

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

Structured Parallelism Discovery with
Hybrid Static-Dynamic Analysis and

Evaluation Techniques

Christos Vasiladiotis

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy

Institute of Computing Systems Architecture

School of Informatics

University of Edinburgh

2022

Abstract
Parallel computer architectures have dominated the computing landscape for the

past two decades; a trend that is only expected to continue and intensify, with increas-

ing specialization and heterogeneity. This creates huge pressure across the software

stack to produce programming languages, libraries, frameworks and tools which will

efficiently exploit the capabilities of parallel computers, not only for new software, but

also revitalizing existing sequential code. Automatic parallelization, despite decades of

research, has had limited success in transforming sequential software to take advantage

of efficient parallel execution. This thesis investigates three approaches that use com-

mutativity analysis as the enabler for parallelization. This has the potential to overcome

limitations of traditional techniques.

We introduce the concept of liveness-based commutativity for sequential loops.

We examine the use of a practical analysis utilizing liveness-based commutativity in a

symbolic execution framework. Symbolic execution represents input values as groups

of constraints, consequently deriving the output as a function of the input and enabling

the identification of further program properties. We employ this feature to develop an

analysis and discern commutativity properties between loop iterations. We study the

application of this approach on loops taken from real-world programs in the OLDEN

and NAS Parallel Benchmark (NPB) suites, and identify its limitations and related

overheads.

Informed by these findings, we develop Dynamic Commutativity Analysis (DCA), a

new technique that leverages profiling information from program execution with specific

input sets. Using profiling information, we track liveness information and detect loop

commutativity by examining the code’s live-out values. We evaluate DCA against almost

1400 loops of the NPB suite, discovering 86% of them as parallelizable. Comparing

our results against dependence-based methods, we match the detection efficacy of two

dynamic and outperform three static approaches, respectively. Additionally, DCA is

able to automatically detect parallelism in loops which iterate over Pointer-Linked

Data Structures (PLDSs), taken from wide range of benchmarks used in the literature,

where all other techniques we considered failed. Parallelizing the discovered loops, our

methodology achieves an average speedup of 3.6× across NPB (and up to 55×) and up

to 36.9× for the PLDS-based loops on a 72-core host. We also demonstrate that our

methodology, despite relying on specific input values for profiling each program, is able

to correctly identify parallelism that is valid for all potential input sets.

iii

Lastly, we develop a methodology to utilize liveness-based commutativity, as imple-

mented in DCA, to detect latent loop parallelism in the shape of patterns. Our approach

applies a series of transformations which subsequently enable multiple applications

of DCA over the generated multi-loop code section and match its loop commutativity

outcomes against the expected criteria for each pattern. Applying our methodology on

sets of sequential loops, we are able to identify well-known parallel patterns (i.e., maps,

reduction and scans). This extends the scope of parallelism detection to loops, such

as those performing scan operations, which cannot be determined as parallelizable by

simply evaluating liveness-based commutativity conditions on their original form.

iv

Lay Summary
The use of computers and software, the instructions that tell a computer what calcu-

lations to perform over an input set, is found everywhere nowadays. Computers are

powered by billions of tiny components called transistors contained in their processing

units (microprocessors). For decades, the leaps in execution speed enjoyed by software

were largely due to the advances in the miniaturization transistors. However, this growth

trend is ending due to physical limitations in the manufacturing process. In response,

manufacturers have been creating units with multiple processors (multicore), able to

perform computations independently of each other and in parallel.

However, for software to take full advantage of the available parallelism, extensive

changes to its instructions are typically needed. These modification steps, termed

parallelization, are challenging and error-prone when performed manually. Hence,

considering also the multitude of software programs and different computer types, it is

important to use tools to automate and assist in these steps. One such tool is a compiler,

a program that translates software from a set of instructions written and understood by

humans, to one that can be executed by a computer. This thesis focuses on developing

and examining compiler techniques to assist in the parallelization of software.

Compilers analyze software based on specific models to deduce which parts of a

program can be executed in parallel. In this thesis, we examine and develop techniques

based on a novel commutativity model that aims to handle certain types of programs

that traditionally used analyses are unable to. In our commutativity model, we rearrange

the order of operations in a program section and if the outcome is the same as in the

original order, then we declare it as potentially parallelizable. Initially, we implement

and study a new technique based on our model that represents program inputs as sets of

inputs and executes the candidate programs with them to deduce aggregated program

properties. We note the challenges and limitations associated with this approach and

take the lessons learned forward to develop another novel technique. This technique

relies on actual program inputs for execution and analysis, thus allowing us to make

very precise claims about program properties for parallelization, despite being specific

to these inputs. Nonetheless, our experiments show that these results are not only

profitable for parallelization, but also safe to generalize for all legal, potential program

inputs. Lastly, we examine the use of our commutativity model towards identifying not

only parallelism, but frequently occurring, higher-level patterns of it.

v

Declaration
I declare that this thesis was composed by myself, that the work contained herein is my

own except where explicitly stated otherwise in the text, and that this work has not been

submitted for any other degree or professional qualification except as specified.

(Christos Vasiladiotis)

vi

Acknowledgements
First, I would like to thank my supervisor, Björn Franke, for his tireless support

and invaluable guidance through the duration of my studies. I am especially grateful

to Björn for his collaborative spirit, practical optimism and sincere advice, which,

with the benefit of hindsight, I continue to appreciate more and more over the years.

I also want to express my gratitude to the rest of my supervisors; Murray Cole, for

his energetic involvement and diligent feedback; Roberto Lozano Castañeda, for his

attentive mentorship and steady encouragement; and Michael O’Boyle, for his crucial

advice and pragmatic foresight. I am indebted to Tobias J.K.E. von Koch, Stanislav

Manilov and Georgios Tournavitis who laid the foundations for my research. I am

also grateful to Kuba Kaszyk, for being that rare, serendipitous combination of a great

colleague, collaborator and friend.

I wish to thank all my colleagues who have made the Institute for Computing

Systems Architecture, the Compilers and Architecture Design group, and the Pervasive

Parallelism CDT program, great places to conduct research in. I want to thank all the

people whom I have shared an office with in the Informatics Forum, particularly Rui Li,

for making it an interesting and fun space to study. Special thanks to all the people who

have provided feedback during the writing of this thesis, especially Murray Cole, for

enduring the anguish of reading multiple drafts.

I could not have done this without the support of all my friends who have tolerated

my social elusiveness and unreliability, allowing me to appear and, more often, disappear

as I please. Special thanks to my long-time friends from Samos and previous work lives,

Yiannis, Vasilis and Tasos, for being there whenever I felt like picking up the phone;

the friends I made in Edinburgh, Michael, Kate, Andreas, Andrea, Dave and Thomas,

for their support and providing the necessary diversion with wee Scottish adventures;

and my late friend, Roussis, for his continuous urges to embrace change.

I thank my family for their unwavering love and support.

Last but not least, I am grateful to my wife, Ellyse, for her patience, support and

love through this journey.

vii

Στον πατέρα μου.

To my father.

viii

Publications
The following refereed conference papers (in reverse chronological order) have been

published during the course of this PhD. These form the basis for parts of this thesis as

indicated.

• Tobias J. K. E. von Koch, Stanislav Manilov, Christos Vasiladiotis, Murray Cole,

and Björn Franke

“Towards a Compiler Analysis for Parallel Algorithmic Skeletons”

in Proceedings of the 27th International Conference on Compiler Construction

(CC 2018), Vienna, Austria, 2018

— This publication forms the basis for parts of Chapter 4.

• Stanislav Manilov, Christos Vasiladiotis, and Björn Franke

“Generalized Profile-Guided Iterator Recognition”

in Proceedings of the 27th International Conference on Compiler Construction

(CC 2018), Vienna, Austria, 2018

— This publication forms the basis for Section 3.2.8.

• Aleksandr Maramzin, Christos Vasiladiotis, Roberto Castañeda Lozano, Murray

Cole, and Björn Franke

““It Looks Like You’re Writing a Parallel Loop”: A Machine Learning Based

Parallelization Assistant”

in Proceedings of the 6th ACM SIGPLAN International Workshop on AI-Inspired

and Empirical Methods for Software Engineering on Parallel Computing Systems

(AI-SEPS 2019), Athens, Greece, 2019

• Nishil Talati, Kyle May, Armand Behroozi, Yichen Yang, Kuba Kaszyk, Christos
Vasiladiotis, Tarunesh Verma, Lu Li, Brandon Nguyen, Jiawen Sun, John Magnus

Morton, Agreen Ahmadi, Todd Austin, Michael O’Boyle, Scott Mahlke, Trevor

Mudge, Ronald Dreslinski

“Prodigy: Improving the Memory Latency of Data-Indirect Irregular Workloads

Using Hardware-Software Co-Design’

in Proceedings of the 27th IEEE International Symposium on High-Performance

Computer Architecture, (HPCA 2021), Virtual, Republic of Korea, 2021

ix

• Christos Vasiladiotis, Roberto Castañeda Lozano, Murray Cole, and Björn

Franke

“Loop Parallelization using Dynamic Commutativity Analysis”

in Proceedings of the 2021 IEEE/ACM International Symposium on Code Gener-

ation and Optimization (CGO 2021), Virtual, Republic of Korea, 2021

— This publication forms the basis for Chapter 5.

x

Table of Contents

1 Introduction 1
1.1 The Problem: Porting Software to Parallel Hardware 3

1.2 The Ideal Solution: Automatic Parallelization 5

1.3 The Challenges of Automatic Parallelization 8

1.4 Goals and Contributions . 10

1.5 Thesis Overview . 11

1.6 Summary . 12

2 Related Work 13
2.1 Introduction . 13

2.2 Dependence Analysis . 13

2.2.1 Static Dependence . 16

2.2.2 Dynamic Dependence . 16

2.2.3 Limit Studies on Dependence 17

2.3 Commutativity Analysis . 18

2.3.1 Separability-Based Commutativity 18

2.3.2 Output-Based Commutativity 21

2.4 Automatic Parallelization . 23

2.4.1 Overview of Approaches . 23

2.4.2 Parallelization in the Presence of Dependences 24

2.4.3 Speculative Parallelization 26

2.4.4 Analyzing Pointer-Linked Data Structures 28

2.4.5 Parallelization with User Interaction 29

2.4.6 Parallelization Frameworks 30

2.5 Symbolic Execution . 33

xi

2.6 Algorithmic Skeletons . 35

2.7 Conclusion . 37

3 Infrastructure and Related Tools 39
3.1 Introduction . 39

3.2 Software Tools . 39

3.2.1 LLVM Compiler Infrastructure 39

3.2.2 INTEL ICC Compiler . 41

3.2.3 LLVM/POLLY Extension 42

3.2.4 IDIOMS Technique . 42

3.2.5 DISCOPOP Technique . 43

3.2.6 DEPENDENCE PROFILING Technique 44

3.2.7 Parallelization with OPENMP 44

3.2.8 Generalized Iterator Recognition Analysis 46

3.2.9 KLEE Symbolic Execution Tool 48

3.3 Benchmarks . 49

3.3.1 NAS Parallel Benchmark (NPB) Suite 49

3.3.2 Applications using Pointer-Linked Data Structures 51

3.4 Hardware Setup Configurations . 53

3.5 Summary . 54

4 Liveness-based Commutativity Analysis using Symbolic Execution 55
4.1 Introduction . 56

4.2 Liveness-Based Commutativity . 57

4.3 Liveness-Based Loop Commutativity 59

4.4 Motivating Examples . 61

4.5 Operation of Symbolic Execution 63

4.6 Symbolic Crosschecking of Commutativity 66

4.7 Symbolic Crosschecking Technique for Liveness-based Commutativity 67

4.7.1 Approach . 67

4.7.2 Dealing with Limited Code Coverage 69

4.7.3 Symbolic Sizes for Memory Allocations 71

4.7.4 Handling Floating-point Operations 72

4.8 Case Studies . 73

4.8.1 Pointer-based Loops . 73

4.8.2 Array-based Loops . 79

xii

4.9 Summary and Conclusions . 82

5 Loop Parallelization using Dynamic Commutativity Analysis 83
5.1 Introduction . 83

5.2 Motivating Examples . 85

5.3 Revisiting Liveness-based Loop Commutativity Analysis 87

5.3.1 Applicability of Parallelization 88

5.4 Dynamic Commutativity Analysis 88

5.4.1 Static Stage . 90

5.4.2 Dynamic Stage . 93

5.4.3 Parallelization . 94

5.4.4 Safety . 94

5.4.5 Challenges and Limitations 95

5.5 Empirical Evaluation . 95

5.5.1 Experimental Setup . 96

5.5.2 Performance against Dynamic Techniques 98

5.5.3 Performance against Static Techniques 101

5.5.4 Aspects of Detection Profitability and Precision 104

5.5.5 Scope of Parallelization Beyond Loops 105

5.6 Summary and Conclusions . 106

6 Detecting Data-Parallel Patterns with Liveness-based Commutativity 109
6.1 Motivation . 110

6.2 Methodology . 113

6.2.1 Overview . 113

6.2.2 Syntactic Transformations 118

6.3 Case Studies . 121

6.3.1 Scan Pattern . 121

6.3.2 Reduction Pattern . 123

6.3.3 Map Pattern . 126

6.3.4 Discriminating between Patterns 127

6.4 Summary and Conclusions . 130

7 Conclusions 133
7.1 Introduction . 133

7.2 Contributions . 134

xiii

7.3 Critical Review and Future Directions 136

7.3.1 Liveness-Based Commutativity Analyses 136

7.3.2 Pattern Detection with Liveness-based Commutativity 139

7.3.3 User Interface Improvements 141

Bibliography 143

xiv

Chapter 1
Introduction

Today, the majority of computers are parallel and heterogeneous. Computers comprise

multiple Central Processing Units (CPUs), Graphics Processing Units (GPUs) and other

specialized processing components. The trend towards increasing use of parallelism

is not new, but computer architects were, for a time, able to hide it from the software

stack [187]. This allowed software to readily reap the benefits of new generations of

processors while retaining, for the most part, the same computation model with minimal

changes [12]. However, since the mid-2000s this hardware and software contract, that

largely insulated one from changes in the other, has broken down [240]. Architects

resorted to replacing single-core processors with many processors (i.e., multicore) in

a chip in order to sustain the ever-increasing performance, thus declaring the future

for the industry was in parallel computing. Therefore, putting enormous pressure on

software systems, existing and new, since programs need to be explicitly modified (i.e.,

parallelized) to fully take advantage of this newly exposed parallelism.

For several decades, from the mid-1960s till the early 2000s, two main factors in

hardware design allowed processor manufacturers to achieve exponential performance

growth [187]. The first reason is concerned with miniaturization, popularly termed

as “Moore’s Law” [174] (Figure 1.1) and is the roughly biannual trend of doubling

the number of transistors in Integrated Circuits (ICs) of the same area [165]. This

has been coupled with advancements in circuit design (e.g., increased clock rates) and

microarchitecture to provide even higher performance than that predicted by Moore’s

Law. These microarchitectural techniques aim at discovering and exploiting Instruction-

Level Parallelism (ILP) (e.g., pipelining, prefetching, Out-of-Order (OoO) execution,

etc.) unbeknownst to the software running on them and its developers. This extraction

of latent parallelism from the instruction stream of a program allowed software to

1

2 1. Introduction

remain practically unchanged while gaining in performance at similar rates.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

 1970 1980 1990 2000 2010 2020

Year

48 Years of Microprocessor Trend Data

Number of

Logical Cores

Frequency (MHz)

Single-Thread

Performance

(SpecINT x 10
3
)

Transistors

(thousands)

Typical Power

(Watts)

Figure 1.1: 48 years of microprocessor trend data. Transistor counts grow exponen-
tially following Moore’s Law, while single-thread performance, frequency and power
consumption largely flatten after 2005. The number of cores continue to increase
since it is one of the main ways of delivering more transistors. The slight increase in
single-thread performance is due to gains from advancements in compilers. (Illustration
source data [215]).

However, chip manufacturing is rapidly reaching the limits of miniaturization and

exhausting the effect of these microarchitectural advancements. The single biggest

factor has been the inability of chip designers to deal with power delivery and heat

dissipation, as each new chip generation required exponentially more power to support

the aforementioned features. This “power wall” constraint has led the industry to seek

new means to deliver regular performance improvements and initially paved the way

for the current wide adoption of Chip Multi-Processors (CMPs) and heterogeneous

computer systems [1, 35, 113, 64, 187, 88]. The ensuing technology switch has had

multiple ramifications on software and its development, which are still percolating

through the software stack, and are expected to continue and intensify [226, 225]. The

most disruptive of these consequences for software are [225]:

i) Devising new programming models to facilitate and advance the use of the new

and ever-evolving parallel architecture, using abstractions that hide their low-level

implementation details.

1.1. The Problem: Porting Software to Parallel Hardware 3

ii) Developing new algorithmic approaches in a co-design process, taking into

account the potential performance and impact of various choices.

iii) Lessen the burden of transitioning, refactoring and redesigning software for the

new architectures.

Thus, due to the lack of an immediate solution that would enable the necessary

year-on-year technological scaling that we have grown accustomed to, the path forward

leads to architectural specialization in specific application domains and extreme hetero-

geneity [226, 243, 186, 230]. This is already a reality in a wide range of hardware, from

specialized Machine Learning (ML) accelerators deployed in data centers, like Google’s

Tensor Processing Unit (TPU) [132], to mobile devices like Apple’s 11th generation

iPhone System-on-Chip (SoC) which contains over 40 discrete accelerators [228]. The

unifying trend of all these diverse processing units is that they are all predominantly

parallel systems.

1.1 The Problem: Porting Software to Parallel Hard-
ware

The tectonic shift in processor design has caused an equally dramatic reactionary jolt

in the software ecosystem, after a relatively long period where software architectures

remained largely unchanged and oblivious to the changes of the underlying hardware.

One of the primary goals of software and associated tools is to abstract and ease the use

of the ongoing feature changes of parallel computing units, that are only expected to

increase, by developers. In response, academia and industry have feverishly focused

on exploring and producing techniques, tools and environments that will alleviate the

task of developing software on new parallel hardware [171, 63, 173, 103, 99, 225, 243,

62, 9]. These efforts have already produced a plethora of flavors in parallel algorithms,

programming models, languages, compilers and runtime systems, and have provided a

few promising, albeit very narrow, glimpses of a way forward. Thus far, a panacea for

all problems and challenges of the evolving parallel landscape has not been found.

A major hurdle is the amount of legacy software that is still operating today in a

wide range of fields [213, 284, 245, 170]. For example, a Reuters report states that

220 billion lines of COBOL code are active today which power 80% of all in-person

transactions with banking systems [55]. For instance, in the spring of 2020, the US

4 1. Introduction

state of New Jersey made a public appeal for volunteer programmers who know COBOL

to help in the maintenance of their 40-year-old systems, a situation that is also shared

among other US states [67]. The definition of what constitutes legacy software varies

widely, from reasons relative to its development process (i.e., lack of unit tests), to

the phase of its life cycle (i.e., “once delivered, it’s legacy”). In the broadest sense,

legacy software describes a system that is still in use, but some aspects of which are

now outdated. This “bit rot” [29] can occur due to several factors, such as: i) lack of

maintenance, ii) insufficient testing or hard to test codebases, iii) antiquated tools and

processes, iv) lack of resources (human or otherwise), v) lack of communication and

documentation. It is noteworthy that legacy software does not strictly have to do with

the underlying codebase alone, hence the associated high costs with the upkeep and

migration of it.

In relation to the continuously emerging parallel hardware technologies, legacy soft-

ware poses serious migration challenges to them in order to keep gaining in performance.

First, the majority of legacy software has been written with no consideration or notion

of parallel execution. Most programming languages, with various degrees of abstraction,

have closely followed the traditional von Neumann computational model. In this model,

a computer consists of main processing unit, executing instructions sequentially while

moving data from and to a main memory as needed. For a programmer, this perspective

has been maintained for decades, and combined with the speedups gained by moving to

each successive processor generation, it has amplified and sustained the resistance to

modernize and adopt newer paradigms.

The strong ties with a sequential execution model exacerbate the challenges of

revamping existing software in order to accommodate the trend of Domain-Specific

Architectures (DSAs). The use of specialized processors is not new and it was more

common place in the early days of computing, such as in supercomputers like the Cray

architecture [216]. However, it was phased out and became progressively financially

nonviable as a result of the advances of general purpose processors. Since advances in

general single-core processors have nowadays slowed, this trend has started to reverse

itself, initially by re-purposing GPUs and continuing with more specialized accelerators.

Higher efficiency is achieved by tailoring these architectures to the characteristics of

the domain, utilizing specialized operations, parallelism, tailored memory hierarchies

and targeted overhead reductions [99, 62].

In terms of software, there is a price to be paid when adopting such an approach since

most existing applications necessitate modifications to attain high speedups on DSAs.

1.2. The Ideal Solution: Automatic Parallelization 5

The need to rewrite and refactor programs puts extra pressure on programmers and

tools in order to revitalize and keep them up to date with new parallel architectures [69].

This applies not only to legacy sequential code, but also legacy parallel code, which

exhibits tight coupling as a result of development by a combination of hand-tuning,

exploiting specific hardware features and dated parallel models (e.g., Message Passing

Interface (MPI)) [164]. Thus, simply porting already parallel code might result in

poor performance and modifications might be required to properly exploit new parallel

systems, even as extensive as revisiting the underlying algorithm used by the application.

In addition to the low-level interaction with parallel hardware, parallel programming is

hard because of:

i) the required work partitioning,

ii) resource access synchronization, and

iii) resource partitioning and replication.

In summary, the move of computer architecture towards processors that utilize

parallelism as the main means to increase performance creates disruptions and increas-

ingly higher tensions on the whole software stack, up to the user applications level.

The amount of legacy software in combination with the difficulties and challenges of

porting it on new architectures inhibit the full utilization of the parallel features on these

devices.

1.2 The Ideal Solution: Automatic Parallelization

The field of compilers, since the 1950s, has been concerned with the translation of

software to machine code and systematizing an increasingly wide range of tasks in

support of this [103]. Since then a vast body of knowledge has been produced in

more focused areas such as program analysis and transformation, code generation and

runtime systems, interconnecting with other disciplines like computer architecture,

software engineering and security. Hence, the task of converting sequential software

to its equivalent parallel version falls naturally under the domain of compilers and

it is typically termed as automatic parallelization [173]. However, in practice, very

few compilation systems have managed to employ a fully automatic parallelization

procedure, with most systems using feedback to complement various stages of their

operation [69, 193, 9]. Those systems, that have enjoyed some, success are often

6 1. Introduction

limited to a narrow application domain [7]. We discuss the challenges of automatic

parallelization in the next section. This section provides a brief summary of this research

area describing its various characteristics at a high level. We present a more detailed

view of related work in Chapter 2.

The aim of automatic parallelization is to rid the programmer of the burden of

understanding and extracting parallelism from an application. Similarly to a manual,

human-led analysis, when implemented in a compiler system, automatic parallelization

occurs in two stages:

i) a detection phase, which is responsible for identifying any available parallelism,

and

ii) an extraction and mapping phase of this parallelism on the target architecture.

During the detection phase, code is analyzed in order to identify candidate regions

that could be executed in parallel. The code can be denoted as binary machine in-

structions, a high-level programming language or anything in between. During this

phase, the behavior and properties of the code are analyzed and represented using a

model (e.g., unimodular analysis [272, 22]), which is used to discover parallelization

opportunities. The size of the targeted code sections can range from a single instruction,

a loop nest, a series of basic blocks or a function, and it determines the granularity of

the extracted parallel tasks in the next phase. Typically, task granularity is indicative

and proportional to the amount of work which is performed. However, there are other

factors that affect task behavior during execution such as control and data flow, access

to common resources and communication overheads.

During the extraction and mapping phase, the identified code regions are subject

to possible transformations as described by the used representation model (e.g., uni-

modular [272, 22] or polyhedral [82]). The primary goal of this phase is to generate

parallel code that is semantically equivalent to the original sequential form. The safety

and legality of the transformations can be [69, 280]:

i) guaranteed by the model itself at varying degrees,

ii) verified using a supplementary method (e.g., revert to prior state or version if a

violation is detected),

iii) guaranteed by the user (e.g., with source-level annotations), or

iv) a combination of all the previous.

1.2. The Ideal Solution: Automatic Parallelization 7

Parallelism
Discovery

Sequential
Program

Parallelism
Extraction &

Mapping

Parallel
Program

(a)

Static
Analysis &

Transformation

Sequential
Program

Dynamic Parallelism
Runtime

Parallel
Program

Parallelism
Extraction &

Mapping

Transformed
Sequential
Program

User
Feedback

Profiling
Information

Executing
Process

Parallelism
Discovery

(b)

Figure 1.2: A generic bird’s eye view of the stages of a parallelizing compilation system
(top) and a high-level architectural outline of an actual system described in Chapter 5
(bottom).

Moreover, the mapping part of this phase has to ensure that the underlying parallel

architecture features are exploited profitably. This relies on many factors, including the

amount of available parallelism and the way it is exploited, other compiler optimizations,

runtime support, data layout, workload balancing and so on. The mapping process

has both a spatial and temporal component, which combined with the aforementioned

factors make it a challenging task to solve. For example, the problem of deriving

an optimal schedule for parallel jobs on multicore computer has been shown to be

NP-hard [265, 126]. For a long time, research in this area focused on finding analytical

cost models that incorporate knowledge from both hardware (e.g., the size of L2

cache) and software (e.g., analyzing loop array accesses) [7]. These methods have also

evolved to incorporate heuristics and information derived during the parallel execution

of a program, and more recently, utilize profiling information and machine learning

techniques to select a profitable mapping [248].

Automatic parallelization techniques are not necessarily limited to the compiler, and

they can be implemented at various stages of the software lifetime and layers of the

hardware/software stack. It can occur statically, prior to a program’s execution, using its

8 1. Introduction

source code (or any textual representation) [236], or dynamically during execution [280,

205, 248]. This distinction is not absolute and precise, since parallelization methods, in

order to bridge the semantic information gap [103], can use information from previous

program application runs, such as in a profile-guided approach or the training phase

of a model based on machine learning [248]. User knowledge can also be exploited

by providing source-level annotations prior to any parallelization attempt or at certain

stages of the process by confirming or rejecting the proposed modifications. Lastly,

in cases where knowledge relies on the input and the code exhibits a highly dynamic-

dependent behavior, speculative execution can push the decision of parallelization to the

moment when it might be needed during execution, while preserving correct behavior

through checks and the ability to revert to a prior correct program state. An example of

a system that combines both profiling information and user input is the one presented

in [248] and our study in Chapter 5. A typical workflow of such a system is depicted

in Figure 1.2; the top figure shows the high-level view of the main stages consisting of

i) finding latent parallelism in a sequential program, and ii) exploiting it by determining

how it should be executed. In Figure 1.2(b), the workflow of an actual parallelizing

compiler used in Chapter 5 is presented, where that aforementioned stages are shown

with more detail as they relate to the specific technique. Parallelizing techniques are

generally classified based on their time of operation during a program’s lifetime. For

example, a completely static approach would use no information from prior program

executions, whereas a fully dynamic one would perform all stages during execution.

1.3 The Challenges of Automatic Parallelization

As we briefly mentioned in the previous section, it might seem that automatic paralleliza-

tion has been able to successfully tackle the difficult task of porting sequential software

to parallel hardware. However, compilers for automatic parallelization have largely

failed to deliver on their promise to seamlessly transition sequential legacy software

into the multicore era [193, 9]. Despite intensive research, the problem of discovering

and exploiting parallelism hidden in sequential code is far from solved [10], except for

limited success in a few narrow domains (e.g., regular array-based computations) [7].

The success of a compiler technique relies on meeting several criteria [9], such as:

i) Effectiveness: select and exploit the best parallel version out of a number of

possible choices, automating decisions and minimizing reliance on the user for

1.3. The Challenges of Automatic Parallelization 9

these.

ii) Stability: resilience to small program changes and perceiving the compiler as an

opaque component.

iii) Portability: operate on a range of software inputs and hardware, avoiding embed-

ded assumptions and enduring the appearance of new parallel architectures with

small changes.

iv) Scalability: the parallel code should perform well on machines with a wide range

of parallel capabilities.

v) Simplicity: simple techniques benefit compilation performance, ease of develop-

ment and maintenance of the compiler itself.

With these criteria in mind, we can summarize the main sources for the lack of

widespread success of automatic parallelization to the following reasons:

i) Semantic information gap: compilers have had success in lowering abstractions

from higher level languages, whereas they have been mainly ineffective moving in

the other direction. A lot of the previous work in automatic parallelization relies

on static program information extracted at compile time [173, 7]. The analyses

and transformations built on this information are undecidable [153], which in

turn leads to models that have to use conservative approximations, thus missing

parallelization opportunities. Using information from program execution runs

can shorten the gap, increase their effectiveness and simplify the implementation

of such models.

ii) Parallelism structure and granularity: typically, the majority of parallelization

efforts has been confined to regular loop nests which exhibit limited control flow

and simple iteration patterns over dense arrays, with the mapping phase mostly

focusing on discovering profitable memory hierarchy access configurations.

iii) Disjoint compiler and developer practices for parallelization: the ‘modus operandi’

of programmers trying to discern parallelizable sections in a sequential applica-

tion, depends upon understanding of the algorithms, the data structures and how

their use can be partitioned and shared across processing elements. On the other

hand, most program approximations and models used in parallelizing compilers

aim at preserving a specific aspect of the code (e.g., the order of the read and

10 1. Introduction

write operations that occur on the same memory locations) and get entangled in

implementation details that are either inessential parts of the algorithm or do not

affect the final result of the program.

1.4 Goals and Contributions

The objective of this thesis is to overcome the aforementioned challenges and address

the reasons for some of the limitations identified in Section 1.3. We make a series of

closely related contributions by examining the use and efficacy of an analysis model

that is based on commutativity of program operations for automatic parallelization.

Intuitively, two code regions are commutative when permuting their order of execu-

tion does not change their outcome. Various commutativity analyses aim to discern the

conditions under which the commutativity of code regions can be identified and utilized

for parallelization. We present our novel concept of liveness-based commutativity

in Chapter 4. We discuss our previous notions of commutativity in Chapter 2.

The goal of our study is to examine the potency of this model, combining static and

dynamic program information at varying degrees. We begin with a brief description of

our model and investigate its use via approximate program behavior using symbolic

values. This informs our subsequent study and development of a novel analysis for

discovering parallelism that incorporates profiling information from program executions

using concrete input values. We apply this to fully fledged applications from the High

Performance Computing (HPC) and scientific domains which exhibit complex control

flow, aliasing and implement irregular algorithms over complex dynamic data structures.

Finally, we extend the application of our model to encompass the detection high-level

parallel algorithmic patterns.

The main original contributions of this thesis are as follows:

i) We investigate the use of a novel liveness-based commutativity analysis when

implemented in a symbolic execution context and provide an identification of the

overheads and limitations associated with it (Chapter 4).

ii) We introduce DCA, a technique utilizing liveness, for testing the commutativity

and hence potential parallelizability of arbitrarily complex loops, the program

regions with the highest parallelization potential, including traversals of Pointer-

Linked Data Structures (Chapter 5).

1.5. Thesis Overview 11

iii) We evaluate the efficacy of DCA in detecting parallelizable loops from a wide

range of benchmarks, outperforming a combination of state-of-the-art dependence-

based approaches, demonstrating that it is able to discover loops with significant

parallelization profitability and high precision (Chapter 5).

iv) We study the application of our commutativity analysis in the identification of

parallel patterns in sequential code, explore its limitations and suggest potential

solutions to overcome where applicable (Chapter 6).

1.5 Thesis Overview

This thesis is organized as follows:

Chapter 2 presents related work. We discuss prior work in the field of automatic

parallelization, spanning static and dynamic techniques, along with brief descriptions

of the main enabling models, dependence analysis and the polyhedral framework. We

also provide a brief overview of prior commutativity analyses and symbolic execution

techniques. The chapter ends with a presentation of parallel algorithmic skeletons and

patterns as used in parallelization discovery.

Chapter 3 gives a brief account of the infrastructure used in this work. We describe

the frameworks (e.g., LLVM, POLLY, etc.), toolchains and analyses utilized, along with

various benchmarks, inputs and setup configurations.

Chapter 4 investigates the use of a novel commutativity analysis for parallelization

which uses the liveness results of a code section when performed in a symbolic execution

context. We develop an approach for applying this analysis using symbolic execution

and use it to evaluate and uncover the challenges and limitations of such a system on a

set of real-world codes. Parts of this chapter are based on work published in [266].

Chapter 5 examines the use of profiling information along with our notion of liveness-

based commutativity. We develop a novel hybrid analysis, DCA, that combines both

static and dynamic information for the discovery of profitable parallelism in sequential

legacy code. DCA focuses on loops as the program regions that typically capture most

of the program execution time. It has been evaluated on over 1200 loops across 10

HPC benchmarks and a wide range of irregular pointer-based loops. DCA handles, in

uniform manner, both loops that are in the scope of traditional dependence approaches

(such as affine loops) and loops that are beyond the capabilities of traditional methods,

such as PLDS traversals, which are usually dealt with ad hoc or ignored altogether.

12 1. Introduction

We also explore aspects that impact profile-driven parallelizing techniques such as the

profitability and safety of parallelization. This chapter is based on work published

in [263].

Chapter 6 revisits our liveness-based commutativity analysis and investigates its

application to the challenge of finding instances of potential parallel patterns. We

demonstrate how this analysis could be performed to identify various parallel skeletons,

classifying loops that have already been identified by DCA, establish its limitations and

explore ways to overcome them by applying a series of transformations.

Chapter 7 summarizes the work presented and its main contributions, providing a

critical analysis and suggesting directions for potential future work.

1.6 Summary

This chapter has provided an overview of the thesis. First, we gave a short introduction

to the challenges in the modern multicore era of computing that place automatic

parallelization at the forefront of our attempts to efficiently take advantage of the

growing number of parallel architectures. Then, we moved on to highlight the main

challenges and reasons that have led automatic parallelization to fall short of the initial

expectations. Finally, we enumerated the goals and contributions of this work, aiming to

explore the effectiveness of identifying commutativity of operations in various execution

contexts and over different parallel code patterns. The following chapter presents prior

research in areas relevant to the work presented in this thesis.

Chapter 2
Related Work

2.1 Introduction

This chapter presents a critical review of prior research which is most relevant to the

work in this thesis. Our aim is to compare, juxtapose and motivate the approaches

we present in this thesis with existing work in automatic parallelization. Research in

the field dates back to the 1960s [27], hence there is an extensive body of literature.

Accordingly, we restrict our discussion by presenting the main enabling technologies

and highlighting the main trends in the area.

We start in Sections 2.2 and 2.3 by discussing the main lines of research in depen-

dence and commutativity analysis, which most frequently constitute the basis for the

detection and exploitation of parallelism. Then, in Section 2.4 we review automatic

parallelization with an emphasis on hybrid static and dynamic systems. These relate

more closely to our work presented in Chapters 4 and 5. Section 2.5 offers a brief

discussion on symbolic execution that is relevant to our hybrid approach in Chapter 4.

We conclude with a discussion on parallel algorithmic skeletons related to the study

in Chapter 6.

2.2 Dependence Analysis

Traditionally, the vast majority of parallelizing techniques and compilers use dependence

analysis in order to build a model for the relationships between code sections in a

program [173]. In the most general terms, dependence analysis is concerned with

the exploration and description of the program in terms of its memory accesses (i.e.,

locations that it reads from or writes to) during execution. This broad definition can be

13

14 2. Related Work

1 t1 = . . .;

2 t2 = . . .;

3 t3 = . . .;

4 sum = 0;

5 . . .

6 sum = t1 + t2;

7 sum += t3; // i.e., sum = sum + t3

(a)

1 2

6

4

7

3

RAW

WAW

(b)

Figure 2.1: A simple, straight-line (i.e., no branching) program (left) and its corre-
sponding Data Dependence Graph (DDG) (right). Each node’s number corresponds
to the statement at that source line number.

easily conflated with alias analysis, which is often an enabling technique for dependence

analysis. Alias analysis attempts to determine which program constructs reference the

same memory objects during execution. Dependence analysis goes beyond this goal,

trying to discern execution-order constraints between them using more information,

including, but not limited to, loop nesting levels, relations between loop iterators,

relations between indexed array accesses, direction of data flow and awareness of control

flow. Regarding parallelization, the goal is to identify the independence of statements

in order to be able to reorder them and execute them in parallel (see Section 2.4.6.1).

The basic definition of dependence states that [7]:

Definition 2.2.1 (Data Dependence). There is a data dependence from statement S1 to

statement S2 (i.e., statement S2 depends on statement S1) iff:

1. both statements access the same memory location and at least one of the stores

into it, and

2. there is a feasible runtime execution path from S1 to S2.

Definition 2.2.1 allows classification of dependences based on various criteria,

2.2. Dependence Analysis 15

assignment of properties to them and enables their graph-based representation where

each node is a program statement and an edge between them denotes a dependence.

The load-store classification takes into account the memory operations of the depen-

dence statements [7]:

i) True, Flow or Read-After-Write (RAW) dependence: The first statement stores

into a memory location that is later read by the second statement.

ii) Anti- or Write-After-Read (WAR) dependence: The first statement reads from a

memory location into which the second statement later stores. Essentially, this

type of dependence is the reverse of a RAW dependence and prevents a program

transformation to introduce a new RAW dependence when such a relation did not

exist in the original program.

iii) Output or Write-After-Write (WAW) dependence: Both statements write into the

same memory location.

Dependence is meant to be used as a tool for determining the safety of program

transformations. Safety, in this context, means that the original and transformed pro-

grams are equivalent or, in other words, the two versions of the program do the same

thing. Thus, for dependence analysis, any reordering transformation that preserves

every dependence relation in a program, then preserves the meaning of that program [7].

Consider the small program in Figure 2.1(a) and its corresponding dependence

graph in Figure 2.1(b). According to dependence, executing the first four assignment

statements can occur in any order prior to line 6. Moreover, the assignment of t3 can

be executed anywhere prior to line 7. Note that we can remove WAW dependences

by variable renaming [108]. On the other hand, the RAW dependence between lines 6

and 7 persists and prevents any reordering between these two statements. However, the

view of this program is still more restrictive than is necessary when the actual contents

of the sum variable are considered. Even if we reorder the execution of the last two

lines of this program, the result (i.e., the value of sum) will be the same.

Therefore, while dependence analysis presents a more relaxed partial order of

a program’s statements, enabling specific statement rearrangements, there are cases

where this view is overly limiting. We present such cases in the motivating examples

of Chapters 4 and 5, arguing that dependence analysis is inherently unable to capture

certain possible reorderings in the context of loop constructs (e.g., reduction operations).

16 2. Related Work

2.2.1 Static Dependence

Similarly to automatic parallelization techniques described later in this chapter, de-

pendence analyses schemes can also be categorized as either static or dynamic. Early

research from the 1970s on dependence analysis focused on the detection of the absence

of data dependences between program statements and the formalization of these tests

(e.g., the GCD test [21]) solely at compile-time. Into the 1990s, researchers have contin-

ued to evolve and refine these techniques, incorporating ideas from other domains such

as integer programming (e.g., the OMEGA test [198]), aiming at increasing detection

precision and speed. Moreover, during the same period, work has been conducted

to expand the use of dependence in optimizations [249, 148, 4, 276], to organize the

dependence information in graphs and combine it with control flow [6, 86]. This has

enabled further transformations with regard to the memory hierarchy, especially for

loop iteration space manipulation, such as tiling and loop interchange [7]. The wider

adoption of programming languages such as C and its derivatives, has introduced alias-

ing challenges in disambiguating memory accesses using pointers and dynamic memory

allocation, which have percolated to dependence analysis [112], resulting in recent work

on improving alias analysis [101, 238].

2.2.2 Dynamic Dependence

Later studies make use of knowledge extracted from a program’s behavior during

execution to determine exactly which instructions are dependent on each other for

specific input sets in dynamic dependence analyses [155, 267, 14, 81, 285, 160, 248,

144, 143, 127, 262, 219, 282, 283, 277, 141]. This is because statically proving the

absence of dependences is generally undecidable [209], similarly to other challenges in

static analyses [153, 118, 51, 163]. In the rest of this section we discuss work that is

most pertinent to dynamic dependence analysis and its limits. Section 2.4 reviews the

main research directions in automatic parallelization that are enabled by dynamic data

dependence.

One of the first techniques to use runtime information in supplementing dependence

was [155], which tracked the frequency and location of loop-carried data dependences.

From early on, it was obvious that the amount of data produced and the execution

overheads of profiling were huge. [155] attempted to alleviate both these issues by

tracking a subset of program events and using this partial profile when needed to

generate a full profile, by executing again only the portion of the program associated

2.2. Dependence Analysis 17

with the subset trace [154].

ALCHEMIST [285] is a profiler able to analyze binaries and determine the distances

of loop intra-iteration, inter-iteration and inter-invocation dependences. SHADOW PRO-

FILING [175] is a technique that invokes a shadow process periodically in combination

with Copy-on-Write (CoW) to create a detailed sampled profile of the target application.

SUPERPIN [268] uses a similar approach based on forking separate non-overlapping

program regions used as instrumentation targets during program execution. SD3 [144]

implements a scalable approach that compresses the trace representation memory ac-

cesses that exhibit stride patterns and calculates dependence relations directly in this

compressed format. More recently, [158] uses signatures, a concept borrowed from

transactional memory systems, to record memory accesses and treats dependence simi-

larly to conflict detection in such systems. With the advent of multicores, some of these

techniques also apply parallelization to the profiling task itself to speed up the whole

process [175, 268, 144, 158].

2.2.3 Limit Studies on Dependence

Studies that focus and explore the effects and efficacy of dependence analysis are

presented in [76, 179, 180]. These are useful since they allow us to understand the

limitations of dependence-based approaches, and further motivate and support our work

in Chapters 4 and 5.

[76] develops a profiling-based analysis that captures data and control dependences

using program executions from 100 randomly chosen input data sets. The goal of

the study is to discover the effect that dynamically collected dependence information

has when compared against static approaches with respect to the ability to exploit

loop-level parallelism. In essence, it seeks to understand the patterns and impact of

may-dependences (i.e., dependences that may or may not manifest themselves during

execution) in parallelization. One of the main findings of this variability analysis, most

relevant to this thesis, is that although a single loop-carried dependence is sufficient to

prevent parallelization, it appears that these parallelization-inhibiting dependences are

stable across executions with different inputs. Moreover, it confirmed that profile-based

approaches are truly more effective than static alternatives in parallelism detection,

although safety concerns must be considered.

A further interesting result regarding the limits of dependence analysis is presented

in [179, 180]. Here, starting with a state-of-the-art dependence analysis, the generated

18 2. Related Work

DDG is manipulated to generate an oracle DDG. More specifically, using knowledge

from profile-guided runs of the dependence analysis, may-dependences that never mani-

fest during execution, are removed, thus producing the oracle DDG. Subsequently, the

oracle DDG is used for parallelization, thus determining an upper-bound on the potential

speedups for purely static parallelization. When compared with the parallelization using

only compile-time information, it was demonstrated that no additional speedups were

obtained, despite the removal of dependence edges. Thus, dependence analysis, even

when informed with perfect profiling information, is inherently unable to identify any

further latent parallelism.

2.3 Commutativity Analysis

In recent years, research has demonstrated that commutativity is a key enabler of

efficient concurrent execution in diverse contexts, ranging from transactional memory

to software scalability [54]. In this work, we are interested in the use of commutativity

as the basis of compiler analyses for program parallelization. A number of different

notions of commutativity for parallelization can be found in the literature [211, 3, 266].

[27] was one of the earliest works that examined the effect of the commutativity of

operations for parallelization.

2.3.1 Separability-Based Commutativity

A pioneering notion of commutativity and an associated analysis have been first intro-

duced in [211]. The underlying idea of separability-based commutativity is simple:

it views computation as composed of separable operations on objects, where each

operation has a receiver object and parameters that are passed by value to the operation.

If all operations required to perform a given computation commute, the compiler can

generate parallel code. Operations commute when they generate the same final result

regardless of the order in which they execute.

Commutativity analysis focuses on separable operations, where operations can

be decomposed into an object section and an invocation section. The object section

performs all accesses to the receiver. The invocation section invokes other operations

and does not access the receiver. The motivation for separability is that the analysis

requires that each operation’s accesses to the receiver execute atomically with respect

to the operations that it invokes. Separability ensures that the actual computation obeys

2.3. Commutativity Analysis 19

1 class node {

2 bool marked;

3 int value, sum;

4 node *left, *right;

5
6
7
8
9

10 void visit(int p) {

11 // object section
12 sum += p;

13
14
15 if(!marked) {

16 // invocation section
17 if(left) left->visit(value);

18 if(right) right->visit(value);

19 }

20
21
22 }

23 };

(a)

1 class node {

2 bool marked;

3 int value, sum;

4 node *left, *right;

5
6 struct statistics {

7 int visited;

8 } stats;

9
10 int visit(int p) {

11 // interleaved sections
12
13
14
15 if(!marked) {

16 stats.visited++;

17 if(left) left->visit(value);

18 if(right) right->visit(value);

19 }

20 sum += p;

21 return sum;

22 }

23 };

(b)

Figure 2.2: Separability-based commutativity [211] examples for a class definition
representing a binary tree data structure that conforms to its required computation
model (left) and one that does not (right). The lines that violate the requirements of
this model are highlighted (right).

this constraint.

To verify that method invocations commute, the compiler represents and reasons

about the new values of the receiver’s instance variables and the multiset of operations

directly invoked when the two methods execute. The compiler represents the new values

and multisets of invoked methods using symbolic expressions.

Unfortunately, this approach quickly reaches its limits for real-world applications. In

short, applications are required to be coded as “clean” object-based programs. Yet, sev-

20 2. Related Work

1 node *n;

2 int p1, p2;

3 . . .

4 // commutativity under different execution orders
5 // order 1 // order 2
6 n->visit(p1); n->visit(p2);

7 n->visit(p2); n->visit(p1);

Figure 2.3: The invocations of the visit method for the code in Figure 2.2(a) are
commutative, according to separability-based commutativity [211], since different
execution orders produce the same state.

eral further restrictions apply which exclude: i) virtual methods, ii) operator or method

overloading, iii) multiple inheritance and templates, iv) typedef, union, struct and

enum types, v) global variables other than class types, vi) pointers to members or static

members, vii) casts between base types such as int, float and double that are used

to represent numbers, viii) default arguments or methods with variable numbers of

arguments, and ix) accesses to instance variables of nested objects. It is not entirely

clear which of these restrictions are fundamental to the approach and which stem from

the prototype implementation. Separability-based commutativity has been evaluated on

highly sanitized, sequential implementations derived from parallel benchmarks.

For instance, Figure 2.2(a) defines a simple class representing the nodes in a binary

tree data structure which conforms to the model of computation required by separability-

based commutativity. One of the strictest requirements is to maintain the data accesses

and other method invocations in each method separate. This corresponds to the object

section and invocation section starting at lines 11 and 16, respectively. Moreover,

method calls in the invocation section should not alter the state of the current object

(i.e., calling a setter method). The order of the visit method invocations does not

affect the resulting internal state as shown in Figure 2.3. However, introducing changes,

such as those highlighted in Figure 2.2(b), commonly found in real-world codebases,

results in the inability of this approach to analyze and discern commutativity conditions.

First, the interleaving of modifying accesses (i.e., write/store operations) to its internal

state are interleaved with method invocations (lines 16 to 20). Next, the visit method

returns a value (line 21) which is explicitly not tolerated by this model and requires use

of reference variables (e.g., pointers) to pass information to callers. Lastly, the access

to the inner object is also not allowed (line 16). Converting this functionality to be

2.3. Commutativity Analysis 21

compliant with the computation model of separability-based commutativity analysis,

would require to: i) refactor the struct statistics to a standalone class, ii) add

access methods (i.e., setter and getter methods) to it, and iii) either pass it by reference

to each invocation of visit or make it a data member of the node class.

Later work has focused on verifying commutativity conditions for linked data

structures [142]. For a number of data structure implementations, including ListSet,

HashSet, AssociationList, HashTable, and ArrayList, it can verify commuting

operations that produce semantically equivalent (but not necessarily identical) data

structure states in different execution orders.

More recently, [23, 146] have moved towards the automatic generation of conditions

which verify commutativity properties.

SERVOIS [23] presents an automatic iterative algorithm that successively refines

provided pre-conditions and post-conditions to generate commutativity conditions,

assuming that these descriptions describe precisely all effects of the pair of operations

under examination.

[146] describes techniques that aim to synthesize commutativity conditions automat-

ically from data structure implementations. This is achieved by providing an abstraction

that captures the effects of two methods depending on their execution order and an

algorithm that reduces the burden of proving commutativity to a reachability problem,

thus allowing the use of off-the-shelf program analyses.

2.3.2 Output-Based Commutativity

In [3] an alternative notion of commutativity (and analysis) is proposed for indi-

vidual functions, which considers the output of a function at its point of use. In order

to automatically detect commutative functions, a candidate function is symbolically

executed in two different orders to create an abstract representation of the result of the

two execution orders. This symbolic result is then used as input to all functions that

could potentially read the results, and those functions are symbolically executed. If the

outputs of these reader functions are identical, then the initial function is commutative.

Here, commutativity is a property of a single function w.r.t. multiple invocations

of the same function. It is not the memory state created by the execution of this

function, but in fact the state generated by all the potential consumers of the values

generated by the function that determines the commutativity property. For example,

consider Figure 2.4, the insert function might place numerous items in a hash set.

22 2. Related Work

1 // definition
2 class hash_set {

3 . . .

4 public:

5 void insert(int x) {. . .}

6 bool is_member(int x) {. . .}

7 void remove(int x) {. . .}

8 };

9
10 // declaration
11 hash_set hs;

12
13 if(comm_test) {

14 // input set 1
15 hs.insert(2);

16 hs.insert(6);

17 } else {

18 // input set 2
19 hs.insert(6);

20 hs.insert(2);

21 }

22
23 hs.is_member(2) // true

(a)

2 6

(b)

6 2

(c)

Figure 2.4: Output-based commutativity [3] example (based on [3]) where a hash set
data structure contains a commutative insert method (left). Invoking insert with
two diff input sets at lines 15 and 19 (left) creates two different memory layouts (top
right and bottom right, respectively). However, the function is still commutative since
subsequent invocations of is_member (e.g., at line 23) or remove will produce the
same results for both memory states.

Reversing the order of multiple invocations to this function creates a list under the same

hash bucket containing the same items, but in a different order (i.e., different memory

layout as depicted in Figures 2.4(b) and 2.4(c)). If a subsequent consumer of this list

produces the same result, irrespective of the order in which items are stored in the

list, then the insert function is considered commutative. For the code in Figure 2.4,

the membership call at line 23 will be true for either insertion order (i.e., input sets at

lines 15 and 19).

2.4. Automatic Parallelization 23

While this notion of commutativity has strength in handling e.g., unordered container

data structures and their use in the same spirit as [142], it is limited to the repeated,

possibly commutative invocation of a single function.

2.4 Automatic Parallelization

2.4.1 Overview of Approaches

The objective of automatic parallelization is to automate the task of transforming a

sequential application into an equivalent parallel version. Code analysis supporting

parallelization has a long history [152, 173, 197].

Initial efforts in the field were concentrated on discovering and exploiting DOALL

parallelism and some forms of DOACROSS [117]. These culminated in the develop-

ment of influential compiler frameworks such as PFC/PARAFRASE [5], POLARIS [32,

195] and SUIF [236]. Other outcomes in compilation technology were the formalization

of dependences (discussed earlier in this chapter) and frameworks that reason about a

loop’s iteration space (e.g., polyhedral model Section 2.4.6.2).

PFC/PARAFRASE was an early Fortran source-to-source compiler which pio-

neered the exploration and development of dependence-based parallelization (see Sec-

tion 2.4.6.1).

Later in the 1990s, the POLARIS compiler pushed these techniques further to target

actual real-world programs and not only isolated loop nests. Apart from data dependence

tests, it implemented privatization, induction variable elimination and symbolic analysis

for loop bounds. It also implemented data placement and parallel execution scheduling

to map the discovered parallelism to the target machine.

An important contemporary to POLARIS was SUIF, another dependence-based

parallelizing compiler that contained a larger set of interprocedural analyses in its

arsenal and employed them more systematically in order to tackle the parallelization of

larger and complicated loop nests across program scope.

More recent work in the static analysis field geared towards cyclic and pipelined

multithreading, such as DSWP and HELIX is presented in the next section and Chapter 3.

Another static analysis based on idiom recognition via constraints [96, 95], which we

compare to our evaluation of work in this thesis, is also discussed in Chapter 3.

Moving hand in hand with advancements in dependence analysis, research in paral-

lelization has also progressed to the use of execution-time information. Tracing and

24 2. Related Work

dynamic profiling have been used to capture application properties for subsequent

exploitation in benchmark characterization [74], collaborative runtime verification [33]

and dynamic program optimization [26]. We discussed in Section 2.2 how unsafe depen-

dence profiling has been used to overcome the limits of static dependence analysis [248,

160, 81]. Such approaches, including [14, 81, 285, 248, 144, 143, 127, 262, 219, 282,

283, 277], combine dependence profiling information with static dependence analyses

to gain additional information on may-dependences.

SAMBAMBA [237] combines a number of techniques in a dynamic framework for

automatic parallelization. The main component is a runtime system that performs

profiling, parallelism detection/extraction and Just in Time (JIT) recompilation. It

also applies multiversioning, containing several versions of the candidate parallel

sections, specialized to the current execution context. DISCOPOP [159, 160] is another

profile-driven dependence-based approach aiming at code regions of varying granularity.

DEPENDENCE PROFILING [248] uses profiling information to create a dynamic Program

Dependence Graph (PDG), combining control and data dependences, and uses this

representation to discover loop independence (or lack of it). More akin to our approach

presented in Chapter 5 is the DEPENDENCE PROFILING [248]. In our approach, we

extend this analysis for PLDS-based loops using a uniform iterator recognition analysis

(Section 3.2.8) and apply commutativity for determining parallelizability. We present

DEPENDENCE PROFILING and DISCOPOP in Chapter 3.

2.4.2 Parallelization in the Presence of Dependences

In this section we present research that tackles parallelization despite the presence of

loop-carried or other parallelization-inhibiting dependences. The underlying analysis of

these techniques can be dependence-based, commutativity-based or use a mix of both.

Pipeline-like parallelism from outer program loops has been exploited in PAR-

ALAX [261]. However, this approach relies on manually inserted code annotations to

mark up absence of dependencies or directly influence the result of alias analysis. The

parallel code generation is based on the DSWP technique [189].

ALTER [255] is a dynamic technique which exploits breakable dependences for

parallelization, extracting loop parallelism by reordering iterations or allowing stale

reads. ALTER relies on the user to dictate the parallelism policy (out of order or stale

read) and, partially, on a set of tests to infer potential annotations, and it has been

evaluated on hand-picked loops, some of which have been manually parallelized.

2.4. Automatic Parallelization 25

DSWP [189, 201] and HELIX [46] are both designed to derive parallel execution

schedules for loops with data dependences. Some variants rely on additional hardware

support for the fast communication of values and synchronization between threads,

typically outperforming their software-only counterparts.

DSWP is loop partitioning technique which schedules the computations that exhibit

loop-carried dependencies on the same core, thus avoiding the communication costs

of forwarding the dependent values from core to core as is the case for DOACROSS

parallelism. The candidate loops are presented to the compiler after being selected by

the user.

HELIX executes each candidate loop’s iterations in parallel. It utilizes a range of

analyses to identify potential loop-carried dependences and ensures that these parts

of the loop are executed sequentially, while minimizing the number and optimizing

the placement of synchronization points. Synchronization is achieved via the memory

system during runtime, thus HELIX uses helper threads that hide a lot of overhead

associated with memory.

[142] presents a technique to verify commutativity conditions, which are logical

formulae that characterize when operations on a linked data structure commute. Code

annotations for commutative functions are also proposed in parallelization frameworks

by [38], as well as in GALOIS [150] and PARALAX [261].

[196] presents a commutativity-based programming model called COMMSET (Com-

mutative Set) and its associated compiler technology. COMMSET supports pipeline and

data parallelism, but not task parallelism. Code annotations enable the programmer

to specify commutativity relations between groups of arbitrary structured code blocks.

Using this construct, serializing constraints that inhibit parallelization can be relaxed.

FRACTAL SYMBOLIC ANALYSIS uses a commute operation to verify correctness

of restructuring transforms, which have a user-provided, rule-based description in their

implementation [172]. The analysis applies these simplification rules recursively and

aims to prove that the generated simpler program is equivalent with the original program

before proceeding further.

DCA, our commutativity-based approach presented in Chapter 5, shares this no-

tion of iteration reordering and breakable dependences with ALTER, but instead of

programmer annotations we derive this information automatically. ALTER relies on a

weaker test-driven framework to infer likely annotations, and it has been evaluated on

hand-picked loops, some of which have been manually transformed for parallelization.

In contrast, we evaluate our technique across standard benchmarks and demonstrate

26 2. Related Work

parallelization using existing techniques. Lastly, while DSWP and HELIX focus on the

exploitation of parallelism, DCA complements them by identifying sources of profitable

parallelism. Our comparison with DSWP is mainly centered on PLDS-based loops.

2.4.3 Speculative Parallelization

We have already described how the inability to utilize and discern a program’s behavior

during execution has led researchers seek insight in dependences analysis and paral-

lelization using data from profiling runs. In the same vein, researchers have turned to

methods that attempt to predict the properties of a program’s execution and transform it

in anticipation of these assumptions, i.e., execute the program with speculation. Specu-

lative parallelization techniques optimistically execute potentially independent regions

of code in parallel [80, 280, 178]. As such, they circumvent the issues associated

with the precision of static dependence analysis and other input-dependent factors that

adversely affect static analysis. Moreover, having knowledge of the iteration space, they

can facilitate partial parallelization.

Briefly, speculative parallelization operates in two stages [280]:

i) compile-time: parallelization of the target program, assuming its sequential seman-

tics are preserved, and instrumentation with safety tests and recovery/propagation

code.

ii) execution-time: parallel execution of transformed code segments (Item i)), execu-

tion of rollback/propagation based on the results of the safety tests.

In the first stage, a speculative compiler must keep track of the memory access patterns

of the candidate code section for parallelization, generate precise test conditions capable

of detecting violations, and place them appropriately in the code text. A violation of

a safety check means that the assumed program semantics have not been maintained

during parallel execution, at which point any local changes kept by the offending thread

are discarded and a rollback operation takes place to ensure that execution resumes

from a valid state. Otherwise, if there are no conflicts, the thread-local modifications

are propagated and become visible to the other parallel-executing threads (i.e., the

changes are committed). The compile-time stage can also be enhanced with profiling

information from previous program executions [131, 180].

An early precursor of this line of work on parallelization was known as the inspec-

tor/executor model. In this model, the candidate loop was converted to two versions:

2.4. Automatic Parallelization 27

i) the inspector loop is a stripped down version of the original aiming to examine if

any accesses to shared data materialize dependences that would prevent parallelization.

ii) the executor loop will execute a parallelized version of the original, assuming that no

violations were detected.

The LRPD test [205] is one of the most influential examples of work in this area of

speculative parallelization, targeting DOALL loop parallelism. Each inspector loop

receives a chunk of the iteration space, keeping track of each memory access in auxiliary

data structures. At the end of this stage, inspector threads check each other’s access

trace to determine if a violation occurred. Earlier, in [287] implemented a multiphase

inspector/executor model for each chunk of iteration space, scheduling their parallel

using inter-chunk dependences, thus tackling partially parallelizable loops. The main

disadvantage of this precursor technique is that sufficient stripping of the inspector loop

might not be feasible, resulting in an overall slowdown when both stages are accounted

for.

Since then, research has moved on to explore hardware support, compiler extensions,

software behavior characterization and overheads reduction [80]. In terms of the

software elements that work on speculation has targeted, they can be classified as [137]:

i) control speculation for conditional statements, ii) data-dependence speculation, with

goals similar to [205] described earlier, and iii) data values (i.e., value prediction)

for predicting the result of instructions to avoid recomputation and reduce overheads

associated with misprediction.

The main overheads of speculative parallelization stem from the processing that

takes place during its execution. Therefore, a lot of work has focused on investigating

ways to reduce the costs of safety tests and state handling (i.e., discarding, committing

and reverting state) [73]. More recent studies [121] have further identified the limitations:

i) limited coverage, ii) load imbalances, iii) under-utilization of synchronization and

value prediction, and at a lesser degree, iv) data dependences.

[180] proposes three approaches (coarse-grained, fine-grained and judicious) of

taking advantage of loops when there are a few transient loop-carried dependences,

augment the HELIX compiler [46] with speculation.

[281] introduces a new data structure to reduce memory overheads by hashing

memory accesses. PRIVATEER [131] performs a LRPD-style parallelization, using pro-

filing information to selectively privatize data structures. This is achieved by observing

accesses and organizing them in heaps which are speculated to be independent, instead

of reasoning about them individually. Subsequent work on PERSPECTIVE [10] improves

28 2. Related Work

upon the overheads of PRIVATEER and also introduces a planning phase to select the

most profitable set of parallelization-enabling transformations. SPEC-DSWP [257] adds

speculation to the DSWP described earlier in this chapter, with the objective to increase

the stages in the loop pipeline by the assumed absence of dependences.

For PLDS-based programs, [244] extends an earlier approach to software-based

parallelization that separates the program states to speculative and non-speculative by

adding a mapping table to keep track of accesses between these sections.

[70] analyzes program behavior to assist in manual parallelization, by examining

manually annotated code regions as potential parallelization candidates, and running

both the sequential and speculatively parallelized version of the code. If a violation is

detected in the parallel version, the system uses the results of the sequential execution.

APOLLO [129, 41, 40] is polyhedral compiler/runtime system that uses speculation

to guide the parallelization of loop nests that are determined to be affine at runtime.

This line of work is also discussed in Section 2.4.6.2.

SAMBAMBA [237] (also presented in Section 2.4.1) uses speculative execution to

supplement its profiling-based analysis.

Our hybrid technique, described in Chapter 5, avoids the usual costs associated with

speculation during runtime, and even though user interaction might be required during

analysis, in practice, our technique offers high precision. We consider speculative

techniques orthogonal to the detection capabilities of our approach, which can be used

on top of it for further exploitation.

2.4.4 Analyzing Pointer-Linked Data Structures

In this section we give a brief overview of research in automatic parallelization for

programs that use extensively Pointer-Linked Data Structures (PLDSs).

[102] presents an approach that is based on programming language annotations to

exploit parallel execution of PLDSs.

Pioneering work by Laurie Hendren in the early 1990s has focused on parallelizing

programs with recursive data structures [107], analyzing pointer-linked data structures

using description of their properties [106], annotation of pointer based programs [115],

and programming language design supporting the analysis of PLDSs [116]. The

same research group also investigated the effect of improving the precision of shape

analysis [93] and alias analysis [94] as enablers for the parallelization of PLDSs. [114]

presents a novel technique to improve dependence testing on PLDSs whose nodes

2.4. Automatic Parallelization 29

exhibit some regularity using theorem proving. It attempts to prove properties that

should hold for all nodes of the data structures, from simple tree-like to complex

structures which contain cyclic dependences. It is worthwhile to note the direction

of research away from pointer analysis and towards a programming model where

programmers describe their intentions [116].

The next wave of research in the second half of the 1990s and early 2000s has fo-

cused on shape analysis [212, 25], which seeks to discover and verify (shape) properties

of linked, dynamically allocated data structures by means of static analysis.

More recently, [260] studied the performance of programs containing PLDSs on an

INTEL architecture and found that the observed degradation in execution times is due to

the irregularity of control flow that is more pronounced in such programs. However,

the study is limited to a single architecture and admits that there are other factors that

can have adverse effects on performance when dealing with PLDSs. Informed by these

findings, subsequent work [259] has investigated ways of optimizing the data layout of

PLDSs.

2.4.5 Parallelization with User Interaction

Parallelizing systems relying on user-provided feedback may require that input at

various stages [161]; from annotating code [261, 18, 41] to validating the proposed

transformations [288, 248]. In all cases the user is responsible for ensuring correctness

or providing such guarantees. Involving the programmer in different steps of the paral-

lelization process allows supplementing analyses and transformations with information

which is difficult to derive automatically. The potential for user involvement is vast,

hence we limit the discussion to outline research that has introduced ways of taking

advantage of user input and is more closely related to this thesis.

In the last few decades, a trend for systems focused on user-assisted parallelization

has been towards easing user reasoning and understanding with information associated

to source locations [53, 104], interactivity and step-wise refactoring [104, 123, 161, 69,

286], and various visualization approaches [271, 288].

PAT [235] operates on Fortran source and performs a preliminary dependence

analysis of candidate loops for parallelization. Then, it presents to the user a classi-

fication proposal for variables references in the loop (e.g., private, shared, etc.) and

dependence relations which can be accepted or rejected, modifying the dependence

graph appropriately.

30 2. Related Work

PIPS [122] is a source-to-source compiler that also targets Fortran loop nests

using interprocedural analysis. The user is able to specify and order analyses or

transformations, such as the selection of specific induction variable analysis.

The PARASCOPE EDITOR [139, 104] works in similar vein to the aforementioned

tools, building upon the PFC Fortran parallelizing compiler. It lets the programmer

change both the source and the underlying supporting data structures (e.g., dependence

graph). This two-way update capability results in a shorter “inspect-edit-update” cycle

in the manual parallelization process. The system also allows execution of the code

with part or all of the input set to provide another source of information to the user.

HPFIT [37] is a set of integrated tools that allows the user not only to annotate

source code, but also direct the mapping of parallelism and supply cost model values

(e.g., cost of communication) for the optimization of the parallel code generation.

SUIF EXPLORER[161] is also an interactive parallelization tool that adds more

sophisticated support from execution-time with extensive profiling, in combination with

program-slicing analysis in order to focus the programmer’s attention to long-running

loops and generate a dynamic dependence graph.

Our system in Chapter 5 adopts an approach that uses profiling information similar

to [248, 167], extending the potential parallelization candidates to PLDS-based loops,

for: i) identifying the hottest loops, ii) ignoring dependences that do not materialize,

and iii) comparing computation results between sequential and transformed executions.

2.4.6 Parallelization Frameworks

2.4.6.1 Dependence-based Parallelization

As mentioned in Section 2.2, dependence has been the underpinning analysis of paral-

lelizing compilers for decades, hence a lot of the developments in each field go hand in

hand (e.g., dependence direction and distance vectors). Moreover, the vast volume of

literature focuses on the parallelization of loops, since these account for the majority of

a program’s execution time. The main objective of parallelizing compilers is to identify

independence among loop iterations to facilitate reordering or be aware of dependences

to allow for locality and synchronization optimizations [274].

The main parallelization enabling transformations which either remove dependences

or arrange them in a manner that does not prohibit parallelization are privatization and

induction variable elimination [7]. Privatization of a scalar or an array aims to identify

and move these potentially shared variables to the private local storage of each parallel

2.4. Automatic Parallelization 31

running thread of execution, thus providing a distinct and separate instance of that

variable to each processing element [253, 205]. Induction variable elimination is able

to detect the variables that control the loop iterations from their read (e.g., in the

loop condition statement) and write (e.g., at the increment step) access patterns, thus

recognizing that this loop-carried dependence is not disallowing parallelization [2]. The

concept of iterator variable recognition has been recently expanded and generalized

in [166], presented in more detail in Section 3.2.8.

Based on dependence and the previously described fundamental transformations,

further and more extensive loop restructuring aims to expose and exploit fine-grained

and coarse-grained parallelism with a focus on its legality and profitability. In the

most general sense, the legality of each transformation, when all essential dependences

have been captured, is guaranteed when it preserves all dependence relations. Some

of the most important loop restructuring transformations [273, 274, 7, 275, 17] are:

i) statement reordering, ii) loop unswitching, iii) loop peeling, iv) loop unrolling, v) loop

fusion, vi) loop fission, vii) loop interchange, viii) loop reversal, ix) loop skewing and

x) loop tiling/blocking.

A lot of these transformations do not only work in isolation, but many operate

and are enabled in conjunction with others. However, since each loop restructuring

has its own set of rules and checks for legality and transformation, it is difficult to

reason or predict the result of the composition of transformations. A partial resolution

to this problem was the development of unimodular loop transformations which aims

to provide a unified framework able to describe a set of transformations and their

compositions in a singe representation [272, 22]. In short, the effects of all unimodular

transformations can be represented as a product of a square unimodular matrix (i.e.,

a square matrix with only integral components and a determinant of 1 or -1) and a

dependence distance vector. Unimodular transformations have two limitations: i) they

can only be applied to perfectly nested loops, and ii) all statements in a loop nest are

transformed in the same manner (i.e., it manipulates the entire iteration space). Hence,

transformations such as statement reordering, loop fusion, distribution and tiling are not

unimodular. Further work to overcome these limitations has been conducted in [138,

202], which although it has managed to increase the framework’s expressiveness, it has

also complicated its operation (e.g., more complex checks for legality).

Unless otherwise specified in the following sections of this chapter, dependence is

used as the main enabler for parallelization. In Chapter 3 we describe the INTEL ICC

which is a state-of-the-art compiler implementing several of the dependence-based loop

32 2. Related Work

restructuring transformations referenced in this section.

2.4.6.2 Polyhedral-based Parallelization

The polyhedral (or polytope) model is a mathematical framework for analyzing and

optimizing loop nests, tracing its origin to the study of systems of uniform recurrence

equations [136]. In this model, a loop’s iteration space and its dependences are rep-

resented as convex polyhedral containing lattice points that correspond to each loop

iteration (i.e., the dynamic instances of a loop’s body statements). This allows for a

succinct representation of the iteration space (or domain) as a set of linear inequalities.

It also requires that the loops bounds and all access in the loop nest can be conveyed as

affine functions of the loop integer induction variables and all conditionals in the loop

can be computed statically. The loop nest, its bounds and affine access functions are

collectively known as a Static Control Part (SCoP) in polyhedral compilation [82].

The polyhedral model builds on top of the concept of dependence, hence, a lot of

the early work in it, described in Section 2.2.1, is also part of the origins of this model

(e.g., [198]). The identification of the presence (or absence) of dependences among

scalars and array access is critical for the polyhedral model and the precise description

of the loop iteration space as a polyhedron. The application of transformations over

this polyhedron aims to reorder each corresponding statement by assigning a different

execution order or schedule [83]. Intuitively, the schedule assigns a logical date that

dictates the order of execution of each iteration instance. The polyhedral model enables

the expression of various transformations and allows reasoning about their composition

under a unified framework [56]. Further research has spurred the implementation of var-

ious polyhedral compilers able to parallelize loops in certain application domains [251,

100, 34, 222].

More recent work has targeted the limitations that arise when certain knowledge

about a loop cannot be determined statically (e.g., loop bounds or non-affine accesses).

More specifically, [234] studied the detection of Static Control Parts (SCoPs) in real-

world programs from various domains and showed that: i) aliasing issues are limiting,

ii) high sensitive to the ordering of other compiler optimizations, and iii) performing

the analysis at runtime instead of at compile time increases its potential. [24] extends

the polyhedral model in the presence of more complicated conditionals in the loop body

(e.g., an if-based break statement) using control predication of statements, an approach

similar to if-conversion. [231] combines polyhedral and syntactic transformations,

using them in an optimization flow with a more precise cost model that generating code

2.5. Symbolic Execution 33

that exhibits improved data locality and reuse. In [71], the polyhedral framework is

augmented with the generation of assumptions that describe and verify the necessary

preconditions in order for polyhedral compilation to take place at runtime if these are

met.

The presence of loop-carried dependences still constitute a parallelization-inhibiting

factor in the original polyhedral model. Early research [208] focused on pattern-based

detection of constructs such as reductions and scans, by applying transformations such

as array expansion and renaming to break loop-carried dependences. [72] enables the

reduction-aware polyhedral optimizations by detecting the commutativity and associa-

tivity of reduction operations using constraints on the access functions and the flow of

dependences. [207] allows the user to annotate reductions at the source-level and uses a

template-based code generation scheme for their exploitation on GPUs.

Other work has examined the application of speculative parallelization in conjunc-

tion with the polyhedral model. [129] uses the polyhedral model in a Thread-Level

Speculation (TLS) system for parallelizing loops by re-scheduling its iterations at run-

time. APOLLO [41, 40] extends [129] with a runtime code generation that reduces time

overheads and handles loop nests with pointers and indirections as long as they conform

to polyhedral behavior during execution. The framework uses interpolating functions to

assist and predict the representation of loop indices as linear functions. The parallel

execution step uses profiling information to choose the polyhedral transformations that

would yield better speedups.

We compare our proposed commutativity-based approach for loop parallelization

against the APOLLO and POLLY polyhedral compilers in Chapter 5.

2.5 Symbolic Execution

Symbolic execution is a program analysis technique introduced in the 1970s to test

whether certain program properties and assumptions hold [145, 45]. In concrete execu-

tion a program is run using a single input set, leading to under-approximations of the

required properties by the corresponding analyses. Symbolic execution, however, uses

symbolic values which are classes of inputs represented in a succinct manner (e.g., value

ranges within a domain), to execute the program on a symbolic execution engine [20].

The key idea is to derive useful and strong guarantees on program properties for which

there is no automated method to determine their status, by reasoning about more than

one input at once.

34 2. Related Work

For these reasons, symbolic execution has been a fertile ground for research in

automated software testing and security via automatic test case generation, input filter

generation, vulnerability detection and malware analysis [44, 221, 168]. On the other

hand, the ability to represent multiple potential inputs at once poses several challenges

for symbolic execution [221]. The main challenges are: i) path selection strategy,

ii) interaction with the environment (e.g., system calls), iii) representation of memory,

and iv) representation of floating point operations. In response, researchers have started

using concolic (i.e., both concrete and symbolic) inputs to overcome some of these

limitations [223, 199, 92]. Other techniques sidestep the hurdles of path selection

and path explosion by focusing execution on regions of interest [184, 250], using

a minimal representation of that program that exhibits the same properties [59] or

selecting program transformations that maximize its efficiency [43]. For the memory

representation issues, some tools like [44] use a memory model which concretizes

pointers on multiple dereferences and clones the maintained program state when a

pointer can refer to multiple objects. MEMSIGHT [61] reduces the need for explicit

concretization of pointers by using a compact symbolic address representation which

increases the precision of pointer reasoning. Symbolic floating point operations are

either approximated or not supported, however, recent worked has studied the use of

constraint solvers that allow floating point reasoning in symbolic execution engines [214,

162].

While symbolic execution is predominantly popular in the domains of security and

software testing, its capacity to systematically explore all the feasible paths along with

the generation and solution of constraints has found some application in paralleliza-

tion [59, 206].

KLEE-FP [59] employs symbolic crosschecking to verify that implementations of

programs that use Single Instruction Multiple Data (SIMD) instructions on processor

architectures with such support are equivalent to their original scalar versions. It is

argued that although automatic vectorization is an active area of research, a lot of code

aimed at running on Single Instruction Multiple Data (SIMD) processors to exploit data

level parallelism has been rewritten manually. KLEE-FP avoids representing floating

point numbers by using a series of canonicalization transformations and comparing the

expressions in each program version syntactically.

SYMPLE [206] presents a system that allows the parallelization of user-defined

aggregations on MapReduce-style group-by queries. SYMPLE allows the parallel

execution of these complex aggregations when iterating on chunks of the input despite

2.6. Algorithmic Skeletons 35

the existence of loop-carried dependences. Its key insight is to treat the values related

to these dependences as “unknown” symbolic values (essentially breaking them) and

execute the aggregation symbolically, thus returning as output a symbolic summary.

These summaries are combined and computed at a final reduction step to produce the

actual concrete output. Programmers are required to code their aggregations using

SYMPLE’s programming model which facilitates the added requirement of this system

for both soundness and precision, unlike typical applications of symbolic execution in

testing and security.

We use KLEE to perform our symbolic execution experiments in Chapter 4.

KLEE’s design characteristics and operation are described in more detail in Chap-

ter 3.

2.6 Algorithmic Skeletons

The concept of algorithmic skeletons was introduced by [57] to abstract recurrent

patterns of computation, communication and synchronization. They were intended to

address challenges in parallel programming [63], in the spirit of structured (sequential)

programming and design patterns [90] for software engineering, by:

i) the developer’s choice of suitable compositions of parallel skeletons to model the

parallel behavior, and

ii) the developer’s responsibility to provide a suitable and efficient skeleton in support

of the required parallel behavior.

Since their initial inception, they have been widely adopted by industry and research

community, resulting in a plethora of programming models, Domain-Specific Languages

(DSLs), libraries and frameworks, such INTEL’s TBB, GOOGLE’s MAPREDUCE,

SKEPU and FASTFLOW [58, 98, 171].

Based on their features, such as scope, structure, granularity and internal interaction

of their subcomponents, skeletons can be classified as [98]:

i) Data-parallel: operating of bulk data, with examples such as map, reduce and

scan.

ii) Task-parallel: operating of tasks and their interactions, with examples such as

farm, for, sequential and pipe.

36 2. Related Work

iii) Resolution: take on a family of problems, with examples such as divide-and-

conquer and branch-and-bound.

A focal point in research, relevant to this thesis, has been the identification of these

patterns in legacy sequential code. The key idea is that having the computation expres-

sion in algorithmic skeletons provides a pliable form of the program, which is more

amenable to parallelization, not tied down and obscured by low-level implementation

decisions explicitly expressed in the code. We give an overview of representative work

in this section.

PARAMAT [140] uses a static, hierarchical, pattern-matching approach over an

Intermediate Representation (IR) to detect common constructs (e.g., matrix-matrix mul-

tiplication) in scientific codes. This restricts the approach to detecting fairly idiomatic

operations that match exact specifications, thus it is not able to deal with more generic

patterns.

PAP RECOGNIZER [68] is another tool for parallelizable pattern discovery that

shares similarities with PARAMAT, such as the hierarchical and IR-based operation.

However, PAP RECOGNIZER uses Prolog to describe inference-based rules for match-

ing over a hierarchical PDG. All found matches are presented to the user to make the

final choice.

XARK [11] uses an extension of the popular Static Single Assignment (SSA) form

for IRs to analyze use-def chains in Strongly Connected Components (SCCs), aiming at

reduction and recurrence computations. The idiom recognition is a two-step process that,

first, examines intra-SCC and, then, inter-SCC dependences to reveal more complicated

computation kernels.

[247] presents a profiling-based pipeline detection technique which extracts pipeline

stages at multiple loop nest levels. It is also capable of replicating pipeline stages that

might be a performance bottleneck, if it proves that they operate on independent data

elements, thus creating opportunities for OoO execution.

STNG [134] uses program synthesis to identify stencils in Fortran source code

and translate them to a high-level predicate language for use with HALIDE’s DSL [200].

In this way it leverages the specialized optimization offered by HALIDE and enjoys

easy migration to GPUs.

[52] is technique that offers a path towards progressive raising of multi-level IRs,

complementary to the typical progressive lowering performed by multi-level IR com-

pilers. It uses a declarative description language to specify the computational pattern

to which a rule might apply along with a set of replacement expressions. It currently

2.7. Conclusion 37

targets affine and Basic Linear Algebra Subprograms (BLAS) constructs, thus enabling

domain-specific optimizations at these abstraction levels.

[164] presents a profiling-based technique that applies constraint matching in the

produced traces to discover specific patterns (i.e., maps, reductions, map-reduction

fusions and other variants of these). The key idea is that each pattern can be identified

by the topology of the dynamic data flow it creates. This technique is able to operate on

both sequential and already parallelized code, aiming to help the rejuvenation of legacy

parallel code.

In Chapter 6 we present a brief description of a unified framework for the description

of algorithmic skeletons built on liveness-based commutativity, and its adaptation for

discovering loop-level parallelism.

2.7 Conclusion

We have presented a concise overview and comparison of relevant prior research most

relevant to this thesis. Here we summarize the main differences of our work and

highlight its placement in the presented spectrum of literature in the field of automatic

parallelization.

Automatic parallelization and supporting approaches have increasingly used dy-

namic information to fill in the knowledge gap. Moreover, recent studies have shown

that dependence analysis, which has been the prevailing enabler for parallelization

discovery, has reached its limits even when augmented with dynamic information.

Thus, in Chapters 4 and 5 we examine the use of a novel commutativity analysis for

the parallelization of loops, first, in a symbolic execution context and, then, with an

execution-time profiling-based approach. The foundations of this novel analysis are

presented in Chapter 4 and adapted in the context of loop execution. We overcome

shortcomings related to previous approaches, especially when dealing with irregular

and PLDS-based loops. Chapter 5 also shows a study of the precision of the predictions

made by our profiling-based approach.

Finally, a lot of earlier work on algorithmic skeletons was directed towards their

description and programming libraries for the development of parallel code. More re-

cently, researchers have focused on detecting these patterns in legacy code. In Chapter 6

we revisit the liveness-based loop commutativity definitions of parallel skeletons and

examine the criteria for their detection taking hints from their corresponding parallel

versions.

38 2. Related Work

In the next chapter, we briefly present the infrastructure and tools used in this thesis,

before moving on to present our studies and key contributions.

Chapter 3
Infrastructure and Related Tools

This chapter presents details about the infrastructure used in this thesis.

3.1 Introduction

First, we present the software tools used in our empirical evaluation such as compilers,

runtimes, frameworks and specific analyses. These include software components that

were used to both assist, support and supplement the techniques developed in this thesis

and to compare to in our studies. We continue with a presentation of the application

benchmarks and the hardware platform.

3.2 Software Tools

3.2.1 LLVM Compiler Infrastructure

We rely on the LLVM compiler infrastructure (version 7.0.1) for the implementations of

the various analyses and transformations used in this thesis. LLVM is also an enabling

technology for other tools that we make use of, such as KLEE (Section 3.2.9). There is

no inherent dependency of our techniques and tools with the specific LLVM version,

but it is rather an artifact of our software development process and cycles.

LLVM started in academia in the early 2000s, but since then it has evolved to a

mature, industrial-strength open-source compiler framework [156]. While initially its

adoption was slow and limited to academic research, the design decisions taken from

its inception, allowed its uptake by the industry, with active backing from industry.

Companies like Apple and Intel are involved in the development of LLVM, building on

39

40 3. Infrastructure and Related Tools

top of it programming languages (e.g., Apple’s Swift), runtimes and toolchains (e.g.,

INTEL’s ONEAPI DPC++ compiler). LLVM’s modular and composable architecture

has greatly changed the landscape in compiler research and related fields by allowing

quick experimentation and the adoption of a wide variety of components at various

stages in the compilation process.

Hence, the plethora of LLVM uses has created a whole ecosystem of tools and a

federation of related projects:

i) compiler frontends/backends and optimizers,

ii) linkers and assemblers,

iii) libraries and Application Programming Interfaces (APIs),

iv) JIT engines and runtimes, and

v) code representation formats.

While several subprojects are officially under the umbrella of the project, the vast

majority are independent and only tie in with specific parts of the LLVM project based

on their functionality.

The architecture of LLVM [39] follows a classic three-phase design which consists

of: i) frontend, ii) optimizer, and iii) backend. This allows the decoupling and compo-

sition of different parts that implement each of these phases. Moreover, separation of

concerns is facilitated by the use a single, core, target-independent IR. LLVM IR is

a strongly-typed, well-specified, low-level code representation that can be augmented

with metadata information. Optimization passes use mainly units of LLVM IR as input

and output for their operation.

More recently, the LLVM project introduced support for Multi-Level Intermediate

Representations (MLIRs). Multi-Level Intermediate Representation (MLIR) is a new

representation format and associated utilities that allow the description, implementation

and processing of IR variants that closely model a specific domain. This further

increases flexibility, interoperability and composability among compiler-based tools

and frameworks.

Hence, implementing our techniques in LLVM IR enables to isolate ourselves from

source code idioms and peculiarities, providing a uniform layout on which to operate

on. In addition, this allows us to base our work upon a multitude of well-established

and mature compiler techniques Lastly, directly comparing with other techniques

3.2. Software Tools 41

implemented on the same foundational framework is more straightforward, since a

common experimental base is typically obtained via small configuration adjustments.

Nevertheless, the approaches presented in this thesis are not conceptually tied to a

specific technology or tool.

3.2.2 Intel Icc Compiler

ICC is a collection of C/C++ compilers and tools from INTEL, available on most popular

operating systems and targeting a wide range of INTEL architectures. This compiler

is highly tuned for INTEL processors with support for the latest language standards

and is routinely ranked among the top compilers in producing fast code, especially for

computational kernels [210]. Although details on its internal operation are undisclosed

since it is a commercial, closed-source application, it is generally agreed that this

demonstrates its ability to better exploit the target machine architecture (i.e., floating-

point operations, registers, etc.) [210]. ICC’s optimization pipeline is organized in the

following categories [120]: i) floating-point, ii) processor-specific, iii) interprocedural,

iv) profile-guided, v) high-level language optimizations, vi) parallel programming, and

vii) optimization support features.

The main optimization support feature is the state-of-the-art data dependence analy-

sis. More specifically, for array references, ICC’s dependence analyzer is organized as a

series of tests, performed in a dimension-by-dimension manner, which progressively

increase in power, with compilation time and memory also increasing proportionally.

In our experiments, we use INTEL ICC “Classic” version 19.0.5.28120190815

and also utilize the emitted reports (i.e., via the -qopt-report* option group) to

parse information about the parallelization of each specific loop. Moreover, we use

ICC’s profiling capabilities to measure loop execution coverage and INTEL’s OPENMP

implementation for parallelization (Section 3.2.7).

It is worth noting that INTEL is moving its compiler infrastructure to the LLVM

framework with the release (late in 2020) of the oneAPI DPC++ compiler [65]. Since

then, the previous toolchain that is not LLVM-based has been marketed as “Classic”.

The new compiler features proprietary optimizations which are implemented as a

separate backend.

42 3. Infrastructure and Related Tools

3.2.3 LLVM/Polly Extension

POLLY is a high-level loop and data-locality optimization infrastructure built on top

of LLVM [100]. POLLY uses the polyhedral model to perform loop optimizations by

combining several tools:

i) Integer Set Library (ISL): a portable C library for handling polyhedral and com-

puting dependences.

ii) PLUTO: a library providing a data locality optimizer and parallelizer for selecting

valid transformations.

iii) CLOOG: a library for code generation via a generic Abstract Syntax Tree (AST)

to a final target (e.g., OPENMP).

The central novel feature of POLLY is that it enables polyhedral compilation by directly

manipulating LLVM IR.

The main advantages of POLLY are:

i) enabling easy use via integration in an existing popular compiler framework,

ii) leveraging existing and enabling new optimizations by offloading the polyhedral

model details to specialist libraries,

iii) decoupling polyhedral optimization from high-level languages, and

iv) overcoming analysis limitations by accepting optimization descriptions from

external tools or the user via an import/export facility (i.e., SCoP description

files).

In our empirical evaluation, we parse the exported reports to collect data on which

loops are considered parallelizable by POLLY. POLLY’s versioning system follows that

of LLVM (version 7.0.1 in our evaluation).

3.2.4 Idioms Technique

Constraint-based idiom recognition (which will be referred as “IDIOMS” in this thesis)

is a static compiler technique which automatically detects a wide class of reduction

operations [96, 95]. This allows us to extend the breadth of our comparison in relation

to the static tools used in our empirical evaluation.

3.2. Software Tools 43

The IDIOMS technique uses a constraint-based approach to describe what constitutes

a reduction. To this end, it combines the results of other classic compiler data flow

analyses such as the Control Flow Graph (CFG), dominance analysis and SSA form to

formulate the conditions that need to be fulfilled for detection. The technique proceeds to

evaluate loop code piecewise and allows backtracking if only partial solutions are found

while there is still code that has not been considered. Following an intuitive approach in

the application of constraints, it avoids the exponential complexity associated with a

naive evaluation order.

The technique is implemented as a compiler pass in the LLVM infrastructure

(version 7.0.1), operating at the IR level. The constraints are specified using a custom

DSL embedded in C++, placed directly in the source of the pass. The parallel code

generation is using a pthreads implementation which we were not able to use. Instead,

we opted to parallelize the reported loops using OPENMP.

3.2.5 DiscoPoP Technique

DISCOPOP [159] is a dynamic technique that aims to discover pipelines, task and loop

parallelism operating in two phases. During the first phase, it places instrumentation

calls for profiling memory accesses and control flow during execution. In the second

phase, it builds a dynamic PDG based on the collected profiling information. Then, this

graph is transformed to another condensed graph consisting of nodes that do not contain

parallelization-inhibiting read-after-write dependences internally. These condensed

nodes are termed Computation Units (CUs) in DISCOPOP’s internal representation and,

in essence, correspond to read-compute-write patterns.

DISCOPOP uses the resulting CU graph for parallelism detection at various granu-

larity levels. At loop level, it tries to determine the absence of loop-carried dependences

and, thus, identify DOALL parallelism. For the discovery of parallel tasks, the CU

graph is further condensed to SCCs, chains of SCCs (i.e., nodes connected one after

the other, without branch or join points). Additional graph partitioning techniques (e.g.,

a min-cut algorithm) are applied to discern groups of parallelizable tasks. Lastly, a

template-matching approach is used to detect pipelines.

DISCOPOP is implemented in LLVM (version 3.3) and it was evaluated in the

same version of the NPB suite (version 3.3) that we use for our empirical evaluation.

In our comparison we used DISCOPOP’s results from [159] in combination with

profiling traces from its execution over the NPB suite, which we obtained after private

44 3. Infrastructure and Related Tools

communication with the authors.

3.2.6 Dependence Profiling Technique

DEPENDENCE PROFILING [248] is the technique closest to the profiling approaches in

the techniques used in this thesis and it is extensively described in [246]. DEPENDENCE

PROFILING has been used in combination with an ML-based parallelization mapping

approach and in the extraction of hierarchical pipeline parallelism from sequential

applications [247].

In our experiments, we used the results presented in [248], since we did not have

access to a working implementation. The initial prototype was developed in the com-

mercial COSY [8, 242] compiler toolchain.

3.2.7 Parallelization with OpenMP

OPENMP is a shared-memory Application Programming Interface (API) which aims to

facilitate shared-memory parallel programming with an emphasis on efficiency, porta-

bility and user-friendliness [50]. It is published as a specification and implemented as a

language extension, allowing the user to insert annotations in the source to direct parallel

compilation and operation with an OPENMP-supporting compiler [188]. OPENMP’s

success in industry and academia can be attributed to these factors [50]: i) emphasis on

structured parallel programming, ii) comparative easy of use, iii) wide adoption, and

iv) following community-driven design and development, allowing timely addition of

features and implementation releases on broad variety of multicore architectures.

We use OPENMP for parallel code generation due to the following reasons:

i) Some of our benchmarks (Section 3.3.1) have already manually parallelized

versions in OPENMP, giving an upper bound of the potential parallel performance

that can be achieved.

ii) All the compiler toolchains used in our experiments offer a mature OPENMP

implementation.

iii) It was relatively uncomplicated to convert the parallelization suggestions of other

tools, which emit parallel code using other models, to OPENMP for a uniform

comparison (e.g., IDIOMS used PTHREADS).

3.2. Software Tools 45

1 # pragma omp for reduction(+:sum)
2 for (i = 0; i < N; ++i) {

3 sum += array[i];

4 }

Figure 3.1: A simple reduction loop parallelized using an OpenMP pragma directive.

Under the hood OPENMP consists of: i) compiler support of directives, ii) a library

realizing the specification API via function calls which control execution-time behavior

of threads, and iii) a set of environment variables that can configure and influence its

execution-time operation. An OPENMP-enabled compiler must recognize, validate,

and translate OPENMP directives according to their semantics in order to generate a

multithreaded program. The flexibility of the compiler support allows easy integration

with source languages (e.g., pragma preprocessor statements in C/C++ and metadata in

LLVM IR). The directives map to work-sharing constructs that are implemented by the

runtime library, and allow users to:

i) create teams of threads for parallel execution,

ii) specify how work is shared among them,

iii) declare both shared and private variables, and

iv) synchronize threads.

The environment variables can be used to control execution features such as, for example,

the number of available threads or their scheduling policy [191]. OPENMP adheres to

the fork-join model of execution. The fork-join model is a versatile execution pattern

which subdivides a problem to subparts recursively and can be used for both regular

(e.g., a map pattern) and irregular parallelization (e.g., a divide-and-conquer strategy).

New serial execution control flows (i.e., threads) are created at specified fork points

by splitting up an existing thread into two or more threads. Conversely, two or more

execution threads are merged together at a join point. It is important to note that the

execution model describes the desired parallel behavior and omits any implementation

details on how a library may achieve this on a specific Operating System (OS) or

architecture [124].

Figure 3.1 presents an example use of OPENMP for the parallelization of simple

loop. This directive denotes a for loop and specifies a reduction variable (sum) that

46 3. Infrastructure and Related Tools

is built using the addition operator (+). The programmer does not need to specify

how to assign the execution of the iterations to threads or the manage the reduction

(i.e., maintain the partial sums and their final accumulation and assignment to sum).

Typically, this is internally implemented by privatizing the variables (Chapter 2) that

are indicated as the accumulators of the reduction operation by the pragma statement.

Moreover, all data are shared by default in the OPENMP memory model, thus giving all

threads access to the elements of the array variable. Lastly, at the end of the loop (after

line 4) there is an implicit synchronization barrier for this parallel region, meaning that

no thread can progress until all other threads have reached that program point. All these

details are left to be carried on by the OPENMP compiler and runtime.

Our empirical evaluation aims at the parallelization of loops, hence we make ex-

tensive use of OPENMP’s for work-sharing construct, following similar code gener-

ation methodology as described in [248]. We use OPENMP version 4.5 and INTEL’s

OPENMP runtime library for all executions in our experiments. This allows to inten-

tionally avoid any effects in performance due to differences in implementation details

among libraries [125].

3.2.8 Generalized Iterator Recognition Analysis

In the course of the work described in this thesis, we have developed generalized iterator

recognition, a compiler-based, supporting analysis for the recognition of loop iterators

over a wide class of loops [166]. Generalized iterator recognition allows us to identify

the instructions in a loop that contribute to advancing the iteration (i.e., the “iterator”

code); in other words, the instructions that contribute to and determine if the loop exit

conditions are satisfied or not per iteration. All the remaining instructions in the loop

are characterized as the loop’s “payload”. This intuitive description of loop iterators is

the core of our generalized iterator recognition analysis.

In compilers, iterators have been typically associated with structured for loops

where the iteration proceeds over a set of integer values by a fixed amount (i.e., it

is an induction variable). This allows easy identification (e.g., pattern matching),

normalization of lower/upper bounds and step count [7], further exploitation in other

models such as dependence and the polyhedral analysis (Chapter 2), and enabling other

optimizations (e.g., induction variable elimination) [177]. However, there is a wider

range of iterator idioms as a result of the abundance of programming languages, styles

and APIs.

3.2. Software Tools 47

1 int i = 0;

2
3 while (i < N) {

4 array[i] = ...;

5 ++i;

6 }

(a)

1

3

4

5

(b)

Figure 3.2: A simple while loop (left) and the corresponding SCC condensation of
its DDG (a PDG without control dependences for simplicity) (right). Each node’s
number corresponds to the statement at that source line number. Generalized iterator
recognition analysis will mark the nodes inside the dotted node, which is an SCC node
that contains more than one PDG node, as “iterator” code.

The analysis uses dependences to generate a PDG of a loop and, then, condense

the nodes to SCC nodes. The SCC node with no incoming edges and a loop-carried

dependence of distance 1 is marked as the “iterator” code. Figure 3.2 presents a

minimal example of a loop and its corresponding condensed PDG. The analysis can

also incorporate profiling information from a program’s executions in order to build a

dynamic PDG with may-dependences disambiguated.

We have implemented our generalized iterator recognition as an external (i.e., out-of-

source) compiler pass based on the LLVM compiler infrastructure (version 7.0.1) [264].

Our current prototype implementation is able to mark the “iterator code” of a loop

as: i) in-memory LLVM IR instructions, ii) embedded metadata in LLVM IR, and

iii) exported as text in JavaScript Object Notation (JSON) format. Apart from the work

in this thesis, our generalized iterator recognition has been utilized in other research

projects such as rejuvenating legacy parallel code to patterns [164] and extracting code

features in a ML-based parallelization assistant. It has also been considered for future

inclusion in research-oriented compilation frameworks [169].

48 3. Infrastructure and Related Tools

Symbolic
Execution

Engine

Constraint
SolverProgram

Environment
Models Reports

KLEE

LLVM IR constraints

Figure 3.3: Overview of KLEE’s architecture.

3.2.9 KLEE Symbolic Execution Tool

KLEE [44] is a symbolic execution tool built on the LLVM compilation framework

that automatically generates test case for programs that can heavily interact with their

environment. The main goals of KLEE are:

i) achieve high code coverage (i.e., execute every instruction in the program), and

ii) detect potential dangerous operations (i.e., bugs such as out-of-bounds pointer

dereference) if there are any input values that would trigger them.

KLEE, at its core, consists of:

i) A symbolic engine which:

• parses and executes symbolically LLVM IR,

• generates constraints that describe exactly the set of values at a given execu-

tion state/path, and

• offloads constraints for resolution to an external constraint solver.

ii) Environment models which describe the semantics of interactions with executing

programs environment (e.g., command-line arguments, environment variables,

file I/O, system calls, etc.).

In other words, KLEE operates as hybrid combination of an OS for symbolic processes

and an interpreter. The modelling of an application’s environment and its interactions

with the OS (i.e., system call API) is implemented via a modified version of the UCLIBC

library [254], a minimalistic implementation of the C standard library. Internally, KLEE

3.3. Benchmarks 49

strives to compact state representation, optimization of constraint query representation

and path selection strategies. A high-level overview of KLEE’s architecture is presented

in Figure 3.3. We describe how symbolic execution is performed with an example

in Chapter 4.

In our experiments we use KLEE version 1.4.0.0 (built on top of LLVM version

7.0.1) and its default constraint solver (STP [91]).

3.3 Benchmarks

3.3.1 NAS Parallel Benchmark (NPB) Suite

The NPB benchmark suite is named after the NASA Advanced Supercomputing Di-

vision where they have been developed and maintained since 1991 for the evaluation

of highly parallel supercomputers [19]. Through the years the suite has been regularly

updated with new applications, kernels and data sets to reflect the evaluation needs

of contemporary parallel architectures. We are using version 3.3 in this thesis, which

consists of 10 applications which implement representative algorithms from the field of

Computational Fluid Dynamics (CFD). The NPB suite is used in industry and academia

in a wide variety of studies, such as comparing parallel programming models [227]

or describing specific implementation and their performance [130]. Moreover, NPB

provides a diverse set of different implementations in OPENMP, MPI, Fortran and

Java. We use the version of the suite that is written in C for our empirical evaluation

and is based on [224] (version SNU 1.0.3).

The most desirable attribute of the suite for our studies is that it includes both a

sequential and manually parallelized versions of each program. In our experiments

we use the parallel version based on an OPENMP shared memory implementation to

derive: i) an upper bound of what is possible to detect and exploit as parallelizable,

and ii) an upper bound of the optimal speedup that can be achieved by parallelization,

according to expert developers with deep knowledge of the algorithms and the program

implementations. The aim of the experts has been to exploit coarse-grain parallelism

that might encompass multiple loops, in large code sections. Since our evaluation in

this thesis is considering loops, where a large part of an application’s execution time is

typically spent, we have adapted the parallelism to the enclosed loops. This allows us

to compare our techniques against the upper bound of both loop-level parallelism and

beyond as presented in Chapter 5.

50 3. Infrastructure and Related Tools

Table 3.1: Source code details of the applications in the sequential version of the NPB
benchmark suite.

Benchmark Lines of Code (LOC) Loops Loop Nests

(#) (#) (#)

BT 2676 182 52

CG 548 47 26

DC 2715 105 37

EP 166 9 7

FT 606 42 16

IS 464 16 12

LU 2428 186 63

MG 879 81 38

SP 2127 250 53

UA 5768 479 157

Total 18377 1397 461

We present a breakdown of the LOC and loops contained in each sequential applica-

tion in Table 3.1. A brief description of each application follows:

i) BT (Block Triagonal): an application that solves a synthetic system of non-linear

Partial Differential Equations (PDEs) using a block (of size 5×5) triagonal solver

for CFD codes.

ii) CG (Conjugate Gradient): a kernel using the conjugate gradient method to

compute an approximation to the smallest eigenvalue of a large, sparse matrix

employing unstructured matrix multiplication.

iii) DC (Data Cube): a data-intensive application that implements the data cube

operator [36] over an arithmetic data set. Data cube is a common operation in

data mining and database systems where it is used to compute view of multidi-

mensional data sets. It primarily aims to help in the evaluation of the memory

hierarchy of systems and data movement across it [89].

iv) EP (Embarrassingly Parallel): a kernel which evaluates an integral using a Monte

Carlo method, generating pseudorandom numbers. It requires almost no inter-

processor communication, and thus exemplifies the potentially attainable upper

bound of parallel performance on an architecture.

3.3. Benchmarks 51

v) FT (Fourier Transform): a 3D PDE solver using Fast Fourier Transforms (FFTs),

common in spectral methods.

vi) IS (Integer Sort): a kernel that performs a bucket sorting operation.

vii) LU (Lower-Upper): an application like BT which uses a lower-upper symmetric

Gauss-Seidel solver.

viii) MG (MultiGrid): a kernel that uses the multigrid method to solve a 3D discrete

Poisson equation.

ix) SP (Scalar Pentagonal): an application like BT which uses a scalar pentagonal

solver.

x) UA (Unstructured Adaptive): an application which solves a heat equation with

convection and diffusion from moving ball. It features an unstructured adaptive

mesh, displaying dynamic and irregular memory access.

We applied the flags presented in Table 3.2 for the compilation of the benchmarks.

The main objective of the two option groups is to preserve as many loops as possible

throughout the compilation pipeline and in the final compiled output, without hindering

the power of analysis and the efficacy of parallelism mapping. Thus, we enable the

majority of optimization passes (optimization level O2), while we disable vectorization

and loop unrolling. In addition, we enable ICC’s more aggressive parallelization dis-

covery heuristics that operate using information from interprocedural optimization (the

-parallel and -ipo flags, respectively) and processor-specific mappings (-xcorei7

and -axcorei7). We obtained a single LLVM IR archive for each application that had

to further go through a LLVM-based compilation pipeline in order to reduce any differ-

ences that occur due to phase ordering [13]. Any further additions, modifications or

exceptions to the compilation options are discussed on a per-case basis in the remainder

of the thesis.

3.3.2 Applications using Pointer-Linked Data Structures

We use a wide variety of benchmarks that employ PLDS-based loops for the empirical

evaluation of our techniques in this thesis. These range from industry standard suites,

such as SPEC CPU2000 [109] and SPEC CPU2006 [110], to standalone open source

scientific applications. We provide a brief description of each application in this section.

52 3. Infrastructure and Related Tools

Table 3.2: Options per toolchain that were applied during the compilation of applica-
tions in the sequential version of the NPB benchmark suite.

Compiler Options

CLANG/LLVM-based

-O2

-fno-vectorize

-fno-slp-vectorize

-fno-unroll-loops

INTEL ICC

-O2

-no-vec -unroll=0

-parallel -ipo -mcmodel=medium

-xcorei7 -axcorei7

-g -rdynamic

i) 429.mcf (source: SPEC CPU2006): an integer benchmark application that solves

the problem of vehicle scheduling in mass transportation using a network simplex

algorithm (combinatorial optimization). The task is formulated as a large-scale

minimum-cost flow problem employing a custom binary tree data structure. Each

tree node contains links (i.e., pointers) to the predecessor node and the two

children nodes, and the left/right sibling nodes (if any).

ii) 300.twolf (source: SPEC CPU2000): an integer benchmark application which is

a simulator for deriving an optimal area layout (placement and routing) of chip

components. Components are modelled as doubly-linked list nodes.

iii) em3d (source: Olden [47, 48]): an application that simulates the propagation of

electro-magnetic waves in an object in 3 dimensions. It uses an irregular bipartite

graph to represent electric and magnetic field values, each a separate node.

iv) mst (source: Olden): an application that computes the minimum spanning tree of

an n-node graph.

v) bh (source: Olden): an application that solves the N-body problem, represented as

an n-node tree, using hierarchical methods (Barnes-Hut).

vi) perimeter (source: Olden): an application that computes the perimeter of a set of

quad-tree encoded raster images.

3.4. Hardware Setup Configurations 53

vii) treeadd (source: Olden): an application that adds the values in a balanced, binary

tree data structure.

viii) BFS (source: Lonestar [149]): an application implementing a breadth-first search

traversal over a graph.

ix) ks (source: PtrDist [15]): an application that performs graph partitioning via the

Kernighan-Lin, modified Kernighan-Lin, or Kernighan-Schweikert algorithms.

x) hash (source: Shootout [241]): an application that performs hash operations.

xi) spmatmat (source: SPARK00 [258]): an application that performs a sparse matrix-

matrix multiplication operation. The matrices are implemented using adjacency

linked lists.

xii) water-spatial (source: SPLASH3 [217]): an application that evaluates forces

and potentials that occur over time in a system of water molecules. The water

molecules are arranged in a uniform three-dimensional grid of cells. Each particle

is represented as a node which can access (via pointers) N other nodes that

constitute its neighborhood using a singly-linked list. These neighborhoods also

form nodes in a larger singly-linked list that encapsulates the whole problem

domain.

xiii) otter (source: FOSS): a theorem prover for first-order logic making use of singly-

linked lists.

xiv) ising (source: community [269]): a kernel implementing a condensed matter

physics program using the ISING model. Particles are modeled as nodes in a

singly-linked list.

3.4 Hardware Setup Configurations

All our execution experiments were conducted on an INTEL Xeon Gold 6154 (Skylake)

CPU with 72 cores, running at 3 GHz with 540 GB RAM on Ubuntu 18.04.4 LTS (Linux

kernel 4.15.0–91).

54 3. Infrastructure and Related Tools

3.5 Summary

In this chapter we described the range of tools, benchmarks and hardware setup config-

urations used in the remainder of this thesis for the empirical evaluation studies. In the

next chapter, we begin our examination of liveness-based commutativity using symbolic

execution.

Chapter 4
Liveness-based Commutativity

Analysis using Symbolic Execution

We now start our study of the use of commutativity instead of dependence analysis for

the parallelization of legacy sequential code. In this chapter, we present and motivate

our concept of commutativity which is based on the liveness of variables in a code

region of interest. Our liveness-based commutativity overcomes a lot of the limitations

of previous descriptions of commutativity targeting parallelization (Chapter 2), while

preserving and getting inspiration from their best features.

We investigate the potential of implementing a practical analysis based on liveness-

based commutativity in a hybrid static/dynamic context. To this end, we apply an

analysis based on symbolic execution, which allows us to describe and assess the

required conditions for determining the commutativity of code regions.

We begin the chapter presenting the background of our investigation in Section 4.1

and introduce our concept of commutativity in Sections 4.2 and 4.3. Then, we continue

by motivating our approach in Section 4.4 and describing its combination with symbolic

execution in Sections 4.5 and 4.6. Section 4.7 outlines a technique based on symbolic

execution and Section 4.8 presents our case studies. We conclude in Section 4.9,

summarizing the obstacles that symbolic execution poses to the creation of a practical

analysis for the parallelization of real-world applications. These realizations inform the

approach presented in Chapter 5.

Part of this chapter is based on the work in generalized iterator recognition [166]

for which I partly contributed to its inception, implementation design and conducting

experiments.

55

56 4. Liveness-based Commutativity Analysis using Symbolic Execution

4.1 Introduction

As we have discussed in Chapter 1, extracting and exploiting parallelism is essential to

maximizing the performance of legacy sequential code on modern multicore systems.

While an attractive proposition, compiler-based parallelization techniques have largely

failed to deliver the much-needed boost in application performance outside a narrow

domain of scientific codes [7].

Over the last few decades, dependence analysis has grown to be an essential en-

abling component of the analyses and transformations offered by parallelizing compilers.

Recent work has identified inherent limitations in the expressiveness of dependences

to model program operations [180]. This is mainly due to the inherent inability of

dependence analysis to prove that violating certain relations between memory locations

does not always affect program results [255, 172, 209]. Or, to put it another way, some

dependences are safe to violate (e.g., in the case of a reduction operation). There-

fore, this leads to over-approximating (i.e., sufficient but not necessary) assumptions

regarding program functionality that inhibit detection of further available parallelization

opportunities.

A promising approach to overcome the limitations of dependence analyses is the use

of commutativity analysis [211, 3, 266]. In a nutshell, commutativity analysis detects

code regions whose order of execution can be exchanged without altering the program

outcome. Prior uses of commutativity have either been applied in a limited manner [38]

or expressed within restricted models of computation [211, 3], thus failing to expose

the full potential of such an analysis.

In this chapter, we present a new notion of commutativity based on the liveness of

operations, which relaxes the strict data dependence constraints imposed by traditional

parallelization approaches. Our key insight is that some of the detected dependences

are not, in fact, fatal to parallelization, and therefore cause some loops to be needlessly

discarded. Instead, liveness-based commutativity analysis focuses on the more crucial

issue of whether any such dependences have a detectable effect on the eventual result.

We have also introduced an adaptation of this concept for loop constructs, since often

these are code regions where applications spend most of their execution time.

Our objective is to explore the capacity of a practical analysis using liveness-based

commutativity in extending the scope of automatic parallelization, while avoiding

the usual limitations of a purely static system (Chapter 2). As such, an important

aspect of our approach is the potential of using a combination of static and dynamic

4.2. Liveness-Based Commutativity 57

information to model program inputs and outputs. For this, we employ symbolic

execution which is a technique that models program values as classes of data, i.e.,

symbolic values, and represents the result of the computations over them as symbolic

expressions and functions of their input [145, 45]. This enables reasoning about higher-

level program properties (e.g., complex assertions) and has found extensive use in

software testing. Consequently, we develop an approach based on symbolic execution

to verify commutativity by testing equivalence on program outputs (i.e., live-outs),

and ultimately parallelizability of loops. However, symbolic execution is associated

with certain innate scalability challenges. We examine the limitations and impact

that these characteristics have in the applicability of our liveness-based commutativity

analysis with our case studies on loops taken from real-world applications. These

results, subsequently, inform our approach in Chapter 5.

4.2 Liveness-Based Commutativity

We have already discussed a number of different notions of commutativity for paral-

lelization [211, 3] in Chapter 2. In this section we give a synopsis of the main previous

concepts of commutativity from the literature and continue to briefly describe the basic

concepts and building blocks of our liveness-based commutativity [266].

Separability-based commutativity considers computations as separable operations

on objects, where their semantics are clearly defined by the programmer. Thus, having

a well-defined description of operations, the compiler is able to determine the effects of

operations and reason about commutativity in this restricted programming model.

Output-based commutativity determines if invocations of a single candidate function

commute, using a technique supported by abstract interpretation to model its inputs and

follow its result over the use-def chain (i.e., recursively following readers of readers).

The key idea behind our concept of commutativity based on liveness [266] is to

restrict commutativity requirements to only those variables which are live-out at a

region of interest. This allows for the separation of transient variables and associated

computations, whose values are not used anywhere later in the code to be relaxed.

The objective of our definition of commutativity is to combine the best aspects

from existing commutativity concepts. From separability-based commutativity we

incorporate the expressive power to reason about any two (or more) regions of code,

while avoiding its practical restrictions. We adopt the idea to only consider values

“live-out” at the end of candidate regions from output-based commutativity, but not limit

58 4. Liveness-based Commutativity Analysis using Symbolic Execution

our analysis to invocations of a single function at a time. We define commutativity

as a binary relation over regions of code and only require equality of observable state

leaving the candidate code regions (i.e., live-out and live-through sets and values).

Hence, liveness-based commutativity does not require exact matches for the contents

of intermediate, dead variables. Or, in other words, temporary results from interme-

diate computations are not required to contain equal values with respect to sequential

execution.

This definition of commutativity allows us to build upon well-established compiler

techniques such as liveness analysis (live-in, live-through and live-out variables) for

capturing the active elements of computations, and Single Entry Single Exit (SESE)

regions, for selecting candidate regions [177, 60, 2]. Moreover, by utilizing basic

compiler concepts, it is less tied to specific implementation details, while still allowing

the use of other analyses and information, if profitable, and adjusting the granularity of

the candidate SESE regions.

Definition 4.2.1 (Liveness-based Commutativity of Regions). Two SESE regions R1

and R2 are commutative iff:

1. (a) R1 6= R2 are canonical SESE regions both contained in the same maximal

SESE region, and R̂ is the smallest such maximal SESE region, and R1 is

not contained in R2 (and vice versa), and all variables and their values in the

set of live-outs of R̂ are the same for any execution order of R1 and R2; or

(b) R1 = R2 (i.e., “R1 is commutative with respect to itself”): R1 is a maximal

SESE region contained in another SESE region which contains a direct

control flow path from the exit of R1 back to its entry, and R̂ is the smallest

such containing region, and all variables and their values in the live-out set

of R̂ are the same for all executions of R1.

2. The values in the live-through set of R1 and live-through set of R2 are unaffected

by the execution order of R1 and R2.

Note that the definition does not make any claims about control flow within a region,

thus any SESE region may contain one or more function calls, and we do not require for

commutative regions to be immediate control flow predecessor/successor pairs. In fact,

the definition is general enough that it does not necessitate any other relations among

statements in a region (e.g., read-write constraints or affine accesses), therefore giving

us flexibility in implementation, as mentioned earlier in this section. If a function call

4.3. Liveness-Based Loop Commutativity 59

has side effects that are not commutative, then this will impact its set of live values, thus

being detected with respect to the above definition. In this thesis, we ignore functions

with I/O side effects (e.g., printf) as this has been the focus of prior work [84], where

I/O related dependences are broken and extensive use of I/O buffering in special helper

threads is used.

Loops are the focal point of our empirical evaluation in this thesis, since programs

usually spend the majority of their execution time in such code constructs. In the

following section, we refine the concept of commutativity presented here for loops and

related to clause 1b from Definition 4.2.1. Intuitively, this means that we can treat the

body of loop as a SESE region and test its intra-iteration invocations for commutativity.

Moreover, we seek to examine possible implementations of a practical liveness-

based commutativity for loop parallelization, thus we examine potential prototype

implementations by composing static and dynamic analyses and information. Lastly,

commutativity based on liveness was previously considered as part of a formal charac-

terization of parallel algorithmic skeletons [266]. We return to this issue in Chapter 6,

after having concluded our evaluation of potential implementations in this and the

next chapter, and propose a new methodology for the challenge of finding instances of

potential parallel algorithmic skeletons.

4.3 Liveness-Based Loop Commutativity

The notion of commutativity has a natural interpretation for loops: a loop is com-

mutative if rearranging its iterations preserves the semantics of the original program.

In other words, in the spirit of the Item 1b, we can treat the body of a loop as a SESE

region. Figure 4.1 gives an example of how a simple loop would be considered for

commutativity based on different execution orders of its body.

This section introduces and formalizes the notion of loop commutativity both for

the specific case (single executions) and for the universal case (all possible executions),

and refines it using liveness information as described in the previous section.

We denote a given loop L with an original iteration space I (a sequence of iterations)

as LI , and the memory state resulting from an execution of that loop over a specific

input x as LI(x). Loop LI is commutative w.r.t. a given input x and a permutation π of I

iff executing Lπ(I) on x produces the same output:

LI(x) = Lπ(I)(x), (4.1)

60 4. Liveness-based Commutativity Analysis using Symbolic Execution

1 for (i = 0;

2 i < N;

3 ++i) {

4 sum += array[i];

5 }

(a)

1

2

4

3

(b)

1'

2'

4'

3'

2''

4''

3''

iteration 0

iteration 1

...

(c)

Figure 4.1: A small loop (top) and its corresponding body as a SESE region (dashed
rectangles) when considered statically (bottom left) and during execution (bottom
right). The loop initialization, continuation test and update step components are
separated to multiple lines in the source code to help clearly identify the flow of
control.

and universally commutative iff it is commutative for all possible inputs of L and

permutations of I:

LI(x) = Lπ(I)(x) ∀x∀π. (4.2)

As discussed in the previous section, requiring the memory state resulting from the

execution of the original and the permuted loop to be identical is overly conservative,

and can be relaxed by limiting the comparison to the variables that are live-out of the

loop. This observation gives rise to the notion of liveness-based loop commutativity.

We denote the live-out set of variables of a loop L as live-out(L), and the comparison

of a subset V of the variables in two loop executions L(x), L(y) as L(x) =live-out(L) L(y).

A loop LI is live-commutative w.r.t. a given input x and a permutation π of I iff it is

commutative w.r.t.=live-out(L). Universal live-commutativity is similarly defined. Unless

4.4. Motivating Examples 61

1 for (i = 0;

2 i < N;

3 ++i)

4 {

5 // these next 3 instructions
6 // essentially perform:
7 // sum += array[i];
8 tmp1 = array[i];

9 tmp2 = sum;

10 sum = tmp1 + tmp2;

11 }

(a)

1

2 9

3

8

10

LC LC

LC: Loop-Carried

(b)

Figure 4.2: A simple loop performing a reduction operation over an array (left) and its
corresponding DDG (right). Each graph node’s number corresponds to the statement
at that source line number. The loop reduction is separated to multiple intermediate
instructions in the source code to help clearly identify the memory operations. The
dashed edge represents the cross-iteration parallelization-inhibiting dependence.

otherwise stated, the rest of the thesis refers to live-commutativity as just commutativity.

Different loop commutativity analyses with varying scalability-precision trade-offs

can be naturally derived from the above definitions. Universal commutativity of a loop

L can be examined statically by making the input and permutation domains symbolic

and proving that no combination of input and permutation leads to different values for

the live-out variables of L.

4.4 Motivating Examples

Figure 4.2(a) presents a simple scalar reduction over the elements of an array

written in C. Briefly, a reduction operation combines every element in a collection into

a single element using an associative combiner function. The combiner function in

this code example is the addition operation. Reductions have been long studied in

the literature [133, 87] and it is known that the associativity of the reduction operator

enables different execution orderings. The parallelization of a reduction requires the

provision of buffers to store the intermediate results from the constituent threads that

perform the partial computations over subsets of the input. This is typically handled with

a privatization transformation (Section 2.4.6) which makes sure that isolated temporary

62 4. Liveness-based Commutativity Analysis using Symbolic Execution

1 for (i = 0; i < N; ++i) {

2 // conditional branch creates
3 // control dependence
4 // on reduction variable
5 if(max < array[i])

6 max = array[i];

7 }

Figure 4.3: A simple loop finding the maximum value in an array.

storage is supplied to each thread.

However, detecting reductions is a challenging task for parallelizing compilers. The

main issue lies with the dependence analysis that compilers use to model program

statement relations. In our example in Figure 4.2(a) there is a loop-carried dependence

due to the read occurring after the write (i.e., RAW dependence) at the reduction

variable sum. This is highlighted by the dashed dependence arrow of the DDG of the

same loop in Figure 4.2(b).

Compilers such as INTEL ICC or the LLVM polyhedral compilation framework

POLLY fail to detect this simple code as parallelizable. In most cases, compiler writ-

ers are handling reductions by providing a tailored custom approach (e.g., pattern

matching [205]) or extending their representation model with a narrow definition (e.g.,

“reduction-like” computations [72]). [72] extends POLLY by defining reductions based

on computation properties (e.g., operator associativity) and chains of dependences

relations among instructions in a candidate region. This permits POLLY to describe the

example of Figure 4.2(a) as an affine relation and parallelize it.

Despite such extensions and additions, detection of reductions remains fragile and

newer tools opt to skip it [176]. Consider the example in Figure 4.3 that computes

the maximum of a list of integers in an array. The max operation (often provided as a

built-in or primitive operation) is associative and can, obviously, also be parallelized.

However, when written imperatively, it challenges parallelization based on dependence

analysis since this form adds a control dependence to the reduction variable due to its

participation in the if condition.

On the other hand, using commutativity based on liveness enables us to discover

parallelism that escapes traditional dependence analysis. Based on the definitions we

presented in the previous section, we model and capture the live-in and live-out values

of a candidate loop and determine if the contents of the latter (i.e., the live-outs) remain

4.5. Operation of Symbolic Execution 63

the same after we permute the loop’s iteration order. The key idea is that if the live-outs

remain unaffected, in other words, the loop is found to be commutative, then we can

execute it in parallel. Regions are commutative and can be executed in parallel, subject

to synchronization of accesses to shared variables.

For the examples in Figures 4.2 and 4.3, this means that we can direct our attention

to the variables sum and max that hold the useful results from the computations of these

loops. We avoid the complications that arise from the overly restrictive program view of

dependence and avoid the issue of explicitly expecting or modelling program properties

at the instruction-level (i.e., associativity).

4.5 Operation of Symbolic Execution

In this section, we provide an example of the steps followed during the symbolic

execution of a program. We use KLEE [44] as our symbolic execution engine. KLEE’s

architecture and design goals were presented in Chapter 3. We also gave a synopsis of

the symbolic execution literature related to this thesis in Chapter 2. Briefly, symbolic

execution allows the execution of multiple paths using symbolic input (i.e., a class of

values) while maintaining a symbolic state. The symbolic state of a program consists

of symbolic values bound to variables and constraints on them. Symbolic program

execution starts with no constraints and incrementally generates them upon branches

when their decisions are dependent on symbolic input.

Consider again the max reduction motivating example from Figure 4.3 and assume

that it operates on a small, statically known (i.e., concrete) array of values. Initially,

we represent the contents of variable max with the symbolic value x. Then, executing

the next program statement, such as the if condition if (max < 6) for state A, will

create two new states depending on whether the condition is true or not (state B and

E respectively in Figure 4.4). This will also update the maintained path constraints C,

program store S and next program statement P to be executed by the symbolic engine.

Whenever a branch is reached, the engine checks if the outcome on either side is feasible

before proceeding to explore it.

Note that each execution path has its own path constraint expression at the end

(i.e., upon loop exit). Symbolic execution is able to succinctly represent input classes

and, together with the initial input, it can provide a transfer function that determines

the current state. Another benefit of this approach is that it can handle a mix of both

concrete and symbolic values and move from one to the other depending on the path

64 4. Liveness-based Commutativity Analysis using Symbolic Execution

A

S = { max = x }

P = { if (max < 6) }

C = { true }

E

S = { max = x }

P = { if (max < 1) }

C = { x >= 6 }

B

S = { max = 6 }

P = { if (max < 1) }

C = { x < 6 }

x < 9 => max = 9

G

S = { max = x }

P = { if (max < 9) }

C = { x >= 6}

C

S = { max = 6 }

P = { if (max < 9) }

C = { x < 6 }

D

S = { max = 9 }

P = { }

C = { x < 9 }

H

S = { max = 9 }

P = { }

C = { x < 9 }

K

S = { max = x }

P = { }

C = { x >= 9 }

x < 9 => max = 9 x >= 9 => max = x

Error
C = { x >= 6 && x < 1}

Figure 4.4: Symbolic execution tree of loop from Figure 4.3. Each rectangle represents
an execution state consisting of the current value store S, the next program statement
to execute P and the path constraints C. Each tree level (except the top) corresponds
to a loop iteration invocation for the input array [6, 1, 9].

exploration and available values. For example, in Figure 4.4, the value of variable max is

set to a concrete value for paths A to D and A to H, while it remains symbolic at the end

of the path from A to K. Moreover, additional constraints can be inserted in the program

which can influence the construction of path constraints (e.g., the programmer might

know that a certain variable can never acquire a certain value down a specific path).

Lastly, a symbolic execution engine allows the evaluation of assertions, essentially

discovering classes of inputs that might cause an assertion to fail at a program point,

thereby avoiding the pitfalls of testing with random or hand-picked values.

KLEE is able to evaluate assertions by interpreting the standard C library call to the

assert function. It also offers intrinsics (special functions) to offer functionality that is

useful in the context of symbolic execution. We make use of the klee_make_symbolic

4.5. Operation of Symbolic Execution 65

function, which declares a variable as symbolic, and the klee_assume, which takes

a condition as an argument and is used to constrain the values of symbolic variables

down the path where it is inserted.

1 int reduce_max(int reverse_iteration_order, int *array, int size) {

2 unsigned i = 0;

3 int max = INT_MIN;

4
5 if (!reverse_iteration_order) {

6 /* original iteration order */
7 for (i = 0; i < size; ++i) {

8 if (max < array[i])

9 max = array[i];

10 }

11 } else {

12 /* reverse iteration order */
13 for (i = size - 1; i >= 0; --i) {

14 if (max < array[i])

15 max = array[i];

16 }

17 }

18
19 return max;

20 }

21
22 int main() {

23 int array[32];

24 int max1 = INT_MIN, max2 = INT_MIN;

25
26 klee_make_symbolic(array, sizeof(array), "array");

27
28 max1 = reduce_max(0, array, sizeof(array));

29 max2 = reduce_max(1, array, sizeof(array));

30
31 /* crosschecking */
32 assert(max1 == max2);

33
34 return 0;

35 }

Figure 4.5: Symbolic crosschecking example of the reduction loop from Figure 4.3.

66 4. Liveness-based Commutativity Analysis using Symbolic Execution

4.6 Symbolic Crosschecking of Commutativity

In Section 4.3 we described our notion of liveness-based commutativity for loops. We

consider a loop commutative if, after reordering its iterations, the values of its live-out

variables remain the same. In this section, we briefly describe how we utilize symbolic

execution to allow us to combine a mix of symbolic and, where available, concrete

values, and exploit its systematic exploration of execution paths for arbitrary sections of

code to test liveness-based commutativity conditions.

Our approach, inspired by [59], aims to execute a candidate loop using various

iteration orders and verify that the resulting contents of the live-out variables from these

reorderings are equivalent, i.e., crosscheck their results. Using our motivational max

reduction example from Figure 4.3, a possible implementation of this crosschecking

technique is presented in Figure 4.5.

The reduction operation has been wrapped in the function named reduce_max and

duplicated under each branch of the if/else conditional. This function returns an

integer value (i.e., the result of the reduction) and accepts three arguments: i) the input

integer array over which reduction is performed, ii) its size iii) reverse_iterator_-

order that controls the order of iteration.

The use of the main function is similar to that of a setup routine, often found in test

harnesses. The main starts with the declaration the input (array) and output variables

(max1, max2). The input is declared as symbolic (line 26) using KLEE’s intrinsic call.

Then, we call reduce_max twice in order to execute with the original iteration order

(line 28) and its reverse (line 29). Lastly, we compare the outcome of the two execution

orders (i.e., crosscheck) with an assertion (line 32) expecting their equality.

While this simple example captures the essence of our approach, it does not cover

concerns relating to aspects such as:

i) detecting and bounding the input values (i.e., the array variable),

ii) exploring paths, program coverage and scalability issues, and

iii) complex program features (e.g., global variables, pointers and aliasing, etc.).

Lastly, regarding our choice of crosschecking commutativity conditions against the

reverse iteration order of a loop, this is in response to the scalability concerns discussed

in Section 4.3 and it also relates with item ii) above. We discuss and explore these

concerns in the remainder of this chapter.

4.7. Symbolic Crosschecking Technique for Liveness-based Commutativity 67

Code Duplication
and

Output Comparison

Permutation
Array

Incorporation

Symbolic Inputs
and

Permutation Iterator
Constraints

Supporting Analyses
and

Transformations

Sequential
Loop

Concolic
Loop

Figure 4.6: Steps of our liveness-based commutativity technique using symbolic
execution.

4.7 Symbolic Crosschecking Technique for Liveness-
based Commutativity

The outline of our technique consists of the steps depicted in Figure 4.6. We also

provide source code examples of the transformations happening in each step to ease

comprehension in Figures 4.7 and 4.8. We conclude the section by describing and

addressing issues and limitations that directly affect our technique.

4.7.1 Approach

Our approach begins by applying liveness analysis on our candidate loop as presented

in Figure 4.7(a). During this step, we also perform a generalized iterator recognition

analysis in order to identify the loop statements that constitute its iterator [166]. Once the

live-out values are determined, the loop is duplicated and placed after the original loop

(line 10 in Figure 4.7(b)). The objective is to perform all the required transformations

over this duplicated loop which should implement the iteration reordering steps for

commutativity. Since we have the liveness information for both loops, we make the

necessary transformations to save the state of input and output variables for each loop

variable. Then, we add the assertions about the corresponding live-out variables of each

loop which should be satisfied after symbolic execution by KLEE.

Figure 4.7(a) depicts the original, unmodified candidate loop. This loop is extracted

into a separate function in order to sidestep the issue of limited code coverage associated

68 4. Liveness-based Commutativity Analysis using Symbolic Execution

1
2
3 for (i = 0; i < N; ++i)

4 sum += array[i];

5
6
7
8
9

10
11
12
13
14
15
16

(a) Original loop from Figure 4.2(a).

1 :int sum_shadow = sum;

2
3 for (size_t i = 0; i < N; ++i)

4 sum += array[i];

5
6 :int sum_ref = sum;

7 :sum = sum_shadow;

8
9

10 :for (size_t i = 0; i < N; ++i)

11 : sum += array[i];

12
13
14 :int sum_perm = sum;

15
16 :assert(sum_ref == sum_perm);

(b) Loop duplication and loop output com-
parison assertion.

Figure 4.7: Code output of the first two steps of our approach. The : sign indicates
a line added when compared to the code from the previous step.

with symbolic execution tools. However, for the description of our approach in this

section, we omit this step and assume the transformation has already taken place. We

discuss the decision to extract candidate loops in separate functions and concerns about

code coverage in Section 4.7.2.

Figure 4.7(b) presents the final code at the end of the first transformation step. The

duplicated loop is at line 10. The variables sum_shadow, sum_ref and sum_perm and

the associated assignments represent state saving before and after the execution of each

loop. They are the source-level approximation of the steps needed in the SSA form of

the LLVM IR. The variables sum_ref and sum_perm represent the result of the loop

from the programmer-intended and the permuted iteration order, respectively, which are

compared at the final assertion statement at line 16. The variable sum_shadow stores

the initial value of sum to restore it for the duplicated loop, so that both loops have the

same initial input values.

The last two steps of our approach are presented in Figure 4.8. We proceed by

introducing the code required to perform the permutation of iterations for the duplicated

loop (line 26). We create a permutation array (line 13) which is able to hold the

4.7. Symbolic Crosschecking Technique for Liveness-based Commutativity 69

iteration space of the loop under test. For this we utilize the information provided by

the generalized iterator recognition analysis performed at the first step of our approach.

We then transform the iteration control statements of the duplicated loop (marked with

the H sign) to use the contents of the permutation array to index each iteration.

The output of the last transformation step is presented in Figure 4.8(b). First, the

loop input and loop iterator variables, identified in the first step of our approach, are

made symbolic in lines 3 and 15, respectively. The array sizes are set to an arbitrary

upper bound since KLEE is unable to use symbolic sizes for memory allocations.

We further discuss this limitation in Section 4.7.3. Then, we apply constraints to the

permutation array between lines 19 and 24. The first klee_assume statement (line 20)

restricts each value in the permutation array within the iteration domain by requiring it

to be less than the upper bound. The second klee_assume statement (line 22) adds the

constraint which enforces the ordering of the array contents to be a permutation (i.e.,

pairwise different).

4.7.2 Dealing with Limited Code Coverage

Path selection and the strategy employed by a technique or a tool is a core operation in

symbolic execution (Chapter 2). These strategies prioritize the most promising paths to

be explored first, typically based on various heuristics and criteria that are tailored to

the purposes of a particular symbolic execution engine.

KLEE aims at maximizing code coverage (i.e., the number of LOC executed)

using distance metrics and assigning probabilities to branches based on their arity, path

length, times visited, etc. Missed paths result in possible erroneous conclusions, since

a symbolic execution engine cannot reason about paths which it does not process at

all [20].

In our approach, we take inspiration from the analysis used in [184] (although it

is aimed at detecting security vulnerabilities), which takes a compositional approach

examining first at a lower granularity (function level). It also resembles the dual

implementations (scalar and SIMD versions) subject to crosschecking used in the

technique described in [59]. We avoid starting symbolic execution from a program’s

default entry point (i.e., main function) and extract the loop nest under test into a

separate function, while still embedding it into the original application. This allows us

to:

i) use all the global context used in the loop and any other potential function calls,

70 4. Liveness-based Commutativity Analysis using Symbolic Execution

1 int sum_shadow = sum;

2
3
4
5
6
7 for (size_t i = 0; i < N; ++i)

8 sum += array[i];

9
10 int sum_ref = sum;

11 sum = sum_shadow;

12
13 :int p[N];

14
15
16
17
18
19
20
21
22
23
24
25
26 Hfor (int k = 0; k < N; ++k) {

27 : int i = p[k];

28 sum += array[i];

29 }

30
31 int sum_perm = sum;

32
33 assert(sum_ref == sum_perm);

(a) Insertion of permutation array.

1 int sum_shadow = sum;

2
3 :klee_make_symbolic(&array,

4 sizeof(array),

5 "a");

6
7 for (size_t i = 0; i < N; ++i)

8 sum += array[i];

9
10 int sum_ref = sum;

11 sum = sum_shadow;

12
13 int p[N];

14
15 :klee_make_symbolic(&p,

16 sizeof(p),

17 "p");

18
19 :for (int i = 0; i < N; i++) {

20 : klee_assume(p[i] < N);

21 : for (int j = i + 1; j < N; j++) {

22 : klee_assume(p[i] != p[j]);

23 : }

24 :}

25
26 for (int k = 0; k < N; ++k) {

27 int i = p[k];

28 sum += array[i];

29 }

30
31 int sum_perm = sum;

32
33 assert(sum_ref == sum_perm);

(b) Marking of symbolic inputs and applica-
tion permutation iterator constraints.

Figure 4.8: Code output of the last two steps of our approach. The : and H signs
indicate, respectively, a line added or modified when compared to the code from the
previous step.

4.7. Symbolic Crosschecking Technique for Liveness-based Commutativity 71

1 int N;

2 klee_make_symbolic(&N, sizeof(N), "N");

3 int array[N];

Figure 4.9: Allocation of an array using a symbolic value for its size.

and

ii) specifically select this extracted function as our program entry point (via KLEE’s

option -entry-point=FUNC_NAME).

4.7.3 Symbolic Sizes for Memory Allocations

Figure 4.9 presents a small code fragment in which the array’s size N is declared

as a symbolic value. As mentioned previously in Section 4.7.1, KLEE is not able to

handle memory allocations (i.e., both dynamic via malloc or static) that use a symbolic

value for their size specification. In these cases KLEE resorts to concretization of

the symbolic variable representing the allocation size, asking the constraint solver to

provide an example initial value, which it subsequently attempts to iteratively reduce

by issuing additional constraint queries. Hence, further symbolic execution uses the

concrete value for any following path constraints. In code coverage terms, this avoids

reporting errors that would not normally occur (i.e., false positives), but is liable to

potentially skip certain paths.

In our case, we explicitly select a size for any arrays that we need to represent,

utilizing information, where available, from LLVM’s implementation of recurrence

chains for integer induction variables [16] (i.e., scalar evolution). This compromise

might cause issues with the detection of loop parallelization when there is a data

dependence relation between a pair of memory locations and the dependence distance

is greater than the selected array allocation size. We have not been able to identify

such codes in the NPB suite, but a possible solution would be to perform the symbolic

execution runs multiple times with varying allocation sizes. We discuss challenges

posed by PLDS in Section 4.8.

There has been work on designing a symbolic-size memory allocation model and

implementing it in KLEE [233], however, the results have shown marginal improve-

ments due to path explosion problems resulting from these allocations. Other recent

work focuses on enhancing the modelling of dynamic memory allocations and reasoning

about them [135, 181] or improving constraint solving for array operations that are

72 4. Liveness-based Commutativity Analysis using Symbolic Execution

indexed by complex symbolic expressions [192].

4.7.4 Handling Floating-point Operations

The representation of floating-point operations in computers are finite approximations

of real numbers. Typically, these follow scientific format notations and attempt to

provide trade-offs between precision, range and storage space. Moreover, they handle

other aspects, such the representation of special number classes (e.g., zero, infinity,

Not a Number (NaN), etc.), rounding modes and exceptions occurring upon invalid

computations (e.g., division by zero). The details of various formats are usually in-

corporated into standards, such as the IEEE-754 standard [119]. These standards are

implemented by language implementers and processor manufacturers alike in order to

facilitate interoperability, conformance and reproducibility of results.

Hence, handling code that makes heavy use of floating-point arithmetic is strenuous

and error-prone. This is because common assumptions about real numbers do not

hold for floating-point (e.g., the associativity property), leading to subtle bugs that

may appear only under specific input values. These challenges extend to constraint

solvers, which symbolic execution engines rely upon, since it is extremely difficult

to model accurately these semantics in them. As a result, there are currently no such

stable constraint solvers available [59], with research in such a direction being only

preliminary [214, 162]. KLEE-FLOAT [162] is prototype, implemented as KLEE

extension, that provides initial support from floating-point arithmetic. However, as of

late 2020, it has not yet been incorporated into KLEE’s main development branch,

because of concerns on its performance impact, due to its extensive modifications to the

internal expression representation [42].

Nevertheless, we are interested in examining real-world programs coming from

various application domains (e.g., HPC) which make extensive use of floating-point

arithmetic. We have already discussed the approach taken by [59] in Chapter 2. This

does not attempt to solve the issue, but makes specific assumptions on the order of

operations. In addition, it requires extensions to the symbolic execution engine and

involves the programmer.

For our purposes, we sidestep the issue by transforming the selected code regions,

converting floating-point types to integers. This allows us to still utilize the ability

of constraint solvers to reason about ranges of values, while avoiding overly limiting

strategies that typical symbolic execution engines employ, such as selecting a single

4.8. Case Studies 73

random concrete value to carry on path exploration with. Given that this process risks

introducing various floating-point errors (e.g., division by zero exceptions), we involve

the programmer to make the required adjustments wherever possible. Note that in code

presented in the rest of the chapter, taken from benchmark suites, we show the original

types for simplicity.

4.8 Case Studies

In this section, we discuss the challenges of the crosschecking approach of our method-

ology using symbolic execution. We examine characteristic loops taken from real-world

programs of the NPB and OLDEN suites. These loops have been chosen due to their

known potential to accelerate the execution the programs which contain them when

parallelized.

4.8.1 Pointer-based Loops

4.8.1.1 Loop Conditions and Branching

Consider the loop presented in Figure 4.10 taken from the em3d program of the

OLDEN benchmark suite. We have described the high-level purpose of each benchmark

in Chapter 3. This loop iterates over a singly linked list of nodes and updates their

electric and magnetic field values (i.e., localnode->value, value, cur_value and

other_value variables in Figure 4.10). The loop moves to the next node (line 35) and

its condition (line 4) terminates the iteration when the pointer to the next node is NULL.

There are several difficulties with this code which center around the operation of

the loop and the representation of this dynamic (i.e., heap-allocated) data structure.

Symbolically representing the loop exit conditions is one of the most common causes

which trigger path explosion in symbolic execution tools. The objective of symbolic

execution is to maximize coverage and explore as many program paths as possible.

Hence, for a loop condition that involves symbolic values, a symbolic execution engine

creates two additional paths (i.e., one for when the condition is true and one when it is

false). This process continues for each subsequent loop iteration, thus the execution

engine faces an exponential blow up of path constraints and states (i.e., execution time

and memory).

Even if we set the number of iterations of the loop in Figure 4.10 to some specific

concrete value, this code fragment still faces path explosion challenges. This is because

74 4. Liveness-based Commutativity Analysis using Symbolic Execution

1 int i;

2 node_t *nodelist;

3
4 for (;nodelist;) {

5 int from_count;

6 double *other_value, cur_value,coeff, value;

7
8 cur_value = *nodelist->value;

9 from_count = nodelist->from_count - 1;

10
11 for (i = 0; i < from_count; i += 2) {

12 other_value = nodelist->from_values[i];

13 coeff = nodelist->coeffs[i];

14
15 if (other_value)

16 value = *other_value;

17 else

18 value = 0;

19
20 cur_value -= coeff * value;

21 other_value = nodelist->from_values[i + 1];

22 coeff = nodelist->coeffs[i];

23 . . .

24 cur_value -= coeff * value;

25 } // inner for loop end
26
27 if (i == from_count) {

28 other_value = nodelist->from_values[i];

29 coeff = nodelist->coeffs[i];

30 . . .

31 cur_value -= coeff * value;

32 }

33
34 *nodelist->value = cur_value;

35 nodelist = nodelist->next;

36 } // outer for loop end

Figure 4.10: Simplified code of the hottest loop in the em3d program from the Olden
benchmark suite [47]. The loop iterates over a singly linked list of objects in 3D space
and updates their electric and magnetic field values.

4.8. Case Studies 75

it also contains an inner loop (line 11) whose value we also want to represent symbol-

ically, since it is also an input value (i.e., from_count specifies the number of nodes

that affect the electromagnetic forces of the current node). For the same reasons, the

situation is also worsened by the use of branch constructs such as if/else statements.

The loop of Figure 4.10 contains four if/else statements dependent on symbolic

values (two of them have been obviated for brevity). More importantly, all these issues

are further exacerbated by our methodology’s requirement to permute iterations for

symbolically crosschecking commutativity (Section 4.7).

4.8.1.2 Memory Allocation and Initialization

Apart from the challenges due to control flow constructs, symbolic execution suffers

from another source of path explosion which deals with the representation of a program’s

memory. This is because representing a memory allocation symbolically (i.e., symbolic

pointers), will prompt the symbolic execution engine to explore all potential paths:

(i) either by forking upon any possible symbolic memory address a pointer might

be assigned, leading to path explosion, or (ii) by utilizing if/else-style expressions

to describe the path constraints, stressing the constraint solver with very large and

complicated formulas. As discussed in Section 4.7.3, a common simple alternative,

trading completeness for performance, which is adopted by KLEE, is to concretize the

pointer to a value that satisfies the current path constraint based on a strategy (e.g., the

maximum heap value the pointer may acquire). While this might suffice for specific

programs (i.e., minimal control flow), it is problematic for programs that make heavy

use of PLDSs. Considering Figure 4.10 again, the output of the program is dependent

on loading values via pointers (e.g., lines 12 and 16), since this program propagates

electromagnetic force values among neighbouring nodes.

An alternative approach to the allocation and initialization of PLDSs would be to

involve the user and resolve them manually. This could alleviate the aforementioned

problems with the use of pointers and heap allocations with programs that make basic

use of these data structures (e.g., ising [269], tree from OLDEN [47]). For instance,

Figure 4.11 shows the simple allocation pattern employed by ising (line 9), a small

(∼200 LOC) kernel which also performs particle physics simulation (Chapter 3). In

this code, it is straightforward to manually rewrite the single dynamic allocation using a

stack-based alternative. However, in practice, the allocation and initialization patterns

of PLDSs can be complex and require domain knowledge, since these data structures

provide a flexible representation and lend themselves naturally to particular domains.

76 4. Liveness-based Commutativity Analysis using Symbolic Execution

1 struct node {

2 uint32_t spins[ny];

3 struct node *next;

4 };

5 . . .

6 int main(int argc, char *argv[]) {

7 . . .

8 // allocate nodes
9 nodes = (struct node *)malloc(nodes_num * sizeof(struct node));

10 if (!nodes) { return -1; }

11 . . .

12 // set up the initial linked list
13 for (i = 0; i < nodes_num - 1; i++) {

14 for (j = 0; j < ny; j++)

15 nodes[i].spins[j] = (rand() < (theta * RAND_MAX)) ? 1 : 0;

16 nodes[i].next = &nodes[i + 1];

17 }

18 . . .

Figure 4.11: A simplified excerpt from the ising [269] kernel benchmark showing it
dynamic allocation (line 9) and subsequent initialization (lines 13 to 17).

Figure 4.12 depicts a limited view of the irregular bipartite graph data structure allocated

and configured by em3d. We notice that, although the traversal was iterating over a

linked list, the actual data structure and relationships between nodes are more intricate.

This can also be the case for initialization, as seen between lines Section 4.8.1.2 and

Section 4.8.1.2 of the ising kernel in Figure 4.11, where a specific algorithm, as required

by the simulation model, is used to set the initial values of the nodes. Lastly, as

discussed in Section 4.7.3, selecting specific concrete values for input size and inputs

can potentially misrepresent the data flow in a candidate loop, leading to false positives.

In general, the extent of the required user changes can range broadly from a local

function scope (e.g., a specific code fragment implementing an array access pattern) to

the whole program.

4.8.1.3 Pointer Analysis

Another challenge associated with the allocation of the required storage for our cross-

checking functions, is the efficacy of the pointer analysis which aims to identify and

disambiguate pointer accesses and heap storage locations. More importantly for our

4.8. Case Studies 77

Figure 4.12: A small instance of the main graph data structure in the em3d program
from the Olden benchmark suite [47] displaying the complex relationship between
nodes (based on [48]). E and H nodes represent electric and magnetic field values,
respectively. For simplicity, only edges from H nodes are shown.

implementation of liveness-based commutativity, it reduces the ability of our analysis

to discover and distinguish live-in and live-out values for the candidate loops and,

consequently, automatically select the correct symbolic inputs that could affect their

outcome. As discussed in Chapter 2, performing alias analysis in a static context is

difficult and limiting, which is compounded by:

i) the use of global variables and extensive pointer usage in PLDS-based applica-

tions, and

ii) the loss of contextual information that our technique suffers by extracting the

candidate loops into separate functions to avoid issues with code coverage (Sec-

tion 4.7.2).

For the former point, recent work on symbolic execution [135] has utilized state-of-the-

art alias analysis [239], but required extensive integration in the symbolic execution

engine of KLEE. Regarding our loop extraction, we could perform the alias analysis on

the original loop and propagate that information to its extracted version for crosscheck-

ing. Nevertheless, it is not clear how to compensate for the potential differences (i.e.,

varying path constraints and states) that could arise from different call path explorations

orders when symbolically executing the original loop.

4.8.1.4 Results on PLDS-based loops

78 4. Liveness-based Commutativity Analysis using Symbolic Execution

Table 4.1: Results from running KLEE on PLDS-based loops with two problem
sizes (N) and two different solver timeouts (in minutes). The Ë and 6 signs denote
successful and failed (i.e., execution exceeded timeout value) completion of each test
case, respectively.

Loop Program Problem Size

N = 300 N = 150

Timeout Timeout

30mins 60mins 30mins 60mins

compute_nodes emd3d 6 6 6 6

BlueRule mst 6 6 6 6

walksub bh 6 6 6 6

perimeter perimeter 6 6 6 6

treeadd treeadd 6 6 6 6

ising main 6 6 6 6

spmatmat main 6 6 6 6

INTERF water-spatial 6 6 6 6

We proceed to manually amend the issues with memory allocations, selecting

symbolic inputs and discerning liveness information, as identified in Section 4.8.1.2,

for the extracted candidate loops from the OLDEN benchmark suite and other sources,

presented in Table 4.1. For each of the candidate loops we present four results, two

different problem sizes and two different KLEE timeout values. The problem size

(denoted as N in Table 4.1) represents the iteration trip count for each loop. The choice

of N was based on a compromise between the actual input sizes for each benchmark

and various timeouts used in the evaluation of symbolic execution engines from recent

literature [279]. Loops can incur the exploration of numerous paths and the decision of

which loop body variables to introduce as symbolic can affect path exploration strategies.

Hence, following the practice in previous work [279, 220], we select problem size and

timeout values that aim to: i) allow path exploration to detect potential cross-iteration

dependences of within certain iteration distances, and ii) provide execution time for

symbolic execution engines to explore the opened paths. The timeout value sets an upper

time limit for KLEE and its constraint solver to finish execution, otherwise symbolic

execution is aborted. The selected timeout values are chosen based on suggestions

in [279] where the performance of several execution engines (including KLEE) is

4.8. Case Studies 79

1 . . .

2 for (i = 1; i <= grid_points[0]-2; i++) {

3 for (j = 0; j <= grid_points[1]-1; j++) {

4 ru1 = c3c4*rho_i[k][j][i];

5 cv[j] = vs[k][j][i];

6 rhoq[j] = max(max(dy3+con43*ru1, dy5+c1c5*ru1), max(dymax+ru1, dy1));

7 }

8
9 for (j = 1; j <= grid_points[1]-2; j++) {

10 lhs[j][i][0] = 0.0;

11 lhs[j][i][1] = -dtty2 * cv[j-1] - dtty1 * rhoq[j-1];

12 lhs[j][i][2] = 1.0 + c2dtty1 * rhoq[j];

13 lhs[j][i][3] = dtty2 * cv[j+1] - dtty1 * rhoq[j+1];

14 lhs[j][i][4] = 0.0;

15 }

16 }

17 . . .

Figure 4.13: A reduced excerpt from the SP program of the NPB suite showing the
y_solve.c:58 (i.e., line 58 in source file y_solve.c) loop. This loop performs part of
the operations required for matrix factorization. The upper bounds of each (outer and
inner) loop are highlighted.

examined.

We note that none of the selected loops in Table 4.1 is able to successfully terminate

in any combination of the selected execution configurations. These findings corroborate

with results from other recent work on the limitations of symbolic execution [279, 252]

and lead us to consider that it is currently not able to attain practical results in the

aforementioned experimental settings. However, our study has allowed us to identify

fundamental issues that need to be addressed before tackling the parallelization of

PLDS-based loop constructs. In practice, even if the symbolic execution reaches a

determination regarding the commutativity of the examined loops, we would still need

to involve the user, as it is uncertain if results could be generalized over all inputs or

even the full specific input set provided by the benchmarks (see Chapter 2).

4.8.2 Array-based Loops

Figure 4.13 presents a loop from the SP program of NPB suite. This is an inner loop

80 4. Liveness-based Commutativity Analysis using Symbolic Execution

and contained in a function that performs the matrix factorization computation of a PDE

solver. We notice that all the loops are following a regular for-style iteration idiom,

commonly found in HPC and other scientific codes which deal with systems of linear

algebra and PDE equations [7]. These programs make extensive use of multidimensional

arrays and employ deeply nested loops to iterate over them. The loops use an integer

induction variable as their iterator, and are typically normalized [7] (i.e., running from

an index of 0 or 1 up to some upper bound, using a step increment of 1).

Despite using a simpler data structure (i.e., arrays) and loop iteration idiom, this

loop also suffers from path explosion limitations, which is due to the same reasons as

in the case of PLDS-based loops detailed in Section 4.8.1. In Figure 4.13, the upper

bounds for all three loops in the loop nest are directly dependent on the program’s input,

stored in different locations of the grid_points array (lines 2, 3 and 9). Lastly, notice

the calls to the max function from the LIBM math library (line 6). External function

calls are another source of path explosion [279], however, in this case KLEE’s system

call API model implements such standard library functions since it includes a modified

UCLIBC version [254, 44]. Nevertheless, function calls remain problematic since they

potentially include further loop constructs or branching themselves which can further

exacerbate the overhead of symbolic execution.

As we have already discussed when we examined PLDS-based loops, dynamic

allocation is another program feature that can potentially lead to path explosion. In

the case of the NPB, the arrays for all programs in the suite (except DC) are allocated

statically as global variables. While this obviates the need to compensate with dynamic

allocation, it still skips any application-specific initialization, typically carried out in

the default program entry function (i.e., main). We have discussed the implications of

avoiding the programmer-intended initialization in Section 4.8.1.

In terms of pointer analysis, the required disambiguation is less complicated than

that necessary to analyze PLDS-based loops. This is also due to the extensive use

of global variables for the declaration of each program’s data structures and their

subsequent direct reference in all the functions where they are accessed. Thus, the use

of pointers, which compounds aliasing effects, is fairly limited in the NPB programs

(with the notable exception of DC which employs a tree-like data structure). However,

considering that the suite was originally written in Fortran, this idiomatic style seems

to be a residual trait from using that programming language and it might not necessarily

represent other programs which make extensive use of array-based loops.

4.8. Case Studies 81

Table 4.2: Results from running KLEE on array-based loops from the NPB suite with
two problem sizes (N) and two different solver timeouts (in minutes). The Ë and 6

signs denote successful and failed (i.e., execution exceeded timeout value) completion
of each test case, respectively. The loop names follow a filename:line_number format
convention.

Loop Program Problem Size

N = 300 N = 150

Timeout Timeout

30mins 60mins 30mins 60mins

y_solve.c:397 BT 6 6 6 6

z_solve.c:151 BT 6 6 6 6

cg.c:460 CG 6 6 6 6

mg.c:550 MG 6 6 6 6

rhs.c:179 SP 6 6 6 6

y_solve.c:58 SP 6 6 6 6

4.8.2.1 Results on Array-based loops

Similarly to the PLDS-based loop in Section 4.8.1, we manually amend the issues

identified, for the extracted candidate loops from the NPB suite, presented in Table 4.2.

For each of the candidate loops we present four results, two different problem allocation

sizes and two different KLEE timeout values. Again, we observe that none of the

selected loops in Table 4.2 is able to successfully terminate in any combination of the

selected execution configurations. Despite using simpler programming constructs than

programs containing PLDSs, the loops in the NPB suite lead to the same challenges for

symbolic execution.

Considering the results from both loop iteration idioms (i.e., over arrays and PLDSs),

we notice that program properties emerge from different uses of programming constructs

which can have adverse effects and generate varying tensions on symbolic execution and

associated analyses. The use of profiling, which can sample specific program properties

and information during (concrete) execution, is a potential avenue that could alleviate

the issues identified in this section and provide a more widely applicable approach.

82 4. Liveness-based Commutativity Analysis using Symbolic Execution

4.9 Summary and Conclusions

In this chapter we have presented our notion of commutativity based on liveness

information for parallelization. This definition of commutativity is in turn built upon

well-understood concepts from compiler theory: liveness and SESE regions. We

have also introduced an adaptation of this concept for loop constructs, since often

these are code regions where applications spend most of their execution time. We

then sought to explore expressing our liveness-based commutativity in a practical

analysis. Consequently, we apply a method based on symbolic execution to determine

commutativity conditions. Symbolic execution allows expressing inputs in a condensed

manner, while also being able to combine concrete values, in order to generate and test

conditions on program properties. We presented a procedure that integrates liveness-

based commutativity on top of a symbolic execution engine and explored its efficacy on

loops taken from the NPB suite, the OLDEN benchmark suite and other sources. We

have identified several non-trivial challenges and obstacles that limit the practical use

of such an approach on real-world applications. We discuss possible ways to mitigate

some of these shortcomings in Chapter 7.

Our findings imply that despite the recent progress of symbolic execution techniques,

such an analysis is still unlikely to handle realistic problems due to a combinatorial

explosion of possible permutations and inputs. Taking these lessons forward, we seek

to alleviate some of these shortcomings by leveraging information extracted from actual

(i.e., with fully concrete inputs) program execution. One such potential route is the use

of profiling where a candidate program is instrumented, executed and sampled using a

specific data set as input.

In the next chapter, we develop a novel analysis founded on our notion of liveness-

based commutativity for the parallelization of loops. To this end, we utilize profiling

information to test commutativity and explore the precision of the results when applying

our proposed approach on complex, real-world benchmarks along with their accom-

panied data sets (albeit not exhaustive inputs). We also investigate the potency of the

parallelism detection and mapping that it offers when compared against applications

manually parallelized by domain experts.

Chapter 5
Loop Parallelization using

Dynamic Commutativity Analysis

In the previous chapter we presented the concept of liveness-based commutativity and

explored its application in a static and limited hybrid context by abstracting the input

sets, exploring the associated challenges with an underlying technique like symbolic

execution. In this chapter, we investigate the application of liveness-based commutativity

in a dynamic context during the execution of programs with user provided input sets.

We develop a novel Dynamic Commutativity Analysis (DCA) for identifying paral-

lelizable loops by combining static analysis and profiling. We have used a wide collec-

tion of benchmarks, representing HPC applications which utilize regular array-based

accesses from the NAS Parallel Benchmark suite [19] along with a wide collection irreg-

ular pointer-based codes. The results of the detection performance and multi-threaded

exploitation of the discovered parallel loops is investigated and compared against both

dynamic and static parallelization approaches.

This chapter starts with Section 5.1 which introduces the background for our study,

continues with our motivation in Section 5.2 and reassessment of the commutativity

analysis definitions from the previous chapter in Section 5.3. Section 5.4 describes DCA

and Section 5.5 evaluates our approach with an empirical study. Section 5.6 summarizes

and concludes.

5.1 Introduction

As discussed in the previous chapter and Chapter 2, static analyses are restricted by

certain limitations when a compiler is trying to deduce if various properties of a code

83

84 5. Loop Parallelization using Dynamic Commutativity Analysis

section hold. The same applies when using hybrid contexts, as symbolic execution does,

where features of the input are modelled as classes of symbols and thus represented in

an abstract and comprehensive manner. This has proven useful in determining properties

for questions relating to an application’s robustness against vulnerabilities or its testing

coverage.

However, for program analyses which aim to exploit latent performance, such as

the automatic parallelization of legacy sequential codes, researchers have moved to the

use of runtime information to supplement static analyses [14, 81, 285, 248, 160, 144,

143, 127, 262, 219, 282, 283, 237, 74, 33, 26, 205, 277, 163], presented in more detail

in Chapter 2.

Using a subset of all potential inputs, these analyses are not guaranteed to be correct

for every possible workload. In practice, however, it has been shown that they can be

applied without sacrificing program safety [248, 160, 76]. The most common tactics to

address any safety concerns are to: i) either, involve the user at various stages in order

to confirm the results and provide auxiliary feedback [161, 41, 288, 248], or ii) generate

and embed in the program special preconditions that can be checked during execution,

where a safe execution path is chosen when these assumptions are not met [71].

In addition to the above, automatic parallelization methods have been heavily

relying on dependence analysis for decades. Thus, a notable amount of effort has been

channeled to improve the precision of dependence analyses techniques. However, recent

work has shown that dependence analysis, even when informed with perfect profiling

information, is inherently unable to identify any further latent parallelism [180].

In this chapter, our objective is to explore the use of profiling information along with

the notion of commutativity that we presented in the previous chapter. More specifically

we are interested in explore the following properties:

i) the capability of liveness-based commutativity to discover hidden parallelism in

loops when used with profiling information from specific input sets,

ii) the efficacy of parallelism when parallelization is performed, and

iii) the safety of the proposed transformations.

To this end, in this chapter, we develop a novel, hybrid (static and dynamic) Dynamic

Commutativity Analysis (DCA) for the discovery of profitable parallelism in sequential

legacy code. We apply DCA to the sequential version of the NPB suite (almost 1400

loops in non-trivial scientific applications) and a wide range of PLDS-based loops. For

5.2. Motivating Examples 85

1 for (i = 0; i < N; ++i) {

2 array[i]++;

3
4 }

(a) Array-based loop.

1 while (ptr) {

2 ptr->val++;

3 ptr = ptr->next;

4 }

(b) PLDS-based loop.

Figure 5.1: Simple loops that perform the same map operation. The right-hand side
version defeats dependence analysis.

each loop nest, we collate the reported parallelizability and single-threaded execution

time coverage with five other techniques (three static and two dynamic). We then

proceed to parallelize the discovered loops using a common parallel code generation

scheme (OPENMP) and compare the obtained speedups. We also assess the accuracy

of the predictions produced by DCA. Lastly, since the NPB suite provides an already

manually parallelized version, we examine how DCA’s parallelization matches up

against a human expert for each program.

5.2 Motivating Examples

Consider the simple loop traversal over an array in Figure 5.1(a), performing a map

operation written in C. Such patterns can readily be detected as parallel using data

dependences to reason about the independence of array accesses across the iteration

space of this loop. However, using a different data structure to write what is in essence

the same trivial code, shown in Figure 5.1(b), defeats dependence analysis.

Dependence analysis tries to establish the read and write operations that occur at a

program’s memory locations and associate these locations with various relations (e.g.,

RAW,WAR and WAW dependences). In Figure 5.1(b), the ptr pointer is being read

in order to update the ptr->val data element of each node in the linked list. More

crucially, ptr itself is being updated (i.e., read and written) to point to the next node for

processing by the next loop iteration. This creates a cross-iteration RAW dependence

on ptr which dependence analysis finds present even when profiling information is

used. Hence, in this case dependence analysis is inherently incapable of determining

the independence of iterations and cannot further propose this loop as a valid candidate

for parallelization.

While there have been various attempts to deal with such codes (e.g., pattern

86 5. Loop Parallelization using Dynamic Commutativity Analysis

1 Graph *g;

2 int *dist;

3 WorkList *frontier, *next_frontier;

4 . . .

5 push(frontier, g->adjacent[source]);

6 /* while there is still work in the frontier */
7 while (frontier->size) {

8 /* top down step */
9 while (frontier->size) {

10 /* remove node from worklist for processing */
11 current = pop(frontier);

12 /* go over its adjacent nodes */
13 Node *n = current->next;

14 while (n) {

15 if (dist[n->vertex] > dist[current->vertex]) {

16 dist[n->vertex] = dist[current->vertex] + 1;

17 /* this node's distance was updated,
18 * so in turn we need to recheck its neighbors */
19 push(next_frontier, n);

20 }

21 n = n->next;

22 } /* end of adjacent node loop */
23 } /* end of top down step */
24 swap(frontier, next_frontier);

25 } /* end of worklist loop */

Figure 5.2: A BFS implementation from Lonestar [149] employing complex and
irregular PLDS-based loop traversals.

matching), they have been proven inflexible and very limited against real programs.

Consider Figure 5.2 that shows a Breadth-First Search (BFS) graph traversal from the

Lonestar benchmark suite [149]. BFS employs a worklist to iterate over all the nodes

of a graph, traverses the adjacent nodes for each of them and conditionally updates

their distance from the selected source node. Its result is the array dist containing the

distance of each node from source.

The issues with parallelization of the innermost loop in Figure 5.2 (lines 14–20)

are similar to those discussed above. In addition, dependences between loop iterations

induced by the dynamically updated frontier and next_frontier worklists via the

push and pop operations prevent conventional parallelization of the top-down step.

5.3. Revisiting Liveness-based Loop Commutativity Analysis 87

This motivates the development of a new method that extends the automatic detection

of parallelizable code in real-world programs, addressing some of the aforementioned

problems. To this end, we propose Dynamic Commutativity Analysis (DCA); an

analysis which utilizes liveness-based commutativity, instead of dependences, to detect

potentially parallel loops. By using the live-out variables of a loop (i.e., those consumed

later in the program), DCA focuses on the parts of the computation that have an impact

on its outcome, irrespective of its traversal idiom. Moreover, using liveness, DCA

observes if the outcome remains unaffected when permuting the iterations of a loop,

thus strongly suggesting that this loop’s iterations can be executed in any order, or in

fact in parallel with appropriate synchronization. In other words, we say that DCA

detects the loop as commutative.

For example in Figure 5.2, the significant result of the outermost loop is the variable

dist, which is indeed found as live-out after line 25. In this case, DCA determines

that this update loop (lines 9–23) is commutative and can subsequently be executed

in parallel. This is because processing of the current nodes produces the same dist

values, regardless of the order it occurs.

Overall, DCA detects more potential parallelism in complex and diverse loops in a

uniform manner, overcoming obstacles which thwart dependence analysis.

5.3 Revisiting Liveness-based Loop Commutativity
Analysis

We have already presented the basic concept of our liveness-based commutativity and our

progressive formalization for loops which we termed loop commutativity and liveness-

based loop commutativity. We then proceeded to qualify this definition depending on

the number of permuted input sets used when comparing the corresponding live-out sets,

inspiring the definitions of live-commutativity, when limiting the comparison to an input

and a permutation of it, and universal live-commutativity, when comparing all inputs

and all possible permutations. We continue in this chapter to refer to live-commutativity

as just commutativity, unless other explicitly stated.

Different loop commutativity analyses with varying scalability-precision trade-offs

can be naturally derived from the above definitions. Universal commutativity of a loop

can be examined statically by making the input and permutation domains symbolic and

proving that no combination of input and permutation leads to a different values for the

88 5. Loop Parallelization using Dynamic Commutativity Analysis

live-out variables of the loop.

As we concluded in the previous chapter, despite the recent progress of symbolic

execution techniques [20], such an analysis is still unlikely to handle realistic problems,

due to a combinatorial explosion of possible permutations and inputs.

This chapter takes a more pragmatic approach and studies the problem of detecting

commutative loops dynamically. Interestingly, and despite the fundamental lack of

guarantees offered by dynamic analysis, the results reported in this chapter show

that in practice there is a close correspondence between commutative and universally

commutative loops.

5.3.1 Applicability of Parallelization

Identifying a code region (i.e., function, loop, etc.) as commutative does not immediately

guarantee its correct parallel execution. Being able to execute two regions in any order

requires the introduction of access synchronization to shared state. For example, in

the case the motivating example in Figure 5.1(b) or the one from Figure 4.2(a) (in the

previous chapter), the integrity of the accesses to the shared variables ptr and sum,

respectively, has to be maintained. This can be accomplished with access protection

mechanisms (e.g., barriers or locks) or other code transformations (e.g., privatization).

The separability-based commutativity model in [211] already fulfills a lot of the

requirements for parallelization as a natural consequence of its strict computation model

and also employs a series of conservative checks to guarantee the safe parallelization

of a method. For output-based commutativity [3], the step to parallelism is not clearly

described and the evaluation takes place in a simulation environment with infinite-issue

capability.

At this stage in our approach, we combine DCA’s profile-guided nature with reem-

ployment of data dependences to extract parallelism and guide synchronization, similarly

to [248]. Wherever safe parallelization cannot be conclusively determined, we turn to

the user for final approval (Section 5.4.4).

5.4 Dynamic Commutativity Analysis

Our analysis consists of a static and a dynamic stage. Figure 5.3 depicts the components

of our approach. We have also implemented a parallelization stage to evaluate the

effectiveness of our scheme. To easily follow DCA’s operation, we provide examples in

5.4. Dynamic Commutativity Analysis 89

DCA
Execution

Order

Sequential Program

St
at

ic
 S

ta
ge

Instrumented Program

D
yn

am
ic

 S
ta

ge

Per Loop

Parallel Program

Iterator/Payload Separation

Payload Outlining

Iterator Linearization

Commutativity Testing
Instrumentation

Per Loop

Parallelization

D
C

A
 R

un
tim

e

Iterator Recording

Live-out Verification

Original
Execution

Order

Figure 5.3: Overview of the static and dynamic stages of Dynamic Commutativity
Analysis. The interactions with the runtime marked as I and π(I) represent an iteration
set and a permutation of it respectively.

90 5. Loop Parallelization using Dynamic Commutativity Analysis

1 for (i = 0; i < N; ++i) {

2 array[i]++;

3
4 }

1 while (ptr) {

2 ptr->val++;

3 ptr = ptr->next;

4 }

(a) Iterator/Payload Separation.

1 for (i = 0; i < N; ++i) {

2 payload1(i, array);

3
4 }

5
6 void

7 payload1(int it, int *v1) {

8 v1[it]++;

9 }

1 while (ptr) {

2 payload2(ptr);

3 ptr = ptr->next;

4 }

5
6 void

7 payload2(struct node *it) {

8 it->val++;

9 }

(b) Payload Outlining.

Figure 5.4: Code output for the first 2 intermediate steps (top to bottom) of DCA’s
static stage for an array-based (left) and a PLDS-based loop (right) respectively.

C of the intermediate code generated by each step in Figures 5.4 and 5.5, for the simple

loops of Figure 5.1.

5.4.1 Static Stage

Our analysis goes over the source of an input program and selects loops for further

processing. For every loop nest, each loop is considered separately by a series of

compiler passes operating on intermediate representation code.

5.4.1.1 Iterator/Payload Separation

One of the crucial aspects of this stage is our ability to detect which parts of the loop

form the iterator code and which the actual computation, i.e., the payload, using a

generalized iterator recognition analysis [166]. Intuitively, this analysis identifies the

set of variables that are updated on each iteration and determine if execution continues

in the loop body or exits out of it.

This allows the static stage of DCA to tackle a range of non-affine loop iterators,

5.4. Dynamic Commutativity Analysis 91

while avoiding the use of a limited ad hoc scheme. We have already discussed the

challenges of dealing with a wider range of iterator styles in Section 5.2. Figure 5.4(a)

highlights which lines would be identified and separated as iterator from the code of

Figure 5.1.

5.4.1.2 Payload Outlining

Next, we outline the payload part of the loop in a separate function. This allows

us easier handling of the code section in subsequent stages and in particular during

execution when coupled with our instrumentation. We identify the live-in, live-out and

live-through variables of the outlined region and provide them to the outlined function

as arguments. By construction the iterator values are consumed as live-in variables.

Figure 5.4(b) shows the resulting code after outlining.

5.4.1.3 Iterator Linearization

We proceed by instrumenting the identified iterator code in order to extract its values

during profiling. This process linearizes our subsequent accesses to values of the iterator

and is similar in spirit to the linearization described in [258]. Our variant is able to

tackle a wider range of loop idioms and data structure traversals as it is powered by a

generalized iterator recognition.

Figure 5.5(a) shows the code from Figure 5.4(b) after inserting calls to the DCA

runtime library. While this is depicted in a separate standalone loop (lines 1–4) for

simplicity, in practice it can be accomplished by proper placement of these calls in the

loop header when operating with low-level intermediate representation code.

5.4.1.4 Commutativity Testing Instrumentation

This stage concludes by placing additional calls to our runtime, enabling commutativity

testing of the loop (Figure 5.5(b)). These calls serve two basic purposes: (i) permute

the order of the loop iterations, and (ii) verify the commutativity property of the tested

loop. Their operation during execution is discussed in detail in the next section. The

final output is an instrumented program along with auxiliary reports on the loops that

were transformed.

92 5. Loop Parallelization using Dynamic Commutativity Analysis

1 for (i = 0; i < N; ++i) {

2 rt_iterator_linearize(i);

3
4 }

5
6 for (i = 0; i < N; ++i) {

7 payload1(i, array);

8
9 }

10
11 void

12 payload1(int it, int *v1) {

13 v1[it]++;

14 }

1 while (ptr) {

2 rt_iterator_linearize(ptr);

3 ptr = ptr->next;

4 }

5
6 while (ptr) {

7 payload2(ptr);

8 ptr = ptr->next;

9 }

10
11 void

12 payload2(struct node *it) {

13 it->val++;

14 }

(a) Iterator Linearization.

1 for (i = 0; i < N; ++i) {

2 rt_iterator_linearize(i);

3
4 }

5
6 rt_iterator_permute();

7
8 while(rt_iterator_next()) {

9 payload1(

10 rt_iterator_get(),

11 array);

12 }

13 . . .

14 rt_verify();

15 void

16 payload1(int it, int *v1) {

17 v1[it]++;

18 }

1 while (ptr) {

2 rt_iterator_linearize(ptr);

3 ptr = ptr->next;

4 }

5
6 rt_iterator_permute();

7
8 while(rt_iterator_next()) {

9 payload2(

10 rt_iterator_get()

11);

12 }

13 . . .

14 rt_verify();

15 void

16 payload2(struct node *it) {

17 it->val++;

18 }

(b) Commutativity Testing Instrumentation.

Figure 5.5: Code output for the last 2 intermediate steps (top to bottom) of DCA’s
static stage for an array-based (left) and a PLDS-based loop (right) respectively.

5.4. Dynamic Commutativity Analysis 93

5.4.2 Dynamic Stage

During the dynamic stage of our analysis, the instrumented program produced by the

static stage is executed multiple times by our runtime library. The goal of this stage,

in the spirit of Section 4.3, is to determine commutativity for a loop by executing its

iterations in different orders and comparing the resulting outcome with the one obtained

by the original, programmer-intended execution order (i.e., a “golden” reference).

5.4.2.1 Iterator Recording

Once a DCA-transformed loop is reached during execution, the linearization step

records the iterator values, using a random-access sequence container. Next, a set

of permutation schedules is selected which control the exact reordering of the loop

iterations. The originally prescribed order is executed by default for every loop under

test since the output is required as a reference for comparing against the subsequent

permuted executions.

5.4.2.2 DCA Execution

Exhaustively executing, using input data from the benchmark suite, all possible per-

mutations for a set of iterator values is exponentially expensive for loops with a large

trip count. Therefore, further addressing the scalability issues discussed in Section 4.3,

we provide reduced permutation presets (e.g., reverse or a configurable number of

random shuffles). This means accepting a chance of missing a commutativity violating

permutation, i.e., that our dynamic analysis is generally not safe. In our experiments in

this chapter, the configurable number of random shuffles was set to 100, adjusted for

the input class of the benchmarks. For example, in the case of the EP microbenchmark

from the NPB suite, the main top-level loop performs 216 (i.e., 65536) iterations using

input class C. Fully testing commutativity of this single outer loop, with the specific

input set, would require checking all 216! iterator order permutations. There is no clear

indication of the required number of random shuffles to provide sufficient accuracy

in our profiling, since a single violation would classify a loop as not commutative.

However, as evidenced and discussed in Section 5.5.4, this trade-off is still surprisingly

powerful in practice.

94 5. Loop Parallelization using Dynamic Commutativity Analysis

5.4.2.3 Live-out Verification

The final step of the analysis tests the candidate loop for commutativity. After the

execution of loops in the preselected iteration permutation schedules is complete, the

runtime compares the produced output computation (i.e., live-outs). If the output of at

least one permuted execution differs from the original output (“golden” reference) we

mark the loop as non-commutative.

5.4.3 Parallelization

While the focus of this work is mainly on the detection of parallelizable loops, we have

also implemented a simple parallel code generation scheme to allow evaluation. We

achieve significant speedups for PLDS-based loops (Section 5.5.2.2).

Our strategy is limited at loop-level parallelism and employs the same techniques as

described in [248] concerning identification of variables for privatization and reduction

operations. Profiling information is used to detect privatizable variables per loop-

level by following the reader and writer statements for each memory location. The

exploitation of reduction operations uses the approach outlined in [195]. The produced

parallel code uses the OPENMP framework which lends itself naturally and easily to this

scope of parallelism, since it does not involve any other high-level code restructuring.

For PLDS loops, we adapt these techniques by traversing the elements of the data

structure ahead-of-time and place the visited nodes in a dynamically allocated array.

Then, we proceed to execute the generated array in parallel using similar OPENMP

pragmas as with array-based loops described above. Despite incurring additional time

and space overheads from the double traversal and the use of a helper array, our approach

still obtains speedups as discussed in Section 5.5.2.3 and Fig. 5.7. Adopting a less naive

parallelization mapping scheme, such as the one presented in [85], could contribute in

further alleviating the associated costs.

5.4.4 Safety

As already mentioned in Chapter 4 and Section 5.1, profile-guided parallelization

cannot inherently guarantee correctness for every potential concrete input. However, it

overcomes the overly conservative nature of static analysis, unlocking more potential

parallelism. In our system, we let the user approve the cases where correct parallelization

is not conclusively guaranteed.

5.5. Empirical Evaluation 95

In this work, we have also studied the rate of loop misclassification (false posi-

tives) and found that DCA correctly identifies all the reported loops as parallelizable

(Section 5.5.4) for the specific inputs. This agrees with prior research which shows

that the occurrence or absence of potentially parallelization-inhibiting dependences

are fairly stable across different program inputs [76]. It is unclear how these results

could be generalized for other inputs (e.g., for classes or ranges of input values) since

for dynamically determined dependences, only a single counterexample is suffices to

inhibit parallelization transformations. As noted above, we have used inputs provided

with the benchmark suites.

5.4.5 Challenges and Limitations

Candidate loops can be deeply nested, thus we explore commutative loops hierarchically

in a top-down fashion, using one loop per test invocation. We mitigate this by executing

several test instances at the same time.

A candidate loop can appear in different execution contexts (e.g., different call

sites of containing function) during application runtime. Loop candidates can exhibit

commutativity in some execution contexts, but not in others. Currently, our analysis is

not context-sensitive. We leave this for future work.

Execution of regions in permuted order can lead to unpredictable behavior if those

loops are not commutative. We reliably detect these situations.

Generally, we assume that candidate loops do not contain I/O statements or produce

any other side effects not captured by liveness (volatile memory accesses, etc.). Any

such loops are excluded during the selection step of the static stage.

5.5 Empirical Evaluation

We evaluate DCA’s efficacy and the performance obtained by simple parallelization

of the detected commutative loops against dynamic (Section 5.5.2) and static (Sec-

tion 5.5.3) approaches. We also study aspects of its profitability and precision (Sec-

tion 5.5.4), along with its potency at the loop scope and beyond against expert paral-

lelization (Section 5.5.5).

96 5. Loop Parallelization using Dynamic Commutativity Analysis

dynamic

array-basedpointer-based

Loop
Idiom

Analysis
Type

static

Idioms

Polly

ICC

Dependence
Profiling

DiscoPoP

DSWP
variants

Galois
ASC

Partitioning
Apollo

(SNU NPB 3.3)(collection from wide range
of benchmark suites)

DCA

Figure 5.6: Overview of the scope of the baseline techniques used to compare with
with DCA. We classify them based on their use of dynamic information (y-axis) and
the loop idioms which are able to operate on (x-axis). DCA is able to handle both
array and PLDS-based loops using the same analysis, employing static and dynamic
compiler/runtime stages.

5.5.1 Experimental Setup

We provide a summary of benchmarks, compilers and other configuration elements of

our setup for the evaluation described in the remainder of this chapter. We give a more

detailed overview of the below compilers and benchmarks in Chapter 3.

Benchmarks. We use the NAS Parallel Benchmark (NPB) suite [19] (NPB 3.3, SNU

1.0.3) to evaluate array-based loops. The suite contains ten programs with a total of 1397

loops (listed in Tables 5.1 and 5.3). The NPB programs implement numerical analysis

kernels, in both sequential and OPENMP versions, written in C (originally derived

from FORTRAN). We also use a diverse selection of programs that employ PLDS-based

loops drawn from several benchmark suites, listed in detail in Table 5.2. Olden [47]

benchmarks employing recursion were rewritten in imperative form as in [203].

Inputs. We use input workload class B for NPB programs, except for MG and IS

which use class C. This is due to the very short execution time of MG and IS when using

input of class B on our hardware platform. For the selection of programs with PLDS

loops, we use the biggest workload, when available, otherwise we provide a custom

workload to also enable a long-running execution for the sequential version.

5.5. Empirical Evaluation 97

Compilers. DCA was prototyped on the LLVM compiler infrastructure [156]. We

also use five state-of-the-art dependence-based tools as a baseline to compare with our

approach. These are:

• DEPENDENCE PROFILING [248]: a profile-driven dependence-based parallelism

detection approach targeting loops.

• DISCOPOP [160]: another profile-driven dependence-based approach aiming at code

regions of varying granularity.

• IDIOMS [96]: a constraint-based analysis focusing on the detection of complex

reduction and histogram operations.

• POLLY [100]: a polyhedral transformation framework.

• INTEL ICC [120]: a mature industrial compiler that uses data dependence analysis

and supports auto-parallelization.

IDIOMS and POLLY are also implemented on LLVM, which allows a loop-by-loop com-

parison. ICC was also used to obtain loop profiling information across the benchmark

programs that we assessed and the INTEL OPENMP runtime library for all parallelized

execution runs. The DISCOPOP results are taken from the literature since the tool

was not available at the time of writing [160]. Although DISCOPOP’s authors, after

private communication, kindly provided us with raw data from their experiments, the

discrepancies in the results are due to differences in the produced LLVM IR (e.g.,

similar loops duplicated at different call sites of the containing function due to inlining).

Figure 5.6 shows the scope of each baseline technique when broken down to the

following dimensions: i) their operation during execution-time or use of dynamic

information, and ii) the loop idioms they operate on from the benchmarks used in our

evaluation.

Configuration. To meet our evaluation goals we configured the tools with the

following criteria in mind: (i) during detection, maximize the identification capability

for each tool regardless of profitability, (ii) while during code generation, maximize the

profitable parallelization exploitation for each tool. Hence, we disable ICC’s paralleliza-

tion profitability heuristic (i.e., par-threshold option) for detecting parallelizable

loops, and maximize it for the code generation phase. POLLY’s profitability heuristic

is disabled during detection (via the flag -polly-process-unprofitable) and it is

only applied during code generation. All the static tools compile using optimization

level O2 with loop unrolling and vectorization disabled.

Other. The Coefficient of Variation (CV) was 5% or less for all execution time

measurements, except for CG generated by POLLY where the CV was 40%. We verified

98 5. Loop Parallelization using Dynamic Commutativity Analysis

Table 5.1: NPB loops reported as parallelizable by the baseline dynamic approaches,
Dependence Profiling [248] and DiscoPoP [160], and as commutative by
DCA. The discrepancies with DiscoPoP’s results are due to the results being taken
from the literature (see also Section 5.5.1).

Benchmark Loops
DEPENDENCE

PROFILING
DISCOPOP DCA

(#) (#) (#) (#)

BT 182 168 176 168

CG 47 33 21 33

DC 105 — — 41

EP 9 6 8 6

FT 42 36 34 36

IS 16 12 20 12

LU 186 160 164 160

MG 81 48 66 48

SP 250 233 231 233

UA 479 — — 466

Total 1397 696 720 1203

DCA’s output on NPB using the internal suite verification routines. For the PLDS

programs, we used a combination of their reference output and custom profiling.

ICC failed to compile a parallelized version of UA, so we use its sequential execu-

tion time in all further speedup measurements. Both DISCOPOP and DEPENDENCE

PROFILING did not report results on DC and UA.

5.5.2 Performance against Dynamic Techniques

5.5.2.1 Detection of Array-Based Loops

Our experimental results on almost 1400 loops of the NPB suite show that DCA is

effective at detecting commutative array-based loops. This is significant, since further

experiments (Section 5.5.4) provide evidence that all the detected loops are indeed com-

prehensively commutative and hence parallelizable. Given this close correspondence,

the rest of this section also refers to commutative loops as potentially parallelizable.

5.5. Empirical Evaluation 99

Table 5.2: PLDS-based loops which DCA detects as commutative automatically, while
existing parallelization techniques fail to identify any. These loops contain profitable
parallelism that was exploited manually by previous work. These previous results
have either reported the speedup over the sequential execution time of that loop only
(subcolumn titled “Loop”) or over the whole program execution time (subcolumn
titled “Overall”).

Benchmark Origin
Loop-Containing

Function
Profitability Detection Technique

Sequential
Coverage (%)

Potential
Speedup (×)

Expert
Manual

Loop Overall

429.mcf SPEC CPU2006 [110] refresh_potential 30 2.2 — DSWP variant 1 [204, 203]

300.twolf SPEC CPU2000 [109] new_dbox_a 30 1.5 — DSWP variant 2 [201]

ks PtrDist [15] FindMaxGpAndSwap 99 1.5 — DSWP variant 1

otter FOSS find_lightest_geo_child 15 2.5 — DSWP variant 2

em3d Olden [47] compute_nodes 100 ∼ 2 — DSWP variant 1

mst Olden BlueRule 100 1.5 — DSWP variant 1

bh Olden walksub 100 2.75 — DSWP variant 1

perimeter Olden perimeter 100 2.25 — DSWP variant 1

treeadd Olden TreeAdd 100 — ∼ 7 Partitioning [85]

hash Shootout ht_find 50 — ∼ 4 Partitioning

BFS Lonestar [149] BFS 99 — 21 Galois [194]

ising community main 95 — ∼ 6 ASC [147]

spmatmat SPARK00 [258] main 89 — ∼ 4 APOLLO [41]

water-spatial SPLASH3 [94, 217] INTERF 63 — 2 OPENMP

For each benchmark, Table 5.1 reports the total number of loops and the number

loops that each baseline dynamic approach reports as parallelizable, and compares these

loops with the loops detected as commutative by DCA. As seen in the table, DCA

uncovers potential parallelism that closely matches each of the dynamic techniques.

The detection effectiveness of DCA is attributed to its ability to capture the effects of

code that spans large regions with complex control flow, function calls and non-linear

array accesses.

5.5.2.2 Detection of PLDS-Based Loops

While DCA is effective at detecting commutative array-based loops, its true potential as

a unified analysis for parallelism discovery is best seen on PLDS-based loops. DCA is

able to detect automatically as commutative a broad collection of popular PLDS-based

100 5. Loop Parallelization using Dynamic Commutativity Analysis

loops from earlier compiler studies, whereas the baseline tools, both dynamic and static,

hit their limits and fail to detect any of them as parallel. The focus of these earlier

studies has been on profitably exploiting these loops on modern parallel architectures

rather than detecting them as parallel. Unlike DCA, these studies rely on ad hoc manual

methods to identify and utilize PLDS-based loops. The PLDS-based loops detected

as commutative are summarized in Table 5.2. The table also reports, for each loop, its

origin, sequential coverage and potential speedup found by ad hoc manual methods

as described in the literature [204, 203, 201, 85, 194, 147, 41]. Sequential coverage

is defined as the percentage of total execution time spent in a specific program scope,

which in this context is one or more loops [137]. Remarkably, DCA detects commutative

loops even in complex programs, such as 300.twolf which contains doubly-nested linked

list traversals, similar in nature to Figure 5.1(b). Other loops, such as treeadd, employ a

worklist traversal idiom akin to BFS presented in Figure 5.2.

An interesting case is 429.mcf, the only loop in Table 5.2 known not to be statically

commutative. 429.mcf performs a complicated tree traversal, accessing sibling and

predecessor nodes, and contains a cross-iteration dependence. The dependence is not

exercised by the test or the reference workloads, hence DCA reports it as commutative.

Speculative parallelization approaches in the literature rely on the assumption that this

dependence is infrequent to parallelize the loop profitably.

In summary, DCA’s uniform approach is able to discover potential parallelism in

loops such as PLDS traversals that are well beyond the limits of dynamic dependence-

based analysis approaches. This opens a potential avenue for leveraging techniques

aiming at efficient parallelism exploitation of complex loops, such as speculative

parallelization.

5.5.2.3 Parallelization of PLDS-Based Loops

Our results demonstrate that DCA’s simple parallelization scheme can yield speedups

for PLDS-based loops (up to 36×), although it is not as widely effective as for array-

based loops. Figure 5.7 reports the parallelization speedup achieved by DCA for a

selection of the PLDS-based loops found as commutative in Table 5.2. The selection

combines simple kernels (such as spmatmat, a sparse matrix-matrix multiplication) and

loops from larger, more complex programs (such as water-spatial, an n-body wave

simulation).

For the remaining loops in Table 5.2, DCA’s simple parallelization scheme does

not yield significant speedups and requires more specialized parallel code generation

5.5. Empirical Evaluation 101

treeadd perimeter water ks spmatmat BFS ising0

1

2

5

10

20

40

Sp
ee

du
p

DCA

Figure 5.7: Overall speedup over sequential code achieved by DCA parallelization for
PLDS loops. The parallel code generation techniques from Table 5.2 fail to detect
parallelizable loops automatically.

techniques (last column of that table) for profitable exploitation. In most of those cases,

while the target loops account for a significant fraction of execution time, any benefits

from our parallelization scheme are negated due to the high number of relatively short-

lived calls of their containing functions. However, in the cases where DCA’s simple

parallelization is not effective, its analysis results might still be exploited by more

sophisticated parallel code generation techniques such as those reported in Table 5.2.

Exploring the interaction between DCA’s parallelism discovery and these parallelization

techniques is part of future work.

5.5.3 Performance against Static Techniques

5.5.3.1 Detection of Array-Based Loops

Similarly to Table 5.1, Table 5.3 reports the number of loops that each static baseline

approach reports as parallelizable. It also presents a comparison of the combined results

of all three static approaches (Combined Static) and the number of loops detected as

commutative by DCA. DCA uncovers nearly twice as much potential parallelism (86%

of all loops) as the combined static baseline (49%).

For five out of the ten benchmarks in the suite, DCA finds over 80% of the loops as

potentially parallelizable, substantially more than the combined static baseline, which

achieves less than 50% for the same benchmarks. ICC is more robust in detecting

102 5. Loop Parallelization using Dynamic Commutativity Analysis

Table 5.3: NPB loops reported as parallelizable by the baseline static approaches
and as commutative by DCA. “Combined Static” indicates the results of the static
techniques (Idioms [96], Polly [100] and Icc [120]) combined.

Benchmark Loops IDIOMS POLLY ICC Combined Static DCA

(#) (#) (%) (#) (%) (#) (%) (#) (%) (#) (%)

BT 182 5 3 34 19 50 27 80 44 168 92

CG 47 9 19 8 17 23 49 25 53 33 70

DC 105 14 13 11 10 23 22 39 37 41 39

EP 9 2 22 2 22 3 33 4 44 6 67

FT 42 1 2 6 14 1 2 8 19 36 86

IS 16 7 44 3 19 3 19 11 69 12 75

LU 186 3 2 19 10 81 44 90 48 160 86

MG 81 8 10 5 6 21 26 32 40 48 59

SP 250 2 1 38 15 93 37 113 45 233 93

UA 479 23 5 43 9 180 38 209 44 466 97

Total 1397 74 5 169 12 478 34 611 44 1203 86

parallelizable loops than the other two baseline approaches. In some cases this is due to

more aggressive inlining of pure (i.e., no side effects) functions. On the other hand, ICC

is unable to detect complex reduction and histogram operations discovered by IDIOMS.

DCA correctly identifies all the above loops which are executed as commutative.

In the rest of the NPB suite, DCA also achieves high detection scores, outperforming

the combined baseline. CG contains a higher number of loops exhibiting cross-iteration

dependences, which neither DCA nor the rest of the approaches detect. MG displays

a somewhat unusual coding style with respect to the rest of suite, using I/O in several

nested loops and contains a number of loops that the input workloads do not exercise.

We have asserted that DCA can detect these loops as potentially parallelizable given the

appropriate input conditions, but excluded them from our final results for consistency.

Unsurprisingly, DCA detects the least number of potentially parallelizable loops for

DC, which performs numerous I/O operations.

5.5.3.2 Parallelization of Array-Based Loops

Our results show that the simple parallelization scheme proposed in Section 5.4.3 is

generally effective for array-based loops. Overall, by parallelizing the profitable loops

among those discovered as commutative in Section 5.5.3.1, DCA achieves an average

speedup of 3.6× (and up to 55.2×) over the sequential version of each NPB benchmark.

Figure 5.8 presents the speedup results for each benchmark.

5.5. Empirical Evaluation 103

BT CG DC EP FT IS LU MG SP UA GMean0

1

2

5

10

20

40
60

Sp
ee

du
p

Idioms Polly ICC DCA

Figure 5.8: Overall speedup over sequential code achieved by Idioms, Polly, Icc
and DCA parallelization for NPB.

Since profitability analysis is out of DCA’s current scope, only the commutative

loops deemed as profitable in the expert NPB implementation (and the hottest ones

for the case where this information is not available) are selected for parallelization.

Remarkably, DCA detects as commutative all data-parallel loops deemed profitable in

the expert parallelization.

EP is a small kernel with a hot two-level loop nest performing an integral evaluation

via pseudo-random trials. Parallelizing the outer loop which contains the complex

reduction loop yields a speedup of 55.2×. DCA also achieves significant speedups

for BT, CG, MG, SP and UA (8.6×, 2.6×, 4.5×, 6.1× and 13× respectively). This is

attributed to DCA’s ability to detect and exploit loops that extend across many lines of

code, containing function calls and complex control flow.

For DC, FT, IS and LU, the relatively high number of detected commutative loops

does not translate into profitable parallelism. For example, DC is an I/O intensive

benchmark manipulating data at volumes much larger than a modern system’s memory

capacity, while LU contains dependences across hot function calls. Thus, these programs

require higher level of synchronization or extended code restructuring for their efficient

exploitation.

DCA (together with expert profitability analysis) consistently outperforms the

baseline parallelization by IDIOMS, POLLY, and ICC, reported in Figure 5.8. The same

profitability analysis is applied for IDIOMS as for DCA, whereas for ICC and POLLY

their optimal profitability analysis is used (Section 5.5.1). ICC and IDIOMS are able

104 5. Loop Parallelization using Dynamic Commutativity Analysis

Table 5.4: DCA covers a significant fraction of execution time, providing high precision
detection results.

Benchmark Loops DCA
Combined

Static

Found
False

Positive

False

Negative

Sequential

Coverage

Sequential

Coverage

(#) (#) (#) (#) (%) (%)

BT 182 168 0 0 100 36

CG 47 33 0 0 91 7

DC 105 41 0 0 0 0

EP 9 6 0 0 100 37

FT 41 36 0 0 91 42

IS 16 12 0 0 60 56

LU 186 160 0 0 84 56

MG 81 48 0 0 87 56

SP 250 233 0 0 94 77

UA 479 466 0 0 86 57

to extract some latent loop parallelism in CG and EP, but are still outperformed by

DCA. IDIOMS is able to exploit EP, but the effectiveness of parallelization is limited

to the inner hot loop. The difference between ICC and DCA for FT and IS is due

to the unavoidable compiler optimization differences: manually implementing the

parallelization suggestions from ICC’s reports for IS and compiling it in our framework

results in the same performance that ICC obtains.

5.5.4 Aspects of Detection Profitability and Precision

In order to assess the accuracy of DCA’s predictions, all loops were further analyzed

semi-manually, employing expert algorithmic knowledge and a combination of targeted

profiling and testing of dependences and computations.

The results (Table 5.4) show that all loops determined as commutative by DCA are

indeed parallelizable (i.e., no false positives), following the spirit of the discussion in

Section 4.3. This result strengthens the significance of Tables 5.1 and 5.3, as it confirms

that DCA can indeed uncover many valid opportunities for parallelization on top of the

baseline approaches.

5.5. Empirical Evaluation 105

BT CG DC EP FT IS LU MG SP UA GMean0

1

2

5
10
20
40
60

Sp
ee

du
p

DCA Expert Manual (Loop-only) Expert Manual

Figure 5.9: Overall speedup over sequential code achieved by DCA and Expert Manual
(loop-only and whole program) parallelization for NPB. DCA matches the performance
of manual parallelization by experts at the loop level.

Future work could improve DCA’s effectiveness by applying combined tests for

multiple inputs and exploring inputs leading to execution paths that might affect com-

mutativity.

The loops found by DCA are significant in that they cover a considerable fraction

of the total execution time for most benchmarks in NPB, with above 80% for eight

out of the ten benchmarks in the suite and almost 100% for BT and EP. As shown by

the two rightmost columns of Table 5.4, DCA consistently outperforms the combined

static approaches. This agrees with the high detection rate shown in Table 5.3 and the

parallelism that is profitably exploited as reported in Figure 5.8.

Overall, DCA accurately detects a large amount of potentially relevant and profitable

parallelism, beyond the capabilities of static analysis approaches.

5.5.5 Scope of Parallelization Beyond Loops

The evaluation has so far focused on the detection and parallelization of loops, where

DCA succeeds in uncovering more hidden loop parallelism than several state-of-the-art

approaches. There exists, however, parallelism that is not strictly confined within loops.

Figure 5.9 compares the speedups of DCA on the NPB suite with those obtained by

the data-parallel loops as parallelized by experts (Expert Manual (Loop-only)) and a

full expert parallelization beyond single-loop data parallelism (Expert Manual). The

106 5. Loop Parallelization using Dynamic Commutativity Analysis

results show that DCA succeeds in identifying and exploiting data-parallel loops and

that opportunity remains for further parallelization beyond their scope.

DCA is successful in extracting all the available parallelism from BT, EP and SP. It

is also fairly effective on MG and UA, where the performance discrepancy with the full

expert parallelization is due to the fact that the latter exploits whole parallel sections,

spanning across loops, thus improving locality and minimizing synchronization costs.

The rest of the benchmarks contain parallelism that is outside the loop-level focus

of DCA. The full expert parallelization of these benchmarks uses additional algorithmic

knowledge. DC and FT are largely restructured to take advantage of independent

work-sharing. LU uses a pipeline pattern to overcome the bottleneck in its hottest loop

nests. CG falls under the same category, however, DCA is able to exploit profitably

some of its remaining loop-level parallelism.

The gap between loop-level parallelism and what can be achieved by taking a

wider, structural view of program parallelism motivates further research on this topic.

We believe that commutativity analysis can also play a key role in discovering and

exploiting structured parallelism. We explore this potential in Chapter 6.

5.6 Summary and Conclusions

In this chapter, we have presented DCA, a novel, hybrid analysis for identifying paral-

lelizable loops in sequential legacy code, which relies on liveness-based commutativity.

DCA proceeds in two phases. First, it statically identifies and instruments the

potential live outputs and useful computation of a loop to allow the permutation of

its iterations during execution time. The static phase relies on state-of-the-art anal-

ysis techniques such as liveness-based commutativity [266] and generalized iterator

recognition [166]. Then, it determines dynamically whether the loop is commutative by

comparing the live output of the permuted executions with that of the original iteration

order.

The result of the analysis can be used as a strong indication of the loop’s paral-

lelizability. In fact, as confirmed by our extensive experiments, all loops reported as

commutative by DCA in our evaluation are indeed parallelizable. We do not expect DCA

to be used in a fully automated setting, rather as part of an interactive or semi-automatic

parallelism advisor, where the user has the final word over any code transformations. Po-

tential avenues to fully automate this technique along with overcoming other limitations

and suggesting future directions are discussed in Chapter 7.

5.6. Summary and Conclusions 107

Applying DCA to the sequential version of the NPB suite (almost 1400 loops in

non-trivial scientific applications), we found numerous parallel loops, matching two

profile-driven dependence techniques, DEPENDENCE PROFILING and DISCOPOP, and

outperforming the combination of three static dependence methods, INTEL ICC, LLVM

POLLY and a constraint-based idiom recognition approach, finding nearly twice as

many. DCA was also able to uncover parallelism in irregular loops dominated by

PLDS structures, in the same uniform manner as for array-based loops, where all other

analyses tested failed.

After parallelization, our experiments showed that DCA resulted in an average

speedup of 3.6× across NPB (and up to 55×) on a 72-core host, and up to 36.9× for

the PLDS-based loops.

In conclusion, our evaluation showed that DCA, a liveness-based commutativity

loop parallelization technique that combines static and dynamic information, is capable

of discovering latent parallelism beyond dependence-based methods, over a wide range

of benchmarks and with high precision.

In the next chapter, we revisit the loop liveness-based commutativity concepts

presented in Chapter 4 and incorporated in DCA, moving towards the ability to identify

not just potential parallelism, but the pattern or skeleton form which that parallelism

takes.

Chapter 6
Detecting Data-Parallel Patterns

with Liveness-based Commutativity

In the previous chapter we introduced DCA, a technique based on liveness-based

commutativity and utilizing profiling information from program execution using specific

input sets. Evaluating DCA on a broad range of loops, following both array-based

and pointer-based traversal idioms, we were able to identify useful parallelism in

sequential code that exceeded the capabilities of other competing techniques which rely

on dependence analysis.

Looking into the form of the discovered parallelism, we find DOALL-style loop

parallelism which is straightforward to extract. This is due to the inherent independence

among the iterations of a DOALL loop. However, other loop structures exhibit data flow

which requires synchronization, since they combine the outcomes of various iterations.

For instance, one such case is the reduction operation that we have discussed in the

previous two chapters, where each iteration is reusing the result of the one immediately

preceding it, under the order specified in the execution of its sequential implementation.

Typically, the naive approach is to control and limit access around the shared state

required by each thread in the parallel version of such a loop form. However, this, as we

have seen in more complex cases in Chapter 5 (e.g., certain PLDS-based loops), while

it can ensure the correctness of the parallelization, it can also cripple its efficiency and

negate any potential benefits by the simultaneous execution of iterations. Nevertheless,

several of these loop forms have been found to have an efficient parallel implementation

which usually is achieved by employing a different algorithm in a parallel context.

In this chapter, we propose and apply a methodology which leverages our DCA

technique in a pattern-oriented detection manner. This enables us to broaden the scope

109

110 6. Detecting Data-Parallel Patterns with Liveness-based Commutativity

1 out[0] = array[0];

2
3 for (i = 1; i < N; ++i) {

4 out[i] = out[i - 1] + array[i];

5 }

Figure 6.1: A loop performing a prefix sum operation over an array.

of detection towards the identification of latent parallel patterns in sequential loop code.

Specifically, we demonstrate that our approach can identify parallelism not only in

commutative loops, but also in certain non-commutative loops when pursued from a

pattern-oriented perspective, thus expanding the potential parallelization opportunities.

This chapter starts with Section 6.1 which motivates our study. We continue

with Section 6.2, which describes our pattern-oriented methodology and Section 6.3,

which evaluates its application with case studies over widely used data-parallel patterns

found in sequential code. We conclude and summarize in Section 6.4.

6.1 Motivation

Consider the loop in Figure 6.1 which performs a simple prefix sum operation over

a set of values in an array. Essentially, every output location in array out contains the

result of the reduction of all the input values from array up that index position.

Such operations pose a challenge to dependence-based detection methods for paral-

lelization because they exhibit loop-carried dependences. For our example in Figure 6.1,

the RAW dependence in the out array between the element at index i and the one at

(i - 1) does not allow any iteration reordering. This is the same reason prohibiting

parallelization as the one for reductions which was discussed in the motivating example

for commutativity in Chapter 4.

Moreover, liveness-based commutativity as implemented in DCA, described in the

previous chapter, is not able to detect the loop in Figure 6.1 as commutative. Consider

the execution of the loop from Figure 6.1 for the first three iterations (i.e., assuming

N >= 4 and integer arrays) presented in Figure 6.2(a) and when permuted, following

a reverse execution order, in Figure 6.2(b). The resulting contents of the out array

variable at line 18 differ between the two execution orders, thus DCA would correctly

not detect this loop as commutative and, by extension, as potentially parallelizable

because it is not, in fact, commutative. Examining the results of Figure 6.2(b), we

6.1. Motivation 111

1 // initialization
2 array[] = { 5, 7, 9, 1, . . . }

3 out[] = { 0, 0, 0, 0, . . . };

4 . . .

5 out[0] = array[0];

6 // out[] = { 5, 0, 0, 0 };
7
8 // first iteration
9 out[1] = out[0] + array[1];

10 // out[] = { 5, 12, 0, 0 };
11
12 // second iteration
13 out[2] = out[1] + array[2];

14 // out[] = { 5, 12, 21, 0 };
15
16 // third iteration
17 out[3] = out[2] + array[3];

18 // out[] = { 5, 12, 21, 22 };

(a)

1 // initialization
2 array[] = { 5, 7, 9, 1, . . . }

3 out[] = { 0, 0, 0, 0, . . . };

4 . . .

5 out[0] = array[0];

6 // out[] = { 5, 0, 0, 0 };
7
8 // first iteration
9 out[3] = out[2] + array[3];

10 // out[] = { 5, 0, 0, 1 };
11
12 // second iteration
13 out[2] = out[1] + array[2];

14 // out[] = { 5, 0, 9, 1 };
15
16 // third iteration
17 out[1] = out[0] + array[1];

18 // out[] = { 5, 12, 9, 1 };

(b)

Figure 6.2: Execution of the first three loop iterations in the original, programmer-
intended order (left) and in the reverse order (right). The contents of the out array
are depicted as comments right after each statement is executed.

see the contents of out are partly correct, specifically for position at index 1. This

is because the value of that position used the correct preceding partial reduction (i.e.,

position at index 0). In the other hand, the second and third iterations, when executed

out of order, used the wrong value since that had not been computed yet (i.e., the value

0 from the initialization of out).

Nevertheless, prefix sum is well-studied operation that can be parallelized [30]. In

short, when the operation applied over the input set is associative, we can perform

different reorderings of the intermediate computations, allowing for shorter span (i.e.,

the length of the longest series of computations which have to be performed sequentially)

and more parallelism. Figure 6.3 highlights graphically the differences between a serial

and parallel implementations of prefix sum over a small input array (i.e., size of 4

elements). First, in Figure 6.3(a), the order of computations for the intermediate results

is such that only one at a time can be computed because of the dependences between

them (i.e., t2 requires t1). However, taking advantage of the associativity of addition,

112 6. Detecting Data-Parallel Patterns with Liveness-based Commutativity

0 1 2 3

t1

t2

array[]

out[]

(a)

0 1 2 3

t1

array[]

out[]

t2

t4

t3

(b)

Figure 6.3: Representation of the dataflow in prefix sum when implemented sequentially
(left) and in parallel (right). The required intermediate results are represented with
the grey squares between the input and output arrays. The ⊕ sign denotes a location
where a sum operation is performed to compute its contents using the incoming values.

we can calculate the intermediate results in parallel following a hierarchical approach.

This means t1 and t2 can be computed in parallel, but prior to t3 and t4, which in turn

can be executed in parallel.

Note that this parallel implementation performs more sum operations (4 versus 3)

and requires more intermediate space locations (4 versus 2). Despite this, it reduces

both the span of execution and increases the amount of parallelism. Different parallel

implementations provide different trade-offs between the work-span and the available

parallelism [111, 30, 31, 171].

The prefix sum is one instance of the scan parallel pattern (i.e., algorithmic skele-

ton) for any associative operator [31]. Their wide usefulness is recognized by their

inclusions as building blocks for various parallel programming languages, libraries and

frameworks [185] (Chapter 2). Figure 6.4 shows a use of the built-in prefix sum func-

tion from the SKEPU library [79]. These library implementations enhance portability,

allowing the control and abstraction of tuning and selection of various implementation

6.2. Methodology 113

1 # include <skepu>
2
3 int plus(int a, int b) { return a + b; } // operator expressed as function
4 . . .

5 const int N = . . .; // size definition
6 skepu::Vector<int> array(N), out(N); // input/output definition
7 . . .

8 auto prefix_sum = skepu::Scan(plus); // skeleton instantiation
9 . . .

10 prefix_sum(out, array); // skeleton execution

Figure 6.4: The prefix sum operation from Figure 6.1 implemented using the scan
pattern from the SkePU parallel programming framework.

aspects that affect a pattern’s performance, e.g., such as the work span or the amount

of intermediate work, as discussed earlier in this section. We took advantage of this

added benefit in the case of reductions when we used OPENMP for the parallel code

generation in DCA described in Chapter 5.

Therefore, a crucial challenge for liveness-based commutativity and, thus, DCA is

to extend their applicability of detecting data parallel patterns in sequential code. More

specifically, it would be important to achieve this by DCA in the detection of patterns

whose sequential loop-based form is not commutative, even though these loops are

parallelizable. In the rest of this chapter, we examine the potential of an analysis that

can discern among such patterns, incorporating DCA’s ability to determine about the

commutativity or non-commutativity of their constituent loops.

6.2 Methodology

6.2.1 Overview

In this section we present an approach which extends the applicability of DCA for the

detection of data-parallel patterns in sequential loops. We describe the main insight

behind it, provide a high-level overview of each stage and abstractly present its con-

stituent transformations performed using a specific data-parallel pattern. We provide

a more detailed look at the individual transformations and criteria required for each

pattern in their corresponding case study in Section 6.3.

Figure 6.5 presents a high-level overview of our methodology for the identification

114 6. Detecting Data-Parallel Patterns with Liveness-based Commutativity

Perform
DCA

(for every loop)

Reports

Sequential
Loop

...

Scan
Pattern Check

Criteria

Transform
Schemas

Criteria
...

Apply
Transformation

Scan
Pattern

Figure 6.5: Overview of the steps performed by our data-parallel pattern identification
technique leveraging DCA. Note that DCA is applied to all loops that resulted from
the application of a transformation schema and the collated results are passed to
the next stage. The whole process is repeated for each available pattern description
(transform schema and criteria).

of data-parallel patterns. Our technique proceeds by examining a sequential program a

single loop at a time. The first step is to apply the syntactic transformation, encapsulated

in a schema description, to the loop. This produces a code fragment, typically consisting

of a sequence of loop nests. The transformation turns the original loop into a sequence of

loops which though explicitly still sequential, captures the phases of the corresponding

parallel library implementation of the pattern. For example, for the initial code fragment

of Figure 6.1, the corresponding transformed code is shown in Figure 6.6. This can

be seen as a collection of loops L0 to Ln inside a code section in the top right corner

of Figure 6.5.

As shown in Section 6.1, decomposing a candidate pattern loop to its expected

6.2. Methodology 115

1 int ssize = N / P;

2 int array[N], tmp[N], out[N];

3 int tid;

4
5 array[] = { 5, 7, 9, 1, . . . };

6 out[] = { 0, 0, 0, 0, . . . };

7
8 // phase 1
9 for (tid = 0; tid < P; tid++) {

10 tmp[tid * ssize] = array[tid * ssize];

11 }

12
13 // phase 2
14 for (tid = 0; tid < P; tid++) {

15 for (i = tid * ssize + 1; i < (tid + 1) * ssize; i++) {

16 tmp[i] = tmp[i - 1] + array[i];

17 }

18 }

19
20 // phase 3
21 for (tid = 0; tid < P; tid++) {

22 for (i = tid * ssize; i < (tid + 1) * ssize; i++) {

23 out[i] = tmp[i];

24 }

25 }

26
27 // phase 4
28 for (tid = 0; tid < P; tid++) {

29 for (i = 0; i < tid; i++) {

30 for (j = tid * ssize; j < (tid + 1) * ssize; j++) {

31 out[j] += tmp[(i + 1) * ssize - 1];

32 }

33 }

34 }

Figure 6.6: The sequential multi-loop code which results after applying our proposed
transformation for the loop in Figure 6.1.

constituent loops from its parallelized form allows us to test their commutativity. For

this purpose, we utilize DCA, which as we have seen in Chapter 5, is able to detect

a range of different loop idioms using profiling information. However, the results of

116 6. Detecting Data-Parallel Patterns with Liveness-based Commutativity

DCA are not used in isolation for each loop, but grouped together and compared against

the expected commutativity for each component loop of the parallel pattern. The lack

of commutativity is also useful here, in contrast to its treatment as a parallelization

inhibitor in Chapter 5. Hence, the role of DCA is broadened, composed to a detection

enabler for parallel patterns in sequential code.

Subsequently, we apply DCA over every loop in the derived transformed code

section by executing the program using the provided input sets. We record the result

of DCA (i.e., commutative or non-commutative) for each loop and pass the collated

results to the last stage. In this stage, we apply a set of criteria associated with the

selected pattern that need to be satisfied to confirm the presence of this specific pattern.

These steps, from the transformation to the matching, are performed for every available

pattern whose transformation schema and identification criteria has been provided by

the user.

Recall from Figure 6.3(a) the corresponding graphical representation of the sequen-

tial implementation of the prefix scan where each computation per loop iteration can

only occur after the previous has been completed. In Figure 6.7 we present, as an

example to assist in the comprehension of our methodology, a similar graphical example

of the memory state and the operations which are performed on it by the transformed

scan code of Figure 6.1. These states and computations are organized in phases and are

executed from top to bottom and one after the other (i.e., sequentially). We present the

corresponding transformed code generated by our approach in Section 6.3 where we

investigate the identification of the scan pattern.

First, we notice that the memory locations of the input array, the intermediate tmp

and the output out are divided into segments (or blocks). In the fully parallel version,

which we got inspiration for our approach from, these correspond to areas of the shared

arrays over which each thread would operate on. This is a consequence of the labor

division, allowing each thread to read or write in these segments without requiring

access control (i.e., synchronization). Going over these segments in the sequential

version corresponds to using a loop for each phase in Figure 6.7. In the same vein,

processing each element per segment utilizes an inner loop for each (outer) segment

processing loop. This occurs in all phases where either the source, the destination

element or both are not drawn from a constant index (i.e., the locations marked with

thicker borders), and can be seen most clearly in the third phase which involves a copy

of the tmp contents to out.

The transformed code is now passed to the criteria checking phase. Our key insight

6.2. Methodology 117

0 21 3

0 21 3

0 21 3

array[]

array[]

tmp[]

out[]

0 21 3tmp[]

0 21 3tmp[]

out[]

0 21 3tmp[]

out[]

copy
first segment item
of input to temp

add
input

to tmp

copy
input

to output

add
last segment item

to
last segment item
of its left segment

then
add it to output

constant index source/dest

non-constant index source/dest

segments

1

2

3

4

copy operation

scan add operation

Figure 6.7: Example result by applying our methodology over the loop from Figure 6.1
depicting the phases of the generated sequential scan pattern (top to bottom). It
graphically depicts the memory state and the operations on it as performed by the
transformed code. Unannotated and ⊕-annotated arrows represent a copy or a scan
operation, respectively.

is that, for the presence of the given pattern to be declared, the loops in the transformed

code should have the same commutativity properties as those common to all correct uses

of the pattern. These loops will be tested individually by DCA. It is easy to recognize

from the pictorial representation of the dataflow in Figure 6.7 that the outermost loops

(i.e., iterating over segments) of first and third phases are commutative. Additionally,

118 6. Detecting Data-Parallel Patterns with Liveness-based Commutativity

although less straightforward to determine, the segment loop of phase four is also

commutative, since the operands of the scan within the segment are either: i) constant,

with tmp as their source, or ii) originate from locations within the same segment of out.

As a last example, we turn our attention to the element processing within a segment in

phase 2 of Figure 6.7. We notice that the scan operation uses an element of tmp from a

previous iteration, thus denoting that such a reuse makes the loop non-commutative for

reasons already presented in Section 6.1.

6.2.2 Syntactic Transformations

In its most basic form a syntactic transformation converts a candidate loop to a series of

loops, using the inputs and outputs of the original loop (as detected by liveness analysis),

iterator code and basic operator (e.g., addition in Figure 6.6), substituting them in

placeholder locations in the generated target code. Currently, these are implemented as

a combination of compiler passes and code templates provided by the user, who also

ensures their correctness after their application to a code fragment. This is on top of

using user assistance to determine the result of DCA (Chapter 5).

Figure 6.8 presents succinctly the transformation steps of our methodology for the

scan pattern in pseudocode. The first function (line 1) creates the generated code region

that contains all the resulting code from the application of each phase (lines 9 to 12).

This functions proceeds by generating: i) the placeholder code region, ii) the required

storage, iii) calling the constituent phase generation functions, and iv) collating the

phases in the region. For brevity, we present only the pseudocode for the generation

of the loop at the second phase (line 18). The GenerateScanLoopPhase2 generates

a two-level loop nest and calls the scan operation for each input segment. The input

and output values, as found by liveness analysis, are connected with the initial loop

input and output variables once the transformation has taken place in the location of the

original loop.

As noted in the previous section, our key insight is to utilize the known parallel im-

plementations of data-parallel patterns in order to facilitate the detection of that pattern

in sequential code. We have already discussed (Chapter 2) that parallel patterns help

encapsulate various aspects of the commonly found computations inside a particular

algorithmic pattern. Briefly, patterns encapsulate facets such as the organization of

computations, the arrangement and movement of data, offering the necessary abstrac-

tions to separate semantics from implementation details. This separation does not aim

6.2. Methodology 119

1 def GenerateScanTransform(seqLoop, scanOp, p):

2 region = Compiler.CreateRegion(. . .)

3
4 ssize = len(seqLoop.tripCount) / p

5 tmp = Compiler.CreateStore(ssize)

6 out = Compiler.CreateStore(ssize)

7 region.add([tmp, out])

8
9 loop1 = GenerateScanLoopPhase1(scanOp, region, p, ssize)

10 loop2 = GenerateScanLoopPhase2(scanOp, region, p, ssize)

11 loop3 = GenerateScanLoopPhase3(scanOp, region, p, ssize)

12 loop4 = GenerateScanLoopPhase4(scanOp, region, p, ssize)

13
14 region.add([loop1, loop2, loop3, loop4])

15
16 return region

17
18 def GenerateScanLoopPhase2(scanOp, region, p, ssize):

19 . . .

20 outer = Compiler.CreateLoop(

21 0, # lower bound
22 p, # upper bound
23 step)

24 inner = Compiler.CreateLoop(

25 inner.iterator * ssize + 1, # lower bound
26 (outer.iterator + 1) * ssize, # upper bound
27 step)

28 stmt = Compiler.CreateCall(

29 scanOp, # function
30 scanOp.inputs, # inputs
31 [region.tmp]); # outputs
32
33 inner.add(stmt)

34 outer.add(stmt)

35
36 return outer

Figure 6.8: Pseudocode of our methodology’s code transformation steps for the scan
pattern. For brevity, only the overall orchestration (line 1) and second phase processes
(line 18) are presented.

120 6. Detecting Data-Parallel Patterns with Liveness-based Commutativity

to obscure, but enable and ease the use of these patterns as building blocks where the

user retains the ability to tune and adapt to their individual needs [58, 171]. In a sense,

we exploit this separation between semantics and implementation in the patterns, by

moving from the latter to the former. Following that, we apply a set of checks on

criteria that will allow us to discern the different semantics exhibited by the transformed

code and, thus, identify the corresponding data-parallel pattern. Additionally, we also

compare the outputs of the transformed code and original candidate loop and we reject

the pattern if they differ. This verification check expands on the notion of SESE regions

and the comparison of outputs in the spirit of liveness-based commutativity techniques,

such as DCA, described in the previous two chapters. In essence, we consider the

transformed code as a single SESE region and compare its live-out values with those of

the original loop.

As discussed earlier in this section, a further consequence of the transformation

following a specific data-parallel pattern is that the generated code will be potentially

decomposed to a series of loops or multi-level loops (i.e., loop nests). Intuitively, this

occurs due to the fact that parallel patterns provide a division of work and communica-

tion for the underlying computation which is aimed at parallel execution. Therefore,

it requires execution to occur over the produced segments and their contents which,

in a sequential execution context, means groups of loop nests. This also enables the

application of our DCA technique (Chapter 5) over each resulting loop and brings into

consideration not only its determinations for commutativity, but also non-commutativ-

ity. Since DCA focuses on the parallelization of loops, by not satisfying the required

commutativity conditions, a loop is not further processed. However, since our objective

is to expand the scope of parallelism detection which consists of potentially multiple

loop nests, both results offered by DCA are necessary and critical in describing and

restricting the specific underlying pattern.

For the decomposed loops in Figure 6.6, this means we are able to apply DCA to

each of them in order to determine their commutativity. Note that although almost all of

the resulting loops are parallel (except the loop of phase 2), we are not solely interested

in discovering their commutativity in order to proceed with parallelization. We take

into account both the commutativity or its absence to match the transformed loops to

the expected commutativity of the loop implementation of a data-parallel pattern, and

thus identify it.

Moreover, we exploit the fact that implementations or parallel patterns are generic

with respect to the number of threads involved. Taking this to the extreme of a sequential

6.3. Case Studies 121

implementation, which simply captures the intended sequence of phases as loops,

provides two advantages:

i) it permits us to use DCA, which is geared to operate with sequential programs,

without any additional changes, and

ii) it lets us omit any required synchronization aspects from our transformation

templates, which would be required in multithreaded execution, simplifying our

transformation templates.

Thus, although we are using a transformation derived from the parallel implementation

of each pattern, our detection steps are performed in a sequential execution context.

Our objective is to assemble and identify all the loop commutativity criteria which will

allow us to correctly identify the underlying pattern present in sequential loop code.

6.3 Case Studies

In this section, we will apply the steps our transformation technique presented in Sec-

tion 6.2 and examine the requirements that need to be fulfilled to identify specific

data-parallel patterns. For clarity, we reiterate here that each pattern which we will

try to identify has its own distinct transformation schema and commutativity checking

criteria.

6.3.1 Scan Pattern

6.3.1.1 Background

The scan pattern computes all partial reductions of a collection of elements. In other

words, the scan takes [30, 31]:

i) a binary operator ⊕, with

ii) an order set [a0,a1,a2, . . . ,an−1], and

iii) (output) returns the ordered set [a0,(a0⊕a1), . . . ,(a0⊕·· ·⊕an−1)].

For example, a popular instance of this pattern is the prefix sum algorithm, presented

in Figure 6.1, which calculates, for every output location (i.e., the out array variable),

a summation of the input elements up to that point. Addition is the binary operator

122 6. Detecting Data-Parallel Patterns with Liveness-based Commutativity

1 int N = 8;

2 int P = 2

3 int ssize = N / P; // 4
4
5 // segment 1 segment 2
6 array[] = { 5, 7, 9, 1, 3, 4, 1, 2 };

7 tmp[] = { 0, 0, 0, 0, 0, 0, 0, 0 };

8 out[] = { 0, 0, 0, 0, 0, 0, 0, 0 };

9
10 // end of phase 1
11 tmp[] = { 5, 0, 0, 0, 3, 0, 0, 0 }

12 out[] = { 0, 0, 0, 0, 0, 0, 0, 0 };

13
14 // end of phase 2
15 tmp[] = { 5, 12, 21, 22, 3, 7, 8, 10 }

16 out[] = { 0, 0, 0, 0, 0, 0, 0, 0 };

17
18 // end of phase 3
19 tmp[] = { 5, 12, 21, 22, 3, 7, 8, 10 }

20 out[] = { 5, 12, 21, 22, 3, 7, 8, 10 }

21
22 // end of phase 4
23 tmp[] = { 5, 12, 21, 22, 3, 7, 8, 10 }

24 out[] = { 5, 12, 21, 22, 25, 29, 30, 32 }

Figure 6.9: Example execution and output of the transformed code in Figure 6.6. The
state of intermediate and final results is depicted right after the end of each phase.

(i.e., ⊕) taking place in this implementation. The associativity of the binary operator

is the property that determines if a scan operation can be parallelized, by reordering

operations and some additional work on each step. Due to associativity, any adjacent

elements can be scanned (i.e., ak−1⊕ak) without having to wait for the partially reduced

value prior to those elements (i.e., a0⊕ . . . ⊕ak−2). This computation can happen when

that value is ready.

Scans have been identified as parallel building blocks in a wide range of applications,

such as [30, 151]: i) the implementation of sorting algorithms (e.g., quicksort, radix sort),

ii) polynomial evaluation, iii) solving linear systems (e.g., tridiagonal), iv) searching,

v) and parsing.

6.3. Case Studies 123

6.3.1.2 Detection Steps

Applying our transformation steps as described in Section 6.2 in the prefix sum loop

of Figure 6.1, we derive the sequential multi-loop code in Figure 6.6. Initially, we

divide the input set to (N / P) segments, assuming we had P parallel processing units

or threads, at line 1. The first phase copies the leftmost element for each segment

from the input array to the intermediate output variable tmp, allowing the per segment

scanning in the next phase to start with the correct initial values. Then, during the

second phase, we compute for each segment of the input computes its partial prefix sum

(line 9), using the intermediate tmp. Note that the operation at line 16 is essentially the

same as the one in Figure 6.1, using a different output variable being the only difference.

The third phase, at line 21, we copy the intermediate results from the tmp array to the

final output variable out. Lastly, at the fourth phase at line 28, for every segment, the

rightmost value from each intermediate result in tmp needs to be added to every value

of the output segment out. In other words, this phase propagates and scans the partial

reduction result of each segment computation to the values of the segment after it.

Figure 6.9 presents an example execution of the transformed code when applied to

an example input set. It is worth noting that the first segment in the tmp array already

has the correct final contents after the second phase is completed. It is this segment’s

rightmost value (i.e., 22) that needs to be scanned with all the values in the second

segment to produce the correct final result (line 24).

Next, moving to the commutativity criteria checking phase, applying DCA on every

loop of the three top-level loop nests of the transformed code in Figure 6.9, we obtain

that all loops are commutative, except the inner loop of the second phase at line 15. This

is expected since this inner loop still exhibits a cross-iteration dependence where the

output value depends on the one at the previous index position in the tmp array. Hence,

the matching criteria for the scan pattern in the transformed code are: i) all loops in the

loop nests of all four phases of the transformed code to be commutative when DCA is

performed on them, except ii) the inner loop of the loop nest in the second phase which

should be non-commutative, and iii) the original and transformed code should produce

the same output.

6.3.2 Reduction Pattern

6.3.2.1 Background

124 6. Detecting Data-Parallel Patterns with Liveness-based Commutativity

1 out = 0;

2
3 for (i = 0; i < N; ++i) {

4 out += array[i];

5 }

(a)
1 int ssize = N / P;

2 int array[N], tmp[P], out;

3 int tid;

4
5 array[] = { 5, 7, 9, 1, . . . };

6 out[] = { 0, 0, 0, 0, . . . };

7
8 // phase 1
9 for (tid = 0; tid < P; tid++) {

10 tmp[tid] = array[tid * ssize];

11 }

12
13 // phase 2
14 for(int tid = 0; tid < P; tid++) {

15 for(int i = tid * ssize + 1; i < (tid + 1) * ssize; i++) {

16 tmp[tid] += array[i];

17 }

18 }

19
20 // phase 3
21 for(int tid = 0; tid < P; tid++) {

22 out += tmp[tid];

23 }

(b)

Figure 6.10: A loop performing a reduction operation (accumulation) over an array
(reproduced from Section 4.4) (top). The sequential multi-loop code which results
after applying our proposed transformation for the loop in (a) (bottom).

The reduction pattern computes a single value by applying an operator over a

collection of elements. This combiner operator (or function) is applied in pairwise

fashion [87, 171], thus we can define a reduction in terms of:

i) a binary operator ⊕, with

6.3. Case Studies 125

ii) an order set [a0,a1,a2, . . . ,an−1], and

iii) (output) returns a single value (a0⊕·· ·⊕an−1).

Reductions are closely related to scans since the latter can be expressed in terms

of the former, by applying the combiner operator successively over all ordered subsets

of the input (i.e., over one element, over two elements, and so on) and keeping the

intermediate results. For the same reasons as for scan operations, the associativity of

the binary operator is necessary to parallelize reductions. We have already discussed the

reasons for which detecting reductions poses a challenge for parallelization techniques

based on dependence analysis in the previous two chapters. Typically, such approaches

resort to specific and customized extensions within their models [87, 207]. On the

other hand, DCA is able to innately identify reduction loops as parallelizable within is

liveness-based commutativity model. We reuse the reduction loop from our motivation

in Chapter 4, presented in Figure 6.10, to exemplify our approach in this section.

Reductions have a plethora of applications in machine learning and scientific do-

mains (i.e., physics, statistics, etc.) [207, 96, 128]. A notable use of this pattern is in the

MAPREDUCE parallel programming framework and infrastructure where the reduce

operation is performed once for each unique key over records of “Big data” sets [66,

206].

6.3.2.2 Detection Steps

The detection method for reductions proceeds similarly to the previous steps for scans,

with the resulting transformed code in Figure 6.10(b). As in the case of scans, we notice

the division of the input (i.e., segments of ssize each) and the intermediate tmp store

arrays. This division allows each thread to work independently in an actually parallel

implementation. In our version it enables us to apply DCA over each generated loop

and check if this independence really exists without affecting the output.

The first phase (line 9) transfers the leftmost element from each segment of the input

to each corresponding segment of the intermediate tmp. This ensures using the correct

initial value for the subsequent computations and, more importantly, avoids requiring

to match an operator with its identity value (e.g., 0 for addition). Phase two performs

the reduction operation on the input for each segment, storing the result in tmp. Each

partial reduction reads and writes in a separate index position of tmp (line 16). Finally,

the third phase performs a final reduction of the partial results from the previous phase

to out (line 22).

126 6. Detecting Data-Parallel Patterns with Liveness-based Commutativity

1 for (i = 0; i < N; ++i) {

2 out[i] = c * array1[i] + array2[i];

3 }

(a)
1 int ssize = N / P;

2 float array1[N], array2[N], out[N];

3 int tid;

4
5 array1[] = { . . . };

6 array2[] = { . . . };

7 out[] = { . . . };

8
9 // phase 1

10 for(int tid = 0; tid < P; tid++) {

11 for(int i = tid * ssize; i < (tid + 1) * ssize; i++) {

12 out[i] = c * array1[i] + array2[i];

13 }

14 }

(b)

Figure 6.11: A loop performing a map operation (SAXPY) over an array (top). The
sequential multi-loop code which results after applying our proposed transformation
for the loop in (a) (bottom).

The matching criteria for the reduction pattern expressed in the transformed code

are: i) both loops in the loop nests of all three phases of the transformed code to be

commutative when DCA is performed on them, and ii) original and transformed code

should produce the same output.

6.3.3 Map Pattern

6.3.3.1 Background

The map pattern applies an operation or a function to all the elements in a collection.

The map pattern represents computations that have no side effects and, thus, can be

performed without requiring any synchronization or communication (embarrassingly

parallel). It is often utilized in combination with other patterns such as reductions and

6.3. Case Studies 127

scans (fused patterns) [171]. Figure 6.11(a) presents a simple loop which performs a

Single-Precision A*X+Y (SAXPY) map operation, combining vector multiplication

and addition, commonly used in various application domains and packaged in BLAS

libraries [171].

The map pattern lends itself naturally to the processing of modern parallel multicore

architectures. Due to the map’s conceptual simplicity and generality in expressing the

effect of independent operations, its use has become ubiquitous in parallel programming

frameworks (e.g., MAPREDUCE [66], OPENMP [50], etc.) and, even, standard libraries

of languages not necessarily associated with parallelism (e.g., Python’s map function

for processing iterable objects). The discovery and exploitation of map parallelism in

loops has a long history, from the study of DOALL loops [152] to being the goal of

compiler detection tests that utilize dependence [7].

6.3.3.2 Detection Steps

Figure 6.11(b) presents the transformed loop after applying our technique’s transfor-

mation steps on the loop in Figure 6.11(a). The input arrays (line 1) are divided into

segments and the map operation is applied in turn to each of them (line 12). The

simplicity of the map pattern does not require any data transfer between the partial

segment calculations, thus the transformed code consists of a single phase.

The matching criteria phase for this pattern expects: i) all loops in the single loop

nest of the transformed code to be commutative when DCA is performed on it, and

ii) original and transformed code should produce the same output. These conditions are

easily comprehensible considering the expected independence of a map’s operation.

6.3.4 Discriminating between Patterns

Table 6.1 summarizes the matching criteria of each phase for each parallel pattern

used in our methodology. For every phase of each pattern, every loop in that phase’s

loop nest is required to be commutative or non-commutative. In addition to these, we

also require and verify that the final outcome of each transformed candidate pattern is

the same as that of running the original unmodified sequential loop. We now discuss

the ways in which this approach promotes true positives and discourages false positives,

in pattern identification.

128 6. Detecting Data-Parallel Patterns with Liveness-based Commutativity

Table 6.1: Summary of the pattern matching criteria of each phase for our methodology.
The Ë and 6 signs denote the requirement for a commutative and a non-commutative
loop, respectively. The notation Lni j corresponds to a loop of phase n placed in i-th
position at loop depth 1 and j-th position at loop depth 2.

Patterns Phase Criteria

Phase 1 Phase 2 Phase 3 Phase 4

Scan L11 Ë L21

↪→ L211

Ë

6

L31

↪→ L311

Ë

Ë

L41

↪→ L411

↪→ ↪→ L4111

Ë

Ë

Ë

Reduction L11 Ë L21

↪→ L211

Ë

Ë

L31 Ë —

Map L11

↪→ L111

Ë

Ë

— — —

6.3.4.1 Encouraging True Positives

Using our methodology and transforming a loop based on a schema that has its roots

in the parallel forms of common data-parallel patterns, we are able to derive different

criteria for discovering these patterns in sequential code, leveraging DCA. Moreover, we

utilize not only the existence of loop commutativity for parallelization as in Chapter 5,

but also its absence. Consider the criteria for matching the scan pattern, comprising

eight loops in total across its four phases in Table 6.1. Under our criteria, loop L211 is

expected to be non-commutative for correct detection of this pattern since, as described

in Section 6.3.1, it performs the local scan operation on each segment of the input. DCA

is unable to detect as parallelizable sequential loops which perform scan operations,

when examined in isolation (i.e., at the loop level). However, this is a vital feature in

our pattern-oriented detection methodology for discovering hidden parallelism. Our

methodology’s transformation step is the decisive enabler for: i) multiple applications

of DCA, and ii) expansion of the liveness information over a region of code (beyond a

single loop nest).

6.3. Case Studies 129

1 int saxpy(int in1, int in2) { return 2 * in1 + in2; }

2
3 // segment 1 segment 2
4 int array1[] = { 5, 7, 9, 1 };

5 int array2[] = { 3, 4, 2, 6 };

6
7 // phase 1
8 . . .

9 // end of phase 1
10 tmp[] = { 5, 0, 9, 0 };

11
12 // phase 2
13 for(int tid = 0; tid < 2; tid++) {

14 for(int i = tid * 2 + 1; i < (tid + 1) * 2; i++) {

15 tmp[tid] = saxpy(tmp[tid], array1[i]);

16 }

17 }

18
19 // end of phase 2
20 tmp[0] = saxpy(tmp[0], array[0]) = 2 * 5 + 5 = 15;

21 tmp[0] = saxpy(tmp[0], array[1]) = 2 * 15 + 7 = 37;

22 tmp[1] = saxpy(tmp[1], array[3]) = 2 * 9 + 9 = 27;

23 tmp[1] = saxpy(tmp[1], array[4]) = 2 * 27 + 1 = 55;

24
25 // phase 3
26 . . .

27 // end of phase 3
28 out = tmp[0] + tmp[1] = 37 + 55 = 92;

29 // expected correct output from map operation
30 out[] = { 13, 18, 20, 7 };

Figure 6.12: Example of applying our reduction transformation steps to a loop
employing a map pattern. Our output verification check will disallow matching this
loop to the reduction pattern since the output result between the original loop and the
transformed code differ (lines 28 and 30). The code from the first and third phases is
omitted for clarity.

6.3.4.2 Avoiding False Positives

It is also interesting to consider the ways in which our methodology behaves correctly

when a pattern test is applied to a piece of code which actually matches a different

130 6. Detecting Data-Parallel Patterns with Liveness-based Commutativity

pattern (i.e., how we avoid false positives).

In order to review the robustness of our methodology, we now consider an example

of its outcome when we test a candidate loop against a pattern which does not match.

For instance, if we apply the reduction schema to a candidate loop that employs the

map pattern, then it should produce a transformed program, which once tested, does not

meet the criteria for the reduction pattern.

Figure 6.12 presents an example of the transformation result if we suspend the

application of the schema criteria on live- and live-outs and assume that a sequential

loop that performs a map operation gets transformed with the reduction transform

schema. Figure 6.12 combines parts of the transformed code and its output, omitting the

first and third phase for clarity and uses an instance of the SAXPY map presented earlier

in this section (line 1). We notice that treating the extracted saxpy operation in the

second phase (line 15) as a reduction operator yields incorrect results that propagate to

the final out variable (lines 28 and 30). Even if we ignore the difference in output size

(i.e., scalar versus array), the final results differ and will fail our output verification.

6.4 Summary and Conclusions

In this chapter, we have presented a methodology which utilizes liveness-based commu-

tativity, as implemented in DCA, and facilitates the detection of parallelism in the form

of patterns in sequential loop code.

Our methodology proceeds by applying a series of transformation to a candidate

loop to obtain a code section consisting of multiple loops. The transformation steps

convert the loop based on a schema that is derived from the parallel implementation

of each pattern we aim to discover, but repurposed for sequential execution which

avoids the need for any synchronization. This allows us to leverage DCA by applying

it separately on each resulting loop of the transformed code. Then, we compare

DCA’s determinations for each loop, retaining results for both commutativity and non-

commutativity, with an expected set of criteria in order to match the candidate loop to

pattern.

Using this approach, we are able to discover data-parallel patterns such as maps,

reductions and scans. The detection of loops performing a scan operation is a step

towards extending the efficacy of liveness-based commutativity for parallelization, since,

when examined using simple DCA, they are not indicated as parallelizable. Despite its

simplicity, our transformation avoids probable misclassifications by utilizing an output

6.4. Summary and Conclusions 131

verification step that rejects a pattern if results differ from the original candidate loop.

Future work will aim to automate and enhance the transformation schema for each

pattern.

Chapter 7
Conclusions

This chapter concludes the presentation of our work in this thesis.

We start with a synopsis of our investigations in Section 7.1 and continue with a

summary of our contributions in Section 7.2. We conclude in Section 7.3 with a critical

analysis of our work and explore potential future directions.

7.1 Introduction

In this thesis, we have examined the detection and extraction of parallelism from

sequential source code.

To this end, we use liveness-based commutativity as the main enabler for the

techniques developed and examined in our work. Commutativity is the property of

a code region whose order of execution we can permute without affecting the final

program outcome. Liveness-based commutativity utilizes information from the classic

compiler liveness analysis in order to determine whether a program’s outcome is altered

or not by reordering the execution of code regions.

Our study has been aimed at loops, where applications usually spend most of their

execution time. The candidate loops that we are interested in exhibit array-based access

idioms, found mostly in the HPC and scientific domains, and pointer-based loop chasing

idioms, a hallmark of applications that utilize PLDS. Consequently, we have explored

the potential of a technique built on top of symbolic execution, combining symbolic and

concrete input values. Identifying the limitations of this approach, we then developed a

new technique that relies on profiling information to detect latent loop-level parallelism.

Finally, we investigate the use of liveness-based commutativity in identifying higher-

level parallel algorithmic skeletons in sequential code and thereby extending its scope

133

134 7. Conclusions

of detection.

7.2 Contributions

In Chapter 4, we introduced our concept of liveness-based commutativity and adapted it

for loops in order to express and, consequently, test commutativity conditions between

their iterations. We developed a method to examine loop commutativity conditions

based on liveness leveraging symbolic execution, which allows a concise representation

of inputs as value ranges (i.e., symbolic values) expressed using sets of constraints. We

structured the loop commutativity testing in such way that it can be expressed as a path

constraint that can be checked for equivalence using a symbolic execution engine’s

constraint solver. For our case studies we selected representative loops from NPB suite

and other sources (e.g., OLDEN benchmarks) which follow common iteration idioms

over arrays and PLDS.

Despite the fact that symbolic execution presents an attractive and elegant process

of expressing outputs in terms of constraints of inputs, thus enabling the extraction

and derivation of various program properties, in practice it is limited due to scalability

issues. Despite having taken actions to remedy some of these issues (e.g., limited

coverage, etc.), our case studies demonstrate its applicability is inhibited by features

existing in real-world programs. Informed by these findings, we then seek to alleviate

these shortcomings using a program’s execution with actual input sets as an additional

information source.

In Chapter 5, we introduced DCA, a hybrid static and dynamic technique based

on liveness-based commutativity which utilizes profiling information, derived from

execution runs using provided input sets, to detect and exploit loop parallelism. For

our evaluation, we used almost 1400 loops across 10 applications in the NPB suite

which perform array-based computations for various scientific applications. We also

targeted PLDS-based loops, which have been studied previously in the literature, from a

wide variety of benchmarks, such as the SPEC CPU and OLDEN suites among others.

We compared DCA to five state-of-the-art dependence-based approaches, matching or

outperforming their detection capabilities using liveness-based commutativity as our

single analysis model.

For the NPB programs, we found that DCA is able to match the detection capabilities

of two other dynamic approaches based on dependence analysis, discovering over 1200

loops (86% of the total) as parallelizable. When compared to three static compiler

7.2. Contributions 135

techniques over the same suite, DCA found twice as many parallelizable loops as all of

them combined.

For PLDS-based loops, we have drawn upon the literature to collect a wide range

of loops in programs that use pointer-based data structures. The approaches described

in those works were focused on the exploitation of PLDS-based loops on parallel

architectures and relied on ad hoc methods to select them. On the other hand, DCA is

able to detect automatically all these loops as potentially parallelizable, going beyond

the capacity of all dependence-based tools used as our baseline. DCA is able to handle

uniformly loops using regular, array-based induction variables and pointer-chasing

idioms.

For the exploitation of the discovered parallelism, we employed a simple paralleliza-

tion approach, based on [248], that utilizes the profiling information collected during

detection to also select the hottest (i.e., the highest sequential execution coverage) loops.

We were able to obtain an average speedup of 3.6× across NPB and up to 55× on

our test platform. For PLDS-based loops, we achieved speedups that reached up to

36×. DCA can be used orthogonally with more sophisticated parallel code generation

schemes as discussed in Section 7.3.

Moreover, since DCA requires user input to approve results, a common aspect of

profile-guided approaches, we have assessed its accuracy. We found no false positives

in our technique’s predictions, hence, all discovered loops are indeed parallelizable

for all valid inputs. Lastly, the NPB suite gives us the opportunity to compare our

parallelization against that performed manually by experts. At the loop-level, DCA was

able to extract all available parallelism, with all the remaining parallelism uncovered

by manual transformations being outside our scope (i.e., extending beyond and across

loops).

In Chapter 6, we developed a methodology, based on liveness-based commutativity

and leveraging DCA, to further extend to scope of parallelism discovery in sequential

code. Our methodology transforms a candidate loop, based on a schema, into a code

section comprising multiple loops, applies DCA on them, and compares with a set of

criteria corresponding to the commutativity properties of various data-parallel patterns.

Applying these steps over sequential loops, we are able to identify specific forms of

pattern-based parallelism in sequential code. This allows us to extend the scope of

detection with the identification of patterns, such as scans, that DCA (and dependence

analysis) is not able to find as parallelizable. This methodology not only utilizes the

existence of commutativity, but also its absence in the specification of the matching

136 7. Conclusions

criteria for each pattern.

7.3 Critical Review and Future Directions

7.3.1 Liveness-Based Commutativity Analyses

In Chapters 4 and 5, we presented and evaluated two techniques which leveraged

liveness-based commutativity for parallelization leveraging information derived from

symbolic and dynamic execution contexts.

Currently, the overheads of liveness-based commutativity () using symbolic exe-

cution are very limiting for any useful determination regarding the examined loops

due to the inherent path explosion associated with iteration exploration. While the

characterization of inputs with symbolic classes is attractive, there is no clear approach

on how this can be further lifted from low-level ranges, based on the underlying variable

types, tailored without domain and problem knowledge from the user. Further, the user

is required to be heavily involved during the whole process of commutativity checking,

from input set manipulation to code fragment extraction and verification of results.

Lastly, fundamental modelling limitations in symbolic execution (i.e., floating-point

numbers) continue to pose an unresolved challenge that impacts the application of

any such approach to codebases and workloads that employ them, such as HPC and

numerical analysis.

One future research path would be to investigate the use of program slicing tech-

niques in order to alleviate the shortcomings of symbolic execution when used with

liveness-based commutativity. Program slicing [270] is a technique to determine the

set of statements in a program (i.e., the program slice), which may affect the values at

some program region of interest (i.e., slicing criterion). The usual application of these

techniques is in debugging, but their uses have been expanded, producing multiple vari-

ants since its inception [278]. Slicing could be used to reduce and simplify a candidate

program region to be tested for commutativity conditions.

Fuzzing, or fuzz testing, is a technique for the fast, automatic generation of inputs

to test programs for security vulnerabilities [157, 97]. Recently published research has

started investigating the combination of symbolic execution in tandem with fuzzing

in order to overcome each other’s limitations (whitebox fuzzing) [105, 190]. Briefly,

the main challenge in fuzzing is generating such inputs that thoroughly exercise the

intended program sections under test. In the context of implementing liveness-based

7.3. Critical Review and Future Directions 137

commutativity analyses, fuzzing could help selectively concretize values that could lead

to a fast fail of the commutativity conditions tests. Another potential use of fuzzing,

that could widen the applicability of symbolic execution, would be to direct its input

generation towards parallelization-specific goals (e.g., discovering what values could

cause fast failing of commutativity tests). Recent research has also examined the use

of a more targeted application of symbolic execution by allowing the user to specify

regions of code that can be excluded, thus focusing on the exploration of important

paths [250].

Symbolic execution could also be used in an indirect manner, as a mechanism of

specification inference mechanism for program parallelization, treating parallelization-

inhibiting dependences as program defects. While this also suffers from scalability

issues, there have been adaptations which have worked towards mitigating such chal-

lenges in other application fields, such as program repair [229], and could make future

work on this aspect more tractable.

Several opportunities for future research lie in the exploration of combining DCA

with other dynamic analyses.

In terms of parallelization discovery, DCA is sensitive to the potential of combi-

natorial explosion, due to long iteration counts, potentially deep loop nest structures

and different execution contexts (e.g., different call sites of the containing function).

Currently, there is no consideration in mitigating the associated overheads apart from

performing independent loop invocations. There is also no attempt to reuse or compress

profiling information across loops in a loop nest or execution contexts. The paral-

lelization safety of the discovered loops is not guaranteed since it is based on profiling

information using a finite input set. Hence, the user involvement in the decision to

proceed with parallelization requires expert knowledge. Lastly, this information is

presented in a low-level format, exposing the data dependences between variables,

making this task onerous.

Probabilistic techniques can help reduce the overhead of the dynamic analysis

created by the requirement to permute the iteration space of a loop. One such potential

technique is loop perforation [232] which could be utilized to reduce the amount of

loop iterations executed and hence the overall computational workload. While the

perforated result differs from the original, its use in computations that can tolerate such

changes (e.g., ML-based algorithms) and regulate trade-offs between efficiency and

accuracy, can be acceptable and beneficial. This difference in results from algorithmic

changes or computation reordering (e.g., parallelization) is not new in computing. For

138 7. Conclusions

example, developers of HPC applications already deal with the heavy use of floating-

point arithmetic, where experts have included error threshold checks (e.g., the NPB suite

provides a verification step for each program). However, perforation algorithms actively

search the space of the generated variants for optimality (i.e., maximize performance

for a specific acceptable accuracy loss).

Another set of related techniques that could alleviate the overhead of iteration

reordering are those that enable program execution replay. These techniques record

enough information from the execution of a program about its behavior, so that a second

execution can loyally replay the behavior, producing the same result [183, 256, 182].

Typically, the objective is to enable debugging (e.g., reverse-execution debugging) or

resolve difficult to reproduce faults. However, there have been techniques that aim to

reproduce specific program properties for performance such as [49], where code regions

are extracted and executed in isolation using an identified representative working state

(i.e., memory and cache). This could allow an extension of DCA that could accurately

test commutativity conditions for individual loop nests.

In Chapter 2, we briefly presented speculative parallelization approaches more

closely related to our work. We consider such approaches orthogonal to DCA’s detection

capabilities, thus speculation can be leveraged for the actual parallel code generation

stage of the analysis. DCA is an Ahead-of-Time (AoT) analysis with zero overheads

during the program’s parallel execution. However, if the two approaches are used in

conjunction, then speculative execution can benefit from a reduction of the associated

runtime costs (Chapter 2) and DCA can completely avoid user involvement (i.e., fully

automatic). The manner in which such a combination could prove profitable is a further

avenue for future research.

Moreover, although we did not use any specific hardware features, there are ways

that architectural support can assist in our proposed techniques, such as Transactional

Memory (TM) or even Value Prediction, which has received renewed interest from

the community following the advent of processors with a variety of general-purpose

cores [78]. For instance, if the path of speculative parallelization is investigated, there

is a body of research that has studied ways in which TM can help in the efficient

maintenance of speculative state and rollback implementation [218].

As we presented in Chapter 5, DCA relies on concretes inputs to execute a target

application and retrieve the required values through the generated profiles. While the

results are valid for those specific input sets, we have also explored the precision of

the predictions made by our analysis and found that they are adequate and hold for all

7.3. Critical Review and Future Directions 139

potential valid inputs.

An interesting future research direction would be to explore the generation of

representative program input sets. Another way would be an approach similar to [28]

used in the context of Feedback-Directed Optimization (FDO), where profiles from

several program runs are combined in a statistically sound method, supporting both

offline and online information collection. Similarly, in [77], the effect of different input

sets is measured using statistical analysis and the results are clustered together based on

the program behavior that they induce. Techniques like DCA, which rely on liveness-

based commutativity could potentially present good candidates for such statistical

approaches. This is because their results are based on a candidate region’s outcome,

unlike dependence-based methods, where a single violating read/write operation pair

between two memory locations is enough to stop parallelization.

In our implementation, the main focus of profiling was the extraction of adequate

information in support of DCA’s requirements. Despite that, future revisions can

incorporate techniques for the efficient storage [179] (e.g., using compression) or

collection of traces [144]. For example, SD3 [144] parallelizes the gathering of profiling

information itself and could be applied orthogonally.

Lastly, even though parallelization detection using DCA can be applied to each

individual loop in a loop nest, our current parallelization scheme exploits only the

outermost loops. This strategy typically avoids the costs associated with setup and

synchronization of parallelism which typically negate any speedup gains from paral-

lelization when performed on inner loops [50]. Exploring the use of commutativity

with other parallel code generation techniques, more suitable for inner-loop parallelism

such as vectorization [7], could further expand DCA’s applicability and advance its

integration along other compiler transformations and optimizations. Deciding on the

granularity of parallelism, its form and the order which these should be optimally

combined is a complicated problem which could also benefit from the use of ML-based

techniques for parallel code generation [248].

7.3.2 Pattern Detection with Liveness-based Commutativity

In Chapter 6, we presented a methodology to identify data-parallel patterns in sequential

code leveraging DCA, thus extending the scope of our discovery capacity.

The current implementation is limited to data-parallel patterns which are sought

using an inflexible detection scheme, which uses a combination of compiler transfor-

140 7. Conclusions

mations and code templates. Furthermore, the user is required to design, implement

and verify the results of the commutativity for each decomposed loop in a pattern under

detection and also check the correctness of the match with the expected criteria for it.

While DCA is able to handle PLDS-based loops, pattern detection with has not been

expanded to attempt discovery in such codes. It is unclear how our technique could

be expanded to address combination of data-parallel patterns (fused or composable

variations).

Future work can examine if our methodology can be expanded to include the

identification of other skeletons (e.g., stencils, recurrences, etc.) and provide a unified

way to describe them. This could allow the description of patterns by the users and

facilitate a holistic integration, from detection to code generation, by taking advantage

of parallel programming frameworks (e.g., SKEPU [79]). Using skeleton frameworks

can alleviate the task of mapping and tuning the extracted parallelism to the target

parallel architectures.

Enhancing the results of commutativity with shape analysis [93] could further

amplify parallelism and pattern detection beyond the scope of loops. Additionally, in-

corporating methods which automatically discover and verify commutativity conditions

for data structures [146] could limit the reliance of profiling information and reduce or

eliminate user involvement in the process of parallelization.

Another facet of our approach is the application and search for every available

pattern description at our disposal. At the moment, the interaction of each pattern

transformation and matching occurs in isolation from each other. Implementing a

specific order in the application of each pattern could obviate duplication of effort in

parts of our technique (e.g., the transformation of and criteria matching for the first phase

each pattern). However, this is an orthogonal aspect, since the apparent inefficiency

could be offset by parallelizing these steps in our methodology while retaining the

isolation of each pattern specification.

Lastly, several parallel patterns appear in fused forms in many parallel programming

frameworks [171]. These special cases are combinations of multiple patterns used in

chained succession (e.g., map-reduction or map-scan fusions) where one consumes the

output of the previous pattern. The fused patterns tend to improve the efficiency of

parallel execution by reducing communication and synchronization overheads [171].

Our approach does not contain descriptions of fused pattern variants, however, this

could be remedied by:

i) providing distinct descriptions for fused variants, or

7.3. Critical Review and Future Directions 141

ii) adding decomposition stages to separate such occurrences, thus enabling their

detection with the currently available descriptions.

7.3.3 User Interface Improvements

The current medium of user interaction in DCA is through low-level reports which

were originally designed to assist us in identifying individual candidate loops and be

easily parsed by our development utilities. As a result, this output is not well-suited

for consumption by developers and used as a productivity booster. Despite this, it is

possible to extend and enhance the current reports and user feedback, in similar fashion

to tools such as [161, 288], to:

i) Enable association between the results and the original source code by using

source-level debugging information (e.g., a format such as DWARF [75]). This

can further enable a two-way communication and update between reports and

source code via an Integrated Development Environment (IDE) plugin or other

external tools in the development software ecosystem.

ii) Exploit the liveness information used in liveness-based commutativity by DCA to

focus and filter the operations and data flow for the candidate loops presented to

the user. This can occur in combination with visualizing dependence information,

since this can help in validating access synchronization to shared variables.

iii) The involvement of the user can follow a plan, be more guided and minimize the

number of required user tweaks. For example, an advisor-like tool can suggest

a specific set of steps to take in order to validate DCA’s transformations. Such

a tool could be powered by preset user configurations, heuristics or ML-based

predictions.

Lastly, all the aforementioned suggestions can also be combined at various degrees to

improve the overall user experience.

Bibliography

[1] Vikas Agarwal et al. “Clock Rate versus IPC: The End of the Road for Conven-

tional Microarchitectures”. In: Proceedings of the 27th Annual International

Symposium on Computer Architecture. ISCA ’00. New York, NY, USA: Associ-

ation for Computing Machinery, May 2000, pp. 248–259. ISBN: 978-1-58113-

232-8. DOI: 10.1145/339647.339691.

[2] Alfred V. Aho, ed. Compilers: Principles, Techniques, and Tools. 2. ed, Pearson

new intern. ed. Harlow: Pearson, 2014. ISBN: 978-1-292-02434-9 1-292-02434-

8 978-1-292-02434-9.

[3] Farhana Aleen and Nathan Clark. “Commutativity Analysis for Software Par-

allelization: Letting Program Transformations See the Big Picture”. In: Pro-

ceedings of the 14th International Conference on Architectural Support for

Programming Languages and Operating Systems. ASPLOS XIV. New York,

NY, USA: ACM, 2009, pp. 241–252. ISBN: 978-1-60558-406-5. DOI: 10.1145/

1508244.1508273.

[4] J. R. Allen et al. “Conversion of Control Dependence to Data Dependence”.

In: Proceedings of the 10th ACM SIGACT-SIGPLAN Symposium on Principles

of Programming Languages. POPL ’83. New York, NY, USA: ACM, 1983,

pp. 177–189. ISBN: 978-0-89791-090-3. DOI: 10.1145/567067.567085.

[5] John R. Allen and Ken Kennedy. “PFC: A Program to Convert Fortran to Parallel

Form”. In: (Mar. 1982). https://scholarship.rice.edu/handle/1911/101547.

[6] John Randal Allen. “Dependence Analysis for Subscripted Variable and Its

Application To Program Transformations”. https://scholarship.rice.edu/handle/

1911/19045. Thesis. 1983.

143

https://doi.org/10.1145/339647.339691
https://doi.org/10.1145/1508244.1508273
https://doi.org/10.1145/1508244.1508273
https://doi.org/10.1145/567067.567085
https://scholarship.rice.edu/handle/1911/101547
https://scholarship.rice.edu/handle/1911/19045
https://scholarship.rice.edu/handle/1911/19045

144 BIBLIOGRAPHY

[7] Randy Allen and Ken Kennedy. Optimizing Compilers for Modern Architec-

tures: A Dependence-Based Approach. 1 edition. San Francisco: Morgan Kauf-

mann Publishers In, Mar. 2000. ISBN: 978-1-55860-286-1.

[8] Martin Alt, Uwe Aßmann, and Hans van Someren. “Cosy Compiler Phase

Embedding with the CoSy Compiler Model”. In: Compiler Construction. Ed.

by Peter A. Fritzson. Lecture Notes in Computer Science. Berlin, Heidelberg:

Springer, 1994, pp. 278–293. ISBN: 978-3-540-48371-7. DOI: 10.1007/3-540-

57877-3_19.

[9] Saman Amarasinghe. “Why Compilers Have Failed to Support HPC Program-

mers and What Can We Do about It”. In: ASCR Programming Challenges

Workshop. 2011.

[10] Sotiris Apostolakis et al. “Perspective: A Sensible Approach to Speculative

Automatic Parallelization”. In: Proceedings of the Twenty-Fifth International

Conference on Architectural Support for Programming Languages and Op-

erating Systems. ASPLOS ’20. Lausanne, Switzerland: Association for Com-

puting Machinery, Mar. 2020, pp. 351–367. ISBN: 978-1-4503-7102-5. DOI:

10.1145/3373376.3378458.

[11] Manuel Arenaz, Juan Touriño, and Ramon Doallo. “XARK: An Extensible

Framework for Automatic Recognition of Computational Kernels”. In: ACM

Trans. Program. Lang. Syst. 30.6 (Oct. 2008), 32:1–32:56. DOI: 10 . 1145 /

1391956.1391959.

[12] Krste Asanovic et al. “A View of the Parallel Computing Landscape”. In:

Commun ACM 52.10 (Oct. 2009), pp. 56–67. DOI: 10.1145/1562764.1562783.

[13] Amir H. Ashouri et al. “A Survey on Compiler Autotuning Using Machine

Learning”. In: ACM Comput. Surv. 51.5 (Sept. 2018), 96:1–96:42. DOI: 10.

1145/3197978.

[14] T.M. Austin and G.S. Sohi. “Dynamic Dependency Analysis of Ordinary Pro-

grams”. In: [1992] Proceedings the 19th Annual International Symposium on

Computer Architecture. May 1992, pp. 342–351. DOI: 10.1109/ISCA.1992.

753330.

[15] Todd M. Austin, Scott E. Breach, and Gurindar S. Sohi. “Efficient Detection

of All Pointer and Array Access Errors”. In: SIGPLAN Not. 29.6 (June 1994),

pp. 290–301. DOI: 10.1145/773473.178446.

https://doi.org/10.1007/3-540-57877-3_19
https://doi.org/10.1007/3-540-57877-3_19
https://doi.org/10.1145/3373376.3378458
https://doi.org/10.1145/1391956.1391959
https://doi.org/10.1145/1391956.1391959
https://doi.org/10.1145/1562764.1562783
https://doi.org/10.1145/3197978
https://doi.org/10.1145/3197978
https://doi.org/10.1109/ISCA.1992.753330
https://doi.org/10.1109/ISCA.1992.753330
https://doi.org/10.1145/773473.178446

BIBLIOGRAPHY 145

[16] Olaf Bachmann, Paul S. Wang, and Eugene V. Zima. “Chains of Recurrences—a

Method to Expedite the Evaluation of Closed-Form Functions”. In: Proceed-

ings of the International Symposium on Symbolic and Algebraic Computation.

ISSAC ’94. New York, NY, USA: ACM, 1994, pp. 242–249. ISBN: 978-0-

89791-638-7. DOI: 10.1145/190347.190423.

[17] David F. Bacon, Susan L. Graham, and Oliver J. Sharp. “Compiler Transfor-

mations for High-Performance Computing”. In: ACM Comput Surv 26.4 (Dec.

1994), pp. 345–420. DOI: 10.1145/197405.197406.

[18] Tongxin Bai, Chen Ding, and Pengcheng Li. “Assessing Safe Task Parallelism

in SPEC 2006 INT”. In: 2015 15th IEEE/ACM International Symposium on

Cluster, Cloud and Grid Computing. May 2015, pp. 402–411. DOI: 10.1109/

CCGrid.2015.159.

[19] D. H. Bailey et al. “The NAS Parallel Benchmarks”. In: Proceedings of the 1991

ACM/IEEE Conference on Supercomputing - Supercomputing ’91. Albuquerque,

New Mexico, United States: ACM Press, 1991, pp. 158–165. ISBN: 978-0-

89791-459-8. DOI: 10.1145/125826.125925.

[20] Roberto Baldoni et al. “A Survey of Symbolic Execution Techniques”. In: ACM

Comput. Surv. CSUR 51.3 (July 2018), p. 50. DOI: 10.1145/3182657.

[21] Utpal K. Banerjee. Data Dependence in Ordinary Programs. Urbana: Dept. of

Computer Science, University of Illinois at Urbana-Champaign, 1976.

[22] Utpal K. Banerjee. Loop Transformations for Restructuring Compilers: The

Foundations. USA: Kluwer Academic Publishers, 1993. ISBN: 978-0-7923-

9318-4.

[23] Kshitij Bansal, Eric Koskinen, and Omer Tripp. “Automatic Generation of Pre-

cise and Useful Commutativity Conditions (Extended Version)”. In: ArXiv180208748

Cs (Feb. 2018). http://arxiv.org/abs/1802.08748. arXiv: 1802.08748 [cs].

[24] Mohamed-Walid Benabderrahmane et al. “The Polyhedral Model Is More

Widely Applicable Than You Think”. In: Proceedings of the 19th Joint European

Conference on Theory and Practice of Software, International Conference on

Compiler Construction. CC’10/ETAPS’10. Berlin, Heidelberg: Springer-Verlag,

2010, pp. 283–303. ISBN: 978-3-642-11969-9. DOI: 10.1007/978-3-642-11970-

5_16.

https://doi.org/10.1145/190347.190423
https://doi.org/10.1145/197405.197406
https://doi.org/10.1109/CCGrid.2015.159
https://doi.org/10.1109/CCGrid.2015.159
https://doi.org/10.1145/125826.125925
https://doi.org/10.1145/3182657
http://arxiv.org/abs/1802.08748
https://arxiv.org/abs/1802.08748
https://doi.org/10.1007/978-3-642-11970-5_16
https://doi.org/10.1007/978-3-642-11970-5_16

146 BIBLIOGRAPHY

[25] Josh Berdine et al. “Shape Analysis for Composite Data Structures”. In: Pro-

ceedings of the 19th International Conference on Computer Aided Verification.

CAV’07. http : / / dl . acm . org / citation . cfm ? id = 1770351 . 1770381. Berlin,

Heidelberg: Springer-Verlag, 2007, pp. 178–192. ISBN: 978-3-540-73367-6.

[26] Marc Berndl and Laurie Hendren. “Dynamic Profiling and Trace Cache Genera-

tion”. In: Proceedings of the International Symposium on Code Generation and

Optimization: Feedback-Directed and Runtime Optimization. CGO ’03. San

Francisco, California, USA: IEEE Computer Society, Mar. 2003, pp. 276–285.

ISBN: 978-0-7695-1913-5.

[27] A.J. Bernstein. “Analysis of Programs for Parallel Processing”. In: IEEE Trans.

Electron. Comput. EC-15.5 (Oct. 1966), pp. 757–763. DOI: 10.1109/PGEC.

1966.264565.

[28] Paul Berube, Adam Preuss, and Jose Nelson Amaral. “Combined Profiling:

Practical Collection of Feedback Information for Code Optimization”. In: Pro-

ceedings of the 2nd ACM/SPEC International Conference on Performance

Engineering. ICPE ’11. New York, NY, USA: Association for Computing Ma-

chinery, Mar. 2011, pp. 493–498. ISBN: 978-1-4503-0519-8. DOI: 10.1145/

1958746.1958821.

[29] Chris Birchall. Re-Engineering Legacy Software. Shelter Island, NY: Manning

Publications Co, 2016. ISBN: 978-1-61729-250-7.

[30] G. E. Blelloch. “Scans as Primitive Parallel Operations”. In: IEEE Trans. Com-

put. 38.11 (Nov. 1989), pp. 1526–1538. DOI: 10.1109/12.42122.

[31] Guy E. Blelloch. “Prefix Sums and Their Applications”. In: (2004), 1294199

Bytes. DOI: 10.1184/R1/6608579.V1.

[32] William Blume et al. “Polaris: Improving the Effectiveness of Parallelizing

Compilers”. In: Languages and Compilers for Parallel Computing. Ed. by

Keshav Pingali et al. Lecture Notes in Computer Science. Berlin, Heidelberg:

Springer, 1995, pp. 141–154. ISBN: 978-3-540-49134-7. DOI: 10.1007/BFb

0025876.

[33] Eric Bodden et al. “Collaborative Runtime Verification with Tracematches”.

In: Proceedings of the 7th International Conference on Runtime Verification.

RV’07. Vancouver, Canada: Springer-Verlag, Mar. 2007, pp. 22–37. ISBN: 978-

3-540-77394-8.

http://dl.acm.org/citation.cfm?id=1770351.1770381
https://doi.org/10.1109/PGEC.1966.264565
https://doi.org/10.1109/PGEC.1966.264565
https://doi.org/10.1145/1958746.1958821
https://doi.org/10.1145/1958746.1958821
https://doi.org/10.1109/12.42122
https://doi.org/10.1184/R1/6608579.V1
https://doi.org/10.1007/BFb0025876
https://doi.org/10.1007/BFb0025876

BIBLIOGRAPHY 147

[34] Uday Bondhugula et al. “A Practical Automatic Polyhedral Parallelizer and

Locality Optimizer”. In: SIGPLAN Not. 43.6 (June 2008), pp. 101–113. DOI:

10.1145/1379022.1375595.

[35] Shekhar Borkar. “Getting Gigascale Chips: Challenges and Opportunities in

Continuing Moore’s Law”. In: Queue 1.7 (Oct. 2003), pp. 26–33. DOI: 10.1145/

957717.957757.

[36] Adam Bosworth et al. “Data Cube: A Relational Aggregation Operator Gener-

alizing Group-By, Cross-Tab, and Sub-Totals”. In: (Feb. 1995). https://www.

microsoft.com/en-us/research/publication/data-cube-a-relational-aggregation-

operator-generalizing-group-by-cross-tab-and-sub-totals/.

[37] T. Brandes et al. “HPFIT: A Set of Integrated Tools for the Parallelization of Ap-

plications Using High Performance Fortran. Part I: HPFIT and the TransTOOL

Environment”. In: Parallel Computing. Environment and Tools for Parallel

Scientific Computing 23.1 (Apr. 1997), pp. 71–87. DOI: 10 . 1016 / S0167 -

8191(96)00097-X.

[38] Matthew Bridges et al. “Revisiting the Sequential Programming Model for

Multi-Core”. In: Proceedings of the 40th Annual IEEE/ACM International

Symposium on Microarchitecture. MICRO 40. USA: IEEE Computer Society,

Dec. 2007, pp. 69–84. ISBN: 978-0-7695-3047-5. DOI: 10.1109/MICRO.2007.

35.

[39] Amy Brown and Greg Wilson. The Architecture Of Open Source Applications.

Mountain View: lulu.com, Mar. 2012. ISBN: 978-1-257-63801-7.

[40] Juan Manuel Caamaño et al. “Full Runtime Polyhedral Optimizing Loop Trans-

formations with the Generation, Instantiation, and Scheduling of Code-Bones”.

In: Concurr. Comput. Pract. Exp. 29.15 (2017), e4192. DOI: 10.1002/cpe.4192.

[41] Juan Manuel Martinez Caamaño et al. “APOLLO: Automatic Speculative

POLyhedral Loop Optimizer”. In: IMPACT 2017 - 7th International Workshop

on Polyhedral Compilation Techniques. https://hal.inria.fr/hal-01533692. Jan.

2017, p. 8.

[42] Cristian Cadar. [Klee-Dev] KLEE Floating-Point Support. http://mailman.ic.

ac.uk/pipermail/klee-dev/2020-November/002053.html. Tue Nov 24 10:06:56

GMT 2020.

https://doi.org/10.1145/1379022.1375595
https://doi.org/10.1145/957717.957757
https://doi.org/10.1145/957717.957757
https://www.microsoft.com/en-us/research/publication/data-cube-a-relational-aggregation-operator-generalizing-group-by-cross-tab-and-sub-totals/
https://www.microsoft.com/en-us/research/publication/data-cube-a-relational-aggregation-operator-generalizing-group-by-cross-tab-and-sub-totals/
https://www.microsoft.com/en-us/research/publication/data-cube-a-relational-aggregation-operator-generalizing-group-by-cross-tab-and-sub-totals/
https://doi.org/10.1016/S0167-8191(96)00097-X
https://doi.org/10.1016/S0167-8191(96)00097-X
https://doi.org/10.1109/MICRO.2007.35
https://doi.org/10.1109/MICRO.2007.35
https://doi.org/10.1002/cpe.4192
https://hal.inria.fr/hal-01533692
http://mailman.ic.ac.uk/pipermail/klee-dev/2020-November/002053.html
http://mailman.ic.ac.uk/pipermail/klee-dev/2020-November/002053.html

148 BIBLIOGRAPHY

[43] Cristian Cadar. “Targeted Program Transformations for Symbolic Execution”.

In: Proceedings of the 2015 10th Joint Meeting on Foundations of Software

Engineering. ESEC/FSE 2015. New York, NY, USA: Association for Com-

puting Machinery, Aug. 2015, pp. 906–909. ISBN: 978-1-4503-3675-8. DOI:

10.1145/2786805.2803205.

[44] Cristian Cadar, Daniel Dunbar, and Dawson Engler. “KLEE: Unassisted and

Automatic Generation of High-Coverage Tests for Complex Systems Programs”.

In: Proceedings of the 8th USENIX Conference on Operating Systems Design

and Implementation. OSDI’08. http://dl.acm.org/citation.cfm?id=1855741.

1855756. Berkeley, CA, USA: USENIX Association, 2008, pp. 209–224.

[45] Cristian Cadar and Koushik Sen. “Symbolic Execution for Software Testing:

Three Decades Later”. In: Commun. ACM 56.2 (Feb. 2013), p. 82. DOI: 10.

1145/2408776.2408795.

[46] Simone Campanoni et al. “HELIX: Automatic Parallelization of Irregular Pro-

grams for Chip Multiprocessing”. In: Proceedings of the Tenth International

Symposium on Code Generation and Optimization - CGO ’12. San Jose, Califor-

nia: ACM Press, 2012, p. 84. ISBN: 978-1-4503-1206-6. DOI: 10.1145/2259016.

2259028.

[47] Martin C. Carlisle et al. “Early Experiences with Olden”. In: Languages

and Compilers for Parallel Computing. Lecture Notes in Computer Science.

Springer, Berlin, Heidelberg, Aug. 1993, pp. 1–20. ISBN: 978-3-540-57659-4.

DOI: 10.1007/3-540-57659-2_1.

[48] Martin Christopher Carlisle. “Olden: Parallelizing Programs with Dynamic

Data Structures on Distributed-Memory Machines”. PhD Thesis. Princeton, NJ,

USA: Princeton University, 1996.

[49] Pablo De Oliveira Castro et al. “CERE: LLVM-Based Codelet Extractor and

REplayer for Piecewise Benchmarking and Optimization”. In: ACM Trans Arch.

Code Optim 12.1 (Apr. 2015), 6:1–6:24. DOI: 10.1145/2724717.

[50] Barbara Chapman, Gabriele Jost, and Ruud van der Pas. Using OpenMP:

Portable Shared Memory Parallel Programming. Scientific and Engineering

Computation. Cambridge, Mass: MIT Press, 2008. ISBN: 978-0-262-53302-7

978-0-262-03377-0.

https://doi.org/10.1145/2786805.2803205
http://dl.acm.org/citation.cfm?id=1855741.1855756
http://dl.acm.org/citation.cfm?id=1855741.1855756
https://doi.org/10.1145/2408776.2408795
https://doi.org/10.1145/2408776.2408795
https://doi.org/10.1145/2259016.2259028
https://doi.org/10.1145/2259016.2259028
https://doi.org/10.1007/3-540-57659-2_1
https://doi.org/10.1145/2724717

BIBLIOGRAPHY 149

[51] Arthur Charlesworth. “The Undecidability of Associativity and Commutativity

Analysis”. In: ACM Trans Program Lang Syst 24.5 (Sept. 2002), pp. 554–565.

DOI: 10.1145/570886.570889.

[52] Lorenzo Chelini et al. “Progressive Raising in Multi-Level IR”. In: 2021

IEEE/ACM International Symposium on Code Generation and Optimization

(CGO). Feb. 2021, pp. 15–26. DOI: 10.1109/CGO51591.2021.9370332.

[53] Doreen Y. Cheng and Douglas M. Pase. “An Evaluation of Automatic and Inter-

active Parallel Programming Tools”. In: Proceedings of the 1991 ACM/IEEE

Conference on Supercomputing. Supercomputing ’91. Albuquerque, New Mex-

ico, USA: Association for Computing Machinery, Aug. 1991, pp. 412–423.

ISBN: 978-0-89791-459-8. DOI: 10.1145/125826.126052.

[54] Austin T. Clements et al. “The Scalable Commutativity Rule: Designing Scal-

able Software for Multicore Processors”. In: ACM Trans. Comput. Syst. 32.4

(Jan. 2015), 10:1–10:47. DOI: 10.1145/2699681.

[55] COBOL Blues. http://fingfx.thomsonreuters.com/gfx/rngs/USA-BANKS-

COBOL/010040KH18J/index.html.

[56] Albert Cohen, Sylvain Girbal, and Olivier Temam. “A Polyhedral Approach

to Ease the Composition of Program Transformations”. In: Euro-Par 2004

Parallel Processing. Ed. by Marco Danelutto, Marco Vanneschi, and Domenico

Laforenza. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer,

2004, pp. 292–303. ISBN: 978-3-540-27866-5. DOI: 10.1007/978-3-540-27866-

5_38.

[57] Murray Cole. Algorithmic Skeletons: Structured Management of Parallel Com-

putation. Research Monographs in Parallel and Distributed Computing. London

: Cambridge, Mass: Pitman ; MIT Press, 1989. ISBN: 978-0-273-08807-3.

[58] Murray Cole. “Bringing Skeletons out of the Closet: A Pragmatic Manifesto

for Skeletal Parallel Programming”. In: Parallel Comput 30.3 (Mar. 2004),

pp. 389–406. DOI: 10.1016/j.parco.2003.12.002.

[59] Peter Collingbourne, Cristian Cadar, and Paul H.J. Kelly. “Symbolic Cross-

checking of Floating-Point and SIMD Code”. In: Proceedings of the Sixth

Conference on Computer Systems. EuroSys ’11. New York, NY, USA: ACM,

2011, pp. 315–328. ISBN: 978-1-4503-0634-8. DOI: 10.1145/1966445.1966475.

https://doi.org/10.1145/570886.570889
https://doi.org/10.1109/CGO51591.2021.9370332
https://doi.org/10.1145/125826.126052
https://doi.org/10.1145/2699681
http://fingfx.thomsonreuters.com/gfx/rngs/USA-BANKS-COBOL/010040KH18J/index.html
http://fingfx.thomsonreuters.com/gfx/rngs/USA-BANKS-COBOL/010040KH18J/index.html
https://doi.org/10.1007/978-3-540-27866-5_38
https://doi.org/10.1007/978-3-540-27866-5_38
https://doi.org/10.1016/j.parco.2003.12.002
https://doi.org/10.1145/1966445.1966475

150 BIBLIOGRAPHY

[60] Keith D. Cooper and Linda Torczon. Engineering a Compiler. 2nd ed. Amster-

dam ; Boston: Elsevier/Morgan Kaufmann, 2012. ISBN: 978-0-12-088478-0.

[61] Emilio Coppa, Daniele Cono D’Elia, and Camil Demetrescu. “Rethinking

Pointer Reasoning in Symbolic Execution”. In: Proceedings of the 32Nd IEEE/ACM

International Conference on Automated Software Engineering. ASE 2017. http:

//dl.acm.org/citation.cfm?id=3155562.3155638. Piscataway, NJ, USA: IEEE

Press, 2017, pp. 613–618. ISBN: 978-1-5386-2684-9.

[62] William J. Dally, Yatish Turakhia, and Song Han. “Domain-Specific Hardware

Accelerators”. In: Commun. ACM 63.7 (June 2020), pp. 48–57. DOI: 10.1145/

3361682.

[63] Marco Danelutto et al. “Algorithmic Skeletons and Parallel Design Patterns in

Mainstream Parallel Programming”. In: Int J Parallel Prog 49.2 (Apr. 2021),

pp. 177–198. DOI: 10.1007/s10766-020-00684-w.

[64] Andrew Danowitz et al. “CPU DB: Recording Microprocessor History: With

This Open Database, You Can Mine Microprocessor Trends over the Past 40

Years.” In: Queue 10.4 (Apr. 2012), pp. 10–27. DOI: 10.1145/2181796.2181798.

[65] Data Parallel C++ for Cross-Architecture Applications. https://www.intel.com/

content/www/us/en/develop/tools/oneapi/components/dpc-compiler.html.

[66] Jeffrey Dean and Sanjay Ghemawat. “MapReduce: Simplified Data Processing

on Large Clusters”. In: Commun. ACM 51.1 (Jan. 2008), p. 107. DOI: 10.1145/

1327452.1327492.

[67] John Delaney. COBOL Programmers Are Back In Demand. Seriously. https:

//cacm.acm.org/news/244370-cobol-programmers-are-back- in-demand-

seriously/fulltext. Apr. 2020.

[68] B. Di Martino and G. Iannello. “PAP Recognizer: A Tool for Automatic Recog-

nition of Parallelizable Patterns”. In: 4th Workshop on Program Comprehension

WPC ’96. Mar. 1996, pp. 164–174. DOI: 10.1109/WPC.1996.501131.

[69] Danny Dig. “A Refactoring Approach to Parallelism”. In: IEEE Softw. 28.1 (Jan.

2011), pp. 17–22. DOI: 10.1109/MS.2011.1.

http://dl.acm.org/citation.cfm?id=3155562.3155638
http://dl.acm.org/citation.cfm?id=3155562.3155638
https://doi.org/10.1145/3361682
https://doi.org/10.1145/3361682
https://doi.org/10.1007/s10766-020-00684-w
https://doi.org/10.1145/2181796.2181798
https://www.intel.com/content/www/us/en/develop/tools/oneapi/components/dpc-compiler.html
https://www.intel.com/content/www/us/en/develop/tools/oneapi/components/dpc-compiler.html
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1145/1327452.1327492
https://cacm.acm.org/news/244370-cobol-programmers-are-back-in-demand-seriously/fulltext
https://cacm.acm.org/news/244370-cobol-programmers-are-back-in-demand-seriously/fulltext
https://cacm.acm.org/news/244370-cobol-programmers-are-back-in-demand-seriously/fulltext
https://doi.org/10.1109/WPC.1996.501131
https://doi.org/10.1109/MS.2011.1

BIBLIOGRAPHY 151

[70] Chen Ding et al. “Software Behavior Oriented Parallelization”. In: Proceedings

of the 28th ACM SIGPLAN Conference on Programming Language Design

and Implementation. PLDI ’07. San Diego, California, USA: Association for

Computing Machinery, June 2007, pp. 223–234. ISBN: 978-1-59593-633-2.

DOI: 10.1145/1250734.1250760.

[71] Johannes Doerfert, Tobias Grosser, and Sebastian Hack. “Optimistic Loop

Optimization”. In: Proceedings of the 2017 International Symposium on Code

Generation and Optimization. CGO ’17. IEEE Press, 2017, pp. 292–304. ISBN:

978-1-5090-4931-8.

[72] Johannes Doerfert et al. “Polly’s Polyhedral Scheduling in the Presence of

Reductions”. In: ArXiv150507716 Cs (May 2015). http://arxiv.org/abs/1505.

07716. arXiv: 1505.07716 [cs].

[73] Jialin Dou and Marcelo Cintra. “Compiler Estimation of Load Imbalance Over-

head in Speculative Parallelization”. In: Proceedings of the 13th International

Conference on Parallel Architectures and Compilation Techniques. PACT ’04.

USA: IEEE Computer Society, Sept. 2004, pp. 203–214. ISBN: 978-0-7695-

2229-6.

[74] Bruno Dufour et al. “Dynamic Metrics for Java”. In: Proceedings of the 18th

Annual ACM SIGPLAN Conference on Object-Oriented Programing, Systems,

Languages, and Applications. OOPSLA ’03. Anaheim, California, USA: Asso-

ciation for Computing Machinery, Oct. 2003, pp. 149–168. ISBN: 978-1-58113-

712-5. DOI: 10.1145/949305.949320.

[75] Dwarf Home. http://dwarfstd.org/.

[76] Tobias J.K. Edler von Koch and Björn Franke. “Variability of Data Dependences

and Control Flow”. In: 2014 IEEE International Symposium on Performance

Analysis of Systems and Software (ISPASS). Mar. 2014, pp. 180–189. DOI:

10.1109/ISPASS.2014.6844482.

[77] Lieven Eeckhout, Hans Vandierendonck, and Koen De Bosschere. “Quantifying

the Impact of Input Data Sets on Program Behavior and Its Applications”. In: J.

Instr. Level Parallelism 5 (Apr. 2003). https://pure.qub.ac.uk/en/publications/

quantifying-the-impact-of-input-data-sets-on-program-behavior-and.

https://doi.org/10.1145/1250734.1250760
http://arxiv.org/abs/1505.07716
http://arxiv.org/abs/1505.07716
https://arxiv.org/abs/1505.07716
https://doi.org/10.1145/949305.949320
http://dwarfstd.org/
https://doi.org/10.1109/ISPASS.2014.6844482
https://pure.qub.ac.uk/en/publications/quantifying-the-impact-of-input-data-sets-on-program-behavior-and
https://pure.qub.ac.uk/en/publications/quantifying-the-impact-of-input-data-sets-on-program-behavior-and

152 BIBLIOGRAPHY

[78] Fernando A. Endo, Arthur Perais, and André Seznec. “On the Interactions

Between Value Prediction and Compiler Optimizations in the Context of EOLE”.

In: ACM Trans. Archit. Code Optim. 14.2 (July 2017), 18:1–18:24. DOI: 10.

1145/3090634.

[79] August Ernstsson et al. “SkePU 3: Portable High-Level Programming of Het-

erogeneous Systems and HPC Clusters”. In: Int J Parallel Prog (May 2021).

DOI: 10.1007/s10766-021-00704-3.

[80] Alvaro Estebanez, Diego R. Llanos, and Arturo Gonzalez-Escribano. “A Survey

on Thread-Level Speculation Techniques”. In: ACM Comput. Surv. 49.2 (June

2016), 22:1–22:39. DOI: 10.1145/2938369.

[81] Karl-Filip Faxén et al. “Embla - Data Dependence Profiling for Parallel Program-

ming”. In: 2008 International Conference on Complex, Intelligent and Software

Intensive Systems. Mar. 2008, pp. 780–785. DOI: 10.1109/CISIS.2008.52.

[82] Paul Feautrier. “Dataflow Analysis of Array and Scalar References”. In: Int J

Parallel Prog 20.1 (Feb. 1991), pp. 23–53. DOI: 10.1007/BF01407931.

[83] Paul Feautrier. “Some Efficient Solutions to the Affine Scheduling Problem. I.

One-Dimensional Time”. In: Int J Parallel Prog 21.5 (Oct. 1992), pp. 313–347.

DOI: 10.1007/BF01407835.

[84] Min Feng, Rajiv Gupta, and Iulian Neamtiu. “Effective Parallelization of Loops

in the Presence of I/O Operations”. In: Proceedings of the 33rd ACM SIGPLAN

Conference on Programming Language Design and Implementation. PLDI ’12.

New York, NY, USA: Association for Computing Machinery, June 11, 2012,

pp. 487–498. ISBN: 978-1-4503-1205-9. DOI: 10.1145/2254064.2254122.

[85] Min Feng, Changhui Lin, and Rajiv Gupta. “PLDS: Partitioning Linked Data

Structures for Parallelism”. In: ACM Trans. Archit. Code Optim. 8.4 (Jan. 2012),

38:1–38:21. DOI: 10.1145/2086696.2086717.

[86] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. “The Program Depen-

dence Graph and Its Use in Optimization”. In: ACM Trans Program Lang Syst

9.3 (July 1987), pp. 319–349. DOI: 10.1145/24039.24041.

[87] Allan L. Fisher and Anwar M. Ghuloum. “Parallelizing Complex Scans and

Reductions”. In: Proceedings of the ACM SIGPLAN 1994 Conference on Pro-

gramming Language Design and Implementation. PLDI ’94. New York, NY,

https://doi.org/10.1145/3090634
https://doi.org/10.1145/3090634
https://doi.org/10.1007/s10766-021-00704-3
https://doi.org/10.1145/2938369
https://doi.org/10.1109/CISIS.2008.52
https://doi.org/10.1007/BF01407931
https://doi.org/10.1007/BF01407835
https://doi.org/10.1145/2254064.2254122
https://doi.org/10.1145/2086696.2086717
https://doi.org/10.1145/24039.24041

BIBLIOGRAPHY 153

USA: ACM, 1994, pp. 135–146. ISBN: 978-0-89791-662-2. DOI: 10.1145/

178243.178255.

[88] Jessie Frazelle. “Chipping Away at Moore’s Law: Modern CPUs Are Just

Chiplets Connected Together.” In: Queue 18.1 (Feb. 2020), Pages 20:5–Pages

20:15. DOI: 10.1145/3387945.3388515.

[89] Michael A. Frumkin and Leonid V. Shabanov. “Benchmarking Memory Perfor-

mance with the Data Cube Operator”. In: Proceedings of the ISCA 17th Interna-

tional Conference on Parallel and Distributed Computing Systems, September

15-17, 2004, The Canterbury Hotel, San Francisco, California, USA. 2004,

pp. 165–171.

[90] Erich Gamma et al. Design Patterns : Elements of Reusable Object-Oriented

Software. 01 edition. Reading, Mass: Addison Wesley, Oct. 1994. ISBN: 978-0-

201-63361-0.

[91] Vijay Ganesh and David L. Dill. “A Decision Procedure for Bit-Vectors and

Arrays”. In: Proceedings of the 19th International Conference on Computer

Aided Verification. CAV’07. Berlin, Heidelberg: Springer-Verlag, July 2007,

pp. 519–531. ISBN: 978-3-540-73367-6.

[92] Pranav Garg et al. “Feedback-Directed Unit Test Generation for C/C++ Using

Concolic Execution”. In: 2013 35th International Conference on Software

Engineering (ICSE). May 2013, pp. 132–141. DOI: 10 . 1109 / ICSE . 2013 .

6606559.

[93] Rakesh Ghiya and Laurie J. Hendren. “Is It a Tree, a DAG, or a Cyclic Graph?

A Shape Analysis for Heap-Directed Pointers in C”. In: Proceedings of the 23rd

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages.

POPL ’96. New York, NY, USA: ACM, 1996, pp. 1–15. ISBN: 978-0-89791-

769-8. DOI: 10.1145/237721.237724.

[94] Rakesh Ghiya and Laurie J. Hendren. “Putting Pointer Analysis to Work”. In:

Proceedings of the 25th ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages. POPL ’98. New York, NY, USA: ACM, 1998,

pp. 121–133. ISBN: 978-0-89791-979-1. DOI: 10.1145/268946.268957.

[95] Philip Ginsbach, Lewis Crawford, and Michael F. P. O’Boyle. “CAnDL: A

Domain Specific Language for Compiler Analysis”. In: Proceedings of the 27th

International Conference on Compiler Construction. CC 2018. New York, NY,

https://doi.org/10.1145/178243.178255
https://doi.org/10.1145/178243.178255
https://doi.org/10.1145/3387945.3388515
https://doi.org/10.1109/ICSE.2013.6606559
https://doi.org/10.1109/ICSE.2013.6606559
https://doi.org/10.1145/237721.237724
https://doi.org/10.1145/268946.268957

154 BIBLIOGRAPHY

USA: Association for Computing Machinery, Feb. 2018, pp. 151–162. ISBN:

978-1-4503-5644-2. DOI: 10.1145/3178372.3179515.

[96] Philip Ginsbach and Michael F. P. O’Boyle. “Discovery and Exploitation of

General Reductions: A Constraint Based Approach”. In: Proceedings of the

2017 International Symposium on Code Generation and Optimization. CGO

’17. http://dl.acm.org/citation.cfm?id=3049832.3049862. Piscataway, NJ, USA:

IEEE Press, 2017, pp. 269–280. ISBN: 978-1-5090-4931-8.

[97] Patrice Godefroid. “Fuzzing: Hack, Art, and Science”. In: Commun. ACM 63.2

(Jan. 2020), pp. 70–76. DOI: 10.1145/3363824.

[98] Horacio González-Vélez and Mario Leyton. “A Survey of Algorithmic Skeleton

Frameworks: High-Level Structured Parallel Programming Enablers”. In: Softw.

Pract. Exp. 40.12 (Nov. 2010), pp. 1135–1160. DOI: 10.1002/spe.1026.

[99] Samuel Greengard. “GPUs Reshape Computing”. In: Commun. ACM 59.9 (Aug.

2016), pp. 14–16. DOI: 10.1145/2967979.

[100] Tobias Grosser, Armin Groesslinger, and Christian Lengauer. “Polly — Per-

forming Polyhedral Optimizations on a Low-Level Intermediate Representa-

tion”. In: Parallel Process. Lett. 22.04 (Dec. 2012), p. 1250010. DOI: 10.1142/

S0129626412500107.

[101] Bolei Guo et al. “Practical and Accurate Low-Level Pointer Analysis”. In: Pro-

ceedings of the International Symposium on Code Generation and Optimization.

CGO ’05. Washington, DC, USA: IEEE Computer Society, 2005, pp. 291–302.

ISBN: 978-0-7695-2298-2. DOI: 10.1109/CGO.2005.27.

[102] Rajiv Gupta. “SPMD Execution of Programs with Pointer-Based Data Structures

on Distributed-Memory Machines”. In: Journal of Parallel and Distributed

Computing 16.2 (Oct. 1992), pp. 92–107. DOI: 10.1016/0743-7315(92)90026-J.

[103] Mary Hall, David Padua, and Keshav Pingali. “Compiler Research: The next

50 Years”. In: Commun. ACM 52.2 (Feb. 2009), p. 60. DOI: 10.1145/1461928.

1461946.

[104] Mary W. Hall et al. “Experiences Using the ParaScope Editor: An Interactive

Parallel Programming Tool”. In: Proceedings of the Fourth ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming. PPOPP ’93.

San Diego, California, USA: Association for Computing Machinery, July 1993,

pp. 33–43. ISBN: 978-0-89791-589-2. DOI: 10.1145/155332.155336.

https://doi.org/10.1145/3178372.3179515
http://dl.acm.org/citation.cfm?id=3049832.3049862
https://doi.org/10.1145/3363824
https://doi.org/10.1002/spe.1026
https://doi.org/10.1145/2967979
https://doi.org/10.1142/S0129626412500107
https://doi.org/10.1142/S0129626412500107
https://doi.org/10.1109/CGO.2005.27
https://doi.org/10.1016/0743-7315(92)90026-J
https://doi.org/10.1145/1461928.1461946
https://doi.org/10.1145/1461928.1461946
https://doi.org/10.1145/155332.155336

BIBLIOGRAPHY 155

[105] Jingxuan He et al. “Learning to Fuzz from Symbolic Execution with Application

to Smart Contracts”. In: Proceedings of the 2019 ACM SIGSAC Conference

on Computer and Communications Security. CCS ’19. New York, NY, USA:

Association for Computing Machinery, Nov. 2019, pp. 531–548. ISBN: 978-1-

4503-6747-9. DOI: 10.1145/3319535.3363230.

[106] Laurie J. Hendren, Joseph Hummell, and Alexandru Nicolau. “Abstractions for

Recursive Pointer Data Structures: Improving the Analysis and Transformation

of Imperative Programs”. In: SIGPLAN Not. 27.7 (July 1992), pp. 249–260.

DOI: 10.1145/143103.143138.

[107] L.J. Hendren and A. Nicolau. “Parallelizing Programs with Recursive Data

Structures”. In: IEEE Trans. Parallel Distrib. Syst. 1.1 (Jan. 1990), pp. 35–47.

DOI: 10.1109/71.80123.

[108] John L. Hennessy, David A. Patterson, and Andrea C. Arpaci-Dusseau. Com-

puter Architecture: A Quantitative Approach. 4th ed. Amsterdam ; Boston:

Morgan Kaufmann, 2007. ISBN: 978-0-12-370490-0.

[109] John L. Henning. “Spec Cpu2000: Measuring Cpu Performance in the New

Millennium”. In: Computer 33.7 (July 2000), pp. 28–35. DOI: 10 .1109 /2 .

869367.

[110] John L. Henning. “Spec Cpu2006 Benchmark Descriptions”. In: SIGARCH

Comput Arch. News 34.4 (Sept. 2006), pp. 1–17. DOI: 10 . 1145 / 1186736 .

1186737.

[111] W. Daniel Hillis and Guy L. Steele. “Data Parallel Algorithms”. In: Commun.

ACM 29.12 (Dec. 1986), pp. 1170–1183. DOI: 10.1145/7902.7903.

[112] Michael Hind. “Pointer Analysis: Haven’t We Solved This Problem Yet?” In:

Proceedings of the 2001 ACM SIGPLAN-SIGSOFT Workshop on Program

Analysis for Software Tools and Engineering. PASTE ’01. New York, NY, USA:

ACM, 2001, pp. 54–61. ISBN: 978-1-58113-413-1. DOI: 10 .1145 /379605 .

379665.

[113] Mark Horowitz. “Reconfigurable Future: The Ability to Produce Cheaper, More

Compact Chips Is a Double-Edged Sword.” In: Queue 1.7 (Oct. 2003), p. 1.

DOI: 10.1145/957717.1388771.

https://doi.org/10.1145/3319535.3363230
https://doi.org/10.1145/143103.143138
https://doi.org/10.1109/71.80123
https://doi.org/10.1109/2.869367
https://doi.org/10.1109/2.869367
https://doi.org/10.1145/1186736.1186737
https://doi.org/10.1145/1186736.1186737
https://doi.org/10.1145/7902.7903
https://doi.org/10.1145/379605.379665
https://doi.org/10.1145/379605.379665
https://doi.org/10.1145/957717.1388771

156 BIBLIOGRAPHY

[114] Joseph Hummel, Laurie J. Hendren, and Alexandru Nicolau. “A General Data

Dependence Test for Dynamic, Pointer-Based Data Structures”. In: SIGPLAN

Not. 29.6 (June 1994), pp. 218–229. DOI: 10.1145/773473.178262.

[115] Joseph Hummel, Laurie J. Hendren, and Alexandru Nicolau. “Abstract Descrip-

tion of Pointer Data Structures: An Approach for Improving the Analysis and

Optimization of Imperative Programs”. In: ACM Lett. Program. Lang. Syst. 1.3

(Sept. 1992), pp. 243–260. DOI: 10.1145/151640.151644.

[116] Joseph Hummel, Alexandru Nicolau, and Laurie J. Hendren. “A Language for

Conveying the Aliasing Properties of Dynamic, Pointer-Based Data Structures”.

In: Proceedings of the 8th International Symposium on Parallel Processing.

USA: IEEE Computer Society, Apr. 1994, pp. 208–216. ISBN: 978-0-8186-

5602-6.

[117] A. R. Hurson et al. “Parallelization of DOALL and DOACROSS Loops—a

Survey”. In: Advances in Computers. Ed. by Marvin V. Zelkowitz. Vol. 45.

Emphasizing Parallel Programming Techniques. Elsevier, Jan. 1997, pp. 53–

103. DOI: 10.1016/S0065-2458(08)60706-8.

[118] Oscar Ibarra, Pedro Diniz, and Martin Rinard. “On the Complexity of Commu-

tativity Analysis”. In: Computing and Combinatorics. Ed. by Jin-Yi Cai and

Chak Kuen Wong. Lecture Notes in Computer Science. Berlin, Heidelberg:

Springer, 1996, pp. 323–332. ISBN: 978-3-540-68461-9. DOI: 10.1007/3-540-

61332-3_166.

[119] “IEEE Standard for Floating-Point Arithmetic”. In: IEEE Std 754-2008 (Aug.

2008), pp. 1–70. DOI: 10.1109/IEEESTD.2008.4610935.

[120] Intel® C++ Compiler. https://software.intel.com/en-us/c-compilers. Aug.

2020.

[121] Nikolas Ioannou et al. “Toward a More Accurate Understanding of the Limits of

the TLS Execution Paradigm”. In: IEEE International Symposium on Workload

Characterization (IISWC’10). Dec. 2010, pp. 1–12. DOI: 10.1109/IISWC.2010.

5649169.

[122] François Irigoin, Pierre Jouvelot, and Rémi Triolet. “Semantical Interprocedural

Parallelization: An Overview of the PIPS Project”. In: ACM International

Conference on Supercomputing 25th Anniversary Volume. Munich, Germany:

https://doi.org/10.1145/773473.178262
https://doi.org/10.1145/151640.151644
https://doi.org/10.1016/S0065-2458(08)60706-8
https://doi.org/10.1007/3-540-61332-3_166
https://doi.org/10.1007/3-540-61332-3_166
https://doi.org/10.1109/IEEESTD.2008.4610935
https://software.intel.com/en-us/c-compilers
https://doi.org/10.1109/IISWC.2010.5649169
https://doi.org/10.1109/IISWC.2010.5649169

BIBLIOGRAPHY 157

Association for Computing Machinery, June 1991, pp. 143–150. ISBN: 978-1-

4503-2840-1. DOI: 10.1145/2591635.2667163.

[123] Makoto Ishihara, Hiroki Honda, and Mitsuhisa Sato. “Development and Im-

plementation of an Interactive Parallelization Assistance Tool for OpenMP:

iPat/OMP”. In: IEICE - Trans. Inf. Syst. E89-D.2 (Feb. 2006), pp. 399–407.

DOI: 10.1093/ietisy/e89-d.2.399.

[124] Shintaro Iwasaki et al. “BOLT: Optimizing OpenMP Parallel Regions with

User-Level Threads”. In: 2019 28th International Conference on Parallel Ar-

chitectures and Compilation Techniques (PACT). Sept. 2019, pp. 29–42. DOI:

10.1109/PACT.2019.00011.

[125] Tim Jammer, Christian Iwainsky, and Christian Bischof. “A Comparison of

the Scalability of OpenMP Implementations”. In: Euro-Par 2020: Parallel

Processing. Ed. by Maciej Malawski and Krzysztof Rzadca. Lecture Notes in

Computer Science. Cham: Springer International Publishing, 2020, pp. 83–97.

ISBN: 978-3-030-57675-2. DOI: 10.1007/978-3-030-57675-2_6.

[126] Klaus Jansen and Ralf Thöle. “Approximation Algorithms for Scheduling

Parallel Jobs: Breaking the Approximation Ratio of 2”. In: Automata, Languages

and Programming. Ed. by Luca Aceto et al. Lecture Notes in Computer Science.

Berlin, Heidelberg: Springer, 2008, pp. 234–245. ISBN: 978-3-540-70575-8.

DOI: 10.1007/978-3-540-70575-8_20.

[127] Donghwan Jeon et al. “Kremlin: Like Gprof, but for Parallelization”. In: SIG-

PLAN Not. 46.8 (Feb. 2011), pp. 293–294. DOI: 10.1145/2038037.1941595.

[128] Peng Jiang, Linchuan Chen, and Gagan Agrawal. “Revealing Parallel Scans and

Reductions in Recurrences through Function Reconstruction”. In: Proceedings

of the 27th International Conference on Parallel Architectures and Compilation

Techniques. PACT ’18. New York, NY, USA: ACM, 2018, 10:1–10:13. ISBN:

978-1-4503-5986-3. DOI: 10.1145/3243176.3243204.

[129] Alexandra Jimborean et al. “Adapting the Polyhedral Model As a Framework

for Efficient Speculative Parallelization”. In: Proceedings of the 17th ACM

SIGPLAN Symposium on Principles and Practice of Parallel Programming.

PPoPP ’12. New York, NY, USA: ACM, 2012, pp. 295–296. ISBN: 978-1-4503-

1160-1. DOI: 10.1145/2145816.2145861.

https://doi.org/10.1145/2591635.2667163
https://doi.org/10.1093/ietisy/e89-d.2.399
https://doi.org/10.1109/PACT.2019.00011
https://doi.org/10.1007/978-3-030-57675-2_6
https://doi.org/10.1007/978-3-540-70575-8_20
https://doi.org/10.1145/2038037.1941595
https://doi.org/10.1145/3243176.3243204
https://doi.org/10.1145/2145816.2145861

158 BIBLIOGRAPHY

[130] H Jin and Frumkin MA. “The OpenMP Implementation of NAS Parallel Bench-

marks and Its Performance”. In: (May 2000).

[131] Nick P. Johnson et al. “Speculative Separation for Privatization and Reductions”.

In: Proceedings of the 33rd ACM SIGPLAN Conference on Programming

Language Design and Implementation. PLDI ’12. Beijing, China: Association

for Computing Machinery, June 2012, pp. 359–370. ISBN: 978-1-4503-1205-9.

DOI: 10.1145/2254064.2254107.

[132] Norman P. Jouppi et al. “In-Datacenter Performance Analysis of a Tensor

Processing Unit”. In: Proceedings of the 44th Annual International Symposium

on Computer Architecture. ISCA ’17. New York, NY, USA: Association for

Computing Machinery, June 2017, pp. 1–12. ISBN: 978-1-4503-4892-8. DOI:

10.1145/3079856.3080246.

[133] Pierre Jouvelot and Babak Dehbonei. “A Unified Semantic Approach for the

Vectorization and Parallelization of Generalized Reductions”. In: Proceedings

of the 3rd International Conference on Supercomputing. ICS ’89. New York,

NY, USA: Association for Computing Machinery, June 1989, pp. 186–194.

ISBN: 978-0-89791-309-6. DOI: 10.1145/318789.318810.

[134] Shoaib Kamil et al. “Verified Lifting of Stencil Computations”. In: Proceedings

of the 37th ACM SIGPLAN Conference on Programming Language Design and

Implementation. PLDI ’16. New York, NY, USA: Association for Computing

Machinery, June 2016, pp. 711–726. ISBN: 978-1-4503-4261-2. DOI: 10.1145/

2908080.2908117.

[135] Timotej Kapus and Cristian Cadar. “A Segmented Memory Model for Symbolic

Execution”. In: Proceedings of the 2019 27th ACM Joint Meeting on Euro-

pean Software Engineering Conference and Symposium on the Foundations of

Software Engineering. ESEC/FSE 2019. New York, NY, USA: ACM, 2019,

pp. 774–784. ISBN: 978-1-4503-5572-8. DOI: 10.1145/3338906.3338936.

[136] Richard M. Karp, Raymond E. Miller, and Shmuel Winograd. “The Organi-

zation of Computations for Uniform Recurrence Equations”. In: J. ACM 14.3

(July 1967), pp. 563–590. DOI: 10.1145/321406.321418.

[137] Arun Kejariwal et al. “On the Performance Potential of Different Types of

Speculative Thread-Level Parallelism: The DL Version of This Paper Includes

Corrections That Were Not Made Available in the Printed Proceedings”. In:

https://doi.org/10.1145/2254064.2254107
https://doi.org/10.1145/3079856.3080246
https://doi.org/10.1145/318789.318810
https://doi.org/10.1145/2908080.2908117
https://doi.org/10.1145/2908080.2908117
https://doi.org/10.1145/3338906.3338936
https://doi.org/10.1145/321406.321418

BIBLIOGRAPHY 159

Proceedings of the 20th Annual International Conference on Supercomputing.

ICS ’06. New York, NY, USA: Association for Computing Machinery, June

2006, p. 24. ISBN: 978-1-59593-282-2. DOI: 10.1145/1183401.1183407.

[138] Wayne Kelly and William Pugh. “A Framework for Unifying Reordering Trans-

formations”. In: (Oct. 1998). https://drum.lib.umd.edu/handle/1903/607.

[139] K. Kennedy, K. S. McKinley, and C. W. Tseng. “Interactive Parallel Program-

ming Using the ParaScope Editor”. In: IEEE Trans. Parallel Distrib. Syst. 2.3

(July 1991), pp. 329–341. DOI: 10.1109/71.86108.

[140] Christoph W. Kessler. “Pattern-Driven Automatic Parallelization”. In: Sci. Pro-

gram. 5.3 (Aug. 1996), pp. 251–274. DOI: 10.1155/1996/406379.

[141] C. Kim et al. “Context-Aware Memory Profiling for Speculative Parallelism”.

In: 2017 IEEE 24th International Conference on High Performance Computing

(HiPC). Dec. 2017, pp. 328–337. DOI: 10.1109/HiPC.2017.00045.

[142] Deokhwan Kim and Martin C. Rinard. “Verification of Semantic Commutativity

Conditions and Inverse Operations on Linked Data Structures”. In: Proceedings

of the 32Nd ACM SIGPLAN Conference on Programming Language Design

and Implementation. PLDI ’11. New York, NY, USA: ACM, 2011, pp. 528–541.

ISBN: 978-1-4503-0663-8. DOI: 10.1145/1993498.1993561.

[143] Minjang Kim, Hyesoon Kim, and Chi-Keung Luk. “Prospector: A Dynamic

Data-Dependence Profiler to Help Parallel Programming”. In: Proceedings

of the 2nd USENIX Workshop on Hot Topics in Parallelism. Berkeley, CA:

USENIX Association, June 2010.

[144] Minjang Kim, Hyesoon Kim, and Chi-Keung Luk. “SD3: A Scalable Approach

to Dynamic Data-Dependence Profiling”. In: Proceedings of the 2010 43rd

Annual IEEE/ACM International Symposium on Microarchitecture. MICRO

’43. USA: IEEE Computer Society, Dec. 2010, pp. 535–546. ISBN: 978-0-7695-

4299-7. DOI: 10.1109/MICRO.2010.49.

[145] James C. King. “Symbolic Execution and Program Testing”. In: Commun ACM

19.7 (July 1976), pp. 385–394. DOI: 10.1145/360248.360252.

[146] Eric Koskinen and Kshitij Bansal. “Reducing Commutativity Verification to

Reachability with Differencing Abstractions”. In: ArXiv200408450 Cs (Apr.

2020). http://arxiv.org/abs/2004.08450. arXiv: 2004.08450 [cs].

https://doi.org/10.1145/1183401.1183407
https://drum.lib.umd.edu/handle/1903/607
https://doi.org/10.1109/71.86108
https://doi.org/10.1155/1996/406379
https://doi.org/10.1109/HiPC.2017.00045
https://doi.org/10.1145/1993498.1993561
https://doi.org/10.1109/MICRO.2010.49
https://doi.org/10.1145/360248.360252
http://arxiv.org/abs/2004.08450
https://arxiv.org/abs/2004.08450

160 BIBLIOGRAPHY

[147] Peter Kraft et al. “Automatic Parallelization of Sequential Programs”. In:

ArXiv180907684 Cs (July 2018). http: / /arxiv.org/abs/1809.07684. arXiv:

1809.07684 [cs].

[148] D. J. Kuck et al. “Dependence Graphs and Compiler Optimizations”. In: Pro-

ceedings of the 8th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-

gramming Languages. POPL ’81. New York, NY, USA: ACM, 1981, pp. 207–

218. ISBN: 978-0-89791-029-3. DOI: 10.1145/567532.567555.

[149] M. Kulkarni et al. “Lonestar: A Suite of Parallel Irregular Programs”. In: 2009

IEEE International Symposium on Performance Analysis of Systems and Soft-

ware. Apr. 2009, pp. 65–76. DOI: 10.1109/ISPASS.2009.4919639.

[150] Milind Kulkarni et al. “Optimistic Parallelism Requires Abstractions”. In: Pro-

ceedings of the 28th ACM SIGPLAN Conference on Programming Language

Design and Implementation. PLDI ’07. New York, NY, USA: ACM, 2007,

pp. 211–222. ISBN: 978-1-59593-633-2. DOI: 10.1145/1250734.1250759.

[151] Richard E. Ladner and Michael J. Fischer. “Parallel Prefix Computation”. In: J.

ACM 27.4 (Oct. 1980), pp. 831–838. DOI: 10.1145/322217.322232.

[152] Leslie Lamport. “The Parallel Execution of DO Loops”. In: Commun ACM 17.2

(Feb. 1974), pp. 83–93. DOI: 10.1145/360827.360844.

[153] William Landi. “Undecidability of Static Analysis”. In: ACM Lett. Program.

Lang. Syst. 1.4 (Dec. 1992), pp. 323–337. DOI: 10.1145/161494.161501.

[154] J. R. Larus. “Abstract Execution: A Technique for Efficiently Tracing Programs”.

In: Softw. Pract. Exper. 20.12 (Nov. 1990), pp. 1241–1258. DOI: 10.1002/spe.

4380201205.

[155] J.R. Larus. “Loop-Level Parallelism in Numeric and Symbolic Programs”.

In: IEEE Trans. Parallel Distrib. Syst. 4.7 (July 1993), pp. 812–826. DOI:

10.1109/71.238302.

[156] Chris Lattner and Vikram Adve. “LLVM: A Compilation Framework for Life-

long Program Analysis & Transformation”. In: Proceedings of the International

Symposium on Code Generation and Optimization: Feedback-Directed and Run-

time Optimization. CGO ’04. http://dl.acm.org/citation.cfm?id=977395.977673.

Washington, DC, USA: IEEE Computer Society, 2004, pp. 75–. ISBN: 978-0-

7695-2102-2.

http://arxiv.org/abs/1809.07684
https://arxiv.org/abs/1809.07684
https://doi.org/10.1145/567532.567555
https://doi.org/10.1109/ISPASS.2009.4919639
https://doi.org/10.1145/1250734.1250759
https://doi.org/10.1145/322217.322232
https://doi.org/10.1145/360827.360844
https://doi.org/10.1145/161494.161501
https://doi.org/10.1002/spe.4380201205
https://doi.org/10.1002/spe.4380201205
https://doi.org/10.1109/71.238302
http://dl.acm.org/citation.cfm?id=977395.977673

BIBLIOGRAPHY 161

[157] Jun Li, Bodong Zhao, and Chao Zhang. “Fuzzing: A Survey”. In: Cybersecur

1.1 (June 2018), p. 6. DOI: 10.1186/s42400-018-0002-y.

[158] Zhen Li, Ali Jannesari, and Felix Wolf. “An Efficient Data-Dependence Profiler

for Sequential and Parallel Programs”. In: 2015 IEEE International Parallel

and Distributed Processing Symposium. May 2015, pp. 484–493. DOI: 10.1109/

IPDPS.2015.41.

[159] Zhen Li et al. “DiscoPoP: A Profiling Tool to Identify Parallelization Oppor-

tunities”. In: Tools for High Performance Computing 2014. Ed. by Christoph

Niethammer et al. Cham: Springer International Publishing, 2015, pp. 37–54.

ISBN: 978-3-319-16012-2.

[160] Zhen Li et al. “Unveiling Parallelization Opportunities in Sequential Programs”.

In: J. Syst. Softw. 117.C (July 2016), pp. 282–295. DOI: 10.1016/j.jss.2016.03.

045.

[161] Shih-Wei Liao et al. “SUIF Explorer: An Interactive and Interprocedural Paral-

lelizer”. In: Proceedings of the Seventh ACM SIGPLAN Symposium on Prin-

ciples and Practice of Parallel Programming. PPoPP ’99. Atlanta, Georgia,

USA: Association for Computing Machinery, May 1999, pp. 37–48. ISBN:

978-1-58113-100-0. DOI: 10.1145/301104.301108.

[162] Daniel Liew et al. “Floating-Point Symbolic Execution: A Case Study in N-

Version Programming”. In: Proceedings of the 32Nd IEEE/ACM International

Conference on Automated Software Engineering. ASE 2017. http://dl.acm.org/

citation.cfm?id=3155562.3155637. Piscataway, NJ, USA: IEEE Press, 2017,

pp. 601–612. ISBN: 978-1-5386-2684-9.

[163] Benjamin Livshits et al. “In Defense of Soundiness: A Manifesto”. In: Commun

ACM 58.2 (Jan. 2015), pp. 44–46. DOI: 10.1145/2644805.

[164] Roberto Castañeda Lozano, Murray Cole, and Björn Franke. “Modernizing

Parallel Code with Pattern Analysis”. In: Proceedings of the 26th ACM SIG-

PLAN Symposium on Principles and Practice of Parallel Programming. PPoPP

’21. New York, NY, USA: Association for Computing Machinery, Feb. 2021,

pp. 418–430. ISBN: 978-1-4503-8294-6. DOI: 10.1145/3437801.3441603.

[165] Chris Mack. “The Multiple Lives of Moore’s Law”. In: IEEE Spectr. 52.4 (Apr.

2015), pp. 31–31. DOI: 10.1109/MSPEC.2015.7065415.

https://doi.org/10.1186/s42400-018-0002-y
https://doi.org/10.1109/IPDPS.2015.41
https://doi.org/10.1109/IPDPS.2015.41
https://doi.org/10.1016/j.jss.2016.03.045
https://doi.org/10.1016/j.jss.2016.03.045
https://doi.org/10.1145/301104.301108
http://dl.acm.org/citation.cfm?id=3155562.3155637
http://dl.acm.org/citation.cfm?id=3155562.3155637
https://doi.org/10.1145/2644805
https://doi.org/10.1145/3437801.3441603
https://doi.org/10.1109/MSPEC.2015.7065415

162 BIBLIOGRAPHY

[166] Stanislav Manilov, Christos Vasiladiotis, and Björn Franke. “Generalized Profile-

Guided Iterator Recognition”. In: Proceedings of the 27th International Confer-

ence on Compiler Construction - CC 2018. Vienna, Austria: ACM Press, 2018,

pp. 185–195. ISBN: 978-1-4503-5644-2. DOI: 10.1145/3178372.3179511.

[167] Aleksandr Maramzin et al. ““It Looks Like You’Re Writing a Parallel Loop”:

A Machine Learning Based Parallelization Assistant”. In: Proceedings of the

6th ACM SIGPLAN International Workshop on AI-Inspired and Empirical

Methods for Software Engineering on Parallel Computing Systems. AI-SEPS

2019. New York, NY, USA: ACM, 2019, pp. 1–10. ISBN: 978-1-4503-6983-1.

DOI: 10.1145/3358500.3361567.

[168] Paul Dan Marinescu and Cristian Cadar. “Make Test-Zesti: A Symbolic Execu-

tion Solution for Improving Regression Testing”. In: Proceedings of the 34th

International Conference on Software Engineering. ICSE ’12. http://dl.acm.org/

citation.cfm?id=2337223.2337308. Piscataway, NJ, USA: IEEE Press, 2012,

pp. 716–726. ISBN: 978-1-4673-1067-3.

[169] Angelo Matni et al. “NOELLE Offers Empowering LLVM Extensions”. In:

ArXiv210205081 Cs (Feb. 2021). http: / /arxiv.org/abs/2102.05081. arXiv:

2102.05081 [cs].

[170] Stina Matthiesen and Pernille Bjørn. “Why Replacing Legacy Systems Is So

Hard in Global Software Development: An Information Infrastructure Perspec-

tive”. In: Proceedings of the 18th ACM Conference on Computer Supported

Cooperative Work & Social Computing. CSCW ’15. New York, NY, USA:

Association for Computing Machinery, Feb. 2015, pp. 876–890. ISBN: 978-1-

4503-2922-4. DOI: 10.1145/2675133.2675232.

[171] Michael D. McCool, Arch D. Robison, and James Reinders. Structured Parallel

Programing: Patterns for Efficient Computation. Amsterdam: Elsevier, Morgan

Kaufmann, 2012. ISBN: 978-0-12-415993-8.

[172] Vijay Menon, Keshav Pingali, and Nikolay Mateev. “Fractal Symbolic Analy-

sis”. In: ACM Trans. Program. Lang. Syst. 25.6 (Nov. 2003), pp. 776–813. DOI:

10.1145/945885.945888.

[173] Samuel P. Midkiff. “Automatic Parallelization: An Overview of Fundamental

Compiler Techniques”. In: Synthesis Lectures on Computer Architecture 7.1

(Jan. 2012), pp. 1–169. DOI: 10.2200/S00340ED1V01Y201201CAC019.

https://doi.org/10.1145/3178372.3179511
https://doi.org/10.1145/3358500.3361567
http://dl.acm.org/citation.cfm?id=2337223.2337308
http://dl.acm.org/citation.cfm?id=2337223.2337308
http://arxiv.org/abs/2102.05081
https://arxiv.org/abs/2102.05081
https://doi.org/10.1145/2675133.2675232
https://doi.org/10.1145/945885.945888
https://doi.org/10.2200/S00340ED1V01Y201201CAC019

BIBLIOGRAPHY 163

[174] G. E. Moore. “Cramming More Components onto Integrated Circuits, Reprinted

from Electronics, Volume 38, Number 8, April 19, 1965, Pp.114 Ff.” In: IEEE

Solid-State Circuits Soc. Newsl. 11.3 (Sept. 2006), pp. 33–35. DOI: 10.1109/N-

SSC.2006.4785860.

[175] Tipp Moseley et al. “Shadow Profiling: Hiding Instrumentation Costs with

Parallelism”. In: Proceedings of the International Symposium on Code Gener-

ation and Optimization. CGO ’07. USA: IEEE Computer Society, Mar. 2007,

pp. 198–208. ISBN: 978-0-7695-2764-2. DOI: 10.1109/CGO.2007.35.

[176] William S. Moses et al. Polygeist: Affine C in MLIR. https://acohen.gitlabpages.

inria.fr/impact/impact2021/papers/IMPACT_2021_paper_1.pdf. 2021.

[177] Steven S. Muchnick. Advanced Compiler Design and Implementation. San

Francisco, Calif: Morgan Kaufmann Publishers, 1997. ISBN: 978-1-55860-320-

2.

[178] Niall Murphy. Discovering and Exploiting Parallelism in DOACROSS Loops.

Tech. rep. UCAM-CL-TR-882. https://www.cl.cam.ac.uk/techreports/UCAM-

CL-TR-882.html. University of Cambridge, Computer Laboratory, 2016.

[179] Niall Murphy et al. “Limits of Static Dependence Analysis for Automatic Paral-

lelization”. In: International Workshop on Compilers for Parallel Computing

(CPC). Cambridge, UK, Jan. 2015.

[180] Niall Murphy et al. “Performance Implications of Transient Loop-Carried Data

Dependences in Automatically Parallelized Loops”. In: Proceedings of the

25th International Conference on Compiler Construction. CC 2016. Barcelona,

Spain: Association for Computing Machinery, Mar. 2016, pp. 23–33. ISBN:

978-1-4503-4241-4. DOI: 10.1145/2892208.2892214.

[181] Jakub Novák. “Improvements of Memory Management in KLEE”. https://is.

muni.cz/th/eazm0/. PhD thesis. Masarykova univerzita, Fakulta informatiky,

2020.

[182] Robert O’Callahan et al. “Engineering Record and Replay for Deployability”.

In: Proceedings of the 2017 USENIX Conference on Usenix Annual Technical

Conference. USENIX ATC ’17. http://dl.acm.org/citation.cfm?id=3154690.

3154727. Berkeley, CA, USA: USENIX Association, 2017, pp. 377–389. ISBN:

978-1-931971-38-6.

https://doi.org/10.1109/N-SSC.2006.4785860
https://doi.org/10.1109/N-SSC.2006.4785860
https://doi.org/10.1109/CGO.2007.35
https://acohen.gitlabpages.inria.fr/impact/impact2021/papers/IMPACT_2021_paper_1.pdf
https://acohen.gitlabpages.inria.fr/impact/impact2021/papers/IMPACT_2021_paper_1.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-882.html
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-882.html
https://doi.org/10.1145/2892208.2892214
https://is.muni.cz/th/eazm0/
https://is.muni.cz/th/eazm0/
http://dl.acm.org/citation.cfm?id=3154690.3154727
http://dl.acm.org/citation.cfm?id=3154690.3154727

164 BIBLIOGRAPHY

[183] Kazunori Ogata et al. “Replay Compilation: Improving Debuggability of a

Just-in-Time Compiler”. In: SIGPLAN Not. 41.10 (Oct. 2006), pp. 241–252.

DOI: 10.1145/1167515.1167493.

[184] Saahil Ognawala et al. “MACKE: Compositional Analysis of Low-Level Vul-

nerabilities with Symbolic Execution”. In: Proceedings of the 31st IEEE/ACM

International Conference on Automated Software Engineering. ASE 2016. New

York, NY, USA: ACM, 2016, pp. 780–785. ISBN: 978-1-4503-3845-5. DOI:

10.1145/2970276.2970281.

[185] Tomas Öhberg, August Ernstsson, and Christoph Kessler. “Hybrid CPU–GPU

Execution Support in the Skeleton Programming Framework SkePU”. In: J

Supercomput (Mar. 2019). DOI: 10.1007/s11227-019-02824-7.

[186] Itta Ohmura et al. “MDGRAPE-4: A Special-Purpose Computer System for

Molecular Dynamics Simulations”. In: Philosophical Transactions of the Royal

Society A: Mathematical, Physical and Engineering Sciences 372.2021 (Aug.

2014), p. 20130387. DOI: 10.1098/rsta.2013.0387.

[187] Kunle Olukotun and Lance Hammond. “The Future of Microprocessors: Chip

Multiprocessor’s Promise of Huge Performance Gains Is Now a Reality.” In:

Queue 3.7 (Sept. 2005), pp. 26–29. DOI: 10.1145/1095408.1095418.

[188] OpenMP Specifications. https://www.openmp.org/specifications/.

[189] Guilherme Ottoni et al. “Automatic Thread Extraction with Decoupled Soft-

ware Pipelining”. In: Proceedings of the 38th Annual IEEE/ACM International

Symposium on Microarchitecture. MICRO 38. Washington, DC, USA: IEEE

Computer Society, 2005, pp. 105–118. ISBN: 978-0-7695-2440-5. DOI: 10.1109/

MICRO.2005.13.

[190] Awanish Pandey, Phani Raj Goutham Kotcharlakota, and Subhajit Roy. “De-

ferred Concretization in Symbolic Execution via Fuzzing”. In: Proceedings

of the 28th ACM SIGSOFT International Symposium on Software Testing and

Analysis. ISSTA 2019. New York, NY, USA: Association for Computing Ma-

chinery, July 2019, pp. 228–238. ISBN: 978-1-4503-6224-5. DOI: 10.1145/

3293882.3330554.

[191] Ruud van der Pas. Using OpenMP–the next Step: Affinity, Accelerators, Tasking,

and SIMD. Scientific and Engineering Computation. Cambridge, Massachusetts:

The MIT Press, 2017. ISBN: 978-0-262-53478-9.

https://doi.org/10.1145/1167515.1167493
https://doi.org/10.1145/2970276.2970281
https://doi.org/10.1007/s11227-019-02824-7
https://doi.org/10.1098/rsta.2013.0387
https://doi.org/10.1145/1095408.1095418
https://www.openmp.org/specifications/
https://doi.org/10.1109/MICRO.2005.13
https://doi.org/10.1109/MICRO.2005.13
https://doi.org/10.1145/3293882.3330554
https://doi.org/10.1145/3293882.3330554

BIBLIOGRAPHY 165

[192] David M. Perry et al. “Accelerating Array Constraints in Symbolic Execution”.

In: Proceedings of the 26th ACM SIGSOFT International Symposium on Soft-

ware Testing and Analysis. ISSTA 2017. New York, NY, USA: Association for

Computing Machinery, July 2017, pp. 68–78. ISBN: 978-1-4503-5076-1. DOI:

10.1145/3092703.3092728.

[193] Keshav Pingali. Why Compilers Have Failed and What Can We Do about It.

Houston, Texas, USA, October 7 - 9, 2010.

[194] Keshav Pingali et al. “The Tao of Parallelism in Algorithms”. In: SIGPLAN Not.

46.6 (June 2011), pp. 12–25. DOI: 10.1145/1993316.1993501.

[195] Bill Pottenger and Rudolf Eigenmann. “Idiom Recognition in the Polaris Par-

allelizing Compiler”. In: Proceedings of the 9th International Conference on

Supercomputing. ICS ’95. Barcelona, Spain: Association for Computing Ma-

chinery, July 1995, pp. 444–448. ISBN: 978-0-89791-728-5. DOI: 10.1145/

224538.224655.

[196] Prakash Prabhu et al. “Commutative Set: A Language Extension for Implicit

Parallel Programming”. In: Proceedings of the 32Nd ACM SIGPLAN Conference

on Programming Language Design and Implementation. PLDI ’11. New York,

NY, USA: ACM, 2011, pp. 1–11. ISBN: 978-1-4503-0663-8. DOI: 10.1145/

1993498.1993500.

[197] S. Prema et al. “A Study on Popular Auto-Parallelization Frameworks: A Study

on Popular Auto-Parallelization Frameworks”. In: Concurrency Computat Pract

Exper 31.17 (Sept. 2019), e5168. DOI: 10.1002/cpe.5168.

[198] William Pugh. “The Omega Test: A Fast and Practical Integer Programming

Algorithm for Dependence Analysis”. In: Proceedings of the 1991 ACM/IEEE

Conference on Supercomputing. Supercomputing ’91. New York, NY, USA:

ACM, 1991, pp. 4–13. ISBN: 978-0-89791-459-8. DOI: 10.1145/125826.125848.

[199] X. Qu and B. Robinson. “A Case Study of Concolic Testing Tools and Their Lim-

itations”. In: 2011 International Symposium on Empirical Software Engineering

and Measurement. Sept. 2011, pp. 117–126. DOI: 10.1109/ESEM.2011.20.

[200] Jonathan Ragan-Kelley et al. “Halide: A Language and Compiler for Optimizing

Parallelism, Locality, and Recomputation in Image Processing Pipelines”. In:

Proceedings of the 34th ACM SIGPLAN Conference on Programming Language

Design and Implementation. PLDI ’13. New York, NY, USA: Association for

https://doi.org/10.1145/3092703.3092728
https://doi.org/10.1145/1993316.1993501
https://doi.org/10.1145/224538.224655
https://doi.org/10.1145/224538.224655
https://doi.org/10.1145/1993498.1993500
https://doi.org/10.1145/1993498.1993500
https://doi.org/10.1002/cpe.5168
https://doi.org/10.1145/125826.125848
https://doi.org/10.1109/ESEM.2011.20

166 BIBLIOGRAPHY

Computing Machinery, June 2013, pp. 519–530. ISBN: 978-1-4503-2014-6.

DOI: 10.1145/2491956.2462176.

[201] Easwaran Raman et al. “Parallel-Stage Decoupled Software Pipelining”. In:

Proceedings of the 6th Annual IEEE/ACM International Symposium on Code

Generation and Optimization. CGO ’08. Boston, MA, USA: Association for

Computing Machinery, Apr. 2008, pp. 114–123. ISBN: 978-1-59593-978-4.

DOI: 10.1145/1356058.1356074.

[202] J. Ramanujam. “Beyond Unimodular Transformations”. In: J Supercomput 9.4

(Dec. 1995), pp. 365–389. DOI: 10.1007/BF01206273.

[203] Ram Rangan. “Pipelined Multithreading Transformations and Support Mecha-

nisms”. PhD Thesis. USA: Princeton University, 2007.

[204] Ram Rangan et al. “Decoupled Software Pipelining with the Synchronization

Array”. In: Proceedings of the 13th International Conference on Parallel Ar-

chitectures and Compilation Techniques. PACT ’04. Washington, DC, USA:

IEEE Computer Society, 2004, pp. 177–188. ISBN: 978-0-7695-2229-6. DOI:

10.5555/1025127.1026007.

[205] Lawrence Rauchwerger and David Padua. “The LRPD Test: Speculative Run-

Time Parallelization of Loops with Privatization and Reduction Parallelization”.

In: Proceedings of the ACM SIGPLAN 1995 Conference on Programming

Language Design and Implementation. PLDI ’95. New York, NY, USA: ACM,

1995, pp. 218–232. ISBN: 978-0-89791-697-4. DOI: 10.1145/207110.207148.

[206] Veselin Raychev, Madanlal Musuvathi, and Todd Mytkowicz. “Parallelizing

User-Defined Aggregations Using Symbolic Execution”. In: Proceedings of the

25th Symposium on Operating Systems Principles. SOSP ’15. New York, NY,

USA: Association for Computing Machinery, Oct. 2015, pp. 153–167. ISBN:

978-1-4503-3834-9. DOI: 10.1145/2815400.2815418.

[207] Chandan Reddy, Michael Kruse, and Albert Cohen. “Reduction Drawing: Lan-

guage Constructs and Polyhedral Compilation for Reductions on GPU”. In:

Proceedings of the 2016 International Conference on Parallel Architectures

and Compilation. PACT ’16. New York, NY, USA: Association for Computing

Machinery, Sept. 2016, pp. 87–97. ISBN: 978-1-4503-4121-9. DOI: 10.1145/

2967938.2967950.

https://doi.org/10.1145/2491956.2462176
https://doi.org/10.1145/1356058.1356074
https://doi.org/10.1007/BF01206273
https://doi.org/10.5555/1025127.1026007
https://doi.org/10.1145/207110.207148
https://doi.org/10.1145/2815400.2815418
https://doi.org/10.1145/2967938.2967950
https://doi.org/10.1145/2967938.2967950

BIBLIOGRAPHY 167

[208] Xavier Redon and Paul Feautrier. “Detection of Scans”. In: Parallel Algorithms

Appl. 15.3-4 (Dec. 2000), pp. 229–263. DOI: 10.1080/01495730008947357.

[209] Thomas Reps. “Undecidability of Context-Sensitive Data-Dependence Analy-

sis”. In: ACM Trans. Program. Lang. Syst. 22.1 (Jan. 2000), pp. 162–186. DOI:

10.1145/345099.345137.

[210] Colfax Research. A Performance-Based Comparison of C/C++ Compilers.

https://colfaxresearch.com/compiler-comparison/. Nov. 2017.

[211] Martin C. Rinard and Pedro C. Diniz. “Commutativity Analysis: A New Anal-

ysis Technique for Parallelizing Compilers”. In: ACM Trans. Program. Lang.

Syst. 19.6 (Nov. 1997), pp. 942–991. DOI: 10.1145/267959.269969.

[212] Noam Rinetzky and Mooly Sagiv. “Interprocedural Shape Analysis for Recur-

sive Programs”. In: Compiler Construction. Ed. by Reinhard Wilhelm. Lecture

Notes in Computer Science. Berlin, Heidelberg: Springer, 2001, pp. 133–149.

ISBN: 978-3-540-45306-2. DOI: 10.1007/3-540-45306-7_10.

[213] Kamil Rosiak et al. “Analyzing Variability in 25 Years of Industrial Legacy

Software: An Experience Report”. In: Proceedings of the 23rd International

Systems and Software Product Line Conference - Volume B. SPLC ’19. New

York, NY, USA: Association for Computing Machinery, Sept. 2019, pp. 65–72.

ISBN: 978-1-4503-6668-7. DOI: 10.1145/3307630.3342410.

[214] Philipp Ruemmer and Thomas Wahl. “An SMT-LIB Theory of Binary Floating-

Point Arithmetic”. In: Satisfiability modulo Theories (SMT). 2010.

[215] Karl Rupp. 42 Years of Microprocessor Trend Data | Karl Rupp. https://www.

karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/. Feb. 2018.

[216] Richard M. Russell. “The CRAY-1 Computer System”. In: Commun. ACM 21.1

(Jan. 1978), pp. 63–72. DOI: 10.1145/359327.359336.

[217] Christos Sakalis et al. “Splash-3: A Properly Synchronized Benchmark Suite

for Contemporary Research”. In: 2016 IEEE International Symposium on Per-

formance Analysis of Systems and Software (ISPASS). Apr. 2016, pp. 101–111.

DOI: 10.1109/ISPASS.2016.7482078.

[218] Juan Salamanca, Jose Nelson Amaral, and Guido Araujo. “Using Hardware-

Transactional-Memory Support to Implement Thread-Level Speculation”. In:

IEEE Trans. Parallel Distrib. Syst. 29.2 (Feb. 2018), pp. 466–480. DOI: 10.

1109/TPDS.2017.2752169.

https://doi.org/10.1080/01495730008947357
https://doi.org/10.1145/345099.345137
https://colfaxresearch.com/compiler-comparison/
https://doi.org/10.1145/267959.269969
https://doi.org/10.1007/3-540-45306-7_10
https://doi.org/10.1145/3307630.3342410
https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/
https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/
https://doi.org/10.1145/359327.359336
https://doi.org/10.1109/ISPASS.2016.7482078
https://doi.org/10.1109/TPDS.2017.2752169
https://doi.org/10.1109/TPDS.2017.2752169

168 BIBLIOGRAPHY

[219] Yukinori Sato, Yasushi Inoguchi, and Tadao Nakamura. “Whole Program Data

Dependence Profiling to Unveil Parallel Regions in the Dynamic Execution”. In:

2012 IEEE International Symposium on Workload Characterization (IISWC).

Nov. 2012, pp. 69–80. DOI: 10.1109/IISWC.2012.6402902.

[220] Prateek Saxena et al. “Loop-Extended Symbolic Execution on Binary Pro-

grams”. In: Proceedings of the Eighteenth International Symposium on Soft-

ware Testing and Analysis. ISSTA ’09. New York, NY, USA: Association for

Computing Machinery, July 2009, pp. 225–236. ISBN: 978-1-60558-338-9. DOI:

10.1145/1572272.1572299.

[221] Edward J. Schwartz, Thanassis Avgerinos, and David Brumley. “All You Ever

Wanted to Know About Dynamic Taint Analysis and Forward Symbolic Ex-

ecution (but Might Have Been Afraid to Ask)”. In: Proceedings of the 2010

IEEE Symposium on Security and Privacy. SP ’10. Washington, DC, USA:

IEEE Computer Society, 2010, pp. 317–331. ISBN: 978-0-7695-4035-1. DOI:

10.1109/SP.2010.26.

[222] Manuel Selva et al. “Building a Polyhedral Representation from an Instrumented

Execution: Making Dynamic Analyses of Nonaffine Programs Scalable”. In:

ACM Trans Arch. Code Optim 16.4 (Dec. 2019). DOI: 10.1145/3363785.

[223] Koushik Sen, Darko Marinov, and Gul Agha. “CUTE: A Concolic Unit Testing

Engine for C”. In: SIGSOFT Softw. Eng. Notes 30.5 (Sept. 2005), pp. 263–272.

DOI: 10.1145/1095430.1081750.

[224] Sangmin Seo, Gangwon Jo, and Jaejin Lee. “Performance Characterization

of the NAS Parallel Benchmarks in OpenCL”. In: 2011 IEEE International

Symposium on Workload Characterization (IISWC). Nov. 2011, pp. 137–148.

DOI: 10.1109/IISWC.2011.6114174.

[225] John Shalf. “The Future of Computing beyond Moore’s Law”. In: Philos Trans

A Math Phys Eng Sci 378.2166 (Mar. 2020), p. 20190061. DOI: 10.1098/rsta.

2019.0061.

[226] John M. Shalf and Robert Leland. “Computing beyond Moore’s Law”. In:

Computer 48.12 (Dec. 2015), pp. 14–23. DOI: 10.1109/MC.2015.374.

[227] Hongzhang Shan et al. “A Programming Model Performance Study Using the

NAS Parallel Benchmarks”. In: Sci. Program. 18.3-4 (Jan. 2010), pp. 153–167.

DOI: 10.3233/SPR-2010-0306.

https://doi.org/10.1109/IISWC.2012.6402902
https://doi.org/10.1145/1572272.1572299
https://doi.org/10.1109/SP.2010.26
https://doi.org/10.1145/3363785
https://doi.org/10.1145/1095430.1081750
https://doi.org/10.1109/IISWC.2011.6114174
https://doi.org/10.1098/rsta.2019.0061
https://doi.org/10.1098/rsta.2019.0061
https://doi.org/10.1109/MC.2015.374
https://doi.org/10.3233/SPR-2010-0306

BIBLIOGRAPHY 169

[228] Yakun Sophia Shao et al. “Co-Designing Accelerators and SoC Interfaces Using

Gem5-Aladdin”. In: 2016 49th Annual IEEE/ACM International Symposium on

Microarchitecture (MICRO). Oct. 2016, pp. 1–12. DOI: 10.1109/MICRO.2016.

7783751.

[229] Ridwan Shariffdeen et al. “Concolic Program Repair”. In: Proceedings of the

42nd ACM SIGPLAN International Conference on Programming Language

Design and Implementation. PLDI 2021. New York, NY, USA: Association

for Computing Machinery, June 2021, pp. 390–405. ISBN: 978-1-4503-8391-2.

DOI: 10.1145/3453483.3454051.

[230] David E. Shaw et al. “Anton 2: Raising the Bar for Performance and Pro-

grammability in a Special-Purpose Molecular Dynamics Supercomputer”. In:

SC ’14: Proceedings of the International Conference for High Performance

Computing, Networking, Storage and Analysis. Nov. 2014, pp. 41–53. DOI:

10.1109/SC.2014.9.

[231] Jun Shirako, Louis-Noël Pouchet, and Vivek Sarkar. “Oil and Water Can Mix:

An Integration of Polyhedral and AST-Based Transformations”. In: Proceedings

of the International Conference for High Performance Computing, Networking,

Storage and Analysis. SC ’14. Piscataway, NJ, USA: IEEE Press, 2014, pp. 287–

298. ISBN: 978-1-4799-5500-8. DOI: 10.1109/SC.2014.29.

[232] Stelios Sidiroglou-Douskos et al. “Managing Performance vs. Accuracy Trade-

Offs with Loop Perforation”. In: Proceedings of the 19th ACM SIGSOFT

Symposium and the 13th European Conference on Foundations of Software

Engineering. ESEC/FSE ’11. Szeged, Hungary: Association for Computing

Machinery, Sept. 2011, pp. 124–134. ISBN: 978-1-4503-0443-6. DOI: 10.1145/

2025113.2025133.

[233] Michael Šimáček. “Symbolic-Size Memory Allocation Support for Klee”. https:

//is.muni.cz/th/mdedh/?lang=en. PhD thesis. Masaryk University, Faculty of

Informatics, 2018.

[234] Andreas Simbürger and Armin Größliger. “On the Variety of Static Control Parts

in Real-World Programs: From Affine via Multi-Dimensional to Polynomial and

Just-in-Time”. In: Proceedings of the 4th International Workshop on Polyhedral

Compilation Techniques. Ed. by Sanjay Rajopadhye and Sven Verdoolaege. Jan.

2014.

https://doi.org/10.1109/MICRO.2016.7783751
https://doi.org/10.1109/MICRO.2016.7783751
https://doi.org/10.1145/3453483.3454051
https://doi.org/10.1109/SC.2014.9
https://doi.org/10.1109/SC.2014.29
https://doi.org/10.1145/2025113.2025133
https://doi.org/10.1145/2025113.2025133
https://is.muni.cz/th/mdedh/?lang=en
https://is.muni.cz/th/mdedh/?lang=en

170 BIBLIOGRAPHY

[235] Kevin Smith and Bill Appelbe. “Interactive Conversion of Sequential to Multi-

tasking FORTRAN”. In: Proceedings of the 3rd International Conference on

Supercomputing. ICS ’89. Crete, Greece: Association for Computing Machin-

ery, June 1989, pp. 225–234. ISBN: 978-0-89791-309-6. DOI: 10.1145/318789.

318814.

[236] Byoungro So, Sungdo Moon, and Mary W. Hall. “Measuring the Effectiveness

of Automatic Parallelization in SUIF”. In: Proceedings of the 12th International

Conference on Supercomputing. ACM, July 1998, pp. 212–219. ISBN: 978-0-

89791-998-2. DOI: 10.1145/277830.277876.

[237] Kevin Streit et al. “Sambamba: A Runtime System for Online Adaptive Paral-

lelization”. In: Compiler Construction. Ed. by Michael O’Boyle. Lecture Notes

in Computer Science. Berlin, Heidelberg: Springer, 2012, pp. 240–243. ISBN:

978-3-642-28652-0. DOI: 10.1007/978-3-642-28652-0_13.

[238] Yulei Sui, Peng Di, and Jingling Xue. “Sparse Flow-Sensitive Pointer Analysis

for Multithreaded Programs”. In: Proceedings of the 2016 International Sym-

posium on Code Generation and Optimization. CGO ’16. Barcelona, Spain:

Association for Computing Machinery, Feb. 2016, pp. 160–170. ISBN: 978-1-

4503-3778-6. DOI: 10.1145/2854038.2854043.

[239] Yulei Sui and Jingling Xue. “SVF: Interprocedural Static Value-Flow Analysis

in LLVM”. In: Proceedings of the 25th International Conference on Compiler

Construction. CC 2016. New York, NY, USA: ACM, 2016, pp. 265–266. ISBN:

978-1-4503-4241-4. DOI: 10.1145/2892208.2892235.

[240] Herb Sutter. The Free Lunch Is Over: A Fundamental Turn Toward Concurrency

in Software. http://www.gotw.ca/publications/concurrency-ddj.htm. 2005.

[241] Test-Suite Guide — LLVM 12 Documentation. https://llvm.org/docs/TestSuite

Guide.html.

[242] The ACE Companies. http://www.ace.nl/.

[243] Neil Thompson and Svenja Spanuth. The Decline of Computers As a General

Purpose Technology: Why Deep Learning and the End of Moore’s Law Are

Fragmenting Computing. SSRN Scholarly Paper ID 3287769. Rochester, NY:

Social Science Research Network, Nov. 2018. DOI: 10.2139/ssrn.3287769.

https://doi.org/10.1145/318789.318814
https://doi.org/10.1145/318789.318814
https://doi.org/10.1145/277830.277876
https://doi.org/10.1007/978-3-642-28652-0_13
https://doi.org/10.1145/2854038.2854043
https://doi.org/10.1145/2892208.2892235
http://www.gotw.ca/publications/concurrency-ddj.htm
https://llvm.org/docs/TestSuiteGuide.html
https://llvm.org/docs/TestSuiteGuide.html
http://www.ace.nl/
https://doi.org/10.2139/ssrn.3287769

BIBLIOGRAPHY 171

[244] Chen Tian, Min Feng, and Rajiv Gupta. “Supporting Speculative Parallelization

in the Presence of Dynamic Data Structures”. In: Proceedings of the 31st ACM

SIGPLAN Conference on Programming Language Design and Implementation.

PLDI ’10. New York, NY, USA: Association for Computing Machinery, June

2010, pp. 62–73. ISBN: 978-1-4503-0019-3. DOI: 10.1145/1806596.1806604.

[245] Fernando G. Tinetti and Mariano Méndez. “Fortran Legacy Software: Source

Code Update and Possible Parallelisation Issues”. In: SIGPLAN Fortran Forum

31.1 (Mar. 2012), pp. 5–22. DOI: 10.1145/2179280.2179281.

[246] Georgios Tournavitis. “Profile-Driven Parallelisation of Sequential Programs”.

https://www.era.lib.ed.ac.uk/handle/1842/5287. Thesis. Edinburgh, Scotland,

UK: University of Edinburgh, June 2011.

[247] Georgios Tournavitis and Björn Franke. “Semi-Automatic Extraction and Ex-

ploitation of Hierarchical Pipeline Parallelism Using Profiling Information”. In:

ACM Press, 2010, p. 377. ISBN: 978-1-4503-0178-7. DOI: 10.1145/1854273.

1854321.

[248] Georgios Tournavitis et al. “Towards a Holistic Approach to Auto-Parallelization:

Integrating Profile-Driven Parallelism Detection and Machine-Learning Based

Mapping”. In: SIGPLAN Not. 44.6 (June 2009), pp. 177–187. DOI: 10.1145/

1543135.1542496.

[249] Ross Albert Towle. “Control and Data Dependence for Program Transforma-

tions.” PhD Thesis. Champaign, IL, USA: University of Illinois at Urbana-

Champaign, 1976.

[250] David Trabish et al. “Chopped Symbolic Execution”. In: Proceedings of the

40th International Conference on Software Engineering. ICSE ’18. New York,

NY, USA: ACM, 2018, pp. 350–360. ISBN: 978-1-4503-5638-1. DOI: 10.1145/

3180155.3180251.

[251] Konrad Trifunovic et al. “GRAPHITE Two Years After: First Lessons Learned

From Real-World Polyhedral Compilation”. In: GCC Research Opportunities

Workshop (GROW’10). https://hal.inria.fr/inria-00551516. Jan. 2010.

[252] Marek Trtík. “Symbolic Execution and Program Loops”. https://is.muni.cz/th/

t52nv/. PhD thesis. Masarykova univerzita, Fakulta informatiky, 2014.

https://doi.org/10.1145/1806596.1806604
https://doi.org/10.1145/2179280.2179281
https://www.era.lib.ed.ac.uk/handle/1842/5287
https://doi.org/10.1145/1854273.1854321
https://doi.org/10.1145/1854273.1854321
https://doi.org/10.1145/1543135.1542496
https://doi.org/10.1145/1543135.1542496
https://doi.org/10.1145/3180155.3180251
https://doi.org/10.1145/3180155.3180251
https://hal.inria.fr/inria-00551516
https://is.muni.cz/th/t52nv/
https://is.muni.cz/th/t52nv/

172 BIBLIOGRAPHY

[253] Peng Tu and David Padua. “Automatic Array Privatization”. In: Languages and

Compilers for Parallel Computing. Ed. by Utpal Banerjee et al. Lecture Notes

in Computer Science. Berlin, Heidelberg: Springer, 1994, pp. 500–521. ISBN:

978-3-540-48308-3. DOI: 10.1007/3-540-57659-2_29.

[254] uClibc. https://www.uclibc.org/.

[255] Abhishek Udupa, Kaushik Rajan, and William Thies. “ALTER: Exploiting

Breakable Dependences for Parallelization”. In: Proceedings of the 32Nd ACM

SIGPLAN Conference on Programming Language Design and Implementation.

PLDI ’11. New York, NY, USA: ACM, 2011, pp. 480–491. ISBN: 978-1-4503-

0663-8. DOI: 10.1145/1993498.1993555.

[256] Robert Utterback et al. “Processor-Oblivious Record and Replay”. In: Pro-

ceedings of the 22nd ACM SIGPLAN Symposium on Principles and Practice

of Parallel Programming. PPoPP ’17. New York, NY, USA: Association for

Computing Machinery, Jan. 2017, pp. 145–161. ISBN: 978-1-4503-4493-7. DOI:

10.1145/3018743.3018764.

[257] Neil Vachharajani et al. “Speculative Decoupled Software Pipelining”. In: 16th

International Conference on Parallel Architecture and Compilation Techniques

(PACT 2007). Sept. 2007, pp. 49–59. DOI: 10.1109/PACT.2007.4336199.

[258] H. L. A. van der Spek, E. M. Bakker, and H. A. G. Wijshoff. “SPARK00: A

Benchmark Package for the Compiler Evaluation of Irregular/Sparse Codes”.

In: ArXiv08053897 Cs (May 2008). http://arxiv.org/abs/0805.3897. arXiv:

0805.3897 [cs].

[259] Harmen L. A. van der Spek, C. W. Mattias Holm, and Harry A. G. Wijshoff.

“A Compilation Framework for the Automatic Restructuring of Pointer-Linked

Data Structures”. In: High-Performance Scientific Computing: Algorithms and

Applications. Ed. by Michael W. Berry et al. London: Springer, 2012, pp. 97–

122. ISBN: 978-1-4471-2437-5. DOI: 10.1007/978-1-4471-2437-5_4.

[260] Harmen L.A. van der Spek, Erwin M. Bakker, and Harry A.G. Wijshoff. “Char-

acterizing the Performance Penalties Induced by Irregular Code Using Pointer

Structures and Indirection Arrays on the Intel Core 2 Architecture”. In: Pro-

ceedings of the 6th ACM Conference on Computing Frontiers. CF ’09. New

York, NY, USA: ACM, 2009, pp. 221–224. ISBN: 978-1-60558-413-3. DOI:

10.1145/1531743.1531779.

https://doi.org/10.1007/3-540-57659-2_29
https://www.uclibc.org/
https://doi.org/10.1145/1993498.1993555
https://doi.org/10.1145/3018743.3018764
https://doi.org/10.1109/PACT.2007.4336199
http://arxiv.org/abs/0805.3897
https://arxiv.org/abs/0805.3897
https://doi.org/10.1007/978-1-4471-2437-5_4
https://doi.org/10.1145/1531743.1531779

BIBLIOGRAPHY 173

[261] Hans Vandierendonck, Sean Rul, and Koen De Bosschere. “The Paralax Infras-

tructure: Automatic Parallelization with a Helping Hand”. In: Proceedings of

the 19th International Conference on Parallel Architectures and Compilation

Techniques. PACT ’10. New York, NY, USA: ACM, 2010, pp. 389–400. ISBN:

978-1-4503-0178-7. DOI: 10.1145/1854273.1854322.

[262] Rajeshwar Vanka and James Tuck. “Efficient and Accurate Data Dependence

Profiling Using Software Signatures”. In: Proceedings of the Tenth Interna-

tional Symposium on Code Generation and Optimization. CGO ’12. San Jose,

California: Association for Computing Machinery, Mar. 2012, pp. 186–195.

ISBN: 978-1-4503-1206-6. DOI: 10.1145/2259016.2259041.

[263] C. Vasiladiotis et al. “Loop Parallelization Using Dynamic Commutativity

Analysis”. In: 2021 IEEE/ACM International Symposium on Code Generation

and Optimization (CGO). Feb. 2021, pp. 150–161. DOI: 10.1109/CGO51591.

2021.9370319.

[264] Chris Vasiladiotis. Iterator Recognition Code Repository. https://github.com/

compor/IteratorRecognition. July 2019.

[265] B. Veltman, B. J. Lageweg, and Jan Karel Lenstra. “Multiprocessor Scheduling

with Communication Delays”. In: R 9018 (Jan. 1990). https://ir.cwi.nl/pub/

5713.

[266] Tobias J. K. Edler von Koch et al. “Towards a Compiler Analysis for Parallel

Algorithmic Skeletons”. In: Proceedings of the 27th International Conference on

Compiler Construction. CC 2018. New York, NY, USA: ACM, 2018, pp. 174–

184. ISBN: 978-1-4503-5644-2. DOI: 10.1145/3178372.3179513.

[267] Christoph von Praun, Rajesh Bordawekar, and Calin Cascaval. “Modeling

Optimistic Concurrency Using Quantitative Dependence Analysis”. In: Pro-

ceedings of the 13th ACM SIGPLAN Symposium on Principles and Practice

of Parallel Programming. PPoPP ’08. New York, NY, USA: Association for

Computing Machinery, Feb. 2008, pp. 185–196. ISBN: 978-1-59593-795-7. DOI:

10.1145/1345206.1345234.

[268] Steven Wallace and Kim Hazelwood. “SuperPin: Parallelizing Dynamic Instru-

mentation for Real-Time Performance”. In: Proceedings of the International

Symposium on Code Generation and Optimization. CGO ’07. USA: IEEE

https://doi.org/10.1145/1854273.1854322
https://doi.org/10.1145/2259016.2259041
https://doi.org/10.1109/CGO51591.2021.9370319
https://doi.org/10.1109/CGO51591.2021.9370319
https://github.com/compor/IteratorRecognition
https://github.com/compor/IteratorRecognition
https://ir.cwi.nl/pub/5713
https://ir.cwi.nl/pub/5713
https://doi.org/10.1145/3178372.3179513
https://doi.org/10.1145/1345206.1345234

174 BIBLIOGRAPHY

Computer Society, Mar. 2007, pp. 209–220. ISBN: 978-0-7695-2764-2. DOI:

10.1109/CGO.2007.37.

[269] Amos Waterland et al. “ASC: Automatically Scalable Computation”. In: SIG-

PLAN Not. 49.4 (Feb. 2014), pp. 575–590. DOI: 10.1145/2644865.2541985.

[270] Mark Weiser. “Program Slicing”. In: IEEE Trans. Softw. Eng. SE-10.4 (July

1984), pp. 352–357. DOI: 10.1109/TSE.1984.5010248.

[271] Andreas Wilhelm et al. “Tool-Based Interactive Software Parallelization: A

Case Study”. In: Proceedings of the 40th International Conference on Software

Engineering: Software Engineering in Practice. ICSE-SEIP ’18. Gothenburg,

Sweden: Association for Computing Machinery, May 2018, pp. 115–123. ISBN:

978-1-4503-5659-6. DOI: 10.1145/3183519.3183555.

[272] Michael E. Wolf and Monica S. Lam. “A Data Locality Optimizing Algorithm”.

In: https : / / doi . org /10 .1145 /113446 .113449. Association for Computing

Machinery, May 1991.

[273] Michael Wolfe. “Advanced Loop Interchanging”. In: International Conference

on Parallel Processing, ICPP’86, University Park, PA, USA, August 1986. IEEE

Computer Society Press, 1986, pp. 536–543.

[274] Michael Wolfe. High Performance Compilers for Parallel Computing. 1 edition.

Redwood City, Calif: Pearson, June 1995. ISBN: 978-0-8053-2730-4.

[275] Michael Wolfe. “The Tiny Loop Restructuring Research Tool”. In: Proc 1991

Intl Conf Parallel Process. Vol.II (1991). https://ci.nii.ac.jp/naid/10000032836/,

pp. 46–53.

[276] Michael Joseph Wolfe. Optimizing Supercompilers for Supercomputers. Cam-

bridge, MA, USA: MIT Press, 1990. ISBN: 978-0-262-73082-2.

[277] Peng Wu, Arun Kejariwal, and Călin Caşcaval. “Compiler-Driven Dependence

Profiling to Guide Program Parallelization”. In: Languages and Compilers for

Parallel Computing. Ed. by José Nelson Amaral. Vol. 5335. http://link.springer.

com/10.1007/978-3-540-89740-8_16. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2008, pp. 232–248. ISBN: 978-3-540-89739-2 978-3-540-89740-8.

[278] Baowen Xu et al. “A Brief Survey of Program Slicing”. In: SIGSOFT Softw.

Eng. Notes 30.2 (Mar. 2005), pp. 1–36. DOI: 10.1145/1050849.1050865.

https://doi.org/10.1109/CGO.2007.37
https://doi.org/10.1145/2644865.2541985
https://doi.org/10.1109/TSE.1984.5010248
https://doi.org/10.1145/3183519.3183555
https://doi.org/10.1145/113446.113449
https://ci.nii.ac.jp/naid/10000032836/
http://link.springer.com/10.1007/978-3-540-89740-8_16
http://link.springer.com/10.1007/978-3-540-89740-8_16
https://doi.org/10.1145/1050849.1050865

BIBLIOGRAPHY 175

[279] Hui Xu et al. “Benchmarking the Capability of Symbolic Execution Tools with

Logic Bombs”. In: IEEE Trans. Dependable Secure Comput. (2018), pp. 1–1.

DOI: 10.1109/TDSC.2018.2866469.

[280] Paraskevas Yiapanis. “High Performance Optimizations in Runtime Speculative

Parallelization for Multicore Architectures”. https://www.research.manche

ster .ac .uk/portal /en/ theses/high- performance- optimizations- in- runtime-

speculative-parallelization-for-multicore-architectures(1d980957-a08d-49f0-

8f7f-d5c35bae38b8).html. Ph.D. University of Manchester, 2013.

[281] Paraskevas Yiapanis et al. “Optimizing Software Runtime Systems for Spec-

ulative Parallelization”. In: ACM Trans. Archit. Code Optim. 9.4 (Jan. 2013),

39:1–39:27. DOI: 10.1145/2400682.2400698.

[282] Hongtao Yu and Zhiyuan Li. “Fast Loop-Level Data Dependence Profiling”. In:

Proceedings of the 26th ACM International Conference on Supercomputing. ICS

’12. San Servolo Island, Venice, Italy: Association for Computing Machinery,

June 2012, pp. 37–46. ISBN: 978-1-4503-1316-2. DOI: 10 . 1145 / 2304576 .

2304584.

[283] Hongtao Yu and Zhiyuan Li. “Multi-Slicing: A Compiler-Supported Parallel

Approach to Data Dependence Profiling”. In: Proceedings of the 2012 Interna-

tional Symposium on Software Testing and Analysis. ISSTA 2012. Minneapolis,

MN, USA: Association for Computing Machinery, July 2012, pp. 23–33. ISBN:

978-1-4503-1454-1. DOI: 10.1145/2338965.2336756.

[284] Vadim Zaytsev. “Open Challenges in Incremental Coverage of Legacy Software

Languages”. In: Proceedings of the 3rd ACM SIGPLAN International Workshop

on Programming Experience. PX/17.2. New York, NY, USA: Association for

Computing Machinery, Oct. 2017, pp. 1–6. ISBN: 978-1-4503-5522-3. DOI:

10.1145/3167105.

[285] Xiangyu Zhang, Armand Navabi, and Suresh Jagannathan. “Alchemist: A

Transparent Dependence Distance Profiling Infrastructure”. In: Proceedings of

the 7th Annual IEEE/ACM International Symposium on Code Generation and

Optimization. CGO ’09. USA: IEEE Computer Society, Mar. 2009, pp. 47–58.

ISBN: 978-0-7695-3576-0. DOI: 10.1109/CGO.2009.15.

https://doi.org/10.1109/TDSC.2018.2866469
https://www.research.manchester.ac.uk/portal/en/theses/high-performance-optimizations-in-runtime-speculative-parallelization-for-multicore-architectures(1d980957-a08d-49f0-8f7f-d5c35bae38b8).html
https://www.research.manchester.ac.uk/portal/en/theses/high-performance-optimizations-in-runtime-speculative-parallelization-for-multicore-architectures(1d980957-a08d-49f0-8f7f-d5c35bae38b8).html
https://www.research.manchester.ac.uk/portal/en/theses/high-performance-optimizations-in-runtime-speculative-parallelization-for-multicore-architectures(1d980957-a08d-49f0-8f7f-d5c35bae38b8).html
https://www.research.manchester.ac.uk/portal/en/theses/high-performance-optimizations-in-runtime-speculative-parallelization-for-multicore-architectures(1d980957-a08d-49f0-8f7f-d5c35bae38b8).html
https://doi.org/10.1145/2400682.2400698
https://doi.org/10.1145/2304576.2304584
https://doi.org/10.1145/2304576.2304584
https://doi.org/10.1145/2338965.2336756
https://doi.org/10.1145/3167105
https://doi.org/10.1109/CGO.2009.15

176 BIBLIOGRAPHY

[286] Song Zhao, Yixin Bian, and Sensen Zhang. “A Review on Refactoring Se-

quential Program to Parallel Code in Multicore Era”. In: Proceedings of 2015

International Conference on Intelligent Computing and Internet of Things. Jan.

2015, pp. 151–154. DOI: 10.1109/ICAIOT.2015.7111558.

[287] Chuan-Qi Zhu and Pen-Chung Yew. “A Scheme to Enforce Data Dependence

on Large Multiprocessor Systems”. In: IEEE Trans. Softw. Eng. SE-13.6 (June

1987), pp. 726–739. DOI: 10.1109/TSE.1987.233477.

[288] Oleksandr Zinenko, Stéphane Huot, and Cédric Bastoul. “Visual Program Ma-

nipulation in the Polyhedral Model”. In: ACM Trans. Archit. Code Optim. 15.1

(Mar. 2018), 16:1–16:25. DOI: 10.1145/3177961.

https://doi.org/10.1109/ICAIOT.2015.7111558
https://doi.org/10.1109/TSE.1987.233477
https://doi.org/10.1145/3177961

	Introduction
	The Problem: Porting Software to Parallel Hardware
	The Ideal Solution: Automatic Parallelization
	The Challenges of Automatic Parallelization
	Goals and Contributions
	Thesis Overview
	Summary

	Related Work
	Introduction
	Dependence Analysis
	Static Dependence
	Dynamic Dependence
	Limit Studies on Dependence

	Commutativity Analysis
	Separability-Based Commutativity
	Output-Based Commutativity

	Automatic Parallelization
	Overview of Approaches
	Parallelization in the Presence of Dependences
	Speculative Parallelization
	Analyzing Pointer-Linked Data Structures
	Parallelization with User Interaction
	Parallelization Frameworks

	Symbolic Execution
	Algorithmic Skeletons
	Conclusion

	Infrastructure and Related Tools
	Introduction
	Software Tools
	LLVM Compiler Infrastructure
	Intel Icc Compiler
	LLVM/Polly Extension
	Idioms Technique
	DiscoPoP Technique
	Dependence Profiling Technique
	Parallelization with OpenMP
	Generalized Iterator Recognition Analysis
	KLEE Symbolic Execution Tool

	Benchmarks
	npb Suite
	Applications using plds

	Hardware Setup Configurations
	Summary

	Liveness-based Commutativity Analysis using Symbolic Execution
	Introduction
	Liveness-Based Commutativity
	Liveness-Based Loop Commutativity
	Motivating Examples
	Operation of Symbolic Execution
	Symbolic Crosschecking of Commutativity
	Symbolic Crosschecking Technique for Liveness-based Commutativity
	Approach
	Dealing with Limited Code Coverage
	Symbolic Sizes for Memory Allocations
	Handling Floating-point Operations

	Case Studies
	Pointer-based Loops
	Array-based Loops

	Summary and Conclusions

	Loop Parallelization using Dynamic Commutativity Analysis
	Introduction
	Motivating Examples
	Revisiting Liveness-based Loop Commutativity Analysis
	Applicability of Parallelization

	Dynamic Commutativity Analysis
	Static Stage
	Dynamic Stage
	Parallelization
	Safety
	Challenges and Limitations

	Empirical Evaluation
	Experimental Setup
	Performance against Dynamic Techniques
	Performance against Static Techniques
	Aspects of Detection Profitability and Precision
	Scope of Parallelization Beyond Loops

	Summary and Conclusions

	Detecting Data-Parallel Patterns with Liveness-based Commutativity
	Motivation
	Methodology
	Overview
	Syntactic Transformations

	Case Studies
	Scan Pattern
	Reduction Pattern
	Map Pattern
	Discriminating between Patterns

	Summary and Conclusions

	Conclusions
	Introduction
	Contributions
	Critical Review and Future Directions
	Liveness-Based Commutativity Analyses
	Pattern Detection with Liveness-based Commutativity
	User Interface Improvements

	Bibliography

