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ABSTRACT

This research presents an intermediate compiler representation that is de-

signed for optimization, and emphasizes the temporary storage requirements and 

execution schedule of a given computation to guide optimization decisions. The 

representation is expressed as a dataflow graph that describes computational state-

ments and data mappings within the polyhedral compilation model. The targeted 

applications include both the regular and irregular scientific domains.

The intermediate representation can be integrated into existing compiler infras-

tructures. A specification language implemented as a domain specific language in 

C++ describes the graph components and the transformations that can be applied. 

The visual representation allows users to reason about optimizations. Graph variants 

can be translated into source code or other representation. The language, interme-

diate representation, and associated transformations have been applied to improve 

the performance of differential equation solvers, or sparse matrix operations, tensor 

decomposition, and structured multigrid methods.
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CHAPTER 1

INTRODUCTION

The solutions to many important scientific, engineering, and national security

challenges require improvements in the software stack to achieve the computational ef-

ficiency necessary for large scale modeling and simulation applications. The National

Strategic Computing Initiative (NSCI) prioritizes fields such as molecular dynamics,

material science, advanced manufacturing, and precision medicine [1]. The Exascale

Computing Project (ECP) is an associated effort to build computational tools that

support advances in these fields. Computational efficiency is determined by the

number of resources required by an application. More efficient computation means

that more data can be processed in less time or with fewer resources. This work aims

to improve computational efficiency in scientific applications.

Compilers are crucial components of the software stack, and are responsible for

translating code implemented in high-level programming languages to architecture-

specific assembly code. During this translation, the computational efficiency of the

application can be improved by performing the appropriate set of code optimizations

and transformations. The best sequence of optimizations depends on the target

architecture. There has been an increase in architecture variability and complexity

in recent years. CPU memory hierarchies have become more complex, and scientific

applications often target alternative architectures including graphics processors and
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field-programmable gate arrays. More compiler internal representations are required

to select and apply effective code transformations.

Dataflow optimizations are especially beneficial for memory bound applications,

which are those that move relatively large quantities of data per each unit of arith-

metic computation. This low computational intensity means that processors spend

significant amounts of time waiting for data to become available for computation. By

contrast, compute bound applications are limited by the rate at which processors can

perform arithmetic operations on data that are already available [2].

Significant performance gains in memory bound applications can be achieved

by dataflow optimizations that reorganize computations and reduce storage require-

ments. Scientific applications contain common computational patterns that enable

these types of optimizations, such as linear algebra operations, or stencil computa-

tions. The calculations are typically implemented as a series of nested loops over the

data, with each loop nest computing a portion of the solution. To take advantage

of these patterns, computations performed across large data domains are often dis-

tributed across many compute nodes in a network or cluster. The performance of

shared memory programs is crucial for scalability since the time and energy lost to

poor single node performance is multiplied when the code is distributed.

Memory access patterns are critical to application performance and scalability.

Applications with predictable data accesses and control flow patterns can be statically

analyzed and optimized at compile time. These applications have regular patterns and

so are considered regular. Other applications that rely on pointers or other indirect

memory access patterns cannot always be statically analyzed. Such applications are

referred to as irregular. These computations may require run time information or

domain specific knowledge to be successfully optimized [3]. Both classifications of
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memory access patterns are considered in this work.

Transforming readable and maintainable application source code into fast and

energy-efficient machine code is challenging for compilers, due in part to existing

programming language designs. A unified representation grants programmers control

over memory interactions and execution schedules, but burdens them with the respon-

sibility to write efficient code. This is particularly difficult for domain experts with

no background in computer science or software engineering. These users may instead

wish to convert mathematical expressions into algorithmic representations without

being concerned with programming abstractions or hardware performance. This

separation of concerns enables domain experts to write algorithms and performance

engineers to apply optimizations, resulting in performance portability. Achieving this

portability requires trade-offs between memory storage and computation, which is

important for computationally intensive science and engineering applications.

The effectiveness of dataflow optimizations greatly depends on the abstraction

level at which the code is analyzed. Higher abstraction levels such as the source code

better capture the intention of the computation. However, the source code representa-

tion of scientific computations should not be altered to enable optimizations, improve

performance, or target different hardware architectures. Such changes can make the

source code difficult to understand, maintain, and update by domain scientists or

engineers. Performing compiler optimizations at the instruction level can lead to

ineffective dataflow optimizations. This leaves the programmer to perform dataflow

optimizations at the source code level. Instead, transformations should be applied

to a higher level intermediate representation (IR) within the compiler, or via an

abstraction layer that enables a performance expert to tune the applications. These

goals can be achieved by decoupling the algorithmic specification from the execution
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schedule and data layout [4–6].

This research targets compiler transformations focused on dataflow optimizations

for memory bound applications. A compiler intermediate representation was de-

signed and developed to enable code transformations in existing applications using a

combination of program analysis, performance modeling, and programmer feedback.

Domain experts can implement computations in the provided specification language,

while performance engineers can transform code by manipulating the intermediate

representation. The dataflow optimizations were applied to improve the performance

of finite difference and structured grid solvers, and sparse linear algebra applications.

The specific research contributions are described in the following section.

1.1 Contributions

1. Development of the polyhedral+dataflow graph intermediate representation (PDFG-

IR) that expresses execution schedules, dataflow, memory interactions, and

program statements in a manner that expands the set of automated transforma-

tions available to optimizing compilers. The polyhedral model is combined with

macro-dataflow graphs to explicitly represent data requirements, including data

type, domain, and size. The graphs encapsulate code with execution schedules

and data mappings for both persistent and temporary storage spaces.

2. Definition and implementation of compiler transformations to modify the ex-

ecution schedules and storage mappings of the specified computation. These

operations include statement rescheduling, producer-consumer and read-reduce

loop fusion, and other loop transformations, such as unrolling, splitting, and

tiling. Storage reductions are determined using reuse distance and reachability
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analyses. A memory allocation algorithm based on liveness analysis [7] is

described that allocates sufficient space for those data that are live at each

point in the computation.

3. Extension of the IR to support irregular applications using the inspector/ex-

ecutor approach [8]. The inspector-executor method is applied when code or

data transformations require run time support, including run time dependence

analysis or data transformations. Both inspectors and executor components can

be represented and optimized, by transforming both data and iteration spaces.

Non-affine, data dependent loop bounds are represented by uninterpreted func-

tions [9] and converted into explicit represetations at run time.

4. Development of an embedded domain specific language to construct the IR.

Numerical algorithms are expressed in C++ using a combination of iterators,

functions, constraints, spaces, and executable statements. An iteration space

is composed of an iterator set and their corresponding boundary constraints.

Data spaces are derived from access functions in the statements. A computation

consists of an iteration space, execution schedule, and statement list. The

PDFG-IR is generated from the eDSL specifications.

5. Generation of an internal performance model for each graph variant. Many

different graph variants can be generated from an initial graph specification

by applying the supported transformations. A performance model is generated

for each variant that include estimates of floating point operations (FLOPs),

memory throughput, and arithmetic intensity. The model can be used to reason

about the performance of a given variant on a target architecture.
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1.2 Dissertation Structure

The remainder of this dissertation is organized as follows. Chapter 2 provides

background on the numerical methods targeted in this work, the polyhedral model

and associated compiler technologies, sparse matrix and tensor representations, the

inspector-executor approach, dataflow languages, and memory optimizations. The

polyhedral+dataflow IR and its application to regular applications is described in

Chapter 3. The polyhedral+dataflow language (PDFL) and PDFG-IR extensions to

support irregular applications are detailed in Chapter 4.

The integration of PDFG-IR with a structured grid adaptive mesh refinement

solver (SAMR) eDSL called Proto is described in Chapter 5. Case studies including

conjugate gradient (CG) and canonical polyadic tensor decomposition (CPD) imple-

mentations are performed in Chapter 6. A survey of related work is provided in

Chapter 7. Finally, topics for future work are discussed, and conclusions are drawn

in Chapter 8.
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CHAPTER 2

BACKGROUND

This chapter provides an overview of the concepts applied in this work. The

research has built on recent developments in polyhedral compiler frameworks [10–12],

loop chains [13–15], domain specific languages [4–6], dataflow programming lan-

guages [16–18], memory access optimizations [19–21], stencil-based partial differential

equation (PDE) solvers [22–25], inspector/executor applications [26–28], code gener-

ation with non-affine or data-dependent loop bounds [8, 29, 30], and sparse matrix

or tensor optimizations [31–33]. The applications targeted for optimization by this

work include numerical methods for mathematical solvers, scientific and engineering

simulations, or data analytics.

2.1 Compiler Optimizations

A typical optimizing compiler consists of at least three stages. The source code in

the chosen programming language is parsed and converted into an initial intermediate

representation (IR), such as an abstract syntax tree (AST). The IR may undergo

many transformations, and several different representations as the code progresses

through a series of optimization passes. The final IR is passed to the code generator

that then emits machine instructions for the target architecture. An example is the

register transfer language (RTL) of the Gnu Compiler Collection (GCC). Finally, the
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compiled code is linked with any external libraries to produce an executable binary

file. An overview of this process is given in Figure 2.1.

The correctness of every transformation performed by a compiler must be guar-

anteed. The soundness of an optimization assures that the runtime behavior of the

program is not modified. This requirement forces conservative decisions to be made

during static analysis passes that occur at compile time. These passes are applied

by traversing the various internal representations in the middle-end of the compiler

infrastructure. A trade-off between precision and compile time overhead exists for

each optimization.

Compiler optimizations can be limited by the high level language semantics. The

use of pointers in C, for example, presents a significant challenge to data dependence

analyses. If the compiler cannot guarantee that two pointers do not address overlap-

ping memory spaces within a reasonable amount of time, it must assume that the

pointers are aliased. This assumption limits possible transformations, and therefore

the run time performance.

Programmers may conservatively allocate more space than necessary, rather than

formally analyzing the space requirements of an algorithm. A compiler that supports

Figure 2.1: Process flow of an optimizing compiler with parser (front), optimization
passes (middle), code generator, and linker (back-end components).
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data transformations can help overcome such challenges by automatically reducing

the amount of temporary storage allocated, or reordering the data into a form that

is more efficient for the given computation and target architecture. The IR described

in this work is designed to apply such transformations.

Unnecessary data movement at the application level consumes large quantities

of time and energy. Memory interactions at this level are difficult to understand,

reason about, and therefore optimize. Irregular applications are characterized by non-

sequential memory access patterns or sparse data structures that cannot be statically

analyzed in a straightforward manner. The problem is compounded by the difficulty

of communicating dataflow information to the middle-end of an optimizing compiler.

The methods to provide information such as data access mappings or read/write

patterns are limited in existing programming languages.

Compiler IRs are data structures that represent a series of machine instructions

coded in a programming language [34]. ASTs are recursive data structures that

represent the syntactic structure and content of a program. A basic block is a sequence

of instructions with no control flow (branches) except the entry and exit points. A

control flow graph (CFG) describes execution order, and can be obtained by traversing

the AST. Each CFG node represents a basic block of the program, and each edge

indicates the transfer of control from one block to another. The CFG is translated

into a static single assignment (SSA) form [35], such as GIMPLE in GCC or LLVM-IR

in Clang.

Dataflow analysis is performed on the CFG to produce a dataflow graph (DFG).

The flow of data blocks during program execution are described by the DFG structure.

The SSA form enables more efficient data dependence analysis. Dataflow analysis is

limited even in SSA form, and much of the data movement is left to the programmer
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to define.

Programming languages such as C and Fortran do not provide the necessary

dataflow information to the compiler middle-end. Two potential soultions to this

problem are code annotations and embedded DSLs. The programmer can annotate

the source code with pragmas or decorators, for example, to indicate vectorization

opportunities, identify static control parts of programs (SCoPs), or provide dataflow

information [36,37]. These annotations are ignored by the general purpose compilers.

Irregular applications that require sparse or unstructured computations are im-

portant in scientific simulations and analytics. These applications reduce data storage

by only storing nonzero data elements [38]. The element locations are stored in index

data structures, requiring indirect memory accesses. The resulting code contains data

dependent loop bounds that cannot be statically analyzed by an optimizing compiler.

The inspector/executor approach addresses this problem by enabling compiler

transformations at run time. An inspector can observe data access patterns, perform

dependece analysis, or apply run time data transformations. The executor performs

the computationally intensive computation on the data transformed by the inspec-

tor [27]. Statically optimized inspectors and efficient executors can be produced at

compile time [39].

2.2 Polyhedral Model

The polyhedral compilation model [40] is a mathematical framework for describing

complex applications with multiple operations and loop nests in a compact form. An

affine transformation is a linear mapping that preserves points, lines, and planes [41].

Loop iterations are represented as lattice points within a polyhedron. Affine transfor-
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mations can be applied to the polyhedra, enabling loop optimizations such as fusion

and tiling. The model provides a means of applying loop transformations based on

affine spaces defined by integer sets. An iteration space that describes a loop nest

can be considered an affine space, an integer set of tuples (i1,...,in) ∈ Zn.

A loop nest can be represented with the following components:

1. Iteration Space: the set of statements in the section, and the loop iterations

where instances of the statement are executed. These are specified with named

union sets. An integer set, I, is defined as

I = { [i1, . . . , in] | c1 ∧ . . . ∧ cm } (2.1)

Where i1, . . . , in are indices, or iterators, in the n dimensions of the set, and

c1, . . . , cm are the affine inequalities, or constraints, that bound the integers in

the set. Integer sets are typically expressed as Presburger formulae [42].

2. Access Relations : The set of reads, writes, and may-writes that relate statement

instances in the iteration space to data locations. These are represented by

mapping functions or relations. An integer relation is denoted by the mapping

R = { [i1, . . . , in] → [j1, . . . , jk] | c1 ∧ . . . ∧ cm } (2.2)

Where (j1, . . . , jk) is the integer tuple in the destination set. A mapping from a

dense matrix, A, accessed at indices (i, j ), to a sparse matrix A’, for example,

is defined as
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RA→A′ = { [i, j] → [i′, j′] | 0 ≤ m < M ∧ (2.3)

i′ = row(m) ∧ j′ = col(m) } (2.4)

Where M is the number of nonzero values, and row, col are the respective row

and column indices.

3. Dependences : The set of data dependences that impose restrictions on the

execution order, e.g., producer- consumer relationships. Dependences can be

modeled with maps or edges in a dataflow graph. An array A, read at each

point (t, i, j ) of an iteration space I, would be represented by the mapping

RI→A = { I[t, i, j]→ A[i, j] } (2.5)

4. Schedule: The execution order of each statement instance can be represented

by a lexicographically ordered set of tuples in a multidimensional space [43].

Lexicographic ordering (≺) is defined as

(a1, . . . an) ≺ (b1, . . . bm) ⇐⇒ ∃i | 1 ≤ i ≤ min(n,m) s.t. (2.6)

(a1, . . . ai−1) = (b1, . . . , bi−1) and ai < bi

A statement, S executed at every point in iteration space, I, would have the

scheduling function

TI→S = { I[t, i, j]→ [t, 0, i, 0, j] } (2.7)

The polyhedral model provides a separation of concerns between the statement
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instances and the corresponding execution order. Polyhedral optimizations change

the execution schedule without affecting the set of statements that are executed [44].

Transformations that involve statement reordering include fission, fusion, skewing,

interchange, reversal, and tiling. Polyhedral representations can be extracted from

source code by analyzing loop bounds and array subscript expressions [45].

Polyhedral code generators such as CLooG [46,47] or Omega [48] apply algorithms

that can construct an AST from polyhedra by combining if nodes for conditional

statements, for nodes for loop nests, block nodes representing compound statements

or basic blocks for loop bodies [43]. Transformations that can be applied outside of

the polyhedral framework include loop unrolling, skewing, and tiling. Polyhedra are

converted back into ASTs using quantifier elimination techniques for linear inequali-

ties such as Fourier-Motzkin or Chernikova’s algorithm [49].

Compiler frameworks such as CHiLL [50] or PLuTo [10] have been built using

the polyhedral model. The loop chain abstraction [13, 51] applies transformations

to series of loops referred to as loop chains, and demonstrates the potential impact

of these transformations on both regular and irregular applications. The loop chain

compiler was built on the integer set library (ISL) [52]. The Polly [53, 54] interface

for LLVM [55] has demonstrated the applicability of the polyhedral model within

compiler optimization passes.

Domain specific languages (DSLs) target a particular problem space. Halide [4,56]

and PolyMage [5, 57], for example, are DSLs built specifically for image processing

pipelines. Constructing an entirely new compiler is a considerable software engineer-

ing challenge, so DSLs are often embedded within existing languages such as C++

or Python (eDSLs).
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2.3 Dataflow Languages

The dataflow programming paradigm was motivated by the need to expose par-

allelism [58]. Early dataflow architectures exhibited poor performance in cases of

fine-grained parallelism. A study by Sterling et al. [59] indicated that balancing task

granularity was the critical factor in the performance of dataflow programs. A hybrid

dataflow / von Neumann approach has since emerged, allowing developers to benefit

from both coarse-grained dataflow parallelism at the macro-level and fine-grained

instruction level parallelism. Dataflow programming is similar to functional program-

ming in that the code is free of side effects and variables can only be assigned once.

In this research, the execution schedule as described in subsection 2.2, is determined

by the data dependences from the dataflow graph.

A dataflow graph is an intermediate representation that follows the flow of data

through a function or procedure to identify dependences. Statement level dataflow

graphs are directed acyclic graphs with nodes at the iteration granularity. Macro

dataflow graphs were introduced to coarsen the granularity by grouping iterations into

a single node [60]. Functional representations of an application can be translated into

macro dataflow graphs. This representation can be traversed to exploit parallelism

and assist the associated code generation [61].

Prasanna et al. [62] take a hierarchical approach. Each macro node is scheduled

for parallel execution on a machine, unlike the previous work that assumed sequential

execution. The entire graph is then partitioned and scheduled for distributed memory

execution.
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2.4 Memory Optimizations

The clock speeds of microprocessors have increased exponentially since the advent

of Moore’s law [63], however, off-chip memory performance has not achieved the same

rate of improvement. Deeper memory hierarchies have been introduced to bridge the

gap. The memory levels between the CPU registers and main memory, collectively

referred to as cache, are larger but slower near the bottom, and faster but smaller

toward the top. Cache replacement protocols are responsible for transferring blocks

of data between cache and DRAM in an effort to ensure that the most frequently

accessed data can be retrieved quickly. This leads to the concept of data locality [64].

Compilers are responsible for generating code that reduces both the number of

cache misses and the impact of unavoidable misses. This can be accomplished by

maximizing data reuse, and ensuring that data are stored contiguously for each

process. Techniques to achieve these goals include automatic data layout [65–67],

affine partitioning, and loop blocking or tiling. Lattice-based memory optimiza-

tion [19, 68, 69] is an approach to affine partitioning. Polyhedral data reuse [20] and

associative reordering [70] are other methods to improve data reuse. Contiguous data

transformation techniques include permutation, strip-mining, and compiler-directed

page coloring [71,72].

2.5 Target Computational Patterns

This work targets a subset of scientific computing methods that share common

computational patterns. Colella identified the seven motifs [73] of scientific computing

as structured and unstructured grids, dense and sparse linear algebra, fast Fourier
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transforms (FFT), particle interactions, and Monte Carlo simulations. This work fo-

cuses on stencil computations within structured grids, and linear algebra applications.

2.5.1 Iterative Methods

Many mathematical problems cannot be solved analytically. Numerical methods

are algorithms designed to solve systems of equations with arbitrary precision using

successive approximations [74]. Iterative methods consist of an acceptable error

threshold for convergence, and a maximum number of steps or iterations. An initial

estimate can be provided, based on domain knowledge or assigned randomly. Open

methods find the roots, or zeros, of a function within a fixed interval given an initial

estimate. Open methods include bisection, Newton-Raphson, the secant, or Brent’s

method [75], also known as the zeroin algorithm [76]. Open methods can be applied

to linear or nonlinear systems. An example implementation of the Newton-Raphson

method in C is given in Figure 2.2.

1 #define T 500
2

3 double tol = 1e-5;
4 double err = 1.0;
5 double x = x0; // Initial guess
6

7 for (t = 1; t <= T && fabs(err) >= tol; t++) {
8 // x(i+1) = x(i) - f(x) / f’(x)
9 err = func(x) / deriv(x);

10 x -= err;
11 }

Figure 2.2: Source code for Newton-Raphson method.
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2.5.2 Gradient Methods

Gradient methods compute derivatives to find local optima [77]. The gradient

descent algorithm can be used to find minima, or the steepest ascent (hill-climbing)

for maxima. Powell’s conjugate direction method [78] is an algorithm for finding local

minima that is applicable when the function is discontinuous, non-differentiable, or

no information about the derivative is available. It is an efficient, quadratic method

(O(n2) convergence) that is often paired with Brent’s method as its search technique

due to its linear time complexity.

The conjugate-gradient method is composed of three fundamental operations,

scalar multiplication, sparse-matrix vector multiplication, and the inner product. The

inner product of two vectors, denoted xTy, is computed as the scalar sum
∑N

i=1 xiyi.

The matrix, A, is symmetric positive definite (SPD), if xTAx > 0 for every nonzero

vector, x. The domain of possible solutions to the unknown vector, x, can be expressed

in the quadratic form, 1
2
xTAx− bTx+ c, where c is a scalar constant. The gradient,

or first derivative, is f ′(x) = 1
2
ATx+ 1

2
Ax− b. Since A is symmetric, this reduces to

f ′(x) = Ax− b. Therefore, the system is solved by finding the vector, x, that sets the

gradient to zero. In other words, f(x) is minimized when the gradient f ′(x) = 0, or

Ax = b.

Gradient methods find this critical point by selecting an arbitrary initial solution,

x0, and making a series of steps, x1, x2, ..., xn, computing the residual after each,

and stopping at some maximum number of iterations or until the error is within

some acceptable tolerance with respect to the actual x. Each new search direction is

constructed from the residual at each step of the CG algorithm. Successive directions

are orthonormal to all previous search directions, ensuring that the same direction
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will not be followed more than once, and thus accelerating convergence.

Conjugate gradient is among the most popular methods for solving large systems

of linear equations in the form, Ax = b, where x is an unknown vector to be solved,

b is known, and A is a square (N ×N), SPD matrix of known values. [79]. Iterative

methods like CG or Jacobi are best-suited to systems involving sparse matrices. Dense

matrices can be solved more efficiently using direct methods such as factorization and

backsubstitution, e.g., lower-upper (LU) decomposition [80]. Multifrontal methods

are an efficient approach to LU factorization in sparse systems [81].

The CG algorithm is summarized in equations 2.8–7, where the zero subscript

represents the initialization step, i is the current iteration, and n the maximum

number of iterations. The vectors, d, r, s, x represent the search direction, residual,

step, and approximate solution, respectively. The scalar α is the step length, and β the

improvement in the solution over the previous iteration. The process continues until

the residual error falls below a given threshold, or n iterations have been performed.

d0 = r0 = b− Ax0 (2.8)

si = Adi−1 (2.9)

αi =
rTi−1ri−1
dTi−1si

(2.10)

xi = xi−1 + αdi−1 (2.11)

ri = ri−1 − αsi (2.12)

βi =
rTi ri

rTi−1ri−1
(2.13)

di = ri + βdi−1 (2.14)

Given an initial guess of zero, x0 = ~0, equation 2.8 simplifies to d0 = r0 = b. The
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remainder of the algorithm consists of one matrix-vector product (equation 6.2), five

dot products, three vector additions, and three scalar-vector products per iteration.

2.5.3 Finite Difference and Volume Methods

Conservation problems in physics are often expressed as partial differential equa-

tions, that must be solved with computational methods when analytical solutions are

unavailable. The Navier-Stokes equations describe the flow of viscous fluids, including

the conservation of mass, energy, and momentum [82]. The general form is given as

∂U

∂t
+∇ · ~F(U) = 0 (2.15)

where U is the vector of conserved unknowns, t is time, ∇ is the differential operator

nabla, and ~F is the flux dyad tensor in each spatial direction.

These equations can be solved numerically by approximating a sequence of alge-

braic equations at discrete locations on a structured grid over the spatial domain.

The point-wise approximations are known as finite-differences, and are derived from

Taylor-series expansion,

df

dx

∣∣∣
i

=
f(xi+1)− f(xi−1)

2∆x
+O(∆x2) (2.16)

where i is a discrete grid location in one dimension, and O(∆x2) is the truncation

error introduced by a continuous equation approximation in a discretized algebraic

form. The error magnitude is a quadratic function of the grid spacing, ∆x.

The finite-volume method is an alternative to finite-difference, where the solution

is approximated by integrating over a small control volume, Vi defined by the grid.
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Integrals are defined as

∂

∂t

∫
Vi

Udx +

∫
Vi

∇ · ~Fdx =
∂

∂t

∫
Vi

Udx +

∫
∂Vi

~F · n̂ dS = 0 (2.17)

with the equation on the right obtained by applying Gauss’ divergence theorem. The

∇ · ~F integral is converted into the normal component integral of the ~F vector over

the control volume surface, where n̂ is a unit normal vector pointing outward from

the volume. The change of the unknown vector, U over time is equal to the total flux

of ~F crossing the surfaces in the same time span.

Equations are solved in the finite-volume approach by discretizing the volume and

approximating ~F on the control volume faces from the values stored in adjacent cells.

The finite-volume method incurs a truncation error and implied stencil width. The

advantage is that a local conservation property ensures discrete conservation across

the entire domain as in the actual PDEs. Figure 2.3 depicts this process in two

dimensions (x,y).

Figure 2.3: Cell fluxes across surface faces of control volume.

PDEs are solved in practice by dividing the grid into discrete cells, iterating over 

them, and evaluating the algebraic equations for a specified number of iterations. 

Large domains can be partitioned into smaller pieces referred to as boxes. These
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boxes are padded with layers of ghost cells to reduce communication overhead and

enable parallel execution.

2.5.4 Structured Grid Methods

Iterative methods can provide an effective means for solving large systems of

equations. However, convergence can be slow, requiring O(N 2) iterations, which can

be unacceptable for some problems. Multigrid methods allow iterations to change

from a fine grid to a coarse grid, with the benefits of reducing convergence to O(N )

iterations and improving performance. Multigrid is particularly effective on sparse,

symmetric systems [83]. A structured grid solver for the Euler equations is described

in Chapter 5.

The Jacobi, Gauss-Seidel, or successive over-relaxation (SOR) stencil computa-

tions can be applied at each step to solve a linear system Ahx = bh to obtain xh,

where h corresponds to the current grid size [74]. These iterative methods are derived

from the discretized Taylor series of the function, f , represented by the matrix, A.

At
hi,j

=
1

4

[
At−1

hi+1,j
+ At−1

hi−1,j
+ At−1

hi,j+1
+ At−1

hi,j−1
− h2Ai,j

]
(a)

At
hi,j

=
1

4

[
At−1

hi+1,j
+ At

hi−1,j
+ At−1

hi,j+1
+ At

hi,j−1
− h2Ai,j

]
(b)

At
hi,j

=
w

4

[
At−1

hi+1,j
+ At

hi−1,j
+ At−1

hi,j+1
+ At

hi,j−1
− h2Ai,j

]
+ (1− wAt−1

hi,j
) (c) (2.18)

Jacobi is an iterative method that updates the current matrix using only values

from the previous time step as seen in Equation 2.18(a). Gauss-Seidel (b) takes

advantage of the fact that the values for previous spatial iterations (i -1 and j -1)

have already been computed and can perform in place updates, reducing the amount

of storage that must be allocated and accelerating convergence. Successive over-
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relaxation (c) is a Gauss-Seidel refinement that includes a weight term, 1 < w < 2

that moves the approximation further in the relaxation direction to reduce the number

of iterations required for convergence. The h2Ai,j term in all three equations is the

quadratic error.

The use of recently updated values from the same time step in Gauss-Seidel and

SOR introduces a race condition resulting in code that is difficult to parallelize. This

is resolved by applying red-black ordering. A grid point (i, j ) is marked red if the

sum (i + j ) is even and black if it is odd. The red points are updated in the first pass

and the black points by reading the red values. Implementations of these smoothing

stencils in the C language are shown in Figure 2.4.

1 for (t = 1; t <= T; t++) {
2 for (i = 1; i <= N; i++) {
3 for (j = 1; j <= N; j++) {
4 A[t,i,j] = (A[t-1,i+1,j] +
5 A[t-1,i-1,j] + A[t-1,i,j

+1] +
6 A[t-1,i,j-1]) * 0.25;
7 } } }

(a) Jacobi

1 for (t = 1; t <= T; t++) {
2 for (i = 1; i <= N; i++) {
3 for (j = 1; j <= N; j++) {
4 A[t,i,j] = (A[t-1,i+1,j] +
5 A[t,i-1,j] + A[t-1,i,j+1]

+
6 A[t,i,j-1]) * 0.25;
7 } } }

(b) Gauss-Seidel

1 for (t = 1; t <= T; t++) {
2 for (i = 1; i <= N; i++) {
3 for (j = 1; j <= N; j++) {
4 A[t,i,j] = (A[t-1,i+1,j] +
5 A[t,i-1,j] + A[t-1,i,j+1] +
6 A[t,i,j-1]) * w * 0.25;
7 A[t,i,j] += (1 - w * A[t-1][i][j]);
8 } } }

(c) Successive over relaxation

Figure 2.4: Source code for 2D smoothing stencils.
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2.5.5 Tensor Decomposition

Higher dimensional problems that cannot be represented by matrices are stored

in tensors. The rank R, of a tensor X, is the minimum number of indices required

to uniquely identify every element in the tensor. The order, d is the number of

modes, or dimensions in the tensor. Tensors are a generalization of matrices to

higher orders, where scalars are zero order, vectors are first order, and matrices

are second order. Tensors can be simplified by decomposing them into a sequence

of operations on lower order structures. Tensor decomposition is a generalization

of matrix decomposition techniques such as singular value decomposition (SVD) or

principal component analysis (PCA) [84].

A tensor can be matricized, for example by taking a slice, X(:,j,k). In general,

a tensor X ∈ Rn1×...×nd can be matricized into a matrix A ∈ RN1×N2 |N1N2 =

n1 . . . nd. A tensor can be decomposed into the sum of rank one tensors (vectors), X ≈∑R
r=1 x1r◦. . .◦xdr. The corresponding factor matrices, X(1) = [x11 . . .x1r], . . . ,X(d) =

[xd1 . . .xdr] are formed from the component vectors, where X(n) is the mode-n ma-

tricization. Given a third order tensor, X ∈ RI×J×K , let AI×R,BJ×R,CK×R denote

the factor matrices and X(i,j,k) each tensor element.

The Kronecker product, A ⊗ B is a generalization of the outer, or Hadamard

product, resulting in a block matrix of size IJ × R2. The Khatri-Rhao product is

the column-wise Kronecker product, A�B = [A(:, 1)⊗B(:, 1) . . .A(:, R)⊗B(:, R)]

producing a block matrix with dimensions IJ × R. The CPD produces one factor

matrix per mode.
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X(1) ≈ A(C�B)ᵀ → A ≈ X(1)(C�B) (2.19)

X(2) ≈ B(C�A)ᵀ → B ≈ X(2)(C�A) (2.20)

X(3) ≈ C(B�A)ᵀ → C ≈ X(3)(B�A) (2.21)

This computation requires three applications of the matricized tensor times Khatri-

Rhao product (MTTKRP), the bottleneck in many tensor decomposition applications.

The columns of the factor matrices are often normalized to a length of one, with

weights stored in a vector λ ∈ RR, where the matrix Λ = diag(λ). Factor matrices

are held constant while a new one is computed for the current mode. This reduces

the problem to linear least-squares, leading to the alternating least squares (ALS)

algorithm for computing CPD. The minimization problem can be expressed in the

form min
Ã
‖X(1) − Ã(C�B)>‖F where Ã = A ·Λ and ‖ · ‖F is the Frobenius norm.

The optimal solution is given by

Ã = X(1)[(C�B)ᵀ]† = X(1)(C�B)(CᵀC ∗BᵀB)† (2.22)

where † denotes the Moore-Penrose pseudoinverse. The pseudoinverse reduces the

complexity since only an R×R matrix is needed, rather than JK ×R.

The pseudoinverse is computed by applying the SVD to decompose the matrix

A into two unitary matrices U, V, and a diagonal matrix Σ, such that A = UΣV ∗,

where * represents the conjugate transpose, or simply the transpose for real valued

matrices. The values in Σ are singular, and the columns of U, V are the left and

right singular vectors, respectively. These are approximations of the eigenvalues and

eigenvectors. The Moore-Penrose pseudoinverse is defined as A† = V Σ†U∗ [85].

The normalization step is computed as λr = ‖ã‖ and ar = ãr/λr. The factor
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matrices can be initialized to zero, randomly, or to the R leading left singular vectors

of X(n). The large quantities of data produced by the Khatri-Rhao products are

known as the intermediate data explosion problem [86]. The source code for a possible

implementation of the CPD algorithm focused on the MTTKRP kernel is given in

Figure 2.5. The code is for a four dimensional tensor, X, of shape (I,J,K,L) and rank,

R, with factor matrices A, B, C, D. The tensor and factor matrices are all dense in

this example.

The generalized CP-ALS decomposition algorithm into rank, R, components, for

an N th order tensor, X, of shape (I 1,I 2,. . . ,I N), with maximum number of iterations,

T, is given in Figure 2.6. The algorithm produces the normalization vector, λ, and

factor matrices, A1, A2,. . . , AN.

1 for (i = 0; i < I; i++)
2 for (j = 0; j < J; j++)
3 for (k = 0; k < K; k++)
4 for (l = 0; l < L; l++)
5 for (r = 0; r < R; r++)
6 A[i,r] += X[i,j,k,l]*B[j,r]*C[k,r]*D[l,r];

Figure 2.5: Source code for Matricized Tensor Times Khatri-Rhao product for fourth 
order tensor.

2.6 Sparse Matrix Formats

The particular structure of a matrix can be exploited to apply more efficient 

solving techniques to improve computational performance. Diagonal, or banded 

matrices are sparse, except for bands around the main diagonal. The distance from 

the main diagonal of the most distant value is known as the bandwidth. Tridiagonal
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1 function cp_als(X, R) {
2 for (n = 1, . . . , N) {
3 An = rand(In ×R)
4 }
5 for (t = 1, . . . , T ∧ ε > τ) {
6 for (n = 1, . . . , N) {
7 V ← A>1 A1 ∗ . . . ∗A>n−1An−1 ∗A>n+1An+1 ∗ . . . ∗A>NAN

8 An ← X(n)(A1 � . . .�An−1 �An+1 � . . .�AN )V †

9 λ← ‖An‖F
10 An ← An/λ
11 }
12 ε = fit(t)− fit(t− 1)
13 }
14 return λ,A1, A2, . . . , AN

15 }

Figure 2.6: CP-ALS decomposition algorithm with R components for N th order 
tensor, X.

matrices, for example, have a bandwidth of 3 and occur frequently in engineering 

applications. The Thomas algorithm [87] can efficiently solve tridiagonal matricxes.

Symmetric matrices require only half of the elements to be stored, since each value 

aij = aji, and can be efficiently solved using Cholesky decomposition with elimination 

trees [88]. The Cholesky algorithm has the additional constraint that the matrix be 

positive definite, meaning the scalar value x∗Ax is strictly positive for all positive 

column vectors, x.

Storing only the nonzero values of a matrix can save sigificant memory space. Let 

N denote the number of rows and columns in the matrix, A, and M the number of 

nonzero values. The simplest way to represent a sparse matrix is to store the nonzero 

values, and the coordinates (i,j ) of each nonzero. This is known as the coordinate 

(COO) format [89]. This format is common in many popular repositories, such as 

the Matrix Market format in the SuiteSparse matrix collection [90] or the FROSTT 

sparse tensor repository [91].
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The COO format reduces the storage requirements from O(N2) to 3 × O(M ) =

O(M ). The COO format stores the same rows and columns multiple times, resulting

in wasted space. The row array can be compressed into a row pointer (rp), or

the columns can be compressed into a column pointer. The corresponding formats

are known as compressed sparse row (CSR) and compressed sparse column (CSC),

respectively [92].

The CSR and CSC formats can be compressed further if the matrix contains many

rows or columns that contain only zeros. Only the indices of the rows or columns that

contain nonzeros need to be stored for such matrices. In the case of CSR, the row

pointer (rp) is compressed and a new array of compressed row indices is stored. This

format is referred to as doubly-compressed sparse row (DSR) [93]. The choice of where

to compress rows or or columns depends on which will yield a better compression.

Blocked sparse matrices can be efficiently represented by the blocked compressed

formats. A matrix is block sparse when the nonzero values are clustered together in

adjacent rows and columns. The matrix is divided into small dense blocks containing

at least one nonzero element, and padded with zeros. The array A prime consists of

all such nonzero blocks. The bcol array stores the column of the upper left element

of each nonzero block, and the brow auxiliary vector has one element per block row,

indicating the first element index of the row in the original matrix A.

The compressed sparse block format (CSB) [94] shares the data locality benefits

of the BSR and BSC formats, but without the need to store dense sub-blocks that

are padded with zeros. The nonzero values are instead rearranged so that they can

be traversed in a block order, such as the Z-morton sorting used in octrees [95]. The

format requires five auxillary arrays, one for the block pointers (analogous to the row

pointer in CSR), and two each for the block row and column indices, and the element
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row and column indices within each block.

The diagonal sparse matrix format (DIA) [96] is suitable for matrices with nonzero

values near the main diagonal, such as the banded matrices in the previously described

tridiagonal computations. The offsets from the main diagonal are stored in an

auxiliary array. The ELLPACK format (ELL) [97] uses a 2-dimensional matrix with

the maximum number of nonzero elements per row, and rows with fewer nonzero

elements are padded with zeros. An auxiliary column matrix stores the column indices

for the nonzeros. When most rows have a similar number of nonzero values, the ELL

format is more efficient because of a fixed number of iterations and lack of indirect

memory accesses. An example illustrating several of these matrix formats is given in

Figure 2.7.

Figure 2.7: Sparse Matrix Formats
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Tensor storage can be optimized by considering the data sparsity structure. The

coordinate (COO) format can be generalized to sparse tensors by storing the coordi-

nates for each mode. The compressed sparse fiber (CSF) format is a generalization of

the CSR and CSC formats for matrices [98]. The HiCOO format is a generalization

of the CSB format applied to tensors [33]. CSF is a mode-specific format, meaning

that the resulting data structure is different depending on the mode compression

order. The COO and HiCOO formats are mode-generic, so the nonzero values can

be accessed in any order. Sparse tensor formats are summarized in Figure 2.8.

Figure 2.8: Sparse Tensor Formats
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CHAPTER 3

POLYHEDRAL+DATAFLOW GRAPH INTERMEDIATE

REPRESENTATION

This chapter presents an intermediate representation for loop chain schedules, and

data mappings, a methodology for minimizing temporary storage requirements, and

a cost model for comparing different schedules and mappings.

The approach provides a visual interface to aid the performance expert in guiding

polyhedral code transformations paired with storage mapping optimizations. In this

work we explore the concept of a polyhedral+dataflow graph (PDFG). Based on macro

dataflow graphs, PDFGs express dataflow at a high-level using sets of statements,

include information about the data being passed between nodes, and use layout to

express the execution schedule. This approach is unique in that it includes fine-

grained information about memory interactions, while the graph itself remains coarse-

grained. Cost models have been used to compare the anticipated performance of

macro dataflow graphs consistently since their inception. Given that the goal of many

of these graphs is to identify parallelism opportunities, most of the cost models focus

on execution cost of computation nodes [60], and the communication costs associated

with the adjacent edges.

The novel contributions described in this chapter include (1) a procedure to

generate PDFGs given annotated source code, (2) a set of scheduling and data
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Figure 3.1: Overview of the three code generation phases using loop chain pragmas and 
the polyhedral+dataflow graph method and associated cost model.

transformations for PDFGs, (3) a systematic approach to minimizing temporary 

storage requirements within graph nodes after fusion, (4) an approach for reducing 

storage allocations in the entire PDFG using liveness analysis, (5) a high-level cost 

model useful for comparing different graphs and execution schedules, and (6) a 

comparison of two overlapped tiling approaches.

3.1 Polyhedral+Dataflow Graphs

A PDFG is a visual representation of a computation highlighting data depen-

dences. It can be considered a type of macro-dataflow graph [60]. Traditional dataflow 

graphs represent data dependences at a fine-grained level, typically per statement or 

machine instruction. PDFGs differ from existing dataflow graphs in three primary 

ways:
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1. all iterations of a given loop nest are grouped into a single macro node,

2. data is explicitly represented as a node or set of nodes, and

3. the execution schedule is expressed as part of the graph layout.

This section describes the individual components of a PDFG, the expression

of the execution schedule using graph layout, and a cost model to compare the

potential performance of different graph variants. PDFGs form an intermediate

representation that expresses both the execution schedule and dataflow requirements

of an application kernel.

This chapter presents the graph IR, methods to transform them by manipulating

the underlying polyhedral model, techniques to perform storage reductions, and

code generation to produce optimized code. Optimization plans can be visualized,

displaying intermediate steps, and the impact of transformations are clearly visible.

3.1.1 Graph Components

A polyhedral dataflow graph (PDFG) represents both the execution schedule and

the dataflow requirements of a computation. A PDFG is defined as G = (V,E),

where V = (S,D, T ) and E the directed edges. S is the set of statement nodes, D

the data nodes, and T the transformation nodes. The source and destination node

types incident to an edge determine the operation being represented. For example, an

edge from a data node to a statement node indicates reading data, and an edge from

a transformation node to a statement node indicates that the iteration space will be

transformed by applying the corresponding relation. The edges indicate the flow of

data between statement nodes, and therefore the coarse-grained execution schedule.
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Statement nodes, inverted triangles in the graph, represent ordered sets of state-

ments. They encapsulate the iteration domain, statements within the block, location

within the global schedule as an iteration vector or tuple, and the data mapping,

referencing the data spaces that are read and written during statement execution.

The iteration domain of a statement node is represented using the polyhedral model

and the location within the global schedule is maintained using a scattering function.

This function determines the fine-grained execution schedule. Each node, s in S,

corresponds to a basic lock or loop nest in the code.

The data nodes, depicted as rectangles, abstract storage spaces and consist of the

type, range of values, the domain of indices that access it, and the size. The latter

can be inferred from the domain of the statement node that writes the data. The

space described in the graph corresponds to local space requirements and not actual

memory allocations. The memory allocation and associated mapping are created

during code generation. Each node, d in D, represents a data space in the program

that will be mapped to memory by a storage mapping function.

Op1

N2+N

N2+4N

(a)

M * N

N * M

(b)

Figure 3.2: Summary of graph components, including edges, data, statement, and 
transformation nodes.

The graph components are summarized in Figure 3.2. The node labeled N2 + 4N 

represents a data space with that cardinality. There are two classes of data

nodes, persistent and temporary. Persistent data are accessed outside of the function
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represented by the graph, either as inputs or outputs, and therefore have a fixed

storage mapping. Temporary values are allocated and accessed only within the scope

of the graph or loop chain. Persistent data nodes are shaded gray, and temporary or

local data retain a white background. The N2 +N space is temporary.

The statement node, Op1 in Figure 3.2(a) represents a code block that performs

some operation. The incoming edge indicates that the block reads the persistent

data, computes the results, and writes them to temporary storage. The contents of

statement nodes are retrieved from loop bodies.

Arbitrary transformation functions can be introduced with transformation nodes,

denoted in the graph as dashed boxes. Iteration space transformations are speci-

fied beginning with a T and data transformations with an R by convention. The

transformations are expressed as relations using Presburger arithmetic. The node in

Figure 3.2(b) transposes the persistent data space, N*M to one of M*N. Note that if

that transformation were placed between two statement nodes, the result would be a

loop interchange of the corresponding iteration spaces.

This polyhedral+dataflow representation support sparse data structures as well.

Sparse data structures are important in many applications, including scientific com-

puting, graph analysis (e.g., data science or social media networks), and machine

learning. The code for these applications often results in irregular memory access

patterns caused by multiple levels of indirection, for example with index arrays such

as A[col[i]]). These patterns can result in poor performance due to reduced data

locality. Data-dependent loop bounds and indirect memory accesses rely on data that

are unknown until run-time, making static analysis difficult.

Uninterpreted functions are realized as explicit functions that satisfy the associ-

ated constraints at run time. The computational kernel that requires the explicit
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function is known as an executor, and the kernel that generates the data is an

inspector. Inspectors are often hand-written, but both executors and inspectors

can be generated by optimizing compilers, including the polyhedral model. The

performance of many applications, including inspectors, can be significantly improved

by decreasing temporary storage and thereby reducing memory traffic.

3.1.2 MiniFluxDiv Benchmark

The MiniFluxDiv benchmark [99] is used as an application exemplar to demon-

strate this approach. The benchmark was chosen because it captures some of the

complexity of full-scale simulation-based applications. MiniFluxDiv has been an-

notated using loop chain pragmas [14]. The loop chain annotations provide the

information required to achieve a separation of concerns among statements, schedule,

and storage mappings. MiniFluxDiv is modeled after finite difference applications

such as those written with the Chombo framework [100]. The benchmark focuses on

the shared-memory portion of a single time step in an iterative solve. The input is a

3D, immutable data structure padded with a layer of ghost cells (2 deep). The domain

is broken into a set of independent subdomains called boxes. Boxes are decomposed

into cells; 163 cells is a typical box size, but larger box sizes are desirable to reduce

the space required for ghost cells. We explore box sizes of 163 cells and 1283 cells

in this work. Each cell represents a vector of five components, including density (ρ),

energy (e), and the velocity in each direction (u, v, w).

The original implementation is a series of parallel loops. There are three loops

for each dimension of the problem. The first loop performs a partial flux. This

calculation results in face values, meaning that when the partial flux is calculated in

the x-direction, a value is required for each border between cells. The second loop
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completes the flux calculation using data from the corresponding velocity components

in each direction to produce partial fluxes. These steps are referred to as Fx1 and

Fx2. The fluxes in the y- and z- directions are referred to as Fy1, Fy, Fz1, and Fz2,

respectively. The third loop calculates the differences between flux values and saves

a cell-centered value at each point.

Each of the operations is applied to all five components. A naive implemen-

tation results in a series of 45 parallel loop nests. The performance baseline is

hand-optimized to reduce the number of loops.

Loop Chains

A loop chain is a series of loop nests that perform operations on shared data [51].

The loop chain abstraction captures this pattern and promotes decoupling of the

execution schedule from the algorithmic primary expression. The abstraction can

be implemented in a variety of ways: domain specific languages, libraries, or code

annotations. A loop chain pragma language has been developed and a restricted

version of it is used in this chapter [14].

The first column in Figure 3.1 demonstrates how the pragmas are added. The out-

ermost pragma, omplc parallel(fuse), indicates the start of a loop chain and

the schedule that should be applied, i.e., fuse. Each loop nest within the chain is la-

beled with a pragma, indicating its domain. The pragma domain(0:X+1,0:Y,0:Z),

for example, indicates that iterator x has domain 0 through X+1 (inclusive). Data

read and write patterns are specified in the pragma following the with clause.

A loop chain compiler has been implemented by Bertolacci et. al [14] that uses the

pragma specifications to apply a variety of transformations to the original application

code, including shifts/skews, fusion, tiling, and wavefront. In the existing tool, the
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data access patterns help the compiler to ensure the legality of transformations, but

is not used to optimize data accesses or temporary storage.

3.1.3 Execution Schedule

The edges of the graph indicate a partial execution schedule based on data de-

pendences. The graph layout expresses the execution schedule. Graphs are executed

from left to right, and top to bottom. Statements within the nodes are executed over

the domain in lexicographical order. An exception is made after fusion operations.

In this case any shifting will be automatically applied to ensure legal execution.

The original MiniFluxDiv schedule over a 2D domain is represented by the

PDFG provided in Figure 3.3. The graph is organized into four columns, one for each

component in the 2D space. The persistent data nodes in the top row labeled ρ0,

u0, etc. represent the initial input data for each box. Similarly, the persistent data

nodes along the bottom, e.g., ρ1, u1, etc., contain the resulting output data. The

input nodes are of size N2 + 4N , and the output nodes N2, the difference is due to

ghost cells.

The first face-centered flux loop is represented by the statement nodes labeled

Fx1. Note that the velocity component of the Fx1 statement node, u, is read by

the Fx2 statement nodes for all components. The same is true for Fy1(v). This

dependence pattern is common in CFD applications, and is necessary to obtain

realistic performance results.

3.1.4 Cost Model

A cost model is derived using the data nodes in PDFGs. Two primary metrics are

calculated: the total amount of data read (SR), and the maximum number of streams
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Figure 3.3: A graph representation of the series of loops implementation of the 
MiniFluxdiv benchmark. This schedule uses static single assignment for all values 

produced within the represented computation.
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Figure 3.4: The set of operations that are defined for dataflow graphs.

being accessed simultaneously (Sc).

The total amount of data read for each data space is the number of outgoing edges 

multiplied by the size of the data space. The total for the entire graph is the sum of 

those values. For example, in Figure 3.3 the total amount of data read in each row 

is summed in the yellow boxes at the right. The total is on the yellow box at the 

bottom right labeled SR.

The maximum number of streams being accessed simultaneously (Sc) determines 

whether or not the prefetching capabilities of the target architecture have been 

exceeded. This metric is calculated by taking the maximum incoming degree among 

all of the statement sets. The maximum number of streams being simultaneously 

accessed can be improved in a case that there are wide multi-dimensional stencils in 

the statement node. This pattern type needs to be detected and additional edges 

included if the prefetch distance for the target machine is exceeded.

The number of simultaneously read data streams, or width, is given in the blue 

boxes. The total number of streams read in this case is Sc = 2. The graph operations 

described in the following section are intended to reduce SR, and keep Sc below a
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threshold to avoid exceeding the capabilities of the prefetcher.

3.2 Graph Operations

There are three operations defined for the PDFGs, each corresponds to a trans-

formation in the generated code. Figure 3.4 provides visualizations to describe the

operations, as detailed in the following subsections. These include the reschedule

operation, and two types of fuse operations, producer-consumer and read reduc-

tion. Tiling transformations are considered separately from the reschedule and fuse

operations. A tiling approach is defined and applied to the entire graph. Overlapped

tiling as we implemented it is described in this section.

3.2.1 reschedule Operation

The reschedule operation moves a node from one row to another within the

graph layout, effectively changing the execution schedule. For example, Figure 3.4(a)

demonstrates relocating the velocity component (u) of the Fx1 operation so that it

will be executed before the other components. Rescheduling is provided as a conve-

nience operation to enable subsequent optimizations, or to allow easier interpretation

of the graph for code generation.

3.2.2 fuse Operations

Fusing nodes in the graph directly corresponds to loop fusion. Producer-consumer

fusion results in a single, more complex statement node. The benefit is a temporary

data storage requirement reduction.
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(f) Overlapped tiling applied to the shifted
and fused schedule.

Figure 3.5: Illustrations of the transformations that create the two overlapped tiling 
variants.

A read reduction fusion occurs when two statement nodes read data from the 

same data node. Each reader still produces its own value space, so there is no storage 

reduction. However, it provides an opportunity to reduce the number of times the 

same data are read.

The compiler transformations for the two fusion types are the same. However, the 

differences affect the cost model. The producer-consumer fusion of Fx1 and Fx2 is 

given in Figure 3.4(b). The subsequent read reduction fusion of the various operations 

is given in Figure 3.4(c). Fusion of statement nodes is indicated by the overlapping 

triangles.
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3.2.3 Overlapped Tiling

The operations presented previously focus on the execution schedule among nodes

of the graph. Global operations, like tiling, are applied to the graph as a whole.

Tiling transformations divide a problem domain into smaller subdomains called tiles.

In stencil-based applications, this leads to improved temporal locality and decreased

data movement. This approach supports two types of overlapped tiling, and we

provide a comparison.

In classical tiling, each iteration in the original space is executed by exactly one

tile. This translates to each statement node in the graph being tiled separately.

In overlapped tiling, an iteration can be executed in multiple tiles. This results in

redundant computation overhead, but improved parallelism [99,101].

Consider the two statement nodes, Fx2 and Dx, as introduced in Figure 3.3.

Each iteration of Dx reads two values produced by Fx2. This is illustrated in

Figure 3.5(a).The arrows indicate dataflow. Classical tiling with a tile size of four

results in three tiles, Figure 3.11(b). The dependences between tiles require a barrier

to be placed after the Fx2 statements finish execution and before Dx can begin.

Overlapped tiling involves redundant computation within tiles to alleviate depen-

dences. Figure 3.5(c) demonstrates overlapped tiling as it is applied in Halide [4],

hierarchical overlapped tiling [101], and others. The tile size of four is only applied to

the final statement set (Dx). The previous statement sets in the execution schedule

are expanded to satisfy the dependences. In this case, the Fx2 statement set is

expanded by one in the positive direction for each tile, and the fourth iteration is

executed by two tiles.

A second approach to overlapped tiling fuses producer/consumer loop nests before
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tiling, Figure 3.11(d). In this example, the loop nest must be shifted for legal fusion.

Classic tiling after fusion forces serial execution, Figure 3.11(f). The domains of

the previous statement sets expanded to create overlapped tiles. This approach is

illustrated in Figure 3.5(f).

Each overlapped tiling approach has distinct advantages. The first preserves the

parallelism available in the inner loop, and enables vectorization. The second reduces

the temporary storage required per tile. In this case, the first approach requires space

for as many iterations as are in the tile. In the second, only two scalars are required.

The preferred approach depends on the application and the target hardware. Accord-

ing to the performance results demonstrated in Figure 3.11, sacrificing vectorization

for reduced memory traffic is advantageous to this benchmark.

3.2.4 Mapping Data to Memory

Each data space representing temporary data expresses its space requirements

in its label. A map is generated differently depending on whether the data node is

standalone, or if it has been pulled into a statement node through fusion. Standalone

nodes use a one-to-one mapping between the iterator of the writing statement node

and memory locations. Each of these maps are relative, meaning that the actual

address to the space in memory is a parameter.

The map for a node subject to producer-consumer fusion is calculated from the

data access patterns defined in the loop chain pragmas, along with the reuse distance

in the transformed schedule. The distance is 1 in Figure 3.4(b), and only one value

is read, therefore, the required space can reduced to a single scalar value. Fusing

an operation with a stencil reading pattern will result in greater space requirements.

For instance, fusing a Dx operation from Figure 3.3 produces a reuse distance of only
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1, but two values need to be maintained. The data dependence for a stencil in the

y-direction requires even more space to satisfy. Fusing a Dy node with a Fy1 would

require saving two values for each operation. The reuse distance is the domain length

in the x-direction (N). In this case, the dependences can be satisfied with a buffer of

size 2N .

The address is provided by static liveness analysis applied to the graph as a whole.

The liveness analysis proceeds by processing the graph in reverse execution order. A

table is maintained with a list of spaces, the corresponding pointer ID, capacity, and a

boolean indicating whether the location is active. During graph traversal a data node

is assigned to an existing space that is of equal or greater capacity and marked as

inactive. An existing, smaller space is expanded if no inactive space can accommodate

the space required by the node . If no inactive spaces exist, a new space is added to

the table, the node is assigned to it, and the space is marked as active. When the

node that writes to the data node is visited, the space is marked as inactive.

3.3 Experimental Evaluation

This section details the experiments performed on the MiniFluxDiv benchmark

and the larger AMR-Godunov application. PDFGs were used to guide a series of

optimizations on the MiniFluxDiv. Our performance measurements demonstrate

that scheduling optimizations are less effective without the corresponding reduction

in temporary data, the overlapped tiling variant focusing on memory traffic reduction

outperforms the vectorized version for this benchmark, and our performance is com-

petitive with the performance achieved using Halide’s and PolyMage’s autotuning

capabilities.
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(a) Results with box size of 16 cells.

(b) Results with box size of 128 cells.

Figure 3.6: Performance of the MiniFluxdiv benchmark on 28-Core Intel Xeon 
E5-2680 CPU for both (a) small (163) and (b) large (1283) boxes. The y-axis is in 

log scale.

The performance of a larger example application, AMR-Godunov, was explored

using PDFGs. The application was manually optimized and a performance improve-

ment of 17% was observed.
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Figure 3.7: Graph for fuse among directions variant (green line in Figure 3.6).

3.3.1 Experimental Setup

The benchmark was optimized using several different schedules, each schedule was 

applied to a small box size of 163 and a large size of 1283. The total number of cells 

per experimental run is 58, 720, and 256 cells, while the number of boxes is calculated 

accordingly (14,336 and 28, respectively). The scalability of each variant is explored 

by varying the thread count from 1 to 28, i.e., the number of cores on the target 

machine, with per thread parallelism over the boxes. Each experiment was run five 

times and the mean execution time is presented here.

All MiniFluxDiv experiments were conducted on the R2 cluster at Boise State
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Figure 3.8: Graph for fuse within directions variant (orange lines in Figure 3.6).

University. Each node of R2 is a dual socket, Intel Xeon E5-2680 v4 CPU at 2.40 

GHz clock frequency with 28 cores (14 per socket). The cores include a 32KB L1, 

256KB L2, and 35840K L3 caches. The system contains 192GB of RAM split over 2 

NUMA domains. GCC g++ version 6.1.0 was used to compile all the benchmarks, 

with optimization level -O3 used by the compiler.

The experiments for AMR-Godunov were performed on Atlantis at Colorado State 

University. Atlantis is a 20-core machine composed of two 10-core Intel Ivy Bridge
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Figure 3.9: Graph for fuse all levels variant (blue lines in Figure 3.6).

E5-2670v2 chips running at a clock rate of 2.50 GHz. The system is configured with 

128 GB of DDR3 RAM in a quad-channel configuration with a clock rate of 1600 

MHz, giving 51.2 GB/s of bandwidth per socket or an aggregate system bandwidth 

of 102.4 GB/s. Each core has a 32 KB of level 1 instruction cache, 32 KB of level 1 

data cache, and 256 KB level 2 cache. All cores on a socket share 25 MB of level 3 

cache.

3.3.2 Benchmark Variants

Experiments were conducted using five variants of a 3D implementation of the 

benchmark. Four of the variants did not use tiling: 1) series of loops, 2) fuse among 

directions, 3) fuse all levels, and 4) fuse within directions. Series of loops is the baseline 

variant. This is the original implementation and is used as the performance baseline.
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Variants two through four were created using PDFGs. An overlapped tiling variant

was implemented using schedule 3 (fuse all levels) as the execution schedule within

the tiles. Two versions of the first four variants were created. A single assignment

(SA) version with no storage optimizations and, when possible, a version with storage

optimizations (reduced).

The diagrams in this chapter present a 2D version of MiniFluxDiv. This was done

to save space. In the diagrams there are four components and a series of 24 loop

nests. All experimentation was performed with the full 3D version. The 3D version

has five components and a series of 36 loop nests.

Series of loops. The baseline implementation is series of loops with storage op-

timizations. This is the original implementation of the benchmark mirroring the

implementation in the Chombo framework. Figure 3.3 displays the original schedule.

This schedule performs well for small box sizes. Figure 3.6 shows this variant in red.

The solid line is without temporary storage optimizations and the dashed line is with

them. The parallelization is straight-forward and can be done within boxes or over

boxes, using OpenMP parallel for pragmas on each loop nest or on the outer loop nest

over boxes. On our target machine the parallelization over boxes performed better

and is used in all results unless labeled otherwise.

Fuse among directions. This variant is shown in Figure 3.7. Read reduction fusion

is performed on the Flux operations (Fx1,Fy1) and the fusion of the Diff (Dx,Dy)

operations results in better data locality for writing to the output buffers. Only the

SA version was implemented, because there are no opportunities for storage reduction.

Figure 3.6 displays this variant in green. This is the only schedule that improves on

the baseline code for small boxes. However, the performance is poor for the large

boxes.
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Fuse all levels. This schedule is displayed in Figure 3.9. This schedule maximizes

both producer-consumer and read reduction fusion. Both versions of this schedule

perform well for large boxes, with the data reduced version being the most performant.

Fuse within Directions. The fuse within directions graph variant is given in

Figure 3.8. This schedule maximizes the use of producer-consumer fusion. The Fx1

and Fy1 operations that are applied to velocity components cannot be included in the

fusion. They are rescheduled before the fused row as to respect the data dependences.

Fusing within directions is scalable, but does not outperform the series of loops for

small boxes, or the fuse all rows schedule for large boxes.

Overlapped Tiling. Overlapped tiling was applied to the Fuse all levels schedule.

The overlapped tiling variant performs the best for the large box case. This result

is an improvement on our previous work. The improvement came from changing the

intra-tile schedule. The use of PDFGs and code generation allowed for a larger set of

intra-tile schedules to be attempted.

Figure 3.10: The execution time for schedules with storage mapping optimizations are 
significantly faster for most schedules. The original times are represented by the light 

gray bars, and the dark bars indicate the reduced times.
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3.3.3 Temporary Storage Reductions

Figure 3.10 shows a subset of the schedules explored in this work. Each bar

represents a variant with only scheduling changes, and the corresponding variant

with both scheduling and data reduction optimizations. The benefits of the data

reductions are most clearly seen for the large box sizes.

Figure 3.6 uses dashed and solid lines of the same color to display the impact

of storage reduction. Each variant is shown twice in the same color. The solid line

represents the variant without temporary storage reductions and the dashed line with

those reductions. The impact of the storage reductions is most clearly seen at high

thread counts and with the large box sizes.

Figure 3.11: Overlapped tiling comparison of the two techniques applied to the 
MiniFluxDiv benchmark, including the original series of loops implementation as 
a reference. The x-axis is tiling method within box size and thread count. The y-axis 

is in log scale.



52

3.3.4 Overlapped Tiling Comparison

The data reduced variant of the fuse all levels schedule was selected to test

the overlapped tiling implementation. This transformation produces the tiling as

illustrated in Figure 3.5(f), or fusion within tiles. Tiling enables even further data

reduction, as each thread only needs to allocate enough space for one tile. To compare

with the overlapped tiling method given in Figure 3.5(c), the original series of loops

schedule was tiled and then fused, referred to as fusion of tiles. The measurement

results are compared with the baseline schedule and displayed in Figure 3.11. The

fusion within tiles technique outperforms fusion over tiles for both small and large

boxes on all four thread counts.

Figure 3.12: Series of loops, Overlapped tiling, Halide, and PolyMage with box size 
of 128 cells. The y-axis is in log scale.
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3.3.5 Halide and PolyMage Comparisons

The MiniFluxDiv benchmark was implemented using the Halide [4] library

and PolyMage [5]. The performance results show that the PDFG-guided schedules

outperform the autotuned versions using Halide [56] and PolyMage (see Figure 3.12).

Results for the smaller box size (163) are omitted. The Halide and PolyMage

implementations are limited to parallelization within the boxes. This limitation is

not fundamental to the approach; it is implementation specific.

The overlapped tiling variant described here outperforms both the Halide and

PolyMage variants. The results for the large boxes are limited to within boxes. In

this case, we applied both parallelization over and within boxes for a fair comparison,

each of those variants outperform Halide and PolyMage.

The primary difference between the two execution schedules is the iteration space

fusion method. Our approach complicates vectorization, but reduces temporary

storage requirements. Preserving straight-forward vectorization requires an increase

in temporary storage use. Scaling out to 28 cores puts pressure on the memory

subsystem and reducing that pressure takes precedence. This is not true for all

applications, however, this is an important insight because MiniFluxDiv represents

patterns commonly found in scientific applications.

3.3.6 AMR-Godunov Solver

AMR-Godunov [102] is an example AMR application published with the Chombo [100]

software. It is an unsplit, second-order Godunov method. The application is written

in a combination of C++ and Fortran. Each of the primary computational kernels is

written in Fortran. PDFGs were used to organize a set of optimizations. The opti-
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Figure 3.13: The PDFG for the original implementation of ComputeWHalf, a sub-
routine that is part of a single timestep of AMR-Godunov application.

mizations were applied by hand in the Fortran code. The final schedule reduced the 

size of the temporary space required by approximately 14KB. The overall execution 

time was reduced by 17%.

Figure 3.13 shows the PDFG for a subroutine that consumes approximately 80%

of the execution time at each time step. Each time step involves communicating with 

ghost cells, and then processing each box independently. Optimizations were applied 

only within this subroutine. The problem domain is decomposed into independent 

subdomains called boxes. Each box contains a set of five component values for each 

3D cell. In this example, the boxes are held at size 163.

The process for optimizing the code started at the bottom of the graph. Each 

of the qlu (quasi-linear-update) nodes were executed in pairs and were fused. This
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Figure 3.14: The PDFG for ComputeWHalf after optimization. The coding for the 
optimizations was performed by hand and was guided by manipulation of the PDFG.

created a simple producer-consumer pair between the fused qlu nodes and the follow-

ing Riemann solve nodes which were subsequently fused. Fusion was accomplished 

by creating a new fusion-specific Fortran kernel. Each fusion was coded separately 

as the stencil dependences required shifting that was slightly different for each case. 

Figure 3.14 shows the final graph.
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3.4 Summary

The polyhedral+dataflow graph intermediate representation presented in this chap-

ter can be used to visually represent series of stencil computations (i.e., loop chains)

that often occur in scientific applications. Transformations on PDFGs correlate to

schedule changes including overlapped tiling. An algorithm for determining what

temporary storage reductions can be done is provided. A cost model to compare

schedules based on memory traffic is presented, and results show it enables comparing

relative performance between variants. Experimental results on a CFD benchmark

and AMR-Godunov solver show that performance obtained by some of the schedule

variants can outperform the state of the art methods.
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CHAPTER 4

POLYHEDRAL+DATAFLOW SPECIFICATION

LANGUAGE

This chapter describes a specification language for the polyhedral+dataflow in-

termediate representation (PDFL) that can be written directly, or derived from

existing source codes or representations. The language has been implemented as a

an embedded domain specific language (eDSL) in C++. The polyhedral expressions

are validated and simplified using the IEGenLib library from the Sparse Polyhedral

Framework (SPF) [8]. Graph variants are produced by applying successive trans-

formations to the graph. Arbitrary polyhedral transformations are supported by

the introduction of transformation nodes. An overview of the process is given in

Figure 4.1.

The intermediate representation detailed in Chapter 3 describes computations,

execution schedules, and data mappings. The IR supports scheduling and dataflow-

based code transformations, and includes a visual depiction that reflects the expected

effect of transformations. The corresponding language specifies instructions to gen-

erate the IR and implements methods to perform the transformations.

This toolchain can be incorporated with other tools by implementing a frontend

to create graph specifications. The user can interact with the tool via a command

line compiler interface, a Python API, or an online version in the form of a Jupyter



58

notebook. The contributions of this chapter include (1) a specification language to

create the polyhedral+dataflow representation, (2) automatic allocation of temporary

storage space and code generation for data mappings, and (3) example transforma-

tions on irregular applications.

4.1 Polyhedral+Dataflow Language

The polyhedral+dataflow language is designed to express regular (structured),

or irregular (sparse) computations such as those commonly found in scientific or

other numerical applications. Examples include stencil operations in partial differen-

tial equation (PDE) solvers, or sparse linear and multilinear algebra kernels. Each

computation is represented by a space, bounded by a set of constraints to form a

PDFG

Temp. Storage 
Estimate

Transformation
Schedule 

Update/Constraint 
Simplification

PDFG -
Specification

PDFG -
Specification

Code/IR 
Generation

Source Code

Figure 4.1: Flowchart of the overall process, beginning with the initial PDFG 
specification (PDFL), producing graph variants via the optimization process using 

IEGenLib, and the composition of dataflow graph code with the output from Omega+ 
into a final program.



59

polyhedron. Each space can describe either an iteration or data space. Iteration

spaces are associated with statements that define the computations to be performed

at each point. A simplified subset of the grammar is given in Figure 4.2. The

terminals ident, num, constraint, and stmt are omitted for brevity, but are defined

as identifiers, numbers, logical relations or assignments, and statements in the C

programming language.

This eDSL consists of four primary constructs: spaces, functions, iterators, and

computations.

1. Spaces represent points in space, either iteration spaces or data. Iteration spaces

are collections of integers, describing the points of a polyhedron. Data spaces

can have any primitive data type. s2 (i,j,2)). Spaces can be scalar, consisting of

a data or iteration single point.

2. Iterators are values that traverse a space. The space is bounded by constraints

expr list→ expr “; ” expr

expr→ set expr |
rel expr |
fxn expr |
ident | num | ε

set expr→ ident “(” tuple list “)” “ = ”

“{” constr list “}” “ : ” “{” stmt list “}”
tuple list→“, ” tuple list | ident

constr list→“ ∧ ” constr list | constraint

stmt list→“∧, ” stmt list | stmt

rel expr→ “{” constr list “}” “ ∗ ” ident

fxn expr→ ident “ = ” ident “(” expr list “)”

Figure 4.2: PDFL Language Grammar
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on the corresponding iterators. A space representing an N × M matrix, for

example can be described by two iterators (i, j ) with constraints, 0 ≤ i <N

and 0 ≤ j <M, where M, N ∈ Z.

3. Functions can represent uninterpreted functions, symbolic constants, or rela-

tions that map points in one space to those in another. An access function maps

an iterator tuple referenced in a computation to the corresponding location of

the data in memory. Computations are executed in lexicographic order.

4. Computations are defined by an iteration space, combined with an ordered

set of executable statements to be performed at each point. Each statement

can be assigned a conditional expression (guard) that must be satisfied for the

statement to be executed. Conditions that depend only on the iterators are

affine. Non-affine conditions are handled with control or exit predicates [103].

Statements are assigned scheduling functions to indicate their positions within the

overall execution schedule. The default ordering is lexicographic order. A computa-

tion performed over an iteration space with two iterators (i, j ), with three statements

(s0, s1, s2 ), will have the initial scheduling functions, ([i, j ]→ s0 (i,j,0), s1 (i,j,1), and

s2 (i,j,2).

The four basic language constructs correspond to nodes or operations that can

be performed on the dataflow graphs. Set expressions define sets that can represent

iteration or data spaces. These correspond to statement or data nodes. Relations

describe transformation functions that can be applied to iteration or data spaces, and

are represented by transformation nodes. Function expressions are operations that

can be applied to the loop nests or data blocks, such as fusion, tiling, or rescheduling.
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jacobi(t, i, j) = { 1 ≤ t ≤ T ∧ 1 ≤ i ≤M ∧
1 ≤ j ≤ N } : {

A(t, i, j) = (A(t− 1, i, j − 1) +

A(t− 1, i, j) +

A(t− 1, i, j + 1) +

A(t− 1, i− 1, j) +

A(t− 1, i+ 1, j)) ∗ 0.2 };

(a) (b)

Figure 4.3: (a) Specification, and (b) PDFG for the 2D Jacobi stencil calculation.

Sets can be defined as the domains of data or statement nodes. Sjacobi is the 

iteration space of the stencil statement in Figure 4.3, for example. The data domain 

for the A array is larger to account for the stencil access pattern, including ghost cells. 

Initial data space sizes are inferred from the read and write data access patterns. Read 

and write locations are extracted from the right and left hand sides of assignment 

statements, respectively.

A statement node also maintains the data mappings that represent the data 

locations read from and written to while the statements are executed. Statements 

can be defined as expressions of mapping functions, symbolic constants, or numeric 

literals. Each statement node represents a single loop nest, and the corresponding 

schedule is obtained from the original AST for that computation. Graph operations, 

such as reschedule or fuse, can modify the schedule of a statement node, or the data 

space occupied by a data node. An initial global schedule is produced by the order 

specified in the specification, i.e., the order that nodes are added to the graph. The 

PDFL script for the Jacobi stencil is provided in Figure 4.3(a), where matrix A is M

× N, and T is the number of time steps.
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fx(c, y, x) = { 0 ≤ c < C ∧ 0 ≤ y < N ∧ 0 ≤ x ≤ N };
fy(c, y, x) = { 0 ≤ c < C ∧ 0 ≤ y ≤ N ∧ 0 ≤ x < N };
df(c, y, x) = { 0 ≤ c < C ∧ 0 ≤ y < N ∧ 0 ≤ x < N };

fx1(c, y, x) = fx : { Cx1(c, y, x) =
1

12
∗ (Bin(c, y, x− 2) + 7 ∗

(Bin(c, y, x− 1) +Bin(c, y, x)) +Bin(c, y, x+ 1)) };
fx2(c, y, x) = fx : { Cx2(c, y, x) = Cx1(c, y, x) ∗ 2 ∗ Cx1(2, y, x) };
dx(c, y, x) = df : { Bout(c, y, x) += Cx2(c, y, x+ 1) − Cx2(c, y, x) };

fy1(c, y, x) = fy : { Cy1(c, y, x) =
1

12
∗ (Bin(c, y − 2, x) + 7 ∗

(Bin(c, y − 1, x) +Bin(c, y, x)) +Bin(c, y + 1, x)) };
fy2(c, y, x) = fy : { Cy2(c, y, x) = Cy1(c, y, x) ∗ 2 ∗ Cy1(3, y, x) };
dx(c, y, x) = df : { Bout(c, y, x) += Cy2(c, y + 1, x) − Cy2(c, y, x) };

Figure 4.4: PDFL specification of the MiniFluxDiv benchmark in two dimensions.

The PDFL specification for the MiniFluxDiv benchmark described in Chapter 3 is 

given in Figure 4.4. This example demonstrates that spaces can be defined indepen-

dently (e.g., fx ) and then reused to define computations (e.g., fx1 ). The Bin and Bout 

data spaces represent the persistent data, input and output boxes, respectively. The 

C data spaces correspond to the temporary caches that can be modified to improve 

performance.

Each computation node has a corresponding iterator tree that describes the exe-

cution schedule. The root node connects all of the iterators. The internal nodes are 

iterators, and the leaf nodes statements. Edge labels indicate the order of the iterator 

in the resulting schedule. The scheduling function for each statement is derived by 

performing a depth first traversal of the iterator tree. The global schedule for the 

entire dataflow graph is determined by combining these individual trees as subtrees 

of a single root.
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4.1.1 Relations and Transformations

Relations can be specified that transform one set into another, and can be applied

using the multiplication operator (*), or in functional notation, e.g., I = T(S). Code

generation can be performed with the codegen function, producing a C language

representation of the graph. The graphgen function is introduced to generate a

graphical view of the statements, data, and transformations.

The split operation applied to a statement node partitions the domain on a given

iterator by a split factor, f, and produces f new statement nodes, where the domain

of each is one of the partitions of the original domain. Iterators not involved in the

split are copied to the new nodes. The polyhedral dataflow graphs also support the

fusion of statement nodes to produce fused loop nests. The nodes resulting from the

split operation can be fused in a transformation similar to unroll and jam.

Loop unrolling is a technique for reducing loop overhead and exposing additional

opportunities for parallelism. Much like the split operation, graph statement nodes

can be unrolled by supplying a statement loop iterator to unroll, and an unroll factor,

f. Fusing the statement sets that result from the unroll operation produces the unroll

and jam transformation. Tiling is applied to improve both temporal and data locality

of a loop nest. The general form of the tile function receives a set of iterators to be

tiled and the corresponding tile sizes for each dimension.

4.1.2 Memory Allocation

The memory allocation algorithm traverses the graph in reverse-execution order,

that is bottom to top, right to left. Output nodes are not considered as resizing is

not permitted. Temporary data spaces are stored in a reference table. The table is
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function AllocateMemory(G : Graph)
table← newTable()
for all node ∈ reverse(dataNodes(G)) do

block(node) = null
for all entry ∈ table do

if not active(entry) and
size(entry) ≥ size(node) then
block(node) = entry

if block(node) = null then
for all entry ∈ table do

if not active(entry) then
size(entry) = size(node)
block(node) = entry

if block(node) = null then
entry = newEntry(table)
active(node) = true
block(node) = entry

if not read(node) and not written(node) then
active(node) = false

return table

Figure 4.5: Memory Allocation Algorithm

checked for an existing space of equal or greater size as each data node is visited. 

A space is marked as inactive if it is no longer being read from or written to at the 

current execution stage. If an existing, inactive space of adequate size is not found, a 

smaller inactive space will be resized. If no inactive spaces are available, a new active 

space will be allocated and assigned to the node. A data node is marked as inactive 

when the statement node that writes to it has been visited. The space requirements 

of a new data space are determined by the domain of the data node, the data access 

pattern of the statement nodes that access it, and the reuse distance resulting from 

the execution schedule. The algorithm is given in Figure 4.5.
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4.2 Compilation Approach

The eDSL described here is the front end to the compiler IR. The polyhedral+dataflow

graph intermediate representation is the next layer, consisting of statement, data,

and transformation nodes, with dependences indicated by the edges between them.

Transformations specified at the language level are applied at the graph level. Code

for the target backend is generated from the graph after the specified transformations

have been applied.

4.2.1 Derivation from Existing Code

The specification language can be produced by parsing existing code and travers-

ing the resulting abstract syntax tree (AST). Matrix multiplication is a commonly

occurring pattern in numerical applications, and is given as an example. The opera-

tion is expressed in the form, C ← αA×B, where AM×P , BP×N , CM×N are matrices

and α is a scalar. The code for this computation is given in Figure 4.6(a). The

iterators and corresponding constraints that form the iteration space are extracted

from the initialization statements and bounds in the for loops. The loop body basic

block begins the statement node. The access functions, α,A(i, k), B(k, j), C(i, j),

are derived from the statement body. The resulting PDFL specification is shown in

Figure 4.6(b).

4.2.2 Graph Generation

The scope of each graph is at the function or method level. The language

objects, i.e, Space’s and Comp’s, and PDFG structure, are constructed as the

eDSL statements are executed. Each expression begins with a name, e.g., spmv,
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1 for (i = 0; i < M; i++) {
2 for (j = 0; j < N; j++) {
3 for (k = 0; k < P; k++) {
4 C[i*N+j] += α * A[i*P+k]

*
5 B[k*M+j];
6 } } }

(a)

mmul(i, j, k) = { 0 ≤ i < M ∧
0 ≤ j < N ∧ 0 ≤ k < P } : {
C(i, j) + = α ∗A(i, k) ∗B(k, j) }

(b)

Figure 4.6: Original source code for dense matrix-matrix multiplication kernel (a), and 
derived PDFL specification (b).

that defines the computation and becomes the corresponding statement node label. 

The iterator tuple, e.g., (i,n,j ), defines the boundaries of the polyhedron, each with 

lower and upper bounds of integers. The following set is the collection of constraints 

in conjuctive normal form (CNF). A constraint is composed of integers, identifiers, 

and relational or arithmetic operators. The collection of constraints becomes the 

iteration space of the statement node.

Identifiers within constraint definitions that are not iterators are treated as func-

tion. The function arity is the number of arguments. A symbolic constant is a function 

with an arity of zero. Functions that appear with multiple arities will be assigned the 

maximum, and the remainder padded with zeros. Functions and constants become 

integer data nodes, with edges connecting them to the statement node. The last 

section is the set of executable expressions or statements, separated by conjunctions. 

Functions in this section become data nodes of real type. Expressions on the left 

hand side of an assignment become output nodes, and those on the right side are 

input nodes.
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4.2.3 Code Generation

The code generation process first produces an initial polyhedral+dataflow graph

instance from the PDFL specification. Graph operations are applied as specified and

the schedule for each statement node is updated to generate the global schedule.

The memory allocation algorithm in Figure 4.5 is then applied to minimize memory

allocation. The iteration domains of the statement nodes are first passed to IEGenLib

for simplification and normalization. The normalized expressions are translated into

Omega+ calculator syntax and used to generate the loop nests.

The code generator traverses the graph in a top-bottom, left-right manner. Data

allocation code, e.g., calloc for heap data, and array declarations for stack data,

are emitted when data nodes are visited. Relations within transformation nodes are

applied to set or data domains with IEGenLib. Macros are emitted when statement

nodes are visited, followed by the loops generated by Omega+. Persistent data nodes

become parameters to the resulting function, with input nodes marked as immutable

(const), and output nodes as writable. Dynamic data nodes can be resized, e.g.,

with realloc.

The AST generation algorithm is given in Figure 4.7. The default generator pro-

duces C code, but other output formats can be supported by implementing additional

graph visitors. Three subtrees are generated, one for initialization and allocation Sinit,

one for the computation loop nests, Scomp, and one for cleanup Sfree. The scope of

each graph is a function, so the three subtrees become children of the function body

node. Data nodes with no incoming edges become inputs to the function, and those

with no outgoing edges are treated as persistent outputs.

Data allocation statements are synthesized when data nodes are visited, and
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inserted into the Sinit subtree. If the data are dynamically allocated, the corresponding

deallocation statement is then added to the Sfree tree. Allocation statements are not

generated for persistent input nodes, as these are assumed to be already allocated.

Instead, these are added as input parameters to the function AST subtree. The

Presburger expression representing the node’s domain is passed to the Omega+

polyhedral compiler for code generation. The resulting AST is then inserted into

the Scomp subtree.

1 function genCodeAST(G = (S,D, T,E)) {
2 SI = (NI , EI);
3 SC = (NC , EC);
4 SF = (NF , EF );
5 // Gen alloc/dealloc code
6 for (d ∈ D) {
7 SI ∪= genAllocCode(d);
8 SF ∪= genFreeCode(d);
9 }

10 // Apply transformations . . .
11 for (t ∈ T) {
12 r = relation(t);
13 sdst = apply(r, ssrc);
14 }
15 // Gen computation code
16 for (s ∈ S) {
17 SC ∪= genCompCode(s);
18 }
19 // Create function node
20 F = genFunction(G);
21 // Build AST
22 return A = (F, {SI , SC , SF });

23 }

Figure 4.7: Source AST generation algorithm.

4.2.4 Data Types

The PDFG-IR allows data types to be assigned to data nodes. The IL will support

this via a datatype function. The IL to IR algorithm, genGraphIR can infer data
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types as well. All data nodes default to the floating point type indicated in the

configuration, either single or double precision. The cases where data nodes will be

changed to the index data type (integer) include symbolic constants, functions used

in data-dependent loop bounds, or those assigned to an iterator value.

4.2.5 Data Mapping

A data mapping assigns each instance of an access relation, e.g., A(i,j ), to a specific

memory location. The default data mapping in PDFL is a row-major linearization of

an N -dimensional array into a contiguous block of memory. The expression, A(i,j ), A

will be allocated as [ub(i) - lb(i) + 1] × [ub(j ) - lb(j ) + 1], where ub and lb denote the

upper and lower bounds, respectively. Given constraints 0 ≤ i < N and 0 ≤ j < M ,

then A will be N × M. The access function for A(i,j ) is then i*M +j. For a column

major data mapping, A(j,i), the function would instead be j *N +i. The row-major

access mapping in N dimensions generalizes to the following summation.

offset =
N∑
i=1

N∏
j=i+1

(
ub(nj)− lb(nj) + 1

)
ni (4.1)

4.2.6 Limitations

The PDFL is not a complete intermediate language, but is sufficiently expressive to

encompass a wide range of regular and irregular computations. Non-affine expressions

are supported with the aid of uninterpreted functions as described in the following

examples. Arbitrary branching via goto statements is not supported. Standard

while loops can be emulated by setting a large upper bound (e.g., INT MAX) on an

iterator, then using an uninterpreted function as an exit predicate to terminate the

loop. Recursive algorithms are not directly supported.
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4.3 Inspector/Executor Applications

The following examples demonstrate how to use the PDFL language to transform

irregular codes within the context of inspector/executor applications.

4.3.1 Sparse Matrix-Vector Multiplication

The sparse matrix-vector multiplication kernel (SpMV) for the compressed sparse

row data format (CSR) requires uninterpreted functions or data-dependent loop

bounds support. The CSR SpMV loop nest uses the index pointers to the compressed

row indices. The symbolic constant NR is the number of rows, NC the number of

columns, and NNZ is the number of nonzero values. The PDFL code is shown in

Figure 4.8(a), the source code in (b), and the graph in (c).

spmv(i, j, k) = { 0 ≤ i < NR ∧ index(i)

≤ j < index(i+ 1) ∧ k = col(j) } :
{ y(i) += A(j) ∗ x(k) }

(a)

1 for (i = 0; i < N_R; i++) {}
2 for (j = index[j]; j < index[i

+1]; j++) {
3 k = col[j];
4 y[i] += A[j] + x[k];
5 } }

(b)

y

cols

spmv

indexA

x

(c)

Figure 4.8: PDFL specification (a), C source code (b), and graph (b), for the sparse 
matrix-vector multiplication executor for a matrix in CSR format.
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Inspector/executor applications require the specification of an input graph (e.g.,

CSR SpMV executor), as well as the transformations necessary to produce the target

executor, e.g., BCSR SpMV. The executor graph will be generated by applying

the specified transformations to the input executor. Unknown values in the target

executor, either symbolic constants, e.g, NB, or uninterpreted functions, e.g., b index,

are identified and used to generate the inspector graph. These can be defined in terms

of functions including count, extract, or order, or as user-defined statements. Code

generated from data mapping functions copy data from the input data format to the

output format if required. The inspector and executor graphs are composed so that

the code generator will produce a single output with both functions. The outputs of

the inspector become inputs to the executor.

Inspector Transformations

This section describes a run-time transformation from CSR format to blocked

sparse row (BCSR). The generation process begins with the specification of a graph for

the original executor. In this case, the CSR SpMV graph specified in Figure 4.8 is the

starting point. The transformations to move from CSR to BCSR require additional

uninterpreted functions that must be clearly defined, e.g. b index, b col, and NB.

The inspector is responsible for producing the explicit versions of these functions,

as well as the transformed data space, denoted as A’. The inspector is generated as

the combination of the PDFGs for each of these components. These transformations

applied to the executor are listed in Figure 4.9(a), and the resulting dataflow graph

is shown in (b).

The operations to produce the inspector are encoded in the polyhedral+dataflow

language. The naive schedule for the inspector is shown in Figure 4.10(a). The
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insp(ii, i, j, kk, k) = tile(spmv, [i, k], [R,C]);

Bset = makeset(insp, [ii, kk]);

NB = count(Bset);

b index = offsets(insp, [ii]);

b col = extract(insp, [kk]);

A pr(b, ri, ck) = copy(insp,A(j), { 0 ≤ b < NB

∧ ri = i− ii ∗R ∧ ck = k − kk ∗ C });

(a)

count

NB

extract

b_col

makeset

Bset

offsets

b_index

colsindexA

(b)

Figure 4.9: Transformation functions to generate the CSR to BCSR inspector (a), and 
the resulting dataflow graph (b).

inspector can use a further compacted version of the tiled iteration space that relies 

only on the row iterators due to the compressed row format, with the column iterations 

projected as expressions. The specification to produce the CSR to BCSR inspector 

is given in Figure 4.10(b).
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tiled(ii, kk, i, j, k) = tile(spmv, [i, k], [R,C]);

// { 0 ≤ ri < R ∧ i = ii ∗R+ ri ∧
// 0 ≤ ck < C ∧ k = kk ∗ C + ck }

b spmv(ii, b, kk, i, k) = { tiled ∧ b index(ii)

≤ b < b index(ii+ 1) ∧ kk = b col(b) } : {
y(i) += A′(b, ri, ck) ∗ x(k) };

(a)

1 for (ii=0; ii < N_R/R; ii++) {
2 for (b = b_index[ii];
3 b < b_index[ii+1]; b++) {
4 kk = b_col[b];
5 for (i = R*ii;
6 i<min(N_R,R*ii+R);i++) {
7 for (k = C*kk;
8 k<min(N_C,C*kk+C);
9 k++) {

10 ri = i - R * ii;
11 ck = k - C * kk;
12 y[i] += A_pr[b,ri,ck]*x[k

];
13 } } } }

(b)

Figure 4.10: Transformation functions to generate the iteration space for the BCSR 
executor from the initial CSR space (a), and generated code (b).

The count function counts the number of elements in a given set or iteration space, 

and in this case produces the number of nonzero blocks in the sparse matrix. The 

extract operation extracts iterator values from an iteration space as a list at run-time. 

In this case, the kk iterator values become the sparse block columns in the b col explicit 

function. The offsets operation produces a list of offsets from a given iterator in an 

iteration space. In this case, b index contains the offsets (i.e, number of nonzero blocks 

per block row.

Finally, the data transformation function to map data from the original CSR 

matrix, A to the blocked sparse row matrix, A’ is defined. The mapping function is 

denoted as RA→A′ to indicate it is a run-time data reordering.

The initial graph is executed from top to bottom left to right, with each statement 

running to completion before the next begins. Read reduce fusion can be applied to 

the count and offsets nodes because no dependences exist between them. The same
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is true for the copy and extract nodes. Further fusion is limited by the dependence

between the number of blocks (NB) and the copy/extract nodes. However, NB is a

scalar, and is only required to allocate space for the A prime and b col data nodes.

The introduction of a dynamic data structure to represent those nodes satisfies

the NB dependences and allows the copy / extract and count / offsets nodes to be

fused as well. This implementation uses a dynamic array with an initial size 10% of

the worst case, NBmax = NR/R × NC/C. The growth factor begins at 2 and scales

based on the current block density, NB/NBmax.

The makeset operation produces the set of tuples (ii, kk) within the insp space.

The resulting Bset is the set of all nonzero blocks in the matrix, ensuring that each

block is only counted once. A naive implementation is to allocate a two dimensional

array that can accommodate all possible nonzero block coordinates. The dependence

between the Bset node and the fused statement nodes can be considered a producer-

consumer relationship. Fusing the makeset node with the other nodes reduces the

reuse distance so that only the block columns need to be stored in Bset. This space

reduction requires the array to be reinitialized to zero at the beginning of each block

row. The makeset operation is split into three operations to perform this fusion, clear,

lookup, and insert.

Once all the valid node groupings and fusions have been performed, and the

memory allocation algorithm described in subsection 4.1.2 has been applied, the last

step is to generate the final schedule. The initial schedule is obtained by performing

a left to right, top to bottom traversal of the dataflow graph. Dependence analysis

of the iteration spaces combined with the statement definitions for each node can be

used to optimize the schedule. The extract operation is moved before count as it

reads NB, while count may write it. The clear operation must be executed at the



75

beginning of each iteration of the ii loop. Finally, the offset statement only relies on

the ii iterator, but reads NB after updating, so is moved to the end of the ii loop. The

resulting PDFG for the inspector and the optimized code are given in Figure 4.11.

The double line boundaries on the b col and A’ nodes indicate dynamic reallocation.

Executor Generation

The initial executor is produced directly from the Sexec space in Figure 4.9(a).

The inner two loops of the BCSR executor can be completely unrolled if the tile sizes

are known at compile-time. These transformations are supported by the unroll graph

operation. Another optimization that makes the executor competitive with previous

work is the insertion of temporary storage buffers of size R and C to prefetch the

values of the row vector y and the column vector x, respectively. This is supported in

the dataflow graph with the copy operation, by mapping subsets of the vector data

into the buffers.

4.3.2 Matricized Tensor Times Khatri-Rao Product

The sparse coordinate format (COO) is a common structure to represent sparse

tensors, for example in the Matrix Market and FROSTT [91] formats. One of

the primary computations in tensor-based data analysis is factorization. Canonical

polyadic decomposition (CPD) is a common factorization technique, analogous to

single value decomposition in matrices. The matricized tensor times Khatri-Rao

product (MTTKRP) kernel can be a bottleneck in CPD calculations. The Khatri-Rao

product is the Kronecker product between a third-order tensor B, and two matrices

C and D, denoted as AI x J = BI x K x L ⊗ CK x J ⊗ DL x J, where I, J, K, L are the

dimensions.
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Bset

A’NB

extract

b_col

b_index

count
copy

offsets

colsindexA

(a)

1 for (ii = 0; ii < N_R/R; ii++) {
2 memset(Bset,0,(N_C/C+1)*sizeof(int));
3 for (i = R*ii; i < min(N_R,R*ii+R); i

++) {
4 for (j=index[i];j < index[i+1]; j++)

{
5 k = col[j];
6 kk = k/C;
7 b_col[NB]=kk;
8 b=Bset[kk];
9 if (!b) {

10 NB++;
11 Bset[kk] = NB;
12 }
13 A_pr[b-1,i-R*ii,k-C*kk] = A[j];
14 } }
15 b_index[ii+1] = NB;
16 }

(b)

Figure 4.11: Optimized PDFG for the CSR to BCSR inspector (a), and the generated 
code (b).
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coo(m, i, j, k, r) = { 0 ≤ m < M ∧
i = index(0,m) ∧ j = index(1,m) ∧
k = index(2,m) ∧ 0 ≤ r < R } : {

A(i, r) += B(m) ∗ C(j, r) ∗D(k, r) };

(a)

csf(p, i, q, j,m, k, r) = { offset(0, 0) ≤
p < offset(0, 1) ∧ i = indices(0, p) ∧
offset(1, p) ≤ q < offset(1, p+ 1) ∧
j = indices(1, q) ∧ offset(2, q) ≤
m < offset(2, q + 1) ∧
k = indices(2,m) } ∗ coo;

(b)

Figure 4.12: Specifications for the COO-MTTKRP executor (a), and transformation 
statement for the CSF executor (b).

The COO format for tensors is a list of nonzero values and the corresponding 

indices for each mode. The index array is a two dimensional array of indices with size 

M × N , where M is the number of nonzeros, and N is the order of the tensor. The 

val array contains the M nonzero values. The COO representation of the MTTKRP 

kernel for a third-order tensor (N =3) can be represented by the specification in 

Figure 4.12(a).

The compressed sparse fiber (CSF) format for sparse tensors [98] is a generalization 

of CSR or CSC for matrices. The modes, or dimensions, of the tensor are compressed 

into a tree-like structure such that only the unique index values for each are stored. 

The first dimension will have the most compression, followed by the second, and none 

for the last, resulting in M leaf indices, one for each nonzero value. The representation 

requires two index arrays, one to store the actual coordinates for each mode, and 

another to store the offsets into those arrays. The relation to transform a MTTKRP 

executor for a third order tensor in COO format to CSF is given in Figure 4.12(b).
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Inspector Transformations

The newnode uninterpreted function determines whether to create a new node at

the child level, i.e., the level that will be visited in the subsequent iteration of n. This

function evaluates to true if the current index is different at the current dimension

and the leaf level (last dimension) has not been reached. The extract, offset, and copy

nodes can all be fused by again using dynamic arrays to represent the indices and

offset data sets. The PDFL specification is given in Figure 4.13(a), the optimized

graph is displayed in (b), and the generated code in (c).

Executor Generation

The sparse matrices tested in the BCSR example were comparatively small, with

little benefit derived from automatic parallelization. Sparse tensors can be quite

large, so the ability to insert OpenMP pragmas into the generated code becomes quite

valuable. The heuristic for this process is straightforward. The iterators in each loop

nest, i.e., set of fused statement nodes, are traversed and their constraints checked

for uninterpreted functions. The outermost loop without data-dependent bounds has

a parallel for pragma inserted above it, and a SIMD pragma at the innermost loop

bound that is not data-dependent.

For the MTTKRP executor, this results in a parallel for on the p loop. This loop

does depend on the offset function, but no outer loop relies on it, so it can be safely

parallelized. The innermost j loop is dense, so vectorization is applied.
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4.4 Experimental Evaluation

The experiments performed to evaluate this work include inspector/executor ap-

plications for the CSR to BCSR matrix and COO to CSF tensor transformations.

Each test was performed nine times and the median value is reported. These bench-

marks demonstrate the applicability of these dataflow graphs to both regular and

irregular applications. The combination of scheduling and dataflow optimizations

within the polyhedral model can improve performance results in either of these

problem domains.

4.4.1 Target Architecture

The experiments were conducted on a single node of a research cluster. Each node

contains an Intel Xeon E5-2680 v4 dual socket CPU with 28 cores, clocked at 2.40

GHz. The cores include 32KB L1, 256KB L2 caches, and each shares a 35840K L3

cache. The nodes have 192GB of DRAM with two NUMA domains. The benchmarks

were compiled with the 7.2 version of the GCC compiler with the -O3 optimization

flag. The nodes were running the CentOS 7.5 operating system.

4.4.2 CSR to BCSR for Sparse Matrices

The inspector/executor approach for conversion of a sparse matrix from the CSR

to BCSR data format has been used to motivate the application to sparse data struc-

tures. The PDFG implementation was compared with previous work in CHiLL [39]

and the OSKI sparse matrix kernel library [104] on several sparse matrices in the

SuiteSparse Matrix Collection [90]. The best performing block size, 8 x 8, was selected

for evaluation. The run times were separated by inspector and executor.
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The CHiLL code is produced using a script that converts the CSR implementation

into a single function containing the inspector followed immediately by the executor.

The OSKI inspector creates a CSR matrix, provides the fixed block size as a tuning

hint, and then tunes the vector on the SpMV operation. The PDFG version is

produced by composing the inspector and executor graphs, and performing code

generation, resulting in two separately timed functions. The inspector results are

displayed in Figure 4.14(a) and the executor in Figure 4.14(b), respectively.

The dynamic array technique used to reduce the number of passes through the

matrix in the PDFG inspector implementation outperforms the linked list version

produced by CHiLL for most matrices. The CHiLL executor remains the faster than

OSKI, but the PDFG version is competitive. The OSKI implementation performs

nine autotuning steps, and this is reported as the inspector time.

4.4.3 COO to CSF for Sparse Tensors

The COO to CSF inspector/executor transformations is compared with the TACO

compiler [105] and the SPLATT library [31]. The three implementations are tested on

several sparse tensors from the FROSTT [91] repository, including the NIPS, Enron,

and NELL-2 tensors. Each experimental run was executed five times, with the median

value reported.

The TACO code was generated using the taco command line utility, by specifying

the MTTKRP computation with sparse tensor B and dense matrices, A, C, and D.

The resulting code was then inserted into an executor and timed. The SPLATT

implementation simply invokes the built-in MTTKRP function included in the library.

The results are given in Figure 4.15. The PDFG and TACO implementations yield

very similar results. This is expected as both produce nearly identical source code.
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The SPLATT method performs better on the nell2 and crime tensors, but not as

well on nips and enron.

4.5 Summary

The polyhedral+dataflow language and graph implementation described in this

chapter combine execution schedule transformations with dataflow optimizations.

The language can be derived from another programming language or intermediate

representation. The support for sparse data structures allow the optimizations to

be applied to both regular and irregular applications. This versatility makes them

applicable to PDE solvers, stencils, or sparse linear algebra kernels.

The high-level language can improve the productivity of engineers and scientists

by allowing computations to be specified concisely as mathematical expressions, while

the intermediate representation can act as a performance portability layer to enhance

the optimization of existing applications or other representations. Visual feedback is

also provided to the user when code transformations are applied.
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insp(m,n) = { 0 ≤ m < M ∧
0 ≤ n < N ∧ newnode(m,n) > 0 };

extract(m,n) = { insp } : {
insert(indices(n), index(m,n)) };

offsets(m,n) = { insp } : {
insert(offset(n), offset(n) + 1) };

copy(m) = { 0 ≤ m < M } : {
B pr(m) = B(m) };

(a)

extract

indexB

offset

offsets

indices

copy

B’

(b)

1 for (m = 0; m < M; m++) {
2 for (n = 0; n < N; n++) {
3 if (newnode(m,n) > 0) {
4 insert(indices[n],index[m,n

]);
5 insert(offset[n],offset[n

]+1);
6 }
7 B_pr[m] = B[m];
8 } }

(c)

Figure 4.13: PDFL specification (a), optimized PDFG (b), and the generated code (c) 
to produce the COO to CSF inspector.



83

(a)

(b)

Figure 4.14: CSR to BCSR sparse matrix transformation performance for the (a) 
inspector and (b) executor between the CHiLL, OSKI, and PDFG methods.
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(a)

Figure 4.15: COO to CSF tensor format results between PDFG, SPLATT, and TACO 
methods.
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CHAPTER 5

STRUCTURED GRID SOLVER INTEGRATION

This chapter describes Proto, a DSL for structured grid applications, and its

integration with the polyhedral+dataflow intermediate representation to achieve per-

formance portability for shared memory, multi-core CPU and GPU backends.

Proto is a lightweight library designed for efficient solution of differential equa-

tions on domains that are composed of unions of structured, logically rectangular

grids. The DSL improves the productivity of computational scientists through an

intuitive programming interface that seamlessly integrates with an existing AMR

framework. The goal of Proto is to decouple the precise description of a finite-

difference discretization of a partial differential equation, and how that algorithm is

executed on a specfied computer architecture. The Proto library includes support

for CPU and GPU computations.

Embedded domain specific languages allow developers to add functionality to

an existing language like C++ with mature compiler infrastructures such as GCC,

Clang, and Intel (ICC). However, it can be difficult to optimize codes implemented

in a high-level representation as the compiler cannot easily optimize code across

several layers of abstraction. Challenges include limited data reuse, large quantities of

temporary storage, and low arithmetic intensity in many small kernels. Parallelizing

such kernels for multi-threaded architectures can suffer from excessive overhead from
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many fork/join calls in the case of OpenMP, or kernel launches in CUDA.

The intermediate polyhedral+dataflow representation [15] addresses this challenge

by collecting computation information in a dataflow graph, then fusing nodes to

increase AI, minimize fork/join overhead, perform storage reductions to eliminate

unnecessary memory traffic, SIMD vectorization, and apply tiling to improve data

locality. The dataflow representation is combined with a performance model that

estimates FLOPs and memory throughput to guide optimizations and generate op-

timized code variants. The experimental results indicate that a fully fused and tiled

code variant that increases arithmetic intensity, while reducing the working set size

can achieve a performance speedup of up to 3X. GPU speedups up to 2.6X are also

observed.

5.1 Background

This section provides background information on Chombo, as an example of an

application framework that solves partial differential equations (PDEs), and the Euler

equations that will be used as a motivating example in this paper.

5.1.1 Chombo and AMR

The Chombo [100,106,107] package supports conservative discretizations of com-

plex PDEs. It provides programming abstractions for iterations spaces, data spaces,

and more. The discretized problem domain comprises a set of boxes that each

comprise a subset of the points in the domain. Chombo is used in a variety of

scientific applications and is designed to perform well on many compute resources

ranging from laptops to leadership class supercomputers [108–113].
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Adaptive mesh refinement saves time and energy by refining sections of the prob-

lem domain based on the complexity of the phenomena modeled in that area. Areas

where little change is taking place remain at a courser granularity and, therefore,

require fewer compute resources to include in the simulation. The Chombo C++

Library is designed to support these kind of applications running across all modern

supercomputing platforms. Proto is intended to support the same types of appli-

cations as Chombo with a high-level programming model that can be executed on

heterogeneous architectures.

5.1.2 Euler Equations

Our running example is an implementation of the Euler equations. These provide

a manageable example of a partial differential equation system that requires the

properties of SAMR discretization methods that are highly localized in space or time

features that develop due to nonlinearities. The Euler equations in fluid dynamics are

quasilinear hyberbolic equations that are a special case of the Navier-Stokes with zero

viscosity (inviscid), and zero thermal conductivity (adiabatic). They can be applied

to both compressible and incompressible fluid flows [114]. The method described in

this work is an implementation of the 4th-order Method Of Lines published in [82]

and written in the Proto DSL.

A fourth order Runge-Kutta method is applied to solve for u, the flow velocity

vector. The solution is advanced by integrating over multiple time steps until some

target time is reached, or a maximum number of iterations has been performed. The

current state becomes the input to compute the next output state after each time

increment. The step function is executed four times, forming the bottleneck of the

solver.
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Each point in the grid contains a component vector (ρ, px, py, pz, e) where ρ is the

density, p is momentum in each direction, and e is energy. These are the conserved

values. The first operation in the step function converts the conserved values into

their primitive counterparts, performed by the consToPrim function. A deconvolution

stencil is applied to the input box, and the result is also converted to primitives. These

two are added together and a Laplacian stencil is applied to compute the average.

Interpolation is then performed for each dimension, with both a high and low wave

speed calculated. This operation includes two stencils, an upwind state computation,

a deconvolution, two flux calculations, a Laplacian, and a divergence with each added

to the final result to produce the new state.

5.2 Proto Overview

Proto derives from earlier work on AMRStencil, a domain-specific language

developed as part of the D-TEC project [115]. That effort relied upon a true augmen-

tation of the underlying C++11 language specification with stencil-based language

features. Learning a lesson from the transition of UPC [116] to UPC++ [117], it

was determined that C++ is now powerful enough to describe language semantics

from within a C++ template library itself, thus separating DSL development from

compiler semantics.

Proto is a lightweight C++ library developed to efficiently solve differential

equations over domains formed from the union of structured, rectangular grids. The

goal is to decouple the complexities of designing an algorithm from the scheduling.

The PDFL language and IR share this as a common goal. Proto contains a number

of high-level constructs for achieving this goal. A Point represents a point ∈ ZD, a
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D-dimensional integer space. A Box encloses a subset, B, of ZD, a rectangular domain

over an array. Each is described by a pair of points, (l, h), for example bottom-left,

and top-right in the 2D case. Proto boxes support many transformations that lend

themselves to be supported by the polyhedral model, such as intersection, shifting,

and coarsening or refinement.

Boxes describe a discretization of physical space, while data represent components

in the state space. Data are encapsulated with boxes in a BoxData object. Proto

uses C++ templates to an arbitrary type T, that can either be the real numbers, R,

complex numbers, R, or integers Z. The data associated with each point can be a

scalar value, a component vector of length, C, a component matrix (C × D), or a

tensor (C × D × E ). Box ranges are computed at runtime, while component indices

are known at compile time.

There are two primary ways to represent computations in Proto. The forall

operation receives as inputs a function pointer, F, Box, and an arbitrary (variadic)

number of parameters, including data boxes or scalars. If the box is omitted, the

operation will be applied to each point in the intersection of the supplied BoxData

objects. Finally, Proto supports the creation of arbitrary stencil objects at runtime,

where each consists of a set of offsets (as points), and the corresponding coefficient

weights. Stencils can be added, multiplied by scalars, or composed to create new

stencils. Class methods in BoxData enable other pointwise operations via operator

overloading, e.g., addition or scalar multiplication.

5.2.1 Euler in Proto

The Proto implementation to solve for velocity using the Euler equations is given

in Figure 5.1. The input vector, U is the flow velocity vector. The consToPrim



90

function converts the conserved quantities, i.e., momentum, into primitives, i.e.,

velocities in each direction. The input data is deconvolved into a local vector with the

deconvolve stencil. The laplacian stencil computes the average velocity, and

the deconvolved primitives are added to the result. Lower and upper interpolations are

performed on the average velocity for each dimension. The fluxes for each dimension

are then computed, and the divergence of the average is added to the output vector.

Finally, each point is multiplied by the negative inverse of the step size (dx). Stencils

are applied to each point in the data space including the component space. A forall

statement executes the function on each point in the data space by operating on the

component space. Arithmetic operations (e.g., +=) are applied to all points in the

data and component spaces.

1 Vector W_bar = forall<double,C>(consToPrim,U_in,gamma);
2 Vector U = deconvolve(U_in);
3 Vector W = forall<double,C>(consToPrim,U,gamma);
4 Vector W_ave = laplacian(W_bar,1.0/24.0);
5 W_ave += W;
6

7 for (int d = 0; d < DIM; d++) {
8 Vector W_aveL = interpL[d](W_ave);
9 Vector W_aveH = interpH[d](W_ave);

10 Vector W_ave_f = forall<double,C>(upwind,W_aveL,W_aveH,d,
gamma);

11 Vector F_bar_f = forall<double,C>(getFlux, W_ave_f,d,gamma);
12 Vector W_f = deconvolve_f[d](W_ave_f);
13 Vector F_ave_f = forall<double,C>(getFlux,W_f,d,gamma);
14 F_bar_f *= (1 / 24);
15 F_ave_f += laplacian_f[d](F_bar_f,1.0/24.0);
16 U_out += divergence[d](F_ave_f);
17 }
18 U_out *= -1 / dx;

Figure 5.1: Proto implementation of the step function from the Euler solver.
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5.3 Compiler Approach

Computations in Proto are executed directly in the C++ code of the algorithm

specification at run time. This paper proposes a compiler-based approach that collects

the details of the computation, builds a dataflow graph intermediate representation,

applies loop transformations and storage reductions, then generates optimized code

to perform the same computation in less time.

5.3.1 Intermediate Representation

The Proto code is translated into the polyhedral+dataflow intermediate repre-

sentation via the PDFL embedded DSL that defines computations in the IR. Loop

fusion is one of the primary transformations applied to the dataflow graph IR. Fusing

two statement nodes results in the union of their iteration spaces and computations.

An additional data structure is introduced to represent the internal execution schedule

within a group of fused nodes to ensure that all producer-consumer relationships are

maintained correctly.

5.3.2 Mapping Proto to Polyhedral+Dataflow IR

The entities defined in Proto are analagous to those in the PDFG-IR. A point in

Proto is equivalent to an instance of an iterator tuple in PDFL. Collections of points

are represented by Box objects. These are equivalent to iteration spaces in PDFL.

BoxData objects in Proto correspond to data spaces.

The forall operation is represented by a computation in PDFL. The PDFG

representation of a Proto kernel is transformed into C code before running. Function

pointers are not directly supported since the compiler cannot determine the source
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of the original code. Proto kernel functions are expressed in the PDFL eDSL. The

corresponding iteration space is built by adding the spatial dimensions in reverse

order. In the 2D case, the x -dimension would become the inner loop, with y as the

outermost loop.

Stencils in Proto are also mapped to computations in PDFL. A stencil, S, is repre-

sented by a point matrix, P of size n × d where n is the number of stencil points, and

d the dimensions, and a coefficient vector, c of size n. The five-point Laplacian stencil,

for example, would be represented by the offset points {(0, 0), (1, 0), (−1, 0), (0, 1), (0,−1)}

and coefficient weights (−4, 1, 1, 1, 1).

A stencil is applied to all components so the iteration space must include the

component space. Component loops are initially placed as the outermost loops. A

2D stencil over a box of N cells with component vector of length C would produce

the following iteration space.

S = { [c, y, x] | 0 ≤ c < C ∧ 0 ≤ y < N ∧ 0 ≤ x < N } (5.1)

The offsets and weights in the stencil are unrolled to become a weighted sum expres-

sion. Applying the stencil to a data space, W, produces this expression:

W̄ (c, y, x) = −4 W (c, y, x) +W (c, y, x+ 1) +W (c, y, x− 1)+

W (c, y + 1, x) +W (c, y − 1, x) (5.2)

Data accesses are denoted by a data space followed by an iterator tuple (e.g.,

W (y, x)). Accesses on the right hand side of an assignment are assumed to be reads,

and the associated statement node a consumer. Those on the left are considered writes
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and the statement node a producer. The default data mapping is a linearization of

the data as a one dimensional array, e.g., W (y, x)→ W [N ∗ y + x].

Proto objects are transformed into PDFG-IR by an interface layer. As each

Proto method is executed, the corresponding PDFL objects are generated while

the PDFG-IR is constructed. Each time a function is called, an automatically

incrementing identifer is assigned to prevent conflicts (e.g., getFlux1, getFlux2, etc.).

After a single pass through the Proto kernel has been completed, the initial, serial

dataflow graph is created. The PDFG for the two-dimensional Euler step function is

given in Figure 5.2. The dimensional loop from the Proto code is effectively unrolled.

Representing control flow in a dataflow language is challenging. Some Proto

functions, e.g., upwind, require control flow. This has been supported in PDFL by

the inclusion of a conditional expression that implements the ternary operator. Inter-

mediate computations in temporary variables are replaced with the actual expression.

This is a form of redundant computation, and can help relieve register pressure or

reduce memory traffic.

5.3.3 Performance Modeling

A performance model is generated for each graph variant. Floating point oper-

ations (FLOPs) are counted from eDSL operations. Read/write traffic is estimated

from iteration space sizes and producer/consumer access mappings. The total number

of bytes allocated are computed from the size of each data space. The number of active

input/output streams at any point in the execution is determined from the incoming

and outgoing dataflow graph edges.

Arithmetic intensity is computed from FLOPs and memory traffic estimates.

Estimates are correlated to the results of the Intel VTune/SDE and LIKWID [118]
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Figure 5.2: Polyhedral+dataflow graph for the Euler step function.
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performance modeling tools. The model is applied to predict the profitability of IR 

transformations, and computes estimates that are hardware independent, i.e., an 

application signature. The performance model for three graph variants, including 

series of loops, partially fused, and fully fused are summarized in Table 5.1. The table 

demonstrates the correlation between reduced storage and increased arithmetic 

intensity with performance speedup over the original Proto implementation. The 

total number of FLOPs remains constant at 433 MFLOPs.

Table 5.1: Performance model for the three Euler graph variants, indicating the rela-

tionship between storage reduction, increased arithmetic intensity, and performance 

speedup.

Variant Allocated (MB) Processed (MB) A.I. Speedup
Series of Loops 55.3 1,860 0.233 1.4
Partially Fused 118 1,400 0.310 1.9
Fully Fused 80.7 764 0.567 3.1

5.3.4 Shift and Fuse Algorithm

The automatic fusion of loop nests requires that data dependences be satisfied to 

ensure correctness. The fusion algorithm consists of three steps. The iteration spaces of 

the computation nodes are first compared to determine whether loop interchange is 

required. Interchange is necessary when pointwise methods (i.e., forall operations)

are fused with stencils, for example, because the pointwise methods do not have 

component loops. The component loops are moved to the inside as their bounds are

known at compile time (the e.g., C, D, E template parameters), and are relatively 

small with respect to the spatial loops (i.e., C � N). These innermost loops become 

candidates for unrolling, allowing the innermost spatial loop (e.g., x ) to be vectorized.

Interchange is performed by exchanging the nodes within the iterator tree.
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The next step calculates any iterator shifts that may be necessary. This requires

finding the computation nodes within the current fusion group that produce data

required by the node being fused. The data access mappings for each producer are

processed to determine the maximum reuse distance. This distance is then added to

the difference between the loop start bounds of the fused node and the current node.

The result becomes the shift tuple, one per iterator, of the node being fused.

Finally, the iterator tree must be updated to position the new node within the

fusion group. To accomplish this, a depth first search of the iterator tree is performed

for each of the producer nodes in the previous step, returning the path through the

tree. The fused node is then inserted into iterator tree at a position one greater than

the maximum position of its producers, ensuring that it is not executed until the data

it must read have been written.

As a motivating example, fusing the laplacian node with consToPrim1 from

Euler demonstrates each of the three steps. The component loop iterator, c in the

laplacian node is interchanged before fusing. Each of the spatial iterators is shifted

by 1 as the reuse distance of the stencil is 1-(-1)=2, and the loop bounds differ

by -1 in each direction. In the last step, the laplacian node is inserted after

consToPrim1 because it produces the W bar data that laplacian consumes.

Figure 5.3(a) contains the original iterator trees for the two statement nodes, the

interchanged and shifted laplacian tree is displayed in (b), and the resulting fused

iterator tree in (c).

Once the serial version of a graph has been generated, additional variants are

generated by applying transformations to the original. This can be done manually

using eDSL methods such as fuse, split, or tile, or variants can be generated

automatically.
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(a) (b) (c)

Figure 5.3: Iterator trees for the (a) original consToPrim1 and laplacian 
computations, (b) laplacian after interchange and shift applied, and (c) final fused 

tree.

The PDFG infrastructure consists of a multi-pass system. Passes are implemented 

as visitors on the dataflow graph, that either annotate nodes with attribute values 

such as iterator shifts or tile sizes, or can produce a new transformed graph. Addi-

tional passes can be introduced by implementing new visitors. The original graph is

not modified, so the passes can be applied in an arbitrary order, although visitors 

can be composed.

The passes are performed in a specific order by default. The schedule visitor 

traverses the computation nodes, then walks the iterator trees of each to produce 

the scattering functions needed by the polyhedral compiler. The performance model

visitor traverses the graph to build the model, annotating the nodes with FLOPs,
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data reads and writes, and the number of input and output streams.

The data reduction visitor minimizes the temporary storage within fused node

groups based on the reuse distance between data nodes. The distances are inferred

from the data accesses in the statement nodes that read or write the data nodes. A

data space is reducible if it is produced and consumed within the same fusion group.

A reuse tuple is generated that contains the distance for each iterator. Those with a

reuse of zero can be reduced to the size of a scalar, a component vector, or one spatial

dimensions. The data space size and access mappings are updated accordingly.

The memory allocation visitor traverses the graph in reverse order and assigns

each data space a memory location using liveness analysis, further reducing data

allocation. This ensures that only sufficient memory that is required for the the

currently live data spaces needs to be allocated. This leads to a balance between loop

fusion and memory allocation.

The parallelization visitor decorates the iterator tree of each statement node with

either thread level parallelism for outer loops, or SIMD parallelism for innermost

loops. These tags are converted into pragmas during code generation. Loops that

have been automatically shifted are not parallelized.

The transformation visitor attempts to produce an optimal version of the graph

using the performance model that reduces control flow and temporary storage, and

enables vectorization opportunities. Decisions made include whether to fuse two

nodes or sets of nodes, perform loop interchange, unroll inner loops, or apply tiling.
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5.4 Code Generation

Code generators are implemented as visitors on the dataflow graphs. Statement

nodes are output as loop nests, data nodes as memory allocation statements, and

data mappings as macros. The default generator also includes any necessary headers,

and defines any other functions required in the code body. Data nodes that have

no incoming edges (sources) become input parameters, and those without outgoing

edges (sinks) become outputs, unless otherwise specified. Internal data nodes are

assumed to be temporary storage and subject to reduction. Loop nests are generated

by the Omega+ polyhedral compiler, and modified or annotated as needed by the code

generator.

OpenMP pragmas are inserted into the loop nests as previously determined by the

parallel visitor. The memory allocation statements and access functions are modified

so that dedicated memory spaces are assigned to each thread. The maximum number

of active threads is computed from the upper bound of the loop being parallelized.

The remaining threads are applied over boxes.

Code variants can optionally be validated after generation against the data pro-

duced by the execution of the Proto code that produced the initial dataflow graph.

Variants that do not match the desired output within a given error threshold are

discarded.

5.5 Experimental Evaluation

Performance results were collected using an implementation of the Euler fluid

equations [119] solver in Proto. The step function applied by the fourth order

Runge-Kutta method at each time step is the most computationally intensive method.
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An initial, serial version of the graph was generated from one pass through the Euler

step function. Several code variants were produced by manipulating the dataflow

graph IR and generating the resulting code. The performance results indicate that

scheduling transformations are more effective when coupled with dataflow optimiza-

tions. The performance model predicts that the fastest variants are those that

maximize arithmetic intensity, while reducing the data sufficiently to keep the working

set size within the L3 cache.

5.5.1 Experimental Setup

The Euler step function was evaluated by computing boxes of size 643, with one

box allocated to each parallel thread. Each experimental run was performed nine

times with the mean time reported. Execution times are normalized with respect

to the Proto implementation and output data were validated against the same to

ensure correctness.

The CPU experiments were performed on single nodes of the Cori cluster at

NERSC. Each Haswell node consists of a dual socket, Intel Xeon E5-2698 v3 CPU

clocked at 2.30 GHz, each with 32 physical cores, 16 per socket, and 64 logical cores

with hyperthreading. There are 64K of L1, 256K of L2, respectively, with 40960K of

shared L3 cache. Each node contains 128GB of DRAM distributed over two NUMA

domains, with a 2GB block size. The code variants were compiled using Intel compiler

(ICC) v19.0.3 at optimization level -O3.

The GPU data were collected on an NVIDIA Quadro P1000 with 4GB of GDDR5

with an Intel Xeon Silver 4114 CPU at 2.20 GHZ. The OpenACC code was compiled

with version 19.4 of the PGI compiler using the CUDA 9.2 toolkit, also with the -O3
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flag, and managed memory enabled. Memory transfer times between host and device

are included in the timings.

5.5.2 Code Variants

The first code variant is a series of loop nests, each representing one Proto kernel.

This version has the lowest arithmetic intensity per loop, but also the least amount

of allocated memory. The fully fused version fuses all loop nests into one. This has

the effect of maximizing arithmetic intensity, but also the quantity of live data. This

variant also contains increased control flow due to the guards inserted to ensure that

data dependences are satisfied. The added control flow limits SIMD vectorization.

The third variant is partial fusion. Statement nodes are grouped using a greedy

approach that increases arithmetic intensity while reducing memory traffic within

each group. When the working set size for a group exceeds a given threshold, a new

group is created. The threshold is experimentally derived, approximately based on

the L3 cache size of the target architectures. This variant strikes a balance between

AI and memory traffic.

Tiled versions of each variant are also generated. Tile sizes are set to 8 in each

dimension, as 4 is too small for the applied stencils, and no performance benefit is

observed at size 16. Performance results are given in Figure 5.4. Speedup is computed

relative to the baseline execution time of the Euler implementation in Proto. The

fully fused and tiled code variant is fastest as it maximizes arithmetic intensity, while

reducing the active memory footprint to a single tile size (83) for each data space.

A scalability study was performed by sweeping the number of threads from 1

to 64 by powers of two on each of the three code variants for three different box

sizes, small (N =16), medium (N =32), and large (N =64). The number of boxes
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Figure 5.4: Performance results for the Euler step function on a Cori Haswell CPU 
node.

computed are set to ensure a constant number of cells (1536) for each run. The data 

are displayed in Figure 5.5. The Proto variant is excluded from these results as it 

does not implement OpenMP parallelism. The series of loops variant is used as the 

baseline. This variant is the fastest in all cases for small boxes. The fused and tiled 

variants do not outperform it until 16 threads for medium sized boxes, and 8 threads 

for large boxes.

The series of loops, partially fused, and fully fused variants were generated for the 

GPU with OpenACC pragmas. These variants are similar to those on the CPU, except 

component loops are interchanged and unrolled for vectorization. Figure 5.6 contains 

the performance results. Only the series of loops variant outperforms the original 

Proto implementation. The loop shifts required for fusion introduce additional 

control flow, probably causing thread divergence.
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Figure 5.5: Comparison of code variants for each box size with thread sweep from 1 
to 64.

5.6 Summary

This chapter presented Proto, an eDSL for structured grid PDE solvers, com-

bined with the polyhedral+dataflow language (PDFL) to combine execution sched-

ule transformations with dataflow optimizations. Proto statements and data are 

translated into the PDFG-IR and then optimized by applying a combination of loop 

fusion, tiling, parallelization, vectorization, and temporary storage reductions. A 

performance model including FLOP and memory throughput estimates is incor-
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Figure 5.6: Performance results for the Euler step function on a NVIDIA Pascal GPU.

porated to automatically guide optimizations by maximizing arithmetic intensity 

while minimizing the working set size. Performance improvements of up to 3X were 

demonstrated with a CPU implementation of the Euler equations, and up to 2.6X for 

the GPU version.
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CHAPTER 6

IRREGULAR ALGORITHM IMPLEMENTATIONS

This chapter demonstrates the effectiveness of the polyhedral+dataflow repre-

sentation to express and transform numerical applications beyond small kernels or

benchmarks. The two implementations include a conjugate-gradient solver for sparse

matrices, and a canonical polyadic decomposition implementation for sparse tensors.

Several different sparse formats are evaluated for each algorithm, and the correspond-

ing inspectors and executors for each are defined for the primary kernels in both

algorithms.

6.1 Conjugate Gradient

The sparse matrix-vector multiplication kernel is the computational bottleneck in

the CG algorithm. The optimization space is explored by considering several sparse

matrix storage formats. The study illustrates the effectiveness of the PDFG-IR for

applications with limited opportunities for temporary storage reduction. The five

storage formats evaluated include the default coordinate format (COO), compressed

sparse row (CSR), doubly compressed sparse row (DSR), ELLPACK (ELL), and

compressed sparse block (CSB). An overview of these sparse matrix formats is given

in Section 2.6. A detailed description of the CG algorithm can be found in subsec-

tion 2.5.2, and in equations 2.8–7 specifically.
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6.1.1 Executor Definitions

The sparse matrix-vector multiplication kernel is the target executor to be opti-

mized in the CG algorithm. A general expression of the executor in PDFL for a dense

matrix, A, is defined as follows:

spmv(i, j, n) = { 0 ≤ i < N ∧ 0 ≤ j < N ∧ n = i ∗N + j } : {

y(i) += A(n) ∗ x(j) }; (6.1)

The symbolic constant, N, is the number of rows and columns, M is the number

of nonzeros, and (i,n,j ) are the indices into the row vector y, matrix A, and column

vector x, respectively. The SpMV kernels for the other sparse matrix formats are

similarly defined in equations 6.2– 6.6, and applied as relations to transform the

dense spmv definition.

coo(n, i, j) = { 0 ≤ n < M ∧ i = row(n) ∧ j = col(n) } ∗ spmv; (6.2)

csr(i, n, j) = { 0 ≤ i < N ∧ rp(i) ≤ n < rp(i+ 1) ∧

j = col(n) } ∗ spmv; (6.3)

dsr(m, i, n, j) = { 0 ≤ m < R ∧ i = crow(m) ∧ crp(m) ≤ n <

crp(m+ 1) ∧ j = col(n) } ∗ spmv; (6.4)

ell(i, k, n, j) = { 0 ≤ i < N ∧ 0 ≤ k < K ∧ n = i ∗K + k ∧

j = lcol(i, k) } ∗ spmv; (6.5)

csb(b, n, i, j) = { 0 ≤ b < NB ∧ bp(b) ≤ n < bp(b+ 1) ∧

i = B ∗ brow(b) + erow(n) ∧

j = B ∗ bcol(b) + ecol(n) } ∗ spmv; (6.6)
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6.1.2 Inspector Construction

The inspector transformations required to convert the executor for one matrix

format into another can require the modification of iteration and/or data spaces.

The matrix values In the ELL format, for example, are copied into a new 2D matrix,

Aell, of size N × K, where K is the maximum number of nonzeros per row [97].

The compressed spare block matrix, Acsb, remains of size M, however the values are

reordered to be visited in block order, e.g., Z-Morton ordering [120].

Inspectors generate the explicit functions or constants that satisfy the constraints

containing the corresponding uninterpreted functions. The data spaces for the explicit

functions are produced using constraints that are known in the source format, but

unknown in the destination. The explicit functions are realized as data spaces by

generating the code that satisfies the unknown constraints. The inspector code is

generated from a combination of known constraints augmented with domain specific

knowledge as needed.

An inspector that converts the COO format to CSR is given as an example.

The two functions needed to satisfy the CSR executor constraints are the number of

rows in the matrix, N, and the compressed row pointer, rp. The constraints needed

to produce N are the known, i=row(n), and the unsatisfied i <N. The code that

produces N is generated by negating the unsatisfied constraint, i <N, to obtain

i ≥ N , the generating the statement that makes it true, i = N + 1. This process

yields the first inspector component, inspN, in equation 6.7,. The negated constraint

is added to the iteration space as a guard condition, and bcomes an if statement in

the generated code.
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inspN (n, i) = { 0 ≤ n < M ∧ i = row(n) ∧ i ≥ N} : { N = i+ 1 }; (6.7)

insprp1(n, i) = { 0 ≤ n < M ∧ i = row(n) } : { rp(i+ 1) += 1 }; (6.8)

insprp2(i) = { 0 ≤ i < N } : { rp(i+ 1) += rp(i) }; (6.9)

The insprp1 component in equation 6.8 satisfies the requirement that each element

of rp is a running count of the number of nonzeros in each row. The last component,

insprp2 ( 6.9) ensures that the elements are monotonically non-decreasing,

The COO format does not enforce any particular ordering. Constraints solving

to generate the given inspectors is simplified if the row function is sorted. The inspN

inspector, for example, simplifies to the expression, N = row(M − 1) + 1. The sort

introduces O(MlogM) overhead, however this cost is amortized since the composed

inspector will use it to generate other formats. The remaining inspector definitions

assume the COO matrix has been sorted by row.

The doubly-compressed CSR format further compresses the rows data by removing

any duplicate row values. The COO to DSR inspector is responsible for generating

three unknown functions from the executor, the set of unique rows (crow), the

compressed row pointer (crp), and the number of unique rows (R). The sorted COO

row allows each function to be produced in one pass over the nonzero row indices .

inspR(n) = { 1 ≤ n < M ∧ row(n) 6= row(n− 1) } : { R = R+ 1 }; (6.10)

inspcrow(n) = { 1 ≤ n < M ∧ row(n) 6= row(n− 1) } : {

crow(R) = row(n) }; (6.11)

inspcrp(n) = { 1 ≤ n < M ∧ n ≥ crp(R+ 1) } : { crp(R) = n+ 1 }; (6.12)
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The COO to ELL inspector is derived from constraints that have already been

satisfied in the CSR inspector. The K constant in the ELL format represents the

maximum number of nonzeros per row in the matrix. The number of nonzeros for

each row has already been captured in the rp function generated by the CSR inspector.

Thus, the k value for any nonzero index, n, is the difference between itself and the

nonzero count for that row, k = n − rp(i). The ELL inspector is derived from the

CSR inspector in equations 6.13–14.

inspK(i) = { 0 ≤ i < N } : { K = max(K, rp(i+ 1)− rp(i)) }; (6.13)

insplcol,Aell(i, n, k) = { 0 ≤ i < N ∧ rp(i) ≤ n < rp(i+ 1) ∧ k = n− rp(i) }

: { lcol(i, k) = col(n) ∧ Aell(i, k) = A(n) }; (6.14)

The compressed sparse block format for matrices can be generalized to the HiCOO

format for tensors [33], so the CSB inspector derivation is covered by the HiCOO

inspector described in Section 6.2.

The conjugate gradient algorithm from equations 2.8–7 is defined in the PDFL

language below, where T is the maximum number of iterations, M the number of

nonzeros in the sparse matrix A, and N is the number of rows and columns. The initial

guess is assumed to be the zero vector, x0 = ~0. The spmv executor can be replaced

with the corresponding kernel for the other matrix formats without modifying the

remainder of the algorithm.

copy(i) = { 0 ≤ i < N } : { r(i) = b(i), d(i) = r(i) }; (6.15)

spmv(t, n, i, j) = { 1 ≤ t < T ∧ 0 ≤ n < M ∧ i = row(n) ∧ (6.16)

j = col(n) } : { s(i) += A(n) ∗ d(j) }; (6.17)

ddot(t, i) = { 1 ≤ t < T ∧ 0 ≤ i < N } : { ds += d(i) ∗ s(i) }; (6.18)
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rdot0(t, i) = { 1 ≤ t < T ∧ 0 ≤ i < N } : { rs0 += r(i) ∗ r(i) }; (6.19)

alpha(t) = { 1 ≤ t < T } : { α = rs0 / ds }; (6.20)

xadd(t, i) = { 1 ≤ t < T ∧ 0 ≤ i < N } : { x(i) += α ∗ d(i) }; (6.21)

rsub(t, i) = { 1 ≤ t < T ∧ 0 ≤ i < N } : { r(i) −= α ∗ s(i) }; (6.22)

rdot(t, i) = { 1 ≤ t < T ∧ 0 ≤ i < N } : { rs += r(i) ∗ r(i) }; (6.23)

beta(t) = { 1 ≤ t < T ∧ 0 ≤ i < N } : { β = rs / rs0 }; (6.24)

dadd(t, i) = { 1 ≤ t < T ∧ 0 ≤ i < N } : { d(i) = β ∗ d(i) + r(i) }; (6.25)

6.1.3 Code Generation

The inspectors are first composed into one dataflow graph, then optimized by

performing loop fusion and parallelization. Dynamic arrays allow loops that produce

data spaces with sizes unknown at compile time to be fused with the loops that

produce the final sizes. The crow space from the DSR inspector and the brow space

from CSB, for example, have worst-case size M. These spaces are resized once the

actual sizes are known, R and NB, respectively. The source code for the composed

inspectors is given in Figure 6.1. The memory allocations statements and bnum

function that generates block numbers are omitted for brevity.

A separate executor is generated for each matrix format since the SpMV kernel is

diferent for each. The optimized code for the CG algorithm using the CSR version

of the SpMV executor is displayed in Figure 6.2. The storage space for the d, r, and

s vectors in the CG algorithm cannot be further reduced so the temporary storage
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reductions are due to the different matrix formats.

1 N = row(M-1) + 1;
2 rp(row(0)) += 1;
3

4 #pragma omp simd
5 for(n = 1; n < M; n++) {
6 i = row(n);
7 rp[i+1] += 1;
8

9 if (i != row[n-1]) R+=1;
10 crow[R] = i;
11 if (n >= crp[R+1]) crp[R+1] = n+1;
12

13 bi = row[n]/B;
14 bj = col[n]/B;
15 b = bnum(bi,bj);
16 bmap[b][bcnt[b]++] = n;
17 if (b >= NB) NB = b+1;
18 brow[b] = bi;
19 bcol[b] = bj;
20 }
21 R += 1;
22

23 for(i = 0; i < N; i++) {
24 K = max(K, rp(i+1));
25 rp[i+1] += rp[i];
26 }
27

28 #pragma omp parallel for
29 for(i = 0; i < N; i++) {
30 #pragma omp simd
31 for (n = rp(i); n < rp(i+1); i++) {
32 k = n - rp(i);
33 lcol[i*K+k] = col[n];
34 lval[i*K+k] = val[n];
35 } }
36

37 #pragma omp parallel for
38 for (b = 0; b < nb; b++) {
39 #pragma omp simd
40 for (p = 0; p < bcnt[b]; p++) {
41 n = bmap[b][p];
42 erow[p] = row[n] - B * brow[b];
43 ecol[p] = col]n] - B * bcol[b];
44 if (p >= bp[b+1]) bp[b+1] = p+1;
45 bval[p] = val[n];
46 } }

(a)

Figure 6.1: Optimized code for the composed inspectors to convert COO matrices 
into the CSR, DSR, ELL, and CSB formats.
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1 #pragma omp parallel for
2 for(i = 0; i < N; i++)
3 r[i] = d[i] = b[i];
4 for(t = 1; t <= T; t++) {
5 ds = rs0 = rs = 0.0;
6 #pragma omp parallel for
7 for(i = 0; i < N; i++) {
8 s[i] = 0.0;
9 #pragma omp simd

10 for(n = rp[i]; n < rp[i+1]; n++)
11 s[i] += A[n] * d[col[n]];
12 ds += d[i] * s[i];
13 rs0 += r[i] * r[i];
14 }
15 alpha = rs0 / ds;
16 #pragma omp parallel for
17 for(i = 0; i < N; i++) {
18 x[i] += alpha * d[i];
19 r[i] -= alpha * s[i];
20 rs += r[i] * r[i];
21 }
22 beta = rs / rs0;
23 #pragma omp parallel for
24 for(i = 0; i < N; i++) {
25 d[i] = r[i] + beta * d[i];
26 } }

(a)

Figure 6.2: Optimized code for the conjugate gradient algorithm with SpMV executor 
of the CSR format.

6.2 Tensor Decomposition

The CPD algorithm follows a similar pattern as CG. The decomposition steps 

are applied for a maximum number of iterations, T, or until the error threshold 

is reached. The bottleneck kernel in CPD is the matricized tensor times Khatri 

Rhao product (MTTKRP). This section will consider three sparse tensor formats, 

coordinate (COO), compressed sparse fiber (CSF) [98], and hierarchical coordinate 

(HiCOO) [33]. The CPD algorithm is given in subsection 2.5.5.

The COO format is generalized for tensors by replacing the row and col functions 

with a 2D function, index (n,m) where n is the dimension (0 ≤ n < N), and m is the 

nonzero position (0 ≤ m < M). The MTTKRP kernel for an N th order tensor, X,
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in COO format is expressed in PDFL as follows:

krp(n,m, r, p, i) = { 0 ≤ n < N ∧ 0 ≤ m < M ∧ 0 ≤ r < R ∧

0 ≤ p < N ∧ n 6= p ∧ i = index(p,m) } : {

A(n, i, r) += X(m) ∗A(p, i, r) }; (6.26)

where M is the nonzero count, R is the rank, and A represents the factor matrices,

A1, . . . , AN.

The HiCOO format is a generalization of CSB, where brow and bcol are replaced

with the 2D function, bind(n,b), where b is the block number. The erow, ecol functions

are replaced with eind(n,m), where m is the index of each nonzero value. The bp(b)

function contains pointers to the nonzero indices for each block, and B is a parameter

indicating the block size. Block sizes can be varied per dimension by replacing B with

a function, bsize(n), however in this case, the same B will be applied to all dimensions.

The MTTKRP kernel for the HiCOO storage format is defined below.

hicoo(n, b,m, r, p, i) = { 0 ≤ n < N ∧ 0 ≤ b < NB ∧ bp(b) ≤ m <

bp(b+ 1) ∧ 0 ≤ r < R ∧ 0 ≤ p < N ∧

n 6= p ∧ i = B ∗ bind(b, p) + eind(m, p) } ∗ krp; (6.27)

The CSF format can be considered a generalization of DSR for matrices, with

the compressed row pointer, (crp), replaced by function coff (n,q) representing com-

pressed offsets, where q is the nonzero index pointer at each level, and cind(n,q)

contains the compressed indices. Each compressed fiber is represented as a tree

structure, as seen in Figure 2.8. Recursive definitions are not supported in the
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polyhedral model, so guard statements are added to the executor definitions, to

support third or higher order tensors. The modes are compressed in ascending order,

e.g. row-column-tube order (0,1,2) for a third order tensor.

csf(n, f, i, g, j, h, k,m, l, r, p) = {

coff(0, 0) ≤ f < coff(0, 1) ∧ i = cind(0, f) ∧

coff(1, f) ≤ g < coff(1, f + 1) ∧ j = cind(1, g) ∧

coff(2, g) ≤ h < coff(2, g + 1) ∧ k = cind(2, h) ∧ N > 3 ∧

coff(3, h) ≤ m < coff(3, h+ 1) ∧ l = cind(3,m) ∧

0 ≤ r < R } ∗ krp; (6.28)

6.2.1 Inspector Construction

The COO to HiCOO inspector requires two passes. The first pass produces the

bind function, the number of blocks, NB, and three intermediate spaces, bnum stores

the block numbers, bcnt, contains the running count of nonzeros per block, and bmap,

maps the block order of the nonzeros to the original COO order. The second pass

generates the bp and eind functions.

crd(m,n) = { 0 ≤ m < M ∧ 0 ≤ n < N } : {

bcrd(n) = bindex(n,m)/Bc }; (6.29)

num(m,n, b) = { b = bnum(bcrd) } : {

bmap(b, bcnt(b)) = n ∧ bcnt(b) += 1 }; (6.30)

(6.31)
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cnt(n, b) = { b ≥ NB } : { NB = b+ 1 }; (6.32)

ind(m,n, b) = { 0 ≤ n < N } : { bind(n, b) = bcrd(n) }; (6.33)

bptr(b, p,m) = { 0 ≤ b < NB ∧ 0 ≤ p < bcnt(b) ∧

m = bmap(b, p) ∧ bp(b+ 1) ≤ p } : { bp(b+ 1) = p+ 1 }; (6.34)

eind(b, p,m, n) = { 0 ≤ n < N } : { eind(n, p) =

index(n,m)−B ∗ bind(n, b) }; (6.35)

cpy(b, p,m, n) = { 0 ≤ n < N } : { Xcpy(p) = X(m) }; (6.36)

The COO to CSF inspector is described in Chapter 4, and the specification is

given in Figure 4.13.

6.2.2 CP-ALS Implementation

The PDFL representation of the CP-ALS algorithm is given in equations 6.37–44.

The factor matrices, A1, . . . , AN are initialized to random values with the urand

function, that samples a uniform distribution of values between zero and one. The

MTTKRP kernel updates the factor matrix for the current dimension, n, by mul-

tiplying it with the tensor value at each other dimension, p. Each factor matrix

is multiplied by its transpose to compute Ai
>Ai. The resulting data space, AmTm,

consists of N, R × R matrices. The component-wise Hadamard product is then

applied to each matrix product to obtain the matrix, V.

The Moore-Penrose pseudoinverse, Vinv, of V, is computed with the pinv function.

This function is implemented using the singular value decomposition (SVD) of the
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matrix, A = UΣV T , and discarding the singular values of Σ that are below a certain

threshold [121]. The pinv implementation in PDFL uses the SVD algorithm from

the GNU scientific library (GSL) [122], with a singular theshold of 1 × 10−15. The

Froebenius norm is calculated and stored in the λ vector, and the factor matrices

are normalized. CP-ALS implementations typically return the results as a Kruskal

tensor, that consists of the factor matrices stored in a tensor, U, and the normalization

vector, λ.



117

init(n, i, r) = { 0 ≤ i < N ∧ 0 ≤ i < dim(n) ∧ 0 ≤ r < R } : {

A(n, i, r) = urand() }; (6.37)

krp(t, n,m, r, p, i) = { 0 ≤ n < N ∧ 0 ≤ m < M ∧

0 ≤ r < R ∧ 0 ≤ p < N ∧ n 6= p ∧ i = index(p,m) } : {

A(n, i, r) += X(m) ∗A(p, i, r) }; (6.38)

mTm(t, n, q, r, i) = { 1 ≤ t ≤ T ∧ 0 ≤ q < R ∧ 0 ≤ r < R ∧

0 ≤ i < dim(n) } : { AmTm(n, q, r) += A(n, q, i) ∗A(n, i, r) }; (6.39)

had(t, n, p, q, r) = { 0 ≤ p < N n 6= p ∧ 0 ≤ q < R ∧

0 ≤ r < R } : { V (q, r) ∗= AmTm(p, q, r) }; (6.40)

pinv(t, n) = { 1 ≤ t ≤ T ∧ 0 ≤ n < N } : { Vinv = pinv(V ) }; (6.41)

mmp(t, n, i, q, r) = { 0 ≤ i < dim(n) ∧ 0 ≤ q < R ∧ 0 ≤ r < R } : {

A(n, i, q) += A(n, i, r) ∗ Vinv(r, q) }; (6.42)

ssq(t, n, i, r) = { 0 ≤ i < dim(n) ∧ 0 ≤ r < R } : {

σ(r) += A(n, i, r) ∗A(n, i, r) }; (6.43)

norm(t, n, r) = { 0 ≤ r < R } : { λ(r) = sqrt(σ(r)) }; (6.44)

div(t, n, i, r) = { 0 ≤ i < dim(n) ∧ 0 ≤ r < R } : {

A(n, i, r) /= λ(r) }; (6.45)

6.2.3 Code Generation

The CPD code was generated by fusing all possible loops while applying storage

reductions. Two additional optimizations are manually applied. A coordinate buffer,

crd, of size N is introduced to store the coordinates of each nonzero value. This allows
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the sparse index structures to be traversed once per value, for each iteration of the

dimension loop. The MTTKRP kernel can then be the same for each data format,

and only the index traversal code needs to be updated.

The next optimization is the introduction of a workspace to store the results when

multiplying the factor matrices by the pseudoinverse matrix, V †. This reduces the

temporary storage required for this step by only storing enough space for the factor

matrix with the maximum dimension, D. The matrix times transpose multiplication

results, A>i Ai, used to compute the Hadamard product, V, could be reduced to one

R × R matrix. However, this reduction is not performed since it would inhibit par-

allelism by introducing a race condition. The optimized code for the CPD algorithm

using the HiCOO version of the MTTKRP executor is displayed in Figure 6.3.

6.3 Experimental Evaluation

The experimental evaluation is performed using a variety of sparse linear algebra

formats. The CG algorithm is evaluated by exchanging the sparse matrix-vector

multiplication kernel, using several matrix formats including COO, CSR, DSR, ELL,

and CSB with block size B=128.

The CPU results were collected on a single node of an Intel Xeon E5-2680 v4

machine at 2.40 GHz clock frequency with 28 cores, 14 per socket. The cores include

a 32KB L1, 256KB L2, and 35840K L3 caches. The system contains 192GB of RAM

split over 2 NUMA domains. The GCC 7.2 compiler with -O3 flag was used. The

GPU data were collected on an NVIDIA Quadro P1000 with 4GB of GDDR5 with

an Intel Xeon Silver 4114 CPU at 2.20 GHZ. The OpenACC code was compiled with

version 19.4 of the PGI compiler using the CUDA 9.2 toolkit, with the -O3 flag,
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and managed memory enabled. Memory transfer times between host and device are

included in the timing results.

The performance of the CG algorithm executed for 500 iterations with 28 threads

on each matrix format is displayed in Figure 6.4. The data were collected on twelve

sparse matrices from the SuiteSparse repository, the names are along the x -axis.

Speedup is reported on the y-axis, with higher values indicating better performance.

Each experiment was conducted nine times with the mean value reported. The

baseline implementation is from the Eigen high-performance library [123], which

stores matrices in a version of CSR.

Table 6.1 contains a summary of the matrix formats evaluated, the parameterized

sizes, mean sizes, and mean speedups. The size parameters are the number of rows

and columns, N, the number of nonzeros, M, the number of nonzero rows, R (DSR),

the maximum number of nonzeros per row, K (ELL), the number of nonzero blocks,

NB (CSB), the size of an integer, I, and the size of a floating point value, F. The

third column is the mean size in MB, and the last is speedup relative to Eigen.

The table data indicate an inverse relationship between the storage size and the

speedup. Reduced storage size correlates with improved performance when all of

the CPU cores are active, with the exception of CSB. This is possibly due to the

additonal overhead introduced by the need to compute the dense indices, (i, j),

at each iteration. CSB outperforms CSR for some matrices, e.g., webbase-1M,.

This illustrates the importance of considering the input data structure. The poor

performance of the ELL format on the CPU is expected, since it was developed for

large SIMD architectures [124].

Reduced storage is not the most significant performance predictor on the GPU

platform. Executors with reduced loop overhead and control flow, with predictable
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data access patterns exhibit superior performance. The GPU results are displayed 

in Figure 6.5. The Eigen library does not support GPUs, so the various formats are 

plotted with speedup relative to the COO execution time reported on the y-axis. The 

COO variant is the fastest overall, with a mean of 0.66 seconds, and CSR is next with 

a mean of 0.78 seconds. The DSR format is omitted because it is significantly slower 

than the other formats.

Table 6.1: Summary of matrix formats, expected sizes, mean sizes, and corresponding 

experimental mean speedups on Intel Xeon CPU.

Format Expected Size Mean Size (MB) Mean Speedup
COO 2 ×M × I +M × F 45.7 2.68
CSR (M +N + 1)× I +M × F 35.3 5.07
DSR (M + 2×R + 1)× I +M × F 36.2 4.42
ELL (N ×K)× (I + F ) 168 0.69
CSB (3×NB + 1)× I +M × (F + 1) 28.9 3.45

The CPD algorithm is evaluated with the COO, CSF, and HiCOO sparse tensor 

formats applied to the MTTKRP kernel . Each tensor was decomposed into factor 

matrices of rank, R=10. The CPU results are given in Figure 6.6. Each experiment was 

performed five times with the mean value reported. The SPLATT [31] tensor library is 

the baseline for both execution times and data verification. The SPLATT 

implementation outperforms the PDFL version for all but one tensor, flickr3d. The 

data representation in the SPLATT CPD algorithm is CSF, which is the fastest format 

for the PDFL implementation as well. SPLATT is a high performance library, that 

calls the highly tuned linear algebra functions in the LAPACK library [125] for many of 

the matrix operations in the algorithm.
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6.4 Summary

This chapter described the implementation of two numerical algorithms in the

polyhedral+dataflow language, conjugate gradient for sparse matrices, and canonical

polyadic decomposition for sparse tensors. The ability to construct inspectors for

different sparse data formats and compose them was demonstrated. The transformed

executors for computationally intensive kernels, e.g., SpMV or MTTKRP, can be

exchanged in the dataflow graph representation without altering the remainder of

the algorithm. Performance results indicate that the format with the greatest storage

reduction yields the best speedup on the CPU. The GPU results indicate that reduced

loop overhead and control flow are more important performance factors.
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1 for(n = 0; n < N; n++) {
2 D = max(D, dim[n]);
3 #pragma omp parallel for
4 for(i = 0; i < dim[n]; i++) {
5 for(r = 0; r < R; r++) {
6 A[n][i*R+r] = urand();
7 #pragma omp simd
8 for(q = 0; q < R; q++) {
9 AtA[n][r*R+q] += A[n][r*dim[n]+i]*A[n][i*R+q];

10 } } } }
11 ws = (float*) calloc(D*R, sizeof(float));
12 for(t = 1; t <= T; t++) {
13 for(n = 0; n < N; n++) {
14 #pragma omp parallel for
15 for (b = 0; b < NB; b++) {
16 for(m = bp[b]; m < bp[b+1]; m++) {
17 #pragma omp simd
18 for (p = 0; p < N; p++)
19 crd[p] = B*bind[b*N+p] + eind[m*N+p];
20 for (r = 0; r < R; r++) {
21 prod = 1.0;
22 #pragma omp simd
23 for (p = 0; p < n; p++)
24 prod *= A[p][crd[p]*R+r];
25 #pragma omp simd
26 for (p = n+1; p < N; p++)
27 prod *= A[p][crd[p]*R+r];
28 A[n][crd[n]*R+r] += X[m] * prod;
29 } } }
30 #pragma omp parallel for
31 for(q = 0; q < R; q++) {
32 for(r = 0; r < R; r++) {
33 V[q*R+r] = 1.0;
34 #pragma omp simd
35 for(p = 0; p < n; p++)
36 V[q*R+r] *= AtA[p][r*R+q];
37 #pragma omp simd
38 for(p = n+1; p < N; p++)
39 V[q*R+r] *= AtA[p][r*R+q];
40 } }
41 pinv(V,Vinv);
42 #pragma omp parallel for
43 for(i = 0; i < dim[n]; i++) {
44 for(q = 0; q < R; q++) {
45 #pragma omp simd
46 for(r = 0; r < R; r++) {
47 ws[i*R+q] += A[n][i*R+r] * Vinv[q*R+r];
48 } } }
49 #pragma omp parallel for
50 for(i = 0; i < dim[n]; i++) {
51 #pragma omp simd
52 for(r = 0; r < R; r++) {
53 A[n][i*R+r] = ws[i*R+r];
54 sums[r] += ws[i*R+r] * ws[i*R+r];
55 ws[i*R+r] = 0.0;
56 } }
57 #pragma omp parallel for
58 for(t6 = 0; t6 <= R-1; t6++) {
59 lmbda[r] = sqrt(sums[r]);
60 sums[r] = 0.0;
61 #pragma omp simd
62 for(i = 0; i < dim[n]; i++) {
63 A[n][i*R+r] /= lmbda[r];
64 } }
65 #pragma omp parallel for
66 for(q = 0; q < R; q++) {
67 for(r = 0; r < R; r++) {
68 AtA[n][q*R+r] = 0.0;
69 #pragma omp simd
70 for(i = 0; i < dim[n]; i++) {
71 AtA[n][q*R+r] += A[n][q*dim[n]+i] * A[n][i*R+r];
72 } } } } }

(a)

Figure 6.3: Optimized code for the CPD algorithm with HiCOO variant of the 
MTTKRP executor.



123

Figure 6.4: Performance results for the Conjugate Gradient algorithm on an Intel 
Xeon CPU.

Figure 6.5: Performance results for the Conjugate Gradient algorithm on an Nvidia 
Pascal GPU.
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Figure 6.6: Performance results for the CP-ALS algorithm on an Intel Xeon CPU.
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CHAPTER 7

RELATED WORK

This chapter dicusses prior work in this research area with a focus on program-

ming and scripting languages, intermediate representations, polyhedral and tensor

compilers, library-based approaches, performance modeling, and autotuning.

7.1 Programming Languages

Programming languages are the primary means of expressing computation in

software. There are several paradigms, including imperative, functional, and object-

oriented programming. Languages must be intuitive for the programmer, while

communicating necessary information to the compiler. Significant investments have

been made in existing applications to maitain compatibility.

Frontend approaches fall into several categories. One method is to annotate

existing source code with pragmas (e.g, #pragma in C). Examples include automatic

parallelization with OpenMP [126], empirical performance tuning using Orio [127],

loop nest optimization with the loop chain abstraction [13], polyhedral transforma-

tions with PET [36], or building dataflow representations in DFGR [128]. These

solutions are often implemented as source-to-source translators, manipulating the

AST to convert one source level representation into another.
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Domain specific languages (DSLs) target a particular problem space. DSLs pro-

vide a separation of concerns between the primary algorithmic expression and the

underlying implementation, including execution schedules and storage mappings.

Constructing an entirely new compiler is a considerable software engineering chal-

lenge, so DSLs are often embedded within existing language such as C++ or Python

(eDSLs).

Halide [4, 56, 129] is an eDSL targeting image processing pipelines implemented

as streams of stencil operations. It is a functional language embedded in C++

implemented as a library. Halide provides a systematic model of the tradeoffs between

data locality, parallelism, and redundant computation. The Halide IR is a DAG

representation, but is not directly accessible by the user. Halide uses interval analysis,

which does not offer the precision or flexibility of the polyhedral model.

PolyMage [5, 130] is another eDSL developed to target image processing applica-

tions with a focus on decoupling algorithms from execution schedules. Algorithms

are specified by a set of functional constructs and converted into an intermediate

representation called a stage graph. The compiler traverses the graph from bottom-

up and performs static bounds checking, function inlining, and live output analy-

sis. A polyhedral representation of the graph is constructed from the derived loop

bounds. Various polyhedral transformations can be applied to improve parallelism,

and increase data locality, including parallelogram, split, and overlapped forms of

tiling Automatic parallelization [56] was added, and a dynamic programming based

performance modeling approach [57]. PolyMage does not directly support irregular

applications, or code generation for GPU platforms.

PENCIL [131] is a polyhedral DSL that supports dynamic data-dependent control

flow and array accesses. The DSL is C99 subset that is compiled into OpenCL [132]
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code that is optimized by iterative autotuning. PENCIL has restrictions to allow

these transformations, omitting pointer arithmetic, recursion, and dynamically sized

arrays, while requiring well-formed, structured for loops. Array accesses should not

be linearized, as subscript information is used to build a polyhedral representation.

The compiler is a modified version of PPCG [44], that is in turn built upon PET [36].

PENCIL does not include a performance model, a visual feedback mechanism, nor

does it support non-affine polyhedral transformations.

PetaBricks [133] is a language that allows the programmer to specify multiple

versions of an algorithm, along with rules to define the computation and define explicit

producer-consumer relationships or data dependences. The rules may be defined at

multiple granularities and corner cases. The compiler applies the rules to generate

hybrid algorithms, and uses autotuning to explore the transformation space, including

execution schedule, tiling scheme, and parallelism strategy. This work differs in that

the user only supplies one version of an algorithm, and can optionally specify the

desired transformations.

Firedrake [134] identifies four different expert roles in the development of a scien-

tific application and provides unique interfaces for each. This reduces the breadth of

expert knowledge required and results in application code that is more maintainable

and portable between compute resources. The scheduling work presented here is

applicable to the parallel programming expert interface in Firedrake.

7.2 Scripting Languages

Transformation scripts are an alternative to augmenting code with pragmas. The

scripts describe transformations to be applied by the compiler. This approach is
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taken by the CHiLL [50], URUK [135], POET [136], and AlphaZ [137] frameworks.

AlphaZ [137] is a polyhedral framework for exploring code transformations with

support for memory remapping and simplifying reductions.

CHiLL is a loop transformation framework that uses the Omega+/CodeGen+ [11]

polyhedral compiler for code generation. The algorithm derives alternative code

variants from the input source code and accompanying transformation script that

describes the target optimizations. A search engine locates opportunities to apply

those transformations. The code variants are generated, compiled and executed to

determine the best performing version.

High-order stencil optimizations were implemented in CHiLL using array common

subexpression elimination with partial sums [25]. The compiler Common floating

point operations across loop iterations are identified and reused. Redundant com-

putations are reduced at the cost of increased storage. The compiler constructs an

array of coefficients for the partial sum transformation. The partial sum optimization

applies to out-of-place, constant-coefficient stencils.

CHiLL has been applied to compiler-directed autotuning in geometric multigrid

applications [138]. Extensions include the superscript, a parameterized template for

high level loop transformations. Superscripts are consumed by a script generator that

produces transformations recipes for the existing CHiLL compiler. The generator

creates OpenTuner [139] ensembles for the autotuner. The superscript represents the

possible transformations, and each generated script a point in the search space.
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7.3 Intermediate Representations

A compiler framework is an infrastructure to help developers create analysis tools

or source-to-source translators, such as ROSE [140] and LLVM [55]. Cetus [141] is

a compiler framework used to implement hierarchical overlapped tiling [101]. LLVM

is language agnostic IR in SSA form designed as an intermediate representation for

the Clang C/C++ compiler toolchain. Frontends have been developed for many

languages, including Fortran [142], R [143], Python [144], and Julia [145]. PLuTo [10]

is a fully automated, source-to-source polyhedral compiler that uses ClooG [46] for

code generation. The Omega+ [11] is the polyhedral compiler used by CHiLL, and

in this work. Polly [53] is a polyhedral compiler for the LLVM IR.

Compile time transformations often target the IR level. Dataflow graphs are

constructed by compilers at the statement or instruction level. Macro dataflow

graphs [60] allow similar analyses but coarsen granularity to the function, basic block,

or loop nest level. Dataflow partitioning was implemented in the SISAL [146] and

VAL [147] single assignment languages. Functional representations of an application

are easily translated into macro dataflow graphs.

Dataflow representations can be exploited to find parallelism and inform the asso-

ciated code generation [61]. Nodes within these graphs can be coalesced, combining

lightweight nodes into fewer heavyweight nodes, thereby reducing communication.

Prasanna et al. [62] take a hierarchical approach. Each macro node is scheduled for

parallel execution on a node, unlike the previous work that assume serial execution.

The entire graph is then partitioned and scheduled for distributed memory execution.

PolyAST [45, 148] presents an optimization flow that combines the polyhedral

model with AST transformations to improve parallelism, but does not specifically
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target dataflow optimizations. DFGR [128] provides an implementation of macro-

dataflow graphs in Habanero-C [149], a concurrent version of C that is built on the

Intel Concurrent Collections (CnC) [150], and uses thread building blocks (TBB).

The Data-Flow Graph Language (DFGL) [17] is an optimization framework based

on DFGR that allows graph based dependences to be represented in the polyhedral

model. TIDeFlow [16] is an execution model specifying the precedence of computa-

tions without concern for scheduling or synchronization. It differs from other dataflow

models by introducing the use of transitions and places from Petri nets to determine

node weights.

Tapir [151] extends the control flow graph representation of LLVM IR with detach,

reattach, and sync primitives to enable the fork-join parallelism of OpenMP [126],

Cilk [152], or the Habanero family of concurrent laguages [149]. The Heterogeneous

Parallel Virtual Machine (HPVM) [153] implements a dataflow-based, shared memory

IR, with a virtual instruction set (ISA) that can represent code for multiple target

architectures, and a runtime scheduler. HPVM differs from this work in that the

polyhedral model is not supported, the virtual ISA is lower level, and HPVM includes

a runtime system.

LIFT [18] is a functional, data parallel IR that enables control and dataflow

optimizations, and targets OpenCL code. Algorithms in LIFT are represented by

compositions of a defined set of functional primitives derived from common parallel

programming patterns such as map, reduce, iterate, and lambda functions. The data

layout can be transformed with the split, join, gather, and scatter patterns. The

slide pattern applies an operation to input data across a sliding window to represent

stencil patterns [154]. Applications represented in LIFT are limited to the predefined

patterns and cannot be used to define arbitrary computations. The goal is to maintain
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the algorithmic representation during compilation to effectively decouple parallelism

from code generation.

Stateful Dataflow multiGraph (SDFG) [155] is a data-centric intermediate rep-

resentation that separates program definition from optimizations by combining fine-

grained data dependences with high-level control flow. Programs are specified in the

data-centric environment (DaCe) that includes Python, Matlab, and TensorFlow [156]

frontends. Code generation is supported for CPU, GPU, and FPGA architectures.

SDFGs differ from PDFGs in that the polyhedral model is not supported, but similar

scheduling and storage transformations can be applied.

7.4 Polyhedral Compilers

The polyhedral model provides a mathematical basis for representing loop nest

iterations as lattice points within a polyhedron. Each iterator corresponds to one

dimension in the corresponding iteration space. The polyhedra can be manipulated

using set operations to perform compile-time loop transformations including inter-

change, reversal, skewing or shifting, fusion, fission, and tiling. The model is more

flexible and expressive than the unimodular matrix approach [157] that preceded it.

Iteration spaces represented as sets can be applied to reorder execution schedules to

improve locality or enable effective vectorization across SIMD lanes. The approach

is generally limited to affine iteration spaces that can be expressed with Presburger

arithmetic.

Many compiler optimization frameworks are based on the polyhedral model. The

Polyhedral Extraction Tool (PET) [36] is applied at the source code level using

C pragmas to identify static control parts of programs (SCoPs). The Integer Set
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Library (ISL) [52] is used to perform set operations, and the Clunky Loop Generator

(CLooG) [46] for code generation. Explicit SIMD code generation for x86 CPU

architectures was implemented by Kong et al. [158].

Polly [53] applies polyhedral transformations at the LLVM IR level. Polly-ACC [54]

is an extension that targets both CPU and GPU devices, with support for Pthreads,

CUDA, and OpenCL backends. The ΣC language [159] applies the polyhedral model

to dataflow programs in the context of agent-oriented programming. These ap-

proaches differ from this work in that they do not provide a DSL, performance model,

or temporary storage optimizations, nor do they support non-affine transformations.

Polyhedral expression propagation (PEP) [160] defines a C-like input language

that for generating code including scalar or array data accesses, affine and arbitrary

expressions, and loop statements. Data dependences of each statement set are also

represented as sets. Data accesses within an expression are replaced with the ex-

pression that generated them, effectively introducing redundant computation. The

redundant computation for conditionals described in this work is similar to PEP,

however temporary storage reductions provided are not supported.

TIRAMISU [6] is a polyhedral compiler with a four-level IR, including an algo-

rithmic expression layer, a computation scheduling layer, a data management layer,

and a communication layer. The polyhedral model is supported using ISL and code

is lowered to the Halide-IR. Code generation supports OpenMP, CUDA, and MPI

backends. However, neither a performance model nor autotuning are provided to

automate transformations, rather they are manually specified by the programmer

using the provided eDSL.
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7.4.1 Non-affine Transformations

Non-affine polyhedral transformations can be divided into two groups, those that

support uninterpreted functions, and those that rely on predicates. The Omega

library [48] included uninterpreted function support, and was later expanded in

Omega+ [11]. Non-affine transformations were implemented in the CHiLL compiler

framework by Venkat et al. [29]. These were extended to sparse inspector/executor

applications with AST transformations such as make-dense and compact-and-pad [39],

and wavefront parallelization for sparse matrix factorization [26].

The sparse polyhedral framework [8,161] introduced the IEGenLib library for spec-

ifying the composition of non-affine polyhedral expressions, including uninterpreted

functions for inspector/executor applications with indirect memory accesses. Data

transformations were specified with run-time reorderings, and inspectors were defined

in terms of inspector-dataflow graphs (IDGs), similar to the polyhedral+dataflow

graphs described here.

The polyhedral model can also support non-affine transformations via exit and

control predicates [103]. Early loop exits are implemented with exit predicates and

irregular control flow with control predicates. These enable the expression of while

loops and non-affine if statements in the polyhedral model. AST generation for com-

plex execution was improved with schedule trees [43], and implemented in ISL [52].

These techniques were applied to loops with dynamic data-dependent bounds [30].

7.4.2 Tensor Compilers

TensorFlow [156] is a dataflow based programming model for machine learning

that includes the accelerated linear algebra compiler (XLA). The Tensor Algebra
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Compiler [105] (TACO) allows computations to be defined with a set notation and

compiled into optimized code. Tensor Comprehensions [162] (TC) is a DSL for tensor

computations lowers Halide-IR [4] to a polyhedral representation, provides a JIT

autotuning framework with code caching, and supports data layout optimizations.

The TC code generator includes CPU and GPU backends.

The iterator trees described here are similar in purpose to schedule trees [43] in

ISL, or iteration graphs in the tensor algebra compiler (TACO) [105]. TACO was

extended in [163] to support additional matrix and tensor formats, similar to the

inspector transformations defined in this work. The temporary workspaces used in

the CPD benchmark in Chapter 6 are similar in purpose to TACO workspaces [164].

TACO does not incorporate the polyhedral model, nor does the specification language

support loop-carried dependences.

7.4.3 Visualization Tools

Polyhedral transformations were applied to the LabVIEW graphical dataflow

language by the PolyGLoT tool [165]. Other tools for visualizing computations

within the polyhedral framework include Clint [166], later extended in [167], and

the R-Stream auto-parallelizing compiler [168]. CFGExplorer [169] is a tool to help

developers understand application level control flow. These visualization tools differ

from the work described here in that data spaces are not treated as first class entities

that are distinct from the iteration spaces.

7.4.4 Memory Optimizations

Memory optimizations in the polyhedral model were implemented in the Alpha

functional language [170]. Array privatization [171] is a technique for enhancing
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parallelism by privatizing variables per thread by applying dataflow analysis both

inter- and intraprocedurally. Array contraction [19] optimizes code by scalarizing

array variables inside a loop, saving memory by removing temporary arrays and

increasing data locality.

Communication avoiding optimizations reduce the movement of data within a

memory hierarchy by rescheduling statements or overlapping computation with com-

munication between nodes. Other communication avoiding optimizations include loop

fusion, overlapped tiling, and wavefront parallelization to decrease memory traffic.

Communication avoiding optimizations have been studied by Demmel et al. [172,173]

This work incorporates similar techniques into a unifiied compiler intermediate rep-

resentation with an integrated peformance model, but does not yet provide support

for distributed applications.

7.5 Library Based Approaches

High performance, manually tuned libraries are developed for a specific target

application, language, or architecture. These include BLAS, LAPACK, or Eigen,

for dense linear algebra, and PETSc [174], Overture [175], or Chombo [100] for

PDE solvers. Hand-tuned libraries are typically architecture specific and can lack

portability. Autotuning libraries include ATLAS for linear algebra, OSKI [104] for

sparse computations, and FFTW for fast Fourier transforms. SPLATT [31] is a sparse

tensor library that introduced the compressed sparse fiber format, and performs high

performance tensor decomposition.

Programming models such as Sequoia [176, 177] and Legion [178] allow explicit

programming of the memory hierarchy. Legion describes data layouts, dependences,
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and locality with logical regions. The model exposes two primary abstractions, a

region encapsulates a collection of data structures or objects, and a task defines a

function that accesses those regions. Each region can be partitioned into disjoint

or overlapping subregions. Interactions between regions and tasks are defined by

privileges (e.g., read-only, read-write, reduce) and coherence (e.g., exclusive, atomic).

The relationships are used to derive parallelism at compile time, or concurrency at

runtime. Each logical region has one or more physical instances, as data can be

replicated to increase parallelism. The scheduler applies a work-stealing technique

similar to the Cilk runtime system [152]. The Regent programming language [179] is

designed to exploit the logical regions of Legion. This work differs from the Legion

approach in that it performs transformations at compile time rather than in a library

at run time.

7.5.1 Adaptive Mesh Refinement

Block-structured adaptive mesh refinement (SAMR) is a computational technique

for solving large-scale hyperbolic, parabolic, or elliptic PDE sets, computing different

regions of the problem domain with different spatial resolutions, maintaining the

blocks in some logically organized hierarchy [107].

BoxLib [180] is an AMR framework for implementing multigrid PDE solvers in

many physics applications. The initial version employed a hybrid MPI/OpenMP

parallelization approach, with OpenMP threads assigned to loops over individual grid

cells. BoxLib covers a sizable code base, and manually tiling existing code is both error

prone and labor intensive. Perilla [181] is a runtime system that reads the metadata

to provide a task-driven, asynchronous parallelism to BoxLib and TiDA [182].
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The Chombo library [106] consists of a set of C++ classes designed to support

SAMR and is part of the BoxLib toolkit [180]. The Proto library is an extension of

this work, providing performance portability by supporting CPU and GPU backends.

AMREx [183] is another SAMR framework in C++, designed for PDEs with complex

boundary conditions with support for heterogenous architectures.

TiDA is a multicore programming model based on tiling with NUMA-awareness [182],

targeting geometric multigrid applications. Many runtime systems assume uniform

distance between cores, an assumption that is neither portable nor scalable. TiDA

replaces the data abstraction used by the original source code. The TiDA library

probes the hardware at runtime with the hwloc tool [184]. TiDA is coupled with

MPI for transferring data between nodes, but shared memory multithreading must

be implemented by the programmer.

This work is complementary to these libraries in that it can be used as an inter-

mediate representation for structed grid applications. However, it differs in that it

applies static transformations at compile time, rather than with a run time library.

7.6 Performance Modeling

Performance data can be provided to the programmer or compiler to inform opti-

mization decisions, and narrow the potentially vast search space. Performance mod-

eling and benchmarking tools provide analytical techniques to improve performance

by estimating the benefits of particular optimizations on specific target architectures.

Performance models must consider several hardware parameters for accuracy, such

as register pressure, the number of caches and sizes, the cache coherency model, SIMD

vector pipeline length, NUMA distances, and prefetchers. Software parameters must
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be considered as well, like compiler flags, optimization stages, and tiling strategies.

This section is not an exhaustive treatment of performance modeling, but is intended

to motivate the role which modeling plays in compiler optimizations.

Many decisions must be made while compiling source code to a target architecture,

including execution schedule, data layout, parallelization strategy, and vectorization.

Efforts to develop practical performance models to inform these decisions include

Roofline [185], the execution-cache-memory (ECM) model [186], and polyhedral per-

formance modeling [187]. The Roofline model was extended to model energy effi-

ciency [188]. The Empirical Roofline model Toolkit (ERT) [189] is a practical tool

for generating roofline models.

LIKWID [118] provides an API and a set of command line utilities for modeling

performance on multicore x86 architectures, making use of hardware performance

counters. LIKWID, along with Intel SDE and VTune, is one of the tools used n this

work to verify the estimates produced by the performance model.

The performance model generated by the PDFG-IR is similar to Roofline in that

it includes FLOPs memory bandwidth to compute an estimate of arithmetic intensity.

Though the accuracy of the model was initally evaluated using experimental data, it

is not produced empirically, nor does it access hardware performance counters.

7.7 Autotuning

Autotuning compilers attempt to find the best performing implementation by

searching an optimization decision space. A programmer defines the search space

of potential optimizations for each implementation, and the autotuner explores that

space to determine the best performing code variant. This can make the optimization
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process more efficient and portable, but also incurs additional challenges. These

include representing the configurable tuning parameters in the search space, constrain-

ing the space size, and handling tradeoffs between multiple objectives. Autotuners are

limited by the need to execute numerous code variants on the target architecture each

time the code is updated, and a potentially vast search space to traverse. Limiting

the search space requires assumptions to be made, such as favoring vectorization over

storage reductions. Other disadvantages are lengthy compile times and the need to

benchmark the code on numerous architectures.

Projects that implement autotuning include PolyMage [130], and PetaBricks [133].

Halide initially included an autotuner based on a genetic algorithm [4], and was later

integrated with OpenTuner [139]. CHiLL has also been integrated with OpenTuner

and applied to geometric multigrid (GMG) applications [138]. SPIRAL [190] is an

autotuning code generator for digital signal processing (DSP) applications. Kamil

et al. present an autotuning framework tailored to stencil computations [191]. Park

et al. combine predictive modeling with a polyhedral compiler [192]. ISAAC is an

autotuner for compute-bound linear algebra kernels that applies predictive modeling

with regression [193]. Autotuning has also been applied to reduce energy consumption

using dynamic voltage scaling [194].

OpenTuner [139] is a general software framework for developing extensible, domain-

specific autotuners. OpenTuner uses ensembles to combine multiple search tech-

niques. These can be built-in or user-defined, and are executed in parallel. A greedy

heuristic selects well performing techniques and allocates more tests to them. Less

favorable variants will receive fewer tests, until disabled altogether. Collaboration

between ensembles is enabled by storing results in a common database .

Autotuning is not directly supported by this work, however the dataflow graph
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variants that are generated from an algorithmic specification could be used as in-

puts to an autotuning framework. Optimization decisions are either user guided or 

informed by the internal performance model.

7.8 Summary

The programming language, compiler, and library-based techniques described in 

this chapter are summarized in Table 7.1. The table columns indicate the technology 

type, e.g., DSL, compiler, or library, the application domain, the targeted general 

purpose programming language, and whether the polyhedral model and/or irregular 

applications are supported.

Table 7.1: Summary of related programming language, compiler, and library-based 

technologies for algorithmic representation and optimization.

Technology Type Domain Language Polyhedral Irregular
Halide DSL Image Proc. C++
PolyMage DSL Stencils Python X
TIRAMISU DSL Regular C++ X X
SDFG / DaCe DSL/IR All Python X
TACO DSL Sparse C++ X
PetaBricks DSL Regular C++
AlphaZ Scripted Regular C++ X
CHiLL Scripted All C/C++ X X
DFGR IR Regular C++ X
LIFT IR Regular OpenCL
HPVM IR All LLVM X
Polly Compiler Regular LLVM X
PENCIL Compiler Regular C X
Legion Library Regular C++
TiDA Library AMR C++/Fortran
SPLATT Library Tensors C/C++ X
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CHAPTER 8

CONCLUSIONS AND FUTURE WORK

This chapter summarizes and restates the contributions of this dissertation, then

discusses potential directions for future research.

8.1 Compiler IR for Loop and Data Transformations

A compiler intermediate representation has been developed that combines macro-

dataflow graphs with the polyhedral model. Transformations can be applied to both

affine and non-affine iteration and data spaces. Execution schedules can be modified

to enable further optimizations. Reuse distance and liveness analyses allow memory

allocation to be reduced. Data access mappings are automatically generated for the

reduced spaces The IR can be targeted to multiple hardware architectures for per-

formance portability. The IR was evaluated with the MiniFluxDiv CFD benchmark,

and outperformed implementations in DSLs such as Halide and PolyMage.

8.2 Domain Specific Language

A corresponding domain specific language has been developed to express com-

putations at a high-level, decoupling the algorithms from the execution schedules,

data spaces, and underlying target architectures. The language is designed to ap-

proximate the mathematical expressions understood by domain experts. The IR
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is constructed from the language specifications. Either component of the inspec-

tor/executor paradigm can be expressed. This approach was competitive with other

compiler frameworks, including CHiLL and TACO, and with hand tuned libraries

such as OSKI and SPLATT.

8.3 Integration with Existing Application

The polyhedral+dataflow graph IR was successfully integrated with Proto, an

eDSL and library for structured grid algorithms such as those found in adaptive mesh

refinement applications. The transformations provided by the IR, combined with the

internal performance model it generates, enable performance improvements of up

to 3X on CPU, and 2.5X on GPU target architectures. This work demonstrated

the ability of the IR to improve the performance of existing applications, or those

implemented with different programming abstractions.

8.4 Algorithms with Sparse Structures

The polyhedral+dataflow language was used to implement two numerical solver

algorithms, conjugate gradient for sparse matrices, and canonical polyadic decomposi-

tion for sparse tensors. This work highlights the language’s ability to express complete

algorithms, including methods to specify inspectors and executors for multiple sparse

data formats for each algorithm. The generated inspectors are composable, and the

executors can be exchanged to select the most performant variant for each input

matrix or tensor. The CG performance results were competitive with the Eigen

library, but the CPD implementation was outperformed by the hand-tuned SPLATT

tensor library.
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8.5 Contributions

1. Development of the polyhedral+dataflow graph intermediate representation (PDFG-

IR) that expresses execution schedules, dataflow, memory interactions, and

program statements in a manner that expands the set of automated transforma-

tions available to optimizing compilers. The polyhedral model is combined with

macro-dataflow graphs to explicitly represent data requirements, including data

type, domain, and size. The graphs encapsulate code with execution schedules

and data mappings for both persistent and temporary storage spaces.

2. Definition and implementation of compiler transformations to modify the ex-

ecution schedules and storage mappings of the specified computation. These

operations include statement rescheduling, producer-consumer and read-reduce

loop fusion, and other loop transformations, such as unrolling, splitting, and

tiling. Storage reductions are determined using reuse distance and reachability

analyses. A memory allocation algorithm based on liveness analysis [7] is

described that allocates sufficient space for only those data that are live at

each point during a computation.

3. Extension of the IR to support irregular applications using the inspector/ex-

ecutor approach [8]. The inspector-executor method is applied when code or

data transformations require run time support, including run time dependence

analysis or data transformations. Both inspectors and executor components can

be represented and optimized, by transforming both data and iteration spaces.

Non-affine, data dependent loop bounds are represented by uninterpreted func-

tions [9] and converted into explicit represetations at run time.
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4. Development of an embedded domain specific language to construct the IR.

Numerical algorithms are expressed in C++ using a combination of iterators,

functions, constraints, spaces, and executable statements. An iteration space

is composed of an iterator set and their corresponding boundary constraints.

Data spaces are derived from access functions in the statements. A computation

consists of an iteration space, execution schedule, and statement list. The

PDFG-IR is generated from the eDSL specifications.

5. Generation of an internal performance model for each graph variant. Many

different graph variants can be generated from an initial graph specification

by applying the supported transformations. A performance model is generated

for each variant that include estimates of floating point operations (FLOPs),

memory throughput, and arithmetic intensity. The model can be used to reason

about the performance of a given variant on a target architecture.

8.6 Future Directions

The specification language could be expanded to enable applications in other

scientific domains, such as graph algorithms for analytics, string matching for bioin-

formatics, or machine learning primitives for deep learning. Recursive algorithms

could be supported by introducing data spaces to simulate the run time stack. The

language could also benefit from enhanced interoperability with other languages, such

as Python bindings for Jupyter notebooks. Deriviation of PDFG-IR specifications

from legacy applications could be improved, for example by extracting information

from the Clang AST [195]. The PDFG-IR could be integrated with other developing

multi-level compiler frameworks such as MLIR [196] or TVM [197].
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Additional target backends could be implemented, for example LLVM IR [55], or

SPIR-V for OpenCL [198]. Support could also be added for more diverse hardware

architectures such as FPGAs. This work could also be expanded to generate code for

distributed applications such as MPI [199], or GASNet [200].

The performance model could be augmented with additional parameters to de-

scribe the target architecture, such as multi-level cache hierarchies, or the number

of SIMD lanes. This would help guide optimizations, emphasizing loop fusion and

data reduction for CPUs, or loop overhead and control flow reduction for GPUs. The

performance model could be improved by coupling it with an autotuning framework

such as OpenTuner [139], by generating the code for each legal graph variant, and

executing it on the target platform.

The visual elements of the dataflow graphs could be further developed to provide

an interactive tool for domain scientists and performance engineers. The feedback

from the graphs would allow the experts to reason about the performance of their

applications.

This research demonstrates that a robust, expressive compiler intermediate rep-

resentation that decouples algorithmic specification from code optimization with an

emphasis on temporary storage reduction can generate fast and efficient code for

multiple target architectures. The IR capabilities are enabled by execution sched-

ule transformations using polyhedral compilation techniques, coupled with dataflow

optimizations, and an internal performance model.
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[123] Gaël Guennebaud, Benôıt Jacob, et al. Eigen v3. http://eigen.tuxfamily.org,
2010.

[124] Moritz Kreutzer, Georg Hager, Gerhard Wellein, Holger Fehske, and Alan R
Bishop. A unified sparse matrix data format for efficient general sparse matrix-
vector multiplication on modern processors with wide simd units. SIAM Journal
on Scientific Computing, 36(5):C401–C423, 2014.

[125] Edward Anderson, Zhaojun Bai, Jack Dongarra, Anne Greenbaum, Alan
McKenney, Jeremy Du Croz, Sven Hammarling, James Demmel, C Bischof, and
Danny Sorensen. Lapack: A portable linear algebra library for high-performance



158

computers. In Proceedings of the 1990 ACM/IEEE conference on Supercomput-
ing, pages 2–11. IEEE Computer Society Press, 1990.

[126] Leonardo Dagum and Ramesh Menon. Openmp: an industry standard api for
shared-memory programming. IEEE computational science and engineering,
5(1):46–55, 1998.

[127] Albert Hartono, Boyana Norris, and Ponnuswamy Sadayappan. Annotation-
based empirical performance tuning using orio. In 2009 IEEE International
Symposium on Parallel & Distributed Processing, pages 1–11. IEEE, 2009.

[128] Alina Sbirlea, Louis-Noel Pouchet, and Vivek Sarkar. In Data-Flow Execution
Models for Extreme Scale Computing (DFM), 2014 Fourth Workshop on, pages
38–45, 3 Park Ave, New York, NY, USA, 2014. IEEE, IEEE Press.

[129] Jonathan Ragan-Kelley, Andrew Adams, Sylvain Paris, Marc Levoy, Saman
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