6,504 research outputs found

    USING EMBEDDED TECHNOLOGY IN END-USER PROGRAMMING OF SMART SPACES WITH MOBILE DEVICES

    Get PDF
    A recent shift in computing paradigm from stand-alone microcomputers and mainframes towards entirely pervasivecomputing where billions of miniature, ubiquitous inter-connected computing elements weave themselves into thefabric of everyday life. Embedded systems run the computing devices hidden inside every object and appliance suchas cell phones, toys, handheld PDAs, cameras, microwave ovens, cars, airplanes, etc. These numerous, easilyaccessible devices connected to each other and to network infrastructure exhibit context-awareness of anenvironment in order to optimize their operation in that environment. In this paper, we examined embedded systemsin end-user programming of smart spaces with mobile devices. We designed and implemented a microcontrollerbasedsystem capable of monitoring and controlling the electronic appliances in a home from any location. Weadopted a task-driven computing approach of the composition of the semantic web. The end user uses thefunctionality of the networked devices in the home as semantic web services to arbitrarily form his request whichinvolves the typing of SMS through the user-friendly interface of a Java enabled mobile phone. An Arduinomicrocontroller for generating the timing and control signals programmed using Wiring language was used. TheGSM wireless technology was used for transmission and reception of the data. Our work addresses the problem ofenergy wastage and domestic accidents by enabling end-users to easily use their mobile devices to monitor andinstruct their home devices from any location over a wireless network.Keywords: Embedded Technology, Smart Spaces, End-User Programming, Mobile Devices, Pervasive Networkin

    An Autonomous Engine for Services Configuration and Deployment.

    Full text link
    The runtime management of the infrastructure providing service-based systems is a complex task, up to the point where manual operation struggles to be cost effective. As the functionality is provided by a set of dynamically composed distributed services, in order to achieve a management objective multiple operations have to be applied over the distributed elements of the managed infrastructure. Moreover, the manager must cope with the highly heterogeneous characteristics and management interfaces of the runtime resources. With this in mind, this paper proposes to support the configuration and deployment of services with an automated closed control loop. The automation is enabled by the definition of a generic information model, which captures all the information relevant to the management of the services with the same abstractions, describing the runtime elements, service dependencies, and business objectives. On top of that, a technique based on satisfiability is described which automatically diagnoses the state of the managed environment and obtains the required changes for correcting it (e.g., installation, service binding, update, or configuration). The results from a set of case studies extracted from the banking domain are provided to validate the feasibility of this propos

    Security in IoT pairing & authentication protocols, a threat model and a case study analysis

    Get PDF
    The Internet of Things has changed the way we interact with the environment around us in our daily life, and it is increasingly common to find more than one IoT device in our home. However, the current design approaches adopted by the vendors are more oriented towards customer usability than to security. This often results in more and more devices exposing serious security problems. This work focuses on the security implications, i.e. the threats and the risks, of the current IoT pairing mechanisms and represents a step forward in the definition of our automated penetration testing methodology. In addition to the general threat model for a general IoT pairing process, we present the analysis of a QR code-based pairing mechanism implemented by a class of devices taken from the real market, which led to the identification of two vulnerabilities, one of which publicly disclosed as CVE-2021-27941

    Internet of Things-aided Smart Grid: Technologies, Architectures, Applications, Prototypes, and Future Research Directions

    Full text link
    Traditional power grids are being transformed into Smart Grids (SGs) to address the issues in existing power system due to uni-directional information flow, energy wastage, growing energy demand, reliability and security. SGs offer bi-directional energy flow between service providers and consumers, involving power generation, transmission, distribution and utilization systems. SGs employ various devices for the monitoring, analysis and control of the grid, deployed at power plants, distribution centers and in consumers' premises in a very large number. Hence, an SG requires connectivity, automation and the tracking of such devices. This is achieved with the help of Internet of Things (IoT). IoT helps SG systems to support various network functions throughout the generation, transmission, distribution and consumption of energy by incorporating IoT devices (such as sensors, actuators and smart meters), as well as by providing the connectivity, automation and tracking for such devices. In this paper, we provide a comprehensive survey on IoT-aided SG systems, which includes the existing architectures, applications and prototypes of IoT-aided SG systems. This survey also highlights the open issues, challenges and future research directions for IoT-aided SG systems

    Smart Grid Communications: Overview of Research Challenges, Solutions, and Standardization Activities

    Full text link
    Optimization of energy consumption in future intelligent energy networks (or Smart Grids) will be based on grid-integrated near-real-time communications between various grid elements in generation, transmission, distribution and loads. This paper discusses some of the challenges and opportunities of communications research in the areas of smart grid and smart metering. In particular, we focus on some of the key communications challenges for realizing interoperable and future-proof smart grid/metering networks, smart grid security and privacy, and how some of the existing networking technologies can be applied to energy management. Finally, we also discuss the coordinated standardization efforts in Europe to harmonize communications standards and protocols.Comment: To be published in IEEE Communications Surveys and Tutorial

    Assisting Inhabitants of Residential Homes with Management of Their Energy Consumption

    Get PDF
    Although there are already a range of energy monitoring and automation systems available in the market that target residential homes, mostly with the aim of reducing their total energy consumption, very few of these systems are directly concerned with how those energy savings are actually made. As such, these systems do not provide tools that would allow users to make intelligent decisions about their energy usage strategies, and encourage them to change their energy use behaviour. In this paper we describe a system designed to facilitate planning and control of energy usage activities in residential homes. We also report on a user study of this system which demonstrates its potential for making energy savings possible

    FORGE: An eLearning Framework for Remote Laboratory Experimentation on FIRE Testbed Infrastructure

    Get PDF
    The Forging Online Education through FIRE (FORGE) initiative provides educators and learners in higher education with access to world-class FIRE testbed infrastructure. FORGE supports experimentally driven research in an eLearning environment by complementing traditional classroom and online courses with interactive remote laboratory experiments. The project has achieved its objectives by defining and implementing a framework called FORGEBox. This framework offers the methodology, environment, tools and resources to support the creation of HTML-based online educational material capable accessing virtualized and physical FIRE testbed infrastruc- ture easily. FORGEBox also captures valuable quantitative and qualitative learning analytic information using questionnaires and Learning Analytics that can help optimise and support student learning. To date, FORGE has produced courses covering a wide range of networking and communication domains. These are freely available from FORGEBox.eu and have resulted in over 24,000 experiments undertaken by more than 1,800 students across 10 countries worldwide. This work has shown that the use of remote high- performance testbed facilities for hands-on remote experimentation can have a valuable impact on the learning experience for both educators and learners. Additionally, certain challenges in developing FIRE-based courseware have been identified, which has led to a set of recommendations in order to support the use of FIRE facilities for teaching and learning purposes

    Home Automation System based on Intelligent Transducer Enablers

    Full text link
    This paper presents a novel home automation system named HASITE (Home Automation System based on Intelligent Transducer Enablers), which has been specifically designed to identify and configure transducers easily and quickly. These features are especially useful in situations where many transducers are deployed, since their setup becomes a cumbersome task that consumes a significant amount of time and human resources. HASITE simplifies the deployment of a home automation system by using wireless networks and both self-configuration and self-registration protocols. Thanks to the application of these three elements, HASITE is able to add new transducers by just powering them up. According to the tests performed in different realistic scenarios, a transducer is ready to be used in less than 13 s. Moreover, all HASITE functionalities can be accessed through an API, which also allows for the integration of third-party systems. As an example, an Android application based on the API is presented. Remote users can use it to interact with transducers by just using a regular smartphone or a tablet.Comment: 27 pages, 17 figures, accepted version of Sensors journal articl

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications
    corecore