 
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4.6 Navigation Equations 

The navigation solution represents the navigating body's coordinate frame with respect 

to a reference coordinate frame (e.g., an aircraft, ship, car, or person). The Earth is a common 

point of reference. The vector components of the navigation solution can be resolved about 

the axes of a third coordinate frame (e.g., north, east, and down). The INS mechanisation 

equations are used to convert inertial measures (accelerations and angular rates along three 

orthogonal directions) from the body frame (b-fame) to navigation frame (local, or ECEF 

frames). A detailed description of various navigation equations in different frames can be 

found in [111]. However, a brief overview of inertial navigation in the ECI and ECEF frames 

is provided below, adapted from [112] . 

4.6.1 Position and Velocity 

A change in motion occurs when a force is applied to a body, according to Newton's 

second law of motion.  

 𝓕

𝒎
 =  𝒂 =  𝑺 

(4.1)  

The specific force in “(4.1)”, is obtained by dividing both sides of the equation by the 

mass of the object. Accelerometers detect accelerations caused by forces exerted on the body 

in inertial navigation. These are commonly referred to as specific forces S. As a result, IMU 

readings will be referred to as specific forces that are independent of mass.  

In practise, one must frequently estimate a vehicle's velocity and position with respect to 

a rotating reference frame, such as when navigating near the Earth. Additional apparent 

forces will be acting in this situation, which are functions of reference frame motion. This 
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yields a revised form of the navigation equation that can be directly integrated to determine 

the vehicle's ground speed using the Coriolis theorem [113]. According to the Coriolis 

theorem, the total velocity of a vehicle (𝑣𝑖) in a non-rotating reference frame is equal to its 

ground speed (𝑣𝑠) plus the added speed due to Earth rotation. The non-rotating inertial frame 

is given by; 

 𝒗𝒊 = 𝒗𝒔 + 𝛀𝒊𝒆 𝚾 𝒓𝒊 (4.2)  

ECI frame is denoted by the subscript (i) in “(4.2)”, and rotation of the Earth is Ω𝑖𝑒 =

[0 0 𝜔𝑖𝑒]
𝑇 and r is the vehicles position. Now differentiating this with respect to the inertial 

reference frame. 

 𝒗𝒊̇ = 𝒗�̇� + �̇�𝒊𝒆 𝑿  𝒓𝒊 + 𝛀𝒊𝒆 𝑿  𝒗𝒊 (4.3)  

The rotation of the earth is constant therefore its derivative is zero. Now substituting 

for the velocity from the original equation we get. 

 𝐯�̇� = 𝐯�̇� + �̇�𝐢𝐞 𝚾  𝐯𝐬 + 𝛀𝐢𝐞 𝚾 [𝛀𝐢𝐞 𝚾 𝐫𝐢] (4.4)  

The acceleration term on the left-hand side of the equation can be replaced with all of the 

accelerations in the system 

 𝑺𝒊 + 𝒈𝒊 = 𝒗�̇� + �̇�𝒊𝒆 𝚾  𝒗𝒔 + 𝛀𝒊𝒆 𝚾 [𝛀𝒊𝒆 𝚾 𝒓𝒊] (4.5)  

Where 𝑆𝑖 is the specific force (i.e. all of the accelerations seen by the IMU) and 𝑔𝑖  is 

the gravity model of the system in “(4.5)”. Finally solving for the acceleration of the vehicle 

results in the navigation equations which when integrated will turn IMU accelerations into 

velocities 
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 𝒗�̇� = 𝑺𝒊 − 𝛀𝒊𝒆 𝚾  𝒗𝒔 + 𝒈𝒊 − 𝛀𝒊𝒆 𝚾 [𝛀𝒊𝒆 𝚾 𝒓𝒊] (4.6)  

where the term subtracted from the specific force is the Coriolis acceleration and the 

term subtracted from the gravity is the centripetal acceleration. Although these terms are 

small, as we will see, small constant acceleration offsets produce a velocity ramp when 

integrated. This in turn produces a quadratic position change when the velocity ramp is 

integrated. Now these equations, which were derived in the inertial frame, must be 

transformed into the ECEF (Earth) reference frame 

 𝒗�̇� = �̇�𝒔 − 𝛀𝒊𝒆 𝚾 𝒗𝒆  (4.7)  

Thus, Inertial equation becomes 

 𝒗�̇� = 𝑺𝒆 − 𝟐𝛀𝒊𝒆 𝚾  𝒗𝒆 + 𝒈𝒆 − 𝛀𝒊𝒆 𝚾 [𝛀𝒊𝒆 𝚾 𝒓𝒆] (4.8)  

4.6.2 Orientation 

Consider now how a set of gyroscopic sensors could be used to instrument a reference 

co-ordinate frame within a freely rotating vehicle. The vehicle's attitude with respect to the 

designated reference frame may be stored in the vehicle's computer as a series of numbers. 

The stored attitude is updated as the vehicle rotates using the gyroscopes' turn rate 

measurements. Numerous mathematical representations exist for defining a body's 

orientation in relation to a co-ordinate reference frame [106]. The parameters associated with 

each method can be stored in a computer and updated in real time as the vehicle rotates using 

the turn rate measurements provided by the gyroscopes. 
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 Quaternions will be used to represent the attitude of the IMU (and thus the vehicle itself, 

as the IMU is bolted on to the vehicle). A quaternion is a way to represent the orientation of 

a rigid body as well as a rotation about an arbitrary axis in space. A quaternion is a complex 

number that has both a real and an imaginary component. The imaginary part of a quaternion, 

on the other hand, has three values while the real part only has one. An object's attitude is 

assumed to be represented by a quaternion, with the imaginary part consisting of elements 1-

3 and the real part consisting of the fourth element. 

 𝐪 =  [𝐪𝟏−𝟑 𝐪𝟒 ]
𝐓 (4.9)  

 
𝐪𝟏−𝟑  =  [ 𝐪𝟏  𝐪𝟐  𝐪𝟑 ] 

𝐓 = �̂� ∙  𝐬𝐢𝐧 (
𝛉

𝟐
) (4.10) 

 
𝐪𝟒  =  𝐜𝐨𝐬 (

𝛉

𝟐
) 

(4.11) 

where is a n̂ unit vector corresponding to the axis of rotation and θ is the angle of 

rotation. For navigation we will need to be able to convert from roll, pitch, and yaw into 

quaternion space and back again. This is done by the following set of equations 

 

𝐪 =  

[
 
 
 
 
 𝐜𝟐

𝛙
𝐜𝟐

𝛉𝐜𝟐
𝛟

    − 𝐬𝟐
𝛙
𝐬𝟐

𝛉𝐜𝟐
𝛟

𝐜𝟐
𝛙
𝐬𝟐

𝛉𝐜𝟐
𝛟

   + 𝐬𝟐
𝛙
𝐜𝟐

𝛉𝐬𝟐
𝛟

𝐜𝟐
𝛙
𝐜𝟐

𝛉𝐜𝟐
𝛟

  − 𝐬𝟐
𝛙
𝐬𝟐

𝛉𝐬𝟐
𝛟

𝐬𝟐
𝛙
𝐜𝟐

𝛉𝐜𝟐
𝛟

  + 𝐜𝟐
𝛙
𝐬𝟐

𝛉𝐬𝟐
𝛟
]
 
 
 
 
 

 

(4.12)  
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[
𝐭𝐚𝐧𝛟
𝐬𝐢𝐧𝛉
𝐭𝐚𝐧𝛙

] =  

[
 
 
 
 
 
𝟐𝐪𝟏𝐪𝟐  +  𝟐𝐪𝟒𝐪𝟑

𝟐𝐪𝟒
𝟐 + 𝟐𝐪𝟏

𝟐 − 𝟏
𝟐𝐪𝟒𝐪𝟐  +  𝟐𝐪𝟏𝐪𝟑

𝟐𝐪𝟐𝐪𝟑  +  𝟐𝐪𝟒𝐪𝟏

𝟐𝐪𝟒
𝟐 + 𝟐𝐪𝟑

𝟐 − 𝟏 ]
 
 
 
 
 

 

(4.13) 

Once the attitude is put into quaternions, the kinematic differential equations for attitude 

rotation is given as follows 

 
�̇�  =  

𝟏

𝟐
𝛀𝒒 (4.14)  

 

𝛀 =  

[
 
 
 
 

𝟎 𝝎𝒛 −𝝎𝒚 𝝎𝒙

−𝝎𝒛 𝟎 𝝎𝒙 𝝎𝒚

𝝎𝒚 −𝝎𝒙 𝟎 𝝎𝒛

−𝝎𝒙 𝝎𝒚 −𝝎𝒛 𝟎 ]
 
 
 
 

 

(4.15) 

This equation allows readings from the gyros to be used to update the current quaternion, 

which represents the attitude of the system. 

 Quaternions have the following useful properties for use in navigational systems: 

• They have a high computational efficiency. Subsequent rotations (for example, an x-axis 

rotation followed by a y-axis rotation) are accomplished by multiplying a 4x4 by 4x1. 

Two subsequent rotations in Euler space would be handled by multiplying a 3x3-by-3x3 

matrix. 

• Quaternions take up less memory to represent. A rotation (3x3 matrix) is represented by 

nine Euler angles, whereas a quaternion requires only four. This is a weakness, but some 

embedded applications have very limited memory requirements.  

• A quaternion's time propagation always yields an orthogonal rotation matrix. An IMU 

will provide angular rates from its gyros, which will be noisy. If the IMU is rotated 90 

degrees in a plane, the data integration from the gyros should properly reflect this 

rotation. Due to the noise, the IMU will report rotations on all axes. The real issue is that 
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the resulting 3x3 rotation matrix is no longer guaranteed to be orthogonal, which means 

that the rotation matrix's inverse is not equal to the transpose. To make the rotation matrix 

orthogonal again, extra steps must be taken at each time step. 

By summarizing navigation equations derived above we have: 

 �̇�𝒆 = 𝐯𝒆 
�̇�𝒆 = −𝟐[𝛚𝒊𝒆 ×]𝐯𝒆 + 𝐠𝒆(𝐱𝒆) + 𝐂𝒆𝒔(�̆�𝒆𝒔)𝐟𝒔 

�̇̆�𝒆𝒔 =
𝟏

𝟐
(�̆�𝒆𝒔 ∗ �̆�𝒊𝒔 − �̆�𝒊𝒆 ∗ �̆�𝒆𝒔) 

         (4.16) 

For further understanding on inertial navigation equation readers are encouraged to refer 

[112].  

All the quantities in “(4.16)” are assumed to be error-free. As a result, the vectors 𝐯𝑒 and 

𝐱𝑒 represent the vehicle's true velocity and position, respectively, while the quaternion �̆�𝑒𝑠 

defines the rotation from the s- to the e-frame without errors.  

In general, estimates of position, velocity and attitude are not error free. A bias in 

accelerometer measurements causes error growth proportional to the square of the operation 

time for an INS, whereas a bias in gyroscope measurements causes error growth proportional 

to the cube of the operation time. Because they have a direct reflection on the estimated 

attitude, gyroscope errors have a negative impact on navigation solutions. The attitude is used 

to compute the current gravity force in navigation coordinates and to compensate for the 

effect on accelerometer measurements. Because vehicle accelerations in most land vehicle 

applications are significantly lower than gravity accelerations, small errors in attitude can 

lead to large errors in estimated accelerations. These errors are added together in the velocity 

and position calculations. In the following sections we present our detailed derivation for 

linearizing error along with sensor errors in order to be used in error estimation algorithm.  
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4.7 Error Estimation Algorithm 

4.7.1 Kalman filter 

The Kalman filter is a state-space-based method for calculating the minimum mean-

squared error (MMSE). R. E. Kalman, a graduate research professor in the University of 

Florida's electrical engineering department, invented the filter in 1960 [114]. The Kalman 

filter has several advantages over other estimators, including being computationally efficient 

by recursively processing noisy data, being a real-time estimator, being able to adapt to non-

stationary signals, handling complicated time-variable multiple-input/output systems, and 

vector modelling random processes. 

The Kalman filter a recursive digital algorithm works by calculating the minimum mean 

squared error (MMSE) in state space to optimise overall system performance through the 

integration (or fusion) of navigation sensor data. Through feedback control, the Kalman filter 

estimates a process. The filter makes an estimation of the state of the process at a particular 

point in time and then receives feedback in the form of noisy measurements. For reference, 

figure 15 depicts the recursive algorithm. 
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Figure 15 The Kalman filter is a recursive, linear filter. At each cycle, the state 
estimate is updated by combining new measurements with the predicted 
state estimate from previous measurements 

There are two types of filter equations: time update equations and measurement update 

equations. The time update equations are responsible for projecting the current state and error 

covariance estimates forward (in time) to obtain a priori estimates for the subsequent time 

step. The measurement update equations are responsible for adding a new measurement to 

the a priori estimate to obtain a more accurate a posteriori estimate. While time update 

equations are referred to as predictor equations, measurement update equations are referred 

to as corrector equations. 

To provide current estimates for system variables such as position coordinates, the filter 

employs statistical models that weight each new measurement appropriately in relation to 

previous data. The formulation accounts for the second order statistics of both the process 

and measurement noise, both of which have a known probability distribution [61]. Using 

knowledge of probability distributions, an optimal, closed form solution for estimation error 

and minimum covariance is developed and implemented in the control state space 
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framework. Additionally, it determines the most recent uncertainty in estimates for real-time 

quality assessments or off-line system design studies. Due to its superior performance, 

versatility, and ease of implementation, the Kalman filter is particularly popular in 

GPS/inertial and GPS stand-alone devices 

The following subsections are organised to provide context for derivations from peer-

reviewed books. These peer-reviewed derivations are necessary to explain in order to assist 

the reader in understanding and following the state space representation model blocks used 

in our current research experiment. These model blocks are then used in the Kalman filter to 

estimate errors and improve position accuracy. The subsection begins by discretizing 

stochastic linear systems into discrete homogeneous time systems and establishing the 

equivalence of discrete and continuous time models. Then, a Kalman filter algorithm is 

presented. This research contribution is presented in which we build state space models for 

real-time experiments using derivations adapted from peer-reviewed books. We assume IMU 

errors and linearize navigation errors. Because the GPS measurement data are related, we 

decorrelate and transform them to simplify real-time implementation. After that, the Kalman 

algorithm is used to estimate the error using all of these state space model blocks. 

4.7.2 Discretization of continuous systems 

We begin with presenting dynamic system of equations shown below which serves as the 

foundation for the Kalman filter equations [115].  

Consider linear stochastic system 

 �̇� = 𝐀(𝑡)𝐳 + 𝐆(𝑡)𝐪 (4.17) 
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 𝒚(𝒕) = 𝑪(𝒕)𝐳 + 𝝑(𝒕) (4.18) 

where 𝐳 is a n x 1 dynamic state vector in “(4.17)”, A is a n x n dynamic coefficient 

matrix, G is a process noise distribution matrix, where 𝐪 is zero-mean Gaussian white noise 

input with covariance 𝐐(𝑡). In general, process noise is caused by disturbances in the 

environment and is assumed to have a Gaussian distribution. The measured output of the 

system is given by “(4.18)”, where y(t) is the p x 1 measurement vector, 𝑪 is the p x n 

measurement matrix and 𝝑 is the measurement noise vector. Sensor dynamics and error 

introduce measurement noise into the observation model. One of the key assumptions is that 

the process noise and measurement noise are both Gaussian random variables. 

As per [116], continuous system “(4.17)” and “(4.18)”, is equivalent to the discrete 

system and can be rewritten into “(4.19)” and “(4.20)” 

 𝐳𝒌 = 𝚽𝒌+𝟏,𝒌𝐳𝒌 + 𝐪𝒌
∗  (4.19) 

 𝒚𝒌 = 𝑪. 𝒛𝒌 + 𝝑𝒌 (4.20) 

Where, 𝚽𝑘+1,𝑘 = 𝚽(𝑡𝑘+1, 𝑡𝑘) is a state transition matrix of the system “(4.17)”. In 

[116], the derivation for the 𝚽 and theory are presented, where the unique (identity) solution 

of the system is shown to be a property of the matrix 𝚽, as shown in “(4.21)”. 

 𝒅𝚽(𝒕, 𝒕𝟎) 

𝒅𝒕
= 𝐀(𝒕)𝚽(𝒕, 𝒕𝟎),𝚽(𝒕𝟎, 𝒕𝟎) = 𝐈 

(4.21) 

The estimated state and output are given as the estimated state vector (4.22) and the 

estimated output as (4.23) 
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 �̂�𝒌 = 𝚽𝒌+𝟏,𝒌𝐳𝒌 +  𝑲𝝐  (4.22) 

 �̂�𝒌 = 𝑪. 𝒛𝒌 (4.23) 

Where, �̂�k is the n x 1 estimated state vector at time k in “(4.22)” and 𝐊 ∈ 𝐑𝐧 𝐱 𝐩 is 

the error gain or Kalman gain and 𝝐 in “(4.22)”, is called output error.  �̂�𝒌 in “(4.23)” is the 

estimated output at time k. 

Where error can be defined as 

 𝛜 =  𝐲𝐤  −  �̂�𝐤 (4.24) 

 Similarly we see in [117], where estimation error at time k can be written as 

 �̃�𝒌  =  𝒛𝐤  −  �̂�𝐤 (4.25) 

Substituting equation “(4.19)” and “(4.22)” in “(4.25)” we have, 

 �̃�𝒌  =  𝚽𝒌+𝟏,𝒌𝐳𝒌 + 𝐪𝒌
∗  − (𝚽𝒌+𝟏,𝒌𝐳𝒌  +   𝑲𝝐 ) (4.26) 

where �̃�𝒌 in “(4.26)” is the estimation error at time k. Similarly, we can then substitute 

�̂�𝐤 from “(4.23)” and 𝒚𝐤 from “(4.20)”, in 𝛜 in “(4.24)”, and use this to obtain the expression 

in Equation “(4.26)”. We have estimation error as, 

 �̃�𝒌  =  (𝐈 −  𝐊𝐂)𝚽𝒌+𝟏,𝒌𝐳𝒌 + (𝐈 −  𝐊𝐂)𝐪𝒌
∗  −  𝑲𝝑𝒌 (4.27) 

Estimation variance, is defined as 

 𝑷𝒌 =  𝑬(�̃�𝒌�̃�𝒌
𝑻) (4.28) 
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As shown in [115], based on the assumption of Gaussian noise and uncorrelated 

measurement and process noise we have: 

 𝐄(𝒗𝒌𝒗𝒌
𝑻) =  𝑹𝒌 (4.29) 

 𝐄(𝐪𝒌
∗𝐪𝒌

∗ 𝑻
) =  𝑸𝒌 (4.30) 

 𝐄(𝐪𝒌
∗𝒗𝒌

𝑻) =  𝐄(�̃�𝒌𝒗𝒌
𝑻) = 𝐄(�̃�𝒌𝒗𝒌

𝑻)  =  𝟎 (4.31) 

In [118], Gaussian noise and its derivation is explained. The discrete time process noise 

matrix, which has a continuous time analogue Q, is represented by Equation “(4.30)”. To 

implement INS error estimation in the form of a discrete Kalman filter, a system transition 

matrix and discrete noise covariance matrices are required. A short proof of derivation is 

presented in [116], where solution of “(4.19)”, is shown to take form 

 
𝐳(𝒕) = 𝚽(𝒕, 𝒕𝟎)𝐳(𝒕𝟎) + ∫𝚽(𝒕, 𝝉)𝐆(𝝉)𝐪(𝝉)𝒅𝝉

𝒕

𝒕𝟎

 
(4.32) 

Therefore, the term 𝐪𝑘
∗  in “(4.19)”, can be written as 

 

𝐪𝒌
∗ = ∫ 𝚽(𝒕𝒌+𝟏, 𝝉)𝐆(𝝉)𝐪(𝝉)𝒅𝝉

𝒕𝒌+𝟏

𝒕𝒌

 

(4.33) 

It is possible to show that the sequence 𝐪𝑘
∗  presents zero-mean Gaussian white noise with 

covariance 

 

𝐐𝒌
∗ = ∫ 𝚽(𝒕𝒌+𝟏, 𝝉)𝐆(𝝉)𝐐(𝝉)𝐆𝐓(𝝉)𝚽𝐓(𝒕𝒌+𝟏, 𝝉)𝒅𝝉

𝒕𝒌+𝟏

𝒕𝒌

 

(4.34) 
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Where 𝚽(𝒕𝒌+𝟏, 𝝉)  ≈ 𝐈 + (𝒕𝒌+𝟏 − 𝒕𝒌) ⋅ 𝐀(𝒕𝒌),  by approximating the integral in 

“(4.34)”, we have, 

 𝐐𝒌
∗ ≈ (𝒕𝒌+𝟏 − 𝒕𝒌) ⋅ 𝐆(𝒕𝒌)𝐐(𝒕𝒌)𝐆

𝐓(𝒕𝒌) (4.35) 

The formula “(4.35)”, is further simplified by approximating the integral in “(4.34)”, by 

application of rectangle rule of integration. Notes on application of rectangle rule can be 

found in [119]. Equation “(4.35)”, is also seen to relate equivalency between discrete time 

models to continuous time systems.  

After system transition and noise covariance are discretized, next step is to derive Kalman 

gain. From [103], it can be seen by squaring “(4.27)”, taking the expectation, and substituting 

equation “(4.31)”, into the term for 𝑷𝒌 “( 4.28 )”, the covariance of the estimation error is 

given by, 

 𝑷𝒌 = (𝐈 −  𝐊𝐂)𝑴𝒌 (𝐈 −  𝐊𝐂)𝑻  +  𝑲𝑹𝒌𝑲
𝑻 (4.36) 

Where 𝐌𝐤 = 𝚽𝐏𝐤−𝟏𝚽
𝐓 + 𝐐𝐤 is often termed as the priori covariance. The next step 

is to find K which is found through solving “(4.36)”, with [𝝏[(𝑷𝒌)]

𝝏𝑲
 ] = 0, 

 𝐊 =  𝐌𝐤𝐂 (𝐂𝐌𝐤𝐂
𝐓 + 𝐑𝐤)

−𝟏 (4.37) 

And finally updated covariance as shown in “(4.38)”, is found using the new gain 

from “(4.37)”, 

 𝑷𝒌 = (𝐈 −  𝐊𝐂)𝑴𝒌 (4.38) 
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In Table 2, Kalman estimate, and update equations are summarized for the recursive 

process. 

Table 2 Summary of algorithm for the Kalman filter is presented in table  

�̂�(𝟎)  =  �̂�𝟎, 𝑷(𝟎)  =  𝑷𝟎 Initialize state estimate and covariance 

�̂�𝒌
−𝟏 = 𝚽𝒌+𝟏,𝒌�̂�𝒌

+ Predict the next state estimate   

𝐌𝐤 = 𝚽𝐏𝐤−𝟏𝚽
𝐓 + 𝐐𝐤 Predict the covariance  

𝐊 =  𝐌𝐤𝐂 (𝐂𝐌𝐤𝐂
𝐓 + 𝐑𝐤)

−𝟏 Solve for the Kalman Gain 

𝑷𝒌 = (𝐈 −  𝐊𝐂)𝑴𝒌 Update the covariance based on Kalman gain 

�̂�𝒌
+ = �̂�𝒌 +  𝑲(𝐲𝐤 −  𝑪�̂�𝒌

−) Find the new state estimate given measurement 𝐲𝐤  

 
4.7.3 Process model and real time application 

We construct a state space model to estimate the scale factors and biases of the IMU, as 

well as the (sensor-frame) alignment of the IMU with the vehicle's coordinate system. To 

begin, the navigation state is supplemented with the IMU's scale factors and biases, as well 

as the alignment between the IMU frame and the car's fixed coordinate frame, and later, using 

vehicle motion constraints, a coupling between the smartphone dynamics and the 

smartphone's relative orientation to the vehicle is introduced. Additionally, input from the 

IMU's gyroscope and accelerometer provide angular velocity and specific force, which are 

augmented with navigation equations and propagated to yield velocity and position. We also 
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have external position information from GPS, which helps with calibration of the INS 

solution by correcting measurement drifts and enhancing smoother solutions, which are then 

included in the Kalman filter (KF) and integrated with the inertial navigation system (velocity 

and position). This process is repeated at each epoch, yielding estimates of velocity and 

position. Figure 16 depicts a navigation filter that was used in the study. 

 

Figure 16 Applied navigation filter for error estimation 

4.7.3.1 State vector 

We'd like to estimate sensor compensation parameters like scale factors and biases in the 

navigation filter. The core INS state vector must then be supplemented with the 

corresponding parameters. We will also estimate the alignment between the IMU frame (s-

frame) and the car-fixed coordinate frame. Finally, the state vector will take the following 

form: 

 �̃� = [(𝑿𝒆    𝑽𝒆   𝒒𝒆𝒔)
𝑻 ]𝑻 4.39 (a) 

U = [(𝒂𝒊𝒔 
𝒔   𝝎𝒊𝒔

𝒔 )𝑻 ]𝑻  4.39 (b) 
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𝐳 = ((𝐱𝒆)
𝐓 (𝐯𝒆)

𝐓 (𝐪𝒆𝒔)
𝐓 (𝐛𝒇)

𝐓
(𝐛𝝎)𝐓 (𝐬𝒇)

𝐓
(𝐬𝝎)𝐓 (𝐪𝒄𝒔)

𝐓)
𝐓

  (4.39) 

 
Where “Equation 4.39(a)”, presents the navigation equation with  (xe)

T and (ve)
T denote 

three-dimensional position and velocity respectively, and the (qes)
Tis the quaternion defining 

change of frame from sensor to earth. The superscript (. )T denotes the transpose of a matrix. 

Further U in “4.39(b)” is the input vector, where 𝑎𝑖𝑠 
𝑠   is the specific force and 𝜔𝑖𝑠

𝑠  is angular 

velocity of IMU. In “(4.39)”, parameters from “4.39(a)” and “4.39(b)”, are combined to form 

an estimate vector. Where, (qcs)
T is change of frame from sensor to car frame. And (bf)

T, 

(bω)T, (sf)
T, (sω)T are biases and scale factor of specific force and angular velocity.  

4.7.3.2 Dynamics of the enhanced states and error states 

4.7.3.2.1 Linearizing error propagation for estimated state dynamics: 

In real time measured by an IMU, specific force and angular rate are never ideal and 

deviate from true values due to measurement noise and other instrumental errors. As a result 

of numerically integrating these inputs, estimates of position, velocity, and orientation are 

slightly erroneous.The estimates are subject to 

 �̇̃�𝒆 = �̃�𝒆 
�̇̃�𝒆 = −𝟐[𝛚𝒊𝒆 ×]�̃�𝒆 + 𝐠𝒆(�̃�𝒆) + 𝐂�̃�𝒔(�̆��̃�𝒔)𝐟𝒔 

�̇̆��̃�𝒔 =
𝟏

𝟐
(�̆��̃�𝒔 ∗ �̆̃�𝒊𝒔 − �̆�𝒊𝒆 ∗ �̆��̃�𝒔) 

         (4.40) 

The only difference between “(4.16)” and “(4.40)”, is the presence of tilde symbols 

"Tilda (~) " above the variables. These symbols emphasise that numerical integration of 

measured specific force and angular rate results in values for position, velocity, and 

orientation that deviate from reality. There are a few more words to say about the estimated 



65 
 

rotation from the s-frame to the e-frame. Look at the outcome of numerical integration �̃̆�𝑒𝑠,  

all the quaternions �̃̆�𝑒𝑠, �̆��̃�𝑠, and �̆�𝑒�̃� have the same value. They are denoted differently only 

to emphasise different physical interpretations. This rotation quaternion or the rotation matrix 

derived from it can be used in two ways:  

To begin, this rotation can be used to convert s-frame vector coordinates to e-frame vector 

coordinates. However, using the estimated rotation matrix to rotate from the true sensor frame 

will result in coordinates being transformed into an erroneous coordinate frame �̃� that is 

turned slightly relative to the true e-frame. As a result, the quaternion �̃̆�𝑒𝑠 is defined as the 

quaternion that defines a transformation from the true sensor frame to the computed ECEF 

coordinate frame. As a result, �̃̆�𝑒𝑠 = �̆��̃�𝑠 

Second, vector coordinates from the e-frame to the s-frame can be transformed using the 

inverse of the quaternion �̃̆�𝑒𝑠 . However, using the estimated rotation matrix to rotate from 

the true ECEF frame will result in coordinates being transformed into an erroneous 

coordinate frame �̃� that is turned slightly relative to the true sensor frame. As a result, the 

quaternion �̃̆�𝑒𝑠  can be defined as a quaternion that defines a transformation from the �̃� -frame 

to the true ECEF coordinate frame. As a result, �̃̆�𝑒𝑠 = �̆�𝑒�̃�  

4.7.3.2.2 Position error estimates 

The linearization of INS Error state dynamic equations is demonstrated in [116]. The 

position and velocity error derivations below, have been adapted from the same reference.  

Define position and velocity errors as 
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 𝐱𝒆 = �̃�𝒆 + 𝜹𝐱𝒆 
𝐯𝒆 = �̃�𝒆 + 𝜹𝐯𝒆 

(4.41) 

Dynamics of the true and estimated position is given by 

 �̇�𝒆 = 𝐯𝒆 

�̇̃�𝒆 = �̃�𝒆 
(4.42) 

Subtracting the second line in the” (4.42)”, from the first yields 

 �̇�𝒆 − �̇̃�𝒆 = 𝐯𝒆 − �̃�𝒆 (4.43) 

Consequently, 

 𝜹�̇�𝒆 = 𝜹𝐯𝒆 (4.44) 

 

4.7.3.2.3 Velocity error estimates 

Define an error of the measured specific force as 

 𝐟𝒔 = 𝐟𝒔 + 𝜹𝐟𝒔 (4.45) 

Consider the estimated rotation matrix 𝐂�̃�𝑠 (derived from quaternion). The true matrix 

𝐂𝑒𝑠 is related to the estimates as 

 𝐂𝒆𝒔 = 𝐂𝒆�̃�𝐂�̃�𝒔 (4.46) 

Herein 𝐂𝑒�̃� is the matrix that defines transformation from the estimated ECEF frame to 

the true one. If errors are small, then 
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 𝐂𝒆�̃� ≈ 𝐈 + [𝛙𝒆�̃� ×] (4.47) 

and the orientation error vector 𝛙𝑒�̃� can be understood as a vector of “small” Euler angles 

between the coordinate frames �̃� and 𝑒. Dynamics of the true and estimated position is subject 

to 

 �̇�𝒆 = −𝟐[𝛚𝒊𝒆 ×]𝐯𝒆 + 𝐠𝒆(𝐱𝒆) + 𝐂𝒆𝒔𝐟𝒔 
�̇̃�𝒆 = −𝟐[𝛚𝒊𝒆 ×]�̃�𝒆 + 𝐠𝒆(�̃�𝒆) + 𝐂�̃�𝒔𝐟𝒔 

(4.48) 

Subtracting the second line in the “(4.48)”, from the first yields 

 �̇�𝒆 − �̇̃�𝒆 = 𝜹�̇�𝒆 = −𝟐[𝛚𝒊𝒆 ×]𝐯𝒆 + 𝐠𝒆(𝐱𝒆) + 𝐂𝒆𝒔𝐟𝒔
+ 𝟐[𝛚𝒊𝒆 ×]�̃�𝒆 − 𝐠𝒆(�̃�𝒆) − 𝐂�̃�𝒔𝐟𝒔 

(4.49) 

Employing error definitions allows to decompose true quantities in “(4.49)”, into 

combinations of estimates/measurements and errors. Consequently, 

 𝜹�̇�𝒆 = −𝟐[𝛚𝒊𝒆 ×](�̃�𝒆 + 𝜹𝐯𝒆) + 𝐠𝒆(�̃�𝒆 + 𝜹𝐱𝒆)

+ (𝐈 + [𝛙𝒆�̃� ×])𝐂�̃�𝒔(𝐟𝒔 + 𝜹𝐟𝒔) + 𝟐[𝛚𝒊𝒆 ×]�̃�𝒆

− 𝐠𝒆(�̃�𝒆) − 𝐂�̃�𝒔𝐟𝒔 

(4.50) 

Doing Taylor series expansion of 𝐠𝑒(𝐱𝑒) and neglecting products of errors as second 

order terms allows to reduce “(4.50)” to 

 
𝜹�̇�𝒆 =

𝝏𝐠𝒆(𝐱𝒆)

𝝏(𝐱𝒆)
𝐓

|
�̃�𝒆

⋅ 𝜹𝐱𝒆 − 𝟐[𝛚𝒊𝒆 ×] ⋅ 𝜹𝐯𝒆 − [(𝐂�̃�𝒔𝐟𝒔) ×] ⋅ 𝛙𝒆�̃� + 𝐂�̃�𝒔 ⋅ 𝜹𝐟𝒔 
(4.51) 

 

4.7.3.2.4 Orientation error estimates 

Rearrange the definition “(4.46)”, we have 
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 𝐂𝒆𝒔𝐂�̃�𝒔
𝐓 = 𝐂𝒆�̃� ≈ 𝐈 + [𝛙𝒆�̃� ×] (4.52) 

Differentiating the left and the right parts of the equality “(4.52)” yields 

 [�̇�𝒆�̃� ×] = �̇�𝒆𝒔𝐂�̃�𝒔
𝐓 + 𝐂𝒆𝒔�̇��̃�𝒔

𝐓  (4.53) 

Then, exploiting a rule of differentiation of a rotation matrix, 

 [�̇�𝒆�̃� ×] = (𝐂𝒆𝒔[𝛚𝒊𝒔 ×] − [𝛚𝒊𝒆 ×]𝐂𝒆𝒔)𝐂�̃�𝒔
𝐓

+ 𝐂𝒆𝒔(−[�̃�𝒊𝒔 ×]𝐂�̃�𝒔
𝐓 + 𝐂�̃�𝒔

𝐓 [𝛚𝒊𝒆 ×]) 

(4.54) 

Now true quantities need to be substituted by compositions of estimated/measured 

quantities and errors. Thus, 

 [�̇�𝒆�̃� ×] = ((𝐈 + [𝛙𝒆�̃� ×])𝐂�̃�𝒔[(�̃�𝒊𝒔 + 𝜹𝛚𝒊𝒔) ×]

− [𝛚𝒊𝒆 ×](𝐈 + [𝛙𝒆�̃� ×])𝐂�̃�𝒔)𝐂�̃�𝒔
𝐓

+ (𝐈 + [𝛙𝒆�̃� ×])𝐂�̃�𝒔(−[�̃�𝒊𝒔 ×]𝐂�̃�𝒔
𝐓

+ 𝐂�̃�𝒔
𝐓 [𝛚𝒊𝒆 ×]) 

(4.55) 

Expanding brackets and neglecting error products as second order terms allows to reduce 

“(4.55)”, to the form 

 [�̇�𝒆�̃� ×] = −[𝛚𝒊𝒆 ×][𝛙𝒆�̃� ×] + [𝛙𝒆�̃� ×][𝛚𝒊𝒆 ×]

+ 𝐂�̃�𝒔[𝜹𝛚𝒊𝒔 ×]𝐂�̃�𝒔
𝐓  

(4.56) 

Finally, using Jokobi identity and properties of [(⋅) ×] operator, we transform “(4.56)”, 

to the form 

 [�̇�𝒆�̃� ×] = −[𝛚𝒊𝒆 ×][𝛙𝒆�̃� ×] + [𝐂�̃�𝒔𝜹𝛚𝒊𝒔 ×] (4.57) 

This matrix equation is equivalent to 
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 �̇�𝒆�̃� = −[𝛚𝒊𝒆 ×] ⋅ 𝛙𝒆�̃� + 𝐂�̃�𝒔 ⋅ 𝜹𝛚𝒊𝒔 (4.58) 

The summary of position (section 4.6.3.3.1), velocity (section 4.6.3.3.2) and orientation 

( Section 4.6.3.3.3) error propagation is given by: 

 𝜹�̇�𝒆 = 𝜹𝐯𝒆 

𝜹�̇�𝒆 =
𝝏𝐠𝒆(𝐱𝒆)

𝝏(𝐱𝒆)
𝐓

|
�̃�𝒆

⋅ 𝜹𝐱𝒆 − 𝟐[𝛚𝒊𝒆 ×] ⋅ 𝜹𝐯𝒆 − [(𝐂�̃�𝒔𝐟𝒔) ×] ⋅ 𝛙𝒆�̃� + 𝐂�̃�𝒔 ⋅ 𝜹𝐟𝒔 

�̇�𝒆�̃� = −[𝛚𝒊𝒆 ×] ⋅ 𝛙𝒆�̃� + 𝐂�̃�𝒔 ⋅ 𝜹𝛚𝒊𝒔 

 

(4.59) 

 

4.7.3.3 Error Model for IMU state differential equation 

We assume that accelerometer and gyroscope measurements are proportional to the true 

specific force and angular rate, respectively. 

 𝐟𝒔 = 𝐝𝐢𝐚𝐠(𝐬𝒇) ⋅ 𝐟𝒔 + 𝐛𝒇 + 𝛎𝒇 

𝛚𝒊𝒔 = 𝐝𝐢𝐚𝐠(𝐬𝝎) ⋅ �̃�𝒊𝒔 + 𝐛𝝎 + 𝛎𝝎 

(4.60) 

The equations in “(4.60)” should be interpreted almost as identities: if we know true 

scale factors, offsets, and noise, we can derive true specific force and angular rate from IMU 

measurements. True scale factors and biases, however, are not available because sensors are 

never perfectly calibrated. Instead, there are estimates 𝐬𝑓, �̂�𝑓, 𝐬𝜔, �̂�𝜔 that deviate from the 

truth. Furthermore, because sensor noise is random, it cannot be compensated. As a result, a 

user can only make the following compensation: 
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 𝐟𝒔 = 𝐝𝐢𝐚𝐠(𝐬𝒇) ⋅ 𝐟𝒔 + �̂�𝒇 

�̂�𝒊𝒔 = 𝐝𝐢𝐚𝐠(�̂�𝝎) ⋅ �̃�𝒊𝒔 + �̂�𝝎 

(4.61) 

The residual errors of the compensated specific force and angular rate can be 

expressed in terms of noise, and the residual errors of the scale factors and offset, as 

 𝜹𝐟𝒔 = 𝐟𝒔 − 𝐟𝒔 = 𝐝𝐢𝐚𝐠(𝐟𝒔) ⋅ 𝜹𝐬𝒇 + 𝜹𝐛𝒇 + 𝛎𝒇 

𝜹�̂�𝒊𝒔 = 𝛚𝒊𝒔 − �̂�𝒊𝒔 = 𝐝𝐢𝐚𝐠(�̃�𝒊𝒔) ⋅ 𝜹𝐬𝝎 + 𝜹𝐛𝝎 + 𝛎𝝎 

(4.62) 

Once error navigation equation and IMU error modelling is formed, we now estimate 

state vector, we use IMU measurement compensated according to (4.61). As a result, the 

estimate of the state vector (4.23) is subject to 

 �̇̃�𝒆 = �̃�𝒆 

�̇̃�𝒆 = −𝟐[𝛚𝒊𝒆 ×]�̃�𝒆 + 𝐠𝒆(�̃�𝒆) + 𝐂�̃�𝒔𝐟𝒔 

�̇̆��̃�𝒔 =
𝟏

𝟐
(�̆��̃�𝒔 ∗ �̆̂�𝒊𝒔 − �̆�𝒊𝒆 ∗ �̆��̃�𝒔) 

�̇̂�𝒇 = 𝟎 

�̇̂�𝝎 = 𝟎 

�̇�𝒇 = 𝟎 

�̇�𝝎 = 𝟎 

�̇̆��̃�𝒔 = 𝟎 

(4.63) 

The state vector is propagated by numerically integrating the ODE “(4.63)”. Heun's 

method is used (2nd order Runge-Kutta method with alpha=1) [119-121]. The discrete times 

that make up the integration grid are derived from gyroscope measurements. Because a 

smartphone cannot guarantee that accelerometer and gyroscope data are collected at the same 

time, specific force must be interpolated or approximated at the timestamps of gyroscope 

measurements. 

The state-space model describing the time development of the navigation state, is 
typically formulated as: 
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 𝒁𝑲+𝟏 = (�̃�𝒌 ,  𝑼𝒌) (4.64) 

 

4.7.3.4 Error State vector 
 
An error state vector that corresponds to the state vector (4.23) is given by 

 𝜹𝐳 = ((𝜹𝐱𝒆)
𝐓 (𝜹𝐯𝒆)

𝐓 (𝛙𝒆�̃�)
𝐓 (𝜹𝐛𝒇)

𝐓
(𝜹𝐛𝝎)𝐓 (𝜹𝐬𝒇)

𝐓
(𝜹𝐬𝝎)𝐓 (𝛙𝒄�̃�)

𝐓)
𝐓

 (4.65) 

The error state's dynamics are subject to the linear stochastic differential equation 

shown below in (4.66). This equation can be obtained from by modelling sensor errors as a 

random walk and substituting in “(4.59)” where symbols 𝛿𝐟𝑠 and 𝛿𝛚𝑖𝑠 can be obtain with 

the expression “(4.62)”. 

 𝜹�̇� = 𝐀(𝒕) ⋅ 𝜹𝒛 + 𝐆(𝒕) ⋅ 𝝂 (4.66) 

Herein, 

 𝐀(𝒕)

=

(

 
 
 
 
 
 

𝟎𝟑×𝟑 𝐈𝟑×𝟑 𝟎𝟑×𝟑 𝟎𝟑×𝟑 𝟎𝟑×𝟑 𝟎𝟑×𝟑 𝟎𝟑×𝟑 𝟎𝟑×𝟑

𝟎𝟑×𝟑 −𝟐[𝛚𝒊𝒆 ×] −[(𝐂�̃�𝒔𝐟𝒔) ×] 𝐂�̃�𝒔 𝟎𝟑×𝟑 𝐂�̃�𝒔𝐝𝐢𝐚𝐠(𝐟𝒔) 𝟎𝟑×𝟑 𝟎𝟑×𝟑

𝟎𝟑×𝟑 𝟎𝟑×𝟑 −[𝛚𝒊𝒆 ×] 𝟎𝟑×𝟑 𝐂�̃�𝒔 𝟎𝟑×𝟑 𝐂�̃�𝒔𝐝𝐢𝐚𝐠(�̃�𝒊𝒔) 𝟎𝟑×𝟑

𝟎𝟑×𝟑 𝟎𝟑×𝟑 𝟎𝟑×𝟑 𝟎𝟑×𝟑 𝟎𝟑×𝟑 𝟎𝟑×𝟑 𝟎𝟑×𝟑 𝟎𝟑×𝟑

𝟎𝟑×𝟑 𝟎𝟑×𝟑 𝟎𝟑×𝟑 𝟎𝟑×𝟑 𝟎𝟑×𝟑 𝟎𝟑×𝟑 𝟎𝟑×𝟑 𝟎𝟑×𝟑

𝟎𝟑×𝟑 𝟎𝟑×𝟑 𝟎𝟑×𝟑 𝟎𝟑×𝟑 𝟎𝟑×𝟑 𝟎𝟑×𝟑 𝟎𝟑×𝟑 𝟎𝟑×𝟑

𝟎𝟑×𝟑 𝟎𝟑×𝟑 𝟎𝟑×𝟑 𝟎𝟑×𝟑 𝟎𝟑×𝟑 𝟎𝟑×𝟑 𝟎𝟑×𝟑 𝟎𝟑×𝟑

𝟎𝟑×𝟑 𝟎𝟑×𝟑 𝟎𝟑×𝟑 𝟎𝟑×𝟑 𝟎𝟑×𝟑 𝟎𝟑×𝟑 𝟎𝟑×𝟑 𝟎𝟑×𝟑)

 
 
 
 
 
 

 

(4.67) 

Where A(t) is the transition matrix The system transition matrix is approximated 

using the rule “(4.18)”. Also note that �̃�𝑖𝑠 is uncompensated gyroscope measurement and the 

difference between 𝐟𝑠 and 𝐟𝑠 is that they do not have the same meaning. 
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 𝝂

= ((𝛎𝒇)
𝐓

(𝛎𝝎)𝐓 (𝝂𝒃𝒇)
𝐓

(𝝂𝒃𝝎)𝐓 (𝝂𝒔𝒇)
𝐓

(𝝂𝒔𝝎)𝐓 (𝝂𝝍𝒄�̃�
)
𝐓
)
𝐓

 

(4.68) 

 

 

𝐆(𝒕) =

(

 
 
 
 
 

𝟎𝟑×𝟑 𝟎𝟑×𝟑 𝟎𝟑×𝟑 𝟎𝟑×𝟑 𝟎𝟑×𝟑 𝟎𝟑×𝟑 𝟎𝟑×𝟑

𝐂�̃�𝒔 𝟎𝟑×𝟑 𝟎𝟑×𝟑 𝟎𝟑×𝟑 𝟎𝟑×𝟑 𝟎𝟑×𝟑 𝟎𝟑×𝟑

𝟎𝟑×𝟑 𝐂�̃�𝒔 𝟎𝟑×𝟑 𝟎𝟑×𝟑 𝟎𝟑×𝟑 𝟎𝟑×𝟑 𝟎𝟑×𝟑

𝟎𝟑×𝟑 𝟎𝟑×𝟑 𝐈𝟑×𝟑 𝟎𝟑×𝟑 𝟎𝟑×𝟑 𝟎𝟑×𝟑 𝟎𝟑×𝟑

𝟎𝟑×𝟑 𝟎𝟑×𝟑 𝟎𝟑×𝟑 𝐈𝟑×𝟑 𝟎𝟑×𝟑 𝟎𝟑×𝟑 𝟎𝟑×𝟑

𝟎𝟑×𝟑 𝟎𝟑×𝟑 𝟎𝟑×𝟑 𝟎𝟑×𝟑 𝐈𝟑×𝟑 𝟎𝟑×𝟑 𝟎𝟑×𝟑

𝟎𝟑×𝟑 𝟎𝟑×𝟑 𝟎𝟑×𝟑 𝟎𝟑×𝟑 𝟎𝟑×𝟑 𝐈𝟑×𝟑 𝟎𝟑×𝟑

𝟎𝟑×𝟑 𝟎𝟑×𝟑 𝟎𝟑×𝟑 𝟎𝟑×𝟑 𝟎𝟑×𝟑 𝟎𝟑×𝟑 𝐈𝟑×𝟑 )

 
 
 
 
 

 

(4.69) 

In “(4.68)”,  𝛎𝑓 and 𝛎𝜔 are noises of the accelerometers and gyroscopes, respectively. 

𝝂𝑏𝑓, 𝝂𝑏𝜔, 𝝂𝑠𝑓, 𝝂𝑠𝜔, and 𝝂𝜓𝑐�̃�
 are the noises of sensor biases and scale factors, and the noise 

of misalignment between IMU and a car. By applying triangle rule of integration for “(4.18)” 

we obtain G(t) and the discrete noise covariance matrix shown in “(4.70)”  

 𝐐(𝒕) = 𝐂𝐨𝐯[𝛎𝛎𝐓]   (4.70) 

 It is worth noting that in the implementation, Cov[𝛎𝛎T]  is a diagonal matrix. Its first six 

elements must be set in accordance with the IMU white noise parameters. Elements that 

correspond to misalignment noises, scale factors, and offsets are set to very small values. 

4.7.3.5 Residual Computation and Measurement matrices 

The state-space model describing the time development of the GNSS measurements, is 

given as 

 𝒚𝒌 = 𝑯𝑮𝑵𝑺𝑺 (�̃�𝒌)  +  𝒓 (4.71) 
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4.7.3.5.1 External Position measurement (𝑯𝑮𝑵𝑺𝑺) 

The GNSS antenna and IMU in smartphones are mounted within centimetres of each 

other. In fact, the distance between the antenna and the IMU appears to be much smaller than 

the typical achievable accuracy of GNSS positioning performed by a smartphone. As a result, 

the lever arm between the IMU and the GNSS antenna can be ignored. A perfect GNSS 

receiver would provide a measurement of the position of a smartphone: 

 𝐲𝒑𝒐𝒔 = 𝐱𝒆 (4.72) 

However, because the measurement is not error-free, the measured position is related to 

the true position as follows: 

 �̃�𝒑𝒐𝒔 = 𝐱𝒆 + 𝜹𝐲𝒑𝒐𝒔 (4.73) 

A residual can be calculated as follows: 

 𝚫𝐲𝒑𝒐𝒔 = �̃�𝒑𝒐𝒔 − �̃�𝒆 = 𝜹𝐱𝒆 + 𝜹𝐲𝒑𝒐𝒔 (4.74) 

The equation (4.74) relates an INS error state to a residual (the difference between 

the measurement and an approximation of the measurement derived from navigation state). 

These equations are frequently referred to as linearized measurement equations. 

Measurement matrix for the (4.74), can be written as: 

 
𝐇𝒑𝒐𝒔 =

𝝏𝚫𝐲𝒑𝒐𝒔

𝝏(𝜹𝐳)𝐓
= (𝐈𝟑×𝟑 𝟎𝟑×𝟐𝟏) 

(4.75) 
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Where 𝐈 is the identity matrix, a measurement that is linearly related to the position is 

compared with the same linear combination of the INS computed positions to compute a 

measurement residual in position aiding methods. The measurement residual is fed into a 

Kalman filter, which is used to estimate the INS and sensor error states.  

One important property of the Kalman filter that is frequently overlooked for instance, 

assume that the noise covariance matrix R(k) of the vector measurement "y" is a diagonal 

matrix. In other words, we assume that the noises of the vector "y" components are 

independent (and thus uncorrelated). Then, instead of one Kalman filter update with a vector 

measurement "y," m consecutive updates with scalar elements of the vector "y" are possible. 

The outcome will be the same. This "feature" allows you to avoid numerical matrix inversion 

while updating the Kalman filter. As a result, computations become far simpler and more 

robust. 

 Unfortunately, in real time experimentation, the measurements observed from GPS are 

corelated to simplify process we can decorrelate measurements by first decorrelate original 

vector measurement using transformation derived from Cholesky factors of the noise 

covariance matrix and second do Kalman filter updates sequentially using scalar components 

of the transformed measurement vector. 

Consider a measurement 

 𝐲 = 𝐇 ⋅ 𝐱 + 𝐫 (4.76) 

Assume that 𝐫 is zero-mean Gaussian white noise with covariance matrix 𝐑 that is 

strictly positive definite. The matrix 𝐑 can be decomposed into Cholesky factors [122, 123] 

as following: 
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 𝐑 = 𝐔𝐓𝐔 (4.77) 

Consider now a transformed measurement 𝐲1 = 𝐓𝐲,  

Where,  

 𝐓 = (𝐔𝐓)−𝟏 (4.78) 

 Then  

 𝐲𝟏 = 𝐇𝟏 ⋅ 𝐱 + 𝐫𝟏 (4.79) 

Where 𝐇𝟏 = 𝐓𝐇 
𝐫𝟏 = 𝐓𝐫 

(4.80) 

Covariance of the transformed noise 𝐫1 is identity matrix, so noise of the transformed 

measurement 𝐲1 appears uncorrelated. 

4.7.3.5.2 Non holonomic constraints 

Under ideal conditions, a vehicle moving in a planar environment experiences no wheel 

slip and no motion in the direction perpendicular to the road surface. As a result, the vehicle 

coordinates' downward and sideways velocity components should be close to zero. When 

nonholonomic constraints are applied to the navigation solution, the results show a 

significant decrease in position error growth during GNSS outages as well as an increase in 

attitude accuracy. In the simulation, nonholonomic constraints were imposed by introducing 

pseudo-observations for the vehicle's sideways and downward velocities. When a car drives 

straight, the velocity vector's projections onto the second and third axes of the c-frame are 

zeros. This property is derived from vehicle dynamics and can be used to perform virtual 
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measurements. Assume that velocity projections onto the car frame can be measured. The 

ideal measurement will then be related to the INS state vector as follows: 

 𝐲𝒗𝒆𝒍,𝒄 = 𝐂𝒄𝒔𝐂𝒆𝒔
𝐓 𝐯𝒆 (4.81) 

Here 𝐂𝑐𝑠 is a matrix that defines a rotation from the s-frame to the c-frame. Measured 

velocity is not error-free, thus 

 �̃�𝒗𝒆𝒍,𝒄 = 𝐂𝒄𝒔𝐂𝒆𝒔
𝐓 𝐯𝒆 + 𝜹𝐲𝒗𝒆𝒍,𝒄 (4.82) 

Assume you have an approximation or estimate of 𝐂𝑐𝑠. This approximation can be 

thought of as a transformation 𝐂𝑐̃𝑠 from the true sensor frame to an erroneous car frame �̃�. 

Using the approach described in (4.46), the estimated rotation matrix (Ccs) can be 

decomposed into a combination of the true value and an error. Thus,  

 𝐂𝒄𝒔 = 𝐂𝒄�̃�𝐂�̃�𝒔 
𝐂𝒄�̃� ≈ 𝐈 + [𝛙𝒄�̃� ×] 

(4.83) 

A residual can be formed as 

 𝚫𝐲𝒗𝒆𝒍,𝒄 = �̃�𝒗𝒆𝒍,𝒄 − 𝐂�̃�𝒔𝐂�̃�𝒔
𝐓 �̃�𝒆 = 𝐂𝒄𝒔𝐂𝒆𝒔

𝐓 𝐯𝒆 − 𝐂�̃�𝒔𝐂�̃�𝒔
𝐓 �̃�𝒆 + 𝜹𝐲𝒗𝒆𝒍,𝒄 (4.84) 

Decomposing the true quantities into estimates and errors yields 

 𝚫𝐲𝒗𝒆𝒍,𝒄 = (𝐈 + [𝛙𝒄�̃� ×])𝐂�̃�𝒔𝐂�̃�𝒔
𝐓 (𝐈 − [𝛙𝒆�̃� ×])(�̃�𝒆 + 𝜹𝐯𝒆)

− 𝐂�̃�𝒔𝐂�̃�𝒔
𝐓 �̃�𝒆 + 𝜹𝐲𝒗𝒆𝒍,𝒄 

(4.85) 

Finally, after brackets expansion and linearization we have, 
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 𝚫𝐲𝒗𝒆𝒍,𝒄 = 𝐂�̃�𝒔𝐂�̃�𝒔
𝐓 ⋅ 𝜹𝐯𝒆 + 𝐂�̃�𝒔𝐂�̃�𝒔

𝐓 [�̃�𝒆 ×] ⋅ 𝛙𝒆�̃� − [(𝐂�̃�𝒔𝐂�̃�𝒔
𝐓 �̃�𝒆) ×]

⋅ 𝛙𝒄�̃� + 𝜹𝐲𝒗𝒆𝒍,𝒄 

(4.86) 

And measurement matrix can be obtained as 

 
𝐇𝒗𝒆𝒍,𝒄 =

𝝏𝚫𝐲𝒗𝒆𝒍,𝒄

𝝏(𝜹𝐳)𝐓

= (𝟎𝟑×𝟑 𝐂�̃�𝒔𝐂�̃�𝒔
𝐓 𝐂�̃�𝒔𝐂�̃�𝒔

𝐓 [�̃�𝒆 ×] 𝟎𝟑×𝟏𝟐 −[(𝐂�̃�𝒔𝐂�̃�𝒔
𝐓 �̃�𝒆) ×]) 

(4.87) 

After we finish building the state space model, we apply the Kalman filter algorithm 

shown in table 2. Prediction relies on a mathematical or stochastic model “(4.66)”, whereas 

correction of the predicted value relies on observation “(4.71)”, “(4.74)”, “(4.86)”.The 

transition model, which is represented by a matrix “(4.67)”, propagates the previous state to 

the next, with certain amount of uncertainty. On other hand observation model “(4.71)”, is a 

parametric model in which the addition of measurement and its noise is augmented due to 

the uncertainty of the observations. However, correction is available in the update process 

called innovation, which aids in displaying mismatches between observations and previous 

estimates, and this will correct the prediction, bringing it to a precise estimate. The innovation 

vector is weighted by gain, which will tell us whether the observations can be trusted or 

rejected. KF updates are done in a scalar-wise manner enhancing accuracy of the estimates 

  As explained above KF process, when applied to time update using “(4.64)” and 

“(4.66)”, can be modelled as 
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 �̂�𝒌+𝟏 𝒌⁄ = 𝒇𝒌(�̂�𝒌|𝒌, �̅�𝒌 − 𝜹�̂�𝒌|𝒌) 

𝑷𝒌+𝟏 𝒌⁄ = 𝝓𝒌𝑷𝒌𝝓𝒌
𝑻 + 𝑮𝒌𝑸𝒌𝑮𝒌

𝑻 

�̂�𝒌+𝟏 𝒌⁄ = [𝑶𝟏,𝟏𝟐(𝜹�̂�𝒌 𝒌⁄ )
𝑻
]
𝑻

 

(4.88) 

The navigation state errors “(4.63)”, are set to zero as the navigation is updated in the 

last step of the algorithm and to note: t = k. With GNSS measurements available at T(k+1), 

“(4.71)”, is used to perform a Kalman filter measurement update utilizing GNSS 

measurements, and pseudo-observations of velocity and roll 

 𝒔𝒌+𝟏 = 𝑯𝒌+𝟏𝑷𝒌+𝟏 𝒌⁄ 𝑯𝒌+𝟏
𝑻 + 𝑹𝒌+𝟏 

𝒌𝒌+𝟏 = 𝑷𝒌+𝟏 𝒌⁄ 𝑯𝒌+𝟏
𝑻 𝒔𝒌+𝟏

−𝟏  

�̂�𝒌+𝟏 𝒌⁄ +𝟏 = �̂�𝒌+𝟏 𝒌⁄ −𝒌𝒌+𝟏𝒉𝒑𝒔 

𝑷𝒌+𝟏 𝒌+𝟏⁄ = (𝑰𝟏𝟖 − 𝒌𝒌+𝟏𝑯𝒌+𝟏
𝑷𝑺 )𝑷𝒌+𝟏 𝒌⁄  

 

 

(4.89) 

However, when there are no GNSS measurements available at T(k+1), “(4.86)”, is 

used to perform a Kalman filter measurement update utilizing pseudo-observations of NHC 

 𝑺𝒌+𝟏 = 𝑯𝒌+𝟏
𝒑𝒔

𝑷𝒌+𝟏 𝒌⁄ (𝑯𝒌+𝟏
𝝆𝒔 )

𝑻
+ 𝑹𝒌+𝟏

𝒑𝒔
 

𝑲𝒌+𝟏 = 𝑷𝒌+𝟏 𝒌⁄ (𝑯𝒌+𝟏
𝝆𝒔

)𝑺𝒌+𝟏
−𝟏  

�̂�𝒌+𝟏 𝒌+𝟏⁄ = �̂�𝒌+𝟏 𝒌⁄ − 𝒌𝒌+𝟏𝒉
𝒑𝒔(�̂�𝒌+𝟏 𝒌⁄ ) 

𝑷𝒌+𝟏 𝒌+𝟏⁄ = (𝑰𝟏𝟖 − 𝒌𝒌+𝟏𝑯𝒌+𝟏
𝒑𝒔

)𝑷𝒌+𝟏 𝒌⁄  

 

   

 (4.90) 



79 
 

The KF algorithm recursively minimises estimation errors, resulting in accurate 

measurements and true estimates of vehicle pose on the road. The results of the real-time 

experiment are presented in section 6, which discusses error minimization in more detail. 
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Google, and Here, for example, have developed this type of map to function in real-world 

road and road surface conditions.  

 We place more emphasis on navigational geospatial data models because our research 

requires maps with road level information. Geospatial data models are nothing more than 

GIS maps containing the attributes required for a particular application. At various stages of 

the navigation process, maps and their attributes play a variety of roles in navigation 

applications. The most critical and widely used role is visualisation, GIS provides the 

capability to relate previously unrelated information, using location as the "key index 

variable". Locations and extents that are found in the Earth's spacetime, can be recorded 

through the date and time of occurrence, along with x, y, and z coordinates, representing, 

longitude (x), latitude (y), and elevation (z).  

All Earth-based, spatial–temporal, location, and extent references, should be relatable to 

one another, and ultimately, to a "real" physical location or extent. The GIS map contains a 

wealth of useful information about roads and passageways; it can be used to assist the 

navigation solution by implementing a logical threshold based on the geospatial model. On 

digital maps, the road network is typically depicted as a planar model, whereas the street 

network is typically depicted as a collection of arcs (i.e., curves in R2) [130]. Each arc 

represents the centerline of a network road segment and is typically assumed to be piecewise 

linear (though splines may also be used), allowing it to be described by a finite set of points 

(see figure 18). The starting and ending points of the set are referred to as nodes, while the 

remaining points are referred to as shape points. The nodes indicate the beginning and end 

of the arc, indicating a beginning, a dead end, or an intersection (i.e., a point at which two 

arcs can connect) in the street network 
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 The navigation map is composed of multiple layers, depending on the region and 

application. The choice of the required layer and its associated attributes is critical in the 

design of geospatial models. The geospatial model for vehicle navigation represents the 

geometry and attributes of street networks. 

5.2 Requirement for maps in navigational applications 

When using a map for navigational purposes, numerous specifications and requirements 

must be met. Numerous factors will influence the selection of the conceptual or geometric 

model and database content. Additionally, when it comes to navigation applications, the 

digital map's accuracy is critical [131]. If the spatial data has a higher positional accuracy 

than the navigation solution, particularly in GPS-denied environments, the spatial data can 

assist the navigation system in improving its accuracy. Numerous factors are considered 

when expressing map accuracy. Comparative studies on the accuracy of the primary map 

provider for location-based services have been conducted in [131]. However, it was 

determined that a provider's coverage area has a significant impact on the provider's accuracy 

and quality. For example, major city centres, which cover a large area, are more precise than 

smaller, country-side cities. Table 3 illustrates some of the key requirements for map 

accuracy in a navigation application. 

Table 3 Map factors that influence navigation applications 

Factors Navigation Application requirements 

Spatial Coverage Major and minor road networks 

Detail coverage Roads, addresses, points of interest 
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Positional Accuracy Ranges from (0.5m – 15m) 

Currency of Map Up-to-date maps are critical in navigation applications 

 

Typically, spatial databases contain information about an object's spatial characteristics. 

Along with the various structural forms required to construct a particular feature, there may 

be a massive amount of data. When compiling these databases, the primary objective is to 

extract only the necessary information and structure it appropriately for the application at 

hand. For example, there are five primary functions required for navigation applications in 

digital road databases: map matching, address matching, path finding, and route guidance. 

5.2.1 Map matching 

Matching the navigation system output to the digital map's road network typically 

involves three steps. To begin with, a selection of potential arcs or segments is made. Then, 

the likelihood of the candidate arcs/segments is determined using geometric and topological 

information, as well as the correlation between the vehicle's trajectory history and the map's 

candidate paths. Finally, the vehicle's location on the most probable road segment is 

determined. Geometrical information includes measures such as the estimated position's 

proximity to the nearest road on the map, the heading difference between the navigation 

system's heading and the road segments in issue, and the shape of the road segments in 

relation to the estimated trajectory. Authors in [132], discusses and describes several 

commonly used geometric information extraction techniques, including point-to-point, 

point-to-curve, and curve-to-curve matching. The connectivity of candidate roads (arcs) is 

determined by the topological information criterion; for example, the vehicle cannot abruptly 
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change directions between road segments if there is no intersection point between them. The 

likelihood of road segment candidates is determined by assigning different weights to 

geometrical and topological information measures and combining them. Numerous 

approaches to weighing and combining are discussed in [133, 134], including belief theory, 

fuzzy network, and state machines. [125] contains a survey of state-of-the-art map matching 

algorithms, as well as suggestions for future research directions. 

5.2.2 Address Matching 

Address matching is the process of associating a user-supplied address with its map 

location. To perform this function, addresses must be stored in a map database. Historically, 

the primary concern with address storage was the enormous amount of space required to run 

a database properly. As a result, early car navigation devices typically required the addition 

of addresses between nodes by range, ensuring that the link included a range of addresses. 

However, with the advancement of storage devices, it is no longer necessary to add each 

address to the precise location on the map where it is located, as the link will include a number 

of known addresses. Not only residential addresses are added to the databases, but also major 

landmarks such as schools, hospitals, road names, and shopping malls. These are included to 

assist the user in navigating to their destination. 

5.2.3 Path Finding 

Path finding, a feature found in most navigation systems, generates one or more complete 

paths that connect the user's starting point to the desired destination. Depending on the 

specific path required, this function may require multiple sets of databases to complete. For 

instance, determining the shortest path in the least amount of time requires traffic data and 
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link speed limits. A properly scaled map is required for shortest-distance path finding. 

Optimal path finding for increased fuel efficiency requires knowledge of both the road grade 

and the fastest times versus the shortest distance. Finally, finding alternate routes to avoid 

certain freeways necessitates road classification. In general, most of these functions will 

require highly accurate topology data, such as turn restrictions, direction or turn changes 

during rush hour, and so on. 

5.2.4 Route Guidance 

Other than address matching and path finding, road guidance requires no additional 

information. In other words, this function is very common when both functions are present. 

The goal of road guidance is to provide the user with turn-by-turn directions to get from one 

location to another. 

Table 4 Each process necessitates the use of specific spatial database features. 

Process Database Features 

Map matching  Links, nodes, coordinates of nodes, complete topology 

Address matching Links, names of links, nodes, coordinates of nodes, addresses 

along the links 

Path finding Link classification, connectivity between nodes, driving and turn 

restrictions, auxiliary attributes 

Route guidance All address matching and path-finding features 
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5.3 Map sources for navigation applications 

Navigational maps are available in a variety of formats. These sources can be of three 

kinds: major map providers like Google [135] or NAVTEQ [136], community-contributed 

mapping solutions like OpenStreetMap [32], or maps designed and developed specifically 

for a specific application by mapping and surveying companies like Tele Atlas. Tele Atlas is 

a Dutch company that develops digital maps for use in navigation, location-based services, 

mobile, and web mapping applications. NAVTEQ is a US-based company that specialises in 

GIS data and electronic navigable base maps. Nokia Ovi map applications make use of 

NAVTEQ data. Additionally, NAVTEQ provides map data for navigation applications from 

Chrysler, Mercedes-Benz, Garmin, Magellan, Yahoo Maps, Bing Maps, and MapQuest. Bing 

Maps is a web mapping service provided by Microsoft that covers the entire globe. It provides 

road views, aerial views, street side imagery, bird's eye views (aerial images acquired from 

low-flying aircraft), venue maps (Bing Maps has mapped several venues throughout North 

America, Europe, and Asia), and 3-D maps. Google Maps is a Google-owned web mapping 

service. It supports a number of map-based services, including the Google Maps website, 

Google Transit, and the Google Maps API, which enables developers to integrate Google 

Maps into their websites or mobile applications. It has been used in a variety of navigation 

applications, including smart phones and navigators. The strengths of Google's free maps are 

their global coverage and dependability for navigation applications. OpenStreetMap is a free 

online mapping service based on the concepts of crowdsourcing and volunteer-contributed 

geographic data (VGI). 
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5.4 Designing of the Geospatial Data models 

The developed geospatial models for outdoor navigation applications are presented in 

this section. 

5.4.1 Street network for vehicle navigation application 

The geometry and attributes of the street networks will be represented by a geospatial 

model. Polylines, curves, and traverse are the three geometrical models for street networks 

figure 17 provides a visualization. The geometrical model to be used will be determined by 

the density of the road network and the horizontal alignments of the roads.  

The developed geospatial model in this research is designed for Shawinigan city, 

Quebec, Canada, where the model will represent the streets as polylines. Every street link 

will be represented by a polyline (arc) with a beginning and ending node. The intersections 

between streets are represented by the nodes. The attached attributes will provide primary 

information about navigation purposes, such as node coordinates, link start and end sites, and 

all possible diverged links from each link and traffic direction. The geospatial model is 

designed to accommodate any additional information, such as node elevation (height). To 

build the geospatial model, the system will use Open Street Maps to extract the road network.  
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Figure 17 Rough visualization of Road network described by a planar model. 

 

5.4.2 Geospatial model for the experiment route 

A geospatial database was created and used to select the appropriate road link based on 

the user's destination. The geospatial database covers the study areas where the field tests 

will take place (refer to Chapter 6)—Shawinigan city, Quebec, Canada is an ideal location to 

test the developed algorithms in a GPS-denied environment due to its urban environment 

consisting of high buildings, trees etc. which cause GPS signal blockage. The geospatial 

model constructs the geometry of the road networks using Open Street Maps, with an 

accuracy range of 0.5m to 1m. Google Maps was used as an additional source of geometry. 

Figures 18 depicts the geometry of the study area's road network. Shawinigan city and region 

are connected by a network of roads that are mostly perpendicular to one another. Avenues 

are roads that run east-west, and Streets are roads that run north-south. 
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Figure 18 Open Street map displaying the road network of an experimental route that 

must be exported in order for QGIS software to function. 

A road reference is obtained from a mapping database such as OpenStreetMap (OSM), 

for a selected experiment region. OSM include a street network containing geospatial data 

about the attributes and geometry of streets. The experiment region was downloaded from 

the OSM database as a text file, which contains a wealth of information about road networks 

such as streets, motorways, highways, bike lanes, structures, and bus stops. The saved OSM 

file was then exported to "QGIS software" for extraction of reference data (also known as 

ground truth). QGIS [137], is a free GIS application that allows users to create and export 

graphical maps as well as analyze and edit spatial data. Vector data is stored as point, line, 

or polygon features in QGIS, which supports raster and vector layers. Using the appropriate 

filters, the road network from OSM database was explored, and road segments with 
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geographic latitude-longitude points placed in the middle of the road were collected 

throughout the trajectory. Figure 19 illustrates QGIS software processing with multilayer 

filtering of street network. 

 

Figure 19 Image of a street network processed in QGIS software, which includes 
layers of step 

The experimental route street network attributes have been explored using QGIS 

software, based on a specific selection of spatial points. An attribute table is created using a 

wealth of information such as street names, bus stops, highways, motorways, lanes, and 

buildings to outline all specific location points along the trajectory of the vehicle with latitude 

and longitude specifications. Figure 20 illustrates attributes table processed during QGIS 

processing. Based on the attribute’s latitudes and longitudes of road along trajectory are 

collected. 
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Figure 20 (a) The image depicts an attributes table that contains all geospatial 
information about the road street network and (b) latitudes and 
longitudes of the individual places shown 

Roads are divided into individual links in a street network, each with its own distinct 

features such as street names, lane count, bus stops, and highways with a globally unique link 

identification (ID) in the mapping database as can be seen figure 20. With some lateral error, 

a road-level map of any given road segment is linked to a set of geographic latitude-longitude 

points in the middle of the road. The distribution of these shape points along a specific road 

segment is proportional to the acuity of the road geometry; we use these points as a road 

reference for vehicle to guide along trajectory. Figure 21 shows a road shape based on 

(a) (b) 
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geographic latitude-longitude points at the centre of a road, which are represented with a 

round shape and red colour. 

 

 

Figure 21 (a) illustrates Geographic latitude and longitude points at center of road 
in red color and in (b) Zoom in on node points that have unique 
latitude and longitude information for constructing a reference lane 
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Figure 23 depicts real-time experiment images taken during the drive. Whereas Figure 

23(a) depicts the beginning of the experiment, Figure 23(b) depicts the roads covered in 

snow, concealing the pavement curbs and faded lane markings that were also observed during 

the driving test. In addition, the experiment route included curvy roads to assess the reliability 

of the proposed system. Figures 23(c), 23(d), 23(e), and 23(f) depict the car on curved roads 

where lane markings are rarely visible to the naked eye. Furthermore, the experiment is 

carried out in a densely populated urban environment with numerous GPS signal-blocking 

elements such as tall buildings, trees, and a distributed network area with bridges. Figures 

23(g) and 23(h) depict a vehicle passing through a signal-deficient area as well as beneath a 

bridge with varying levels of illumination. Figures 23(i) and 23(j) show a populated area with 

traffic signs and passing vehicles, as well as shading of lane markings caused by passing 

vehicles.  

The experiment route was designed to cover all geographic directions, including north-

south and east-west, and data was collected during a 5-minute drive using a Samsung S8+ 

smartphone mounted on the dashboard but in an unknown orientation. On the Android market 

"Play store," there are numerous applications for recording accelerometer, gyroscope, and 

GPS data (see Appendix A). The IMU update rate was set to 52 Hz in the application, while 

the GPS update rate was set to 1 Hz. The information recorded was later saved in the "CSV 

file" format for further editing and modification. The Samsung S8+ smartphone includes a 

GNSS receiver, and with aid of advanced internal settings in phone, the smartphone's ego 

location accuracy enhanced. 
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Figure 23 Several real-time driving images collected prior to the experiment's start 
and at random times throughout the experiment. 

  

  

  

   ( a )     ( b ) 

  ( e ) 

  ( c ) 

  ( f ) 

  ( d ) 
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A road reference, on the other hand, is obtained from a mapping database such as 

OpenStreetMap (OSM) for a selected experiment region using the methodology described in 

section (5.4.2). The latitude and longitude reference road points collected from QGIS 

software processing were saved in Excel software for interpolation. Data from the IMU and 

GPS and the OSM mapping database were imported into MATLAB for simulation, and the 

navigation filter described in chapter 4 was applied. 

6.1 Results of experiments and simulations 

The results of post-processing in MATLAB simulation, depicted in Figure 24, represent 

the vehicle's position and orientation during the experiment. Whereas the redline and red 

circle points represent lane center information, the blue line represents dead reckoning using 

accelerometer, gyroscope, and GPS data. GPS data were not always required in our 

experiment, but when GPS data were available, they were used to correct IMU drift.  

 

Figure 24 Vehicle trajectory during the experiment, with lane center nodes extracted 
from a GIS in red circles and inertial navigation dead reckoning 
represented in blue 
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The green dotted circles with numbers “1, 2, 3 and 4” in Figure 24, are magnified in 

Figure  25, 26, 27 and 28, focuses on trajectory behavior at turns and on straight road. 

 

Figure 25 Zoom in of vehicle position at “1” in “Fig 24” illustrates the vehicle's 
position and orientation during turn. Blue color line represents ego 
vehicle and red color line represents the lane center markings 

 

 

Figure 26 Zoom in position of vehicle at “2” in Figure 24, illustrate the vehicle's 
position and orientation during turns. 
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Figure 27 Zoom in position of vehicle at “3” in Figure 24, illustrate the vehicle's 
position and orientation during turns. 

 

 

Figure 28 Zoom in position of vehicle at “4” in Figure 24, denotes the location of the 
vehicle on straight roads 

Figure 29 illustrates the absolute error between the estimated and ground truth trajectory. 

To illustrate the difference between the estimated and true trajectory, colour bars were used.  
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Figure 29 Error in latitude and longitude between estimated and ground truth 
trajectory 

The term "error" refers to the absolute value of the difference between the true and 

estimated trajectories. The figure 29 depicts the error on the Y axis and the time at which the 

error occurred on the X axis. Two colours “Yellow” and “Blue” are used to make the error 

more visible by highlighting their intensities. In the figure 29, yellow colour in the surfaces 

indicates relatively high positive error (meaning Ground truth Latitude > Estimated Latitude 

or Ground truth Longitude > Estimated Longitude respectively) and blue colour indicates 

high negative error or sometimes the value is closer to 0, indicating a low error or a better 

match. (Blue colour difference represents Ground truth Latitude < Estimated Latitude). When 

comparing the figure 29 to the figure 24 "Trajectories close to lane level," we can see that 

wherever a curved road is encountered, as well as at the beginning and end of the trajectory, 

a high level of yellow colour is observed, whereas wherever straight roads are encountered, 

the colour blue intensities change darker. 
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 Velocity plot of vehicle in the NED frame (North, East and Down) is depicted in figure 

30, when the trajectory is north, the first plot in Figure 30, shows a spike in the graph; when 

the trajectory is west, the velocity in the east is seen to decrease in the second plot. The road's 

elevation is resembled in the third plot of Figure 30, when the road is elevated, a spike in the 

graph is observed; when the road is flat, the trend appears to be close to zero.  

 

 

Figure 30  Velocity of the vehicle, during trajectory in North, East and Down 
reference frame. 

 

Figure 31 depicts the velocity in the car frame, which represents vehicle acceleration in 

the "x" direction in the first plot and braking information in the "y" direction in the second 

plot.  
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Figure 31 Velocity of the vehicle in body frame. 

 

In Figure 32, roll, pitch, and yaw values (first, second, and third plots) recorded in the 

sensor frame can be seen, with roll representing the vehicle's left and right tilting movements. 

Pitch represents the forces acting on the vehicle as it accelerates and decelerates, whereas 

Yaw represents the number of turns made along the trajectory, with each right turn elevating 

the curve and each left turn lowering it. 
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Figure 32 Euler angles in sensor frame. 

 Intrinsic sensor errors, such as biases and scaling factors, degrade the quality of motion 

estimation and jeopardize the system's integrity, as discussed in Section II. The 

implementation of the Kalman recursive algorithm reduces errors in 6 DOF to a minimum 

during trajectory, as shown in figure 33 

 

Figure 33 The output of implementing KF on sensor bias results in error 
minimization. 
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Figure 34 After implementing KF, the estimate of misalignment between IMU and 
car results in error minimization. 

However, scale factor is difficult to estimate and is constant over time. Similarly, in  

figure 34, a recursive algorithm is used to minimize the misalignment between the car and 

the sensor. 





105 
 

plus important était le moment où les trois désavantages se sont produits. L'événement se 

produit sur une courte période; par exemple, les conditions météorologiques changent de 

manière irrégulière et les marquages de voie visibles s'estompent en raison de l'usure de la 

peinture sur une courte trajectoire. De même, le virage se produit brièvement sur les routes 

courbes avant que la route ne devienne droite. Pour résoudre ce problème, nous avons 

proposé un système d'assistance pour les techniques assistées par la vision. Le système 

alternatif proposé est insensible à la visibilité du marquage des voies et aux conditions 

climatiques variable. Il est aussi efficace pour la navigation urbaine et constitue une solution 

rentable. De plus, il est plus simple et nécessite moins de calculs. 

7.2 Limitations 

Au cours de nos recherches, nous avons découvert certaines limites que nous aimerions 

aborder au profit des futurs chercheurs. 

Compte tenu de la croissance des technologies avancées pour la localisation des véhicules 

sur le marché, nous avons limité cette recherche aux capteurs qui fournissent des 

informations sur les profils des véhicules et des routes. La deuxième limite est que, sous 

certaines hypothèses, le filtre de Kalman est utilisé pour estimer l’erreur afin fournir des 

estimations par rapport véhicule. Bien que les erreurs d'équation de navigation, les erreurs 

IMU et les mesures GPS aient toutes été linéarisées pour être utilisées dans le processus de 

Kalman, si des événements inattendus se produisent, tels qu'un freinage brusque ou des 

changements dans la dynamique du véhicule en raison d'un dérapage, l'ensemble du système 

devient non linéaire, ce qui rend le Filtre de Kalman inefficace. À l'heure actuelle, un filtre 

plus robuste est nécessaire pour remédier à cette lacune. La troisième limitation est que la 

technique de carte hors ligne, qui nécessite l'extraction de points de nœud, est une tâche 
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chronophage qui nécessite une sélection manuelle de chaque point de nœud le long d'une 

trajectoire donnée. Cependant, cette limitation peut être surmontée en utilisant des techniques 

d'apprentissage automatique. Enfin, seule la pose du véhicule est comparée à la position de 

référence au sol. Nous aurions pu développer un produit pour LDWSS en utilisant des 

algorithmes robustes si la distance latérale entre le véhicule et la référence réelle au sol avait 

été connue dans cette étude. 
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Chapter 7 - Discussion of experiment and conclusion 

At the time of the experiment, the goal was to estimate the position of the ego vehicle 

along the trajectory so that it remained close to the lane level, as shown in Figure 24, The 

vehicle is always kept on the right side of the center node line and is not allowed to deviate 

from the desired lane. The observation at curves in Figure 25, 26 and 27, demonstrated that 

the technique could estimate positions that the camera could not. When the center nodes in 

red are extracted from QGIS software, they are strictly in line geometry rather than 

polynomial, causing the vehicle's estimation in Figure 24, to cross over some center nodes in 

red. Due to the difficulty of estimating lateral distances on maps, quantitative data for 

determining the lateral distance between the ego vehicle and road nodes were not presented 

this time. Future research will concentrate on quantifying the permissible distance between 

a vehicle and road nodes and we will combine the proposed approach with vision techniques 

to achieve robust lane level ego vehicle localization, which is required for lane departure 

system. The research study is concluded in the following paragraph. 

7.1    Conclusion  

Autonomous vehicles require precise and reliable positioning to navigate safely. It is 

critical for vehicle control that the vehicle maintains its lane position. Currently available 

LDWS rely on vision techniques to accurately identify and detect lanes. However, vision has 

several disadvantages, including weather sensitivity, visibility of lane markings, and the issue 

of missing information on curved roads. The most significant issue was the time in which all 

three disadvantages occurred. The occurrence occurs over a short period of time; for example, 

weather patterns change irregularly, and visible lane markings fade away due to paint wear 
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over a short trajectory. Similarly, turning occurs briefly on curved roads before the road 

becomes straight. To address this issue, we proposed an assistive system for vision-assisted 

techniques. The proposed alternate system is insensitive to lane marking visibility and 

varying climatic conditions, is effective for urban navigation, and is a cost-effective solution. 

Additionally, it is simpler and requires less computation. 

7.2    Limitations of the study 

During our research, we discovered some limitations that we would like to address for 

the benefit of future researchers. 

Given the growth of advanced vehicle localization technologies on the market, we limited 

this research to sensors that provide information about the vehicle and road profiles. The 

second limitation is that under certain assumptions, the Kalman filter is used as an estimation 

error to provide vehicle estimates. Although navigation equation errors, IMU errors, and GPS 

measurements have all been linearized for use in the Kalman process, if any unexpected 

events occur, such as abrupt braking or changes in vehicle dynamics due to skidding, the 

entire system becomes highly nonlinear, rendering the Kalman filter ineffective. At the time, 

a more robust filter is required to address this shortcoming. The third limitation is that the 

offline map technique, which requires node point extraction, is a time-consuming task that 

requires manually selecting each and every node point along a given trajectory. However, 

this limitation can be overcome by utilising machine learning techniques. Finally, only the 

vehicle's pose is compared to the reference position on the ground. We could have developed 

a product for LDWSS using robust algorithms if the lateral distance between the vehicle and 

the ground truth reference had been known in this study. 
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Appendix A – Software application used 

Physics Toolbox Sensor suite android application: Data used to determine the position 

of a vehicle. Figure 33 depicts the specifications of the sensors as well as the principles on 

which they operate. The tool provides information such as vehicle kinematics and positioning 

data: 

(a) Kinematics of the Vehicle: 

G-Force Meter - Fn/Fg ratio (x, y, z, and/or total) 

Acceleration (x, y, and/or z) is measured by a accelerometer. 

A gyroscope measures radial velocity (x, y, and/or z). 

(b) GPS positioning data: latitude, longitude, altitude, speed, direction, and number of 

satellites. 

Procedure to operate: 
 

1.) Open application and select type of sensors you want to utilize 

2.) Set update rates of sensors as per your requirement. 

3.) First calibrate and collect initial data. 

4.) Create a folder which will be used in saving recorded data of sensor. 

5.) Push record button on screen for recording sensor data and stop for closing the 

recording. 

6.) Finally, save the recorded data in CSV file format and use it for interpolation. 
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Figure 35 Sensor data about the application is displayed. 
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This application collects, displays, records, and exports.csv data (see figure 34) files 

using internal smartphone sensors. Visit www.vieyrasoftware.net to learn more about case 

studies in R&D. Smartphone hardware determines sensor availability, precision, and 

accuracy. Depending on individual requirements, a combination of sensors can be used at the 

same time.  

 

Figure 36 CSV file which consists of sensor data 
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