
Copyright

by

Bryan Andrew Marker

2014

The Dissertation Committee for Bryan Andrew Marker

certifies that this is the approved version of the following dissertation:

Design by Transformation:

From Domain Knowledge to Optimized

Program Generation

Committee:

Robert van de Geijn, Supervisor

Don Batory, Co-Supervisor

Victor Eijkhout

Calvin Lin

Tim Mattson

Keshav Pingali

Design by Transformation:

From Domain Knowledge to Optimized

Program Generation

by

Bryan Andrew Marker, B.S.C.S.; B.S.Math

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

May 2014

Design by Transformation:
From Domain Knowledge to Optimized

Program Generation

Bryan Andrew Marker, Ph.D.

The University of Texas at Austin, 2014

Supervisors: Robert van de Geijn and Don Batory

Expert design knowledge is essential to develop a library of high-performance soft-

ware. This includes how to implement and parallelize domain operations, how to

optimize implementations, and estimates of which implementation choices are best.

An expert repeatedly applies his knowledge, often in a rote and tedious way, to

develop all of the related functionality expected from a domain-specific library. Ex-

pert knowledge is hard to gain and is easily lost over time when an expert forgets

or when a new engineer starts developing code. The domain of dense linear alge-

bra (DLA) is a prime example with software that is so well designed that much of

experts’ important work has become tediously rote in many ways. In this disser-

tation, we demonstrate how one can encode design knowledge for DLA so it can

be automatically applied to generate code as an expert would or to generate better

code. Further, the knowledge is encoded for perpetuity, so it can be reused to make

implementing functionality on new hardware easier or it can be used to teach how

software is designed to a non-expert. We call this approach to software engineering

iv

(encoding expert knowledge and automatically applying it) Design by Transforma-

tion (DxT). We present our vision, the methodology, a prototype code generation

system, and possibilities when applying DxT to the domain of dense linear algebra.

v

Contents

Abstract iv

Chapter 1 Introduction 1

1.1 Motivation . 2

1.2 Problem . 7

1.3 Our Solution . 9

1.4 The Grand Vision . 9

1.5 Related Work . 11

1.5.1 Software Engineering . 11

1.5.2 DLA and HPC . 13

1.6 Contributions . 17

1.7 Outline . 18

Chapter 2 Design by Transformation 19

2.1 Representing Algorithms and Implementations 19

2.2 Representing Design Knowledge . 20

2.2.1 Refinements . 20

2.2.2 Optimizations . 22

2.2.3 Graphs or Code? . 23

vi

2.3 Grammar . 23

2.3.1 DSLs . 23

2.3.2 Exploring the Language . 25

2.3.3 A Family of DSLs . 26

2.3.4 Context Sensitivity . 28

2.4 Connection to Model Driven Engineering 29

2.5 DLA Specifics . 30

2.5.1 Loops in an Acyclic Graph 30

2.5.2 Type Information . 32

2.5.3 Correct by Construction . 32

2.6 Summary . 34

Chapter 3 Domain Structure 36

3.1 Variants and Layering . 36

3.2 DLA Operations . 40

3.3 FLAME Algorithms in DxT . 43

3.3.1 Layer-Templatized Refinements 44

3.3.2 An Abstract Layering Example 45

3.4 Loop Transformations . 48

3.5 Going Lower . 50

3.5.1 Why Not Go Lower? . 50

3.5.2 Problems and Possible Solutions When Breaking Through . . 51

3.6 Summary . 53

Chapter 4 DxTer 54

4.1 Encoding Knowledge . 54

vii

4.1.1 Nodes and Graphs . 55

4.1.2 Node and Edge Properties . 57

4.1.3 DAG Restrictions and Checking 58

4.1.4 Transformations . 60

4.1.5 Output Code . 63

4.1.6 Explaining Differences . 65

4.2 Search . 67

4.2.1 Basic Search . 67

4.2.2 Phases and Culling . 69

4.2.3 Saving the Search Space . 72

4.2.4 Transformation Meta-Optimization 73

4.3 Summary . 75

Chapter 5 Elemental 76

5.1 Elemental . 76

5.1.1 Elemental Basics . 78

5.1.2 Parallelizing Trmm . 79

5.1.3 Encoding the Algorithm with Elemental 82

5.2 BLAS3 . 85

5.2.1 Algorithms to Explore . 86

5.2.2 BLAS3 Elemental Refinements 87

5.2.3 Redistribution Optimizations 88

5.2.4 Transpose Optimizations . 92

5.2.5 The Knowledge Base . 94

5.2.6 Cost Estimates . 95

5.2.7 Search Space and Results . 97

viii

5.3 LAPACK-Level Operations . 101

5.3.1 Cholesky . 102

5.3.2 SPD Inversion . 103

5.3.3 Two-Sided Problems . 108

5.4 Locally-Best Search . 111

5.4.1 Implementation Clusters . 112

5.4.2 Locally-Best Refinements . 119

5.4.3 The Axpy Heuristic . 122

5.4.4 Are Heuristics Cheating? . 124

5.5 Summary . 125

Chapter 6 BLIS 126

6.1 BLIS Layering . 126

6.1.1 Sequential Gemm Implementation 128

6.1.2 Packing . 133

6.1.3 DxTer Encoding . 134

6.2 Parallelizing for Shared Memory . 136

6.2.1 Parallelization Heuristic . 136

6.2.2 Communicators . 139

6.3 Encoding Multithreaded Parallelization 140

6.3.1 Quick Results . 142

6.3.2 DxTer as a Productivity Enhancer 143

6.4 Performance Results . 145

6.5 Heuristics vs. Testing . 148

6.6 Summary . 149

ix

Chapter 7 Conclusion 151

7.1 Contributions . 151

7.1.1 A DLA Representation in DxT 152

7.1.2 A Prototype Generator . 152

7.1.3 The Benefits of Encoding Design Knowledge 153

7.2 Future Work . 154

7.3 Vision . 155

Appendix A Two-Sided Trmm 157

APPENDICES 157

Bibliography 176

x

Chapter 1

Introduction

The grand vision of our work is to change the way we view software libraries in an

effort to alleviate the burden of expert developers by leveraging code generation,

as described in Section 1.4. As this goal is ambitious, in this dissertation we focus

on a domain that has been extensively studied and developed: dense linear algebra

(DLA). DLA is the example. The techniques are general.

For DLA, libraries are currently repositories of highly optimized code tar-

geting a set of specific functionality on a particular class of hardware. We believe

these libraries can be and should be repositories of fundamental domain-specific al-

gorithms and expert software design knowledge about how to implement libraries

for a particular class of hardware. Then, code for a user’s application will be auto-

matically generated from the encoded knowledge. It can even be optimized to the

application’s particular use of functionality. We see numerous benefits of this in-

cluding better performing code, more maintainable code, and more easily extended

code, all of which we touch on in this dissertation.

Our thesis is that DLA is an example of a domain that can be encoded

1

as dataflow graphs and that architecture-specific implementation knowledge can be

encoded as graph transformations. From this, it is possible to produce code mechan-

ically by carefully choosing and applying those transformations. This is significant

because it means that a developer’s rote task of exploring design options and choos-

ing a high performance implementation is automatable for a set of domain function-

ality. The so produced implementation is explainable – in terms of transformations

– and trusted for performance and correctness (given that the transformations are

trusted). We call this approach to software engineering Design by Transformation

(DxT), pronounced “dext.” This dissertation provides evidence in support of this

thesis by focusing on the domain of DLA.

1.1 Motivation

In DLA, and in many other scientific computing domains, there is a standard set

of functionality users expect. For example, the Basic Linear Algebra Subprograms

(BLAS) [22, 23, 39] are commonly used matrix operations on which higher-level

functionality (e.g., that of LAPACK [7], explained in Section 3.2, or libflame [61])

is implemented. DLA library users expect standard functionality to be implemented

in high performance code so their applications perform well. To do so, DLA code

must be specialized for the target architecture. For instance, distributed-memory,

multithreaded, sequential, and GPU architectures each require customized code,

often using different algorithms, application programming interfaces (APIs), and

programming paradigms. For each, one must become very knowledgeable of both

DLA algorithms and the target hardware architecture to attain high performance.

As a result, there are few developers that can implement such functionality

well and, therefore, their time is valuable. We will call them experts. When a new

2

architecture is targeted (e.g., when a new architecture is first released), a developer

must become an expert and implement all expected functionality in high perfor-

mance code. That code might have correctness bugs that must be discovered via

testing or it might have performance bugs, where the developer missed opportunities

to apply known optimizations. Often the resulting code is difficult to understand

by a non-expert and cannot be easily explained to a new developer tasked with

maintaining the code1.

These issues are common to other domains. Experts are rare and valued for

their ability to develop many related pieces of code well. They use their catalogue

of algorithms, implementation options, and optimizations tricks to get the best

performance possible. Often their job is rote, applying their knowledge repeatedly in

different algorithm contexts. As computer scientists, we strongly believe that when

a task becomes rote and the tools are available, automation should be employed.

DxT allows us to demonstrate the utility of automated code generation for

a portion of the DLA software stack on distributed-memory, multithreaded, and

sequential architectures. We encode fundamental architecture-agnostic DLA algo-

rithms and architecture-specific design knowledge to alleviate the rote efforts of

experts.

Figure 1.1 shows an algorithm for a BLAS operation in the FLAME no-

tation [32, 33, 60] that computes Triangular Matrix-Matrix multiplication (Trmm).

There are eight versions of Trmm, but in this case it computes B := BL with a trian-

gular matrix L. We call this TrmmRLN since the triangluar matrix is on the right-hand

side, lower-triangular, not transposed. This example is used throughout the disser-

tation to demonstrate how domain algorithms, a piece of domain knowledge, are

1It is common for developers to change jobs (e.g., graduate), so the overhead of bringing new
engineers “up to speed” to continue development is a real and ongoing concern.

3

Algorithm: [B] := Trmm rln blk(L,B)

Partition L→
(
LTL LTR

LBL LBR

)
, B →

(
BL BR

) where
LTL is 0× 0,
BL is n× 0

while m(LTL) < m(L) do
Repartition

(
LTL LTR

LBL LBR

)
→

 L00 L01 L02

L10 L11 L12

L20 L21 L22

,
(
BL BR

)
→
(
B0 B1 B2

)
where L11 is b× b , B1 has b columns

B0 := B0 +B1L10 (Gemm)
B1 := B1L11 (Trmm)

Continue with(
LTL LTR

LBL LBR

)
←

 L00 L01 L02

L10 L11 L12

L20 L21 L22

,
(
BL BR

)
←
(
B0 B1 B2

)
endwhile

Figure 1.1: Variant of Trmm to compute B := BL (right, lower triangular, non-
transposed, or Trmm RLN).

reused across architectures.

Throughout this dissertation, we hint at the fact that the DLA code gener-

ation process starts with algorithms like this that are an output of the “FLAME

approach” to deriving algorithms [32, 33, 60]. This approach starts with a defini-

tion of a DLA operation and a family of loop invariants (in the sense of Dijkstra

and Hoare [20, 35]) is derived from this definition. From each loop invariant, a

loop-based algorithm is derived hand-in-hand with its proof of correctness. This

then yields a family of algorithmic variants that one must explore and implement

for each hardware architecture. Details of this process are not pertinent to our

discussion other than briefly in Section 3.4.

In order to motivate the notation, though, we use this algorithm for TrmmRLN

4

and a simple derivation. We start by partitioning

B →
(
B0 B1 B2

)
and L→

L00 0 0

L10 L11 0

L20 L21 L22

 ,

where L00 is k × k, L11 is b × b, B0 is n × k, and B1 is n × b. Inserting these

partitioned matrices into B := BL yields

(
B0 B1 B2

)
:=

(
B0 B1 B2

)
L00 0 0

L10 L11 0

L20 L21 L22

or

(
B0 B1 B2

)
:=

(
B0L00 +B1L10 +B2L20 B1L11 +B2L21 B2L22

)
.

DLA algorithms, as in this case, are typically loop-based. Here, in the current

iteration we assume that

• B0 has already been updated2 with the partial result B0L00;

• B0 is to be updated with the partial contribution B1L10 in this iteration;

• the remaining B2L20 contribution to B0 will be performed in future iterations;

• B1 has not yet been updated and is to be updated with B1L11 in this iteration;

and

• B2 has not yet been updated and is to be updated in future iterations.

2This is an example of a loop invariant , an assertion made about the state of matrix quadrants
at certain points of loop execution.

5

This means that in this iteration the updates

B0 := B0 +B1L10

B1 := B1L11

are to be performed.

The algorithm in Figure 1.1 expresses this. In each iteration, submatrices

are partitioned from the input matrices. The loop body operations (called update

statements or just updates) here are BLAS operations themselves. One is a recursive

Trmm call on smaller matrices, submatrices of the inputs. The other operation is

General Matrix-Matrix multiply (Gemm), C := αAB + βC), also on submatrices of

the inputs.

In Figure 1.1, the partition and repartition operations at the beginning and

end of each iteration, respectively, determine which part of the matrix forms each

submatrix. The partitions move in each iteration.

The observed recursion on submatrices and call to Gemm are common in BLAS

algorithms. For recursion, one layers different algorithms implementing the same op-

erations, described in Section 3.1. Thus, the same algorithmic options are explored

repeatedly to implement a software stack. Gemm is a widely-used operation in DLA,

so one reimplements Gemm repeatedly by again exploring the same implementation

options over and over. Higher-level DLA algorithms often have BLAS operation

in their loop body, too, which requires implementation knowledge to be reused for

higher-level operations. These are prime examples of an expert’s rote efforts.

Consider the more complicated algorithm in Figure 1.2, which computes

A := LHAL. This is called two-sided triangular matrix multiplication and is detailed

6

in Section 5.3.3. The loop body includes a Gemm and two Trmm instances among other

BLAS operations. In implementing DLA functionality for an architecture, one con-

siderations how to parallelize Trmm and Gemm updates in the Trmm algorithm and then

reuses that design knowledge for this more complicated operations. Throughout this

dissertation, we demonstrate how expert implementation knowledge is repeatedly

reused like this to implement the algorithms of Figure 1.1 and more complicated

ones such as that of Figure 1.2. Further, we demonstrate how this decision process

can be automated.

1.2 Problem

For domains like DLA, experts use software design knowledge to implement entire

libraries of functionality for each new architecture. This is a largely rote and tedious

process as knowledge is reapplied repeatedly in slightly different contexts. An expert

is forced to go through this inefficient engineering work. Further, the rote nature

of this software development leads to correctness mistakes as well as mistakes that

decrease performance (e.g., not applying an optimization).

For other domains, one does not reuse the same knowledge repeatedly to

develop related pieces of functionality. As we only store the result of applied knowl-

edge (code)3, the essential, important knowledge that leads to code is lost when

somebody forgets it or retires. Large applications are too often trusted because of

how long they have been used but not fully understood by the engineers maintaining

them. For example, developers fear making changes (like adding parallelization) or

adding functionality because they do not fully understand the software they are to

maintain.

3 We also store some knowledge in published papers and sometimes comments, but implemen-
tation knowledge is still incomplete.

7

Algorithm: A := LHAL

Partition A→
(
ATL ATR

ABL ABR

)
, L→

(
LTL LTR

LBL LBR

)
,

Y →
(
YTL YTR

YBL YBR

) where
ATL, LTL,
and YTL

are 0× 0.
while m(ATL) < m(A) do

Repartition

(
ATL ?

ABL ABR

)
→

 A00 ? ?

A10 A11 ?

A20 A21 A22

,

(
LTL 0

LBL LBR

)
→

 L00 0 0

L10 L11 0

L20 L21 L22

,

(
YTL 0

YBL YBR

)
→

 Y00 0 0

Y10 Y11 0

Y20 Y21 Y22

where A11, L11, and Y11 are b× b

Y10 := A11L10

A10 := W10 = A10 + 1
2
Y10

A00 := A00 + (AH
10L10 + LH

10A10)
A10 := A10 + 1

2
Y10

A10 := LH
11A10

A11 := LH
11A11L11

A20 := A20 +A21L10

A21 := A21L11

Continue with(
ATL ?

ABL ABR

)
←

 A00 ? ?

A10 A11 ?

A20 A21 A22

,

(
LTL 0

LBL LBR

)
←

 L00 0 0

L10 L11 0

L20 L21 L22

,

(
YTL 0

YBL YBR

)
←

 Y00 0 0

Y10 Y11 0

Y20 Y21 Y22

endwhile

Figure 1.2: Blocked variant 4 for computing A := LHAL.

8

1.3 Our Solution

We demonstrate how DLA design knowledge is represented with DxT for distributed-

memory, multithreaded, and sequential architectures. We use APIs that we think of

as domain-specific languages (DSLs). Once encoded in our prototype system called

DxTer (“dexter”), the knowledge, encoded in terms of graph transformations, is

automatically applied and explored. Humans explore the same options and use cost

(performance) estimates to choose the “best” performing code. Cost functions are

another form of knowledge about the domain and the target architecture that we

encode. DxTer uses cost functions to rank-order implementations in the search space

similar to how a person does. It then chooses the “best” and outputs its code.

We demonstrate how the generated code for a distributed-memory target is

the same or better than the hand-developed versions for a variety of operations.

For a sequential architecture, we break down matrix-matrix BLAS operations in

terms of explainable transformations. We then augment those transformations with

knowledge to parallelize loops for multithreaded targets. In this case, we automati-

cally generated code that did not exit. In fact, the desired final implementation was

not known. Each time the developer had an implementation idea, a new paralleliza-

tion scheme was added and DxTer evaluated it and all existing schemes for each of

dozens of functions automatically without requiring human intervention. DxTer in

this case was a productivity multiplier.

1.4 The Grand Vision

While this dissertation and the work behind it focuses on DLA, DxT is domain

agnostic. We believe it to apply to any domain with a dataflow representation. We

9

expect that our DLA results can be replicated elsewhere: encode knowledge and

automatically generate libraries of code for various architectures.

By encoding knowledge, we believe extending, maintaining, and learning

software applications is easier. One has the design options explicitly exposed as

knowledge and from those can make the decisions that yield software. Our “Grand

Vision” is to see DxT or DxT-like approaches used by expert developers to engineer

software much faster and more reliably (in terms of performance and correctness).

Instead of only storing libraries as code, we need to store design knowledge.

Compared to engineering disciplines that have existed for centuries, software

engineering is a relatively new. Structural engineers can determine how a bridge

works or know if it is safe to add a room to a house. This is largely because

commonly-accepted building principles are followed and the pieces that go into the

structures are understood (a truss, for example, is an understood piece of a design).

We want to get to a point in software engineering where a large system is similarly

understandable.

We see transformations à la DxT as a possible way to accomplish this. We see

the layering and abstractions DxT enables as a way to limit complexity by breaking

it down into understandable pieces even if they are as numerous as the number

of trusses or steal beams in a bridge. Software design knowledge is expressed as

transformations. Particular applications will be explained via transformations and

will be changed via transformations. Our Grand Vision is to apply DxT more widely,

to more domains and to more complicated software systems to advance the state of

software engineering.

Instead of having design knowledge in the head of a few experts who apply

that knowledge to design code, we will have repositories of that knowledge stored

10

explicitly via transformations. The transformations will be proven correct, so result-

ing code is trusted for correctness. They will be understandable and teachable, so

code is understandable and teachable. Software that was previously coded manually

by experts through tedious and rote development will be automatically formed by

a system that explores the same design options more thoroughly and with greater

patience, so the resulting code is more trusted to achieve high performance.

This Grand Vision is lofty and years away, but we see DxT step in this

direction.

1.5 Related Work

As the domain chosen in this work to illustrate DxT bridges software engineering

and DLA / high performance computing (HPC), we summarize related work from

both communities here.

1.5.1 Software Engineering

The most closely-related work to DxT is decades old: rule-based relational query

optimization [40]. Here, cost estimates and heuristics guide the choice of implemen-

tation details (based on problem size). A search space is explore to find a good

implementation of a relational query at runtime. As code generation performance

is important to getting small query runtime (which includes code generation time),

heuristics are essential to searching the space quickly without resorting to an ex-

haustive search. DxT is a generalization of this idea.

With program synthesis, a single program is generated that implements spec-

ified functionality – it is difficult to get just one. With program generation, on the

other hand, it is easy to get many implementations; the difficulty is in finding a

11

high-performing version, which leads to a search space of options. The work of [45]

uses deductive program synthesis to prove the existence of an “object” meeting

specified computation requirements. In finding that object (and proving its cor-

rectness), one is left with a prescription for computing the desired output. DxT

uses correct-by-construction generation of implementations for a specification and

searches many such implementations. One can imagine applying this approach to

synthesize primitive implementations or the RHS graphs of transformations and use

those as input to DxTer.

With the Amphion system [44], a user is guided in his development of a spec-

ification of functionality using a knowledge base containing domain-specific theory

(using a context-sensitive, menu-driven GUI). Amphion then uses program synthesis

and knowledge about the functions available in libraries to build an implementation

of the specification. Thus, a developer does not need to learn about a library’s

functions, only the domain’s operations. DxT is similar in goal, but uses program

generation instead of program synthesis. Still, Amphion is a system with the same

goal as DxT.

The Design Maintenance System [10] is a transformation-based, compiler-like

tool that parses source code, performs a sequence of transformations, and outputs

code in the same or different language. The sequence of applied transformations can

be very long, so DMS only explores a single sequence, possibly “undoing” explored

transformations to find a sequence that ends in an implementation for which code

can be generated. With DxT, we start with high-level representations and explore

many, much smaller sequences of transformations.

ReFlO [26] is a visual, graphical tool used to encode DxT architectures and

transformations. Instead of automatically generating code as DxTer does, one uses

12

ReFlO to manually search an implementation space. One starts with a set of trans-

formations and an architecture specification (a simple, high-level dataflow graph)

and ReFlO presents, at any point, the refinements and optimizations that can be

applied. Ideally, one day we will have a system that combines the graphical and

interactive experience of ReFlO with the automation offered by DxTer.

1.5.2 DLA and HPC

Autotuning is an important way to improve performance of code automatically4.

Autotuning customization is largely limited to selecting tuning constants (e.g., loop

unrolling factors or algorithmic blocksizes) rather than selecting and optimizing

algorithms. ATLAS [63], for example, does this for BLAS operations on some ar-

chitectures. It explores tuning factors for a ire-determined algorithm. For each

implementation option, code is generated, compiled, and run on the target machine.

Code runtime is used to search the implementation space and choose a “good” ver-

sion. DxT is different and complementary in that it generates a space of semantically

equivalent implementations from a high-level understanding of how algorithms can

be developed. We envision a comprehensive process that includes a DxTer-like tool

to generate code followed by an autotuning step to then choose the best parame-

ters like, for example, the algorithmic block size and process grid configuration for

distributed-memory code. The work of [64] demonstrates how some of the empirical

search in ATLAS can be removed via performance modeling. It talks about the pos-

sibility for a hybrid approach with empirical and analytic modeling. For now, we use

cost estimates that guide DxTer to the best implementation(s) instead of empirical

search, but this is not a requirement of DxT. We can envision DxTer incorporating

such a hybrid technique.

4 This section is a slight modification of a similar comparison given in [48].

13

The linear algebra compiler by Fabregat-Traver and Bientinesi [24] takes

a specification of a mathematical operation and derives a family of algorithmic

variants. It optimizes the algorithms by reusing variables and mapping to BLAS

function calls. The output of this system produces the type of algorithms we use as

input to DxTer, encoded as refinements. DxTer then optimizes the implementation

by parallelizing for multithreading or distributed memory. One can envision a more

complete code generation system that starts with a DLA operation specification,

generates algorithmic variants, and inputs them to DxTer for implementation.

DxT is similar in goal to SPIRAL [52], which largely focuses on generating

high-performance Digital Signal Processing (DSP) kernels. It starts with a mathe-

matical description of the algorithm in a DSL and performs transformations similar

to refinements and optimizations to recursively replace abstract operations with im-

plementation code and to improve that code. It uses machine learning via online

code compilation and performance testing to explore a huge space of implementa-

tions. DxT targets higher-level operations, built on lower-level functions like those

of the BLAS, so we can utilize relatively accurate cost models instead of empirically-

based search. Further, our search space remains manageable.

The Built-to-Order (BTO) BLAS [11] system automatically generates vector-

vector and matrix-vector BLAS operations targeting sequential and multithreaded

architecture. It uses a unique representation of algorithms and code to employ a

genetic search of implementation options including loop fusion and parallelization.

Both empirical testing and performance modeling are used to limit and explore the

implementation space. In our work so far, we target higher-level functionality, which

allows for analytic estimates to be sufficiently accurate for search.

We envision in the future relying on kernels generated from a SPIRAL or

14

BTO BLAS-like approach instead of the hand-developed and hand-tuned imple-

mentations at the lowest levels of code. Then, the DLA software stack, from lowest

level code up, will be automatically generated.

The Tensor Contraction Engine (TCE) [8] aims to generate code for a ten-

sor contraction expressed in a high-level representation (DSL). It applies (mostly

loop) transformations to optimize over computational complexity, space complex-

ity, communication cost, and then data access cost. These transformations and its

cost models are similar in spirit to those of DxT. TCE specifically targets tensor

contractions; DxT is general-purpose.

The Broadway compiler [34] had a similar goal as ours to encode expert

knowledge to generate optimized code. Library functions were annotated, so Broad-

way could choose the best implementation of an interface at a call site. It was not

able to optimize as DxT does, though, which prevented it from generating the “best”

code. Further, it did not use a search space of implementations, which is necessary

to avoid local minima when exploring optimizations.

Many domain-specific compilers exist to optimize code written for a partic-

ular problem type (e.g., DLA). They generally use DSLs to express algorithms in a

convenient representation. Using a DSL, the compiler takes advantage of high-level

domain knowledge. Similarly, we use DSLs extensively in DxT (see Section 2.1).

Domain-specific compilers are generally written by compiler experts. They are

largely non-extensible by users and their optimizations are generally difficult to

understand to a non-compiler-expert. One can think of DxT as a way to build a lot

of the functionality found in a domain-specific compiler, making it extensible to a

domain expert who is not also a compiler expert.

The FLAME project is closely related to DxT. In [30], “The Big Picture”

15

expressed the idea of encoding algorithms and expert knowledge to mechanically

generate code. There, optimized parallel code was also the goal, but the PLAPACK

library [59] was the targeted DSL instead of Elemental, described in Chapter 5.

Many implementations were generated and performance estimates were created from

cost function annotations in the algorithms. Our work benefits from extra years of

insights and experience, which enable a more sophisticated approach based on graph

transformations (which is more general-purpose than DLA-specific applications).

Further, DxT is a generalization of this idea.

DLA runtime schedulers like SuperMatrix [17] and PLASMA [21] use se-

quential code to form a dataflow task graph. BLAS and LAPACK function calls are

replaced with scheduler-specific functions that add tasks to the dataflow graph rep-

resenting computation. When the graph is executed, the runtime scheduler chooses

where to run each task (e.g., on CPU cores or GPUs), possibly optimizing the sched-

ule to reduce communication (e.g., between the GPU and CPU). This is useful to

handle issues such as load imbalance as a runtime scheduler can compensate by

scheduling tasks around a slow processing unit. The schedulers’ dataflow graphs

look similar to a DxT-style graph with loops unrolled. The runtime scheduler is

optimized to perform well, so it uses heuristics to optimize the schedule without

exploring a massive search space of options (a costly endeavor). The heuristics and

scheduling optimizations can be represented in the DxT style (thus, the scheduler

acts like a runtime version of DxTer). Further, DxTer can be augmented to output

SuperMatrix code. Already encoded, FLAME-derived algorithms could be trans-

formed to use SuperMatrix functions that add dataflow tasks to the runtime graph

instead of calling BLAS or LAPACK functions directly. For distributed memory,

static scheduling with DxT does well as load imbalance is less of a concern. Also,

16

there are many options to parallelize and optimize distributed-memory code (as seen

by the size of search spaces described in Chapter 5), so a static schedule benefits

from exploring many options.

1.6 Contributions

The contributions of our work, described in this dissertation, are:

• We see DxT as one way to elevate software engineering to a science. It pro-

motes structure and more formal reasoning in software design and design de-

cisions. This is a general contribution to computer science.

• We demonstrate how to encode DLA algorithms and architecture-specific im-

plementation and optimization design knowledge as graph transformations to

generate code for distributed-memory, multithreaded, and sequential architec-

tures. Encoded knowledge is used to generate high performance code auto-

matically that rivals hand-developed code. This is evidence that software for

other architectures and domains with similarly representable knowledge can

be automatically generated as well.

• We present our prototype DxTer to which one inputs graph transformations

encoding design knowledge, knowledge about domain functions, and a graph

representing functionality to be implemented. DxTer generates a search space

of optimized implementations and outputs a single “best” using a performance

estimate. We describe ways to prune that search space to reduce search time

or to make the space tractable to explore.

• We describe benefits of encoding design knowledge other than just relieving

an expert’s work of implementing code. First, code is trusted for correctness

17

as transformations are reasoned (or proven) to be correct. Second, automatic

generation often finds better implementations than a person develops since

optimization mistakes can be made but not discovered in testing. Lastly,

making design knowledge explicit allows it to be more easily taught to oth-

ers and requires the designer to justify decisions (which can lead to design

improvements). In this dissertation, we use transformations to explain how

to parallelize DLA code for distributed memory and shared memory, which

demonstrates the pedagogical utility of DxT.

1.7 Outline

In Chapter 2, we present DxT in a domain-agnostic way and then explain DLA-

specific DxT characteristics. In Chapter 3, we detail the structure of DLA code, we

describe the FLAME approach, and we discuss the common loop transformations

used for DLA. We present DxTer in Chapter 4. In Chapters 5 and 6, we demon-

strate how we automate code generation for distributed-memory and multithreaded

systems, respectively. Lastly, in Chapter 7, we summarize our results and discuss

future work.

18

Chapter 2

Design by Transformation

We introduce the basics of DxT: how to encode algorithms and domain knowledge.

We do this without DLA examples since DxT is not DLA-specific. We then explain

DxT constructs that are especially important for DLA and in the next chapter

explain DxT via DLA and DLA via DxT.

2.1 Representing Algorithms and Implementations

An algorithm is a step-by-step procedure to perform computation. Algorithms are

represented in DxT as dataflow graphs. A node represents computation; an edge

represents dataflow. Nodes come in two flavors: interfaces and primitives. Interfaces

have no implementation details. They represent functionality in terms of precon-

ditions and postconditions on the input/output edges1. Interfaces are architecture

agnostic since they do not map directly to code. Primitives have precondition and

postcondition definitions of functionality as well as implementation details. They

map directly to given architecture-specific code and have properties such as cost

1As informal descriptions of functionality are sufficient here, we omit preconditions and post-
conditions for readability throughout the dissertation.

19

when that code is executed. Computation time, memory usage, and power con-

sumption are common examples of cost. Figure 2.1 is an example graph of the

interfaces FOO and BAR. It represents functionality that needs to be implemented and

converted to code.
A

B

C

D
FOO

BAR

Figure 2.1: An example interface-only start graph.

Figure 2.2 is an implementation of the functionality of Figure 2.1. The

two nodes (FooFunc and BarFunc) are primitives that map one-to-one to code (e.g.,

D:=BarFunc(FooFunc(A,B),C)) 2.

A

B

C

D
FooFunc

BarFunc

Figure 2.2: An example final implementation of Figure 2.1.

2.2 Representing Design Knowledge

In order to map Figure 2.1 to Figure 2.2, we employ hardware-agnostic and hardware-

specific knowledge of the domain: knowledge about its operations and the interaction

between them.

2.2.1 Refinements

A refinement encodes knowledge about how to implement an interface as an algo-

rithm or primitive. It replaces an interface with a graph that satisfies the interface’s

2The code generated from primitives need not be this simple, but it often is in practice.

20

preconditions and postconditions3. The replacement graph can contain (lower-level)

interfaces and/or primitives to enable a hierarchy of functionality. Often, code is

implemented in layers of abstraction or complexity, which is represented by a refine-

ment hierarchy.

FOO

FooFunc

X

Y

Z

FooAndOtherFunc

X

Y

Z

X

Y
Z

BAR

BarFunc

X

Y

Z
X

Y Z

InvBaz

Baz

Figure 2.3: Refinement transformation

examples.

Figure 2.3 shows refinements for

the FOO and BAR interfaces. For each,

the left-hand side (LHS) of the bold ar-

row is an interface and the right-hand

side (RHS) is a graph of primitives

and/or interfaces. There are two re-

finements of FOO. The top-right repre-

sents a more efficient implementation,

built from the primitives FooFunc and

Baz. The bottom-right uses a node FooAndOtherFunc. The details of this node are

not important. Let us consider it a primitive that is very expensive on the partic-

ular machine we are targeting, so while it is better in some cases, we avoid it here.

(It might also be that the top refinement is only applicable when certain precondi-

tions are met, otherwise the bottom must be used.) BAR only has one refinement,

built from the primitives InvBaz and BarFunc. Figure 2.4 shows a refined version of

Figure 2.1 obtained by applying two refinements.

A

B

C

FooFunc Baz

BarFunc D

InvBaz

Figure 2.4: Intermediate graph that represents functional, but inefficient, code.

3In [27], requirements on how the graph can satisfy or strengthen the interface’s preconditions
and postconditions are described.

21

2.2.2 Optimizations

Baz InvBazX Y X Y

Figure 2.5: Optimization to remove unnecessary inversion operation.

While Figure 2.4 is a complete and correct implementation of Figure 2.1, it

is not efficient when one knows that Baz followed by InvBaz is bad (e.g., InvBaz acts

as an inverse of Baz so it is wasted computation). Optimizations encode knowledge

about the interaction between domain components such as inverses. They express

how a collection of nodes can be implemented in terms of another collection of

nodes (i.e., one graph in terms of another). This is a basic metaoperation, replacing

one algorithm (graph) with another. Figure 2.5 shows an optimization that encodes

knowledge about these inverse operations. Applying the transformation of Figure 2.5

to the graph of Figure 2.4, we derive the optimized implementation in Figure 2.2.

Baz InvBazX Y

X Y

BAZANDINVX Y

Figure 2.6: An alternate way to view an optimization.

Formally, the optimization of Figure 2.5 is represented by the relationship

in Figure 2.6. It shows an interface BAZANDINV that can be implemented either as

the LHS or RHS of the transformation in Figure 2.5. An optimization replaces the

inefficient refinement to interface BAZANDINV and then refines to the efficient imple-

mentation. For convenience, we just show the direct optimizing transformation,

like in Figure 2.5, when it is not useful to introduce Baz and InvBaz. This is a

meta-optimization of the knowledge base, or the set of all transformations, where

we recognize the structure of the domain and improve the encoded transformations

22

for performance and simplicity4.

2.2.3 Graphs or Code?

Graphs of all primitives represent code as the primitives map directly to code.

Graphs might encode additional information such as data type, as described in

Section 2.5.2, but they still represent an implementation in code.

Viewing code as graphs allows us to keep important metainformation, but

a graph and the code generated from it can be thought of as interchangeable in

many ways (when the graph contains only primitives). For example, they are largely

interchangeable when talking about what the implementation does, how it performs,

and the changes we can make to it. Further, changes made to one can be equivalently

made to the other.

2.3 Grammar

In this section, we explore the connection between the grammar of output code and

the grammar of graphs in DxT. It is convenient to output code using a DSL (or to

use an API as a DSL, as explained below) instead of code in a more general language

like C++.

2.3.1 DSLs

There are two common ways to implement DSLs. The first uses a formally-defined

grammar. A program written in the DSL can be parsed using that grammar, possi-

bly with a domain-specific compiler. SQL is an example DSL implemented in such a

4 There is another type of transformation called an extension [27], which is not needed for DLA
so we do not discuss them.

23

way [18]. The second approach uses domain-specific APIs implemented via libraries,

where a program in the DSL only calls those APIs. It is the second form of im-

plementation that is common for DLA, but having an explicit grammar is equally

viable.

Node types are derived from DSLs, which are an important part of DxT. At

the start of manual code development, one might use a DSL based in mathematics

(e.g., a DLA-specific notation used on paper) to describe functionality to be im-

plemented. When encoding this functionality in DxT, interface types are limited

to that DSL. The final code also uses a DSL API from which DxT primitive types

(i.e., the operation types that are primitives) are chosen. We describe in subsequent

chapters how the primitives we use belong to the Elemental and BLIS DSLs and

the interfaces come from FLAME and DLA APIs.

It is convenient to target code to DSLs in this way. Then, we only need to

support a limited number of node types, coming from the DSLs, instead of dealing

with general purpose languages and a larger variety of expressible code. This limits

the number of node types to represent and encode knowledge about and, therefore,

the number of transformations encoded to optimize and implement those nodes.

This is the same reason developers use DSLs when implementing code manually.

For example, one does not have to consider lower-order or less-important details

when using a well-designed DSL since those concerns are abstracted away. One only

considers design decisions with a relatively small number of operations.

Of course, this creates the classic problems associated with language design.

One must choose or design the right DSL, with the right abstractions and the right

code patterns. As with Elemental and BLIS APIs, though, the key is expertise and

effort. Well-designed DSLs aid developers and aid us in generating code automati-

24

cally.

We start with an algorithm given in an architecture-agnostic DSL. The goal

is to make architecture-specific implementation choices and map the graph to code

in an architecture-specific DSL. The various DSLs we work with form something of

a family, where the domain’s key programming constructs (e.g., loop control con-

structs for DLA) show up in each, possibly with architecture-specific implementation

details.

2.3.2 Exploring the Language

The knowledge base of a domain and the target DSL form a hypergraph grammar [9,

55]. We do not detail the formalities of the grammar here, but do discuss the way the

grammar is explored in DxTer. A sentence of the grammar is an implementation of

functionality in the domain. The grammar provides a way to “reword” the sentence,

implementing the same functionality in a different way.

Figure 2.7 shows the set of sentences for a DxT grammar G. This is the

language of the grammar, L(G). Within that set, there is a subset of sentences that

have some architecture-specific details. One starts with a sentence (an interface-only

program) P0. One applies transformations to “reword” the sentence, searching, for

example, for a high-performance implementation. In Figure 2.7, this is represented

by moving from one point (sentence) to another in the language. By applying some

refinements one reaches a sentence with some architecture-specific details, but there

are still some interfaces to be refined before we have a complete implementation.

By applying enough refinements, one reaches a sentence with no interfaces

that maps to code (P4 here). This innermost region of the language L(G) contains

all graphs that can map to code in the DSL for the target architecture. Notice that

25

Sentences of Grammar

Sentences Representing
Code

P0
P6

P4

Sentences with Some
Architecture-Specific

Details

P2

Figure 2.7: View of transformations exploring sentences of a grammar.

the grammar of this innermost region is not the same as the grammar for the DSL.

A DxT graph of a program has a different grammar than the code to which that

graph maps, though there is a strong relationship. For example, a DxT graph could

have more limitations on the structure of code or a single primitive on a graph could

map to multiple lines of DSL code.

Applying optimizations to P4, one arrives at different code, represented by

P6. Each point explored from P0 to P6 implements the functionality of P0 in different

ways with different architecture-specific details.

2.3.3 A Family of DSLs

Commonly, multiple DSLs are utilized to implement domain functionality across

architectures. One uses a DSL to encode domain algorithms. One also has a selection

of related DSLs to implement those algorithms for particular architectures, using

a different DSL for each target. Figure 2.8 visualizes such a relationship with two

architectures.

26

Sentences with Some
Architecture-Specific Details

Sentences
Representing
Architecture-

Agnostic
Programs

P0

Sentences for Architecture A

Sentences for Architecture B

Sentences with Some
Architecture-Specific Details

Figure 2.8: View of using multiple DSLs.

In this example, there are two architectures ARCHA and ARCHB. We have

DxT grammars GARCHA and GARCHB to explore implementations for these two ar-

chitectures, respectively. The two outer ovals of Figure 2.8 represent the DxT lan-

guages L(GARCHA) and L(GARCHB). Within each, one explores implementations to

target the two architectures. The center area (the intersection of the two languages)

contains sentences in the domain’s language that includes no architecture-specific

details. It contains algorithms without hardware-specific implementation details, so

they can target either architecture.

The DSLs DSLA and DSLB are used to implement domain functionality

for architectures ARCHA and ARCHB, respectively. L(GARCHA) and L(GARCHB)

include graphs that represent a subset of the programs expressible in DSLA and

DSLB, respectively5. The disjoint regions in Figure 2.8 represent algorithms with

some architecture-specific decisions in those DSLs. Since L(GARCHA), for exam-

ple, contains some graphs that do not represent DSL code (i.e., some graphs have

architecture-agnostic interfaces) and not allDSLA code is representable with GARCHA,

GARCHA is not the grammar for DSLA.

In Figure 2.8, we show how one starts with P0, a program to be implemented

for a specific architecture. One uses transformations from the architecture-agnostic,

5One typically does not need to express in DxT all programs that can be written in a DSL.

27

interface-only grammar to explore implementations in the center no matter the

architecture target. One also uses architecture-specific transformations to refine

graphs to explore implementations specifically for ARCHA or ARCHB, where those

transformations choose details for DSLA or DSLB, respectively.

Thus, with multiple DSLs, there are some grammar rules (transformations)

that are explored regardless of the target architecture. They are reused each time

a library of functionality is ported to a new machine and, we believe, should be en-

coded for posterity. One also uses DSL-specific rules to target a specific architecture.

Those are reused for the various functionality being implemented.

2.3.4 Context Sensitivity

It is possible to have conditions on transformations beyond just matching the LHS

in a graph. For example, the RHS of a refinement can have more constraining

preconditions than imposed by the interface of the LHS. Consider the SORT interface

with refinements shown in Figure 2.9. The top refinement is always valid. The

bottom refinement would do nothing (i.e., just pass through the input), but it is

only valid if the input X meets the condition that it is already sorted.

SORT

SortFunc

X Z

X Z

X Z

(only valid if X is already sorted)

Figure 2.9: Two refinements of SORT, one of which has a condition for application.

Another example: the production rules of Figure 2.6 might only be equivalent

if X meets certain conditions. If X is a list of data, Baz randomizes the input list’s

order, and InvBaz orders the data. Really, Baz and InvBaz (which is poorly named

28

in this case) are only inverses if X is sorted to begin with. Otherwise, the sorted

data that comes out of InvBaz will not be the same as the unsorted data that goes

into Baz. This condition on the applicability of the transformation is encoded with

DxT.

Thus, the graph grammar of transformations can be context sensitive, and, in

fact, DLA transformations are often context sensitive. Conditions such as problem

size are common, as described in Chapter 3.

2.4 Connection to Model Driven Engineering

Model Driven Engineering (MDE) is an inspiration for our work [25, 36]. We fol-

low the idea of starting with a platform-independent model (PIM) and refining to a

platform-specific model (PSM) that targets a particular (code) artifact on a specific

architecture. In DLA and other domains, refinements are insufficient to derive effi-

cient, high-performance implementations. One must break through the boundaries

around interfaces to optimize refinement-exposed components.

Optimizing transformations introduce some difficulty in the derivation pro-

cess. Since they form a relationship between the refinements of different interfaces,

one cannot simply choose the locally-best refinement (i.e., the refinement of an

interface that is best) as in a dynamic programming approach. It is possible that

suboptimal refinements of two interfaces allow for a optimization between the graphs

exposed by refinements (called cross-boundary interfaces) that leads to the globally

optimal design.

Therefore, with DxT, there is a search process to find the best implemen-

tation. In fact, there is a combinatorial search space of graphs derived from the

starting interface-only graph. As described in Section 2.3, each point in the search

29

space is a valid implementation with varying amounts of implementation decisions

made. The path from one point to another comes from the transformations that

generate one implementation from the other. In Chapter 4, we discuss the way

DxTer enumerates this space and searches for a “best” implementation.

2.5 DLA Specifics

For DLA, we use directed, acyclic multigraphs (DAGs)6. Each node can have mul-

tiple output values, so edge annotations specify which output value flows along the

edge.

2.5.1 Loops in an Acyclic Graph

Loops are an essential algorithmic structure in DLA code7. In DxT, a loop is

represented by “boxing off” in the graph. The subgraph within a loop structure

represents loop-body operations. The graph of Figure 2.10 scales a vector v by π. It

does so by iterating over the elements of v and performing scalar multiplication on

each. The outer box represents a loop and the ScalarMult is a loop-body operation.

π

v

Scalar
Mult v'

π

vi

v'i

Figure 2.10: A graph with a loop, two input tunnels, and one output tunnel.

Tunnels on the edge of loops serve as a port between code outside of the loop

and the loop-body code within. Tunnels can represent a pass-through such that the

entire input is passed through to the loop body via its outgoing edges, as shown in

6 In other domains [53], cycles can exist, but they do not exist in DLA.
7 Our loop representation is based heavily on that of LabVIEW.

30

Figure 2.10. The same data is passed in on each iteration of the loop. In this case,

the same value of π is used in each iteration, so it is passed through the tunnel.

Tunnels can also partition their input. These are called split tunnels. As

described in Chapter 3, in DLA it is common to take submatrices of an input matrix

in each loop iteration. Tunnels represent partitioning by passing submatrices to the

loop body on outgoing edges. The boundaries and sizes of the submatrices change

in each iteration of the loop, so different portions of the matrix get past in on each

iteration. In this case, a different element of v is passed in on each iteration. We

label that value in the graph as vi for clarity.

Combine tunnels merge submatrices into a whole matrix on the output side

of a loop. In this case, v′i from each iteration is combined to form v′. Combine

and split tunnels often come in pairs and the inputs to the combine tunnel always

originally come from the matching split (though they may have passed through and

been changed by loop-body operations). Thus, v has the same length as v′. We

often omit the combine tunnel of a loop input that is read only since the output

from the loop is the same as the input8.

Split and combine tunnels have annotations to specify the direction of par-

titioning, blocksize, and so forth. For example, the split tunnel for v could iterate

forwards or backwards through the vector. Instead of indexing a single scalar, it

could have indexed a subvector with a fixed length or a length that depends on the

iteration number. Thus, split tunnels look very similar to a data iterator construct.

One split tunnel on each loop is identified as the loop’s control tunnel, which

determines the number of loop iterations. The split tunnel for v is the control in this

example, so it prescribes that the number of loop iterations is equal to the length

8In this case, any code that should take that data as input should be connected to the original
producer of the data (i.e., the input to the loop) instead of the loop’s output of the same data.

31

of the vector v. Throughout this dissertation, we generally focus on the loop-body

subgraphs and do not visualize the loop itself, but the loop and its tunnels must be

represented.

2.5.2 Type Information

As it is necessary to have runtime or compile-time type checking for code, it is also

necessary to maintain and check type information on DxT graphs. For DLA, this

could include edge’s matrix sizes (across all iterations of loops), data type, struc-

ture (e.g., upper/lower triangular), and data distribution. For example, a Cholesky

factorization node outputs a matrix that is either lower or upper triangular as a

feature of the node type (lower or upper triangle Cholesky factor). Matrix sizes are

important to keep track of, for example, to validate node preconditions are met.

Chapter 4 discusses this in greater detail.

2.5.3 Correct by Construction

A starting interface-only graph for DLA is generally derived to be correct using

the FLAME approach [60]. Even when this is not the case, domain experts often

have great trust in the algorithms they develop to solve a task. We do not want

to apply transformations that invalidate algorithm correctness, generating incorrect

code from a correct algorithm. Therefore, we only use transformations that maintain

correctness. How do we know transformations are correct?

First, it is important to understand how one trusts implementations of

FLAME-derived algorithms. In Chapter 3, we discuss the structure of DLA algo-

rithms and code. The key is that there is a finite set of commonly used operations

on top of which algorithms are built and in terms of which code is implemented. As

32

we will see, the operations have a specific number of valid parameter combinations

(ignoring different matrix/data values). It is standard to test the operations’ vari-

ous parameter combinations on a set of random matrices or matrices with carefully

chosen structure to have great trust in the components. This can be thought of

as unit testing for DLA. More complex algorithms are built on top of those com-

ponents, using them in various ways. Those algorithms are similarly unit tested,

which increases trust in the lower components (if they did not work, the higher-level

algorithms would not work either). This is the accepted way to “trust” DLA code.

For now, we take a similar tactic for transformations. Some are obviously

true (e.g., removing operations defined to be inverses of each other as in Figure 2.5).

For others, we can reason about transformations to trust their correctness (as is

often the case with parallelizing refinements).

In either case, most transformations get reused often in DxTer, and the code

they yield gets tested for correctness. Errors in transformations are found quickly

because errors in the code are found quickly and tracked back to the transformations

that produced them. When they are fixed, all of the code derived from the corrected

transformation is fixed.

Additionally, type checking is performed throughout DxTer. Many nodes

have requirements on input data sizes, for example making sure that input matrix

dimensions match up with each other. Loops ensure all partitioning tunnels have

the same number of iterations as the control. Type checking like this often raises

flags if a transformation is incorrect due to errors such as switched inputs.

Through code testing and type checking, we gain a great trust in the trans-

formations in DxTer, which leads to a great trust in the correctness of output code.

Eventually, we want to prove the correctness of transformations formally by proving

33

that the preconditions and postconditions of the RHS satisfy those of the LHS. In

some cases, this requires a logic notation that we do not currently have (e.g., of data

movement that results from communication components). This will be a future area

of study.

2.6 Summary

A node on a DxT graph represents an operation. The operation has inputs and

outputs, which are represented as incoming and outgoing edges on the graph. The

operation’s functionality is expressed in terms of preconditions and postconditions

that may include type specifications (e.g., input data sizes). Nodes have two flavors:

1) interfaces, which represent functionality but do not have a specified implementa-

tion, or 2) primitives, which additionally include implementation details (e.g., code

and execution time estimates).

There are two types of graph transformations needed for DLA. Refinements

replace an interface with an implementation – a graph that uses primitives or lower-

level interfaces and maintains the same precondition and postcondition specifica-

tion of functionality. An optimization replaces a subgraph with another subgraph

that implements the same functionality (has the same precondition and postcon-

dition specification) but does so in a different way. Therefore, we can refine with

architecture-specific implementations and optimize to implement functionality in

better-performing ways.

Loops are an essential part of DLA code, so they must be represented in

DxT DAGs. Figure 2.11 shows an example that arises when implementing Gemm

(C := αAB + βC). In Figure 2.11 (left), matrices A, B, and C are input to a loop,

represented by the outer box. The loop body is represented inside this box. The

34

A

B

C

Gemm

A1
B

C'C1

+= * B
C1 A1

C0

C2

A0

A2

Figure 2.11: Example of loop (left) and computation of each iteration (right).

inner box, labeled Gemm, is executed on each iteration of the loop.

The smaller boxes on the left side of the loop box are loop tunnels. On each

iteration of the loop, these tunnels pass submatrices into the loop body. The labels

on edges coming out of tunnels specify the submatrix that flows on the edge, which

Figure 2.11 (right) visualizes, in red. They change in each iteration. The tunnels

also encode, for example, choices of partitioning direction and blocksizes, but these

details are not shown in the visual representation.

35

Chapter 3

Domain Structure

While DxT is a general approach to software engineering, we target DLA here.

Many of the lessons learned can be applied when using DxT in other domains.

We now outline how the DLA software stack is developed by layering algorithms,

reusing the same set of algorithmic knowledge repeatedly. After decades of polishing

DLA software abstractions [7, 17, 50, 61], we have well-layered and understood code

expressible in succinct and high-performance DSLs. We explain how this enables us

to encode design knowledge with DxT and in later chapters demonstrate how this

enables DxTer to explore implementation options.

3.1 Variants and Layering

The FLAME methodology [32, 33, 60] provides a way to derive a family of algo-

rithmic variants for a DLA operation in a mechanical or automatic way [12, 24].

Figures 3.1- 3.3 show three variants for Gemm derived via this approach. DLA algo-

rithms are typically loop based. In blocked algorithms, submatrices are exposed in

each iteration of the loop, and loop-body operations use and update some of those

36

Algorithm: [C] := Gemm blk var1(A,B,C)

Partition A→
(
AT

AB

)
, C →

(
CT

CB

) where
AT has 0 rows,
CT has 0 rows

while m(AT) < m(A) do
Repartition

(
AT

AB

)
→

A0

A1

A2

 ,

(
CT

CB

)
→

 C0

C1

C2

where A1 has b rows, C1 has b rows

C1 := A1B + C1

Continue with(
AT

AB

)
←

A0

A1

A2

 ,

(
CT

CB

)
←

 C0

C1

C2

endwhile

+= * B
C1 A1

C0

C2

A0

A2

Figure 3.1: Variant 1 of Gemm to compute C := AB+C (Normal, Normal) or Gemm NN

with pictoral representation of how Gemm is broken down into small Gemm operations.

submatrices. By using blocks of submatrices, one can engineer code to take advan-

tage of caches (keeping blocks in cache to reduce read / write time).x A blocksize,

labeled b in these algorithms, is chosen to control the size of submatrices. Unblocked

algorithms are similar but work on vectors and scalars. Unblocked algorithms can

be thought of as blocked algorithms with the blocksize set to one (b = 1). Upon

loop completion, the algorithm is finished and the final result is computed.

Algorithms generally have at least one update statement that is recursive:

the operation performed by the algorithm is also performed on submatrices (thus, it

has smaller input sizes). Each loop-body operation in the algorithms of Figures 3.1-

3.3, for example, is a Gemm operation itself. Each algorithm reduces the size of

37

Algorithm: [C] := Gemm blk var2(A,B,C)

Partition A→
(
AL AR

)
, B →

(
BT

BB

) where
AL has 0 columns,
BT has 0 rows

while n(AL) < n(A) do
Repartition

(
AL AR

)
→
(
A0 A1 A2

)
,

(
BT

BB

)
→

B0

B1

B2

where A1 has b columns, B1 has b rows

C := A1B1 + C

Continue with

(
AL AR

)
←
(
A0 A1 A2

)
,

(
BT

BB

)
←

B0

B1

B2

endwhile

+= *A1C
B1

A0 A2

B0

B2

Figure 3.2: Variant 2 of Gemm to compute C := AB+C (Normal, Normal) or Gemm NN

with pictoral representation of how Gemm is broken down into small Gemm operations.

inputs in one dimension (m, k, or n) to the blocksize, b. The algorithmic variant’s

partitioning and blocksize determine the shape and size of the operands in recursive

calls.

When implementing a DLA operation, one chooses algorithmic variants to

reduce the problem size, where each variant does so along one or two dimensions.

This is done to reduce operand sizes to the point that they can be kept in main

memory, levels of cache, or registers, for example, to attain high performance.

The algorithm in Figure 3.1 partitions in the m dimension, so the Gemm up-

date statement has an m-size of b. Another variant is used to implement that

recursive Gemm by partitioning the problem in a different dimension, thus layering

38

Algorithm: [C] := Gemm blk var3(A,B,C)

Partition B →
(
BL BR

)
, C →

(
CL CR

) where
BL has 0 columns,
CL has 0 columns

while n(BL) < n(B) do
Repartition(
BL BR

)
→
(
B0 B1 B2

)
,
(
CL CR

)
→
(
C0 C1 C2

)
where B1 has b columns, C1 has b columns

C1 := AB1 + C1

Continue with(
BL BR

)
←
(
B0 B1 B2

)
,
(
CL CR

)
←
(
C0 C1 C2

)
endwhile

+= *C1 A B1B0 B2C0 C2

Figure 3.3: Variant 3 of Gemm to compute C := AB+C (Normal, Normal) or Gemm NN

with pictoral representation of how Gemm is broken down into small Gemm operations.

algorithms. A developer uses deep knowledge of the target architecture to choose

which algorithmic variants to layer. He does so to reduce communication between

caches, processors, and so forth, which is discussed in the following chapters. With

enough layers, the innermost subproblem can be implemented by a primitive, per-

haps calling a library function or scalar multiply and add.

To give perspective: in Chapter 6, we explain how algorithms are layered

such that data is sized to remain in each layer of cache (one algorithm layer for each

layer of cache). For Gemm, there are often six layers of the three algorithms [62]! The

smallest subproblem is implemented by bringing data into registers and calling scalar

multiply and add. Loop transformations are applied for the inner layers, but these

basic algorithms are the starting point. For distributed memory, Gemm is implemented

with only one of those algorithms, and then a sequential library’s Gemm function is

39

called (which itself may have six layers) [31]. With all of this knowledge reuse

when implementing libraries manually, we want to encode the basic algorithms and

target-specific implementation details once and reuse them automatically instead.

3.2 DLA Operations

There is a small set of commonly used update statements that show up repeat-

edly in more complex DLA algorithms. This set has been made into the de-facto

standard called the BLAS. The matrix-matrix subset of the BLAS, found in blocked

algorithms, are the level-3 BLAS (BLAS3), listed in Figure 3.41. Each of these oper-

ations has multiple versions with small differences (e.g., transposition of operands);

a count of the versions is shown in Figure 3.4.

Gemm is the most commonly used BLAS3 operation because one can attain

high performance from it and then build other operations to attain high performance

with it [38]. Recall the algorithm of Figure 1.1 for trmm. The loop-body operations

are annotated with their BLAS3 names in parenthesis. As mentioned, recursive calls

are common. Further, a call to Gemm is typical for most BLAS3 algorithms [38]. Since

architecture-specific Gemm implementation knowledge must be reused repeatedly to

develop all BLAS3 operations, DxT program generation can help with automated

design knowledge reuse.

DLA or higher-level scientific algorithms are implemented in terms of the

standard BLAS interfaces so code is portable. Code is linked to a BLAS library

implemented for a particular architecture (e.g., for a specific model of an Intel

single-core processor). Then, it can be easily retargeted to a different architecture

by relinking with a different BLAS library (e.g., for a multicore AMD processor).

1Vector-vector BLAS operations are called level-1 and matrix-vector are called level-2.

40

BLAS3
of Sample

Versions Operation

Gemm 4 C := αAB + βC

Hemm 4 C := αAB + βC

Her2k 4 C := α(ABH +BAH)βC

Herk 4 C := αAAH + βC

Symm 4 C := αAB + βC

Syr2k 4 C := α(ABT +BAT)βC

Syrk 4 C := αAAT + βC

Trmm 8 B := αBL

Trsm 8 B := αA−1B

Figure 3.4: BLAS3 operations and the number of versions of each.

Thus, the higher-level code does not need to change (much or at all) to retarget

architectures and achieve good performance.

The benefits of this approach include 1) portability, 2) a limited amount

of functionality that needs to be implemented for portability (see Figure 3.4), 3)

simplicity of algorithm code using a limited number of operations, and 4) the BLAS3

can be implemented with high performance, so algorithms coded in terms of them

can also attain high performance.

The BLAS standard is implemented in many libraries. For example, Intel’s

MKL [3] is a closed-source library purchased for high-performance BLAS imple-

mentations on Intel and other x86 processors. nVIDIA’s closed-source CUBLAS [4]

provides the BLAS for nVIDIA GPUs. An open-source and free BLAS library is

provided at [5], often referred to as the “Netlib BLAS” or “reference implementa-

tion.” It does not have specialized code per processor, so its performance is generally

lacking and is, therefore, used as a reference as a correct implementation. There are

many more BLAS libraries.

The newest member is BLIS [62, 65], an open-source framework for devel-

oping BLAS libraries that refactored the techniques for implementing the BLAS

41

pioneered by Goto [28, 29] While other open-source BLAS libraries are implemented

with little concern for code readability and maintenance, these were fundamental

design goals for BLIS while still achieving high performance. BLIS enables one to

implement all BLAS functionality quickly by requiring only a small number of func-

tions to be written for a target architecture. Previously, when new architectures

came online, one had to either 1) purchase a vendor-implemented BLAS library

(which is not guaranteed to exist or perform well), 2) live with poor performance

provided by the Netlib BLAS, 3) wait for somebody else to implement the BLAS

in open source, 4) implement all BLAS functionality from scratch, or 5) become an

expert with an open-source BLAS library and shoehorn it to fit the new architec-

ture. The first three options are the most commonly used. As new architectures

are frequently released, users are often left with a waiting period for a new BLAS

library or left to accept inferior performance. Instead, one learns a small amount

about BLIS, leaves almost all of its code untouched, and plugs in a few, relatively

short pieces of architecture-specific code.

LAPACK [7] is a library that standardized higher-level DLA functionality

like matrix factorization schemes (e.g., Cholesky), eigenvalue decomposition, and

solvers for special forms of equations. LAPACK is built on BLAS operations to

attain performance and portability on general-purpose processors. When moving

LAPACK to a new processor, a tuned, architecture-specific BLAS library is linked

and high performance is generally attained. LAPACK itself is built for sequential

processors, but just like the BLAS there are libraries that implement LAPACK-

level functionality on all architecture classes (e.g., ScaLAPACK [14] for distributed

memory).

For LAPACK-level and BLAS-level operations, FLAME-derived algorithms

42

are implemented in various hardware-specific libraries. BLIS provides BLAS func-

tionality, targeting sequential architectures (and we generate multithreaded BLAS

functionality using BLIS as a DSL in Chapter 6). libflame [61] provides LAPACK-

level functionality for sequential CPU, multithreaded CPU, and multiGPU archi-

tectures (and links to a BLAS library for CPUs or GPUs). Lastly, Elemental [50]

provides BLAS and LAPACK-level functionality for distributed-memory (and links

to sequential BLAS and LAPACK libraries for on-node functionality).

3.3 FLAME Algorithms in DxT

FLAME-derived algorithms are mathematical specifications without architecture-

specific implementation details, so they can be used on any hardware. Loop-body

operations match the mathematical functions implemented in the BLAS and LA-

PACK libraries in terms of the computation to be performed, but they do not

specify how to perform it. We can think of the BLAS and LAPACK standards as

DLA DSLs for describing algorithms (along with FLAME-like loop structures like

matrix partitioning).

The main steps to implement an operation in high-performance code are

first to choose which algorithmic variant to implement from the family of options,

then to implement the loop-body operations in architecture-specific code, and finally

to optimize the combination of loop-body code. One might just call the relevant

architecture-specific BLAS or LAPACK library for each loop-body operation, but

this generally hides considerable inefficiencies caused by data movement (demon-

strated in Chapters 5 and 6) that can be optimized away by exposing lower-level

implementation decisions.

43

3.3.1 Layer-Templatized Refinements

Thinking of the operations of the BLAS and LAPACK standards and loop struc-

tures as a DSL, we want to represent the DSL code in DxT. We define nodes by

the computation, communication or movement of data, or partitioning/looping they

perform. Nodes have preconditions on input data like conformality of input matrix

sizes or matrix structure required for the computation. Nodes are labeled in our

graphs by their BLAS/LAPACK names, but some of the additional type informa-

tion/conditions are also encoded in DxTer, described in Chapter 4.

Each node type is annotated with the software layer it targets. For example,

Gemm is found in a distributed-memory library, a sequential BLAS library, and at

multiple layers within each, so it is tagged with one of these layers.

We use the following convention: each layer of software has a layer number.

Layer 0 is always the most abstract layer, where the algorithm has no implemen-

tation details. From there, layer numbering is architecture-specific. When dealing

with distributed-memory software, primitives belong to layer 2 (described in Chap-

ter 5) and map to sequential BLAS library function calls. With multithreading,

primitives belong to layer 3 or 4 (Chapter 6). In later chapters, we omit layer tags

as they are understood within a context or they are expressed via the names of

nodes in the DAG.

We encode each FLAME-derived algorithmic variant as a refinement. It is

templatized on the left-hand side (LHS) node’s layer and the right-hand side (RHS)

nodes are labeled with a larger layer. As node layers increase with each refinement,

refinement recursion is guaranteed to terminate. Gemm is refined in terms of a lower

software layer / higher layer number Gemm and there is a finite and small number of

legal layers. Refinement templates are instantiated to suit the particular architecture

44

layer being targeted.

There is another way of accomplishing the same goal of limiting recursion.

Each layer of recursion decreases the operands’ sizes, so the LHS of each refinement

could have constraints based on the operand sizes. Refinements partition along

particular dimensions, so they are only applicable if the length of those dimensions

is greater than the blocksize used by the refinement.

Doing so effectively limits recursion, however it is useful to talk explicitly

about layers of algorithms. It is often the case (as shown in Chapter 6) that an expert

knows which algorithmic variant to use at a particular layer. Having refinements

that are layer-templatized allows one to encode this knowledge by only instantiating

with desired layers.

3.3.2 An Abstract Layering Example

Specific layering and concrete examples are presented in future chapters. Here,

we derive a hypothetical software stack with three layers. From top to bottom –

outermost to innermost – they are called LAYER0, LAYER1, and LAYER2. Any LAYER2

node is a primitive that maps to a given implementation (i.e., a function call).

Some templatized refinements are shown in Figure 3.5 for Trmm and Gemm. The

refinements (a), (b), and (c) encode algorithmic variants 1, 2, and 3 (Figures 3.1-

3.3) of Gemm, respectively, and (d) shows the variant of Trmm of Figure 1.1. Σ, µ, and

Ω are layer template parameters. While partitioning directions and blocksizes are

encoded in DxTer, we omit those details here.

Consider a LAYER0 Gemm operation by itself, shown in Figure 3.6 (a). This

graph represents that we want to implement Gemm. We need to apply refinements to

target specific hardware (in this case, we are deriving the high-performance imple-

45

GemmNN
Layer:∑

A
B
C

C'

A

B

C

GemmNN
Layer:Ω

A1
B1

C'C

GemmNN
Layer:∑

A
B
C

C'

A

B

C

GemmNN
Layer:Ω

A
B1

C'C1

GemmNN
Layer:∑

A
B
C

C'

A

B

C

GemmNN
Layer:Ω

A1
B

C'C1

TrmmRLN
Layer:∑

L

B
B'

L

B
GemmNN
Layer:Ω

L10

B0

B'

B1

TrmmRLN
Layer:µ

L11

B1

(b)

(c)

(a)

(d)

+= *

+= *

+= *

B
C1 A1

A1

C1

C
B1

A B1

C0

C2

A0

A2

A0 A2

B0

B2

B0 B2C0 C2

= *
L11 B1

B0

B2

B'1

B'0

B'2

Figure 3.5: Four refinements templatized on LHS and RHS node layers where Σ, µ,
and Ω are template parameters chosen for each refinement.

GemmNN
Layer0

A
B
C

C'
A

B

C

GemmNN
Layer1

A1
B1

C'C

(b)(a)

+= *

(c)

C A1
B1

Figure 3.6: First refinement of (a) LAYER0 Gemm operation to (b). (c) shows the
partitioning of this loop, with the current iteration shown in red.

mentation used in BLIS and described in Chapter 6). In this example, an expert

knows Gemm is best refined using the transformation of Figure 3.5 (b) with Σ :=

LAYER0 and Ω := LAYER1. The result is shown in Figure 3.6 (b).

Then, the remaining LAYER1 Gemm operation is refined using the transforma-

tion of Figure 3.5 (c) with Σ := LAYER1 and Ω := LAYER2. The final design is the

graph of Figure 3.7 (a). This graph only contains primitives, which map directly

to DSL code. This is the high-performance implementation found in BLIS, where

46

A

B

C

A1

B1 C'

C

GemmNN
Layer2

A11
B1

C1

(a)

+= *

(b)

C1 A11
B1

Figure 3.7: (a) Refinement of graph in Figure 3.6 (b) to a graph of only the primitive
LAYER2 Gemm. (e) shows the iterations of the inner loop over the outer loop (red
portion) in Figure 3.6 (c), with the current iteration shown in black.

the submatrices of A and B are targeted to stay in particular levels of cache, as we

describe in Chapter 6.

The nested loops form the layers of the software. Figure 3.6 (c) shows the

iterations of the outer loop of Figure 3.7 (a) or of the sole loop in Figure 3.6 (b) with

the current iteration in red. Figure 3.7 (b) overlays the iterations of the inner loop

over the iterations of the outer loop with the current iteration in black. It is this

small operation (in black) that the primitive LAYER2 GemmNN operations implements

(called for each iteration).

If we start with a LAYER0 Trmm operation (shown in Figure 3.8 (a)), we can

apply the refinement of Figure 3.5 (d) with template parameters Σ := LAYER0, Ω :=

LAYER1, and µ := LAYER2. Figure 3.8 (b) shows the resulting graph. Then, we can

reuse the Gemm refinement of Figure 3.5 (c) with Σ := LAYER1 and Ω := LAYER2.

The resulting graph (Figure 3.8 (c)) contains two primitive/LAYER2 nodes (Gemm and

Trmm), so it maps directly to code.

For these two implementations, we needed three instantiations of the refine-

ments of Figure 3.5, one of which was used to implement both Gemm and Trmm. When

implementing all of the BLAS3 operations, Gemm-related transformations are reused

repeatedly (a rote reapplication of knowledge). In the following chapters, we demon-

strate how this structure enables automatic code generation, including adding layers

and retargeting layers of design knowledge to a new architecture.

47

TrmmRLN
Layer0

L

B
B' L

B
GemmNN
Layer1

L10

B0

B'

B1

TrmmRLN
Layer2

L11

B1

L

B

L10

B0

B'

B1

TrmmRLN
Layer2

L11

B1
GemmNN
Layer2

B11
L10

B01

(b)

(c)

(a)

Figure 3.8: Derivation of LAYER0 Trmm operation to a graph of only LAYER2 primitives.

3.4 Loop Transformations

Loop transformations are essential to achieving high performance in DLA code.

Loop fission, strip mining, and unrolling are commonly applied at low layers of

code [62]. Those layers, though, are not discussed in this dissertation and are taken

as primitives in the code output from DxTer (for now). Loop fusion, on the other

hand, is a transformation commonly applied at high levels of the stack. With loop

fusion, experts or DxTer can better optimize communication for distributed memory

(Chapter 5) and data copying for sequential code (Chapter 6).

Compilers generally cannot perform loop fusion and optimizations on

Elemental- or BLIS-level code. Code becomes too obfuscated by domain abstrac-

tions for compilers to determine loop dependencies and read/write patterns, so

domain-agnostic compiler analysis is ineffective on DSL abstractions. With DxTer,

high-level knowledge of loops and node computation can be encoded. For FLAME-

derived loops (e.g., those shown in Figure 3.5), we know the way submatrices are

read and written. Therefore, along with encoding the loops themselves, we annotate

loops with higher-level knowledge so DxTer can perform loop fusion.

48

In [41, 42], we describe the loop/algorithm knowledge needed and give proofs

for the fusion criteria DxTer uses. Here, we only present the basics used in DxTer

without proof. FLAME algorithms are derived starting with a statement about the

result of the operation’s computation, the Partitioned Matrix Expression (PME) [32,

33, 42, 60]. A loop invariant is derived from the PME for each algorithmic variant;

it expresses what portion of the final computation (described by the PME) is com-

pleted at the beginning and end of each loop iteration. Both of these are properties

about each quadrant of the input and output matrices.

For each output matrix, the loop invariant tells us if each quadrant is not

updated (unchanged), partially updated (changed, but not holding the final result),

or fully updated (holding the final result); each quadrant is exactly one of these.

Further, by inspecting the loop-body operations, we can say which quadrants are

read. Lastly, for each matrix we know how the matrices are accessed because loop

tunnels store the direction in which matrices are partitioned. This information is

sufficient to determine if two loops can be fused.

For example with two loops, if a particular quadrant of the first loop’s output

is not fully updated but the second loop has an operation that reads it, fusion is

not legal. Why? Because the second loop’s update operations would read non-final

results. Also, if the second loop updates a quadrant that the first loop reads, fusion

is not legal. Otherwise, the first loop’s operation would be computing with results

changed by the second loop’s instead of the results only obtained by the first loop

(as intended).

Knowledge about update status is encoded on architecture-agnostic loops

found in refinements, so fusion can be applied at any level of the software stack

automatically when those refinements are employed. This is a great example of

49

knowledge reuse. Previously, loop fusion was performed by different people (or

the same person repeatedly) for libraries targeting different architectures, so they

manually do it for each level of the stack. Often, this sort of optimization is forgotten

or missed because of its complexity. DxTer provides loop fusion for free.

In addition to the above, we also tag loops if their iterations are independent,

which is determined by the PME and loop invariant. When they are independent,

the iterations can be executed in parallel across threads in a multithreaded system.

This is described in detail in Chapter 6.

3.5 Going Lower

In this work, we generate code for the high-level Elemental and BLIS DSLs. In

both cases, when an expert develops code, he accepts a certain layer as the lowest

to consider. Primitives are internally implemented in some way that he largely

ignores. He generally only considers their cost and preconditions and postconditions,

the same information used with DxT. With this information, he makes decisions on

how to implement higher level functionality. One might ask how a developer decides

where to “draw the line” of consideration.

3.5.1 Why Not Go Lower?

Why are the primitives accepted as the lowest layer of interest? Why not break

through and go lower? In some cases, there would be minimal benefit to expose

lower level details. Low-level operations might have multiple implementations (re-

finements) internally. They dispatch to the best choice at runtime based, for exam-

ple, on problem size. The overhead of such runtime decisions is minimal. We expose

refinements at higher levels in the hope of optimizing operations between interface

50

boundaries. For some of the lower level operations, there is no such opportunity, so

we do not need to explore and expose their refinements.

In the cases where there is the possibility of cross-interface-boundary opti-

mizations, the performance gain is a much lower-order term. If it were not, after

all, an expert would not have been satisfied with the abstraction layers of the DSL.

Therefore, the benefit of breaking through is not (currently) worth the effort to

encode lower level knowledge.

3.5.2 Problems and Possible Solutions When Breaking Through

Perhaps optimizing some lower-order primitives will be worthwhile in the future.

Further, it might simply be useful to generate lower level code to automate more

of an experts’ work. Below are some reasons why we have not done this (yet) and

some ideas for the future.

First, cost functions are less reliable for lower-order terms. For example, the

behavior of the cache gets more difficult to predict and more important to consider

when dealing with choices of read and write strides in data movement. The CPU is

difficult to predict when performing out-of-order execution, prefetching, and so forth.

This means that it would likely be necessary to compile and run code to determine

the performance (cost) of candidate implementations. This is not possible with

the high-level operations with which we currently deal because of long runtimes.

With lower-level operations, though, runtimes are shorter so this is viable albeit a

slight departure from our current approach. When experts cannot predict cost with

analytic estimates, they may also have to run code and time it. It would still be

useful for the developer to have a tool like DxTer to direct him to an implementation.

It would generate code instead of requiring an expert to do it. Either a tool like

51

DxTer could be all-in-one (generating the code and testing it) or it could be an aid

to the expert in generating code, which an expert would then time and from which

he would then learn. The latter case is what happened with multithreaded BLIS

(Chapter 6).

Second, the combinatorial search space of implementations gets much larger

when breaking through boundaries. A way around this is to employ phased gen-

eration (like DRACO [49]) to remove bad designs between phases. DxTer could

perform the search just as it does now with existing interface boundaries, then the

top n-best implementations would be kept and the rest would be thrown away.

Next, DxTer would break through (refine) to lower levels with only those n imple-

mentations. Thus, the search space would not be the full combinatorial size. Also,

DxTer could partition the entire design graph into disjoint subgraphs (cliques) using

some heuristic and only explore optimizations within those subgraphs instead of the

fully-connected possibilities.

Third, there are existing solutions to generate code for some of the common

DLA primitives, described in Section 1.5. DxTer could identify regions of code that

might be ripe for optimization. It could then use a dynamic programming approach,

outsourcing the optimization of a graph of operations currently considered primitives

to other generative approaches (e.g., Spiral [52]). The returned programs would be

optimized code and, hopefully, cost estimates would be included that DxTer would

use to search. This is a hybrid approach with cost models for high-level decisions

and empirical tests for lower-layer decisions.

It is important to note that there would be many opportunities for reused

knowledge if DxTer is ever applied to lower level DLA kernels. The tricks experts

use are often transformations on the same algorithms as derived with FLAME. For

52

example experts perform fission, unrolling, strip mining, and so forth to the Gemm

algorithms shown above to get the low-level computation kernels used as primitives

in Chapter 6.

3.6 Summary

We demonstrated how FLAME algorithms are represented in DxT. Since these al-

gorithms are architecture agnostic, we templatize them on a layer of the hardware

stack. A layer is a mapping from a higher-level of abstraction to a lower-level that ex-

poses some implementation detail (be it software or hardware). Layer instantiation

parameters could represent, for example, a distributed-memory layer or a shared-

memory layer. They could also represent a particular layer of code; for example,

a chosen layer instantiation could target an encoded algorithm to a specific nested

loop. Thus, we can target encoded domain knowledge to a particular hardware

architecture.

53

Chapter 4

DxTer

We present DxTer [1], a prototype developed to explore some of the ideas behind

DxT: encoding design knowledge as transformations, searching a space of imple-

mentation options, rank ordering implementations by cost estimates, and generating

programs automatically. DxTer was designed to be a prototype for use by a DxT

expert, so it is limited in usability features. Still, it exposes many ideas that could

be used in a production-quality version.

4.1 Encoding Knowledge

DxTer is an object-oriented, C++ program with OpenMP directives for basic mul-

tithreaded parallelism within for loops. One starts DxTer with a knowledge base

(the set of transformations) and a single graph, representing functionality to be im-

plemented. DxTer generates a search space of implementations and outputs a single

“best” piece of code based on a particular problem size1.

1One can imagine a loop around this process to generate many implementations for a range of
problem sizes. At program runtime, when the problem size is known, the “best” code for that size
would be executed.

54

Figure 4.1 compares a traditional compiler to DxTer. A traditional com-

piler has hardware knowledge and optimizations encoded internally (they are not

extensible by software engineers). In some cases, domain-specific transformations

are also encoded internally. A compiler takes source code is input and outputs an

executable. With DxTer, hardware knowledge (architecture-specific transformations

and cost functions) and domain-specific transformations are part of the inputs. An

algorithm to be implemented, represented as a graph, is input, and DSL code is

output. This code is then input to a traditional compiler.

With a system like DxTer, one encodes domain algorithms in a knowledge

base, which is reused for each hardware architecture. A developer would also learn

about new hardware targets and encode implementation options for each, adding

them to the hardware-specific knowledge base. DxTer would be run on each desired

algorithm’s graph for each target hardware architecture. As described in Chapter 6,

DxTer can even be run each time new implementation ideas are developed and

encoded to enable a developer to explore software design options more easily and

quickly.

In this section, we discuss DxTer’s representation of graphs and transforma-

tions. In the next section, we discuss the search process.

4.1.1 Nodes and Graphs

DAGs are represented by nodes that reference each other. Nodes have producer

references to the nodes that provide their inputs; these are stored in an ordered list.

Nodes also have consumer references to the nodes that use output data. Because

nodes can produce more than one output (e.g., split tunnels output multiple sub-

matrices), references include the output number used. The object representing a

55

Traditional Compiler

Hardware
knowledge

Optimizing
transformations

DxTer

Input
code

Input
algorithm
graph

Hardware
knowledge

Domain
transformations

Output
executable

Output
code

Figure 4.1: High level comparison of a compiler and DxTer.

DAG keeps track of all nodes it contains.

As is standard in MDE, all DxTer graphs must obey a metamodel . Loosely,

the metamodel specifies (restricts) the structure of legal graphs. The metamodel

is domain-specific, but there are some domain-agnostic restrictions in DxTer. The

main restrictions are:

• Graphs must be directed acyclic multigraphs. This omits the DxT representa-

tion for some domains (e.g., the crash fault-tolerant services of [54]), but DAGs

also allow many simplifying assumptions in DxTer’s analysis algorithms. This

is standard in the intermediate representation of compilers: DAGs simplify

analysis algorithms. For example, it is easier to write a graph traversal al-

gorithm without having to deal with cycles. Loops are represented using the

structure described in Section 2.5.1

56

• All DAGs are weakly connected such that if all edges are changed to be undi-

rected all nodes can be reached from all others.

• Output nodes represent the output of a graph. For each DAG, they are spec-

ified in an output node list . If all edges in the DAG are reversed, DxTer can

reach all nodes from at least one output node. This is useful for some of the

analyses of DxTer. This requirement also leads to easier identification of use-

less computation. When the output from a node B is not used, then either B

is doing useless work (since no node is using its results) or B’s output is an

output of the function being generated. In the latter case, the node should

be added to the output node list. In the former case, B should not be on

the graph. During execution, DxTer throws errors about B since it should be

removed from the graph or added to the output node list.

4.1.2 Node and Edge Properties

Nodes are instances of a subclass of Node . Node includes the data structures for

consumer and producer references. A subclass of Node is DLANode , of which all

DLA-specific nodes are a subclass. Nodes are queried for properties of the nodes

themselves or of the outgoing edges. For DLA, output matrix sizes, data distribution

(explained in Chapter 5), and variables names are common properties of output

edges while cost is a property of the node. These properties are queried via virtual

methods on DLANode, which each subclass implements. Nodes query input properties

and either “pass the value through” to the output properties or compute some

function of the inputs’ properties.

DxTer uses the cost property of primitives to determine if one DAG encodes

a better implementation than another. The cost function used for DLA (for now) is

57

an estimate of runtime based on how much computation is performed, data is com-

municated, and so forth. The following chapters describe the details. Each primitive

calculates its own runtime cost based on the size of inputs and other properties like

data distribution. The cost of an entire DAG is calculated by summing the costs

of each primitive. Summing is sufficient for DLA. For other domains with a more

complicated cost calculation, DxTer would be extended.

Liveness analysis and similar compiler-type analyses can be performed via

other properties. Node has a property to query whether or not an input (which in

code is input via a variable) is overwritten and output or just read by the node. If

the node does overwrite the input variable, then the node keeps it live. This blurs

the line between dataflow graphs (which have no notion of a node overwriting the

input) and practicality where a node can represent a function call that overwrites

input data. Section 4.1.5 discusses this in greater detail.

4.1.3 DAG Restrictions and Checking

In Section 2.5.3, we described how type checking is used to provide additional trust

in the graphs DxTer produces. Node has a virtual function called Prop (propagate).

Prop is called on all nodes after a transformation is applied to propagate properties

and check nodes for correctness. Any Node subclass can override Prop to add class-

specific checks as long as it also calls its parent class’s Prop. Node’s Prop method

checks, for example, that each node’s producers and consumers uphold their bidirec-

tional connection, a requirement on all domains’ DAGs. Further, each node checks

that the DAG instance holding it knows about the node. These are basic checks to

ensure the DAG is constructed well.

58

Prop is an opportunity for each node to check operation-specific features.

For example, Gemm nodes check that there are exactly three input matrices and that

consumer nodes only read the 0th output2 since Gemm only has one output. Further,

it checks that input matrix sizes conform (e.g., the inner dimensions of input A and

B match). For Elemental, there also checks on data distribution and for BLIS there

are checks on sizes meeting architecture-specific criteria. Checks like these are useful

to discover if a transformation has errors like miswiring operation inputs/outputs.

A lot of these checks are similar to those performed at runtime in Elemental

or BLIS. Granted, they are very low-order terms, but if Elemental or BLIS code

were only generated by a DxTer-like system that guarantees such properties, the

runtime checks could be removed or disabled.

Prop is also used by some nodes to propagate and cache properties like cost or

output sizes. These can be non-trivial computations that are queried often during

search, so caching the information amortizes the computation cost across many

queries.

DxTer does not currently keep track of type information like symmetry or

matrix structure. Such information could be useful in the future to ensure, for

example, that the triangular matrix input to a Trmm operation is indeed triangular

or to allow for more math-level transformations/optimizations. For example, a

novice user might employ Gemm for multiplying a triangular matrix and DxTer could

transform it to the (better performing) Trmm operation, but one must add type

information to the inputs. Such transformations are similar to those performed by

Fabregat-Traver and Bientinesi’s compiler [24]. These properties are not necessary

for our current work.

2We use 0-based indexing.

59

4.1.4 Transformations

When developing transformations, it is helpful to think about them in a pictorial

way as in Figure 4.2. This transformation applies when a triangular matrix is

inverted (via TriInv) and the result is input to Trmm. It replaces that with a Trsm

and triangular matrix inversion. This can improve numerical stability because Trsm

is more stable in some cases than using Trmm on an explicitly inverted matrix. When

implementing this transformation in DxTer, the code is not a picture, it is C++.

That code searches for a graph pattern (that of the LHS) and replaces that pattern

by forming the RHS graph and patching it into the graph.

TriInv
Trmm

TriInvJ
L
K

J L

K

TrsmI I

Figure 4.2: A sample transformation possibly to improve numerical stability.

Transformations are implemented in DxTer as a subclass of Transformation.

One instance of each transformation is added to DxTer’s knowledge base at the

beginning of execution. Transformations can be templatized, so instantiations are

created at that time with the desired parameters.

Transformation has three virtual functions. One returns the name of the

transformation (e.g., “Trmm on Inverted Triangle to Trsm with Inversion”). When

code is output from DxTer, the list of transformations is also output to explain

how the implementation was derived, so meaningful names are useful. Comparing

two implementations’ transformation lists allows one to know how design decisions

differed [10].

Transformation also has virtual functions CanApply and Apply, both of which

are passed a Node pointer to a node on a DAG, which we call box. When comparing

60

DLANode *producer = (DLANode*)(box->Producer(0));

if (producer->GetNodeClass() == TriInv::GetClass() &&

producer->GetLayer() == m_layer &&

box->GetLayer() == m_layer)

{

return true;

}

else

return false;

Figure 4.3: Sample DxTer code of CanApply for the transformation of Figure 4.2.

the LHS of a transformation to a graph (to find if it applies), it is useful to consider

one node in the LHS a root for comparison. One finds a box node of the same type

as the root in the LHS and then compares the subgraph around box on the graph to

the subgraph around the node in the LHS. Generally, the choice of which node to

consider the box does not matter much and can be made arbitrarily, so programming

transformations is made easier.

Each transformation has a particular box type to which it can apply (i.e., the

type of the matching node on the LHS). DxTer maintains a lookup table mapping

node types to transformations that can apply to improve scalability (performance).

One generally adds some transformations for one node type, some for another, and so

forth and does not add many transformations that only apply to one node type (i.e.,

transformations are usually distributed across node types). As transformations are

added to DxTer, the number that can apply to any one node type grows significantly

slower than the total number added because of this distribution. When determining

which transformations apply to a particular node, the list of transformations that

can apply to that node type is retrieved. Each transformation’s CanApply is called

with box pointing to the node on the graph. Without such a list, all transformations

in the knowledge base would be tested and almost none would apply.

The CanApply function compares the surrounding subgraph of box to the

61

transformation’s LHS. Figure 4.3 demonstrates this for Figure 4.2. This transfor-

mation applies when box is a Trmm node. First, the first producer of box (i.e., the

node that provides the triangular matrix input) is retrieved. Then, the producer’s

type is checked since the transformation only applies if the type is TriInv. Lastly,

the producer’s and box’s layers are checked. The transformation is templatized on

the layer to which it is applied, so it only applies when both the boxes are part of

that layer (m layer). If all of these conditions are met, CanApply returns true and

returns false otherwise.

As this is C++ code, transformations can be more complicated than this,

possibly with more variability in the LHS. Generally, though, transformations are

roughly as complicated as this example (possibly dealing with three times as many

nodes in the worst case). It is beneficial to keep transformations simple so that one

can reason better about their correctness.

When a transformation is applicable, the graph is copied and the transfor-

mation’s Apply function is called on the target box of the copy. This is discussed in

greater detail in Section 4.2. Figure 4.4 demonstrates the step-by-step application

of the transformation. The starting subgraph is the LHS and the ending subgraph

is the RHS.

Figure 4.5 shows code for the Apply function with comments to match the

panes of Figure 4.43. First, the Trmm and TriInv nodes are identified. Then, a

new Trsm node is created. The Trsm and Trmm nodes should have the same properties

(e.g., side, data type, and so forth), so the new node is created with those properties.

trsm is added to the graph’s node list and is given the appropriate inputs (both the

producer node and its output number are specified). The consumers of trmm are

redirected to trsm. Finally, trmm is removed from the graph. If trmm had producer

3This code is slightly simplified, but is similar to what is found in DxTer for this transformation.

62

TriInv
Trmm

J
L
K

I

TriInv
Trmm

J
L
K

I Trsm

TriInv
Trmm

J

L

K

I Trsm

TriInvJ

L

K

I Trsm

Figure 4.4: The step-by-step application of the transformation of Figure 4.2 in
DxTer.

//Start at first pane

Trmm *trmm = (Trmm*)node;

TriInv *triInv = (TriInv*)(trmm->Producer(0))

//Create new Trsm and wire inputs as on second pane

Trsm *trsm = new Trsm(m_layer, trmm->m_side, trmm->m_tri, trmm->m_diag,

trmm->m_trans, trmm->m_coeff, trmm->m_type);

trmm->m_graph->AddNode(trsm);

trsm->AddProducer(triInv->Producer(0), triInv->ProducerConnNum(0));

trsm->AddProducer(trmm->Producer(1), trmm->ProducerConnNum(1));

//Rewire consumers as on third pane

trmm->RedirectConsumers(trsm);

//Clean up to end with RHS

trmm->m_graph->DeleteConsumerAndCleanUp(trmm);

Figure 4.5: Sample DxTer code of Apply for the transformation of Figure 4.2.

nodes that were only producing outputs used by trmm, those producer nodes should

be removed too (otherwise they would be wasteful computation and would violate

the final assumption listed in Section 4.1.1). This removal process is continued

recursively upward.

4.1.5 Output Code

When a node is able to print, its PrintCode method is called. PrintCode is a purely

virtual function defined on Node. PrintCode is usually specialized to the node’s

63

layer tag since a Gemm primitive has different implementation code in BLIS than in

Elemental. With PrintCode, producing output code for functional / dataflow graphs

should be easy. In practice, producing output code is not so simple.

While we treat the graphs throughout this dissertation as functional repre-

sentations, for DLA (and other domains) nodes represent functions with side effects.

For example in a true dataflow graph, a Gemm node accepts three inputs, A, B, and

C, all of which are unmodified by the node, and the output αAB + βC is assumed

to resided in a new variable. In the actual output code of a Gemm node, though, one

does not want to incur the memory overhead of allocating new space for C as the C

variable can simply be updated with the result of Gemm (i.e., C := αAB+βC). This

is standard in DLA. As a result, DxTer must be careful in how it outputs code.

Figure 4.6 is a contrived example. A is input to both nodes and overwritten

by Op1. The correct code needs to call Op2 first so its A input is unchanged, and

then Op1 can execute. To ensure this, node types “know” which input(s) they

overwrite. While printing a graph to code, DxTer keeps track of which nodes have

printed. With a functional graph, when all producers for a node x have printed, x

can print. As the nodes here are not strictly functional, DxTer must first check that

all nodes using x’s overwritten input(s) have already printed. After they have, x

can print since it will not overwrite a variable another node must still read. If there

is more than one consumer of x that overwrites it, DxTer throws an error since the

graph (and the code it represents) is illegal4.

Graph input values are represented by the InputNode class5. InputNode in-

stances have one output, which is given a variable name (output property). Other

4This has happened when a transformation has a bug, so this is another form of DxTer aiding
in correctness checking.

5 InputNode instances are assigned input properties like problem size that are propagated
through the rest of the graph.

64

A

B

Op1

Op2 Op3

Figure 4.6: A graph that cannot be treated in a standard dataflow way when print-
ing.

nodes provide a variable name for their outputs, too, which is usually the name of

their overwritten variables. In some cases, the output variable names are a function

of the input variable names (e.g., inputTempVal or A00 for a temporary variable node

or split, respectively).

Thus, variable names are propagated from InputNode nodes through the

graph. For the graph of Figure 4.6, Op1 and Op2 propagate the output variable names

A and B, respectively. The (correct) output code is B:=Op3(Op2(A,B)); A:=Op1(A).

This sort of analysis and variable propagation or reuse is similar in goal to

what traditional compilers do when allocating registers to produce code from single

static assignment (SSA) form. Here, we benefit from only having a single way to

allocate / reuse variables due to restrictions such as only having one consumer of

an output override the variable.

4.1.6 Explaining Differences

A goal of this work is to generate the same or better code than a developer. When

DxTer produces different code, there are three explanations. First, there could be

a bug in DxTer or the knowledge base, which we discuss in Section 2.5.3.

Second, there may be a hole in the knowledge base. The developer might

have used some optimization, refinement, or improved cost estimate or performance

intuition that is not encoded in DxTer. In this case, the difference(s) is usually

identified easily by comparing output code and hand-developed code, and the new

65

transformation or cost estimate is added to DxTer. This can be useful to make

explicit some formerly hidden trick the developer used to write better code6.

Lastly, the developer could have made a mistake. DxTer’s implementation

space should include all of the implementations a developer would produce (assuming

all of his knowledge is encoded). One can compare the hand-developed code to all

implementations in the search space. If the developer wrote incorrect code, leading

to incorrect results, his implementation would not be in the search space as it only

contains correct implementations. Experts’ mistakes often come down to indexing

bugs or similarly small errors. Those are usually easy to spot by comparing correct

and incorrect code.

Otherwise, he might have developed a suboptimal implementation by choos-

ing a bad refinement or by missing optimizations. In this case, the suboptimal

implementation would be found in DxTer’s search space7. DxTer keeps track of

the transformations applied to derive all implementations, so one can compare the

transformation list of the suboptimal and “best” implementation. The deviation in

those lists explains which of the developer’s choices were suboptimal.

Whenever DxTer produces different code than the developer’s, there is some-

thing to learn. Either the developer’s mistakes are brought to light or new imple-

mentation knowledge is identified and encoded (which has pedagogical value). Both

cases demonstrate some utility in using DxT.

6 We imagine differences could be automatically or semi-automatically (with expert intervention
and guidance) discovered when reverse engineering code.

7In Section 5.4, we describe how the search space is limited by omitting clearly-bad implemen-
tations. In this case, the developer’s bad implementation might not be in DxTer’s search space,
but an expert can quickly convince himself that DxTer’s code is much better than his.

66

4.2 Search

With an understanding of how nodes and transformations are represented, we now

explain DxTer’s search process. First, we present the basics and then discuss op-

timizations to reduce the size of the search space to improve search time. These

optimizations were necessary to make the search tractable for complicated algo-

rithms with many implementations.

4.2.1 Basic Search

DxTer starts with a single DAG, called the seed of the search space. DxTer itera-

tively generates new graphs implementing the seed’s functionality in different ways.

These graphs are stored in a set called ImplSet (implementation set). ImplSet con-

tains only unique graphs (detailed below).

The simplistic view of DxTer’s search is that in each iteration, every node

of every graph in ImplSet is tested to see if any transformation in the knowledge

base can apply. When a transformation can apply, the graph to which it applies

is duplicated, and the transformation is applied to the duplicate. The new graph

is compared to each existing graph in ImplSet. If it is different than all existing

graphs, Prop is called on the new graph so nodes update their properties such as

cached output sizes and costs as well as to check for legal graph construction. The

graph is then added to ImplSet. DxTer iterates until no new graphs are added,

meaning all transformations that can apply have been applied. At this point, DxTer

attempts to fuse any pairs of loops it can on all graphs. If new graphs are added,

DxTer iterates again, checking only new graphs for transformations that apply.

This continues (transform, fuse, transform, fuse, and so forth) until there are no

new graphs generated. At that point, all graphs’ costs are summed and the lowest-

67

cost graph is converted to code. This explanation of DxTer’s search is sufficient to

understand its program generation, but the actual implementation of search is more

optimized.

First, any time a transformation is applied, the box node on the original graph

(i.e., the node to which the transformation applies) is tagged with the transforma-

tion. Then, that node is not checked again for that transformation’s applicability.

The transformation was already applied and the resulting graph is in ImplSet, so

there is no reason to check again. When graphs are duplicated, the nodes’ transfor-

mation list is cleared so previously applied transformations can apply to the node’s

duplicated version. In some cases, a transformation applies multiple times to the

same node (or, really, the node’s duplicated version). Each time, the graph is du-

plicated, the transformation is applied to the surrounding subgraph, and then the

transformation can be applied again, so the process is repeated.

For example, consider an optimization to remove redundant sort operations.

If a graph has three sort operations (e.g., sort(sort(sort(x)))), the optimization is

applied once. The new graph has one less sort (i.e., sort(sort(x))). The transforma-

tion can be applied again to the new graph, so the node’s transformation list should

not prohibit that. The original node (on the graph with three sorts), though, does

not need the transformation applied again because the result (i.e., sort(sort(x))) is

already in ImplSet. Similarly, DxTer keeps track of which loops are fused so it does

not regenerate existing graphs.

Graph comparison is optimized by keeping a hash for each graph. The hash

is computed from a string that lists all of the nodes’ types in a format similar to

node1(node2(x), node3(y, node4(z))). This hash is computed once and reused for

each comparison of a graph against a potential addition to ImplSet. When hashes

68

collide, a more detailed comparison is performed. DxTer starts with the InputNode

nodes and compares the two graph’s node types along the edges until it reaches the

output nodes, which have no outgoing edges. If it does not find a deviation between

the two graphs up to that point, the graphs are the same.

When new graphs are created in an iteration of the search, they are not

immediately added to ImplSet. Instead, they are added to a temporary set. At

the end of a search iteration, the graphs in the temporary set are merged into

ImplSet (with checks for duplication). Using this approach, the graphs in ImplSet

are analyzed in parallel for applicable transformations without locking since ImplSet

is read-only until the current iteration concludes.

After a graph has been checked for applicable transformations, the graph is

marked as “done.” After that, it is not re-evaluated for applicable transformations.

Fusion is only applied to two loops that have an input in common or when

one loop uses the output produced by another loop. If these relationships do not

hold, there is no opportunity for optimization (with our current optimizations), and

the resulting fused loop might actually perform worse since additional computation

in the loop could evict data from cache.

4.2.2 Phases and Culling

When manually coding, one does not necessarily choose how to implement (refine)

interfaces first and then optimize code, but it is beneficial to separate these steps in

DxTer via phases, which stage when certain transformations are applied. Consider

a graph with three interfaces (A, B, and C). If each has 4 refinements that expose

only primitives, there are 43 = 64 implementations of the graph without interfaces.

Then, many optimizations could apply.

69

With DxTer’s search, there would be 42 = 16 graphs with the A interfaces

and all combinations of B and C refinements. The optimizations that apply to these

refined implementations would create even more graphs. Similarly, there would be

graphs with B and C interfaces. We know, though, that all graphs with interface A do

not represent valid code since an interface does not generate code. Each would be

transformed by A refinements at some point, but that would just create graphs that

already exist – there are 64 graphs that are already fully refined and more graphs

with the optimizations already applied to those 64 graphs. In category theory,

alternate paths to the same points in a space (i.e., the same graph) are called a

commuting diagrams. While generating the search space, this happens often when

applying refinements and optimizations.

With phases, DxTer decreases the size of the search space and limits the work

done to create duplicate graphs by ordering refinements and optimizations. Between

phases, graphs with interfaces that should have been refined are culled , or removed

from ImplSet. After a graph with an interface is refined, it is no longer useful because

it has already yielded any implementations that can be created. Therefore, DxTer

removes such graphs from its search space between phases because they only lead

to additional work; any optimizations applied to them lead to graphs that already

exist, creating commuting diagrams with useless graphs as midpoints.

Culling is based on the layer annotation of nodes. A phase is linked to a

layer in the software, so refinements from that layer should be performed within

that phase (and a requirement of refinement layers is that they are monotonically

increasing). Any interface for that layer is redundant at the end of the phase.

In practice, introducing multiple phases of optimization is not generally use-

ful for culling because we cannot say that some of the graphs are no longer useful

70

because of how locally-bad optimizations can be chained together to generate a

globally-good implementation. In practice, most optimizations apply to primitives,

so they can all be applied together (in the same phase). Some optimizations apply

to interfaces, in which case they must be mixed with the initial refinement phases so

graphs on which such optimizations apply do not get culled before they are applied.

Optimization phases do, though, provide structure to code generation. For

example in Chapter 6, we explain how one adds an extra optimization phase to

retarget sequential BLIS code to a multithreaded system. That entire phase can be

cleanly omitted or included in the search depending on the target. We imagine in the

future that optimization phases could be added to change low-level implementation

details with small performance changes. This would increase the size of the search

space, so one could omit or include these phases depending on 1) how long he is

willing to wait for an implementation and 2) how important the best performance is

for an implementation. Phases could offer such customizability to DxTer’s search.

When adding transformations to DxTer, one specifies to which phase the

transformation belongs. In each phase, DxTer only considers the relevant transfor-

mations. Between phases, the list that keeps track of which transformations have

been applied to a node is cleared. The tag that marks graphs as fully transformed

is also cleared. There are new transformations in the next phase and they can be

applied differently, so all graphs and nodes should be re-evaluated. With the excep-

tion of simplifiers (described below), we do not have an example of a transformation

that is used in more than one phase.

Unlike compiler phases [6, 37], the phases of DxTer are easily determined

and ordered. For example, with Elemental code generation described in Chapter 5,

the first phase refines (choosing an algorithm and parallelization scheme) and the

71

second phase optimizes. With the BLIS work of Chapter 6, each layer of the code

(i.e., choice of nested algorithmic variant) is linked to a search phase. The refinement

phases are followed by an optimization phase, which is followed by a parallelization

phase (if a multithreaded architecture is targeted). There is little to no ambiguity

in which transformations belong to which phase because the DLA DSLs or code

structure leads to a natural ordering. This may not be the case with other domains,

but it has been true so far.

4.2.3 Saving the Search Space

Generating a large search space takes time. We see DxT used in the future to aid

a developer in generating a library of code, including many complicated functions.

If that developer is still exploring implementation options, it would be inefficient to

re-generate all implementations with largely the same knowledge base each time a

new transformation is added. Instead, it would be useful to save the search space

generated with a particular knowledge base. Then, when a new transformation is

added, that search space would be loaded and the new transformations would be

applied to all implementations to generate only the new graphs.

When saving a DxTer search space, graphs are flattened , or stored to disk,

with all objects’ pointers. Nodes are flattened with the Node pointers for consumers

and producers along with all type-specific information (e.g., coefficients, upper/lower

triangular, and so forth). When loading, new objects are created to match the saved

objects and a map is kept from old pointers to new pointers. The old pointers are

replaced by new pointers on the loaded graph by querying the map.

For various sample algorithms, loading a search space took 5-10% of the

time it took to generate the search space. The size of each search space is not

72

astronomical as in some similar work (such as SPIRAL [52]). We give example sizes

in Chapter 5. We believe the key is that we are automating what a person would

do manually. When doing this by hand, it must be feasible to search the space

effectively (i.e., doing it sufficiently to get good performance). Experts have worked

hard to develop interfaces that enable a separation of concerns, so one focuses only

on the important decisions at each level of the stack and does not have to deal with

all details concurrently. Considering all details concurrently, even those relating

to low-order performance costs, makes the search space very large and difficult to

search manually.

4.2.4 Transformation Meta-Optimization

Just as DxTer must optimize code for particular hardware, one must optimize trans-

formations for DxTer. For now, this is a manual effort, but automating it will be

an interesting area of future work. Below are some ways we optimize the knowledge

base to improve performance significantly.

Some transformations are always worth applying. For example, there is no

reason to explore implementations with redundant communication. For an opti-

mization that removes redundant communication, DxTer should not copy the graph

and apply the optimization to the copy (thus leaving the unoptimized graph in Im-

plSet). Instead, the optimization should be applied directly – it is always worth

applying. Such optimizations are called simplifiers [46] since they often simplify

graphs (removing extra nodes) and simplify the search space by removing subspaces

of inefficient graphs. Simplifiers are tagged as such when adding them to DxTer.

After DxTer duplicates a graph and applies a standard transformation, it applies

simplifiers anywhere it can. You could think of simplifiers as a micro-phase that

73

“cleans up” and simplifies graphs.

It is often useful to produce code in terms of small transformations. That

way each minor change can be taught, understood, and/or proven correct. DxTer

keeps graphs with each transformation applied and not applied in ImplSet. The

combinatorial search space that results from many small transformations (instead

of fewer large transformations) becomes massive.

Further, some transformations increase implementation cost (lead to an

always-worse graph) but expose details that allow for a subsequent optimization (a

better graph in the end). We show examples of this in Section 5.2.3

To optimize the knowledge base, we form merged transformations that apply

multiple transformations as one. By merging transformations, DxTer does not ex-

plore suboptimal implementations and instead only explores graphs that come from

the combination of transformations. We merge small transformations if they are

not useful to explore independently. We merge transformations that increase cost

with the optimizations that are subsequently expected to decrease cost. Merged

transformations can significantly improve the size of the search space (and time for

its generation). We give a detailed example in Section 5.2.3.

Future Metaoptimization

Simplifiers and merged transformations are examples of metaoptimizations to the

knowledge base. For now, these are created by a person who knows both the knowl-

edge base and DxTer well – an expert. To some extent, they require a “feel” for the

search process in addition to some tuning effort to get the metaoptimization right.

In the future, we want such metaoptimization to be automated. The knowl-

edge base would be optimized by a system, which recognizes when rules are never

74

useful in abstentia, for example. Then, the system would merge them. The system

could also label rules as simplifiers and would omit unnecessary rules.

While the viability of this goal is an open research question, it would be

useful to the end-user of a DxTer-like system. He would think only about his

domain and software and would not consider the search process. He would encode

his knowledge as transformations and a system would optimize those to form the

working knowledge base used in a high-performance search.

In Section 5.4, we discuss how we further limit the search space by reducing

the number of refinements that are explored.

4.3 Summary

DxTer is a prototype into which domain and hardware knowledge is input to enable

it to also take an input graph representing desired functionality and output an

architecture-specific, optimized implementation.

Knowledge is encoded as refinements and optimizations (which form a knowl-

edge base), which DxTer uses to transform the input graph into a search space of

implementations. DxTer uses cost estimates to rank order these and output the best

performing.

Further, knowledge about domain operations (both hardware specific and ag-

nostic) is encoded as part of node specifications. A specification is encoded in a C++

class that includes requirements on the number of inputs and outputs, datatypes,

data sizes, and so forth as well as cost estimates for code performance (for primi-

tives).

75

Chapter 5

Elemental

We present how we encode knowledge in DxTer to generate code for Elemental [2,

50]. We do so for all BLAS3 operations and a subset of Elemental’s LAPACK-level

operations. We start with the BLAS3 and then reuse the encoded knowledge for

other functions since the BLAS3 are a basis for higher level functionality1.

5.1 Elemental

We now discuss the basics of Elemental and explain how an Elemental expert (Jack

Poulson) can manually develop an algorithm for a BLAS3 operation optimized for

distributed memory architectures (clusters). We explain code in terms of transfor-

mations because that was the mechanism by which we reverse-engineered Jack’s

code to identify expert design knowledge. While the expert did not necessarily view

his task with transformations in mind, the resulting code can be forward-engineered

by transformations. Further, these transformations are reusable, understandable,

and independent pieces of DLA knowledge.

1 This chapter is based on material in [46, 47, 48].

76

Algorithm: [B] := Trmm rln blk(L,B)

Partition L→
(
LTL LTR

LBL LBR

)
, B →

(
BL BR

) where
LTL is 0× 0,
BL is n× 0

while m(LTL) < m(L) do
Repartition

(
LTL LTR

LBL LBR

)
→

 L00 L01 L02

L10 L11 L12

L20 L21 L22

,
(
BL BR

)
→
(
B0 B1 B2

)
where L11 is b× b , B1 has b columns

B0 := B0 +B1L10 (Gemm)
B1 := B1L11 (Trmm)

Continue with(
LTL LTR

LBL LBR

)
←

 L00 L01 L02

L10 L11 L12

L20 L21 L22

,
(
BL BR

)
←
(
B0 B1 B2

)
endwhile

Figure 5.1: Variant of Trmm to compute B := BL (right, lower triangular, non-
transposed, or Trmm RLN).

We use our running example, the algorithm in Figure 5.1 (duplicated from

Figure 1.1 for convenience) for Trmm as it is prototypical for how we encode knowl-

edge to generate parallel code. It is also prototypical of how all BLAS3 can be

implemented by casting most computation in terms of Gemm [38]. The primary

concern is to get maximal parallelism from B0 := B0 + B1L10 while a secondary

concern is to parallelize B1 := B1L11 (see Figure 5.1) and to minimize necessary

communication.

It is well known that hiding all parallelism within the separate update state-

ments can introduce redundant communication and/or synchronization. This means

that one cannot simply implement each of the update statements (or call implemen-

tations) in locally-best ways. Instead, the collection of update statements must be

implemented and optimized in concert. We want to chose and expose implementa-

77

tion details of each statement to allow for optimization of the whole loop body.

5.1.1 Elemental Basics

Elemental is a library of DLA operations as well as a framework for parallelizing

DLA algorithms, which we use as a DSL. Elemental is built on the Message-Passing

Interface (MPI) [58], where p cluster processes are viewed as a two-dimensional

grid, p = r × c. For the default distribution of data (matrices), Elemental uses a

2D element-wise cyclic distribution, labeled [MC ,MR] where MC and MR represent

partitions of the index space that provide a filter to determine which row and column

indices are assigned to a given process2. There are a handful of other one and two-

dimensional distributions of matrices, examples listed in Figure 5.2, that are used

to redistribute data so that efficient local computation can be utilized.

Elemental is written in C++ and encodes matrices and attributes (including

distribution) in objects. In order to parallelize a computation, matrices are redis-

tributed from the default distribution to another to enable local computation to be

performed independently by all processes, after which the result is placed back into

the original distribution (possibly with a reduction operation such as sum). In Ele-

mental, redistribution is accomplished using the overloaded “=” operation in C++,

which hides the (MPI) collective communication required to perform data redis-

tribution efficiently. This makes the Elemental software engineer more productive

because he need not concern himself with low-level details of MPI function calls and

data rearrangement for every redistribution. For our purposes, Elemental is a DSL

for the output of DxTer. Local computation is implemented by linking Elemental

code to a sequential BLAS or LAPACK library.

2We do not further explain the reason for different distribution names because they are out of
the scope of this dissertation. Details are in [50, 56].

78

Distribution Location of data in matrix

[∗, ∗] All processes store all elements

[MC ,MR] Process (i%r, j%c) stores element (i, j)

[MC , ∗] Row i of data stored redundantly on process row i%r

[MR, ∗] Row i of data stored redundantly on process column i%c

[∗,MC] Column i of data stored redundantly on process row i%r

[∗,MR] Column i of data stored redundantly on process column i%c

[VC , ∗] Rows wrapped around proc. grid in column-major order

[VR, ∗] Rows wrapped around proc. grid in row-major order

[∗, VC] Columns wrapped around proc. grid in column-major order

[∗, VR] Columns wrapped around proc. grid in row-major order

Figure 5.2: Distributions on a p = r×c process grid for parallelizing DLA algorithms.

5.1.2 Parallelizing Trmm

We now examine the actions of an Elemental expert to develop an optimized parallel

algorithm for Trmm. We do so in terms of transformations, first explaining the refine-

ments that parallelize suboperations and then optimizations that are subsequently

applied.

Trmm could be any of the following operations: B = LB,B = LTB,B =

UB,= UTB,B = BL,B = BLT , B = BU, and B = BUT , where L and U are

lower and upper triangular matrices, respectively. Each of these eight possibilities

is implemented separately with different algorithms. Here, we focus on B = BL

for which Figure 5.1 gives one of several algorithmic variants an expert considers.

The inputs L and B have the default [MC ,MR] distribution. The updates Trmm

and Gemm in Figure 5.1 are parallelized by redistributing submatrices, performing

local computation (via calls to sequential BLAS3 routines) on each process, and (if

necessary) reducing and/or communicating the result.

An expert considers the various ways to parallelize each suboperation. The

three parallelization schemes for the Gemm update statement keep the A, B, or C ma-

trix stationary , avoiding costly redistribution from [MC ,MR]. These are shown in

79

Figure 5.3. The best choice generally keeps the largest matrix stationary as commu-

nication is expensive, so movement of the largest matrix is avoided (we discuss this

further in Section 5.4). D* boxes (i.e., those that start with D) are to be parallelized

for clusters. L* boxes are primitives that represent local, sequential computation on

each process (with no collective communication hidden internally). These names,

explained below, specify the boxes’ layers. The primitives with → redistribute data

from the LHS distribution to the RHS distribution. The SumScatter box is a form

of Elemental redistribution that performs a ReduceScatter collective operation on

the first operand and stores the result in the second operand [2]. TEMP boxes cre-

ate a temporary storage matrix with the specified distribution. The input matrix

provides TEMP with problem size information, but its data is not changed.

DGemm NN

B

A

C
C'

[MC,MR]→[MR,*]
LGemm
NN

DGemm NN

B

A

C

C'

[MC,MR]→[MC,*]

[MC,MR]→[*,MR]
LGemm
NN

Temp
[MC,*] Sum

Scatter

DGemm
NNB

A

C
C'

DGemm NN

B

A

C
C'

LGemm
NN

Temp
[*, MR] Sum

Scatter

[MC,MR]→[*,MC]

Figure 5.3: Gemm refinements.

In this case, B0 (defined in Figure 5.1) is largest, so the stationary C refine-

ment (bottom-left in Figure 5.3) is best. To parallelize DGemm with stationary B0,

we redistribute L10 (to [∗,MR]) and B1 (to [MC , ∗]), after which a local LGemm is

performed in parallel on all processes, calculating disjoint portions of B0.

To parallelize B1 := B1L11, an expert understands that if L11 is duplicated

80

to all processes (distribution [∗, ∗]) and B1 is redistributed so that any one pro-

cess owns complete rows of this matrix (e.g., distribution [VC , ∗]), then B1L11 can

be computed in parallel by calling a sequential LTrmm on each process with local

data. But the expert would also consider many other distributions for B1, given

in Figure 5.2, before arriving at this particular choice. Each possible refinement

distributes computation differently, requiring different communication and differ-

ent local computation, offering a balance between communication (overhead) and

parallelism in computation. One generally chooses less parallelism for the small

amount of computation, which incurs less communication. Figure 5.4 shows a tem-

platized refinement for DTrmm, both the left and right-hand side flavors. For large

problems, one refinement may be best because the cost of communication (which

enables parallelism) is amortized over more computation.

LTrmm
RightB [MC,MR]→[π,*]

[MC,MR]→ [*,*]
[π,*]→[MC,MR]

DTrmm
Right B' B'

DTrmm Right

L

B

L

LTrmm
LeftB [MC,MR]→[*, π]

[MC,MR]→ [*,*]
[*, π]→[MC,MR]

DTrmm
Left B' B'

DTrmm Left

L

B

L

(b)

(a)

Figure 5.4: DTrmm refinements. Π is a templatization parameter limited to
∗,MC ,MR, VC , VR.

We focus on a large problem size for B and L here, but an expert would

serve the user best by providing a set of optimized Trmm implementation variants

for a range of problem sizes. DxTer, therefore, optimizes for various problem sizes,

as explained in Section 5.2.7, choosing different instantiations of the DTrmm refine-

81

ment. Here, we use the refinement with a [VC , ∗] distribution of B1 in subsequent

discussions.

5.1.3 Encoding the Algorithm with Elemental

Elemental variable declarations3 and loop code are straight-forward and uninterest-

ing, so we do not show it here. The Elemental code for parallelized update state-

ments (using the refinement choices above) is given in Figure 5.5, with the graphical

form shown in Figure 5.6. This is close to the code found in the Elemental library,

but requires additional optimizations, explained below, that explore alternate ways

to redistribute data. Figure 5.6 shows the subgraph to be optimized highlighted in

red.

B1_MC_STAR = B1;

L10_STAR_MR = L10;

LocalGemm(NORMAL, NORMAL, 1.0, B1_MC_STAR,

L10_STAR_MR, 1.0, B0);

L11_STAR_STAR = L11;

B1_VC_STAR = B1;

LocalTrmm(RIGHT, LOWER, NORMAL, NON_UNIT, 1.0,

L11_STAR_STAR, B1_VC_STAR);

B1 = B1_VC_STAR;

Figure 5.5: Parallelized code for Figure 5.1.

LTrmm
Right

[MC,MR]→[VC,*]

[MC,MR]→ [*,*]
[VC,*]→[MC,MR]

[MC,MR]→[MC,*]

[MC,MR]→[*, MR]
LGemm
NN

B0

B1

L10

L11

B0'

B1'

Figure 5.6: Refined loop body for Figure 5.1 that matches code of Figure 5.5. An
inefficiency is highlighted by thick red boxes

3By Elemental convention, variables are named by the submatrix stored, appended with the
distribution name for readability except for the default distribution [MC ,MR].

82

Notice how matrix B1 is redistributed from [MC ,MR] to [MC , ∗], denoted

[MC ,MR] → [MC , ∗], and then as [MC ,MR] → [VC , ∗]. The [MC ,MR] → [VC , ∗]

redistribution can be implemented with an AllToAll collective or it can be imple-

mented in terms of the two redistributions, [MC ,MR]→ [MC , ∗]→ [VC , ∗], which is

an AllGather followed by a memory copy. This alternative implementation option

is encoded in the optimization of Figure 5.7 (a).

A B A B[MC,MR]→[VC,*] [MC,MR]→[MC,*] [MC,*]→[VC,*]

A
[MC,MR]→[MC,*] B

C
A

B

C[MC,MR]→[MC,*]
[MC,MR]→[MC,*]

(a)

(b)

Figure 5.7: Optimization to change collective communication used to perform re-
distribution [MC ,MR]→ [VC , ∗] and remove redundant communication.

Figure 5.8 (a) shows the highlighted, inefficient subgraph of Figure 5.6. Fig-

ure 5.8 (b) shows the subgraph after applying the optimization to implement the

redistribution in a different way. Here, the highlighted subgraph has the data of B1

redistributed in the same way twice.

B1
[MC,MR]→[MC,*]

B1
[MC,MR]→[MC,*] [MC,*]→[VC,*]

[MC,MR]→[MC,*]B1

[MC,*]→[VC,*]

(a) (b)

(c)

[MC,MR]→[MC,*]

[MC,MR]→[VC,*]

Figure 5.8: Step-by-step optimization of highlighted subgraph in Figure 5.6.

83

Now, an expert applies the optimization of Figure 5.7 (b) to this subgraph to

form Figure 5.8 (c). The whole graph, shown in Figure 5.10, maps to the optimized

code, which is in the Elemental library, shown in Figure 5.9.

B1_MC_STAR = B1;

L10_STAR_MR = L10;

LocalGemm(NORMAL, NORMAL, 1.0, B1_MC_STAR,

L10_STAR_MR, 1.0, B0);

L11_STAR_STAR = L11;

B1_VC_STAR = B1_MC_STAR;

LocalTrmm(RIGHT, LOWER, NORMAL, NON_UNIT, 1.0,

L11_STAR_STAR, B1_VC_STAR);

B1 = B1_VC_STAR;

Figure 5.9: Optimized code for Figure 5.1.

LTrmm
Right

[MC,*]→[VC,*]
[MC,MR]→ [*,*] [VC,*]→[MC,MR]

[MC,MR]→[MC,*]

[MC,MR]→[*, MR]
LGemm
NN

B0

B1

L10

L11

B0'

B1'

Figure 5.10: Graph representing the optimized Trmm RLN loop body code of Fig-
ure 5.9.

This final code is the result of two parallelizing refinements, one optimization

to explore an alternate implementation of [MC ,MR]→ [VC , ∗], and one optimization

to remove a redundant redistribution. Each transformation is easy to understand

individually, but learning and manually exploring the options and choosing the best

combination is not easy and/or is tedious. It takes considerable knowledge and

experience to do this well.

84

5.2 BLAS3

With the basics of Elemental explained above, we can show how we encode BLAS3

and Elemental knowledge in the DxT style to enable DxTer to generate all BLAS3

implementations automatically4.

General rules for attaining high performance are that communication and

redundant computation should be reduced and the portion of time spent in high-

performing computation kernels should be maximized. On a single (multicore) CPU,

communication is data movement between cache layers. With GPUs communication

is data movement between devices and the host computer. With clusters, commu-

nication is movement between processes.

The important design decisions for Elemental deal with a small number of

computation operations. For the parallel BLAS3, high-performance implementa-

tions call sequential BLAS3 kernels for suboperations (e.g., LGemm). Further, Ele-

mental code requires redistribution operations (collective communication) between

a finite number of supported distributions. Only knowledge regarding these redis-

tributions needs to be encoded, and much of that, as shown below, is repetitive5.

These are the primitives in terms of which DxT graphs will ultimately be defined.

The best implementations come down to the right combination of a small

number of operations. The transformations to generate those implementations can

be very simple. The rest of this section demonstrates these points.

4 This text is adapted from [47].
5Many other ways to distribute data exist. Elemental only uses a small number of options to

limit software complexity while still achieving high performance.

85

5.2.1 Algorithms to Explore

As there is generally no single algorithmic variant that works for all architectures

(cluster, sequential, and so forth) or for all problem sizes, we want to encode many

variants so DxTer can choose the best implementation of all. As described in Sec-

tion 3.3, FLAME-derived algorithms are mathematical in nature and architecture

independent, so we encode them and also encode architecture-specific transforma-

tions needed to yield efficient implementations tailored to (rough) problem sizes.

We represent BLAS3 operations in a graph with nodes named after the op-

erations they represent (e.g., to optimize the Trmm RLN operation, the starting graph

to be implemented consists of a single node labeled Trmm RLN). These are purely

mathematical abstractions with no implementation details, so we label them with

the abstract-most layer number. These operations can be combined in a graph with

other nodes to compose higher-level functionality. In this section we focus just on

implementations of the BLAS3 functions in isolation, and hence start with a graph

with one node (i.e., the input to DxTer). In the next section, BLAS3 operations are

combined to form LAPACK-level (higher level) functionality.

For each BLAS3 operation (e.g., Trmm), a refinement for each known algo-

rithmic variant is encoded in DxTer. These refinements replace an interface with

a graph representing a variant’s loop and loop body operations. For blocked algo-

rithms like in Figure 5.1, the update statements are BLAS3 operations themselves,

operating on smaller submatrices. The part of the loop that does not include the

update statements we call the loop skeleton, which is represented with the loop

structure described in Section 2.5.1.

The refinement of node Trmm RLN for the algorithm of Figure 5.1 is a loop

with update statements Trmm RLN and Gemm NN. This refinement is shown in Fig-

86

TrmmRLN
Layer:∑

L

B
B'

L

B
GemmNN
Layer:Ω

L10

B0

B'

B1

TrmmRLN
Layer:µ

L11

B1

Figure 5.11: Refinement to encode algorithm of Figure 5.1.

ure 5.11 (duplicated from Figure 3.5 (d)). We change the refinement’s node layers

to specialize the algorithm to our architecture. In this case, we want to replace an

abstract-layer node with a distributed layer node. For brevity, we leave off prefixes

for the abstract-layer nodes and prefix with D for distributed-layer nodes.

Recall that local computation operations (e.g., LocalGemm) are labeled start-

ing with L. This means their layer is local , which are all primitives. L* boxes map to

local computation primitives that have no collective within. The distributed layer

is one level of abstraction up. Distributed-layer interfaces need to be implemented

(refined) in terms of local-layer primitive boxes to map to Elemental code.

5.2.2 BLAS3 Elemental Refinements

When implementing Trmm RLN above, an expert first uses a FLAME algorithm re-

finement, which results in distributed-layer operations. An expert then implements

those operations by choosing from the ways to redistribute the operands to en-

able computations to be performed in parallel across a machine by calling locally-

sequential computation on each core (e.g., via a call to a sequential (local) BLAS3

function). The result then needs be re-redistributed to the default [MC ,MR] distri-

bution if it is not already distributed as such. To encode parallelization options for

each of the D* boxes, we add refinements that have the building blocks of the local

BLAS3 calls and redistribution operations.

87

Figures 5.3 and 5.4 are examples of parallelizing refinements. The options of

Figure 5.4 parallelize computation over the process grid’s rows or columns or over the

entire grid depending on which templatization parameter π ∈ {∗,MC ,MR, VC , VR}

is chosen. An expert considers these options based on other operations in the loop

body, the problem size, and so forth. Each possible refinement is included in the

DxTer knowledge base. The refinement of Figure 5.4 (a) with π = VC was used for

the code of Section 5.1.3.

Figure 5.3 shows the refinements for DGemm NN, which is the version of DGemm

without transposition (i.e., A and B are both Normal instead of Transposed). There

are small variations on these refinements for the three transposed versions of DGemm

(NT, TN, and TT). An interested reader can discover them by looking at the Elemental

library’s Gemm implementations [2, 56], which DxTer reproduces.

All other D* BLAS3 functions have refinements that are comparably simple,

but the particular parallelization schemes are not important here. The fixed set

of Elemental distributions enable the most useful (and some less useful) ways to

parallelize BLAS3 operations. These schemes are encoded in the DxTer knowledge

base found at [1].

5.2.3 Redistribution Optimizations

Refinements are sufficient to attain parallel, executable code, but combinations of

costly redistribution operations need to be optimized to remove inefficient commu-

nication. For that, we use optimizations on redistribution boxes.

Experts explore various ways to implement communication. Figure 5.12

(taken from [56]) demonstrates this. Each vertex is a distribution. Each edge is

labelled with a collective communication operation that can accomplish the redis-

88

�
�
�
���

�
�
�

��	

@
@
@
@
@
@
@
@
@R@

@
@
@

@
@
@

@
@I

?

6

reduce-
scatter

allgather

reduce-
scatter

allgather

all-to-all

A(MC ,MR)

A(MC , ∗)

A(VC , ∗) -�
permutation

A(MR,MC)

A(MR, ∗)

A(VR, ∗)

@
@
@

@@I

@
@
@
@@R

�
�
�

�
�
�

�
�
�	�
�
�
�
�
�
�
�
��

?

6

reduce-
scatter

allgather

allgatherreduce-
scatter

all-to-all

�
�

�
�

�
�
�

�
�	�
�
�
�
�
�
�
�
��

@
@
@

@@I

@
@
@
@@R

?

6

all-to-all

reduce-
scatter

allgather

allgather
reduce-
scatter

A(∗,MR)

A(∗, VR) -�
permutation

A(∗,MC)

A(∗, VC)

@
@
@

@
@
@

@
@
@I@
@
@
@
@
@
@
@
@R

�
�
�

��	

�
�
�
���

?

6

all-to-all

allgatherreduce-
scatter

reduce-
scatter

allgather

Figure 5.12: Summary of the communication patterns for redistributing matrix A
from [56].

tribution from the start to the end distribution. An expert explores ways to get from

one distribution on this diagram to another, considering if intermediate distributions

of data are already available in the surrounding code.

89

Redistribution operations are implemented with default MPI collective com-

munication. Figure 5.12 demonstrates other implementation options. Exposing

hidden redistribution implementations and exploring alternative implementation

enables an expert or DxTer to optimize the overall communication pattern of an

implementation, possibly combining communication exposed by refinements of dif-

ferent update statements.

In some cases, Elemental implements “=” as a series of redistributions. One

example is [MC ,MR] → [VR, ∗], which utilizes an intermediate distribution [VC , ∗]

(i.e., with [MC ,MR] → [VC , ∗] → [VR, ∗]) as shown in Figure 5.12. Optimizations

like that of Figure 5.13 (c) expose such details. The template optimizations of Fig-

ure 5.13 (a) and(b) can then be employed to remove inverse or redundant redistribu-

tions, respectively, that were hiding behind redistributions. These optimizations are

applied often by experts. Further, these optimizations are always worth applying

when the inefficient LHS graphs are found. One should never keep redundant or

inverse redistribution operations, so these optimizations are labeled as simplifiers in

DxTer (Section 4.2.4).

A ø→∑ ∑→ø

B

C
A

B

C

ø→∑

A
ø→∑

ø→∑

B

C
A ø→∑

B

C

A B A B[MC,MR]→[VR,*] [MC,MR]→[VC,*] [VC,*]→[VR,*]

(a)

(b)

(c)

Figure 5.13: Templatized optimizations to remove inverse (a) and redundant (b)
redistribution operations. Σ and φ can be any Elemental distribution. (c) An
optimization to expose a hidden intermediate redistribution..

90

Optimizations like that of Figure 5.14 (a) (which is the same as Figure 5.7)

are employed to explore alternate implementations of redistributions. If redistri-

butions around the [MC ,MR] → [CC , ∗] operation already redistribute the data to

[MC , ∗], then exposing the alternate redistributions enables a better overall imple-

mentation because an unnecessary redistribution to [MC , ∗] can be removed using

the optimization of Figure 5.13 (b). These transformations replace a node with a

subgraph that uses a different implementation, which will allow DxTer to explore

subsequent optimizations.

A
[MC,MR]→[MC,*] B

C
A

B

C[MC,MR]→[VC,*]
[MC,MR]→[MC,*]

[MC,*]→[VC,*]

A B A B[MC,MR]→[VC,*] [MC,MR]→[MC,*] [MC,*]→[VC,*]

(a)

(b)

Figure 5.14: (a) An optimization to explore an alternate redistribution implemen-
tation and (b) an example of a merged transformation.

By itself, the transformation of Figure 5.14 (a) is never useful6. It always

reduces performance unless a subsequent optimization removes a redistribution.

Therefore, we encode such the combination of this transformation and the sub-

sequent optimization as one transformation, shown in Figure 5.14 (b). By applying

this to the highlighted portion of Figure 5.6, we arrive at the optimized loop body

implementation shown in Figure 5.10 without exploring intermediate (and always

bad) graphs.

This is a merged transformation (Section 4.2.4). By merging transformations,

6This demonstrates how “optimization” does not necessarily mean the transformation improves
performance, but changes the implementation to possibly allow a subsequent transformation to
improve performance.

91

we reduce the search space (sometimes by roughly half). In [46], we introduced this

idea with Figure 5.15 (a) merged with Figure 5.13 (b) to form Figure 5.15 (b). There

are eight versions of this transformation that are implemented using a templatized

version of Figure 5.13 (d). Template parameters are limited to distributions that

make sense for this optimization.

A
[MC,MR]→[*,MR] B

C
A

B

C[MC,MR]→[*,VR]
[MC,MR]→[*,MR]

[*,MR]→[*,VR]

A B A B[MC,MR]→[*,VR] [MC,MR]→[*,MR] [*,MR]→[VR,*]
(a)

(b)

Figure 5.15: Another example of a merged transformation, where (a) is merged with
Figure 5.13 (b) to form (b) here.

5.2.4 Transpose Optimizations

One of the greatest benefits of DxT is how easily new optimizations and refinements

can be added and automatically applied to all algorithms. The above rules and

others like them are sufficient to generate code for all BLAS3 operations. Further,

that code performs well on many cluster architectures. On some, though, these rules

are insufficient for good performance.

When the expert developer of Elemental tested his code on an IBM Blue-

Gene/P machine using PowerPC 450 processors, he discovered that further opti-

mizations were needed to improve memory access. He had to review all existing

code to apply these optimizations repeatedly. With DxTer, new optimizations can

be added to the knowledge base and automatically applied by regenerating all code,

relieving the expert’s burden. Comparing DxTer’s generated code to the expert’s

92

manually-created code, we found many instances where the expert missed these

optimizations because he did not remember or have time to update existing code.

The optimizations affect the way data is read and written. With a non-unit

stride, the penalty for accessing memory on an IBM BlueGene/P architecture is

much greater than on many architectures. When MPI collectives are used behind

a redistribution, data is packed and unpacked into send and receive buffers. The

stride is often the number of rows or columns in the process grid because of the way

data is redistributed.

To mitigate this substantial penalty, Elemental redistributions were added to

(conjugate-)transpose data during communication, which results in more data copied

with unit stride. With many BLAS3 functions, operand matrices can be transposed

during computation, so data transposed during redistribution is untransposed during

computation.

This optimization requires deep knowledge of Elemental because not all re-

distribution patterns can or should be transposed. Further, knowledge of BLAS3

functions is needed to identify when inputs can be transposed (to undo redistri-

bution transposition). Figure 5.16 shows a transpose optimization on one input

to LGemm. This case shows up in the stationary-C refinement of Figure 5.3, among

others. Here, the “B” input to the LGemm box comes from a redistribution that can

be transposed. This transformation of Figure 5.16 transposes the redistribution op-

eration and changes the LGemm box to undo that transposition (i.e., NN to NT). This

transformation applies to the code in Figure 5.10. The result of applying it gen-

erates the high-performance implementation of Trmm RLN generated by DxTer and

now found in the Elemental library (it previously was not found in the library as

explained before).

93

B

A[MC,*]

C

C'[MC,MR]→[*, MR]
LGemm
NN B

A[MC,*]

C

C'[MC,MR]→[MR,*]T
LGemm
NT

Figure 5.16: Optimization to transpose communication.

Many BLAS3 operations have transposition transformations similar to this.

The actual optimization is built in a more versatile way than this figure suggests.

Knowledge of redistributions is built into the nodes: they are queried to determine

if they can or should be transposed. Transpose optimizations look for BLAS3 nodes

and the inputs to them that can be transposed, and query the input redistribution

box (if it is a redistribution) to see if it can be transposed during communication.

5.2.5 The Knowledge Base

The graph transformations we have illustrated are no more complicated than those

we have not. Abstractly, they are all simple graph rewrites that capture deep domain

knowledge of DLA and its encoding in Elemental. Had we chosen another cluster

DLA library that did not have a cleanly-layered design, we suspect we would have

been less successful or not successful at all. We can not stress enough that the

key to the simplicity of our rewrite rules is that they capture relationships between

fundamental levels of abstraction in DLA library design. If these abstractions are

encoded inelegantly, transformations are likely to be substantially more complex.

Redistribution optimizations are templatized for use by many communica-

tion patterns (Figure 5.13 (a) and (b)). Similarly, the transformations (algorithm

and parallelization refinements) for symmetric and Hermitian (the complex datatype

equivalent of symmetric) BLAS3 operations are largely identical so the same knowl-

edge can apply to both sets of operations. Further, Trmm and Trsm operations share

94

Type Unique Total

Algorithm refinement 19 30
Parallelization refinement 14 31
Redistribution optimization 32 758
Redistribution transposition 6 22
Total 71 841

Figure 5.17: Rule count in DxTer’s BLAS3 knowledge base.

many of the same algorithms (with minor differences and Trmm switched for Trsm)

and refinements. As a result, there is a lot of templatization and reuse of rules.

Figure 5.17 shows the unique (i.e., counting each template once) transforma-

tions encoded in DxTer to generate high-performance implementations for all BLAS3

operations. It also shows the total number of transformations that are generated

from those unique pieces of knowledge using templates (different distributions, sym-

metric and Hermitian, etc.).

5.2.6 Cost Estimates

In Section 4.1.2, we describe how nodes have a cost property based on input problem

sizes. The cost of all nodes is summed for each each implementation graph in

DxTer’s search space and the lowest cost is output. The input sizes consider all

iterations of loops (even when loops are nested). DLA is generally optimized for

minimal runtime, so that is our cost. For our work, we use γ to mean the time it

takes to perform a single FLOP (i.e., the number of CPU cycle). Then, the cost of

computation and communication can be estimated in terms of CPU cycles. As a

system is evaluating cost estimates, more sophisticated cost estimates can be used

when they are available.

When implementing code in Elemental, one does not specialize for a par-

ticular cluster architecture. Instead, one implements assuming a large process grid

95

Operation Cost

LocalGemm (m× k × n) γ2mkn
LocalTrsm RLN (n× n, m× n) γmnn
A11 Star Star = A11 (m× n) αdlog2 pe+ β p−1

p
mn

A21 MC Star = A21 VC Star (m× n) αdlog2 ce+ β c−1
c

m
r
n

Figure 5.18: Representative first-order approximations for the cost of operations.

and uses rough estimates of communication on a generic cluster. For DLA we have

reasonable cost estimates. First-order approximations for sequential operations can

be given in terms of the number of floating point operations that are performed

as a function of the size of operands. The coefficient γ roughly captures the qual-

ity of the operation’s implementation and the speed of the machine. For example,

matrix multiplication, C = AB, where C, A, and B are m × n, m × k and k × n,

respectively, takes time (costs) γ2mkn. The cost of every computation kernel can

be approximated by the operation count multiplied by γ7.

The data redistributions found in Elemental are implemented using MPI

collective communication routines. Lower-bound costs of the common algorithms

under idealized models of communication are known [16] in terms of coefficients

α and β, which capture the latency and cost per item transferred, respectively.

For example, redistributing an n × n block of A11 as in line A11 Star Star = A11

on p processes requires an allgather operation, which has a lower-bound cost of

approximately α log2(p) + β p−1
p n2. α and β are set to be reasonable multiples of γ

(100 and 100,000, respectively, are good choices).

Sample cost functions from the Trmm RLN example are in Figure 5.18. These

only include higher-order terms and are first-order approximations meant to dis-

7A second-order approximation would take algorithm performance variation into account, but
for now we stick to first-order approximations since this is generally good enough for an expert
implementing algorithms by hand.

96

tinguish good (lower-cost) implementations of an algorithm from others. These

estimates are good enough for the examples we have studied so far, but we expect

to improve them to find the best code for more complicated algorithms.

For example, we have encountered situations where a collective communica-

tion operation is suboptimally implemented on a specific architecture while some

other architectures provide hardware support for the same operation. As a me-

chanical system is evaluating the cost functions, they could be made much more

sophisticated (complicated). One could use empirical timing information, for exam-

ple. Further, more accurate timing will be necessary when finding the “best” im-

plementation for specific problem sizes (instead of just “big,” “medium,” or “small”

problems as we talk about below). Then, the crossover points are more difficult to

determine with these rough estimates. The point is that, since we have an automated

system, design space exploration and customization is easily accomplished.

5.2.7 Search Space and Results

We now present the performance of DxTer-generated code for the level-3 BLAS.

All tests in this section were taken on an IBM BlueGene/P machine built from

PowerPC 450 processors. We tested on 8192 cores (2 racks), which have a combined

theoretical peak of over 27 TFLOPS. Two-thirds of peak performance is shown at

the top of the graphs. Double-precision arithmetic was used for all computation. For

all runs, we tune by hand the blocksize and process grid configuration and choose

the best-performing run. The algorithm and implementation selections of DxTer

account for the vast majority of performance; tuning the blocksize provides a small

performance boost (5-10%).

BLAS3 implementations for clusters must be tailored to the problem size

97

BLAS3
of # Implementations Compared to

Versions generated hand written
per variant

Gemm 12 378 Added transpose

Hemm 8 16,884 Same

Her2k 4 552,415 Same

Herk 4 1,252 Same

Symm 8 16,880 Same

Syr2k 4 295,894 Same

Syrk 4 1,290 Same

Trmm 16 3,352 Better algorithms

Trsm 16 1,012 Added transpose;
new implementations

Figure 5.19: DxTer code generation statistics for the BLAS3.

and parameter combination. Consider, for example, Gemm: C := AB + C. Gemm

is best provided in a library with different implementations for when each of the

three input matrices is the largest (to minimize communication of it) and for each

of the four combinations of “A” and “B” being transposed. As a result, Elemental

offers 12 = 3 × 4 Gemm implementations. Implementations of Trmm could minimize

communication of each of its two input matrices (whichever is biggest) and there are

three parameters that lead to eight different algorithms and parallelization schemes,

yielding a total of 16 = 2 × 8 implementations. The second column of Figure 5.19

lists the number of implementation versions for each BLAS3 operation.

For each version of each operation, we tested DxTer’s ability to generate

code. We ran DxTer’s search on different problem sizes, making them relatively

bigger or smaller depending on what sort of implementations we wanted. As the

cost estimates are rough, it was only necessary to set problem sizes to be roughly

large or small (i.e., 80,000 vs. 5,000). The third column of Figure 5.19 shows the

total number of implementations generated by DxTer. Different parameters lead

to different implementations (because different starting algorithms are used). For

98

versions with the same parameter combination (but different matrix sizes), the same

implementations are generated, but the cost estimates rank-order them differently.

This count includes the repeated implementations that are re-generated for each of

the versions. Each “best” implementation is determined within 30 minutes for all

operations; the majority take less than a minute.

Many of the differences between implementations are due to the variety of

ways in which data can be redistributed and transposed. Consider the number of

transformations dealing with redistributions, shown in Figure 5.19. There are four

algorithmic versions for Her2k, but only one parallelizing refinement for DHer2k in

their loop bodies. This does not lead to many implementations options. The large

space is the result of the many ways to redistribute and transpose operands to the

local computation.

When the Elemental developer first implemented the BLAS3, he explored

a portion of these search spaces. At that point, he did not apply transposition

optimizations because the Elemental API did not allow for transposed redistribu-

tion. The benefit of an automated approach to software engineering is that when

an optimization is encoded, one can automatically regenerate all code with the op-

timization included (as demonstrated further in Chapter 6). The last column of

Figure 5.19 provides a qualitative comparison of DxTer’s implementations to the

code in Elemental.

Figure 5.20 (top left) compares representative versions of each of the double-

precision, real BLAS3 functions with problem sizes along each dimension of 50,000.

We show performance from ScaLAPACK8, Elemental, DxTer without optimization

8ScaLAPACK performance is often below that of Elemental because of the differences in how
data is distributed and redistributed, which algorithms are used, etc. The particular details are
unimportant here as the goal is to generate Elemental code, and ScaLAPACK is presented just for
reference. An interested reader can find some details in [50].

99

0	

2000	

4000	

6000	

8000	

10000	

12000	

14000	

16000	

18000	

Gemm	 NT	 Symm	 LL	 Syr2k	 LN	 Syrk	 LN	 Trmm	 LLNN	 Trsm	 RLNN	

Pe
rf
or
m
an

ce
	 (G

FL
O
PS
)	

BLAS3	 Performance	 on	 Intrepid	

ScaLAPACK	
DxTer	 UnopKmized	
DxTer	 OpKmized	
Expert	 OpKmized	

0	

2000	

4000	

6000	

8000	

10000	

12000	

14000	

16000	

18000	

G
em

m
	 N
N
	

G
em

m
	 N
T	

G
em

m
	 T
N
	

G
em

m
	 T
T	

Sy
m
m
	 L
L	

Sy
m
m
	 R
L	

Sy
m
m
	 L
U
	

Sy
m
m
	 R
U
	

Sy
r2
k	
LN

	
Sy
r2
k	
LT
	

Sy
r2
k	
U
N
	

Sy
r2
k	
U
T	

Sy
rk
	 L
N
	

Sy
rk
	 L
T	

Sy
rk
	 U
N
	

Sy
rk
	 U
T	

Tr
m
m
	 L
LN

N
	

Tr
m
m
	 R
LN

N
	

Tr
m
m
	 L
LT
N
	

Tr
m
m
	 L
U
N
N
	

Tr
sm

	 L
LN

N
	

Tr
sm

	 R
LN

N
	

Tr
sm

	 L
LT
N
	

Tr
sm

	 L
U
N
N
	

Pe
rf
or
m
an

ce
	 (G

FL
O
PS
)	

BLAS3	 Performance	 on	 Intrepid	

ScaLAPACK	
DxTer	

0 1 2 3 4 5 6 7 8 9 10

x 10
4

0

1

2

3

4

5

6

Problem size (x10
4
)

Im
p
ro

v
e
m

e
n
t
o
v
e
r

S
c
a
L
A

P
A

C
K

DxTer Improvement over ScaLAPACK on Intrepid

Gemm NN

Symm LL

Trsm LNN

Trmm LLN

Syr2k LN

Syrk LN

1 2 3 4 5 6 7 8 9 10
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Problem size (x10
4
)

P
e
rf

o
rm

a
n
c
e

 (
G

F
L
O

P
S

)

Trmm Performance on Intrepid

DxTer Optimized

Expert Optimized

ScaLAPACK

Figure 5.20: Performance of real BLAS3 functions. Problem size is 50,000 along all
dimensions for top graphs.

(only parallelizing refinements), and DxTer with optimization. In many cases, the

expert and DxTer produced the same implementations, but there were some notable

improvements. In all cases, DxTer generated implementations that were the same

or better than the expert.

For Gemm, the expert missed a number of transposition opportunities that im-

proved performance. DxTer determined when those transpositions were worthwhile

(the cost functions predicted runtime decreased) and generated code that incorpo-

rated the optimization.

For Trsm, DxTer again found a missed transposition opportunity in one vari-

ant. Figure 5.20 (top left) shows this is a modest improvement, but it is worthwhile

100

and it came without human effort. The improvement is greater for smaller prob-

lem sizes. Additionally, the expert had not implemented some of the Trsm versions.

DxTer had sufficient knowledge to generate code for all versions.

The greatest DxTer successes came when studying Trmm. DxTer has three

algorithms encoded for each of the “left-side” and “right-side” versions of Trmm.

DxTer explored all implementations of these algorithms and chose as best a different

algorithm than chosen by the expert. He did not explore the algorithm in Figure 5.1.

Figure 5.20 (bottom right) shows the performance of DxTer’s implementation over

the expert-optimized version.

Figure 5.20 (top right) shows many parameter combinations for the real

BLAS3 functions. We compare DxTer’s predicted-best implementations against

ScaLAPACK’s implementations. The majority of these are the same as Elemental,

so we omit its performance. Figure 5.20 (bottom left) shows a sample of these

functions across a range of problem sizes, demonstrating DxTer-generated Elemental

code performs better than or roughly equal to that of ScaLAPACK. Figure 5.20

(bottom right) shows the performance improvement DxTer gained when exploring

many algorithms for Trmm, choosing one that is better than what the expert developer

of Elemental used, highlighting the utility of automatic code generation.

5.3 LAPACK-Level Operations

We now examine results of using DxTer to generate more complicated code, i.e.,

LAPACK-level operations9. In some cases, DxTer generated the code before the bulk

of the BLAS3 work above was completed and in other cases it was generated after.

Either way, there is a lot of knowledge reuse when generating the code described in

9 This text was taken from [47]

101

Algorithm: A := Chol blk(A)

Partition A→
(
ATL ?

ABL ABR

)
where
ATL is 0× 0

while m(ATL) < m(A) do
Repartition

(
ATL ?

ABL ABR

)
→

 A00 ? ?

A10 A11 ?

A20 A21 A22

where A11 is b× b

Variant 1 Variant 2 Variant 3
A10 := A10tril(A00)−T

A11 := A11 − tril(A10A
T
10)

A11 := chol(A11)

A11 := A11 − tril(A10A
T
10)

A11 := chol(A11)
A21 := A21 −A20A

T
10

A21 := A21 tril(A11)−T

A11 := chol(A11)
A21 := A21 tril(A11)−T

A22 := A22 − tril(A21A
T
21)

Continue with(
ATL ATR

ABL ABR

)
←

 A00 ? ?

A10 A11 ?

A20 A21 A22

endwhile

Figure 5.21: Blocked algorithms for computing the Cholesky factorization. tril is
the lower-triangular portion of the matrix.

this section since the algorithms use BLAS3 operations as building blocks. In this

section, we use a mix of results from the BlueGene/P architecture, described above,

and a Xeon-based cluster based at the Texas Advanced Computing Center. We used

20 nodes, each with 2 Intel Xeon hexa-core processors running at 3.33 GHz. The

combined theoretical peak performance of all 240 cores is 3.2 TFLOPS.

5.3.1 Cholesky

The first operation targeted for code generation was Cholesky factorization. Cholesky

factorization takes as input a symmetric/Hermitian, positive-definite (SPD/HPD)

matrix A, which is stored in lower or upper triangular form, and outputs the

Cholesky factor such that A = LLT or A = UTU , depending on if the input is

102

lower or upper triangular. A is overwritten with its Cholesky factor. Figure 5.21

shows three variants of Cholesky factorization for a lower-triangular matrix.

The updates are largely BLAS3 operations (Trsm, Syrk or Herk, and Gemm).

These are discussed in Section 5.2. The remaining operation is Cholesky factoriza-

tion of a small block. In Elemental, this is implemented by gathering all input data

to distribution [∗, ∗] so all processes hold all of the data. Then, one calls a sequen-

tial implementation of Cholesky factorization. The result is then redistributed to

[MC ,MR] (which is just a local memory copy). Figure 5.22 shows the refinement

encoding this implementation knowledge. LChol has a cost of γ n3

3 .

DCholA A' LChol[MC,MR]→[*,*] [*,*]→[MC,MR]A A'

Figure 5.22: Refinement for Cholesky factorization.

All three Cholesky variants are encoded in DxTer, which yields 294 graphs

and chooses a variant 3 implementation as best. That output code is the same as

the expert implemented. Figure 5.23 shows performance results on a Xeon clus-

ter compared to ScaLAPACK. The “Inlined” results are from code generated by

DxTer if only refinements are applied (i.e., no optimizations). This demonstrates

how only calling parallelized implementations of the loop body operations hurts per-

formance because there are hidden inefficiencies. “Optimized 1” is the optimized

implementation without transposing optimizations while “Optimized 2” includes

those optimizations.

5.3.2 SPD Inversion

Cholesky factorization is a component of a more complicated operation, SPD In-

version [13] (and the complex analogue HPD Inversion). This operation takes an

103

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Problem size

P
e

rf
o

rm
a

n
c
e

 (
G

F
L

O
P

S
)

Cholesky Performance on Lonestar

Optimized 2

Optimized 1

Inlined

ScaLAPACK

Figure 5.23: Cholesky implementation performance on a Xeon cluster. Two-thirds
of peak is shown at the top of the graph.

SPD matrix A and inverts it using Cholesky factorization, triangular matrix inver-

sion (TriInv, and triangular-triangular matrix multiple (Trtrmm not Trmm): A :=

chol(A);A := A−1;A := AAT

Figure 5.24 shows the various algorithms for TriInv and Trtrmm. All of these

were encoded in DxTer, building on the same transformations that were used for

the BLAS3. Additional refinements for DTriInv and DTrtrmm updates were created

by copying the DChol refinement and replacing the node types because they can be

implemented with the same [∗, ∗] distribution.

The work in [13] demonstrated how some of the variants’ loops can be fused.

For example, variant 2 of TriInv and variant 1 Trtrmm can be fused. Choosing the

right variants of each of these operations allows all three to be fused. The result

is a loop body that enables many opportunities for optimization of redistributions

that are found in the various algorithms. Choosing the wrong variants, on the other

hand, limits fusion potential. With DxTer, multiple variants are always explored

and loop fusion is performed automatically when the loops are tagged as necessary

(Section 3.4). DxTer, therefore, finds the implementation with all operations’ loops

104

Algorithm: L := L−1

Partition L→
(
LTL 0

LBL LBR

) where
LTL is
0× 0

while m(LTL) < m(L) do
Repartition

(
LTL 0

LBL LBR

)
→

L00 0 0

L10 L11 0

L20 L21 L22

where A11 is b× b

TriInv Variant 1
L10 := L10L00

L10 := −L−1
11 L10

L11 := L−1
11

TriInv Variant 2
L21 := −L21L

−1
11

L21 := L−1
22 L21

L11 := L−1
11

TriInv Variant 3
L10 := L−1

11 L10

L20 := L20 − L21L10

L21 := −L21L
−1
11

L11 := L−1
11

Continue with(
LTL 0

LBL LBR

)
←

L00 0 0

L10 L11 0

L20 L21 L22

endwhile

Algorithm: L : LTL

Partition L→
(
LTL ∗
LBL LBR

) where
LTL is
0× 0

while m(LTL) < m(L) do
Repartition

(
LTL ∗
LBL LBR

)
→

L00 ∗ ∗
L10 L11 ∗
L20 L21 L22

where A11 is b× b

Trtrmm Variant 1
L00 := LT

10L10 + L00

L10 := LT
11L10

L11 := LT
11L11

Trtrmm Variant 2
L10 := LT

11L10

L10 := LT
21L20 + L10

L11 := LT
11L11

L11 := LT
21L21 + L11

Trtrmm Variant 3
L11 := LT

11L11

L11 := LT
21L21 + L11

L21 := LT
22L21

Continue with(
LTL ∗
LBL LBR

)
←

L00 ∗ ∗
L10 L11 ∗
L20 L21 L22

endwhile

Figure 5.24: Algorithms for TriInv and Trtrmm.

fused. Figure 5.25 shows the loop body of the fully-fused algorithm.

DxTer’s “best” implementation at this point was different than the expert’s

version. Since the DxTer-generated code was different, either the expert had missed

something or DxTer did not have all of the expert’s knowledge encoded (Sec-

tion 4.1.6). In this case, there were two missing pieces of expert knowledge (trans-

formations) that needed to be encoded in DxTer.

First, the optimization in Figure 5.26 was missing. Explicitly inverting a

105

A11 := Chol(A11)

A01 := A01A
−1
11

A00 := A00 +A01A
T
01

A12 := A−T11 A12

A02 := A02 −A01A12

A22 := A22 −AT
12A12

A01 := A01A
−T
11

A12 := −A−111 A12

A11 := A−111

A11 := A11A
T
11

Figure 5.25: Loop body of SPD matrix inversion.

triangular matrix can cause numerical instability. Instead of using the matrix in-

verse with Trmm, one can use the original triangular matrix with Trsm. Trsm does

not explicitly invert the matrix, so it slightly improves numerical stability. Upon

identification, this optimization was added to DxTer.

TriInv
Trmm

TriInvJ
L
K

J L

K

TrsmI I

Figure 5.26: Optimization to improve numerical stability slightly.

The other missing optimization, shown in Figure 5.27, reorders operations in

the implementation. Effectively, this exploits the associativity property of matrix

multiplication: (AL−1)B+C = A(L−1B) +C. Instead of using the result Trsm LLN

for the first input to Gemm, this transformation uses the result of Trsm RLN in the sec-

ond input. Reordering computation like this allows for subsequent communication

optimization.

106

LTrsm
RLN

LGemm
NN

A

B

C

L

LTrsm
LLN

A'

B'

C'

LTrsm
RLN

LGemm
NN

A

B

C

L

LTrsm
LLN

A'

B'

C'

Figure 5.27: Optimization to reorder operations: (AL−1)B + C to A(L−1B) + C.

With these additional optimizations, DxTer produces the same implementa-

tion as the expert developed. It is the culmination of 36 transformations and fusion

of the three operations’ loops. Figure 5.28 shows performance on a Xeon cluster.

This graph shows performance for both the non-fused DxTer code (optimized with-

out fusing the three loops) and the fully fused and optimized code. ScaLAPACK’s

implementation is shown, too. That implementation does not fuse the three opera-

tions, so they are called sequentially.

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Problem size

P
e

rf
o

rm
a

n
c
e

 (
G

F
L

O
P

S
)

SPD Inversion Performance on Lonestar

Optimized

Non−fused

ScaLAPACK

Figure 5.28: Performance of SPD Inversion on a Xeon cluster.

The TriInv and Trtrmm operations can be used individually, so we tested Dx-

Ter’s implementations of them, too. For TriInv, DxTer’s output code was slightly

different than the expert’s code. He had not applied the optimization of Figure 5.26,

so DxTer’s code was slightly more numerically stable. For TrTrmm, DxTer’s code was

107

different, but the cause was a coding error made by the Elemental developer. He

called a function with the wrong submatrix. DxTer’s code was correct (by construc-

tion). These are examples of how automated code generation can be useful. Knowl-

edge is used to develop code of particular interest and it is automatically applied to

all operations (as with the transposing optimizations applied to the BLAS3).

5.3.3 Two-Sided Problems

The generalized eigenvalue problem is formulated as Ax = λBx, where A is Hermi-

tian and B is HPD. Two-sided triangular solve (TwoSidedTrsm, A := L−1A−H) is em-

ployed to reduce the generalized eigenvalue problem to a standard Hermitian eigen-

value problem [7, 51]. Two-sided triangular matrix multiplication (TwoSidedTrmm,

A := LHAL) is used to reduce the generalized Hermitian-definite eigenvalue prob-

lem ABx = λx to a standard Hermitian eigenvalue problem [7, 51]. These two

related operations are built on BLAS functionality (as well as recursive calls on a

small block, implemented in a sequential LAPACK-level library).

With FLAME, one can derive five variants for each of these operations [51].

Figure 5.29 shows the best variant for each. We can encode the interesting variants10

in DxTer. We can again copy the DChol refinement, replace the operations, and

support refinements for DTwoSidedTrmm and DTwoSidedTrsm.

Using just this additional knowledge and existing BLAS3 knowledge (e.g.,

Trmm refinements and redistribution optimizations), DxTer can generate code for

these operations. The implementations require about 30 transformations (as op-

posed to four for the running Trmm example). Figure 5.30 shows the final imple-

mentation graph DxTer generates for TwoSidedTrmm. For both operations, DxTer

10One variant of TwoSidedTrmm has an extra O(n3) computation, so it is not considered for
implementation or encoded in DxTer as it is suboptimal on all reasonable architectures.

108

Algorithm: A := L−1AL−H and A := LHAL

Partition A→
(
ATL ATR

ABL ABR

)
, L→

(
LTL LTR

LBL LBR

)
, Y →

(
YTL YTR

YBL YBR

) where
ATL,
LTL,
and YTL

are 0× 0.
while m(ATL) < m(A) do

Repartition

(
ATL ?

ABL ABR

)
→

 A00 ? ?

A10 A11 ?

A20 A21 A22

,

(
LTL 0

LBL LBR

)
→

 L00 0 0

L10 L11 0

L20 L21 L22

,

(
YTL 0

YBL YBR

)
→

 Y00 0 0

Y10 Y11 0

Y20 Y21 Y22

where A11, L11, and Y11 are b× b

Variant 4 for L−1AL−H Variant 4 for LHAL
A10 := L−1

11 A10

A20 := A20 − L21A10

A11 := L−1
11 A11L

−H
11

Y21 := L21A11

A21 := A21L
−H
11

A21 := W21 = A21 − 1
2
Y21

A22 := A22 − (L21A
H
21 +A21L

H
21)

A21 := A21 − 1
2
Y21

Y10 := A11L10

A10 := W10 = A10 + 1
2
Y10

A00 := A00 + (AH
10L10 + LH

10A10)
A10 := A10 + 1

2
Y10

A10 := LH
11A10

A11 := LH
11A11L11

A20 := A20 +A21L10

A21 := A21L11

Continue with(
ATL ?

ABL ABR

)
←

 A00 ? ?

A10 A11 ?

A20 A21 A22

,

(
LTL 0

LBL LBR

)
←

 L00 0 0

L10 L11 0

L20 L21 L22

,

(
YTL 0

YBL YBR

)
←

 Y00 0 0

Y10 Y11 0

Y20 Y21 Y22

endwhile

Figure 5.29: Blocked variant 4 for computing A := L−1AL−H and A := LHAL.

109

generates an implementation that is slightly better than the Elemental developer’s.

In Figure 5.30 (which is digitally enlargeable), we highlight the code differences in

gray. They are the result of applying transposition optimizations. The appendix

details the derivation of this implementation.

A 0
0

A 1
0

A 2
0

A 1
1

A 2
1

L 1
0L 1
1

A 1
0'

A 0
0'

A 1
1'

A 2
0'

A 2
1'

Te
m
p

[M
C
,M

R
]→
[M

C,
*]

[M
C
,M

R
]→
[M

R,
*]
H

LG
em

m
NH

[M
C
,M

R
]→

 [*
,*]

[M
R,
*]
H
→
[*
,V

R]

[M
C
,M

R
]→
[*
,V

R]

LH
em
m

LL

[M
C
,M

R
]→

 [*
,*]

[M
C
,M

R
]→

[V
C
,*]

LT
rm

m
RL

N
[V

C
,*]
→

[M
C
,M

R
]

LT
wo

Si
de

d
Tr

mm
[*,
*]→

 [M
C
,M

R
]

[M
C
,M

R
]→
[*
,V

R]

LA
xp
y

[*
,V

R]→
[M

C
,M

R
]

LA
xp
y

LT
rm

m
LL

H
[*,
V R
]→

[M
C
,M

R
]

[M
C
,M

R
]→

[*,
M

C
]

LT
rr
2k

HH
HN

[M
C
,M

R
]→

[*,
M

R
]

[M
C
,M

R
]→

[*,
M

C
]

Figure 5.30: Final graph for TwoSidedTrmm with code improvements over hand-
developed code highlighted in gray

110

Figure 5.31 shows the performance of DxTer-generated code for TwoSidedTrmm

on the BlueGene/P machine. It shows the improvement of the optimized code

over ScaLAPACK. The refined but unoptimized DxTer code is also shown. The

performance of TwoSidedTrsm is almost identical to TwoSidedTrmm performance, so we

do not show it. Further, the hand-developed code is only slightly lower performing,

so we do not show it. Nonetheless, the optimizations DxTer found were worthwhile,

so they have been incorporated into Elemental.

2 4 6 8 10

x 10
4

0

5000

10000

15000

Problem size (x104)

P
e
rf

o
rm

a
n
c
e
 (

G
F

L
O

P
S

)

Two−Sided Trmm on Intrepid

DxTer Two−sided Trmm Optimized

DxTer Two−sided Trmm Unoptimized

ScaLAPACK Two−sided Trmm

Figure 5.31: Two-sided trmm performance on a BlueGene/P architecture. Two-
thirds of peak is at the top of the graph.

5.4 Locally-Best Search

While DxTer found many performance improvements over hand-developed code,

it is nonetheless impressive that the Elemental developer did so well. There are

so many implementation choices available (algorithms, parallelization schemes, and

optimizations) that he navigated. In this section, we give some insight into how the

Elemental DSL leads an expert to develop a valuable intuition for design decisions.

We are able to do so because with DxT we encode those design decisions explicitly.

111

There are “stair-stepped performance curves” in the implementation search space,

as shown in Figure 5.32 (Left) and explained in detail below. Steps arise from design

decisions and how good they are with respect to performance. Some decisions make

a big impact on performance (leading to a jump) and some make smaller impacts

(leading to different implementations that are close together).

Experts make their decisions so effectively when exploring a massive imple-

mentation space by learning, through experience, which design decisions are the

most important to get “right” (i.e., those that impact performance most). Further,

they know which options for those decisions are best because the options are lim-

ited by the DSL. We explain how we leverage this intuition to limit the number of

refinements DxTer explores. This significantly reduces the search space and makes

it tractable for some operations (along with the use of merged transformations and

simplifiers).

5.4.1 Implementation Clusters

DxTer estimates the cost of implementations to rank-order them and choose the

“best.” We described how cost estimates do not need to be very accurate with

respect to actual runtime as long as they rank order them correctly. They are good

enough to compare implementation choices to determine which are best.

With FLAME, one can derive three Cholesky factorization algorithmic vari-

ants, shown in Figure 5.21. We can use DxTer to explore the implementation options

for each of these. First, we explore the implementation of variant 3 since it has the

fewest options. The first update, A11 := chol(A11), has one refinement (paralleliza-

tion scheme in Elemental). The third update, A22 := A22 − tril(A21A
T
21), also only

has one option.

112

0 5 10 15 20 25
10

10

10
11

10
12

C
o
s
t
E

s
ti
m

a
te

 (
C

y
c
le

s
)

Implementation Number

Group
1

Group
2

Group
3

Figure 5.32: (Left) Costs and (Right) clusters of Cholesky variant 3 implementations
with k = 3.

The middle update, A21 := A21 tril(A11)
−T , has five options. Figure 5.4 (b)

shows the templatized refinement of Trmm on the right-hand side (with

π ∈ {∗,MC ,MR, VC , VR})11. With this refinement, the option of π = ∗ offers

no parallelization – all processes perform the same computation. The options of

π = MC or π = MR offer some parallelization with some redundancy. With π = VC

or π = VR, there is no redundancy; each process computes a different portion of the

result. These options trade off parallelism and communication cost. With enough

computation, additional communication cost is worthwhile to gain parallelism. The

best decision is mostly determined by the problem size while surrounding code is a

secondary consideration.

In Figure 5.32 (Left), we show the cost estimates of all implementations

DxTer generates for variant 3 with a problem size of 80,000. They are ordered

from greatest cost on the left to least cost (most efficient) on the right. In Fig-

ure 5.33 (Right), we show the result of clustering implementation costs with k-means

clustering (k = 3 here).

11 This refinement is actually further templatized in DxTer to represent Trsm, too, since the same
refinement works for both. The nodes are labeled if the triangular matrix is inverted (for Trsm) or
not (for Trmm).

113

0 5 10 15 20 25

10
14.2

10
14.3

10
14.4

C
o

s
t

E
s
ti
m

a
te

 (
C

y
c
le

s
)

Implementation Number

Group
1

Group
2

Group
3

Figure 5.33: (Left) Costs and (Right) clusters of Cholesky variant 1 implementations
with k = 3.

K-means clustering partitions data (implementation costs in this case) into

k clusters to minimize
∑k

i=1

∑
xj∈Ci

|xj − µi| where Ci is the ith cluster, xj is the

jth piece of data in Ci, and µi is the mean of the data in Ci.

The group on the left is significantly worse than the two groups on the

right. The group on the left uses the π = ∗ refinement, which an expert knows

is a bad choice for a large problem size. The variation within the group is due

to optimizations, which can only provide small performance changes once the bad

choice of π = ∗ is made. The lower-performing of the other two groups (the middle

group) consists of implementations using π = MC or π = MR and the best group’s

implementations use π = VC or π = VR. Thus, all implementations in the search

space can be separated based, largely, on which Trsm refinement is used.

Cholesky variant 1, like variant 3, has a Trsm operation, A10 := A10tril(A00)
−T .

The third operation is Cholesky, again, which has only one refinement. The second

operation is Herk, which only has one refinement. In Figure 5.33 (Left), we show the

cost estimates for variant 1 implementations. Again, there are three main groups

that are distinguished by the Trsm refinement one chooses, as demonstrated by the

clustering in Figure 5.33 (Right).

114

0 50 100 150 200 250
10

10

10
11

10
12

10
13

C
o
s
t
E

s
ti
m

a
te

 (
C

y
c
le

s
)

Implementation Number

Group
1

Group
2

Group
3

Group
5

Group
6

Group
4

Figure 5.34: (Left) Costs and (Right) clusters of Cholesky variant 2 implementations
with k = 6.

The stark difference between the three groups is important for human de-

velopers. DxTer uses a cost estimate of Trsm to determine which implementation

options are best. A human developer knows that the suboptimal Trsm refinements,

for a large problem size, are not worth even considering. Cost estimates lead an

expert to rule out the bad options so he does not have to consider them in the

context of other implementation options. Thus, he does not need to explore the

entire combinatorial implementation space. Instead, the cost estimates allow him

to prune consideration substantially. For this variant, one must only consider the

refinement of one interface. For more complicated algorithms with many operations

to implement/refine, being able to limit consideration is a great boon. Further, the

Elemental API / DSL makes it easy to recognize that decisions for Trsm, in this

case, are the most important to get “right” while redistribution optimizations are

less important. This is generally true across algorithms.

Cholesky variant 2 is more complex than the other variants. In addition to

Trsm, variant 2 has a Gemm update. Gemm has three refinements (Figure 5.3), so there

are 5 × 3 × 3 = 45 refinements of the algorithm (Trsm has 5 refinements). With

optimizations, DxTer generates 250 implementations of variant 2, the costs of which

115

are shown in Figure 5.34 (Left).

Recall that Trsm has three levels of parallelization within the five refinements.

This variant has 2 Gemm updates, but one accounts for a small amount of the overall

computation, so we only consider the large one (the third update, overwriting A21).

Gemm has three parallelization schemes, but we can think of one keeping the largest

matrix stationary while the other two do not. Therefore, Gemm has two basic schemes

like Trsm has three. Figure 5.34 (Right) demonstrates the result of clustering with

k = 6. Indeed, the 3 × 2 = 6 clusters from the refinements are clear. The right

three clusters (best performing) all use the Gemm refinement that keeps the largest

input (A20) stationary. The left three clusters use a combination of the other two

Gemm refinements. These are the main two clusters, which are clear to an expert

just looking at the algorithm because Gemm accounts for the majority of FLOPS

performed by the algorithm, so it is most important to get “right.” Within the

main clusters, the differentiation between the three subclusters is the class of Trsm

refinements used.

For this more complicated algorithm, the developer is again able to use cost

functions to make the important decisions: how to implement Gemm and Trsm. If

those decisions are not made correctly, he is stuck exploring a suboptimal cluster of

implementations. Once in the right cluster, he only needs to explore optimization

options. As finding the right cluster (i.e., pruning the search space) is made relatively

easy with cost functions, the developer spends most time optimizing. A developer

becomes an expert as he gains “intuition” of which refinements are best (i.e., which

lead to the best cluster) by gaining experience with the cost functions.

So what about choosing the right algorithmic variant? Cholesky has three,

so we would hope that one can use some intuition to guide to the best variant. Fig-

116

0 50 100 150 200 250 300
10

10

10
11

10
12

10
13

10
14

10
15

C
o
s
t
E

s
ti
m

a
te

 (
C

y
c
le

s
)

Implementation Number

Groups
1 and 2

Group
3

Figure 5.35: (Left) Costs and (Right) clusters of all Cholesky implementations with
k = 3.

ure 5.35 (Left) shows the costs of implementations of all variants. Figure 5.35 (Right)

shows the implementations clustered into three groups. The left two clusters both

use variant 1. Cluster 1 of Figure 5.35 (Right) uses the π = ∗ Trsm refinement for

variant 1 and Cluster 2 use the other Trsm refinements. Cluster 3 includes imple-

mentations of both variants 2 and 3. Even when clustering with a larger k, variant

2 clusters are intermingled with variant 3 clusters.

This clustering makes sense to an expert. Expert intuition is to use algo-

rithms rich in rank-k updates. Rank-k updates are characterized by computation

with a relatively small inner dimension (the k dimension) and (much) larger outer

dimensions. These generally perform well because rank-k updates parallelize well.

A10 := A10tril(A00)
−T in variant 1 is not a rank-k update and accounts for a ma-

jority of the algorithms’ FLOPS. It is a Trsm operation that is particularly bad with

all variant 1 implementations because A00 is redistributed to [∗, ∗], which is a very

costly communication (AllToAll). Thus, an expert knows to avoid variant 1, and

the clustering in Figure 5.35 (Right) visualizes this using cost functions to quantify

this intuition.

Thus, an expert can prune the search space substantially by ruling out the

117

Variant 1 Variant 2
Y21 := A22L21

A21 := A21L11

A21 := W21 = A21 + 1
2Y21

A11 := LH
11A11L11

A11 := A11 + (AH
21L21 + LH

21A21)
A21 := A21 + 1

2Y21
A21 := LH

22A21

A10 = LH
11A10

A10 = A10 + LH
21A20

Y21 = A22L21

A21 = A21L11

A21 = A21 + 1
2Y21

A11 = LH
11A11L11

A11 = A11 + (AH
21L21 + LH

21 ∗A21)
A21 = A21 + 1

2Y21
Variant 4 Variant 5
Y10 := A11L10

A10 := W10 = A10 + 1
2Y10

A00 := A00 + (AH
10L10 + LH

10A10)
A10 := A10 + 1

2Y10
A10 := LH

11A10

A11 := LH
11A11L11

A20 := A20 +A21L10

A21 := A21L11

Y10 := A11L10

A10 := A10L00

A10 := W10 = A10 + 1
2Y10

A00 := A00 + (AH
10L10 + LH

10A10)
A10 := A10 + 1

2Y10
A10 := LH

11A10

A11 := LH
11A11L11

Figure 5.36: Loop bodies for A := LHAL. Variant 3 is omitted because it performs
an additional O(n3) operations and is therefore never better than the other variants.

majority of refinement options that lead to the worst groups. In Section 5.4.2,

we explain how we replicate an expert’s intuition to limit the DxTer search space.

For choosing an algorithmic variant, one can occasionally rule out a variant with

larger-order computation as with the variant of TwoSidedTrmm in Figure 5.29.

One can also rule out a fraction of the variants with expensive non-rank-k-

update operations. That is, the expert thinks a few steps ahead: not just about

the computation cost of the algorithm but also available refinements about the

loop-body operations. He knows that non-rank-k-update operations do not have

good-performing refinements.

118

5.4.2 Locally-Best Refinements

Cholesky is fairly simple to implement in Elemental in terms of the number of

transformations required and the lines of code. TwoSidedTrmm, on the other hand, is

not. Figure 5.36 shows four of the five algorithmic variants presented in [51]. Each

of these is more complicated than Cholesky (in terms of the size of the search space

and number of lines of code). In exploring all implementations, DxTer’s search space

is too massive to enumerate fully.

Even when exploring only two variants, DxTer halted after a day of com-

putation when the system ran out of memory [46]. In Section 5.2.3 we presented

metaoptimizations (simplifiers and merged transformations) developed to limit the

search space sufficiently to explore two of the variants. Utilizing the lessons from

above, we can do better to enable DxTer to search all variants of the two-sided

problems.

DxTer explores implementations by refining interfaces (first phase), culling

graphs with interfaces, and then optimizing the remaining graphs (second phase).

As cost functions can lead one to distinguish the “good” group of refinement op-

tions from the “bad” group, DxTer can use cost functions to explore only the good

parallelizing refinements. By reducing the number of refinements applied in the first

phase, the combinatorial explosion of the second phase is limited.

The second phase for distributed memory can end with 100-times or more

implementations as it starts with, depending on the complexity of starting graphs.

Therefore, reducing the graphs generated in the first phase has a significant impact

on the total number of implementations searched.

In DxTer, there are two immediate subclasses of Transformation. SingleTrans

represents a single transformation. MultiTrans contains multiple refinements that

119

all apply to the same node type. When a MultiTrans applies to a particular node

type, the RHS graphs of the refinements are evaluated for their cost given the node’s

input sizes. The refinements are ordered by those RHS costs. DxTer can omit the

worst refinements, so only the n best refinements are explored. Effectively, this

leads to a greedy search in the first phase where only the best n refinements are ex-

plored. We call this the n-locally-best refinements. Optimizations might make some

of the locally-worst refinements better in the global search, but clustering shows

optimizations generally have lower-order performance effects.

Locally-Best Results

In Figure 5.37 (Top Left), we show the costs and of all TwoSidedTrmm variants’ imple-

mentations when only exploring the n-locally-best refinements using n = 2. DxTer

generated a total of 8,136 implementations. The best, as described in Section 5.3.3,

is slightly better than the hand-developed code because the Elemental developer did

not apply transposition optimizations. Even with such a limited search (i.e., n = 2),

DxTer generated a better implementation than an expert produced.

In Figure 5.37 (Top Right), the best group contains 680 implementations,

which have a mixture of variants. In Figure 5.37 (Bottom), we cluster with k = 50,

which is large enough to show many groups without having very small groups. The

best five groups (containing 569 implementations) all use variant 4 of the algorithm.

The sixth-best group (containing 52 implementations) use a combination of variants

4 and 5. This means that while 4 is the best variant to use, 5 is not “so bad” since

it is in the top 10% of implementations. A developer could have made the mistake

of using variant 5, but the expert developer was able to pick variant 4 as best

out of all of the options. In [51], performance of these four variants is tested on

120

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
10

10

10
11

10
12

10
13

10
14

10
15

C
o
s
t
E

s
ti
m

a
te

 (
C

y
c
le

s
)

Implementation Number

Groups
1-7

Group
8

Group
9

Group
10

Groups
1-29

Groups
30-36

Groups
37-44

Groups
45-50

Figure 5.37: (Top Left) Costs and (Top Right and Bottom) clusters of TwoSidedTrmm
implementations generated with on the two-locally-best refinements explored and
clustered with (Top Right) k = 10 and (Bottom) k = 50.

2,048 cores. Those results show that a variant 4 implementation outperforms other

variants and that a variant 5 implementation is better than variants 1 and 2, which

DxTer determined analytically.

Using the two-locally-best heuristic, DxTer is able to explore all of these

variants in four minutes on a dual-core system with 16 GB of memory instead of

running out of 96 GB of memory after a day of search without the heuristic and

generating millions of implementations (most of which were bad). With a three-

locally-best heuristic, DxTer generates 85,448 implementations and takes 52 minutes

and still outputs the same best implementation.

We only apply this search heuristic for BLAS3 interfaces and their paral-

121

lelizing refinements. It does not apply to the choice of algorithmic variant. As

demonstrated above, the choice between variants is difficult without exploring re-

finements. One can use a cost like FLOPS to remove, for instance, variant 3 of

TwoSidedTrmm. Since such excessively-expensive variants are not encoded in DxTer

in the first place, this does not reduce the search space. One could also construct a

cost function to penalize non-rank-k-update operations [41]. This is future work.

We use this heuristic for the operations described in this chapter, includ-

ing TwoSidedTrmm, and it leads to a significantly reduced search space. We have

found n = 3 to be a good balance between search space reduction and implemen-

tation quality. In cases where the search space can be fully enumerated without

the heuristic, DxTer outputs the same “best” implementation with n = 3 as with

no locally-best search. In the cases where full enumeration is not viable (due to

computation or space constraints), the heuristic still leads to the same or better

implementations than chosen by the developer of Elemental.

5.4.3 The Axpy Heuristic

This search heuristic does not “consider” the context of a refinement within the

graph12. It is possible for a refinement selected with only local consideration to lead

to a globally suboptimal implementation. Optimizations generally cross interface

boundaries, so they can make a two locally suboptimal refinements globally best by

removing an inefficient piece of code.

DAxpy is an interface for which this is common. Axpy implements y := αx+ y

where x and y are vectors or matrices and α is a scalar (it is a level-1 BLAS

operation). DAxpy performs O(n2) computation on O(n2) data, so the redistribution

cost is a significant component of the implementation cost – it is O(n2) and in

12 This section is adapted from [46].

122

practice the coefficient is larger than that for computation.

Redistributions are often optimized away across interface boundaries. For

higher-level BLAS3 operations, the communication cost is a lower order term com-

pared to the computation on large problem sizes, so locally-best choices that do not

consider redistribution optimizations are sufficient. Even for small problem sizes,

n-locally-best heuristics seem to perform well, but these are less of a consideration

anyway for distributed-memory DLA libraries. Axpy is different.

For DAxpy, we developed a special heuristic to limit the search space. DAxpy

refinements are templatized over a single distribution (Ω in Figure 5.38), which can

be instantiated with any Elemental distribution (Figure 5.2). That is ten refinements

of DAxpy. The algorithms in Figure 5.36 have two DAxpy operations, which lead to

a 100-times increase in the search space. In the context of the entire graph, x or y

can already be distributed as Ω or the output y′ could be redistributed as Ω as part

of refinements upstream or downstream of the DAxpy interface. In these cases, the

optimization to get rid of inverse redistributions (i.e., of Figure 5.13 (a)) applies to

get rid of an extraneous O(n2) cost. This optimization makes the DAxpy refinement

using that distribution worth exploring.

DAxpy
x

y
y'

LAxpy

[MC,MR]→Ω

[MC,MR]→Ω
Ω→[MC,MR]

x

y
y'

Figure 5.38: DAxpy refinements templatized on distribution Ω.

We use a simple heuristic to limit the ten refinements explored. For each

instantiation on Ω, DxTer searches the graph immediately around the interface in

CanApply. If an input or output is already distributed as Ω, then the refinement

is allowed. A subsequent optimization then removes one or more of the redundant

redistributions. Not only does this limit the search space considerably and result

123

in good implementations, but it also makes sense to an expert developer. If data is

already distributed in a particular way, an expert would reuse that distribution to

implement Axpy.

5.4.4 Are Heuristics Cheating?

One might consider adding a heuristic like the DAxpy refinement limitation a cheat

since we are not allowing DxTer to explore options and instead guiding DxTer to a

choice we already know is good. Similarly, the idea of merged transformations might

seem like a cheat. These are ways to limit the search space in a problem-specific

way (or interface-specific way). Depending on how one thinks about DxT, it is both

a way to encode expert knowledge and a way to empower an expert to be more

productive using an automated tool like DxTer. From that viewpoint, one should

encode the “tricks” or “rules of thumb” an expert uses.

When an expert does not trust his tricks or wants to test their efficacy, he

should not encode them and DxTer should search all options. If this leads to a

prohibitively large search space, then DxTer should be improved (maybe using a

MapReduce paradigm on a distributed-memory system [19] or similar engineering

optimizations). When an expert does trust his rule of thumb, though, it should be

encoded for DxTer to exploit just as he would manually. This improves DxTer’s

search time.

Further, this makes the trick explicit. Future developers can learn tricks

by examining the knowledge base or questioning how DxTer generates a particular

implementation. No longer will a developer’s hard-earned expertise vanish when he

leaves a project, and no longer will experts forget tricks after years of not using

them.

124

For now, the downside is that such tricks are embedded in the search space

exploration code instead of as an addition to the knowledge base. In the future,

we wish for such tricks to be encoded in a separate knowledge base used to guide

search. Domain-specific, target-specific, or general heuristics would be added to this

knowledge base as needed or desired.

5.5 Summary

We have encoded knowledge about DLA and Elemental to generate code automat-

ically that is the same or better than what an expert hand developed.

By making the implementation space explicit, we are able to recognize fea-

tures of distributed-memory DLA code. “Stairs” of performance show us which

design decisions impact performance the most (often parallelizing refinements) and

which have less of an impact (optimizations). This allows us to use a heuristic to

limit implementations to only the best stairs, which substantially reduces the search

space. We expect these lessons to apply to some other domains, providing similar

benefits to search / code-generation time.

125

Chapter 6

BLIS

We now talk about algorithm generation for multithreaded BLAS3 operations us-

ing BLIS as a DSL. We start with sequential implementations and add parallelism

to generate multithreaded implementations. With sequential versions, as with Ele-

mental, we endeavored to encode knowledge to produce algorithms just as an expert

would. With shared memory, on the other hand, an expert was developing new ways

to parallelize code and used DxTer to explore his ideas. We explain how DxTer al-

lowed the developer to explore his ideas quickly, relieving him of the rote and tedious

task of implementing all BLAS3 operations manually each time he had a new idea

(and fixing compilation errors and testing them for correctness)

6.1 BLIS Layering

Because DLA operations are usually recursive (with suboperations operating on

smaller problem sizes), algorithms are layered . As described in Chapter 3, this

means that an algorithm is chosen for the outer blocking, then another is chosen for

the next level, and so forth. until the problem is small enough to implement directly

126

with scalars and basic operations like addition and multiplication.

One of the highest-performance open-source BLAS libraries is the Goto-

BLAS, which is specialized for many architectures [28, 29]. This library implements

the BLAS3 using layered algorithms to keep particular pieces of data in specific

caches. In [29], cost models explained how Goto’s choices achieved high perfor-

mance. Code is specialized to particular architectures by adjusting algorithmic

blocksizes and by hand-coding kernels in assembly to optimize low-level CPU be-

havior (e.g., down to considerations of prefetching and out-of-order execution). Not

all library code had to be ported to a new architecture, but a lot of work is required

to tune assembly code.

BLIS is a new framework that enables one to instantiate a BLAS library (i.e.,

provide all of the functionality in the BLAS standard and more) relatively easily

by providing a small set of architecture-tuned kernels. BLIS provides functionality

layered on top of these kernels to implement BLAS operations.

BLIS uses the GotoBLAS algorithm structure with additional abstractions

to make porting easier. This simplifies encoding BLIS implementation knowledge

in DxTer; it would have been much more difficult with the GotoBLAS (if possible

at all) due to the irregular structure of its code and lack of abstraction. Without

good abstraction, code generation is more difficult as the target DSL is more com-

plicated and includes more primitives. More needs to be encoded to achieve the

same functionality (and performance in this case).

Here are some basics about a CPU’s cache structure, which motivates the

GotoBLAS and BLIS layering. CPU registers have very fast reads and writes, but

there are few of them. The level-1 (L1) cache holds much more data, but is slower.

The L2 cache is larger still and is slower than L1. Some processors have an L3

127

cache (larger and slower than L2). The registers and caches are on the processor,

which is then connected to main memory via a relatively slow communication bus.

Figure 6.1 shows this structure.

L1

Core

L2

L3

Main Memory

Processor

Figure 6.1: Cache and memory structure for single-core CPU.

For an operation like Gemm, we decompose a computation into a series of

smaller Gemm operations. We do that by employing layers of FLAME-derived algo-

rithms and target particular pieces of data at each layer for specific caches1.

6.1.1 Sequential Gemm Implementation

Figures 6.2, 6.3, and 6.4 show the three FLAME-derived algorithmic variants for

Gemm (copied from Chapter 3). They can be thought of as reducing the problem

size in a single dimension (m, k, and n, respectively) since they partition the input

matrices along those dimensions and the loop body is a Gemm operation itself with

a smaller problem size. This recursion is implemented with different algorithmic

variants, thus layering. We explain BLIS algorithm layering from the top (where

1One cannot instruct data to be bound to particular levels of cache, so one organizes computation
such that the processor’s cache eviction heuristics keep the data in the desired cache as much as
possible. Generally, the most recently used data is kept in the cache closest to the registers and
data is pushed to further-away caches as new data is accessed.

128

Algorithm: [C] := Gemm blk var1(A,B,C)

Partition A→
(
AT

AB

)
, C →

(
CT

CB

)
where
AT has 0 rows, CT has 0 rows

while m(AT) < m(A) do
Repartition

(
AT

AB

)
→

A0

A1

A2

 ,

(
CT

CB

)
→

 C0

C1

C2

where A1 has b rows, C1 has b rows

C1 := A1B + C1

Continue with(
AT

AB

)
←

A0

A1

A2

 ,

(
CT

CB

)
←

 C0

C1

C2

endwhile

Figure 6.2: Variant 1 of Gemm computes C := AB+C (Normal, Normal) or Gemm NN.

the size of the problem is arbitrarily large) down to a small size. Computation on

this small size is implemented with a BLIS-specific primitive called the macrokernel .

This is described later.

The outer-most algorithm partitions in the n dimension (Figure 6.4). We

call the block size used bn, which we specify later. Figure 6.5 demonstrates how this

loop partitions the full matrices (first row) in the n dimension into smaller problems

(shown on the second row). For the loop-body Gemm suboperation, the algorithm that

partitions in the k dimension (Figure 6.3) is used. We call the blocksize used for that

algorithm bk. The Gemm sub-operation for the k-dimension loop is a rank-k update,

shown in the third row of Figure 6.5 At this point, the Gemm suboperation/rank-k

update has a portion of B that is bk × bn, and there are two nested loops around

this operation.

Note that a different portion of the B matrix is read in each iteration while A

and C data are reread and/or rewritten across iterations of the outer or inner loop.

129

Algorithm: [C] := Gemm blk var2(A,B,C)

Partition A→
(
AL AR

)
, B →

(
BT

BB

)
where
AL has 0 columns, BT has 0 rows

while n(AL) < n(A) do
Repartition

(
AL AR

)
→
(
A0 A1 A2

)
,

(
BT

BB

)
→

B0

B1

B2

where A1 has b columns, B1 has b rows

C := A1B1 + C

Continue with

(
AL AR

)
←
(
A0 A1 A2

)
,

(
BT

BB

)
←

B0

B1

B2

endwhile

Figure 6.3: Variant 2 of Gemm computes C := AB+C (Normal, Normal) or Gemm NN.

This means that if we can bring the portion of B (referred to by B1 in Figure 6.3)

into cache and keep it there throughout the Gemm suboperation, the substantial cost

of reading bk× bn data from main memory is incurred only once and amortized over

O(2mbkbn) FLOPS. To this end, we try to keep the piece of B in the L3 cache.

Therefore, bk and bn are chosen such that the portion of B takes up as much of

L3 as possible without being evicted during computation. Generally, bk ≈ 256 and

bn ≈ 4, 096, but actual values are architecture-dependent.

Next, we use the m-dimension algorithm of Figure 6.2 to decompose the

suboperation further. The blocksize bm ≈ 256 is used. The suboperation uses all

of the bk × bn panel of B and multiplies it by a bm × bk block of A. We bring the

block of A into L2 once and structure computation such that it remains there for

the suboperation (as with B in L3 at the higher layer). This amortizes bm× bk data

reads over O(2bmbkbn) computations. bm and bk are typically chosen such that A

takes up about half of the L2. This suboperation is called a macrokernel in BLIS.

130

Algorithm: [C] := Gemm blk var3(A,B,C)

Partition B →
(
BL BR

)
, C →

(
CL CR

) where
BL has 0 columns, CL has 0 columns

while n(BL) < n(B) do
Repartition(
BL BR

)
→
(
B0 B1 B2

)
,
(
CL CR

)
→
(
C0 C1 C2

)
where B1 has b columns, C1 has b columns

C1 := AB1 + C1

Continue with(
BL BR

)
←
(
B0 B1 B2

)
,
(
CL CR

)
←
(
C0 C1 C2

)
endwhile

Figure 6.4: Variant 3 of Gemm computes C := AB+C (Normal, Normal) or Gemm NN.

We consider macrokernel as primitives for encoding knowledge and generat-

ing code. For consistency, though, we mention that a macrokernel is implemented

by layering the n-dimensional and then the m-dimension algorithms again, with

much smaller blocksizes (generally 4-8). The inner-most suboperation is sized to

bring A, B, and C elements into registers, compute the Gemm operation, and then

write the result back to C in main memory. This inner-most suboperation is called

the microkernel in BLIS. Within a macrokernel, a small portion of B is pulled from

the L3 cache into the L1 cache and remains there for microkernel calls.

In the GotoBLAS, macrokernels were assembly-coded for particular archi-

tectures. In BLIS, a macrokernel is architecture-agnostic and it is the microker-

nel that is specialized. Thus, somebody porting BLIS to a new architecture only

needs to implement the relatively small suboperation in architecture-specific code

to get good performance2 This makes BLIS much easier to port [65]. Further, with

architecture-specific details only in the lowest layers of code, BLIS is both easier to

understand [65] and to encode as DxTer knowledge.

2The microkernel is implemented by layering more of the FLAME-derived algorithms and ap-
plying standard loop transformations like unrolling.

131

+= *

+= *

+= *

+= *

+= *

Packed

L3L2

L3

n-dimension
partition

k-dimension
partition

m-dimension
partition

Figure 6.5: Partitioning of Gemm in BLIS.

BLIS was developed to reduce the number of specialized functions used to

implement each operation (and reduce the number of functions to port to a new

architecture). The result is fewer primitives for which to encode knowledge in DxTer.

From the experience of developers, the time required to port BLIS is hours to days

instead of weeks, as with the GotoBLAS.

132

6.1.2 Packing

One additional piece of design knowledge is essential to performance. Cache eviction

policies are very sensitive to the structure of data being read/written. Data is often

stored in memory such that there is a large stride to access each successive element.

This would lead to the data being evicted from cache and reread from main memory

even if the same submatrix is reread in each iteration of a loop. To avoid this, data

is packed . A physically-contiguous piece of memory [29, 62] is used as a buffer .

The portion of B reused within a rank-k update or the portion of A reused within

a macrokernel is packed into the buffer. This means the data is read from main

memory and written to the buffer in a different format [29, 62]. Roughly, packing

transposes data as needed and puts every 4-8 elements of the data together in the

buffer. This allows the microkernel to pull contiguous elements from the buffer into

registers. A macrokernel accesses data carefully so the B buffer stays in L3 and the

A buffer stays in L2.

Data movement like this seems inefficient, but there is an O(n3) computation

performed on O(n2) data. The cost of packing is amortized across computation (the

data has to be read from main memory at least once anyway) and the benefit of

keeping data in cache improves performance considerably – so data is pulled from

the cache and not pulled from main memory on each read [29, 62]3. C is not packed

because it is read less often by the microkernel and a well-implemented microkernel

hides the cost of reads and writes behind computation. The packing operations are

architecture-agnostic in BLIS and are not specialized. We consider them primitives

in our work.

Other BLAS3 operations are implemented in a similar way because all of

3If the L3 cache does not exist on a target architecture, the cost of rereading data from main
memory is still decreased considerably after packing B.

133

their algorithms have loop-body suboperations that are either the operation itself

or the operation and Gemm (as with Figure 5.1). Thus, implementation knowledge

about Gemm, like what we explained above, is used throughout BLAS3 operations.

Further, knowledge about layering loops for the n, k, and m dimensions (in that

order from top down) is repeatedly applied for all BLAS3 operation versions.

Some operations (e.g., Trmm) require a special macrokernel that is built on

the Gemm microkernel. Trsm requires a special microkernel [62]. Others use the Gemm

macrokernel by specially packing data. For example, Symm computes C := αAB+βC

like Gemm, but A is symmetric. That means that either the data above or below the

diagonal are not stored since it is the same as the data across the diagonal. When

packing A for Symm, data are explicitly copied from across the diagonal, so it is in the

form expected by the Gemm macrokernel. Most other operations can similarly copy

data in a special way or zero-out data for specially-structured matrices and then

use the standard Gemm kernels. Trmm is implemented by zeroing-out data above or

below the diagonal for the triangular matrix for small blocks along the diagonal such

that the Gemm microkernel can be used. This reuse of computation kernels leads to a

significant improvement in porting productivity. One only needs to implement the

Gemm and Trsm microkernels to attain high performance for all BLAS3 functionality.

6.1.3 DxTer Encoding

For each version of the BLAS3 operations, FLAME provides a family of derived al-

gorithmic variants. Each variant partitions computation in one or more dimensions,

so algorithms are layered to decompose in the n, k, and m dimensions, in that order,

just like Gemm. The inner most computation is then properly sized for macrokernels

(bm × bk × bn).

134

To generate all versions of the BLAS3 operations, DxTer was augmented

with new node/box types like the packing operations and macrokernels. Further,

loops were extended to output not just Elemental-style loops (with Elemental-style

submatrix partitioning) but also BLIS-style loops.

Lastly, the Elemental BLAS3 nodes/boxes were extended to represent BLIS

operations. We did not need to develop an entire node class hierarchy of BLAS3

operations since it already existed for Elemental. Existing Elemental nodes were

augmented to hold a label to specify if the node is an Elemental, a BLIS, or another

flavor of BLAS3 node (to enable future work). This is when the layer labels discussed

in Section 3.3.1 were added. Transformations could then be applied to nodes with

specific labels (e.g., BLIS-specific Gemm transformations).

Additionally, the nodes’ graph-to-code functionality was augmented to out-

put BLIS code. As nodes were reused, we could utilize all of the algorithm re-

finements enumerated in Figure 5.17. The transformations were easily templatized

using layer labels to specify if they work on Elemental or BLIS node types. We

expect the work updating the nodes and transformations is largely a one-time effort

because they are now templatized to support other libraries. In the future, just the

output code behavior needs to be added for a new target DSL (e.g., for GPUs).

With these changes, DxTer generates code for all BLAS3 operations. Fig-

ure 3.4 list the versions of BLAS3 operations. Only 36 of those needed to be imple-

mented since BLIS uses a form of templatization so the real-datatype code works for

complex datatype operations, too. All 36 pieces of generated code are effectively the

same as hand-developed. Hand-developed code has a different style than DxTer pro-

duced code, with a negligible difference in performance between the two approaches.

Note that there is not much of a search space as the preferred implementation for

135

each operation is known in terms of loop layering, use of primitives, and so forth.

6.2 Parallelizing for Shared Memory

Multithreaded CPUs have the same levels of cache as sequential, but more threads.

Figure 6.6 visualizes this with two-way sharing at each point. Instead of talking

about a core, we now talk about threads (there may be multiple threads per core).

There can be multiple threads sharing a single L1, multiple L1 caches per L2, mul-

tiple L2 caches per L3 (if it exists), and multiple processors sharing main memory.

In each case, there is communication among lower-level resources – threads

sharing an L1 cache can communicate directly or through the L1 cache. Details of

how this communication works are generally lower level than a BLAS developer con-

siders, so we do not discuss them further. If two threads access the same memory,

the hardware handles communication between resources. The developer only ex-

plicitly considers locking to prevent race conditions and which resources are shared

(and therefore cost less to access together).

6.2.1 Parallelization Heuristic

Previously, we described how we want a block of A to stay in L2, a panel of B in L3,

and a small portion of B to stay in L1. This is known to reduce data communication

between main memory and cache layers [29]. In [57], BLIS’s Gemm is parallelized in

a way that tries to keep data in the same levels of cache. All of the threads that

share that cache also share the stored data to complete the computation together.

The idea is that one wants to reduce data movement between caches (analogous to

reducing data movement between processes with distributed-memory computing)

using a heuristic to guide how computation is parallelized.

136

L1

thread

L2

L3

Main Memory

Processor

thread

L1

thread thread

L1

thread

L2

thread

L1

thread thread

L1

thread

L2

L3

Processor

thread

L1

thread thread

L1

thread

L2

thread

L1

thread thread

Figure 6.6: Cache and memory structure for a multicore CPU.

A heuristic here is an experienced-based way to design software. It is not

guaranteed to lead to the best design, but in this case it is the way a knowledge-

able developer chooses to implement algorithms without exploring and testing all

possibilities. The heuristic we present below is a way to achieve good performance,

but it will have to be adapted for other architectures, especially future many-core

systems.

This type of parallelism is similar to that of Elemental: data parallelism,

where each thread performs the same operation (i.e., running the same code) with

different data. To accomplish this, we take the sequential code above and parallelize

the loops such that different threads (or groups of threads) get disjoint portions of

the loops’ iterations. We now walk through the layers of algorithms and describe

which are parallelized and to what degree with this heuristic.

Note that the algorithm of Figure 6.3 has a dependency between iterations.

137

The C matrix is both read and written in each iteration. This means if the loop is

parallelized (e.g., two threads compute disjoint iterations), there must be a mutual-

exclusion lock on C to prevent a race. This serialization limits scalability of par-

allelism. With the other algorithms, each iteration of the loop accesses a different

portion of C, so they have no such dependency.

We now consider the two remaining Gemm algorithms for parallelization. In

Figure 6.4 (the outer Gemm loop), the B and C matrices are partitioned in the n

dimension. In each iteration, B is further partitioned in the k dimension by the

inner loop and the bk × bn submatrix is packed and meant to stay in L3. Following

the heuristic, we want all of the threads sharing the same L3 (i.e., all the threads

on a processor) to use the same portion of B.

This means that we can parallelize the n-dimension loop such that for an

iteration, all threads on a single processor (i.e., one L3) are assigned that iteration.

Then, the k-dimension loop is run on all threads concurrently. Within that loop, the

threads on the processor work together to pack the same portion of B and then work

together to perform the rank-k update. We divide iterations of the n-dimension loop

evenly between all of the processors.

We now have a portion of the Gemm that each processor must complete. We

are left with the m-dimension loop (Figure 6.2) around a macrokernel. In each

iteration of that loop, a portion of A is packed and meant to stay in the L2 for

macrokernel execution. This means that all threads that share an L2 should work

together to perform each iteration of the m-dimension loop. They work together

to pack A and then work together within a macrokernel. Thus, we parallelize the

m-dimension loop such that the L2s on each processor are given a roughly equal

portion of the m-dimension loop’s iterations.

138

Within a macrokernel, there are n and m-dimension loops. The n-dimension

loop pulls a small portion of B into L1 and calls the microkernel. This loop can

be parallelized across L1 caches. The m-dimension loop within can be parallelized

across threads sharing the L1 cache.

6.2.2 Communicators

To parallelize sequential Gemm as described above, threads that share a resource need

to be able to communicate with each other (e.g., share data, locks, and barriers).

Further, we need to be able to divide iterations into portions for the various re-

sources. Think of this as having the entire n dimension of the Gemm problem broken

up based on how many processors there are. To enable this, we use hierarchical

thread communicators based on the structure of Figure 6.6. A hierarchical thread

communicator is a structure that keeps track of threads involved in each commu-

nicator so communication can take place and each communicator is aware of how

many sub-communicators it has. This idea comes from communicators in MPI,

which partitions processes into groups to enable group-wide communication [58].

Figure 6.7 shows the hierarchical communicator structure that mirrors the

architecture of Figure 6.6. Each communicator enables communication across all

of the threads it includes (e.g., ProcComm communicator includes all threads on the

processor as shown in Figure 6.7). Further, there is a function that takes the size

of a matrix dimension (e.g., n) and the communicator over which to parallelize

(e.g., GlobalComm , which includes all threads on the system), and splits up the

length of the dimension into equal chunks over which each sub-communicator (e.g.,

ProcComm) is responsible for computing. If there are no sub-communicators for a

communicator used to parallelize (e.g., if there are not multiple processors), there

139

is no parallelization for the loop.

L1Comm

thread

L2Comm

ProcComm

GlobalComm

thread

L1Comm

thread thread

L1Comm

thread

L2Comm

thread

L1Comm

thread thread

L1Comm

thread

L2Comm

ProcComm

thread

L1Comm

thread thread

L1Comm

thread

L2Comm

thread

L1Comm

thread thread

Figure 6.7: Communicator layout to mirror the architecture of Figure 6.6.

6.3 Encoding Multithreaded Parallelization

Once the heuristic for Gemm parallelization was developed, we went about encoding

optimizations to parallelize sequential Gemm code with DxTer. DxTer produces the

same code as before and then optimizations tag loops, packing operations, and

macrokernels with communicators to parallelize them. Three new transformations

were added to parallelize the n and m-dimension loops and the macrokernels. The

output code for the loops and the primitives needed to be changed, which was

easy. Loops and the primitives were extended to include a communicator tag, which

denotes if and how they are parallelized.

Cost estimates were updated for parallelized loops and primitives by only

counting 1
p of the iterations or computation, where p is the number of threads in

the communicator. A small penalization was added per thread for a barrier (so

DxTer would avoid expensive barriers among many threads). Further, there is a

penalization when a buffer is packed among many threads across the targeted cache

since there is an execution-time cost to bring the data together on all caches.

140

Algorithm: [B] := Trsm lln(L,B)

Partition L→
(
LTL LTR

LBL LBR

)
, B →

(
BT

BB

) where
LTL is 0× 0,
BB is n× 0

while m(LTL) < m(L) do
Repartition

(
LTL LTR

LBL LBR

)
→

 L00 L01 L02

L10 L11 L12

L20 L21 L22

,

(
BT

BB

)
→

B0

B1

B2

where L11 is b× b , B1 has b rows

B1 := L−1
11 B1 (Trsm)

B2 := B2 − L21B1 (Gemm)

Continue with(
LTL LTR

LBL LBR

)
←

 L00 L01 L02

L10 L11 L12

L20 L21 L22

,

(
BT

BB

)
←

B0

B1

B2

endwhile

Figure 6.8: Variant of Trsm: left, lower, non-transposed and the DxT representation
of the loop body.

Not all loops can be parallelized. For example, the k-dimension loop for Gemm

cannot be parallelized except if locks are added. Further, some FLAME-derived

algorithms cannot be parallelized at all because there is a dependency between one

iteration’s results (outputs) and the next iteration’s operands (inputs). The Trsm

RLN algorithm of Figure 6.8 cannot be parallelized since there is a dependency carried

on the B2 submatrix. DxTer could be augmented to perform dependency analysis

to determine if a loop could be parallelized. This is a solved problem [41, 43] for

DLA. As DxTer is meant to be research vehicle, we took an easier route.

With FLAME and the work of [41], we can easily determine if a given algo-

rithm has independent iterations (meaning they can be parallelized). It takes less

than a minute to prove or disprove independence of iterations formally by hand for

any algorithm [41]. Therefore, we manually did this for each BLAS3 refinement and

tagged loops if they could be parallelized. For now, this is a form of expert knowl-

141

edge we encoded manually. It was an analysis that a person would have performed

manually if developing code by hand. Now it is encoded once and reused.

6.3.1 Quick Results

With these changes, DxTer-generated parallel Gemm code just as an expert devel-

oper. At the time of our work, the heuristic had been manually applied only to the

four versions of Gemm, so BLIS did not include parallelization for any other BLAS3

operations. DxTer was able to parallelize all operations immediately, and two cor-

rectness bugs (in the DxTer knowledge base) were quickly discovered when testing

parallelized output code.

For the first error, note the dependency between the two loop-body opera-

tions in Figure 6.8. The output code of DxTer was such that multiple threads were

working on the first and second operations. Some threads might finish the first op-

eration before others and start on the second with incomplete results. The solution

was for DxTer to add a barrier in such situations. A barrier takes a communicator

(in this case, the communicator over which the first operation is parallelized) and

holds the communicator’s threads in wait until all of the threads reach the barrier,

meaning that all threads have completed the work before the barrier.

The second error was the result of some loops not being parallelizable. For

some versions of Trsm (four of the eight), the n-dimension loop cannot be parallelized

because the iterations are not independent. As desired, DxTer did not parallelize

these loops, but the output code was still wrong. The implicit assumption was that

all communicators in the hierarchy would be used. Therefore, the threads at the

bottom of Figure 6.7 would each have different pieces of data. When the outer-most

loop did not partition data among the ProcComm communicators, this assumption was

142

not valid. Within a processor, each thread had different data, but each processor

was performing the same computation, which created race conditions. The solution

was for DxTer to inspect the loops and primitives nested within the loops to make

sure all communicators in the hierarchy were used. If they were not, then additional

code was added to only have the root group perform the computation (e.g., only the

first ProcComm would perform the computation).

These two errors did not happen with Gemm because it did not have similar

dependencies. The errors were quickly discovered when testing DxTer output code

and easily fixed in one place such that DxTer would then generate correct parallel

code for all BLAS3 operations, not just the single operation tested and fixed. Thus,

DxTer generated code that people did not yet have the time to implement by hand.

6.3.2 DxTer as a Productivity Enhancer

At this point, the heuristics for Gemm were not quite sufficient for high-performance

implementations of some BLAS3 operations. When loops are not parallelized and

only the root group performs computation, threads sit idle. New heuristics were

needed to improve parallelism. In these cases, DxTer was used to experiment with

new heuristics for parallelization. Each time new heuristics were added, all BLAS3

operations could be re-generated with the new heuristics (in less than a minute)

to evaluate how they impacted all implementations. This is a form of performance

validation while developing software (i.e., developing new parallelization schemes)

and is a productivity enhancer

What were these new heuristics? First, since some loops could not be paral-

lelized, a new communicator hierarchy was developed, shown in Figure 6.9. When

the n-dimension loop is not parallelized, this hierarchy enables parallelization of the

143

m-dimension loop across all L2s instead of only parallelizing across the root proces-

sor’s L2s. Also, when the m-dimension loop cannot be parallelized by ProcComm (i.e.,

across L2s), a macrokernel within is parallelized by ProcComm instead of by L2Comm.

These heuristics applied to most of the 16 versions of Trsm and Trmm. When added,

DxTer verified that this heuristic is no better than the Gemm heuristics on other

BLAS3 operations because of associated data movement cost between processors

(performance was re-validated for all operations).

L1Comm

thread

L2Comm

GlobalComm

thread

L1Comm

thread thread

L1Comm

thread

L2Comm

thread

L1Comm

thread thread

L1Comm

thread

L2Comm

thread

L1Comm

thread thread

L1Comm

thread

L2Comm

thread

L1Comm

thread thread

Figure 6.9: Alternative communicator layout that skips the ProcComm layer.

Some operations do not have the same amount of computation for all columns

in the matrix. Symmetric rank-k update (Syrk), for example, updates a triangular

matrix. A lower triangular matrix has more rows in the left-most columns than in

the right-most columns. Partitioning such that all processors get an equal number

of columns means one processor gets significantly more work. The solution is to

partition work in non-equal portions for such operations. This is a simple optimiza-

tion to implement, where a parallel loop is tagged to use non-equal partitioning for

parallelism. This applied to the eight versions of Syrk and Syr2k.

Operation by operation, generated BLAS3 code was manually inspected.

When an expert BLAS3 developer had new idea for optimizing code, it was added

to DxTer. All BLAS3 code was then re-generated, so the idea would immediately be

144

evaluated in the context of all operations. Having optimizations immediately applied

throughout all code was a great productivity enhancer and performance validator

while developing novel code – DxTer allowed experts to explore implementation

possibilities much faster than could have been done manually. Further, after the

two initial bugs were fixed, all code was correct each time it was regenerated with

new optimizations.

A side note on DxT – we found that decomposing implementations in terms

of small transformations was useful. This explains how we improved existing imple-

mentations by adding new rules. There seems to be great pedagogical and practical

value in doing so. For example, we explained multithreaded implementations via

transformations in this chapter.

6.4 Performance Results

Our most important results come from how quickly we generated BLAS3 code and

made far-reaching changes in that code by adding transformations to DxTer. As

of this writing, BLIS still only has hand-coded, multithreaded implementations of

the four Gemm versions. With DxTer, we were able to generate all other BLAS3

implementations quickly. Here, we present performance results of some of the real

BLAS3 operations to confirm the quality of DxTer’s output code.

The digitally enlargeable Figure 6.10 shows results with two Intel Xeon E5

(Sandy Bridge) octo-core processors. Each processor has one L3 cache, eight L2

caches, one L1 per L2, and one thread running on the single core attached to the

L1. Each core has a peak performance of 21.6 GFLOPS, so the peak of all 16 is

345.6 GFLOPS.

The digitally enlargeable Figure 6.11 shows results from a system with four

145

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

2

4

6

8

10

12

14

16

Problem Size

S
p

e
e

d
u

p

Speedup of Parallel DxTer over Sequential BLIS

Gemm NN

Symm LL

Syrk LN

Trmm LLN

Syr2k LN

Trsm LLN

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0.5

1

1.5

2

2.5

3

Problem Size

Im
p

ro
v
e

m
e

n
t

Improvement of Parallel DxTer over Parallel MKL

Gemm NN

Symm LL

Syrk LN

Trmm LLN

Syr2k LN

Trsm LLN

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

2

4

6

8

10

12

14

16

Problem Size

S
p

e
e

d
u

p

Speedup of Parallel DxTer over Sequential BLIS

Gemm TT

Symm RL

Syrk UN

Trmm RLN

Syr2k UN

Trsm RLN

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0.5

1

1.5

2

2.5

3

Problem Size

Im
p

ro
v
e

m
e

n
t

Improvement of Parallel DxTer over Parallel MKL

Gemm TT

Symm RL

Syrk UN

Trmm RLN

Syr2k UN

Trsm RLN

Figure 6.10: (Left) Speedup of DxTer-generated multithreaded code over sequential
BLIS code. (Right) Improvement of DxTer-generated multithreaded code over MKL
multithreaded code. The results are from 16 cores of Xeon E5.

Intel Xeon 7400 hexa-core processors. This contains four L3 caches, three L2 per

L3, two L1 per L2, and one thread per L1. Each core has a peak performance of

10.6 GFLOPS, so the peak of all 24 is 254.4 GFLOPS.

We compare against Intel MKL [3] version 11.1, which is the trusted, high-

performance, vendor-optimized BLAS library for these architectures. The two ar-

chitectures, due to different memory hierarchies, require DxTer to generate different

amounts of parallelism at various levels.

In the left-side graphs, we show the speedup running on all cores versus

146

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

2

4

6

8

10

12

14

16

18

20

22

24

Problem Size

S
p

e
e

d
u

p

Speedup of Parallel DxTer over Sequential BLIS

Gemm NN

Symm LL

Syrk LN

Trmm LLN

Syr2k LN

Trsm LLN

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0.5

1

1.5

2

2.5

3

Problem Size

Im
p

ro
v
e

m
e

n
t

Improvement of Parallel DxTer over Parallel MKL

Gemm NN

Symm LL

Syrk LN

Trmm LLN

Syr2k LN

Trsm LLN

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

2

4

6

8

10

12

14

16

18

20

22

24

Problem Size

S
p

e
e

d
u

p

Speedup of Parallel DxTer over Sequential BLIS

Gemm TT

Symm RL

Syrk UN

Trmm RLN

Syr2k UN

Trsm RLN

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0.5

1

1.5

2

2.5

3

Problem Size

Im
p

ro
v
e

m
e

n
t

Improvement of Parallel DxTer over Parallel MKL

Gemm TT

Symm RL

Syrk UN

Trmm RLN

Syr2k UN

Trsm RLN

Figure 6.11: (Left) Speedup of DxTer-generated multithreaded code over sequential
BLIS code. (Right) Improvement of DxTer-generated multithreaded code over MKL
multithreaded code. The results are from 24 cores of Xeon 7400.

running on one for a sample of the real BLAS3 operations across a range of problem

sizes. In the right-side graphs shows how that performance outperforms MKL (1 is

the same performance and higher is better for DxTer). We only show two variants

for each of the real-datatype BLAS3 operations because we had similar results for

the others.

MKL performance of Syr2k LN in Figure 6.11 (top right) is very slow for small

problem sizes, so DxTer’s code’s performance looks especially good by comparison.

DxTer’s Syrk and Syr2k code does not speed up well in Figure 6.11 (left). This is

147

likely a load-balancing issue that requires additional heuristics, which we will add

to DxTer in the future. Still, these DxT implementations perform well compared to

MKL.

The key here is that a developer added, piece by piece, new implementation

knowledge (parallelizing optimizations) to DxTer and got parallelized code just as

he would have created by hand. The difference is that the code is more trusted for

correctness AND more trusted for performance since a system evaluated all of the

implementation options for each operation.

6.5 Heuristics vs. Testing

For Elemental, we encoded all parallelization refinements, and DxTer used cost

estimates to choose the best. For BLIS, we encoded heuristics that led to a limited

number of parallelization options. Cost functions were also used, but they only had

to differentiate between a small number of options. One might ask why did we do

this?

First, there are simply fewer implementation options that an expert would

consider. The heuristics developed with BLIS are based on expert decisions on

what to consider. That is the knowledge we want to encode. There are valid

implementation options that are known to be always bad, so they need not be

encoded.

Further, the cost estimates for multithreaded implementations are not as

good at rank ordering because smaller-order terms are more difficult to predict

accurately. An expert often makes design decisions with a heuristic or simply justifies

one implementation choice over another and applies it throughout a library of code.

If improved cost functions are developed, they can be incorporated into DxTer and it

148

become even more powerful in searching through options with BLIS code generation.

In the future, we might encode all options. Then, the search space is larger

and cost functions are less able to pick out the best implementation. Cost functions

could still omit bad implementations (e.g., avoid idle cores or load imbalance). For

the remainder of the search space, the code would have to be generated, compiled,

and run for fitness evaluation. This is similar to auto-tuning approaches [63] or

other code generation approaches [52] described in Section 1.5. Choosing an im-

plementation this way is viable when a single run is short (unlike with distributed

memory). There is still a benefit of using DxTer in this case since the expert would

not have to create all implementations manually and he would trust the output code

as functionally correct.

For now, though, the performance results and analysis of generated code by

an expert developer show DxT is both powerful and practical as-is. In the future, we

could explore these options for DLA or for other domains targeted for automation

with DxT.

6.6 Summary

By exploiting layer-templatized refinements, algorithms encoded for distributed-

memory targets were easily retargeted for sequential and shared-memory architec-

tures. Adding some hardware-specific refinements, we could generate high-performance

sequential BLAS3 code.

Then, we used DxTer as something of a high-level compiler for a software

engineer developing parallelization schemes for shared-memory targets. Instead of

requiring him to re-analyze and re-implement code manually with each new par-

allelization idea, the idea was encoded and added to DxTer as an optimization so

149

DxTer would perform the rote development work.

This study demonstrates the utility of code generation to aid a developer

and the reusability of knowledge encoded in the DxT style.

150

Chapter 7

Conclusion

If I had asked people what they wanted, they would have said faster

horses.

–Henry Ford

We have presented Design by Transformation (DxT) as a way to encode

software-design knowledge. Our thesis was that dense linear algebra (DLA) algo-

rithms can be encoded as graph transformations in the DxT style, which enables

automatic code generation. We demonstrated this with distributed-memory and

multithreaded targets for BLAS3 operations, among others. The main benefit, as

we showed, is automatically generated code that is trusted for correctness and per-

formance. Further, we demonstrated that transformations hold pedagogical value

as we used them to explain the design decisions that lead to good code.

7.1 Contributions

We now summarize the main contributions of this dissertation.

151

7.1.1 A DLA Representation in DxT

We developed a representation of DLA algorithms and implementations in dataflow

graphs. It is important to have a domain’s software in a form that enables one to

encode design knowledge. If making and implementing important design decisions

in a DSL is entangled with minor details, the software is difficult to understand

and encode. The DSLs we targeted do not have this problem. Beyond this, the

representation of clean software and design knowledge about it in DxT is not obvious

or trivial. The refined representation we presented is a significant contribution of

this work.

Using templatized node types, we reuse basic domain algorithmic transfor-

mations across architectures. We also encoded architecture-specific transformations

to target those algorithms to distributed-memory, sequential, and multithreaded ar-

chitectures. This representation enabled us to generate code that either performed

the same as or better than expert-developed code or to generate novel code that

had not yet been developed.

We believe similar results can be shown for other architectures (e.g., GPUs)

in the future by adding target-specific design knowledge and reusing much of the

already-encoded knowledge.

7.1.2 A Prototype Generator

DxTer is a prototype to generate high-performance code. One inputs a graph rep-

resenting functionality (e.g., a collection of domain-specific functions forming an

algorithm) that DxTer is to implement in code for a particular architecture. Do-

main transformations (e.g., basic algorithms) and target-specific knowledge (e.g.,

parallelizing refinements and cost functions) are also input to DxTer to enable it to

152

implement and optimize desired functionality. DxTer enumerates a search space of

implementations and rank-orders them based on performance estimates (runtime in

the case of the DLA examples we show).

In our experiments with distributed-memory architectures, some operations

led to massive search spaces that were too large for DxTer to generate given system

memory constraints. We employed a number of tools to limit the search space

intelligently using knowledge about the domain and the target architecture. These

heuristics are reasonable when one considers how an expert searches the same space

of implementations without exploring every single algorithm.

7.1.3 The Benefits of Encoding Design Knowledge

The biggest benefit we demonstrated by encoding design knowledge is better output

code. In a number of cases, DxTer produced better-performing code than was hand-

developed for Elemental. Further, it generated a range of functionality automatically

when hand-coded versions did not yet exist.

In addition to these benefits that affect the user, there are aspects that should

interest software engineers. DxTer-generated code is trusted for correctness (e.g.,

fixing a correctness bug in Elemental for one operation). This bug would have been

discovered eventually via testing, but it is useful to have a system output highly

trusted code automatically. Or when a library-wide bug fix needed to be made, it

can be encoded in DxTer once and automatically applied across the library.

Further, by encoding designs in terms of transformations, we can better un-

derstand software. We explained algorithm implementations with Elemental and

BLIS in terms of small, incremental steps. There are more intricate optimiza-

tions/changes made to the code in these libraries that were also encoded in DxTer

153

but not described here because the details are not important for this dissertation.

By making them explicit in the DxTer knowledge base, though, they are now use-

ful to non-experts wanting high performance code without becoming an expert and

they are explicitly stored for posterity when a new engineer wants to become an

expert.

This pedagogical aspect was especially useful when comparing two imple-

mentations and explaining why one is better than the other: comparing the trans-

formations that yield each makes bad decisions easy to spot. We can see a future

tool used by new developers to make implementation decisions with feedback from

the tool explaining why particular choices are suboptimal.

Lastly, while encoding knowledge in terms of transformations, we required

design decisions for the BLIS DSL to be justified. Some decisions led to inefficient

code; these were identified by encoding the necessary transformations and question-

ing their effects or rationale. This led to a better designed DSL.

7.2 Future Work

DxT is not specific to DLA. It applies to domains representable as dataflow graphs.

Nodes can have state, though they are stateless for DLA. Transformations can be

very complicated if necessary, though simpler transformations are preferred. Search

could be implemented with empirical testing instead of analytic estimates if cost

functions are not sufficiently accurate. The key of DxT is to represent the starting

algorithm and ending implementations as graphs and represent all design decisions

in terms of transformations. Then, the derivation of an implementation is explicit,

understandable, repeatable, and extensible.

It is this last piece that can lead to vast potential for DxT future work.

154

Adding new functionality to existing code is difficult, especially when it is unfa-

miliar and complicated code. If implementations are derived by an explicit series

of understandable transformations, we believe extending functionality will be eas-

ier. Both the existing functionality will be more understandable, and changes and

extensions to that functionality will be made in terms of transformations that are

demonstrated (or proven) correct and are justifiable. This is more formal than stan-

dard practice: hacking an implementation until it does what you expect and it meets

testing requirements.

DxT must be applied to many other domains to evaluate and demonstrate

its generality. Tensors and fault tolerance in DLA software are domains related to

what we have already done. The CombBLAS [15] are a collection of BLAS-like

operations for sparse matrices that build the foundation for graph algorithms. They

are structured similar to the BLAS, target multiple architectures, and have cost

estimates, all of which are similar to properties that have made us successful in

DLA.

For domains like DLA, we believe we have demonstrated great potential

(given the right domain structure and DSLs). Not all domains have a similar struc-

ture with lots of functionality implemented with a relatively small knowledge based.

Even for those domains, we believe there is potential. No longer will code be the

result of hacking. Instead, it will be derived with pieces of trusted knowledge. That

knowledge can be replayed, reused, and even extended.

7.3 Vision

We see the success of DxT applied to DLA as a predictor for future DxT success

in other domains. We want to reach a point in software engineering where domain

155

and hardware knowledge is encoded explicitly instead of only storing the code that

results from an expert tediously applying the knowledge over and over. We should

have repositories of essential, expert software design knowledge ready for use just

as an engineer has a catalogue of cogs to place in his machine.

The current approach of manually applying software design knowledge is

error-prone, can lead to suboptimal code, and is often rote. We see automated code

generation as a staple software engineering technology in the future. Further, we see

encoding knowledge (à la DxT) as a means to making software engineering a more

scientific endeavor. We should no longer hack software to accommodate changing

architectures or algorithms. We should use a structured approach to modify and

adapt code and we see DxT as a way to add such structure to software engineering.

156

Appendix A

Two-Sided Trmm

We now go through the transformations that produce a high-performance imple-

mentation of two-sided trmm, introduced in Section 1.1 and described in detail in

Section 5.3.3. We start with the loop body of variant 4 (shown in Figure A.1),

which is the highest performing variant (though all are searched as described in

Section 5.3.3).

DGemm
NN

DTrmm
RLN

DTrmm
LLH

DHemm
LL

DHer2k
H

DAxpy

DTwoSided
Trmm

A00

A10

A20

A11

A21

L10

L11

DAxpy
A10'

A00'

A11'

A20'

A21'

Temp

Figure A.1: Starting loop body of two-sided trmm.

157

In each figure of this appendix, we highlight with thick red borders the

node(s) to which the next transformation applies. In this case, the first trans-

formation is a refinement of DGemm NN, shown in Figure A.2, called “stationary C”

because it does not redistribute the C matrix. The resulting graph is shown in

Figure A.3. This refinement is one of those introduced in Section 5.1.2 to parallelize

a Trmm algorithm.

DGemm
NNB

A

C
C'

B

A

C

C'

[MC,MR]→[MC,*]

[MC,MR]→[*,MR]
LGemm
NN

Figure A.2: Refinement of DGemm NN.

DTrmm
RLN

DTrmm
LLH

DHemm
LL

DHer2k
H

DAxpy

DTwoSided
Trmm

A00

A10

A20

A11

A21

L10

L11

DAxpy
A10'

A00'

A11'

A20'

A21'

Temp

[MC,MR]→[MC,*]

[MC,MR]→[*,MR] LGemm
NN

Figure A.3: Result of applying refinement of Figure A.2.

158

Next, the refinement of DTrmm RLN (Figure A.4) is applied to yield the graph

of Figure A.5. This transformation was also used in the Trmm implementation of

Section 5.1.2.

B
DTrmm
RLN B' B'L

B

L [MC,MR]→ [*,*]

[MC,MR]→[VC,*]

LTrmm
Right

[VC,*]→[MC,MR]

Figure A.4: Refinement of DTrmm RLN.

DTrmm
LLH

DHemm
LL

DHer2k
H

DAxpy

DTwoSided
Trmm

A00

A10

A20

A11

A21

L10

L11

DAxpy
A10'

A00'

A11'

A20'

A21'

Temp

[MC,MR]→[MC,*]

[MC,MR]→[*,MR] LGemm
NN

[MC,MR]→ [*,*]

[MC,MR]→[VC,*]

LTrmm
RLN [VC,*]→[MC,MR]

Figure A.5: Result of applying refinement from Figure A.4.

159

Now, we introduce a refinement in Figure A.6 that is unique to this operation.

It is the same as the DChol refinement (see Section 5.3.1) with “DChol” replaced with

“DTwoSidedTrmm.” This gathers all of the data on all processes (via MPI AllGather)

and performs the computation redundantly.

DTwoSided
Trmm

[MC,MR]→ [*,*]

[MC,MR]→ [*,*]A

L
A' LTwoSided

Trmm A'[*,*]→ [MC,MR]
A

L

Figure A.6: Refinement of DTwoSidedTrmm.

DTrmm
LLH

DHemm
LL

DHer2k
H

DAxpy

A00

A10

A20

A11

A21

L10

L11

DAxpy
A10'

A00'

A11'

A20'

A21'

Temp

[MC,MR]→[MC,*]

[MC,MR]→[*,MR] LGemm
NN

[MC,MR]→ [*,*]

[MC,MR]→[VC,*]

LTrmm
RLN [VC,*]→[MC,MR]

[MC,MR]→ [*,*]

[MC,MR]→ [*,*]
LTwoSided

Trmm
[*,*]→ [MC,MR]

Figure A.7: Result of applying refinement from Figure A.6.

160

As highlighted in Figure A.7, the data of L11 is redistributed redundantly

to [∗, ∗]. We can apply the transformation of Figure A.8 to remove one of those

expensive redistributions to yield the graph for Figure A.9.

B

A

[MC,MR]→ [*,*]

[MC,MR]→ [*,*] C

B
A [MC,MR]→ [*,*]

C

Figure A.8: Remove redundant redistribution.

DTrmm
LLH

DHemm
LL

DHer2k
H

DAxpy

A00

A10

A20

A11

A21

L10

L11

DAxpy

A10'

A00'

A11'

A20'

A21'

Temp

[MC,MR]→[MC,*]

[MC,MR]→[*,MR] LGemm
NN

[MC,MR]→ [*,*]

[MC,MR]→[VC,*]

LTrmm
RLN [VC,*]→[MC,MR]

[MC,MR]→ [*,*]
LTwoSided

Trmm
[*,*]→ [MC,MR]

Figure A.9: Result of applying optimization from Figure A.8.

161

Now, we apply the refinement of Figure A.10 to DHemm LL. The result is shown

in Figure A.11.

DHemm
LLB

A

C
C'

[MC,MR]→ [*,*]

B

A

C

C'[MC,MR]→[*,VR]

[MC,MR]→[*,VR]

LHemm
LL [*,VR]→[MC,MR]

Figure A.10: Refinement of DHemm LL.

DTrmm
LLH

DHer2k
H

DAxpy

A00

A10

A20

A11

A21

L10

L11

DAxpy

A10'

A00'

A11'

A20'

A21'

Temp

[MC,MR]→[MC,*]

[MC,MR]→[*,MR] LGemm
NN

[MC,MR]→ [*,*]

[MC,MR]→[*,VR]

[MC,MR]→[*,VR]

LHemm
LL [*,VR]→[MC,MR]

[MC,MR]→ [*,*]

[MC,MR]→[VC,*]

LTrmm
RLN [VC,*]→[MC,MR]

[MC,MR]→ [*,*]
LTwoSided

Trmm
[*,*]→ [MC,MR]

Figure A.11: Result of applying refinement from Figure A.10.

162

The graph in Figure A.11 has an inefficiency like that of Figure A.9, where

data is redistributed to [∗, ∗] twice. Applying the optimization of Figure A.12 re-

moves one of the redistribution to form the graph of Figure A.13.

B

A

[MC,MR]→ [*,*]

[MC,MR]→ [*,*] C

B
A [MC,MR]→ [*,*]

C

Figure A.12: Remove redundant redistribution.

DTrmm
LLH

DHer2k
H

DAxpy

A00

A10

A20

A11

A21

L10

L11

DAxpy

A10'

A00'

A11'

A20'

A21'

Temp

[MC,MR]→[MC,*]

[MC,MR]→[*,MR] LGemm
NN

[MC,MR]→ [*,*]

[MC,MR]→[*,VR]

[MC,MR]→[*,VR]

LHemm
LL [*,VR]→[MC,MR]

[MC,MR]→ [*,*]

[MC,MR]→[VC,*]

LTrmm
RLN [VC,*]→[MC,MR]

LTwoSided
Trmm

[*,*]→ [MC,MR]

Figure A.13: Result of optimizing with transformation from Figure A.12.

163

Now, we need to refine DAxpy. We choose an option, shown in Figure A.14,

that will enable many optimizations later. Figure A.15 shows the result.

DAxpyY
X Y'

[MC,MR]→[*,VR]

[MC,MR]→[*,VR]Y

X
LAxpy [*,VR]→[MC,MR] Y'

Figure A.14: DAxpy refinement.

DTrmm
LLH

DHer2k
H

A00

A10

A20

A11

A21

L10

L11

DAxpy

A10'

A00'

A11'

A20'

A21'

Temp

[MC,MR]→[MC,*]

[MC,MR]→[*,MR] LGemm
NN

[MC,MR]→ [*,*]

[MC,MR]→[*,VR]

[MC,MR]→[*,VR]

LHemm
LL [*,VR]→[MC,MR]

[MC,MR]→ [*,*]

[MC,MR]→[VC,*]

LTrmm
RLN [VC,*]→[MC,MR]

LTwoSided
Trmm

[*,*]→ [MC,MR]

[MC,MR]→[*,VR]

[MC,MR]→[*,VR]
LAxpy [*,VR]→[MC,MR]

Figure A.15: Result of refining DAxpy.

164

Now, we have two redistributions that are inverses of each other. Data is

redistributed from [∗, VR] to [MC ,MR] and back to [∗, VR]. With the optimization

of Figure A.16, we can remove the unnecessary redistribution back to [∗, VR], which

yields Figure A.17

YX [*,VR]→[MC,MR]

[MC,MR]→[*,VR] Z

YX [*,VR]→[MC,MR]

Z

Figure A.16: Remove inverse redistribution.

DTrmm
LLH

DHer2k
H

A00

A10

A20

A11

A21

L10

L11

DAxpy

A10'

A00'

A11'

A20'

A21'

Temp

[MC,MR]→[MC,*]

[MC,MR]→[*,MR] LGemm
NN

[MC,MR]→ [*,*]

[MC,MR]→[*,VR]

[MC,MR]→[*,VR]

LHemm
LL [*,VR]→[MC,MR]

[MC,MR]→ [*,*]

[MC,MR]→[VC,*]

LTrmm
RLN [VC,*]→[MC,MR]

LTwoSided
Trmm

[*,*]→ [MC,MR]

[MC,MR]→[*,VR]
LAxpy [*,VR]→[MC,MR]

Figure A.17: Result of applying transformation of Figure A.16.

165

We can apply the same DAxpy refinement as before, shown again in Fig-

ure A.18, to form the graph in Figure A.19.

DAxpyY
X Y'

[MC,MR]→[*,VR]

[MC,MR]→[*,VR]Y

X
LAxpy [*,VR]→[MC,MR] Y'

Figure A.18: DAxpy refinement.

DTrmm
LLH

DHer2k
H

A00

A10

A20

A11

A21

L10

L11

A10'

A00'

A11'

A20'

A21'

Temp

[MC,MR]→[MC,*]

[MC,MR]→[*,MR] LGemm
NN

[MC,MR]→ [*,*]

[MC,MR]→[*,VR]

[MC,MR]→[*,VR]

LHemm
LL [*,VR]→[MC,MR]

[MC,MR]→ [*,*]

[MC,MR]→[VC,*]

LTrmm
RLN [VC,*]→[MC,MR]

LTwoSided
Trmm

[*,*]→ [MC,MR]

[MC,MR]→[*,VR]
LAxpy [*,VR]→[MC,MR]

[MC,MR]→[*,VR]

[MC,MR]→[*,VR]
LAxpy [*,VR]→[MC,MR]

Figure A.19: Result of refining DAxpy.

166

We again have inverse redistribution as shown in Figure A.19. The difference

from before is that the intermediate data (distributed as [MC ,MR]) is not used, so

Figure A.20 shows the optimization in this case. Figure A.21 shows the resulting

graph.

[*,VR]→[MC,MR] [MC,MR]→[*,VR] YX YX

Figure A.20: Remove inverse redistribution.

DTrmm
LLH

DHer2k
H

A00

A10

A20

A11

A21

L10

L11

A10'

A00'

A11'

A20'

A21'

Temp

[MC,MR]→[MC,*]

[MC,MR]→[*,MR] LGemm
NN

[MC,MR]→ [*,*]

[MC,MR]→[*,VR]

[MC,MR]→[*,VR]

LHemm
LL

[MC,MR]→ [*,*]

[MC,MR]→[VC,*]

LTrmm
RLN [VC,*]→[MC,MR]

LTwoSided
Trmm

[*,*]→ [MC,MR]

[MC,MR]→[*,VR]
LAxpy [*,VR]→[MC,MR]

[MC,MR]→[*,VR]

LAxpy [*,VR]→[MC,MR]

Figure A.21: Result of removing inverse redistribution.

167

And we have the same situation with inverse redistribution and use of the

intermediate distribution. Reapplying the optimization, shown again in Figure A.22,

yields the better implementation of Figure A.23

YX [*,VR]→[MC,MR]

[MC,MR]→[*,VR] Z

YX [*,VR]→[MC,MR]

Z

Figure A.22: Remove inverse redistribution.

DTrmm
LLH

DHer2k
H

A00

A10

A20

A11

A21

L10

L11

A10'

A00'

A11'

A20'

A21'

Temp

[MC,MR]→[MC,*]

[MC,MR]→[*,MR] LGemm
NN

[MC,MR]→ [*,*]

[MC,MR]→[*,VR]

[MC,MR]→[*,VR]

LHemm
LL

[MC,MR]→ [*,*]

[MC,MR]→[VC,*]

LTrmm
RLN [VC,*]→[MC,MR]

LTwoSided
Trmm

[*,*]→ [MC,MR]

[MC,MR]→[*,VR]
LAxpy [*,VR]→[MC,MR]

LAxpy [*,VR]→[MC,MR]

Figure A.23: Result of removing inverse redistribution.

168

Now, DTrmm LLH can be refined. The refinement is similar to that for DTrmm

RLN, but now we use distribution [∗, VR], as shown in Figure A.24. The result is in

Figure A.25.

B
DTrmm
LLH B' B'L

B

L [MC,MR]→ [*,*]

[MC,MR]→[*,VR]

LTrmm
LLH [*,VR]→[MC,MR]

Figure A.24: DTrmm LLN refinement.

DHer2k
H

A00

A10

A20

A11

A21

L10

L11

A10'

A00'

A11'

A20'

A21'

Temp

[MC,MR]→[MC,*]

[MC,MR]→[*,MR] LGemm
NN

[MC,MR]→ [*,*]

[MC,MR]→[*,VR]

[MC,MR]→[*,VR]

LHemm
LL

[MC,MR]→ [*,*]

[MC,MR]→[VC,*]

LTrmm
RLN [VC,*]→[MC,MR]

LTwoSided
Trmm

[*,*]→ [MC,MR]

[MC,MR]→[*,VR]
LAxpy [*,VR]→[MC,MR]

LAxpy [*,VR]→[MC,MR]

[MC,MR]→ [*,*]

[MC,MR]→[*,VR]

LTrmm
LLH [*,VR]→[MC,MR]

Figure A.25: Result of refining DTrmm LLN.

169

And once again we have inverse redistribution. Applying the optimization

of Figure A.26, we get the graph of Figure A.27.

YX [*,VR]→[MC,MR] [MC,MR]→[*,VR] YX

Figure A.26: Remove inverse redistribution.

DHer2k
H

A00

A10

A20

A11

A21

L10

L11

A10'

A00'

A11'

A20'

A21'

Temp

[MC,MR]→[MC,*]

[MC,MR]→[*,MR] LGemm
NN

[MC,MR]→ [*,*]

[MC,MR]→[*,VR]

[MC,MR]→[*,VR]

LHemm
LL

[MC,MR]→ [*,*]

[MC,MR]→[VC,*]

LTrmm
RLN [VC,*]→[MC,MR]

LTwoSided
Trmm

[*,*]→ [MC,MR]

[MC,MR]→[*,VR]
LAxpy [*,VR]→[MC,MR]

LAxpy

[MC,MR]→ [*,*]
LTrmm
LLH [*,VR]→[MC,MR]

Figure A.27: Result of removing inverse redistribution.

170

Now we see L11 being redistributed twice to [∗, ∗]. We can remove one of

the redundant redistributions with the optimization of Figure A.28 to generate the

better implementation of Figure A.29.

B

A

[MC,MR]→ [*,*]

[MC,MR]→ [*,*] C

B
A [MC,MR]→ [*,*]

C

Figure A.28: Remove redundant redistribution.

DHer2k
H

A00

A10

A20

A11

A21

L10

L11

A10'

A00'

A11'

A20'

A21'

Temp

[MC,MR]→[MC,*]

[MC,MR]→[*,MR] LGemm
NN

[MC,MR]→ [*,*]

[MC,MR]→[*,VR]

[MC,MR]→[*,VR]

LHemm
LL

[MC,MR]→ [*,*]

[MC,MR]→[VC,*]

LTrmm
RLN [VC,*]→[MC,MR]

LTwoSided
Trmm

[*,*]→ [MC,MR]

[MC,MR]→[*,VR]
LAxpy [*,VR]→[MC,MR]

LAxpy

LTrmm
LLH [*,VR]→[MC,MR]

Figure A.29: Result of removing redundant redistribution.

171

Now we can refine DHer2k H with Figure A.30 to develop the graph of all

primitives, shown in Figure A.31.

[MC,MR]→[*,MC]

DHer2k
HB

A

C

C'
LTrr2k
HNHN

B

A

C

C'
[MC,MR]→[*,MR]

[MC,MR]→[*,MR]

[MC,MR]→[*,MC]

Figure A.30: DHer2k H refinement.

A00

A10

A20

A11

A21

L10

L11

A10'

A00'

A11'

A20'

A21'

Temp

[MC,MR]→[MC,*]

[MC,MR]→[*,MR] LGemm
NN

[MC,MR]→ [*,*]

[MC,MR]→[*,VR]

[MC,MR]→[*,VR]

LHemm
LL

[MC,MR]→ [*,*]

[MC,MR]→[VC,*]

LTrmm
RLN [VC,*]→[MC,MR]

LTwoSided
Trmm

[*,*]→ [MC,MR]

[MC,MR]→[*,VR]
LAxpy [*,VR]→[MC,MR]

LAxpy

LTrmm
LLH [*,VR]→[MC,MR]

[MC,MR]→[*,MC]

LTrr2k
HNHN

[MC,MR]→[*,MR]

[MC,MR]→[*,MR]

[MC,MR]→[*,MC]

Figure A.31: Result of refining DHer2k H.

172

This implementation maps to Elemental code and was used in the Elemental

library until DxTer found a better implementation that benefits from transposing

data during communication and transposing again during computation. Figure A.32

shows an optimization to change the redistribution of the B input matrix to use what

we call [MR, ∗]H , which is actually the [MR, ∗] distribution of BH (i.e, the Hermitian-

transposed data of B is distributed as [MR, ∗]). Then, this data is Hermitian-

transposed again in the LGemm NH operation to end with the same data as with

B[MR, ∗]. The difference is that [MC ,MR] → [MR, ∗]H performs better due to

improved data access.

[MC,MR]→[*,MR] LGemm
NN

B

A

C

C' [MC,MR]→[MR,*]
H LGemm

NH
B

A

C

C'

Figure A.32: Transpose redistribution of the B matrix used in an LGemm operation.

A00

A10

A20

A11

A21

L10

L11

A10'

A00'

A11'

A20'

A21'

Temp

[MC,MR]→[MC,*]

[MC,MR]→[MR,*]H LGemm
NH

[MC,MR]→ [*,*]

[MC,MR]→[*,VR]

[MC,MR]→[*,VR]

LHemm
LL

[MC,MR]→ [*,*]

[MC,MR]→[VC,*]

LTrmm
RLN [VC,*]→[MC,MR]

LTwoSided
Trmm

[*,*]→ [MC,MR]

[MC,MR]→[*,VR]

LAxpy [*,VR]→[MC,MR]

LAxpy

LTrmm
LLH [*,VR]→[MC,MR]

[MC,MR]→[*,MC]

LTrr2k
HNHN

[MC,MR]→[*,MR]

[MC,MR]→[*,MR]

[MC,MR]→[*,MC]

Figure A.33: Result of transposing one input to LGemm.

173

We can apply a similar optimization for LTrr2k HNHN, as shown in Figure A.34.

The improved implementation is shown in Figure A.35.

LTrr2k
HNHN

[MC,MR]→[*,MR]

A1

B1

A2

B2

C

C' LTrr2k
HHHN

[MC,MR]→[MR,*]
H

A1

B1

A2

B2

C

C'

Figure A.34: Transpose redistribution of the B1 matrix input to LTrr2k HNHN.

A00

A10

A20

A11

A21

L10

L11

A10'

A00'

A11'

A20'

A21'

Temp

[MC,MR]→[MC,*]

[MC,MR]→[MR,*]H LGemm
NH

[MC,MR]→ [*,*]

[MC,MR]→[*,VR]

[MC,MR]→[*,VR]

LHemm
LL

[MC,MR]→ [*,*]

[MC,MR]→[VC,*]

LTrmm
RLN [VC,*]→[MC,MR]

LTwoSided
Trmm

[*,*]→ [MC,MR]

[MC,MR]→[*,VR]

LAxpy [*,VR]→[MC,MR]

LAxpy

LTrmm
LLH [*,VR]→[MC,MR]

[MC,MR]→[*,MC]

LTrr2k
HHHN

[MC,MR]→[*,MR]

[MC,MR]→[MR,*]H

[MC,MR]→[*,MC]

Figure A.35: Result of transposing one input to LTrr2k HNHN.

174

We have another redundant redistribution that can be optimized using the

transformation in Figure A.36 to yield the implementation seen in Figure A.37.

B

A
[MC,MR]→[MR,*]

H

[MC,MR]→[MR,*]
H C

B
A [MC,MR]→[MR,*]

H
C

Figure A.36: Remove redundant redistribution.

A00

A10

A20

A11

A21

L10

L11

A10'

A00'

A11'

A20'

A21'

Temp

[MC,MR]→[MC,*]

[MC,MR]→[MR,*]H

LGemm
NH

[MC,MR]→ [*,*]

[MC,MR]→[*,VR]

[MC,MR]→[*,VR]

LHemm
LL

[MC,MR]→ [*,*]

[MC,MR]→[VC,*]

LTrmm
RLN [VC,*]→[MC,MR]

LTwoSided
Trmm

[*,*]→ [MC,MR]

[MC,MR]→[*,VR]

LAxpy [*,VR]→[MC,MR]

LAxpy

LTrmm
LLH [*,VR]→[MC,MR]

[MC,MR]→[*,MC]

LTrr2k
HHHN

[MC,MR]→[*,MR]

[MC,MR]→[*,MC]

Figure A.37: Final, high-performance implementation.

175

Finally, we can implement the redistribution of [MC ,MR]→ [∗, VR] in terms

of the intermediate distribution [MR, ∗]H as shown in Figure A.38. [MC ,MR] →

[∗, VR] requires collective communication while [MR, ∗]H → [∗, VR] only requires lo-

cally data copying. Figure A.39 shows the final implementation. This maps to code

that was better than that found in Elemental thanks to these four final optimiza-

tion transformations. Since DxTer found it, Elemental’s implementation has been

updated to use this version.

B

A

C

B

A [MC,MR]→[MR,*]
H C

[MC,MR]→[MR,*]
H

[MC,MR]→[*,VR]
[MR,*]

H→[*,VR]

Figure A.38: Remove redundant redistribution.

A00

A10

A20

A11

A21

L10

L11

A10'

A00'

A11'

A20'

A21'

Temp

[MC,MR]→[MC,*]

[MC,MR]→[MR,*]H

LGemm
NH

[MC,MR]→ [*,*]

[MR,*]H→[*,VR]

[MC,MR]→[*,VR]

LHemm
LL

[MC,MR]→ [*,*]

[MC,MR]→[VC,*]

LTrmm
RLN [VC,*]→[MC,MR]

LTwoSided
Trmm

[*,*]→ [MC,MR]

[MC,MR]→[*,VR]

LAxpy [*,VR]→[MC,MR]

LAxpy

LTrmm
LLH [*,VR]→[MC,MR]

[MC,MR]→[*,MC]

LTrr2k
HHHN

[MC,MR]→[*,MR]

[MC,MR]→[*,MC]

Figure A.39: Final, high-performance implementation.

176

Bibliography

[1] DxTer Source. http://code.google.com/p/dxter/.

[2] Elemental Source. http://libelemental.org/.

[3] Intel MKL. http://software.intel.com/en-us/intel-mkl.

[4] nVIDIA CUBLAS. http://developer.nvidia.com/cublas.

[5] Reference BLAS Source. http://www.netlib.org/blas/.

[6] L. Almagor, K. D. Cooper, A. Grosul, T. J. Harvey, S. Reeves, D. Subrama-

nian, L. Torczon, and T. Waterman. Compilation order matters: Exploring

the structure of the space of compilation sequences using randomized search

algorithms. In Proceedings of the ACM SIGPLAN Symposium on Languages,

Compilers, and Tools for Embedded Systems (LCTES), pages 231–239, 2004.

[7] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du

Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LA-

PACK Users’ Guide. Society for Industrial and Applied Mathematics, Philadel-

phia, PA, third edition, 1999.

[8] A. Auer, G. Baumgartner, D. Bernholdt, A. Bibireata, V. Choppella, D. Co-

ciorva, X. Gao, R. Harrison, S. Krishnamoorthy, S. Krishnan, S. Lam, Q. Lu,

177

http://code.google.com/p/dxter/
http://libelemental.org/
http://software.intel.com/en-us/intel-mkl
http://developer.nvidia.com/cublas
http://www.netlib.org/blas/

M. Nooijen, R. Pitzer, J. Ramanujam, P. Sadayappan, and A. Sibiryakov. Auto-

matic code generation for many-body electronic structure methods: The Tensor

Contraction Engine. Molecular Physics, 2005.

[9] D. S. Batory, R. Gonalves, B. Marker, and J. Siegmund. Dark knowledge and

graph grammars in automated software design. In Martin Erwig, Richard F.

Paige, and Eric Van Wyk, editors, Software Language Engineering (SLE), vol-

ume 8225 of Lecture Notes in Computer Science, pages 1–18. Springer, 2013.

[10] I. D. Baxter. Design Maintenance Systems. CACM, April 1992.

[11] G. Belter, E.R. Jessup, I. Karlin, and J. G. Siek. Automating the genera-

tion of composed linear algebra kernels. In International Conference on High

Performance Computing Networking, Storage and Analysis (SC), 2009.

[12] P. Bientinesi. Mechanical Derivation and Systematic Analysis of Correct Lin-

ear Algebra Algorithms. PhD thesis, Department of Computer Sciences, The

University of Texas, August 2006.

[13] P. Bientinesi, B. Gunter, and R. A. van de Geijn. Families of algorithms related

to the inversion of a symmetric positive definite matrix. ACM Transactions on

Mathematical Software, 35(1):3:1–3:22, July 2008.

[14] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon,

J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and

R. C. Whaley. ScaLAPACK Users’ Guide. SIAM, 1997.

[15] A. Buluç and J. R. Gilbert. The combinatorial BLAS: Design, implementa-

tion, and applications. International Journal of High Performance Computing

Applications, 25(4), 2011.

178

[16] E. Chan, M. Heimlich, A. Purkayastha, and R. van de Geijn. Collective com-

munication: theory, practice, and experience: Research articles. Concurrency

and Computation: Practice & Experience, 19(13):1749–1783, September 2007.

[17] E. Chan, F. G. Van Zee, P. Bientinesi, E. S. Quintana-Orti, G. Quintana-

Orti, and R. van de Geijn. Supermatrix: a multithreaded runtime scheduling

system for algorithms-by-blocks. In Proceedings of the 13th ACM SIGPLAN

Symposium on Principles and practice of parallel programming (PPoPP), pages

123–132, New York, NY, USA, 2008. ACM.

[18] C.J. Date and H. Darwen. A guide to the SQL standard: a user’s guide to the

standard database language SQL. Addison-Wesley, 1997.

[19] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on Large

Clusters. In Symposium on Operating Systems Design and Implementation

(OSDI), December 2004.

[20] E. W. Djikstra. A discipline of programming. Prentice Hall, 1976.

[21] J. Dongarra and P. Luszczek. Plasma. In Encyclopedia of Parallel Computing,

pages 1568–1570. 2011.

[22] J. J. Dongarra, J. Du Croz, S. Hammarling, and I. Duff. A set of level 3 basic

linear algebra subprograms. ACM Transactions on Mathematical Software,

16(1):1–17, March 1990.

[23] J. J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Hanson. An extended

set of FORTRAN basic linear algebra subprograms. ACM Transactions on

Mathematical Software, 14(1):1–17, March 1988.

179

[24] D. Fabregat-Traver and P. Bientinesi. A domain-specific compiler for linear

algebra operations. In High Performance Computing for Computational Science

– VECPAR 2010, volume 7851 of Lecture Notes in Computer Science, pages

346–361, Heidelberg, 2013. Springer.

[25] D. S. Frankel. Model Driven Architecture: Applying MDA to Enterprise Com-

puting. John Wiley & Sons, Inc., 2003.

[26] R. C. Gonçalves, D. Batory, and J. Sobral. ReFlO: An interactive tool for

pipe-and-filter domain specification and program generation. 2013.

[27] R. C. Gonçalves. Parallel Programming by Transformation. PhD thesis, De-

partamento de Informática, Universidade do Minho, 2014 (To appear).

[28] K. Goto and R. van de Geijn. High-performance implementation of the level-3

blas. ACM Transactions on Mathematical Software, 35(1):4:1–4:14, July 2008.

[29] K Goto and R. A. van de Geijn. Anatomy of high-performance matrix multi-

plication. ACM Transactions on Mathematical Software, 34(3):1–25, 2008.

[30] J. Gunnels. A Systematic Approach to the Design and Analysis of Parallel

Dense Linear Algebra Algorithms. PhD thesis, Department of Computer Sci-

ences, The University of Texas, December 2001.

[31] J. Gunnels, C. Lin, G. Morrow, and R. van de Geijn. A flexible class of parallel

matrix multiplication algorithms, 1998.

[32] J. A. Gunnels, F. G. Gustavson, G. M. Henry, and R. A. van de Geijn. FLAME:

Formal Linear Algebra Methods Environment. ACM Transactions on Mathe-

matical Software, 27(4):422–455, December 2001.

180

[33] J. A. Gunnels and R. A. van de Geijn. Formal methods for high-performance

linear algebra libraries. In Ronald F. Boisvert and Ping Tak Peter Tang, editors,

The Architecture of Scientific Software, pages 193–210. Kluwer Academic Press,

2001.

[34] S. Z. Guyer and C. Lin. Broadway: A compiler for exploiting the domain-

specific semantics of software libraries. Proceedings of the IEEE, Special issue

on program generation, optimization and adaptation, January-February 2005.

[35] C. A. R. Hoare. An axiomatic basis for computer programming. Communica-

tions of the ACM, 12(10):576–580, October 1969.

[36] A. Kleppe, J. Warmer, and W. Bast. MDA Explained: The Model-Driven

Architecture. Addison-Wesley, Boston, MA, 2003.

[37] P. A. Kulkarni, D. B. Whalley, G. S. Tyson, and J. W. Davidson. Practical

exhaustive optimization phase order exploration and evaluation. ACM Trans-

actions on Architecture and Code Optimization, 6(1):1:1–1:36, April 2009.

[38] B. Kgstrm, P. Ling, and C. Van Loan. Gemm-based level 3 blas: High-

performance model implementations and performance evaluation benchmark.

ACM Transactions on Mathematical Software, 24(3):268–302, 1998.

[39] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. Basic linear

algebra subprograms for Fortran usage. ACM Transactions on Mathematical

Software, 5(3):308–323, September 1979.

[40] G. M. Lohman. Grammar-like functional rules for representing query opti-

mization alternatives. In ACM Special Interest Group on Management of Data

(SIGMOD), 1988.

181

[41] T. M. Low. A Calculus of Loop Invariants for Dense Linear Algebra Optimiza-

tion. PhD thesis, The University of Texas at Austin, 2013.

[42] T. M. Low, B Marker, and R. van de Geijn. FLAME Working Note #64. The-

ory and practice of fusing loops when optimizing parallel dense linear algebra

operations. Technical Report TR-12-18, The University of Texas at Austin,

Department of Computer Sciences, August 2012.

[43] T. M. Low, R. A. van de Geijn, and F. G. Van Zee. Extracting SMP parallelism

for dense linear algebra algorithms from high-level specifications. In Proceedings

of the tenth ACM SIGPLAN symposium on Principles and practice of parallel

programming (PPoPP), pages 153–163, New York, NY, USA, 2005. ACM.

[44] M. Lowry, A. Philpot, T. Pressburger, and I. Underwood. Amphion: Automatic

programming for scientific subroutine libraries. In ISMIS, 1994.

[45] Z. Manna and R. Waldinger. Fundamentals of deductive program synthesis.

IEEE Transactions on Software Engineering, 18:674–704, 1992.

[46] B. Marker, D. Batory, and R. van de Geijn. A case study in mechanically

deriving dense linear algebra code. International Journal of High Performance

Computing Applications, 27(4):439–452, November 2013.

[47] B. Marker, D. S. Batory, and R. A. van de Geijn. Code generation and opti-

mization of distributed-memory dense linear algebra kernels. In ICCS, 2013.

[48] B. Marker, J. Poulson, D. S. Batory, and R. A. van de Geijn. Designing linear

algebra algorithms by transformation: Mechanizing the expert developer. In

VECPAR, 2012.

182

[49] J. M. Neighbors and Bayfront Technologies. Draco: A method for engineering

reusable software systems, 1987.

[50] J. Poulson, B. Marker, R. A. van de Geijn, J. R. Hammond, and N. A. Romero.

Elemental: A new framework for distributed memory dense matrix computa-

tions. ACM Transactions on Mathematical Software, 39(2):13:1–13:24, Febru-

ary 2013.

[51] J. Poulson, R. A. van de Geijn, and J. Bennighof. (Parallel) Algorithms for

Two-Sided Triangular Sovles and Matrix Multiplication. ACM Transactions on

Mathematical Software, 2012. submitted.

[52] M. Püschel, J. M. F. Moura, J. Johnson, D. Padua, M. Veloso, B. Singer,

J. Xiong, F. Franchetti, A. Gacic, Y. Voronenko, K. Chen, R. W. Johnson, and

N. Rizzolo. SPIRAL: Code generation for DSP transforms. Proceedings of the

IEEE, special issue on “Program Generation, Optimization, and Adaptation”,

93(2), 2005.

[53] T. Riché, R. Goncalves, B. Marker, and D. Batory. Pushouts in Software

Architecture Design. In GPCE, 2012.

[54] T. L. Riché, H. M. Vin, and D. Batory. Transformation-Based Parallelization

of Requst-Processing Architectures. In MODELS, October 2010.

[55] G. Rozenberg, editor. Handbook of Graph Grammars and Computing by Graph

Transformation, volume 1. World Scientific Publishing Company, Incorporated,

1997.

[56] M. Schatz, J. Poulson, and R. van de Geijn. Parallel matrix multiplication: 2d

and 3d. Technical report.

183

[57] T. M. Smith, R. A. van de Geijn, M. Smelyanskiy, J. R. Hammond, and F. G.

Van Zee. FLAME Working Note #71. Implementing level-3 BLAS with BLIS:

Early experience. Technical Report TR-13-20, The University of Texas at

Austin, Department of Computer Sciences, 2013.

[58] M. Snir, S. W. Otto, S. Huss-Lederman, D. W. Walker, and J. Dongarra. MPI:

The Complete Reference. The MIT Press, 1996.

[59] R. A. van de Geijn. Using PLAPACK: Parallel Linear Algebra Package. The

MIT Press, 1997.

[60] R. A. van de Geijn and E. S. Quintana-Ort́ı. The Science of Programming

Matrix Computations. www.lulu.com, 2008.

[61] F. G. Van Zee. libflame: The Complete Reference. www.lulu.com, 2009.

[62] F. G. Van Zee and R. A. van de Geijn. BLIS: A framework for generating

blas-like libraries. ACM Transactions on Mathematical Software. Accepted.

[63] R. Clint Whaley and J. J. Dongarra. Automatically tuned linear algebra soft-

ware. In Proceedings of SC’98, 1998.

[64] K. Yotov, X. Li, G. Ren, Maria M. Garzaran, D. Padua, K. Pingali, and

P. Stodghill. Is search really necessary to generate high-performance blas?,

2005.

[65] F. G. Van Zee, T. Smith, F. D. Igual, M. Smelyanskiy, X. Zhang, M. Kistler,

V. Austel, J. Gunnels, T. M. Low, B. Marker, L. Killough, and R. A. van de

Geijn. FLAME Working Note #69. Implementing level-3 BLAS with BLIS:

Early experience. Technical Report TR-13-03, The University of Texas at

Austin, Department of Computer Sciences, 2013.

184

	Abstract
	Chapter Introduction
	Motivation
	Problem
	Our Solution
	The Grand Vision
	Related Work
	Software Engineering
	DLA and HPC

	Contributions
	Outline

	Chapter Design by Transformation
	Representing Algorithms and Implementations
	Representing Design Knowledge
	Refinements
	Optimizations
	Graphs or Code?

	Grammar
	DSLs
	Exploring the Language
	A Family of DSLs
	Context Sensitivity

	Connection to Model Driven Engineering
	DLA Specifics
	Loops in an Acyclic Graph
	Type Information
	Correct by Construction

	Summary

	Chapter Domain Structure
	Variants and Layering
	DLA Operations
	FLAME Algorithms in DxT
	Layer-Templatized Refinements
	An Abstract Layering Example

	Loop Transformations
	Going Lower
	Why Not Go Lower?
	Problems and Possible Solutions When Breaking Through

	Summary

	Chapter DxTer
	Encoding Knowledge
	Nodes and Graphs
	Node and Edge Properties
	DAG Restrictions and Checking
	Transformations
	Output Code
	Explaining Differences

	Search
	Basic Search
	Phases and Culling
	Saving the Search Space
	Transformation Meta-Optimization

	Summary

	Chapter Elemental
	Elemental
	Elemental Basics
	Parallelizing Trmm
	Encoding the Algorithm with Elemental

	BLAS3
	Algorithms to Explore
	BLAS3 Elemental Refinements
	Redistribution Optimizations
	Transpose Optimizations
	The Knowledge Base
	Cost Estimates
	Search Space and Results

	LAPACK-Level Operations
	Cholesky
	SPD Inversion
	Two-Sided Problems

	Locally-Best Search
	Implementation Clusters
	Locally-Best Refinements
	The Axpy Heuristic
	Are Heuristics Cheating?

	Summary

	Chapter BLIS
	BLIS Layering
	Sequential Gemm Implementation
	Packing
	DxTer Encoding

	Parallelizing for Shared Memory
	Parallelization Heuristic
	Communicators

	Encoding Multithreaded Parallelization
	Quick Results
	DxTer as a Productivity Enhancer

	Performance Results
	Heuristics vs. Testing
	Summary

	Chapter Conclusion
	Contributions
	A DLA Representation in DxT
	A Prototype Generator
	The Benefits of Encoding Design Knowledge

	Future Work
	Vision

	Appendix Two-Sided Trmm
	APPENDICES
	Bibliography

