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Resumo

A posição geoestratégica portuguesa cria as condições ideais para o teste e desenvolvimento de
tecnologia com aplicação direta em ambientes marítimos, deixando-nos a nós, portugueses, na
linha da frente da investigação de sistemas robóticos que operem no meio aquático. Esses sistemas
têm a capacidade para libertar o Homem de atividades potencialmente perigosas. Os Veículos
Autónomos de Superfície (ASVs), capazes de monitorizar, operar e navegar de forma autónoma,
dependem, no entanto, de uma estimação precisa da localização.

O presente trabalho foca-se na área da estimação da localização de ASVs. Dadas as restrições
impostas por ambientes marítimos, é sugerida uma abordagem baseada em fusão sensorial, por
forma a criar um sistema de localização mais robusto com informação multi-modal, nomeada-
mente informação GPS/INS, LiDAR e visual. Para isso, são utilizadas técnicas Deep Learning,
com destaque para mecanismos de atenção e codificação posicional, para fundir informação com
tendência a falhas, temporalmente desalinhada e irregularmente espaçada.

A alteração da codificação puramente posicional para uma codificação posicional baseada na in-
formação temporal associada às estimativas, dimiuiu o erro de treino dos modelos em cerca de
50%. Os sistemas propostos melhoraram as estimativas de localização, num dataset recolhido em
ambiente real, em 7.7% e 20.7% em translação e rotação, respetivamente, em comparação com o
melhor dos métodos utilizados como input do sistema de fusão (odometria baseada em informação
LiDAR).

Os resultados obtidos comprovam a eficácia do modelo em lidar com dados recolhidos em am-
bientes altamente dinâmicos, com tendências a falhas e defeitos, próprios de cenários portuários,
aumentando a precisão da estimação da localização de ASVs.
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Abstract

The Portuguese’s geostrategic position creates ideal conditions to the testing and the development
of maritime-based technology, leaving us, the Portuguese, on the front line of research in the area
of maritime robotics. These systems can release humans from potentially dangerous activities.
Autonomous Surface Vehicles, ASVs, are systems that are able to monitor, operate and navigate
in an autonomous fashion. These systems, however, are highly dependent on a precise localisation
estimate.

The present work focuses on the field of the localisation of ASVs. Given the harsh conditions
created by maritime environments, an approach based on sensor fusion techniques is proposed,
so that a robust multimodal information localisation estimation system is created, namely with
GPS/INS, LiDAR, and visual information. For that, Deep Learning techniques are used, with
highlight to attention mechanisms and position encoding, so that information that is prone to
failures, temporally misaligned and irregularly spaced can be fused.

The change of a purely positional encoding to a temporally-based positional information decreased
training error by, approximately, 50%. The proposed systems improved localisation estimates, in
a dataset collected in a real-world environment, by 7.7% and 20.7% in translation and rotation,
respectively, when compared to the best localisation estimation method used as input to the fusion
system (LiDAR-based odometry).

The results prove the fusion system’s ability to deal with data collected in highly dynamic environ-
ments, prone to failures and defects, typically seen in data collected in harbor scenarios, increasing
the precision of the localisation estimation tasks of ASVs.
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Chapter 1

Introduction

1.1 Context

For centuries, Portugal has had a close relationship with the sea. Close to half of its borders are

surrounded by the Atlantic Ocean, and its autonomous regions - Madeira and Azores - make it

possible for Portugal to have one of the biggest Exclusive Economic Zones in Europe1.Not only

does it constitute a substantial economic resource, but it also represents a tremendous responsibil-

ity. The extensive area has to be monitored, studied and, eventually, protected. Additionally, the

ever-increasing needs of the global market have led to a rising number of merchant ships sailing

in deep waters. These factors translate into a large number of human resources and, therefore, into

high operational costs, which could be reduced if the vehicles were autonomous [1]. The ben-

efits of reducing the number of crew members and, for that reason, the number of human-made

decisions, go well beyond the economic factor. Indeed, EMSA estimated that human action was

the main cause of marine incidents occurred between 2014 and 2020, with system or equipment

failure coming second on the list 2.

Uncrewed ships or vessels could also reduce the number of casualties in case of an incident,

releasing humans from potentially dangerous functions. Aiming for a future where risks and costs

associated with sea exploration are reduced, Autonomous Surface Vehicles (ASVs) come up as an

appealing solution. An ASV (fig. 1.1) is an autonomous vehicle that operates on the surface of

the water. Usually performing advanced tasks in a completely autonomous fashion, ASVs have

been used for numerous purposes. The scientific community, for instance, has been developing

and using such vehicles for several applications, such as seafloor mapping operations, pollutant

detection, structure inspection [2, 3], harbor monitoring operations, structure recognition [4], etc.

Such vehicles are also common in the military, carrying patrolling tasks for border and coastal

control.

1Resolução do Conselho de Ministros n.º 68/2021, D.R. I Série. 108 (Accessed Jun. 8, 2023)
2Annual overview of marine casualties and inci- dents (Accessed Apr. 20, 2023)

1

http://www.portugal.gov.pt/pt/gc22/comunicacao/documento?i=estrategia-nacional-para-o-mar-2021-2030
https://www.emsa.europa.eu/publications/reports/item/4266-annual-overview-of-marine-casualties-and-incidents-2020.html
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Figure 1.1: SENSE ASV [5]

ASVs rely on an array of sensors that acquire complex information from their surroundings -

exteroceptive sensors - and sensors that monitor internal conditions of the vehicle - proprioceptive

sensors. The former normally consists of GNSS, Radar, Sonar, camera, and LiDAR systems, while

the latter are usually composed of IMUs and motor encoders. Those provide raw data that has to be

processed and then used for tasks like path planning [6], task scheduling, obstacle avoidance [7],

structure detection [8], and localisation estimation [9]. The scope of this work of this dissertation

focuses on the latter, especially on the integration of data from different sensors in a robust Visual

Odometry (VO) system. An agent’s localisation estimation can face many challenges like it is the

case of poor GNSS signals. That is where alternative odometry systems come into hand. VO is the

process of estimating the movement of visual cameras based on visual information. The idea first

saw light in the decade of 1980 and has since been the target of many different approaches and

implementations, given the interest of the scientific community in the fields of computer vision and

autonomous systems. The use of such techniques is still not commonplace in maritime navigation,

and the examples of application of VO in ASVs are scarce, given the lack of fixed references that

allow visual-based algorithms to perceive changes in orientation and position.

Autonomous systems’ ability to perform sequences of complex actions is hugely dependent on the

quality of the localisation estimation that those systems are able to obtain. A defective estimation

can lead to catastrophic results, especially when a system operates subject to tight margins. ASVs

are no exception to the necessity of a good position and orientation estimation. The state-of-the-

art methods for pose calculation of such vehicles usually rely on GNSS and inertial measurement

systems, which can lead to errors superior to a meter in some conditions [10]. Despite being

sufficient for the majority of the length of most missions, some situations are constrained to tighter

position measurements, as is the case of docking maneuvers. In fact, as a vessel approaches a
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harbor, the quality of GNSS measurements tends to degrade due to reflections and attenuation of

the signals that are common near architectural structures, precisely in situations where accurate

localisation measurements are essential.

Even though architectural structures are obstacles to GNSS measurements, they also represent an

opportunity to delve into different sensors with localisation purposes. The use of VO or SLAM

implementations is made possible by the characteristics of such environments, thanks to the use

of visual cameras and LiDARs as data acquisition systems. However, the application of such

light-dependent sensors is not as straightforward as it might appear. Cameras can suffer from

distortion issues when fast movements occur, possibly caused by waves and undulation, or suffer

from sudden exposure fluctuation, while LiDARs’ performance can be severely affected under

marine conditions and its typical phenomena, such as in the case of fog formation [11].

1.2 Motivation

Exploring the strengths and debilities of each sensor could increase the quality of the predictions

made by a localisation estimation algorithm. On top of that, using different sensors in a com-

plementary fashion could also leverage the robustness of a system, in case of sensor failures. In

fact, sensor fusion tries to mimic the way humans perceive the environment based on multi-modal

information. Distinct sensing receptors are used simultaneously during activities that require situ-

ational awareness capabilities. Indeed, different modalities cooperate with each other, so that hu-

mans are able to understand their surroundings in a robust manner. In a similar way, autonomous

systems benefit from the fusion of multi-modal information, acquired by heterogeneous sensors.

Such heterogeneous sensors produce different types of data that might have to be fused, represent-

ing a challenging task, but improving autonomous navigation performance. As a matter of fact,

some sensor fusing techniques are already performed, despite some obstacles such implementa-

tions may face. Those might be related to data imperfections (e.g. uncertainty in measurements),

outliers due to environmental conditions, data alignment (e.g. different sensor frames), different

operational frequencies, etc. [12]. Sensor Fusion techniques tackle obstacles like those mentioned

above.

For that matter, one of the numerous applications of Deep Learning (DL) techniques focuses on

information fusion. Similarly to classical implementations, neural networks can use multi-modal

data to create systems that are more robust or have higher accuracy when performing certain

tasks. However, information fusion algorithms face several obstacles. Questions like when to fuse

information or even how to deal with noisy, missing or unaligned data might arise. Typically,

fusion techniques are classified regarding the moment when that fusion occurs. Early fusion, that

fuses raw data before feeding it to the neural network, middle fusion, where fusion occurs, possibly

more than once, at different depths of the network, and late fusion, that combines the output of

multiple networks of different modalities. No matter the moment where data is fused, the goal

is to be able to employ data-driven methods to a task that used to require a tremendous amount



4 Introduction

of work and thorough sensor calibrations when relying on classic fusion implementations. DL

techniques make, therefore, an interesting solution to the sensor fusion problem, relying on data

to build knowledge, instead of relying on handcrafted algorithms.

1.3 Objectives

Relying on the tremendous advances that Artificial Intelligence (AI) has seen over the years, the

scope of this work focuses on the development of an robust odometry system for maritime environ-

ments, using DL techniques. The main goal is to employ data-driven methods to fuse information

from different data sources in a late fusion fashion to improve the localisation task of ASVs in

harbor and port environments, taking advantage of the knowledge and geometric approaches, and

circumventing the need of very large training datasets. The work focuses on situations where

GPS/INS systems lack consistency, which can happen, for instance, when an ASV approaches a

structure to perform Operation and Maintenance (O&M) missions. Therefore, the developed work

can be decomposed on several different objectives, namely:

• The evaluation of well-established odometry estimation algorithms under maritime condi-

tions, and the discussion of the strengths and vulnerabilities of each of one of the algorithms

under assessment;

• The development of a robust odometry estimation algorithm, based on DL techniques, that

combines multi-modal information from different sensors, namely, visual cameras, LiDAR,

and GNSS/INS systems, taking into account the results of the assessment referred to in the

previous point;

• The proposal and deployment of an autonomous navigation algorithm, based on a unified

and flexible multi-layer software architecture, used for data collection in an autonomous

fashion;

• The collection of a multi-modal dataset in a real environment, using ASVs. The dataset has

to provide a truthful localisation estimation, making use of high-accuracy sensors, used for

ground-truth purposes;

• The evaluation of the proposed algorithm’s results on the dataset collected in a real-world

environment. This means the algorithm is to be tested with signals that are prone to failures,

simulating non-ideal and real-life scenarios.

1.4 Scope of the Work

The work carried out throughout this dissertation was done under the H2020 Project ATLANTIS
3, a project for the development and testing of robotic technologies for inspection and maintenance

3https://www.atlantis-h2020.eu/

https://www.atlantis-h2020.eu/
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of offshore wind farms. This work also contributed for the article "ATLANTIS Coastal Testbed:

A near-real playground for the testing and validation of robotics for O&M" [13], published as part

of the OCEANS Limerick 2023 conference proceedings.

1.5 Document Structure

The present document is divided into five main chapters. Chapter 1 introduces the scope of this

dissertation, the relevance of VO methods, and the importance of fusing sensor data in the context

of autonomous maritime navigation.

In chapter 2, an overview of the present state of the art of VO implementations and data fusion

techniques is presented, for both classical and Deep Learning approaches.

Chapter 3 covers the work carried throughout the course of this dissertation, ranging from the

collection of an odometry estimation-focused dataset and the preparations that lead to it, to the

benchmark, in maritime scenarios, of odometry estimation systems that rely on different modali-

ties, and also presenting an autonomous navigation algorithm proposed for autonomous data col-

lection tasks. Finally, a self-attention-based fusion system is proposed. In chapter 4, the results of

that multi-modal system are evaluated and discussed.
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Chapter 2

Related Work

This chapter presents the state of the art of odometry estimation algorithms, covering the most

recent advances and major works the the research field of localisation estimation systems. With

a particular emphasis on visual-based methods (section 2.2), it covers classic or geometric ap-

proaches and more recent data-driven algorithms. The scarce application of VO in maritime envi-

ronments is also presented, as well as the most conventional GPS/INS localisation systems usually

adopted by ASVs. Then, existing multi-modal odometry algorithms are presented (section 2.3).

Finally, the content covered in this chapter undergoes a critical review in section 2.4, concentrat-

ing on the weaknesses of the existing pose estimation systems, highlighting the obstacles that the

fusion model presented in section 3.4 must circumvent.

2.1 Background

Odometry is a dead-reckoning technique to estimate the change of position and orientation over

time. By norm, the pose of an agent is incrementally calculated with respect to its initial position.

The concatenation of motion estimates between sensor measurements is what allows for a relative

pose calculation. The use of wheel encoders is one of the simplest approaches to the odometry

problem, but a large number of distinct sensors might be adopted. To name a few, LiDAR, Radar

and visual camera-based odometry systems have been explored for decades. Egomotion is, by

definition, the 3D motion of a system relative to its environment. The process of estimating the

egomotion of an agent using single or multiple cameras as input is called VO, whose formulation

does not differ much from classical odometry estimation methods. The idea is to iteratively calcu-

late the displacement of a sensor between different measurements (fig. 2.1). In the case of a VO

system, that displacement is calculated based on the characteristics of consecutive image frames.

Therefore, the sequential reconstruction of the path followed by an agent is made by concatenating

the displacements over time. Those displacements can, sometimes, be wrongly estimated, leading

to error accumulation, i.e. drifts. An optimisation step can be performed to refine the pose calcu-

lation based on a fixed number of previous image frames. In spite of being an area that has been

7
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extensively studied over the years, VO and V-SLAM methods are still not widely used in ASVs as

their performance is largely affected by marine environment constraints.

To recover from drifts and error accumulation, typical in VO, an external data source can be

used. GNSS makes an interesting solution to that problem, as these sensors estimate absolute

position, unlike dead-reckoning methods. The fusion of absolute and relative pose estimators

might increase the robustness of a localisation system. Relative pose estimators could benefit

from high-rate execution cycles, making up for the general GNSS’ low sample rate or even GNSS

signal outages.

Figure 2.1: In this figure, three two-dimensional poses (Pt−2, Pt−1 and Pt) are represented on
a global frame (W ). These poses can be expressed in relation to the global frame, as global
poses (represented by black arrows), or relative to each other, as relative poses (represented by
blue arrows). Dead-reckoning methods, as it is the case of most of VO methods, work by the
principle of iteratively estimating relative poses between two measurements. An example of a
localisation estimation method that calculates position relative to a global frame (absolute poses)
is a GNSS/INS system, that references position and orientation relative to the planet earth.

Visual SLAM (V-SLAM) implementations go even further on the error accumulation issue by

simultaneously creating a map of the environment. When an area that had already been mapped

is revisited, a loop closure can be detected, reducing error accumulation. Despite making the

localisation task more accurate, V-SLAM methods are usually computationally more expensive

than VO systems [14].
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2.2 Visual Odometry

The complexity of VO and V-SLAM systems has been growing over the years. Leveraged by

the development of computer vision, combined with the increasing performance of computational

hardware, these systems have been presenting solid results in some environments and conditions.

There are, however, several different possible approaches when dealing with vision-based local-

isation systems, whether data is acquired by a monocular or stereo camera, or data processing is

made via traditional computer vision methods or via AI methods (e.g. DL approaches).

2.2.1 Geometric Approaches

Geometric approaches estimate the egomotion of a camera by applying handcrafted algorithms to

a sequence of images and can be divided into feature-based methods, appearance-based methods

or hybrid methods (fig. 2.3).

Figure 2.2: A typical Feature-based Visual Odometry Pipeline [14]

To better understand why the resort to VO is still not commonplace in maritime environments,

a succinct description of a visual odometry system’s pipeline is presented (fig. 2.2). Put sim-

ply, an image is captured and analysed. That analysis, which can be preceded by some image

pre-processing, consists of identifying distinct features. Knowing the camera’s intrinsic param-

eters (focal length, optical center, and skew coefficient) allows points of those characteristics to

be mapped into a three-dimensional space. The same search for features is done as a new image

is captured. Comparing those with the ones extracted from the preceding image makes it possi-

ble to perceive the change of position in the two-dimensional image plane and thus in a three-

dimensional space. Interactively calculating that motion is what makes it possible to sequentially

reconstruct the path followed by an agent.

Features, however, are sometimes difficult to extract and match (or track). On top of that, they

must also be fixed points in the 3-D space, since a moving agent is able to perceive its motion

when it has some fixed references to rely on - just like the human perception of motion through

visual input. Hence, visual odometry systems should, ideally, only rely on fixed features, since

the ones that are not fixed lead to motion estimation errors. Some VO implementations break the
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(a) ORB-SLAM [15] features, extracted and tracked using a
feature-based approach to the VO problem. Green features rep-
resent points that are close enough to the visual cameras, while
blue features are too far to be considered by the algotrithm.

(b) Semi-Dense Visual Odometry for a Monocular Camera [16].
Instead of extracting distinct visual features that can be tracked
over time, this appearance-based approach minimises the pho-
tometric error over image frames, in regions that have a non-
negligible image gradient

Figure 2.3: Example of a feature-based (top) and an appearance-based (bottom) method.

pipeline described above by, for instance, using the intensity information of all pixels of a sequence

of image frames and minimising photometric errors between image frames. More recently, the

scientific community started turning its attention to Deep Learning techniques to regress visual

camera poses.

Feature-Based methods

Feature-Based methods rely on distinct characteristics of image frames, which might consist of

edges (boundaries between image regions with distinct properties), corners (interception of edges),

blobs (image areas with pixels that share similar properties), etc., and are commonly referred to

as features in the computer vision field. These features are tracked or matched between image

frames and the difference in position of those features is what makes it possible to calculate the

camera motion in the 3D space. Features have properties that make them appealing to the design

of geometric VO models. They are local and, for that reason, robust to occlusions, can be effi-

ciently extracted and usually appear in huge numbers in a single image. On top of that, images

of the same scene tend to have repeatable features, even when subject to different viewing condi-

tions. A plethora of feature extraction methods are currently available. Given the characteristics

of feature-based VO methods, the most common types of feature extractors for motion estimation

rely on corner or blob detectors. After the extraction process, a feature correspondence has to be
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Figure 2.4: Epipolar geometry (image from [14]). Point X in a 3D world frame is projected onto
two consecutive image frames as p̃ and p̃′. Notice that dragging X along the line segment that
connects X to the origin of Ck−1 does not change the coordinates of p̃ on the image frame, but
drags p̃′ along a line on the image frame from time instant k. That line is the epipolar line. This
geometry principle is what makes it possible to extract the essential matrix and, therefore, the
translation and rotation between two image frames.

performed to calculate motion. Correspondence can be calculated directly from the image fea-

tures in the 2D image planes (2D to 2D), from a 3D structure (3D to 3D) or from a 3D structure

to an image plane (3D to 2D). The 2D to 2D approach estimates motion directly from the change

in position from correspondent features in two consecutive frames in time. The essential matrix,

encapsulating a rotation and a translation between two camera frames is estimated using epipolar

geometry (fig. 2.4). The 3D to 3D methods project features from the image planes into a 3D space,

usually thanks to stereo camera pairs, estimating motion and its scale based on the triangulation of

features. Lastly, 3D to 2D correspondence methods have been proved to be able to produce better

results when compared to the previous implementations [14]. 3D feature points are reprojected

onto the following image’s 2D plane, reducing the reprojection error of features.

Mono-vo [17], a monocular solution for the VO problem, uses the FAST [18] corner detector to

extract features, and a Kanade-Lucas-Tomasi [19] feature tracker to find feature correspondences.

The scale ambiguity problem, common to monocular approaches, is solved using an external data

source. In order to solve the scale ambiguity problem, TGVO [20] uses the output of a calibrated

stereo camera to estimate motion. Images are divided into patches, or buckets, and the number

of features in each bucket is reduced to decrease complexity and increase the performance of

the algorithm. RANSAC [21] is then applied to reject feature outliers extracted from dynamic

objects. Lastly, a Kalman Filter is used to estimate the state of the dynamic system. Regarding

V-SLAM implementations, ORB-SLAM [15, 22, 23] uses the ORB feature detector [24], an open-

source feature extractor and descriptor. ORB-SLAM allows for both monocular, stereo and RGB-

D camera systems and performs a real-time mapping of the environment, while also estimating

the odometry of an agent. A loop-closure detection is used, relying on a bags of words place

recognition module, improving the localisation estimation when a local is revisited.
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Appearance-Based methods

Unlike feature-based methods, appearance-based implementations use pixel-intensity information

from the entire image. Not only are they computationally more expensive when compared to

feature-based methods, but they also tend to lack some robustness, due to their susceptibility to

brightness variations. Nevertheless, some researchers have explored the potential of such methods,

like it is the case of DSO [25].

DSO uses images from a monocular camera and applies a direct method to sample points, not only

with distinct characteristics, like features, but also with points that have weak intensity variations

when compared to their neighbors. This way, the method relies on more information than feature-

based methods, but ignores some points to decrease computation time without loss of performance.

It is heavily dependent on calibrations, namely a geometric and a photometric calibration, and the

use of rolling shutter cameras is not recommended. A stereo implementation of the method has

also been proposed by Wang et al. [26].

LSD-SLAM [27] is an example of a V-SLAM monocular appearance-based implementation. Like

DSO, LSD-SLAM tries to minimise the photometric error between image frames and a given key

frame. This approach differs from geometric implementations, where the goal is to minimise the

geometric projection error of features.

2.2.2 Deep Learning Approaches

The first DL architectures to be developed for pose estimation purposes learned via supervised

learning methods. PoseNet [28] was the first implementation of a Convolutional Neural Network

(CNN) that could regress the pose of a camera from monocular visual information. The neural

network uses pre-trained weights from a CNN developed for classification purposes and, aided

by transfer learning, is able to make predictions even in harsh conditions, such as poor light and

dynamic objects, and with unknown camera intrinsic parameters. The work was later refined by

using a loss function based on the geometric projection error from the predicted pose [29]. PoseNet

(fig. 2.5) does not consist, however, of an odometry estimation implementation. For that matter,

the pose is regressed from a single image frame and not from a sequence of images. In the work

proposed by Clark et al. [30], the pose is estimated from a stream of temporally aligned images,

improving the results attained by PoseNet, while the core of the CNN remains the same. That

is, in fact, the path followed by most VO systems developed with DL techniques. Making use

of temporal dynamics, such implementations rely on Recurrent-CNN (RCNN) models to retain

information in between image frames. DeepVO [31], for instance, estimates the camera motion

between two consecutive raw monocular images, consisting of an end-to-end VO system. The

network receives two stacked images as an input, extracts features via a CNN, inspired by the

work by Dosovitskiy et al. [32] and their proposed network for optical flow estimation, and feeds

them into two stacked Long Short-Term Memory (LSTM) layers, that output the final pose. The

network presented results compared with monocular feature-based implementations, but produced
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Figure 2.5: PoseNet [28] architecture. Image courtesy of [37]. The encoder extracts features from
images, using pre-learned convolution operations, and poses are regressed in subsequent layers.
In PoseNet, orientation is represented in the form of unit quaternions.

high translational errors at high speeds. Highway scenarios also represented difficult environments

for the networks, due to the lack of features and the large number of moving objects. Wang et al.

[33] proposed a probabilistic VO system. In addition to the estimation of the pose, the model

also regresses the uncertainty that the said estimation might carry. The authors pointed out that

those uncertainties could be used to produce sensor fusion-based odometry systems, such as the

fusion of a VO system with GPS measurements (see section 2.3.2). The work by Valada et al.

[34] focused on reducing the drift that usually comes from the error accumulation of odometry

systems. Two separate sub-networks regress both egomotion and a global pose, sharing weights

so that the global pose estimation task can be improved via deep auxiliary learning. The inputs of

the network consist of two consecutive monocular images, and the final goal of the architecture is

the absolute location estimation. In other words, the odometry network aids the global localisation

network to by sharing information. Using a similar line of thinking, but shifting the target to

the odometry task, Lin et al. [35] achieved promising results using two separated RCNNs. The

outputs of the VO and the global pose network are then fused via fully-connected fusion layers,

improving the odometry estimation task by a great margin when compared to DeepVO [31] on the

KITTI benchmark [36], a well-established dataset in the computer vision and autonomous driving

community.

Even though supervised DL approaches to the VO problem have proved to be able to achieve

good results, it is usually necessary to label huge amounts of data for training purposes, which is

a weary task. Thus, unsupervised learning comes into play, aiming to release people from such

work. Ummenhofer et al. [38] made way to such learning problems, with an architecture that could

learn depth and motion from two images without any supervision signals, being the structure from

motion the main goal of their work. The major leap forward in unsupervised methods was made

with SfMLearner [39]. The work consists of two distinct sub-networks: one calculates a depth

image from a single monocular image and the other, aided by the depth image, learns to estimate

motion from a stream of five images. The goal is to minimise the photometric error of a projec-

tion from a target image frame to another nearby image frame. Additionally, an explainability

mask is estimated, so that dynamic objects and occlusions can be ignored by the photometric loss

during training. GeoNet [40] also used several distinct sub-networks, similar to SfMLearner [39].

However, in GeoNet, occlusions and dynamic objects are treated differently. Depth and motion
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Figure 2.6: Transformer Network Architecture [43]. Originally developed for Natural Language
Processing (NLP) tasks. The encoder (left block) extracts features from an input sequence and
feeds them into the decoder (right block), where self-attention operations merge information with
previous outputs of the network.

information is estimated by two sub-networks and then fused, producing the rigid flow, which is

then cascaded by a network that estimates object movement relative to the world plane. In Un-

DeepVO [41], the absolute scale recovery is done using a depth map, which is trained by a set of

stereo images. During test time, however, only a monocular image is required for the estimation

of both depth and pose information. It is worth noting that all of the aforementioned unsupervised

methods depend on the information given by the camera’s intrinsic parameters. Those compose

the intrinsic matrix, which usually has to be computed via a calibration process and defines the

projection of 3D points onto a 2D image plane. To circumvent that calibration process, a few au-

thors have explored the ability of data-driven models to predict the intrinsic matrix, like is the case

of the work by Chen et al. [42]. The training phase relies on loss functions that capture geometric

constraints and photometric consistency, while using solely monocular images. The intrinsics are

optimised by a multi-view 3D structure consistency loss, by reprojecting a pixel from a source

image frame to a target frame.

In 2017, the introduction of Transformers networks [43] (fig. 2.6) revolutionised DL algorithms,

with focus on textual structured data. Furthermore, these models have been showing their ability

to perform well in tasks that are usually carried by CNNs, such as image recognition tasks. VO

algorithms have also been implemented, as in the case of the work by Li et al. [44]. The Trans-

former architecture is able to model geometry and temporal information over a short period of

time and to regress a 6-DoF pose in an unsupervised fashion. The transformer model’s results are,

however, not as good as the results obtained by the other architecture proposed in the same publi-

cation, which uses optical-flow predictions to estimate pose variations. In fact, the architecture is
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mainly used in collaborative training of a more complex model. The overall architecture outper-

formed other unsupervised implementations, but performed poorly in situations where a sequence

of image frames represent a static camera, with no variation in pose.

2.2.3 Visual Odometry in ASVs

Following the path of autonomous driving, where visual information is often used for situational

awareness and odometry estimation [45], some investigation has been done, studying the potential

application of visual cameras in autonomous or unmanned boats and ships. Volden et al. [46]

used fiducial markers as guidance to the autonomous docking maneuver. The detection of such

markers is done using a previously trained CNN. Both a stereo and a monocular implementation

were tested, with the latter achieving the best results. The use of markers is not ideal as it requires

modifications to the environment where the autonomous agent might operate, making it depen-

dent on external factors. However, the examples in the literature of marker-free visually assisted

navigation techniques is still very scarce. Regarding visual odometry or visual SLAM techniques,

Kriechbaumer et al. [47] performed an evaluation of two stereo geometric VO implementations in

inland waters, using feature and appearance-based methods, with the best results produced by the

feature-based VO implementation. Still, the results were not good enough, as the error accumu-

lation in long trajectories assumed very large values. Wang et al. [48] compared the behavior of

ORB-SLAM [22] against DSO [25] in harbor conditions. They concluded that ORB-SLAM per-

formed poorly under a large-scale harbor scene, where a big portion of the image is occupied by

the sea surface, thus not being able to extract robust features. On the other hand, in spite of having

produced better results for the odometry task, DSO is not able to perform loop-closing detection,

unlike the feature-based method, taking its toll on position estimation results over time.

2.3 Multi-modal Odometry

Fusing classical VO systems with other sensors’ measurements is an area of investigation that has

been intensively studied over the past years. From classical approaches to data-driven methods, a

plethora of algorithms is available as of today. Classical methods are usually divided into loosely

and tightly-coupled approaches, whereas DL methods are normally divided into early, middle or

late fusion techniques, as described below.

2.3.1 Classic Fusion Methods

Sensor fusion techniques have been employed for decades, like it is the case of the use of the Ex-

tended Kalman Filter (EKF) to perform position and orientation estimation of non-linear systems,

coping with noisy measurements and estimation errors. A common practice of such EKF applica-

tions is of the fusion of GPS and inertial measurements for outdoor and maritime applications [49].

The filter fuses position and orientation information from a GNSS and an IMU, respectively, rely-

ing on uncertainty estimates, expressed by covariance matrices. Kalman Filters and its variations
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rely, however, on Gaussian sensor models, which might not always be a truthful representation

of a sensor. In order to deal with non-Gaussian models, Monte-Carlo methods, such as Particle

Filters, come up as an alternative [50], despite being computationally more expensive.

In maritime navigation, the fusion of GNSS and inertial measurements still makes up for the lack

of better (and cheaper) systems. The use of the well-known EKF is the most common approach [5,

51]. In fact, even different approaches usually rely on variations of the Kalman Filter framework

as the backbone of the GPS/INS-based localisation method, like it is the case of the work by

Naeem et al. [52], who proposed a Fuzzy logic adaptive Federated Kalman Filter. The goal was

to detect and isolate faults from the individual sensors, adding robustness to the navigation task.

Romanovas et al. [53], further exploited Kalman Filter’s capabilities, by adding a third sensor,

a Doppler Velocity Log, to a GPS and IMU system, still taking advantage of a non-linear fusion

filter when the vessel is subject to GPS outages, even when those failures last for a long period of

time.

With highlight on visual-inertial odometry systems, driven by the potential applications in UAVs,

different types of fusion methods have been developed. The goal is to fuse the information of

a proprioceptive sensor - an IMU - and an exteroceptive one - a camera. Visual-inertial odom-

etry systems can be divided in loosely and tightly-coupled approaches. The former use IMU

measurements to aid a main odometry estimation modality. The latter fuse information from

the sensors, frequently resorting to factor-graph approaches. Most loosely-coupled methods are

filtering-based fusion techniques. Filtering-based approaches commonly resort to EKFs, using

IMU measurements for the filter’s prediction phase and visual features to compute the update

steps [54]. Although filter-based approaches tend to use less computational resources when com-

pared to optimisation-based (or tightly-coupled) approaches, they are usually outperformed by the

latter. That happens because optimisation methods estimate pose by optimising key information

from images and inertial measurements. VINS-Mono [55] is a well-established implementation of

such approaches. An initialisation process loosely fuses IMU and camera measurements in order

to recover the absolute scale of the movement. Then, a tightly-coupled non-linear optimisation

problem is solved over a bounded sliding window containing measurements from both sensors.

Additionally, a loop closure detection module is proposed, which increases the complexity of the

localisation process, but also increases the overall accuracy of the system. Building upon pre-

vious implementations, ORB-SLAM3 [23] is able to perform fusion between visual and inertial

measurements. The implementation works on monocular, stereo and RGB-D camera systems and

outperforms most classical visual-inertial odometry systems in different scenarios.

Other types of sensors have also been in use over the past years. LiDAR sensors, for instance,

have been gaining popularity thanks to the high precision ranging measurements, based on the

time-of-flight principle of light beams. The price of such sensors can still have a deterrent effect

on many applications, but it has not diminished the interest of the scientific community. V-LOAM

[56] modifies previous works from the same authors in order to fuse a visual odometry system
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Figure 2.7: Factor-graph from LVI-SAM [57]. The approach is formulated as a maximum a pos-
teriori (MAP) problem, solved by jointly optimising constraints from IMU preintegration, visual
and lidar odometry, and loop closure in a factor graph.

with a LiDAR odometry implementation. Visual odometry estimates change in motion at high

frequencies (60Hz), aided by depth information acquired by a LiDAR. Those LiDAR measure-

ments are also used to refine the visual odometry estimates at a much lower rate (1Hz). This

way, robustness is added to the visual odometry module, which can lack some consistency in low

features environments or low-light situations. Going even further, Shan et al. [57] fused a tightly-

coupled visual-inertial odometry system with a tightly-coupled LiDAR inertial system (fig. 2.7).

The result is a tightly-coupled Lidar-Visual-Inertial Odometry method that fuses data from three

different sensors. To increase the robustness of the whole system, the method is able to function

even when one of the sub-systems fails.

Concerning sensor fusion techniques for autonomous crafts with odometry purposes, not many

publications are available, as GPS/INS odometry is still the standard for maritime navigation.

An exception to that was the paper by Leedekerken et al. [58], where a SLAM implementation

is proposed for navigation in conditions where GPS signal might lack some consistency. The

mapping of the environment is made both above and below the water surface, using measurements

from a LiDAR and a Sonar sensor. Both modalities are projected into a voxel tree and, then,

submaps acquired during short periods of time are matched against a local map via Iterative Closest

Point (ICP).

2.3.2 Deep Learning Methods

Combining sensor fusion and DL has led to the development of robust learning-based odometry

systems. Similarly to classical approaches, visual and inertial information make an interesting

combination for such systems. VINet [59] was the first DL implementation of a visual-inertial

odometry system, fusing the output of a previously trained CNN and the measurements of an

IMU. As visual and inertial sensors usually have different operational frequencies, the authors

used an LSTM unit to store information from a sequence of IMU measurements. The informa-

tion is later fused using a Core-LSTM, trained in a supervised fashion. Similar implementations

have been tested in environments that represent harsh operational conditions, like it is the case of

underwater navigation [60]. Almalioglu et al. [61] enhanced the visual-inertial system with an

unsupervised implementation of the odometry estimation. On top of that, a set of measurements
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from the IMU is organised in a 2D matrix and then processed via a CNN, extracting features from

those measurements. The features are then fused with the ones extracted from images and the

agent’s pose is regressed. Using a very different architecture, Wan et al. [62] used learning-based

sub-systems to regress the pose from each individual sensor and then fused the information with a

classical method, using an EKF.

VLONet [63] fuses LiDAR point clouds with visual data to estimate motion in an unsupervised

way. The 3D points are projected onto a 2D frame, having the camera frame as a reference,

providing depth information to the system. The network is based on an encoder-decoder structure

and the training phase relies on a siamese architecture that calculates losses as a function of the

flip consistency of both depth and pose predictions. Also using a LiDAR sensor, but fusing it

with inertial measurements instead, Javanmard-Gh et al. proposed DeepLIO [64]. To structure

the point cloud data, points pass through a spherical projection. Two sub-networks independently

extract features from both modalities, which are then fused using an attention-based soft-fusion

method.

Some probabilistic models have also been explored. Apart from pose, uncertainty might also

be estimated, making it possible to predict motion with more confidence from the information

extracted from each modality. Kaygusuz et al. [65] fused pose predictions from the data of

multiple cameras. Image features are extracted and then fed into an MDN [66], which regresses

pose transformations and uncertainty in a supervised and unsupervised way, respectively. A fu-

sion module consisting of Multilayer Perceptrons and an RNN regresses the final 6-DoF motion

estimation. Also using density estimates, Pillai and Leonard [67] experimented a learning-based

VO system fused with intermittent GPS updates, in order to recover from drift errors that come

with dead-reckoning systems like it is the case of odometry estimation.

These DL approaches are, however, still highly dependent on very large datasets, given the high

capacity of CNN-based architectures. On top of that, most of these works did not result in open-

source repositories, making it very hard to assess the performance of such implementations in

custom datasets.

2.4 Critical Review and Challenges

In the previous sections, some of the most relevant works in the VO research field were presented.

An overview of methods that fuse visual information with other modalities for localisation pur-

poses was also done, showing there are many different approaches when dealing with images for

leveraging the performance of pose estimation systems. This section casts a critical look at those

different approaches, always taking into account the near-the-shore environment where the work

of this dissertation has been conducted.

If it is sure, as it has been demonstrated previously in this chapter, that VO is yet to be considered

a viable solution for USVs’ usage, there is also a gap to be filled regarding research in this area.
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The lack of publicly available datasets with a focus on visual (and LiDAR) data makes it very hard

to deploy odometry estimation systems on bodies of water. Still, the results achieved by different

techniques on publicly available datasets, like the KITTI [36] dataset, offer a glimpse of what is

to be expected from visual and fusion odometry systems in certain conditions.

A first glance through the top spots of the KITTI dataset evaluation page 1 expose the lack of

end-to-end data-driven odometry methods. Indeed, visual DL methods that have been able to

achieve reasonable performance are those that fuse geometric knowledge with learnable param-

eters (e.g. DVSO [68], where deep depth predictions are incorporated into an appearance-based

VO method [69]). As to the reason why DL approaches still lack performance when compared to

classical ones, several factors might come into play. First, the lack of availability of the so much

needed training data, where a lot of different scenarios are covered, is certainly the major draw-

back. Second, classical approaches have been growing in robustness and consistency in specific

environments and conditions, making these methods very challenging to surpass performance-

wise.

Regarding VO classical approaches, a huge problem arises when dealing with images captured

above the water: most of the area of the image represents the water itself, or even the sky. Unlike

driving environments, where features extracted from the ground plane are reliable, those extracted

from maritime scenarios are prone to reflections and distortions of the water. Weather conditions

also have the potential to further unveil the weakness of VO systems. Undulation, for instance,

imposes fast motion and perspective changes, which can severely distort images, affecting feature

extraction and/or tracking. Appearance-based approaches are also prone to erroneous photometric

error estimation between images, as a significant portion of those images is not static. Adding to

that, most of the time, navigation is made in textureless places (e.g. offshore), making it impossible

for VO systems to operate.

Finally, fusion algorithms have been demonstrating their ability to achieve superior performances,

extracting from different sensors’ signals their strongest qualities, but they are still far from being

perfect. Classical techniques are usually dependent on the finest calibration procedures, which

take time and resources. On top of that, disturbances in the environment and, therefore, in sen-

sors, might severely degrade the quality of those calibrations, and the sea is known for being

very harsh on materials. Besides that, when operating near structures, GNSS/INS measurements

tend to degrade. GPS signals can suffer from reflections, and magnetic fields can be distorted by

ferromagnetic structures, usually present near harbors. These effects are not captured by sensor

calibrations. DL stands as a solution to those problems. It totally or partially circumvents the

necessity to perform thorough extrinsic calibrations while still getting the best of each modality

to be fused. Not only can DL methods fuse different sources of information, but they also can

leverage handcrafted and robust classical algorithms with knowledge extracted from data. That is

the direction this work is heading to over the following chapters, with a focus on the performance

1https://www.cvlibs.net/datasets/kitti/eval_odometry.php

https://www.cvlibs.net/datasets/kitti/eval_odometry.php
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of such odometry estimation algorithms in maritime environments. On top of that, a late fusion

approach is used, reducing the capacity of the proposed model, meaning smaller training datasets

can be used to achieve good performances.



Chapter 3

Self-Attention Multi-Modal
Odometry

The present chapter describes the work on the gaps mentioned in chapter 2. For that, a dataset had

to be collected under real-life conditions. The problem to be addressed is formulated in section

3.1. In section 3.2, the scenario where data was acquired is described, as well as the used vehicles

and their preparation. Then, in section 3.2.1, a modular software architecture is proposed, which

was later used for autonomous data collection. Section 3.3 is a benchmark of existing and well-

established odometry systems, some of which are later selected as the input of a self-attention-

based fusion network (section 3.4).

3.1 Problem formulation

A rigid-body transformation, AHB ∈ SE(3), relates the position, orientation or pose of an object

from the perspective of frame A to that of frame B. AHB comprises both a rotation, ARB ∈ SO(3),

and a translation, AtB. Notation usually makes use of the form of homogeneous matrices and

vectors such that:

AHB
(4×4)

=

 ARB
(3×3)

AtB
(3×1)

0 0 0 1

 , (3.1)

Meaning a point p, from the perspective of frame A, A p, can be obtained, as:

21
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A p̃
(4×1)

=

 A p
(3×1)

1

= AHB
(4×4)

B p̃
(4×1)

, (3.2)

, where p̃ stands for the homogeneous representation of p Additionally, B p can be obtained from
A p, given the transformation from A to B as:

B p̃ = AHB
−1 ·A p̃ =B HA ·A p̃, (3.3)

These are the foundations of the odometry estimation problem that is covered in section 3.4. Other

representations of rigid-body transformations are valid. In fact, computations with rotations are

normally made making use of unit quaternions. A unit quaternion, q, is a four-dimensional data

structure, with one real part and three imaginary components, q = w+xi+yj+ zk. The imaginary

components define an axis of rotation, while w gives the magnitude of the rotation around that

axis. A simpler rotation representation resorts to Euler angles. Euler angles may be extrinsic

(rotations about an original and fixed frame), or intrinsic (rotations about the axes of the rotating

coordinate system). In mobile robotics, the former is of standard usage, usually referred to as

roll(φ) (rotation about the x axis), pitch(θ) (rotation about the y axis) and yaw(ψ) (rotation about

the z axis). There is, however, a major drawback concerning this last representation of orientation,

as singularities might occur. For that reason, the usage of Euler angles is not encouraged. Either

way, there is a direct relation between any of the conventions described above [70], and in this

document, there are references to all three of those conventions.

Let iH be a set of the last n pose transformations of a set of odometry estimation systems, i ∈
S = {1,2, ...,s}, so that iH = {0

i H1,
1
i H2, ...,

n−2
i Hn−1,

n−1
i Hn}. The fusion system can be expressed

as:

f H = f (1H,2 H, ...,s H), (3.4)

where f H is the set of the last n pose transformations, as estimated by the fusion system. This

means that the k’th pose of an agent can be computed, through composition, and relative to the

first estimation, as:

0Hk =
k

∏
i=1

i−1Hi, (3.5)
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3.2 Data collection: building a real-world maritime dataset

Chapter 2 laid bare the biggest barrier to the development of a data-driven fusion algorithm: the

lack of available data collected by vessels. The course of action of the present work started, there-

fore, with real-world data collection. In this regard, data was acquired in the ATLANTIS Coastal

Testbed, in Viana do Castelo (figure 3.1), where the available infrastructure creates the conditions

for testing and simulating O&M activities in offshore wind farms. The testbed provides a wide

and dynamic scenario, subject to the navigation of a variety of watercrafts, and is equipped with a

floating structure that resembles that of an offshore wind turbine. Hence, this work was performed,

in its entirety, under realistic maritime conditions, with real ASVs, described ahead.

Figure 3.1: The ATLANTIS Coastal Testbed, in Viana do Castelo, and the floating structure,
DURIUS.

Given the ample scene provided by the ATLANTIS testbed and the exposure to harsh maritime

conditions, the predicted barriers to the acquisition of visual data are confirmed. Figure 3.2 depicts

some of the challenges to be overcome. While navigating on the testbed, the ASV has to deal

with images of non-static objects, such as floating platforms and watercrafts, which trigger a

misleading motion perception. In some situations, the only static and reliable objects are very far

from the place where the ASV might be navigating (distances superior to 200 meters). In others,

luminance conditions, natural of an outdoor environment, can take its toll in the performance of

VO algorithms.

For data acquisition, two ASVs were used. The first, the SENSE ASV (fig. 1.1), was used for

initial tests and data collection. SENSE is a catamaran-based craft, suitable for operations in

nearly flat water conditions. Then, a more robust craft, Nautilus (fig. 3.3), served the purpose

of the majority of the work. Nautilus has a monohull configuration that allows it to perform

under moderate sea state conditions. Both vehicles carry a variety of sensors, suitable for O&M

activities.

Focusing on the array of sensors available on Nautilus 3.4, there are available:
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(a) Features of non-static objects. (b) Features too far from the ASV.

(c) Harsh luminance conditions. (d) Textureless image.

Figure 3.2: Testbed harsh conditions to VO.

• Two visual cameras: Bandwidth limitations imposed that the image resolution was set to

1280x720 pixels, and the frame rate to 10 frames per second. The image format was also

changed due to the available bandwidth. An 8-bit Bayer filter reduces the dimensions of

the data packets during the transmission of information, hence reducing the load on the

networking hardware. An external triggering software was developed, allowing the cameras

to acquire synchronized images. This means the camera assembly can work as a stereo

perception module, with a baseline of 50 centimeters;

• A 128-channel LiDAR: Extremely precise, a sensor that makes use of the time-of-flight of

light beams principle, and allows for accurate ranging measurements over a 360º field of

view (FoV). Like the cameras, LiDAR measurements are made at a frequency of 10Hz;

• An autonomous navigation module: Apart from the control module available, which is not

used for the purpose of this dissertation, this autonomous navigation module is equipped

with an IMU and a GPS, that output position and attitude measurements relative to an on-

earth fixed referential;

• A Real Time Kinematic (RTK) GPS: Allows for centimetric accuracy position measure-

ments, relative to a fixed base station. Used for the generation of the ground-truth signal;

• A 9-DoF IMU: Outputs orientation, angular velocity, and linear acceleration information,

with a yaw root mean squared (RMS) error of 1 degree. Like the RTK GPS, this sensor is

used for ground-truth purposes.
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(a) Nautilus navigating on the ATLANTIS
testbed.

(b) Droplets of water on the camera cage after.
This is another barrier to the usage of visual sen-
sors on ASVs.

Figure 3.3: Nautilus ASV.

Some other sensors are also available, as it is the case of a multibeam echosounder or a thermal

camera. Those, however, are outside the scope of the present work. The sensors available to the

SENSE ASV do not differ much from those present on Nautilus. Yet, SENSE was mainly used in

the early stages of the work (see subsection 3.2.1). Both vehicles are built upon a Robot Operating

System (ROS) [71] environment.

Sensors Calibration

The value of the data collected during campaigns in the ATLANTIS testbed cannot be dissociated

from the quality of the measurements each used sensor does. Plus, as seen previously, classic

VO approaches are dependent on accurate camera calibrations. This subsection covers the work

carried to perform the calibrations of two of the sensors in use: the IMU and visual cameras.

The 9-DoF IMU in Nautilus outputs orientation, using sensor fusion to get the most out of each

individual sensor. Regarding yaw or heading information, the sensor fuses data from a gyro-

scope and a magnetometer. Magnetometers make use of the Earth’s magnetic field, which raises

two problems. First, the magnetic field is neither constant along the Earth’s surface nor constant

over time. Second, materials surrounding an IMU can cause magnetic distortions, drastically af-

fecting the magnetometer’s measurements. The compensation of the deviation imposed by the

Earth’s magnetic field is done by adding the value of the magnetic declination on the location

and date where data was collected. In Viana do Castelo, by the time data was being collected,

magnetic declination (deviation of the Earth’s magnetic north to the true north) measured at ap-

proximately −1.47 degrees. Concerning magnetic distortions caused by ferromagnetic objects

near the IMU, a normalization procedure was performed on the measurements of the magnetic

field strength.

For the stereo visual cameras, two distinct procedures had to be performed. First, each individual

camera has to be calibrated, to represent the camera model. Then, a stereo calibration procedure
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Figure 3.4: Nautilus sensors and actuators model.

rectifies the image captured by both cameras, aligning epipolar lines (fig. 2.4) with the horizon-

tal image axis. An OpenCV implementation1 of the calibration technique proposed by Zhang

[72] was followed. Intrinsic parameters are computed and then jointly optimized with lens dis-

tortions coefficients. After this calibration, 3D points are easily projected onto an image plane,

and distortions are eliminated. Following an intrinsic calibration, a stereo rectification process

was performed, meaning depth (or scale) information can be extracted based on the disparity of

the same world point on images from the two cameras. Figure 3.5d depicts a point-cloud, with

three-dimensional information computed from the stereo camera set.

3.2.1 Multi-layer Universal Architecture: sample application for data acquisition

An autonomous navigation software architecture for data acquisition is proposed. It was used

to define trajectories to be executed autonomously by the ASVs, based on an architecture that is

easily re-configurable and reusable by different autonomous vehicles. A skill-based architecture

is used, taking inspiration from the work by Pedersen et al. [73], expanding it and modifying

the task level, so that the architecture can cope with complex O&M operations. With a focus

on industrial robotics, skill-based architectures usually divide the architecture into several layers.

The bottom layer, composed of actions or primitives, interconnects the hardware to the decision-

making layer, where skills sit. This way, skills output data that is independent of the hardware,

creating a level of abstraction that is much desired when software re-usability is wanted. On top of

the skill level, a task level usually concatenates skills in a sequentially arranged fashion, allowing

for distinct complex operations to be run one after the other.

Mobile robot applications of such architectures are, however, still very scarce. This autonomous

navigation module aims to fill that void. Its main goal is to ease the programming task of mobile

robots, and it tackles challenges such as software portability and re-usability, and data source

agnosticism. In other words, it aspires to make the code interchangeable and independent from

the protocol that drives data from sensors and to actuators. That said, this architecture has to fulfill

the following requirements:

1Available at: https://docs.opencv.org/4.x/d9/d0c/group__calib3d.html (Accessed Jun. 22, 2023)

https://docs.opencv.org/4.x/d9/d0c/group__calib3d.html
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(a) One of the image frames used for the left cam-
era’s intrinsic calibration.

(b) Image frame 3.5a after calibration. Notice the
appearance of dark borders.

(c) Stereo rectification. Green lines are the epipolar lines, made horizontal so that point search is con-
stricted to one dimension.

(d) 2D image scene (e) Example of a point-cloud (3D information)
generated from the images of a stereo camera set.
From the scene on figure 3.5c

Figure 3.5: Stereo camera set calibration.

• Each level of the hierarchy has to share information with the level atop or beneath it;

• A templated backbone for each level of the hierarchy must provide a mechanism that en-

compasses the basic operation of that level;

• Every level has to be agnostic to the levels within reach, meaning each component of the

hierarchy might be swapped for a more (or less) complex component, without loss of the

system’s functionality.

Even though this architecture is similar to that proposed by Pedersen et al. [73], there are some

differences worth pointing out. In the first one, one more layer is added, meaning this architecture

is composed of four levels: a Mission, a Task, a Skill, and an Action level.
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At the lowest level, actions are closely related to hardware. They are responsible for turning

information into commands that the hardware level, through its drivers, can interpret. A skill

used in certain domains and environments can only depend on specific actions that are physically

compatible with the robot’s hardware and with the operations to be performed.

The skills add functionalities to a robot and are defined as a sequence of individual and self-

contained actions. Having some sort of control process, they interpret information from the en-

vironment, collected by sensors, and make decisions. Thus, skills can be seen as a sequence of

actions. Skills can be either persistent, i.e. runs continuously in the background parallel to other

skills until the task is stopped (e.g. odometry), or volatile, i.e. runs once until the goal condition is

reached (e.g. positioning system). Programming at this level requires a comprehensive knowledge

of the operation to be conducted. It is also required that the dynamics and limitations of the do-

main to which the skill is to be applied is taken into account. It is at this level that information is

turned into commands to be fed into the action layer. Therefore, routines such as motion planning,

motion execution, and obstacle avoidance should be implemented at this level.

At the task level, this architecture starts to differ from the already existing skill-based approaches.

Unlike previous works, tasks are defined, not as a sequence of skills, but as a set of skills, which

might be organised either sequentially, concurrently, or as a combination of both. Hence, tasks

are a set of skills planned to overcome a specific goal. Tasks also define input parameters for

skills. Unlike statically placed industrial robots, mobile robots might have to perform several skills

concomitantly (e.g. hoovering while a manipulator performs an operation). With this approach,

a robot can take advantage of concurrency, meaning it can benefit from skills that execute at the

same time.

Above task level, it is proposed a mission layer, defined as a concatenation of tasks that are, again,

run sequentially. Missions further extend the applicability of the proposed architecture, allowing

for high-level programming of tasks, by simple definition of parameters. Upon the successful

completion of all tasks, it can be guaranteed that a mission is also successfully concluded.

A visual representation of the architecture is depicted in Figure 3.6.

To better understand the division, one can picture the scenario in which an ASV has to inspect an

offshore wind farm autonomously. The whole inspection operation composes the entire mission,

which can be broken into smaller operations - tasks - such as the inspection of individual wind

turbines. The inspection of each wind turbine requires the ASV to be able to perform naviga-

tion skills, such as reaching a location and hovering around a fixed point. Skills send velocity

commands to actions, which convert that information to commands for the ASV motors.

Zooming in on each individual element of every layer (an individual mission, task, skill or action),

one can find that the main workflow follows a similar sequence, which goes as follows:
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Figure 3.7: State machine diagram of the execution of each individual element of the proposed
architecture.

1. Upon start, an initialisation routine is called. It is responsible for checking if the pre-

conditions for the element’s normal execution are met, and, if so, if it can proceed. Oth-

erwise, the execution stops, returning an error;

2. The continuous execution routine is executed after the initialisation procedures are com-

pleted. This routine is non-blocking, meaning its execution is triggered by an object of a

layer on top of it or, if it is the case of the highest layer, at a certain rate. Once again, in case

of failure, the execution is halted, requiring a new start command to be sent;

3. Before concluding the execution, a post-condition checking routine is called. It is responsi-

ble for checking the overall execution status of the process and, eventually, for sending the

last commands to the action layer.

Figure 3.6: The four layers
that make the proposed archi-
tecture.

In case of failure of any of the aforementioned routines, the execu-

tion enters a failure routine, which halts the operations. A visual

representation of the described workflow is illustrated in Figure

3.7, in the form of a state machine diagram.

To illustrate the functionality of the proposed architecture, a task-

level autonomous navigation algorithm was developed and de-

ployed on both SENSE and Nautilus ASVs. A description of each

level of the algorithm is described next.

The task takes an array of goal points of undefined size. Each el-

ement of that array is composed of three parameters, namely, x, y,

and the point’s reference frame. This means that coordinates can

be expressed in the vehicle’s initial odometry frame, or in the Uni-

versal Transverse Mercator (UTM) coordinate system. The task

layer sends one goal-point at a time to the skill below and waits

for its execution to be completed to send the next command. At

the skill level, a positioning algorithm was developed. It receives

a goal-point as a parameter, in the form of 2D coordinates, and
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outputs linear and angular velocity commands to the action layer.

Hence, position is represented by its x, y coordinates, and orienta-

tion, yaw, expressed by ψ . Data is driven by the ROS [71] mes-

saging system and localisation information is published by a ROS implementation of an Extended

Kalman Filter (EKF) [74], which fuses data from a GPS and from an IMU. The skill continuous

execution state consists of a finite state machine model with five states, namely an initial state,

a rotation phase, a state where the angular velocity is reduced, a cruising state, and a final state,

where the ASV’s velocity is decreased.

At the initial state, the ASV checks if its position relative to the goal point is within the limits set

by a user-defined parameter, which bounds the maximum Euclidean distance - ∥∆(x,y)∥2 - from

which the system advances directly to the final state. If ∥∆(x,y)∥2 is bigger than the defined pa-

rameter, the execution state changes to a rotation stage. At this stage, the ASV rotates until it is

oriented to the direction given by a line that crosses both the vehicle’s baseline and the goal-point.

Given the dynamics of the environment where the ASV operates, and the lack of a finer velocity

controller, the ASV stops the rotation when the module of its deviation in orientation - |∆ψ| - is

smaller than a user-defined parameter. Then, in the third state, the ASV waits for a time interval

to pass, or until the error in orientation reduces in half, to start moving with linear velocity. The

time interval duration is, once again, a parameter of the skill that a user can easily set or modify.

In the following state, the ASV cruses at the maximum defined linear velocity. The angular ve-

locity is calculated by a proportional controller, with a gain that was tuned during the conducted

tests. Finally, as the ASV reaches the goal points’ coordinates, and the skill’s continuous exe-

cution enters its last stage, linear velocity is reduced to a specified value, and angular velocity is

adjusted proportionally to |∆ψ|. The skill’s continuous execution behaviour is illustrated in Figure

3.8.

3.2.2 Acquiring data from real-world environments

The results from the proposed architecture and the positioning skill implementation are presented

and discussed, using two different sequences as examples. First, the discussion focuses on a

smaller and easier succession of goal points, and then, a larger sequence, constrained to harsher

environmental conditions, such as stronger undulation and wind, is also analysed. All data was

acquired in the ATLANTIS Testbed. Sample code is publicly available 2. For these experiments,

the following parameters were defined:

• A parameter which bounds the maximum ∥∆(x,y)∥2 from which the system advances di-

rectly to the final state. It was set to 2.5 m;

• The maximum allowed deviation in orientation was set to 0.1 rad;

• The maximum allowed deviation in position was set to 1 m.

2https://github.com/edu-goncalves/MUSA

https://github.com/edu-goncalves/MUSA
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Figure 3.8: The state machine diagram of the continuous execution routine of the proposed posi-
tioning skill.

First, a local odometry frame was defined at the start of the operation. This frame was fixed to the

geographic coordinates where the ASV was initialised, hence, the goal points were expressed in

relation to the vehicle’s starting pose, forming a set PO = {pO
1 , ..., pO

N}, with pO
n = (xO

n ,y
O
n ),∀n ∈

{1, ...,N}, where ’O’ superscript represents the fixed odometry coordinate frame. Pose estimates

were computed by fusing data from a RTK GPS and a 9 DoF IMU.

The first experiment consisted of a sequence of the goal points composed by the set PO = {(5,0),
(15,10),(10,−5),(5,0)}, and the path followed by the ASV is depicted in Figure 3.9a. The move-

ment of the vehicle was constrained to a small area, forcing it to rapidly adjust to any deviations

in orientation when heading to any of the goal points. The ASV was initially placed at coordinates

(0,0) on the odometry fixed frame, and started its trajectory oriented to the first goal-point (5,0),

meaning the execution started directly on the cruising state, at maximum linear velocity. Every

point, except for the first one, forced the ASV to change its orientation, making sure that every

stage of the continuous execution was performed. The ASV was able to successfully execute the

task, reaching the 1 m tolerance defined at the beginning of the experiment.

A second experiment was conducted, simulating an inspection operation around the structure visi-

ble in figure 3.1. As it can be seen in Figure 3.9b, the scale of the movement was increased, easing

constraints on the movement of the vehicle, but exposing it to harsher maritime conditions. The

set of goal points was defined as PO = {(55,−15),(65,30),(20,35),(10,−5)}, chosen so that the
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(a) Task defined by the sequence of goal-points
PO = {(5,0),(15,10),(10,−5),(5,0)}

(b) Task defined by the sequence of goal-points
PO = {(55,−15),(65,30),(20,35),(10,−5)}

Figure 3.9: Results of task-level experiments performed in a port environment conducted in the
ATLANTIS testbed. Light green circles represent the distance from the goal points from which
the continuous execution state of the skill enters its last stage, while darker green circles represent
the maximum allowed margin of error for the skill to succeed. Each line represents the execution
of a single skill. The green line represents the first skill to be executed, followed by a blue, a red,
and a purple line. Initial points are marked by a bigger red cross.

ASV trajectory could circumscribe the Durius floating structure (figure 3.10). At the beginning,

and contrarily to the first experiment, the vehicle was placed facing the opposite direction to the

first goal point, with coordinates (6,5). As it rotated, the vehicle was being dragged by sea cur-

rents, as it can be observed in the first segment of the traced trajectory, represented by the green

line in figure 3.9b. Despite the harsher conditions, the maximum acceptable margins of error were

not changed. The task succeeded, meaning the ASV reached every goal point of the sequence with

a maximum error lower than 1 m.

At action level, linear and velocity commands sent by the skill are converted into commands for

the two electric thrusters, taking into account the kinematics of the ASVs.

After testing the autonomous navigation algorithm, a dataset was collected, consisting of data from

a stereo set of visual cameras, a LiDAR, one IMU, and one GPS. For ground-truth purposes, an

RTK-GPS and a 9-DoF IMU were used. Data was stored in a ROS message data format. The full

dataset was collected over a full morning of navigation (more than an hour of navigation data),

where the ASV navigated both in an autonomous and in a teleoperated fashion. The collected

dataset is divided into seven different sequences. The first four sequences were collected by man-

ually operating the ASV. Sequences 5 and 6 were collected autonomously, using the algorithm

described in the previous section. Sequence 7 was collected as a mix of manual and autonomous

operations. Sequences have a duration that ranges from 3 to 5 minutes, with the exception of

3SENSE performing an autonomous navigation task: https://youtu.be/GL83DWSML7s

https://youtu.be/GL83DWSML7s
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Figure 3.10: SENSE performing an autonomous task, around the DURIUS platform 3.

sequence 4, with approximately 11 minutes of duration. Thus, data with the following properties

were acquired:

• Ground-truth signal composed of an RTK-GPS, with an operating frequency of approxi-

mately 4Hz, and a 9-DoF IMU, providing measurements at 100Hz;

• GNS/INSS providing pose information at a rate of 4Hz;

• A pointcloud with a vertical and a horizontal resolution of 128 and 1024, respectively.

Measurements were collected every 0.1 seconds;

• Stereo visual images from a synchronized pair of visual cameras, with HD resolution

(1280x720p), at 10 fps.

3.3 Odometry Benchmark and Input Data

Even though visual/LiDAR-based odometry systems have been extensively studied in some en-

vironments, backed by autonomous driving and UAV-oriented datasets, there is still a lack of

publicly available datasets, focused on visual/LiDAR data collected by vessels. That lack of pub-

licly available datasets with a focus on visual/LiDAR data in maritime environments makes it

very hard to assess the performance of pose estimation algorithms when exposed to environment

characteristics such as undulation and very harsh atmospheric conditions. Hence, in this section,

an evaluation of different odometry estimation methods is made, filling the gap that exists in the

scientific community. The benchmark of such methods made it possible to come to conclusions

regarding the performance of pose estimation algorithms in maritime conditions. Given that the

used ASVs make use of the ROS [71], the conducted benchmark takes advantage of algorithms

that run on such ROS environments. Moreover, purely single-modality odometry estimation sys-

tems were favoured over SLAM or absolute pose estimation implementations. This is because the
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ultimate goal of this benchmark was to assess which data to be used by a DL fusion algorithm and

maritime navigation does not usually provide the conditions to detect loop closures. Hence, six

different methods were tested, and are listed below:

• Robot Localization (RL) [74]: a ROS implementation of nonlinear state estimators. Used

to fuse data from the ASV’s autonomous navigation module’s GPS and IMU via an EKF.

As an absolute localisation system (in what concerns position, at least), it does not suffer

from position drifts, and position estimation errors are usually bounded by the performance

of the sensors and disturbances created by the environment;

• ORB-SLAM [15]: the well-established V-SLAM implementation was tested. However,

only the visual odometry thread was used, stripping the system of mapping and loop-closure

modules. This was done for two reasons. First, when testing the algorithm’s full implemen-

tation, it was clear that whenever the ability to track features was lost (which was very

common), the system could very rarely recover, and pose estimation would not be com-

puted. Second, no trajectory optimization is required, as the developed fusion module is to

receive only relative pose transformations;

• RTAB-Map [75]: used for two distinct modalities. As RTAB-Map has modules for estimat-

ing odometry from different sensors, both a LiDAR-based (L) odometry and a stereo VO

(V) implementation were tested. Both modalities rely on purely odometry systems. The

VO module uses a 3D to 2D feature correspondence, comparing features from a current

frame with those from a key frame. The LiDAR approach also compares current measure-

ment with a key frame, calculating pose changes based on an ICP registration method, after

applying a downsampling voxel grid filter;

• CT-ICP [76]: another ICP LiDAR odometry estimation method, applies a downsampling

voxel grid filter to reduce the dimension of point-clouds, thus reducing the computational

cost from ICP registration methods. Again, no loop closure is performed;

• Viso2 [77]: a VO library, also tested in a stereo mode. Produced awful estimations, regard-

less of the configuration parameters that were set. For that reason, its results are not taken

into account in this benchmark.

Every odometry output is a 6DoF pose of the same fixed frame on the ASV. Ground-truth infor-

mation has a earth-fixed referential, with position expressed in a UTM frame, and rotation relative

to the earth’s north pole.

For the evaluation of the trajectories estimated by each of the aforementioned methods, two distinct

commonly used error metrics were calculated. As ASVs move on a 2D plane (assuming small

variations on roll, pitch, and translations on z axis, imposed by undulation), evaluation is only

performed on 3DoF (x, y, and yaw). The two used metrics are the root mean square (RMS) of the

Absolute Trajectory Error (ATE) and the set of relative errors, ε , usually expressed as RE [78].
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Given a ground-truth trajectory (aligned by the first pose estimate), the RMS of the ATE can be

calculated as:

AT Epos =

√
1
N

N−1

∑
i=0

((xgt
i − xe

i )
2 +(ygt

i − ye
i )

2); (3.6)

AT Eψ =

√
1
N

N−1

∑
i=0

(ψgt
i −ψe

i )
2, (3.7)

where N is the number of evaluated poses, and the subscripts gt and e stand for ground-truth and

estimated, respectively. The drawback of such a metric is that, as it computes the error through

the whole extension of the trajectory, an error occurrence at the beginning of the trajectory is

propagated through the subsequent pose estimations. Thus, RE is usually also used, as it is an

evaluation metric on the KITTI dataset [36]. This metric iterates through segments of the trajectory

with a pre-defined length (10%, 20%, 30%, 40%, and 50% of the total length of the trajectory),

and evaluates them separately by aligning the first pose with the ground-truth, and measuring the

error at the end of each sub-trajectory. Hence, and simplifying the metric used in [78] to a 2D

evaluation problem, RE is the set of errors over all iterations, where the error at each iteration is

defined as:

εpos =
√
(εx)2 +(εy)2; (3.8)

εψ = ψgt −ψe, (3.9)

where εx and εy are the errors in x and y at the end of the sub-trajectory to be evaluated and are

calculated as:

εx = xgt − (cos(εψ)xe − sin(εψ)ye); (3.10)

εy = ygt − (sin(εψ)xe + cos(εψ)ye). (3.11)

Usually, the average of RE is used, but other statistics, such as the median and the standard devi-

ation, might be useful to assess the existence of outliers and, for that reason, failures on segments

of the trajectory.

Every sequence of the dataset exposes the ASV to image features that are very far from the vessel,

which can affect the quality of translation estimations made by VO systems. In the first three se-

quences, the ASV is not exposed to harsh undulation, and movement is constrained to a small area
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(less than 1000m2). Apart from sequence 2, every other sequence exposed the ASV to textureless

image scenes, as depicted in figure 3.2. From sequences 5 to 7, as the ASV was subject to stronger

undulation, water droplets on camera lenses harmed the quality of collected images. Table 3.1

sums up the obstacles present in each sequence of the dataset. The dataset has more than 8100

ground-truth measurements (RTK GPS and 9 DoF IMU) over the seven sequences.

Table 3.1: Obstacles for good odometry estimation by sequence.

Sequence
1 2 3 4 5 6 7

Fast Rotations - ✓ ✓ ✓ - - ✓

Distant Features ✓ ✓ ✓ ✓ ✓ ✓ ✓

Textureless Images ✓ - ✓ ✓ ✓ ✓ ✓

Autonomous Navigation - - - - ✓ ✓ ✓

Water on Lenses - - - - ✓ ✓ ✓

Undulation Intensity + + + ++ ++ ++ ++

Table 3.2: Absolute Trajectory Error and Relative Errors over seven different trajectories per-
formed with the Nautilus ASV on the ATLANTIS coastal testbed.

Sequence
Metric Method

1 2 3 4 5 6 7

ATEpos

(m)

CT-ICP 1.147 0.542 0.668 2.724 2.489 3.270 2.319

ORB-SLAM 5.772 1.754 11.933 15.495 15.740 17.994 17.209

RL 2.476 3.143 5.852 0.701 7.439 11.967 0.839
RTAB-Map (L) 1.061 0.562 0.837 2.598 2.042 2.877 2.379

RTAB-Map (V) 4.027 2.007 4.672 15.663 11.046 13.996 12.073

ATEyaw

(deg)

CT-ICP 2.938 1.116 1.602 8.376 0.741 0.386 0.592

ORB-SLAM 18.196 1.568 60.666 18.461 50.972 74.521 76.876

RL 3.308 0.747 18.796 1.220 7.218 3.617 2.482

RTAB-Map (L) 2.258 1.059 1.754 5.672 0.330 0.351 0.502
RTAB-Map (V) 12.437 9.015 28.386 41.979 53.577 49.266 48.373

REpos

(%)

CT-ICP 4.590 3.479 3.967 4.947 8.959 10.676 7.547

ORB-SLAM 34.584 11.440 46.842 36.406 47.190 66.503 50.799

RL 9.248 22.052 21.852 0.966 31.634 12.097 1.210
RTAB-Map (L) 4.147 3.406 3.684 4.823 8.115 9.815 7.639

RTAB-Map (V) 23.614 18.052 26.053 23.997 38.417 45.567 36.680

REyaw

(deg/m)

CT-ICP 0.062 0.101 0.080 0.095 0.020 0.017 0.013

ORB-SLAM 0.389 0.120 2.178 0.461 1.053 1.368 0.927

RL 0.114 0.057 1.137 0.024 0.070 0.086 0.019

RTAB-Map (L) 0.041 0.095 0.070 0.091 0.010 0.010 0.012
RTAB-Map (V) 0.407 0.585 0.743 0.615 0.729 0.934 0.656
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Table 3.3: Ratio of failures per expected odometry estimation of VO systems.

Sequence
Method

1 2 3 4 5 6 7
ORB-SLAM 6.86% 0.18% 10.53% 5.75% 21.78% 41.79% 33.66%

RTAB-Map (V) 12.57% 15.18% 15.73% 9.54% 21.78% 29.46% 19.02%

In table 3.2, the results of each algorithm are presented. As methods that rely on LiDAR measure-

ments have a superior performance on environments with a strong presence of planar surfaces,

as is the case of the ATLANTIS coastal testbed, it comes as no surprise that LiDAR odometry

algorithms achieved the best results. Furthermore, both RTAB-Map[75] and CT-ICP[76] use a

point-to-plane approach to the ICP problem, further exploiting the planar scenario where data was

acquired. On top of that, when collecting this dataset, not many dynamic objects disturbed the

measurements acquired by the LiDAR (a rare occasion is depicted in figure 3.11), contributing to

very good LiDAR odometry estimates. The performance of visual methods, on the other hand,

confirmed the previously raised suspicions, given the texture-less and highly dynamic environ-

ment of the ATLANTIS testbed. However, one value from table 3.2 stands out. In sequence 2,

the ORB-SLAM’s [15] ATEyaw was, unlike what is seen in other sequences, comparable to those

obtained by non-visual methods. A closer inspection to the data leads to the conclusion that the

second sequence was the only sequence where ORB-SLAM was able to run practically without

failures (figure 3.13) from the beginning until the end. Table 3.3 showcases VO methods’ per-

centage of failures per expected number of estimates over the seven sequences of the dataset. The

rotation estimates made by the RL were greatly affected by the bad raw sensor data provided by

the IMU.

Digging even further into the ATE metrics, it is noticeable that even though the RMS of the ATE

is very large for VO methods, the median values of such error metric is consistently comparable

to those of LiDAR methods, meaning that large deviations in the RMS of the ATE are due to

failures of VO methods, and not because of the ineffectiveness of such methods to produce truth-

ful estimations. The GNSS/INS localisation system produced mixed results, given the tendency

of GNSS/INS to produce noisy measurements. Quantifying the RE results in an intra-modality

fashion, RTABMap outperformed CT-ICP by 5.13% and 16.30% in translation and rotation, re-

spectively. Regarding VO methods, RTABMap was, again, able to outperform the other algorithm

under assessment, ORB-SLAM, by 26.05% in translation and 14.80% in rotation.

Even though these absolute and relative error metrics are widely used to assess the performance

of localisation methods, they do not provide sufficient information about the value of each of

the evaluated methods for a multi-modal odometry estimation system, the main focus of this dis-

sertation. That multi-modal fusion system is to increase the robustness of single-modality-based

systems, in the presence of harsh atmospheric conditions (wind and undulation), ferromagnetic

structures and a highly dynamic scene. First, the odometry of each of these methods relates to
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Figure 3.11: The influence (marked by a red circle) of a non-static craft in a 3D map generated
with CT-ICP [76]. Such dynamic objects can disturb motion perception, affecting the performance
of ICP cloud registration.

the initial pose of each method, which might, but most often is not, be shared among these odom-

etry systems. Second, unsynchronized sensor measurements impose further challenges to fusion

odometry methods. For that reason, the presence of spatio-temporal data misalignment has to be

addressed, before feeding such information into a DL fusion module.

Figure 3.12: Sample of measurements from different sensors (black circles) and used pose estima-
tions, after interpolation (marked by green crosses) to match the time-stamps of the ground-truth
signal.

Addressing temporal misalignments first, an interpolation was performed, matching the time-

stamps of the estimations of each odometry system with those of the ground-truth signal (fig. 3.12).
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Figure 3.13: ORB-SLAM [15] trajectory estimation in sequence 2. Gray lines represent pose
correspondences between the ground-truth and the estimated trajectory.

For rotation interpolation, represented by quaternions, spherical linear interpolation (SLERP) [79]

was performed. Next, and having overcome the temporal misalignments of different measure-

ments, the concepts introduced in section 3.1 are revisited, so that spatial misalignments can be

circumvented. Instead of dealing with absolute poses, the fusion network is to receive relative

poses as input, meaning each pose is relative to the previous pose estimated by each odometry

estimation method. Let H be the set of n homogeneous transformations estimated by one of the

previously mentioned systems, so that iH = {0H1,
0 H2, ...,

0 Hn−1,
0 Hn}. To transform the k’th pose,

0Hk, to a relative pose, k−1Hk, the following formula is applied:

k−1Hk =
k−1 H0 ·0 Hk = (0Hk−1)

−1 ·0 Hk. (3.12)

The representation of rotations is also changed, to avoid further complexity of the regression prob-

lem to be addressed, as quaternions and rotation matrices impose unit constraints that might be

difficult to learn [80]. Thus, for orientation, an Euler Angles representation is chosen, as the dan-
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ger of a gimbal lock occurrence is virtually nonexistent (pitch values are always very far from ±π

2

radians), and not only are three independent values easier to visualize, but they also are simpler to

regress.

Figure 3.14: Boxplot representation of the absolute error of relative pose transformations. Trans-
lation errors in meters and rotation errors in degrees. For visualization purposes, outliers are not
represented. The boxes extend from the first to the third quartile of the absolute error, with the
median value in-between (solid horizontal line). Mean values are represented by a dashed hori-
zontal line. The bottom and superior whiskers extend from the minimum error value to 1.5x the
interquartile range.

The absolute errors of the relative poses for the full dataset are displayed in figure 3.14. A box-

plot representation of the error was chosen, given that this simple representation provides a lot

of information about the error dispersion of the methods under evaluation. Despite the change in

used error metrics, LiDAR odometry estimation systems (especially RTAB-Map) proved to be the

most reliable of all modalities, achieving the best performance, both in translation and rotation

errors. The GNSS/INS system, however, produced solid translation estimates, but noisy orienta-

tion estimates were outperformed by every other method. Regarding VO systems, ORB-SLAM’s

performance surpassed that of RTAB-Map’s VO module. In fact, the huge discrepancy between

the median and mean values of VO systems’ absolute errors is due to the lack of ability to extract

reliable features, which halted or severely harmed localisation estimation computation, leading to

error accumulation. If outliers were to be excluded from the analysis, however, one could easily
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visualize that, when compared to CT-ICP, for instance, VO methods produced on-level rotation es-

timates, reinforcing the visual information’s potential application in multi-modal fusion odometry

systems. In fact, ORB-SLAM’s median rotation error about the z axis was the second lowest of the

five tested algorithms, surpassing RTABMap (V) by 5.12% and CT-ICP by 12.74%, only outper-

formed by RTABMap (L). Concerning translation errors, VO came short of achieving reasonable

results, with a huge error dispersion. Error in translation in x saw an interquartile range (where

half of the values of a boxplot graph sit) of 14 cm and 23 cm for ORB-SLAM and RTABMap (V),

respectively. Those values contrast with the smaller dispersions of error of RTABMap (L) and

RL, with 3.7 cm, and CT-ICP, with 4.0 cm. Finally, the median translation error in the x axis was

the lowest for RL (1.7 cm), followed by RTABMap (L) (1.8 cm), CT-ICP (2.3 cm), ORB-SLAM

(4.3 cm) and, coming last, RTABMap (V) (9.7 cm).

This section of the document confirmed the previously raised suspicions about VO algorithms and

their inability to produce, on their own, truthful pose estimations in environments that severely

affect image feature extraction. It showed, however, that even though maritime environments

hinder the performance of such systems, suspending pose computations, some information can

be extracted from these systems, especially rotation information. After this benchmark, three

different modalities are chosen as inputs for the fusion module, presented in section 3.4, namely,

ORB-SLAM [15], RL [74] and the LiDAR odometry module of RTAM-Map [75].

3.4 Self-Attention Fusion Module

Transformer-based networks have been taking the AI world by storm. Recent NLP architectures,

notably OpenAI’s ChatGPT 4, exploit self-attention mechanisms to relate words within a sentence.

Proposed by Vaswani et al., the original Transformer [43] forswore RNN models, as authors argued

the self-attention mechanism would be able to learn spatial-dependencies of structured data. In this

work, a self-attention-based model is chosen for the purpose of a late-fusion multi-modal odometry

estimation system. It is done so that we can benefit from the positional encoding mechanism,

given the irregularly spaced odometry measures over time. Hence, and as previously described in

equation 3.4, the fusion system performs a multivariate regression task, to estimate a set of 6DoF

poses, taking inspiration from the original Transformer architecture.

Let ∆pi
l be the l’th estimate of the i’th odometry estimation system, composed of an array with

6 elements (three translation values and three rotations). For an input sequence of length L, with

I different systems, two fusion systems are proposed, depicted in figure 3.15. Also, let tl be the

l’th time-stamp of an array with length L. Two fusion systems are proposed. The first one (figure

3.15a) outputs an array of poses with length L, while the second (figure 3.15b) produces a single

pose estimate, ∆pL.

4https://openai.com/blog/chatgpt

https://openai.com/blog/chatgpt
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(a) Sequence to sequence fusion system’s inputs and
outputs.

(b) Sequence to sequence fusion system’s inputs and
outputs.

Figure 3.15: Graphical representation of the fusion systems’ input and output data.

The original Transformer takes as an input, a sequence of word embeddings, meaning every word

in a text has a learned vector representation, to get the most out of semantic relations of words. In

this work, the proposed architecture benefits from that vectorial representation of data, where a set

of three 6 DoF estimates are concatenated into a vector with size 18. This way, the interpolated

estimates of three relative odometry estimation systems (described in the previous section) mimic

the word embedding representation used by Vaswani et al. [43]. Unlike the original Transformer,

here, the decoder module of the Transformer network is dropped, as the model relies only on the

dependencies of the input signals, not on an input/output dependency.

Regarding the Positional Encoding, authors claimed that a sinusoidal representation of word posi-

tions would allow for different sequence lengths extrapolation, and proposed summing sinusoidal

signals to every position along the text length, L, and varying the frequency of those signals along

the word embedding dimension. Following that approach would raise the problem of losing tem-

poral information about data and, for that reason, bigger temporal gaps between odometry esti-

mates would be treated the same way as smaller ones. On the other hand, feeding estimations’

timestamps into the positional encoding would lead to an irregular representation of the temporal
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distribution of data which, when summed to the estimations themselves, would be very hard to

learn. For that reason, instead of summing the positional information to the input signal, tempo-

ral information is concatenated to estimates, increasing the last dimension of the input data (even

though Vaswani et al. [43] argued, in their work, that for the NLP task, concatenating positional

information to the input produced similar results as summing that information as vectorial infor-

mation). For that, two types of Positional Encodings were tested. First, a simpler representation

of temporal information was tested, concatenating to each position of an input sequence a two-

dimensional vector, v ∈ R2, of sinusoidal temporal information, such as:

v1(t) = sin(t ∗β ); (3.13)

v2(t) = cos(t ∗β ), (3.14)

where t is the timestamp of the estimates and β is a normalization constant to keep the domain

of sine functions within the range of [0,2π[. Then, and even though this temporal information

representation considerably improved the ability of the network to produce odometry estimates,

a learnable vector representation of time [81] was also tested, with v ∈ R18 being represented

as:

vi(t) =

{
ωi ∗ t +ϕi if i = 1

sin(ωi ∗ t +ϕi) if 2 ≤ i ≤ 18
, (3.15)

where ωi and ϕi are, respectively, learnable weights and biases. This vector representation of time

further enhanced the model’s predictions, as it is able to learn the periodicity of events, such as

irregularly spaced timestamps.

In the original architecture, layer normalization [82] is performed after residual connection [83]

operations (performed twice: after multi-head attention and after the point-wise feed-forward

layer). During training, however, it was noticeable that the model had a hard time learning some

patterns in data, especially when the temporal spacing between consecutive odometry estimations

was bigger than usual (as depicted in picture 3.12). Performing layer normalization before the

attention step and before the feed-forward layer boosted the quality of the predictions, as this prior

normalization steps allows for faster convergence and makes the training phase less dependent on

the optimizer’s warm-up stage [84].

In the multi-head attention block, the following formula is applied:

Attention(Q,K,V ) = softmax
(

QKT
√

dk
+M

)
, (3.16)
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where M is a mask that doesn’t allow a certain position to attend future estimates, Q, K and V ,

queries, keys, and values, respectively, are the learned linear projections of the output of the layer

normalization step, and dk is the dimension of the queries, keys, and values, in this case, 18 divided

by the number of attention heads. Finally, at the end of the encoder, a linear layer projects a [Lx18]

tensor into a [Lx6] tensor, meaning L∗6 DoF poses.

Another model is also proposed, with two separate translation and rotation regressors. Still, the

model follows the graphical representation depicted in 3.15a. For each regressor, the only change

is in the last linear layer, where a [Lx3] tensor is estimated by each regressor, separately. Other ar-

chitectures were implemented and tested, by flattening the output of the encoder and feeding it into

a multilayer perceptron (MLP) or a simple linear layer (systems that replicate the graphical repre-

sentation in figure 3.15b), producing only one odometry estimate at a time, and giving the same

amount of information to every pose estimation. This caused the model to overfit training data and

produce erratic estimates (see chapter 4). Overall, four different architectures are proposed. Ar-

chitecture A, which has a single linear layer at the output of the transformer encoder. Architecture

B and C flatten the regressor’s output, feeding it to a linear or an MLP layer, respectively. Finally,

architecture D, with separate translation and rotation regressors. Table 3.4 summarizes the tested

architectures, and figure 3.16 graphically represents those models.

Table 3.4: Hyperparameters of the proposed Self-Attention fusion architectures. The names of
the first three columns refer to the architecture that is appended to the output of the transformer
encoder, while the last column refers to an architecture similar to the one to which a linear layer
is appended, but that regresses either translation or rotation separately. L stands for the number of
odometry estimates in a sequence.

Hyperparameters Architecture A Architecture B Architecture C Architecture D
Number of Inputs L×18 L×18 L×18 L×9

Number of Outputs L×6 6 6 L×6

Masked Attention ✓ ✗ ✗ ✓

Number of Hidden Layers - - 3 -

Separate Regressors ✗ ✗ ✗ ✓
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(a) Linear layer at the output of the trans-
former encoder. With an input of length
L, this architecture produces an output with
the same length. This makes the full archi-
tecture A and is the backbone of architec-
ture D, as it makes the individual transla-
tion/rotation estimates.

(b) The output of the encoder is flattened,
and then, passed through a linear layer - ar-
chitecture B - (or an MLP - architecture C).
This architecture produces a single pose es-
timation at a time.

Figure 3.16: Proposed Odometry Fusion Networks. Nx indicates repetition of the Transformer
encoder layer (gray box).
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Chapter 4

Results of the self-attention based fusion
system

In this chapter, the results of the late fusion network proposed in section 3.4 (architecture D) are

presented and discussed. The findings that justify the model’s architecture and chosen hyper-

parameters make the first section of the present chapter, and results over the seven sequences of

the previously presented dataset are scrutinised.

In the first section of the chapter, the training results of different models are presented. Then, in

section 4.2, the trajectories are reconstructed based on the relative poses estimated by the fusion

algorithm, and the network’s performance is compared to that of the single modality input meth-

ods. The models were trained in a modest machine, with an NVIDIA GeForce GTX 960M with

2 GB of dedicated memory, and 8 GB of RAM. Evaluation metrics are kept the same as the ones

used in the previous chapter.

4.1 Model hyper-parameters and training

Section 3.4 presented several models for multi-modal odometry fusion, all based on the multi-

head self-attention mechanism. For that reason, and following an identical approach to that used

by Vaswani et al. [43], the AdamW optimiser [85] was used during training. Like the Adam

optimiser [86], AdamW combines momentum with an exponential moving average to escape local

minima. On top of that, AdamW adds weight decay regularisation to the algorithm, allowing for

better generalisation of data. A varying learning rate was used, just like in [43], with a warm-up

stage of 10 epochs. The mean squared error (MSE) of estimates was used as a loss function for all 6

DoF. Rotation regression could have used other loss functions (e.g. L (θ ,θgt) = 1− cos(θgt −θ)),

but given that the normalised relative angles are always very small and, for that reason, very far

from the limits of the normalisation interval ([−180,180[ degrees), it was given preference for the

simpler MSE loss over the more complex sinusoidal-based function.

47
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Given the small dimension of the available dataset, at least for the purpose of training DL models,

seven different models were trained. Models share the same hyper-parameters but were trained

with different data. For that matter, for the purpose of evaluating the performance of the fusion

system in one sequence of the dataset, a model is trained with the remainder of the sequences,

meaning that a model is always tested with data that the model was never exposed to. On top

of that, additional data of moments when the ASV was in hovering conditions were also used,

increasing training data with more than 9400 sets of multi-modal odometry estimates and further

exposing the model to maritime environment scenarios and dynamics, adding to the 8100 sets

of multi-modal odometry estimates that make the seven sequences of the previously presented

dataset. The dimension of the testing data ranged from 4% to 15% of the total dataset. Training

was done with a mini-batch of size 20. Training data was further split into a training (90%) and a

validation set (10%).
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(a) Positional encoding. (b) Sequence length.

(c) Pose-by-pose estimation over-fitting training
data.

(d) Effects of increasing the architecture’s dimen-
sions.

Figure 4.1: Influence of hyper-parameters in training and validation loss (faded dashed lines). For
reference, the losses of a common architecture (in yellow) are depicted in every chart.

In figure 4.1, the evolution of training and validation losses of the models presented in the previous

chapter are shown. In sub-figure 4.1a, it is shown that summing a time-based positional encoding

to the original signal yielded similar results to the originally used sine-based positional encoding.

In fact, not much information is taken from this added positional encoding. There are two main

reasons for that. First, and unlike the original Transformer where word embeddings are learned

before the addition of positional information, here, the input is not learned but, instead, the raw

pose estimates are fed into the model. Second, whereas in Vaswani et al. [43] the same signals

are summed to a given word in a sentence, only depending on its position within the sentence,

here, the signal being added is not constant, as instead of positions within a sequence, the message
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time-stamp is used. This results in different vectorial representations of time for virtually every

pose estimate, making it much harder to discern pose estimates from temporal information. For

these reasons, concatenating temporal information to estimates leads to a significant decrease in

training and validation losses. A Time2Vec [81] based positional encoding further improved the

model’s estimates. Overall, simply changing the data’s positional information decreased training

and validation losses by half, after 250 training epochs.

In sub-figure 4.1b it is shown that increasing the length of the sequences passed to the model leads

to a decrease in the training loss. Five different sequence lengths were tested, and the results show

that the more context it is given to the attention-based model, the better the results. It was chosen

not to keep increasing the sequence length, as no significant improvements were seen, at the cost of

heavier computations. In fact, a sequence of length 50 translates into a temporal window of more

than 10 seconds, which provides a lot of information regarding the dynamics of an ASV.

Combining the information of a sequence of multi-modal odometry estimates into a single fused

estimate via the flattening of the encoder’s output tensor and feeding it into an MLP or a linear

layer, which allowed for a single pose estimation, caused the models to overfit training data (sub-

figure 4.1c shows that, in such models, the evolution of validation data was not able to keep up

with that of training data).

Finally, the effects of increasing the model’s capacity, by incrementing the number of encoder lay-

ers, or expanding the dimension of the feed-forward layer are depicted in sub-figure 4.1d. Further

increasing the model’s dimensions (more than 10 encoder layers or increasing the feed-forward’s

inner-layer dimensionality to more than 128) did not produce any noticeable changes. The scrutiny

of the upcoming section focuses on a model that regresses position and orientation separately, with

a Time2Vec positional encoding, 10 encoder layers, 4 attention heads, and a feed-forward with di-

mension 128.

4.2 Multi-modal odometry evaluation

In this section of the document, the model’s performance assessment is done. That assessment

starts with the model’s output, hence, with relative poses, and then, the full reconstructed trajecto-

ries are presented, and compared against those estimated by the inputs of the network. These tra-

jectory reconstructions make it possible to assess the model’s ability to estimate an ASV absolute

pose, and, for that reason, the appearance of errors and drifts in the estimates of a purely odometric

system. Finally, an analysis of the behaviour of the fusion system when there are outages in the

inputs of the network is also performed, drawing conclusions about the system’s robustness to the

constraints that a maritime environment imposes on sensors.

Starting this analysis with the relative pose estimates and, therefore, with the inputs and outputs

of the fusion system, a significant improvement can be observed (figure 4.2). The fusion model
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Figure 4.2: Fusion model absolute error of relative pose transformations against single-modality
odometry systems. Translation error in meters and rotation error in degrees.

outperforms, by a large margin, the single-modality methods in the 3 DoF under evaluation. Trans-

lation estimates, especially in the direction of the x-axis, appear to have exploited the strengths of

each modality. When compared to RL and RTABMap (L), the mean of translation error was de-

creased by 35.0% and 38.8%, respectively. The error’s interquartile range and, for that reason, the

error’s dispersion also saw a meaningful reduction (51.2% and 55.5% in comparison with RL and

RTABMap). Even though the errors of relative translations in the y-axis are not as impactful as

those in the x-axis (the ASV’s movement is constrained, mainly, to a translation in the x-axis and

a rotation about the z-axis), they still have the potential to distort the trajectory to be reconstructed

from the relative poses estimates, and should not be ignored as sea currents can drag the ASV, im-

posing lateral movement. The system’s estimates concerning this DoF, improved mean estimates

by more than 50% when compared to any of the inputs, and reduced the interquartile range by

more than 45%. Finally, rotation about the z-axis also considerable improvements of more than

30% in every error metric.

As the ultimate goal is to access the quality of the reconstructed trajectories, the 6DoF estimated

relative poses can lead to error accumulation, especially taking into account that the fusion net-

work is a purely odometric system. For that reason, the trajectories of the seven sequences of

the collected dataset were reconstructed (eq. 3.5). Table 4.1 summarises the relative error of the

estimates over the full dataset.
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Table 4.1: Relative Errors on the full Dataset.

Metric Method Error

REpos

(%)

ORB-SLAM 38.451
RL 11.319

RTAB-Map (L) 5.579
Fusion 5.148

REyaw

(deg/m)

ORB-SLAM 0.793
RL 0.135

RTAB-Map (L) 0.058
Fusion 0.046

Even though there is still a significant improvement, both in translation and rotation metrics, the

difference from the results of the fusion network to the LiDAR-based odometry system is less

pronounced than it was when regarding only relative poses. Nevertheless, the multi-modal network

outperformed RTABMap by 7.7% and 20.7% (translation and rotation), and GPS/INS system by

54.5% and 65.9% in translation and rotation, respectively. To better understand the results, the

fusion system’s performance is also evaluated in a similar fashion to what was done in section 3.3,

dividing the dataset into the seven sequences that make it. Table 4.2 presents the ATE and RE

achieved by each odometry estimation method, in each sequence. Again, trajectory errors (ATE)

are based on a trajectory that is aligned by the first available common pose.

Table 4.2: Absolute Pose Odometry Errors with the Self-Attention Fusion model’s results.

SequenceMetric Method 1 2 3 4 5 6 7

ATEpos

(m)

ORB-SLAM 5.772 1.754 11.933 15.495 15.740 17.994 17.209
RL 2.476 3.143 5.852 0.701 7.439 11.967 0.839

RTAB-Map (L) 1.061 0.562 0.837 2.598 2.042 2.877 2.379
Fusion 0.900 0.329 0.298 3.930 1.701 1.012 2.968

ATEyaw

(deg)

ORB-SLAM 18.196 1.568 60.666 18.461 50.972 74.521 76.876
RL 3.308 0.747 18.796 1.220 7.218 3.617 2.482

RTAB-Map (L) 2.258 1.059 1.754 5.672 0.330 0.351 0.502
Fusion 2.538 0.690 0.975 5.571 0.564 1.172 1.699

REpos

(%)

ORB-SLAM 34.584 11.440 46.842 36.406 47.190 66.503 50.799
RL 9.248 22.052 21.852 0.966 31.634 12.097 1.210

RTAB-Map (L) 4.147 3.406 3.684 4.823 8.115 9.815 7.639
Fusion 4.675 3.022 1.405 8.279 3.969 0.827 5.222

REyaw

(deg/m)

ORB-SLAM 0.389 0.120 2.178 0.461 1.053 1.368 0.927
RL 0.114 0.057 1.137 0.024 0.070 0.086 0.019

RTAB-Map (L) 0.041 0.095 0.070 0.091 0.010 0.010 0.012
Fusion 0.044 0.065 0.026 0.068 0.018 0.025 0.019

Delving into the data available in table 4.2, one can observe that the multi-modal fusion odometry

system achieved the best trajectory position estimates in five of the seven sequences on the dataset.

Given that the trajectories are reconstructed from the estimated relative poses, the position’s ATE

is a good indicator of the network’s performance, as the reconstruction is dependent on all 6DoF
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(position and rotation). In two sequences (sequences 4 and 7), however, the fusion system did

not perform well when compared to single modality-based methods, nor when compared to the

performance achieved in the remaining five sequences of the dataset. In fact, position errors, both

ATE and RE, in these two sequences are discrepant with those achieved in the other sequences. A

closer inspection of why that happens is done later in this section. Regarding orientation estimates,

the results are, apparently, not as good as they are for position estimates. Actually, the RE of the

rotation about the z-axis achieved the best results only in the third sequence. However, even though

the fusion system was not able to consistently achieve the best rotation estimates when analysing

the trajectories performed in every individual sequence, the estimates were consistently very good

- the fusion network is always (with the exception of the third sequence) the second best method

of the four under evaluation. This contributed to the overall performance presented in table 4.1.

Rotation estimates were, therefore, very solid and unaffected by erratic or noisy inputs. Figure 4.3

displays the reconstructed trajectories of sequences 1, 2, 3 and 6. Sequences 4 and 7 are depicted

in figure 4.4, and portray two situations where the fusion model was not able to achieve interesting

results. ORB-SLAM’s [15] results are not represented as in most sequences the estimates are too

bad to visualize.
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(a) Sequence 1 (b) Sequence 2

(c) Sequence 3 (d) Sequence 6

Figure 4.3: Trajectories estimates of the Fusion model, compared against its inputs.

If there is one thing that stands out from every sequence displayed in figure 4.3 is that the fusion

model was able to ignore sudden leaps and distortions in the estimated trajectories. In the second

sequence, for instance, RTABMap’s estimate has an imperfection when the ASV crosses, approx-

imately, the point with coordinates (9m,−2m). The fused odometry output was immune to that

imperfection, leading to a smooth trajectory estimate. In the same sequence, the GPS/INS based

localisation system did not close the loop in coordinates (7m,−5m), a flaw that is not noticeable

in the fused trajectory. A similar pattern can be seen in sequence 3 (near the end of the RL es-
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timated trajectory) and in sequence 6 (approximately halfway through the trajectory), distortions

that the network promptly overcame.

(a) Sequence 4 (b) Sequence 7

Figure 4.4: Results in sequences where the Fusion algorithm did not perform well.

In sequences 4 and 7, the network’s ability to reduce the impact of distortions in the trajectories was

very much alike what was already seen and discussed in the previous analysis (see RTABMap’s

trajectory, in sequence 7, at around coordinates (20m,25m)). Yet, the estimated trajectories are

grossly defective, with no apparent reason for the inconsistent behaviour, especially taking into

account the good performance achieved in the remaining sequences of the dataset. To understand

what happened, figure 4.5 shows the relative translations in the x-axis. There is a significant pres-

ence of spikes in the data. It is noticeable that the spikes from the ground-truth signals and those

that happen in the input signals are not coincident. The sharp variations in the ground-truth signal

(cases where the signal assumes a value that is, approximately, double the signal values that are

temporally close) represent a situation where the GPS signal was not successfully received, caus-

ing a bigger variation in the position estimates (the temporal interval between position estimates

is also bigger). In these two sequences of the dataset, these GPS signal failures, however, were not
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accompanied by a truthful time-stamp, affecting the interpolation step performed in the input data,

which led to an unreal representation of temporal information and relative position estimates. The

fusion algorithm was not able to capture these deficiencies, which led to the big deviations from

the true trajectory, observed in figure 4.4.

(a) Sequence 4 (b) Sequence 7

Figure 4.5: Effects of erroneous time-stamps in GPS data in the multi-modal fusion system.

Section 3.3 exposed the frailty of VO systems in environments like the one made available by the

ATLANTIS Coastal Testbed. It was shown that the high failure rate was responsible for the overall

poor results over the full dataset, as in the second sequence, where ORB-SLAM [15] did not fail,

the results were, even though not superb, acceptable. It was also shown that, in some sequences,

the failure rate could go well beyond the 20% mark (table 3.3). The effects of those outages in the

attention-based fusion model’s results were, however, hardly noticed. In fact, the system was still

able to perform smoothly in the sequences where the failure rate was higher (notably sequences

5 and 6). Regarding those sequences in particular, figure 4.6 shows the behaviour of the fusion

network amid an outage of the VO system. It is noticeable that the output remained unscathed due

to momentary input failures.

(a) Sequence 5 (b) Sequence 6

Figure 4.6: Multi-modal fusion system’s behaviour with VO outages (rotation about the z-axis).
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4.3 Discussion

In this chapter, the results of the fusion models described in section 3.4 of the previous chapter

were presented and analysed. It was shown that increasing the length of the odometry sequence to

be fed into the models highly impacted the training loss, as the model is given more or less context

about the movement that is to be performed. It was also shown that replacing the positional

encoding of the original Transformer [43] with a concatenated vectorial time-based encoding was

enough to reduce training and validation error by half, allowing the model to cope with irregular

time intervals between measurements. It was also shown that the proposed self-attention fusion

models were able to outperform, in the collected dataset, the single modality odometry estimates

of RTABMap’s LiDAR-based system by 7.7% and 20.7% in position and rotation, respectively.

When compared to the GPS/INS system, those values are raised to an improvement of more than

50%. These results were obtained when dealing with outages in the VO system, which produced

no harm to the model’s output.
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Chapter 5

Conclusion and Future Work

The work conducted throughout the course of this dissertation culminated in an odometry fusion

system based on DL techniques, that aimed at robustifying and improving the localisation esti-

mates of an ASV. For that, a real-world dataset was collected, under harbor conditions, in a highly

dynamic and harsh environment. Data consisted of GPS/INS information, LiDAR, and visual

data. An autonomous navigation architecture is proposed, as it was used to perform some of the

trajectories followed by the ASV. Then, a benchmark of different odometry estimation systems is

done, to assess the strengths and flaws of each of the sensors that compose the dataset, in regard to

the estimation of position and rotation information. Those odometry estimates are then used as the

input of a robust odometry system, based on the self-attention mechanism and positional encoding

techniques.

The collected dataset, and the odometry benchmark, tackle the lack of publicly available data with

a focus on visual/LiDAR-based information, collected under maritime conditions. Even though

such datasets have become extensively studied in some domains (autonomous driving and UAVs),

there is still not sufficient available information about the performance of odometry estimation sys-

tems in harbor conditions. It was concluded that LiDAR-based odometry systems outperformed

those that rely on visual and GPS/INS information by a great margin (50.7% and 57.0%, re-

spectively). Even though VO methods performed poorly (failure rates, in some sequences of the

dataset were higher than 30%), when taking into account only relative pose estimates, one VO

method even outperformed a LiDAR-based odometry system by 12.74%, regarding orientation

estimates. This justified the use of visual information as an input of a multi-modal fusion system,

adding robustness to the estimates.

One of the challenges presented to the self-attention-based fusion system was how to incorpo-

rate temporal information from the odometry estimates into the input signal of the Transformer

encoder. For that, it was shown that using a concatenated learned temporal-based positional en-

coding, reduced training and validation errors by half, after 250 training epochs. Relative pose

estimates saw an overall mean improvement in translation of 35.0% and 38.8% when compared
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to the GPS/INS and the LiDAR odometry method, respectively. Similarly, rotation about the

z-axis was improved by more than 30%. Error dispersion was also greatly improved, as the er-

ror’s interquartile range was reduced by over 50%. Turning relative pose estimates, and building

the trajectory followed by the ASV, allowed for a finer assessment of the fusion system’s perfor-

mance. These reconstructed trajectories also saw significant improvements of 7.7% in translation

and 20.7% in rotation over the full dataset.

Even though the fusion system proved to be resilient to failures in the VO inputs, there is still

work to be done in order to refine the quality of the work that is described in this document. These

improvements regard, primarily, the quantity and the quality of the data that was acquired in the

ATLANTIS coastal testbed. Hence, the following improvements are yet to be performed:

• Correct the faulty time-stamps that, on occasion, can be detected in the RTK GPS signals;

• Improve the quality of visual information, as compressing the images to a Bayer filter ap-

plied to compress the images significantly degraded image quality;

• Increase the dataset, with three different purposes. First, the dataset was collected in a

restricted environment, over the course of a single day. This means that the ASV navigated

with undulation and wind conditions that did not differ much over the time when data was

collected, not exposing the vessel to different weather conditions. Second, only visual faults

are present in the dataset. It would be interesting to see faults in different modalities (such

as GPS outages or LiDAR odometry impairments), and how the model would react to such

flaws. Third, given the small dimensions of the dataset, overfitting of some of the proposed

architectures was seen, which meant that the estimates produced by such models could not

be accurately assessed.
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