159 research outputs found

    Formalization and Model Checking of BPMN Collaboration Diagrams with DD-LOTOS

    Get PDF
    Business Process Model and Notation (BPMN) is a standard graphical notation for modeling complex business processes. Given the importance of business processes, the modeling analysis and validation stage for BPMN is essential. In recent years, BPMN notation has become a widespread practice in business process modeling because of these intuitive diagrams. BPMN diagrams are built from basic elements. The major challenge of BPMN diagrams is the lack of formal semantics, which leads to several interpretations of the concerned diagrams. Hence, this work aims to propose an approach for checking BPMN collaboration diagrams to guarantee some properties of smooth functioning of systems modeled by BPMN notation. The verification approach used in this work is based on model checking techniques. The approach proposes as a first step a formal semantics of the collaboration diagrams in terms of the formal language DD-LOTOS, i.e., a phase of the transformation of collaboration diagrams into DD-LOTOS. This transformation is guided by applying the inference rules of the formal semantics of the DD-LOTOS formal language, and we then use the UPPAAL model checker to check the absence of deadlock, safety properties, and liveness properties

    Test-Driven, Model-Based Systems Engineering.

    Get PDF

    Exploring an option space to engineer a ubiquitous computing system

    Get PDF
    Engineering natural and appropriate interactive behaviour in ubiquitous computing systems presents new challenges to their developers. This paper explores formal models of interactive behaviour in ubiquitous systems. Of particular interest is the way that these models may help engineers to visualise the consequences of different designs. Design options based on a dynamic signage system (GAUDI) are explored using different instances of a generic model of the system.EPSRC -Engineering and Physical Sciences Research Council(EP/F01404X/1

    Analyzing an Embedded Sensor with Timed Automata in Uppaal

    Get PDF
    International audienceAn infrared sensor is modeled and analyzed in Uppaal. The sensor typifies the sort of component that engineers regularly integrate into larger systems by writing interface hardware and software. In all, three main models are developed. For the first, the timing diagram of the sensor is interpreted and modeled as a timed safety automaton. This model serves as a specification for the complete system. A second model that emphasizes the separate roles of driver and sensor is then developed. It is validated against the timing diagram model using an existing construction that permits the verification of timed trace inclusion, for certain models, by reachability analysis (i.e., model checking). A transmission correctness property is also stated by means of an auxiliary automaton and shown to be satisfied by the model. A third model is created from an assembly language driver program, using a direct translation from the instruction set of a processor with simple timing behavior. This model is validated against the driver component of the second timing diagram model using the timed trace inclusion validation technique. While no pretense is made of providing a general means to verify systems, The approach and its limitations offer insight into the nature and challenges of programming in real time

    Model-based integration and testing of high-tech multi-disciplinary systems

    Get PDF

    Automating the transformation-based analysis of visual languages

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s00165-009-0114-yWe present a novel approach for the automatic generation of model-to-model transformations given a description of the operational semantics of the source language in the form of graph transformation rules. The approach is geared to the generation of transformations from Domain-Specific Visual Languages (DSVLs) into semantic domains with an explicit notion of transition, like for example Petri nets. The generated transformation is expressed in the form of operational triple graph grammar rules that transform the static information (initial model) and the dynamics (source rules and their execution control structure). We illustrate these techniques with a DSVL in the domain of production systems, for which we generate a transformation into Petri nets. We also tackle the description of timing aspects in graph transformation rules, and its analysis through their automatic translation into Time Petri netsWork sponsored by the Spanish Ministry of Science and Innovation, project METEORIC (TIN2008-02081/TIN) and by the Canadian Natural Sciences and Engineering Research Council (NSERC)

    Supervisory machine control by predictive-reactive scheduling

    Get PDF

    A compositional analysis of broadcasting embedded systems

    Get PDF
    This work takes as its starting point D Kendall's CANdle/bCANdle algebraic framework for formal modelling and specification of broadcasting embedded systems based on CAN networks. Checking real-time properties of such systems is beset by problems of state-space explosion and so a scheme is given for recasting systems specified in Kendall's framework as parallel compositions of timed automata; a CAN network channel is modelled as an automaton. This recasting is shown to be bi-similar to the original bCANdle model. In the recast framework,"compositionality" theorems allow one to infer that a model of a system is simulated by some abstraction of the model, and hence that properties of the model expressible in ACTL can be inferred from analogous properties of the abstraction. These theorems are reminiscent of "assume-guarantee" reasoning allowing one to build simulations component-wise although, unfortunately, components participating in a "broadcast" are required to be abstracted "atomically". Case studies are presented to show how this can be used in practice, and how systems which take impossibly long to model-check can tackled by compositional methods. The work is of broader interest also, as the models are built as UPPAAL systems and the compositionality theorems apply to any UPPAAL system in which the components do not share local variables. The method could for instance extend to systems using some network other than CAN, provided it can be modelled by timed automata. Possibilities also exist for building it into an automated tool, complementing other methods such as counterexample- guided abstraction refinement
    corecore