218 research outputs found

    Reliable and efficient data dissemination schemein VANET: a review

    Get PDF
    Vehicular ad-hoc network (VANET), identified as a mobile ad hoc network MANETs with several added constraints. Basically, in VANETs, the network is established on the fly based on the availability of vehicles on roads and supporting infrastructures along the roads, such as base stations. Vehicles and road-side infrastructures are required to provide communication facilities, particularly when enough vehicles are not available on the roads for effective communication. VANETs are crucial for providing a wide range of safety and non-safety applications to road users. However, the specific fundamental problem in VANET is the challenge of creating effective communication between two fast-moving vehicles. Therefore, message routing is an issue for many safety and non-safety of VANETs applications. The challenge in designing a robust but reliable message dissemination technique is primarily due to the stringent QoS requirements of the VANETs safety applications. This paper investigated various methods and conducted literature on an idea to develop a model for efficient and reliable message dissemination routing techniques in VANET

    Dynamic speed adaptive classified (D-SAC) data dissemination protocol for improving autonomous robot performance in VANETs

    Get PDF
    In robotics, mechanized and computer simulation for accurate and fast crash detection between general geometric models is a fundamental problem. The explanation of this problem will gravely improve driver safety and traffic efficiency, vehicular ad hoc networks (VANETs) have been employed in many scenarios to provide road safety and for convenient travel of the people. They offer self-organizing decentralized environments to disseminate traffic data, vehicle information and hazardous events. In order to avoid accidents during roadway travels, which are a major burden to the society, the data, such as traffic data, vehicle data and the road condition, play a critical role. VANET is employed for disseminating the data. Still the scalability issues occur when the communication happens under high-traffic regime where the vehicle density is high. The data redundancy and packet collisions may be high which cause broadcast storm problems. Here the traffic regime in the current state is obtained from the speed of the vehicle. Thus the data reduction is obtained. In order to suppress the redundant broadcast D-SAC data, dissemination protocol is presented in this paper. Here the data are classified according to its criticality and the probability is determined. The performance of the D-SAC protocol is verified through conventional methods with simulation

    Cooperation as a Service in VANET: Implementation and Simulation Results

    Get PDF
    The past decade has witnessed the emergence of Vehicular Ad-hoc Networks (VANET), specializing from the well-known Mobile Ad Hoc Networks (MANET) to Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) wireless communications. While the original motivation for Vehicular Networks was to promote traffic safety, recently it has become increasingly obvious that Vehicular Networks open new vistas for Internet access, providing weather or road condition, parking availability, distributed gaming, and advertisement. In previous papers [27,28], we introduced Cooperation as a Service (CaaS); a new service-oriented solution which enables improved and new services for the road users and an optimized use of the road network through vehicle\u27s cooperation and vehicle-to-vehicle communications. The current paper is an extension of the first ones; it describes an improved version of CaaS and provides its full implementation details and simulation results. CaaS structures the network into clusters, and uses Content Based Routing (CBR) for intra-cluster communications and DTN (Delay and disruption-Tolerant Network) routing for inter-cluster communications. To show the feasibility of our approach, we implemented and tested CaaS using Opnet modeler software package. Simulation results prove the correctness of our protocol and indicate that CaaS achieves higher performance as compared to an Epidemic approach

    Optimisation of Mobile Communication Networks - OMCO NET

    Get PDF
    The mini conference “Optimisation of Mobile Communication Networks” focuses on advanced methods for search and optimisation applied to wireless communication networks. It is sponsored by Research & Enterprise Fund Southampton Solent University. The conference strives to widen knowledge on advanced search methods capable of optimisation of wireless communications networks. The aim is to provide a forum for exchange of recent knowledge, new ideas and trends in this progressive and challenging area. The conference will popularise new successful approaches on resolving hard tasks such as minimisation of transmit power, cooperative and optimal routing

    Novel Internet of Vehicles Approaches for Smart Cities

    Get PDF
    Smart cities are the domain where many electronic devices and sensors transmit data via the Internet of Vehicles concept. The purpose of deploying many sensors in cities is to provide an intelligent environment and a good quality of life. However, different challenges still appear in smart cities such as vehicular traffic congestion, air pollution, and wireless channel communication aspects. Therefore, in order to address these challenges, this thesis develops approaches for vehicular routing, wireless channel congestion alleviation, and traffic estimation. A new traffic congestion avoidance approach has been developed in this thesis based on the simulated annealing and TOPSIS cost function. This approach utilizes data such as the traffic average travel speed from the Internet of Vehicles. Simulation results show that the developed approach improves the traffic performance for the Sheffield the scenario in the presence of congestion by an overall average of 19.22% in terms of travel time, fuel consumption and CO2 emissions as compared to other algorithms. In contrast, transmitting a large amount of data among the sensors leads to a wireless channel congestion problem. This affects the accuracy of transmitted information due to the packets loss and delays time. This thesis proposes two approaches based on a non-cooperative game theory to alleviate the channel congestion problem. Therefore, the congestion control problem is formulated as a non-cooperative game. A proof of the existence of a unique Nash equilibrium is given. The performance of the proposed approaches is evaluated on the highway and urban testing scenarios. This thesis also addresses the problem of missing data when sensors are not available or when the Internet of Vehicles connection fails to provide measurements in smart cities. Two approaches based on l1 norm minimization and a relevance vector machine type optimization are proposed. The performance of the developed approaches has been tested involving simulated and real data scenarios

    Suporte a gerenciamento do trânsito baseado em computação na névoa para os sistemas de transporte inteligentes

    Get PDF
    Orientadores: Leandro Aparecido Villas, Daniel Ludovico GuidoniTese (doutorado) ¿ Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: O trânsito nos grandes centros urbanos contribui com problemas que vão desde diminuição da qualidade de vida e segurança da população até o aumento de custos financeiros às pessoas, cidades e empresas. Um dos motivos para um maior tráfego de veículos é o vertiginoso crescimento populacional dos centros urbanos. Além disso, o fluxo de veículos é prejudicado por situações adversas recorrentes nas vias, como o aumento súbito do tráfego durante os horários de pico, gargalos nas infraestruturas de transporte, e acidentes de trânsito. Com o avanço das tecnologias de comunicação, processamento e sensoriamento, os Sistemas de Transporte Inteligentes (ITS) surgem como uma alternativa para mitigar esses problemas. A interoperabilidade dos ITS com novas tecnologias tais como as redes veiculares (VANETs) e computação em névoa, os tornam mais promissores e eficazes. As VANETs preveem que veículos possuam poder computacional e capacidade de comunicação sem fio com outros veículos e com as infraestruturas fixa de comunicação, assim, uma nova gama de serviços de segurança e entretenimento aos motoristas e passageiros podem ser desenvolvidas. Entretanto, estes tipos de serviços, em especial o de gerenciamento de trânsito, demandam uma análise contínua das condições de fluxo de veículos nas vias e um vasto recurso de rede e processamento, tornando o desenvolvimento de soluções para ITS mais complexo e de difícil escalabilidade. A computação em névoa é uma infraestrutura de computação descentralizada na qual dados, processamento, armazenamento e aplicações são distribuídos na borda da rede, assim, aumentando a escalabilidade do sistema. Na literatura, os sistemas de gerenciamento de tráfego não tratam de maneira adequada o problema de escalabilidade, implicando em problemas relacionados ao balanceamento de carga e tempo de resposta. Esta tese de doutorado propõe um sistema de gerenciamento de tráfego baseado no paradigma de computação em névoa, para detectar, classificar e controlar o congestionamento de tráfego. O sistema proposto apresenta um framework distribuído e escalável que reduz os problemas supracitados em relação ao estado da arte. Para tanto, utilizando da natureza distribuída da computação em névoa, a solução implementa um algoritmo de roteamento probabilístico que faz o balanceamento do tráfego e evita o problema de deslocamento de congestionamentos para outras regiões. Utilizando às características da computação em névoa, foi desenvolvida uma metodologia distribuída baseada em regiões que faz a coleta de dados e classificação das vias em relação às condições do trânsito compartilhadas pelos veículos. Finalmente, foi desenvolvido um conjunto de algoritmos/protocolos de comunicação que comparado com outras soluções da literatura, reduz a perda de pacotes e o número de mensagens transmitidas. O serviço proposto foi comparado extensivamente com outras soluções da literatura em relação às métricas de trânsito, onde o sistema proposto foi capaz de reduzir em até 70% o tempo parado e em até 49% o planning time index. Considerando as métricas de comunicação, o serviço proposto é capaz de reduzir em até 12% a colisão de pacotes alcançando uma cobertura de 98% do cenário. Os resultados mostram que o framework baseado em computação em névoa desenvolvido, melhora o fluxo de veículos de forma eficiente e escalávelAbstract: Traffic in large urban centers contributes to problems that range from decreasing the population¿s quality of life and security to increasing financial costs for people, cities, and companies. One of the reasons for increased vehicle traffic is the population growth in urban centers. Moreover, vehicle flow is hampered by recurring adverse situations on roads, such as the sudden increase in vehicle traffic during peak hours, bottlenecks in transportation infrastructure, and traffic accidents. Considering the advance of communication, processing, and sensing technologies, Intelligent Transport Systems (ITS) have emerged as an alternative to mitigate these problems. The interoperability of ITS with new technologies, such as vehicular networks (VANETs) and Fog computing, make them more promising and effective. VANETs ensure that vehicles have the computing power and wireless communication capabilities with other vehicles and with fixed communication infrastructures; therefore, a new range of security and entertainment services for drivers and passengers can be developed. However, these types of services, especially traffic management, demand a continuous analysis of vehicle flow conditions on roads and a huge network and processing resource, making the development of ITS solutions more complex and difficult to scale. Fog computing is a decentralized computing infrastructure in which data, processing, storage, and applications are distributed at the network edge, thereby increasing the system¿s scalability. In the literature, traffic management systems do not adequately address the scalability problem, resulting in load balancing and response time problems. This doctoral thesis proposes a traffic management system based on the Fog computing paradigm to detect, classify, and control traffic congestion. The proposed system presents a distributed and scalable framework that reduces the aforementioned problems in relation to state of the art. Therefore, using Fog computing¿s distributed nature, the solution implements a probabilistic routing algorithm that balances traffic and avoids the problem of congestion displacement to other regions. Using the characteristics of Fog computing, a distributed methodology was developed based on regions that collect data and classify the roads concerning the traffic conditions shared by the vehicles. Finally, a set of communication algorithms/protocols was developed which, compared with other literature solutions, reduces packet loss and the number of messages transmitted. The proposed service was compared extensively with other solutions in the literature regarding traffic metrics, where the proposed system was able to reduce downtime by up to 70% and up to 49% of the planning time index. Considering communication metrics, the proposed service can reduce packet collision by up to 12% reaching 98% coverage of the scenario. The results show that the framework based on Fog computing developed improves the vehicles¿ flow efficiently and in a scalable wayDoutoradoCiência da ComputaçãoDoutor em Ciência da Computaçã

    Recent Developments on Mobile Ad-Hoc Networks and Vehicular Ad-Hoc Networks

    Get PDF
    This book presents collective works published in the recent Special Issue (SI) entitled "Recent Developments on Mobile Ad-Hoc Networks and Vehicular Ad-Hoc Networks”. These works expose the readership to the latest solutions and techniques for MANETs and VANETs. They cover interesting topics such as power-aware optimization solutions for MANETs, data dissemination in VANETs, adaptive multi-hop broadcast schemes for VANETs, multi-metric routing protocols for VANETs, and incentive mechanisms to encourage the distribution of information in VANETs. The book demonstrates pioneering work in these fields, investigates novel solutions and methods, and discusses future trends in these field

    Centralized simulated annealing for alleviating vehicular congestion in smart cities

    Get PDF
    Vehicular traffic congestion is a serious problem arising in many cities around the world, due to the increasing number of vehicles utilizing roads of a limited capacity. Often the congestion has a considerable influence on the travel time, travel distance, fuel consumption and air pollution. This paper proposes a novel dynamic centralized simulated annealing based approach for finding optimal vehicle routes using a VIKOR type of cost function. Five attributes: the average travel speed of the traffic, vehicles density, roads width, road traffic signals and the roads' length are utilized by the proposed approach to find the optimal paths. The average travel speed and vehicles density values can be obtained from the sensors deployed in smart cities and communicated to vehicles and roadside communication units via vehicular ad hoc networks. The performance of the proposed algorithm is compared with four other algorithms, over two test scenarios: Birmingham and Turin city centres. These show the proposed method improves traffic efficiency in the presence of congestion by an overall average of 24.05%, 48.88% and 36.89% in terms of travel time, fuel consumption and CO2 emission, respectively, for a test scenario from Birmingham city in the UK. Additionally, similar performance patterns are achieved for the a test with data from Turin, Italy

    Construction of a real vehicular delay-tolerant network testbed

    Get PDF
    Vehicular Delay-Tolerant Networks (VDTNs) appear as innovative network architecture, able to outline communication challenges caused by issues like variable delays, disruption and intermittent connectivity once that it utilizes the store-carry-and-forward method to allow that in-transit messages (called bundles) can be delivered to the destination by hopping over the mobile vehicles even that an end-to-end path does not exist. Since messages are stored persistently in a buffer and forward to the next hop, a new communication infrastructure is created allowing low-cost asynchronous opportunistic communication under the most critical situations like variable delays and bandwidth constraints. VDTN introduces a layered architecture, acting as an overlay network over the link layer, aggregating incoming IP packets in data bundles (large IP packets), using out-of-band signaling, based on the separation of the control plane and planes. This dissertation presents and evaluates the performance of a real VDTN testbed, demonstrating the real applicability of this new vehicular communication approach. It includes an embedded VDTN testbed created to evaluate safety systems in a real-world scenario. It was used cars with laptops to realize terminal and relay nodes. A real testbed is very important because some complex issues presented in vehicular communication systems can be treated with more realism in real-world environments than in a laboratory environment. The experiments were performed on the internal streets of Brazilian Fiat Automobile manufacturing plant. Performance measurements and analysis were also conduct to verify the efficiency of the system. The results obtained show that safety applications and services can be executed with the actual proposal VDTN architecture in several environments, although notable interference as fading and characteristics of the radio channel, require the use of more modern, appropriate and robust technologies. Thus, the real deployment of VDTNs confirms that VDTNs can be seen as a very promising technology for vehicular communications.Fundação para a Ciência e a Tecnologia (FCT
    corecore