9 research outputs found

    A Survey on Compiler Autotuning using Machine Learning

    Full text link
    Since the mid-1990s, researchers have been trying to use machine-learning based approaches to solve a number of different compiler optimization problems. These techniques primarily enhance the quality of the obtained results and, more importantly, make it feasible to tackle two main compiler optimization problems: optimization selection (choosing which optimizations to apply) and phase-ordering (choosing the order of applying optimizations). The compiler optimization space continues to grow due to the advancement of applications, increasing number of compiler optimizations, and new target architectures. Generic optimization passes in compilers cannot fully leverage newly introduced optimizations and, therefore, cannot keep up with the pace of increasing options. This survey summarizes and classifies the recent advances in using machine learning for the compiler optimization field, particularly on the two major problems of (1) selecting the best optimizations and (2) the phase-ordering of optimizations. The survey highlights the approaches taken so far, the obtained results, the fine-grain classification among different approaches and finally, the influential papers of the field.Comment: version 5.0 (updated on September 2018)- Preprint Version For our Accepted Journal @ ACM CSUR 2018 (42 pages) - This survey will be updated quarterly here (Send me your new published papers to be added in the subsequent version) History: Received November 2016; Revised August 2017; Revised February 2018; Accepted March 2018

    MLGOPerf: An ML Guided Inliner to Optimize Performance

    Full text link
    For the past 25 years, we have witnessed an extensive application of Machine Learning to the Compiler space; the selection and the phase-ordering problem. However, limited works have been upstreamed into the state-of-the-art compilers, i.e., LLVM, to seamlessly integrate the former into the optimization pipeline of a compiler to be readily deployed by the user. MLGO was among the first of such projects and it only strives to reduce the code size of a binary with an ML-based Inliner using Reinforcement Learning. This paper presents MLGOPerf; the first end-to-end framework capable of optimizing performance using LLVM's ML-Inliner. It employs a secondary ML model to generate rewards used for training a retargeted Reinforcement learning agent, previously used as the primary model by MLGO. It does so by predicting the post-inlining speedup of a function under analysis and it enables a fast training framework for the primary model which otherwise wouldn't be practical. The experimental results show MLGOPerf is able to gain up to 1.8% and 2.2% with respect to LLVM's optimization at O3 when trained for performance on SPEC CPU2006 and Cbench benchmarks, respectively. Furthermore, the proposed approach provides up to 26% increased opportunities to autotune code regions for our benchmarks which can be translated into an additional 3.7% speedup value.Comment: Version 2: Added the missing Table 6. The short version of this work is accepted at ACM/IEEE CASES 202

    Polyhedral+Dataflow Graphs

    Get PDF
    This research presents an intermediate compiler representation that is designed for optimization, and emphasizes the temporary storage requirements and execution schedule of a given computation to guide optimization decisions. The representation is expressed as a dataflow graph that describes computational statements and data mappings within the polyhedral compilation model. The targeted applications include both the regular and irregular scientific domains. The intermediate representation can be integrated into existing compiler infrastructures. A specification language implemented as a domain specific language in C++ describes the graph components and the transformations that can be applied. The visual representation allows users to reason about optimizations. Graph variants can be translated into source code or other representation. The language, intermediate representation, and associated transformations have been applied to improve the performance of differential equation solvers, or sparse matrix operations, tensor decomposition, and structured multigrid methods

    Structured parallelism discovery with hybrid static-dynamic analysis and evaluation technique

    Get PDF
    Parallel computer architectures have dominated the computing landscape for the past two decades; a trend that is only expected to continue and intensify, with increasing specialization and heterogeneity. This creates huge pressure across the software stack to produce programming languages, libraries, frameworks and tools which will efficiently exploit the capabilities of parallel computers, not only for new software, but also revitalizing existing sequential code. Automatic parallelization, despite decades of research, has had limited success in transforming sequential software to take advantage of efficient parallel execution. This thesis investigates three approaches that use commutativity analysis as the enabler for parallelization. This has the potential to overcome limitations of traditional techniques. We introduce the concept of liveness-based commutativity for sequential loops. We examine the use of a practical analysis utilizing liveness-based commutativity in a symbolic execution framework. Symbolic execution represents input values as groups of constraints, consequently deriving the output as a function of the input and enabling the identification of further program properties. We employ this feature to develop an analysis and discern commutativity properties between loop iterations. We study the application of this approach on loops taken from real-world programs in the OLDEN and NAS Parallel Benchmark (NPB) suites, and identify its limitations and related overheads. Informed by these findings, we develop Dynamic Commutativity Analysis (DCA), a new technique that leverages profiling information from program execution with specific input sets. Using profiling information, we track liveness information and detect loop commutativity by examining the code’s live-out values. We evaluate DCA against almost 1400 loops of the NPB suite, discovering 86% of them as parallelizable. Comparing our results against dependence-based methods, we match the detection efficacy of two dynamic and outperform three static approaches, respectively. Additionally, DCA is able to automatically detect parallelism in loops which iterate over Pointer-Linked Data Structures (PLDSs), taken from wide range of benchmarks used in the literature, where all other techniques we considered failed. Parallelizing the discovered loops, our methodology achieves an average speedup of 3.6× across NPB (and up to 55×) and up to 36.9× for the PLDS-based loops on a 72-core host. We also demonstrate that our methodology, despite relying on specific input values for profiling each program, is able to correctly identify parallelism that is valid for all potential input sets. Lastly, we develop a methodology to utilize liveness-based commutativity, as implemented in DCA, to detect latent loop parallelism in the shape of patterns. Our approach applies a series of transformations which subsequently enable multiple applications of DCA over the generated multi-loop code section and match its loop commutativity outcomes against the expected criteria for each pattern. Applying our methodology on sets of sequential loops, we are able to identify well-known parallel patterns (i.e., maps, reduction and scans). This extends the scope of parallelism detection to loops, such as those performing scan operations, which cannot be determined as parallelizable by simply evaluating liveness-based commutativity conditions on their original form

    First Annual Workshop on Space Operations Automation and Robotics (SOAR 87)

    Get PDF
    Several topics relative to automation and robotics technology are discussed. Automation of checkout, ground support, and logistics; automated software development; man-machine interfaces; neural networks; systems engineering and distributed/parallel processing architectures; and artificial intelligence/expert systems are among the topics covered

    Underwater Vehicles

    Get PDF
    For the latest twenty to thirty years, a significant number of AUVs has been created for the solving of wide spectrum of scientific and applied tasks of ocean development and research. For the short time period the AUVs have shown the efficiency at performance of complex search and inspection works and opened a number of new important applications. Initially the information about AUVs had mainly review-advertising character but now more attention is paid to practical achievements, problems and systems technologies. AUVs are losing their prototype status and have become a fully operational, reliable and effective tool and modern multi-purpose AUVs represent the new class of underwater robotic objects with inherent tasks and practical applications, particular features of technology, systems structure and functional properties

    Managing Smartphone Testbeds with SmartLab

    Get PDF
    The explosive number of smartphones with ever growing sensing and computing capabilities have brought a paradigm shift to many traditional domains of the computing field. Re-programming smartphones and instrumenting them for application testing and data gathering at scale is currently a tedious and time-consuming process that poses significant logistical challenges. In this paper, we make three major contributions: First, we propose a comprehensive architecture, coined SmartLab1, for managing a cluster of both real and virtual smartphones that are either wired to a private cloud or connected over a wireless link. Second, we propose and describe a number of Android management optimizations (e.g., command pipelining, screen-capturing, file management), which can be useful to the community for building similar functionality into their systems. Third, we conduct extensive experiments and microbenchmarks to support our design choices providing qualitative evidence on the expected performance of each module comprising our architecture. This paper also overviews experiences of using SmartLab in a research-oriented setting and also ongoing and future development efforts
    corecore