EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Model-based integration and testing of high-tech multi-
disciplinary systems

Citation for published version (APA):

Braspenning, N. C. W. M. (2008). Model-based integration and testing of high-tech multi-disciplinary systems.
[Phd Thesis 1 (Research TU/e / Graduation TU/e), Mechanical Engineering]. Technische Universiteit Eindhoven.
https://doi.org/10.6100/IR632482

DOI:
10.6100/IR632482

Document status and date:
Published: 01/01/2008

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://doi.org/10.6100/IR632482
https://doi.org/10.6100/IR632482
https://research.tue.nl/en/publications/36dd7d79-73e4-4880-bcb6-3c9e01465ab0

MODEL-BASED INTEGRATION AND
TESTING OF HIGH-TECH
MUILTI-DISCIPLINARY SYSTEMS

Niels Cornelis Wilhelmus Maria Braspenning

Voorkant: De voorkant van dit proefschrift illustreert de theorie en de praktijk van model-
gebaseerd integreren en testen. Onderaan wordt een theoretisch proces voor systeemont-
wikkeling getoond, waarin een model M een realisatie Z kan vervangen voor vroegtijdige
integratie en systeem tests. Bovenaan wordt een praktische toepassing van dit proces voor
de EUV wafer scanner van ASML getoond, waarbij begonnen wordt met alleen modellen en
waarbij deze stapsgewijs door realisaties worden vervangen. De kleurgradiént in de achter-
grond beeldt een van de doelen van dit proefschrift uit, namelijk het overbruggen van de
kloof tussen theorie en praktijk.

Cover: The cover of this thesis illustrates the theory and practice of model-based integration
and testing. At the bottom, a theoretical system development process is shown, in which a
model M can replace a realization Z for early integration and system testing. At the top, a
practical application of this process to the EUV wafer scanner of ASML is shown, starting
with models only and gradually replacing them by realizations. The color gradient in the
background represents one of the goals of this thesis, i.e., bridging the gap between theory
and practice.

Cover EUV wafer scanner illustration: © Copyright 2008, ASML
Cover design: Niels Braspenning

40

& search school IPA (Institute for Programming research and Algorithmics).
IPA Dissertation Series 2008-05.

© Copyright 2008, N.C.W.M. Braspenning

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording or otherwise, without the prior written permission from the copyright owner.

A catalogue record is available from the Eindhoven University of Technology Library.

ISBN: 978-90-386-1204-1

Reproduction: Universiteitsdrukkerij Technische Universiteit Eindhoven

The work described in this thesis has been carried out as part of the TANGRAM project under
the responsibility of the Embedded Systems Institute, partially supported by the Netherlands

Ministry of Economic Affairs under grant TSIT2026. The work has been carried out at
ASML Veldhoven and at the Eindhoven University of Technology, both in the Netherlands.

MODEL-BASED INTEGRATION AND
TESTING OF HIGH-TECH
MUILTI-DISCIPLINARY SYSTEMS

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van
de Rector Magnificus, prof.dr.ir. C.J. van Duijn,
voor een commissie aangewezen door het College
voor Promoties in het openbaar te verdedigen op
maandag 18 februari 2008 om 16.00 uur

door

Niels Cornelis Wilhelmus Maria Braspenning

geboren te Breda

Dit proefschrift is goedgekeurd door de promotoren:

prof.dr.ir. J.E. Rooda
en
prof.dr.].C.M. Baeten

Copromotor:
dr.ir. J.M. van de Mortel-Fronczak

Preface

In 2003, while I was performing my master’s project as part of an industrial Ph.D. project,
I became enthusiastic about performing academic research and using its results to solve
real problems in industrial practice. At the same time, ASML and the Embedded Systems
Institute (ESI) initiated the TANGRAM project to investigate methods, techniques, and tools
for the integration and test problem as experienced by ASML. Now, four years later, I can
say that the TANGRAM project provided me with the right context to put my enthusiasm into
effect.

This thesis is the final result of my Ph.D. project and is titled ‘Model-based Integration
and Testing of High-tech Multi-disciplinary Systems’. Although this title refers to the inte-
gration and testing of high-tech multi-disciplinary systems, it could also have ’Integration
and Testing of Academic Theory and Industrial Practice’ as a subtitle. One of the interesting
challenges of this Ph.D. project was to investigate how theoretical concepts from various aca-
demic fields related to model-based engineering can be ‘integrated’ in the current industrial
practice of integration and testing at ASML, and to ‘test’ the practical applicability and prof-
itability of this approach by applying it in real industrial case studies. I would like to thank
various people who supported me during this integration and testing process.

First of all, I would like to thank professor Koos Rooda for offering me the opportunity to
perform this Ph.D. project within the Systems Engineering Group and for his supervision
during the project. I would also like to thank Asia van de Mortel-Fronczak for coaching me
and for reviewing the many pages of text that I have produced the last few years. Furthermore,
I thank my second promotor Jos Baeten and the other members of the reading committee,
professor Arjan van Gemund, professor Fred van Keulen, and professor Maarten Steinbuch,
for their valuable comments on my thesis. Special thanks goes to Johan Neerhof from ASML,
for bringing his industrial experience and point of view into the mix during our weekly
MBI&T meetings and for helping me with practical issues at ASML. I am very pleased to
have Johan as advisor in my Ph.D. defence committee.

The TANGRAM project brought together an interesting mix of people from different back-
grounds to work on the topic of integration and testing. I liked being part of that mix and
would like to thank all TANGRAM project members, not only for their cooperation and fruit-
tul discussions, but also for all the fun we had. Special thanks goes to Roel Boumen and Ivo

ii Preface

de Jong, who joined me on the journey through Ph.D. country and through other countries
as well, I will never forget our adventures in China and the USA. I would like to thank the
students who helped me during the Ph.D. project as part of their bachelor or master assign-
ment: Rob Hendrikx, Kasia Peplowska, Jusuf Anggono, Gijs van Bokhoven, Ton Geubbels,
and Esmée Bertens. I also thank the following people from ASML and ESI for contributing
to my Ph.D. project by being advisor, co-author of a paper, or reviewer: Luud Engels, Tom
Brugman, Tammo van den Berg, Durk van der Ploeg, and Herman Driessen from ASML
and Jan Tretmans, Frank Pijpers, and Dragan Kosti¢ from ESI. Finally, I would like to thank
the ASML engineers for their time and support in the EUV case study, I think that we both
learned many things from the experience in this case study.

I thank my colleagues at the Systems Engineering Group of the Eindhoven University
of Technology for the pleasant working atmosphere. It is nice to see the MBI&T method
appearing in other Systems Engineering papers and in course material for Systems Engi-
neering students. A special word of gratitude goes to Albert Hofkamp, Ralph Meijer, and
Henk van Rooy. Being one of the early adopters of the new Chi 1.0 toolset and the real-time,
distributed simulator in particular, I asked them many questions and provided them with
many bug reports and all kinds of feature requests. I think that without their help in solving
these issues, the EUV case study would not have been so successful. Furthermore, I thank
my Ph.D. colleagues Elena Bortnik and Roel Boumen for co-authoring two papers. Special
thanks to Mieke Lousberg for taking care of many non-technical issues.

Finally, I would like to thank my family, relatives, and friends for their interest in my work
and for helping me to think about other things than writing papers and a thesis. Last but
certainly not least, I thank Maaike for all her love and support, and for the large amount of
patience she had to show, especially in the last few months.

Zundert, December 2007

Summary

Model-based Integration and Testing of High-tech Multi-disciplinary Systems

In the current industrial practice of high-tech multi-disciplinary system development, it
is difficult to deal with the many system development challenges due to system complex-
ity, market pressure, and resource limitations. As a result, the effort required to integrate
the components and to test the resulting system against the initial requirements increases
significantly. The integration and test (I&T) phases have a large and growing influence on
time-to-market and product quality, which are the main business drivers for developers of
high-tech multi-disciplinary systems such as the wafer scanners from ASML.

The main objective of the Ph.D. project described in this thesis is to reduce time-to-
market and to improve product quality by using models as replacements of not yet available
component realizations for early integration and system testing. Early integration and system
testing distributes the total I&T effort over a wider time frame, reducing the pressure on the
final I&T phases. Furthermore, problems are detected at an earlier stage, which reduces
the costs for fixing them and which improves product quality. Finally, the use of models
enables the application of model-based techniques and tools for thorough system analysis
and systematic testing, which help to improve the system overview for the engineers.

In the proposed model-based integration and testing (MBI&T) method, formal and ex-
ecutable models are used as early representations of not yet realized components that can
be integrated with already realized components. Before component realizations are avail-
able, model-based analysis techniques such as simulation and model checking can be used
to analyze whether the behavior of the system model corresponds to the intended behavior
as specified in the system requirements and system design. When a component realization
becomes available, it can be tested against the corresponding component model by automatic
model-based testing. Using an appropriate integration infrastructure that implements the
designed and modeled interaction behavior, the realized components can be integrated with
the models of not yet realized components. The resulting model-based integrated system
can then be tested on the system level before the complete system realization is available.

To show the practical applicability and the profitability of the MBI&T method, the method
was instantiated with the process algebraic language x (Chi) and its toolset and it was applied
to an industrial case study concerning the component interaction and time behavior in an
ASML wafer scanner. The results of this case study showed that the method can be applied
in industrial practice, dealing with the (not always optimal) conditions and constraints of the

il

iv Summary

current way of working, e.g., incomplete specifications. In the case study, several system de-
sign and integration problems were detected and prevented at an early stage, which increased
the system overview for the engineers and prevented significant amounts of expensive test
time and rework. This shows that the MBI&T method contributes to a shorter time-to-market
and to improved product quality.

In order to decide where and when the I&T phases can benefit from models, the costs
of using models to improve time-to-market and product quality must be quantified, which
is possible by using integration and test sequencing techniques. The proposed quantitative
decision making process was applied to the I&T phases of a new wafer scanner, showing the
possibility to determine where and when it is profitable to use models for integration and
testing.

Samenvatting

Modelgebaseerd integreren en testen van high-tech multi-disciplinaire systemen

In de huidige industriéle praktijk van het ontwikkelen van high-tech multi-disciplinaire
systemen is het moeilijk om om te gaan met de vele uitdagingen van systeemontwikkeling,
wat veroorzaakt wordt door de complexiteit van de systemen, door druk vanuit de markt en
door beperkte middelen. Als een gevolg hiervan neemt de inspanning die nodig is om de
componenten te integreren en om het resulterende systeem te testen tegen de initi€le eisen
significant toe. De integratie en test (I&T) fasen hebben een grote en toenemende invloed
op de doorlooptijd en de kwaliteit van het product, welke de belangrijkste drijfveren zijn voor
bedrijven die high-tech multi-disciplinaire systemen ontwikkelen zoals de wafer scanners
van ASML.

Het hoofddoel van het promotieproject zoals beschreven in dit proefschrift is het reduce-
ren van de doorlooptijd en het verbeteren van de kwaliteit van het product, dit door middel
van modellen die gebruikt worden ter vervanging van nog niet beschikbare componentre-
alisaties om vroegtijdige integratie en systeemtests mogelijk te maken. Door vroegtijdige
integratie en systeemtests wordt de totale I&T inspanning verdeeld over een grotere tijdspan-
ne, waardoor de druk op de laatste I&T fasen afneemt. Daarnaast worden problemen in een
eerder stadium gedetecteerd, wat de kosten om de problemen te verhelpen verlaagt en de
kwaliteit van het product verhoogt. Tenslotte maken modellen het mogelijk om modelgeba-
seerde technieken en gereedschappen toe te passen voor grondige systeemanalyse en voor
systematisch testen, welke de ingenieurs helpen om hun systeemoverzicht te verbeteren.

In de voorgestelde modelgebaseerde integratie en test (MBI&T) methode worden formele
en executeerbare modellen gebruikt als vroegtijdige representaties van nog niet gerealiseer-
de componenten, welke geintegreerd kunnen worden met reeds gerealiseerde componenten.
Voordat er componentrealisaties beschikbaar zijn, kunnen modelgebaseerde analysetechnie-
ken zoals simulatie en model checking gebruikt worden om te onderzoeken of het gedrag van
het systeemmodel overeenkomt met het beoogde gedrag zoals gespecificeerd in de systeem-
eisen en in het systeemontwerp. Wanneer een componentrealisatie beschikbaar komt, kan
deze getest worden ten opzichte van het betreffende componentmodel door middel van auto-
matisch modelgebaseerd testen. Gebruikmakend van een geschikte integratie infrastructuur
die het ontworpen en gemodelleerde interactiegedrag implementeert, kunnen de gerealiseer-
de componenten geintegreerd worden met de modellen van nog niet gerealiseerde compo-
nenten. Het resulterende, op basis van modellen geintegreerde systeem kan dan gebruikt

vi Samenvatting

worden om op systeemniveau te testen voordat de complete systeemrealisatie beschikbaar is.

Om de praktische toepasbaarheid en het profijt van de MBI&T methode aan te tonen,
is de methode geinstantieerd met de procesalgebraische taal x (Chi) en de bijbehorende ge-
reedschappen en is de methode toegepast op een industriéle casus met betrekking tot de
component interactie en het tijdsgedrag in een ASML wafer scanner. De resultaten van
deze casus laten zien dat de methode toegepast kan worden in de industriéle praktijk, om-
gaand met de (niet altijd optimale) omstandigheden en randvoorwaarden van de huidige
manier van werken, zoals bijvoorbeeld incomplete specificaties. In de casus werden meer-
dere systeemontwerp- en integratieproblemen in een vroegtijdig stadium gevonden en voor-
komen, waardoor het systeemoverzicht voor de ingenieurs verbeterde en waardoor een sig-
nificante hoeveelheid tijd voor testen en herzieningen bespaard werd. Dit laat zien dat de
MBI&T methode bijdraagt aan een kortere doorlooptijd en aan een verbeterde kwaliteit van
het product.

Om te kunnen besluiten waar en wanneer de I&T fasen kunnen profiteren van modellen,
moeten de kosten van het gebruik van modellen om de doorlooptijd te verkorten en om de
kwaliteit van het product te verbeteren gekwantificeerd worden, wat mogelijk is door gebruik
te maken van technieken om integratie- en testvolgorden te bepalen. Het voorgestelde kwan-
titatieve besluitvormingsproces is toegepast op de I&T fasen van een nieuwe wafer scanner,
wat de mogelijkheid laat zien om te bepalen waar en wanneer het winstgevend is om model-
len te gebruiken om te integreren en te testen.

Contents

Preface i
Summary iii
Samenvatting v
1 Introduction I
1 Systemdevelopment I
.2 Integration and testproblem Lo L L. 6
1.3 Businessdrivers 8
1.4 Solutions to the I&T problem 10
1.5 Researchquestions 14
1.6 Outline e 16
2 Model-based integration and testing iy
21 Current system development process 7
2.2 Model-based engineering Lo 22
2.3 Model-based integration and testing method 23
2.4 Method instantiation L L L Lo 32
2.5 Conclusions 37
3 System analysis 39
31 Theory: model-based analysis techniques 40
3.2 Practice: analysis of the EUV vacuum-source interface 44
3.3 Conclusions e 57
4 Component testing 59
4.1 Theory: model-based testing L. 60
4.2 Practice: automatic testing of the laser source 62
4.3 Conclusions 69

vii

viii Contents
5 Integration and system testing 71
51 Theory: infrastructure in the MBI&T method 72
5.2 Practice: common interaction type examples 77
5.3 Practice: integration and testing of vacuum system model and real EUV source 84
5.4 Conclusions 88
6 Integration and testing process 91
6.1 Current and model-based I&T process 92
6.2 Theory: integration and test sequencing 98
6.3 Practice: which components of a new EUV wafer scanner should be modeled? 105
6.4 Conclusions 11§
7 Concluding remarks 117
References 121

Curriculum Vitae 131

CHAPTER 1

Introduction

The ‘why’ and the ‘what’. ..

This thesis is the final result of a Ph.D. project on ‘Model-based Integration and Testing of
High-tech Multi-disciplinary Systems’, part of a larger research project titled “Test approach
based on integrated product generation and product realization applied to ASML machines’
or TANGRAM for short [TANGRAM project 2007; Tretmans 2007]. This chapter describes
the background, the problem context, and the objectives of the Ph.D. project, as well as the
outline of this thesis. Because the Ph.D. project was explicitly carried out in an industrial
context, the context and problems of integration and testing in current industrial practice
were used as main drivers for the research.

Section 1.I describes the context and the current industrial practice of high-tech multi-
disciplinary system development. In Section 1.2, it is shown how several conflicts and trends
in the current way of working result in an integration and test problem that is disadvan-
tageous for the most important business drivers: time-to-market and product quality. The
influence of integration and testing on these business drivers is explained in more detail in
Section 1.3. Section 1.4 identifies three possible solutions for the integration and test problem
and shows the resulting effects on the business drivers. The remainder of the thesis focuses
on one of these solutions, early integration and system testing, for which several research
questions are defined in Section 1.5. Section 1.6 provides an outline of this thesis.

1.1 System development

This section introduces high-tech multi-disciplinary systems and the challenges that manu-
facturers of such systems need to deal with in their current system development process.

1.1.1 High-tech multi-disciplinary systems

We define a system as a collection of smaller parts, called components, which are ordered
and interacting according to a certain architecture. The interaction between the components

2 Chapter 1. Introduction

results in system behavior, which aims at satisfying requirements, e.g., providing some func-
tionality with a defined performance. High-tech multi-disciplinary systems are systems in
which cutting edge technologies from multiple engineering disciplines are integrated in or-
der to meet the strict quality requirements set by the customer. A characteristic of such
systems is that they are ‘integration intensive’, which means that integrating the compo-
nents and testing the resulting system against its requirements consumes a large portion of
the total system development effort. In some cases, the integration and test effort may even
exceed the already considerable amount of development effort required to deal with the com-
plexity of the components. Examples of high-tech multi-disciplinary systems are commercial
systems such as wafer scanners [ASML 2007], electronic microscopes [FEI Company 2007],
and high-speed printers [Océ 2007], medical systems such as magnetic resonance imaging
(MRI) scanners [Philips Medical Systems 2007], as well as aerospace systems such as (instru-
ments for) satellites [SRON 2007], airplanes [Airbus 2007], and spacecraft [NASA 2007].

In this Ph.D. project, the wafer scanners from ASML, used worldwide to manufacture
integrated circuits (chips) such as processors and memory, are used as carrier examples of
high-tech multi-disciplinary systems. Wafer scanners use light to transfer a lithographic
image (a pattern corresponding to one layer of a chip) from a mask onto the surface of
a silicon wafer with nanometer accuracy. The light passes through an optical system that
shrinks the pattern image before it is projected onto the wafer. A wafer scanner is highly
multi-disciplinary; it features a complex lithographic process (chemistry, physics) which re-
quires the latest lens technologies (optics), materials with high demands on thermal and
dynamic properties (mechanics), fast and accurate motion control (electronics, embedded
software), complex metrology models for measurement and calibration (mathematics), and
a large amount of software to control the system (computer science).

Figure 1.1 shows a new type of wafer scanner that is currently under development within
ASML. This wafer scanner uses extreme ultra violet (EUV) light for exposing wafers, which
has a much smaller wavelength than the laser light used in the current wafer scanners,
enabling higher accuracies in the exposure process. One of the most important technical
challenges in the development of this lithography system is that EUV light is absorbed by
nearly all materials, including air. This implies that the refractive optics used in the current
wafer scanners need to be replaced by reflective optics and that the lithography process needs
to be performed under strict vacuum conditions.

1.1.2 Current system development process

In current industrial practice, the system development process is usually based on a ‘divide
and conquer’ strategy, in which the system is decomposed into smaller parts that are sep-
arately developed. This system decomposition may be applied on multiple hierarchy levels,
e.g., systems into subsystems, subsystems into modules, and modules into components. In
this Ph.D. project, we only consider the system decomposition between two hierarchy levels,
in which the higher level is referred to as the system and the lower level is referred to as the
components.

When a system is decomposed into components at the start of the development process,
complementary activities are required to obtain the intended system realization at the end of

1.1. System development 3

- f.ﬁv#-_ pattern image
| T (mask) .

¥ -

-

Figure 1.1: ASML EUV wafer scanner

the development process. These complementary activities take place in the integration and
test (I1&T) phases, in which the system is built up by combining the realized or implemented
components and, subsequently, tested against the system requirements that were defined
initially. This system development process corresponds to the well-known and widely used
V-model [Rook 1986] as shown in Figure 1.2. The left-hand side of the V-model corresponds
to the decomposition of the system into components, including requirements definition and
design phases as depicted by the boxes. The right-hand side of the V-model corresponds to
the integration of component realizations resulting in the system realization, with different
test phases as counterparts of the phases on the left-hand side.

During the system development process, manufacturers of high-tech multi-disciplinary
systems such as ASML are faced with many challenges. We consider the following four
challenges that, as explained in the next section, have significant impact on the integration
and test phases.

Challenge 1: System complexity
A system consists of many components of different disciplines, interconnected by
many interfaces in order to enable the interaction required for the system functionality
and performance. The system complexity is too large to be comprehended by a sin-
gle person, so therefore system level specifications (e.g., throughput) are decomposed
into smaller component specifications, which express the contribution of each com-
ponent to the system level specifications in terms of the corresponding engineering

4 Chapter 1. Introduction

Requirements Acceptance
definition testing

Integration/
system testing

\ /

Component Component
design testing

N/

Component
realization

System design

Figure 1.2: V-model

discipline (e.g., acceleration and electrical power). Even the complexity of a component
can be significant, especially when a component contributes to multiple system level
specifications, or when emerging technologies from particular engineering disciplines
are used for the first time. When different persons are responsible for different com-
ponents, adequate specification and communication skills are required to understand
the relations between components and the possible implications of component design
changes for other components. Many industrial system development processes, e.g.,
at ASML, are document-based, i.e., documentation is used to keep track of the require-
ments and designs of the system and components. To be suitable for understanding
the system complexity, the documentation should specify the intended behavior of the
components and the integrated system as completely, consistently, and unambiguously
as possible. Adequate specification of intended behavior is also crucial for the I&T
phases, since the actual behavior (as observed by performing tests) is compared to the
intended behavior to determine the outcome of a test, i.e., pass or fail. In current in-
dustrial practice, however, the documentation may be incomplete, inconsistent, and
ambiguous. As a result, understanding the system complexity and determining test
outcomes based on documentation only may become quite difficult.

Challenge 2: System overview
It is difficult to retain a good overview of the system throughout the complete develop-
ment process. Initially, the global system requirements and system design are reason-
ably well-known, based on customer requirements and the estimated technological ca-
pabilities. However, the complex and multi-disciplinary nature of the system obstructs

1.1. System development 5

specification of complete sets of requirements at each hierarchy level, resulting in less
certain predictions of the actual system behavior. Obtaining complete requirements
and predicting the actual system behavior is especially difficult when emerging and
not yet mature technologies have to be introduced in the system, because of the limited
experience with these technologies. As a result, the system overview fades away dur-
ing the separate component development processes, until it ‘suddenly emerges’ when
the components are integrated and the actual system behavior becomes visible, regard-
less of the question whether or not this actual behavior corresponds to the intended
system behavior. Without system overview, it is difficult to ensure that the system be-
ing developed will eventually show the intended behavior and that it will satisfy the
requirements. Empirical studies such as [Curtis et al. 1988; Herbsleb and Kuwana
1993] also observed that engineers have difficulties in obtaining and retaining system
overview throughout the development process, and that ‘project gurus’ with good sys-
tem overview are scarce but essential project resources.

Challenge 3: Resource limitations

The development process of a high-tech multi-disciplinary system requires large
amounts of time and money in terms of human resources, material costs, and other
R&D costs. However, these resources are limited by the amount of available man hours
and by the total R&D budget that can be spent. Therefore, it is preferred that the re-
sources are used wisely and not in vain. This means that the amount of rework in the
system development process (e.g., changes in requirements, redesigns, multiple ver-
sions of realizations) should be minimized, aiming at building the system ‘first time
right’. Herein lies a paradox: resource limitations dictate that a system should be built
‘first time right’, which often requires a more complete system overview than one can
obtain within the resource limitations.

Challenge 4: Time-to-market
The business drivers of a company are often influenced by the market conditions in
which the company is operating. Business drivers can be characterized in terms of
time-to-market (T), product quality (Q), and costs (C), ordered according to their rela-
tive importance for the company [De Jong et al. 2007a]. For instance, in the aerospace
industry, product quality is essential and time-to-market seems less important, result-
ing in business drivers that can be characterized by Q-C-T, meaning that quality is most
important, then costs, and time-to-market is least important (but not totally unimpor-
tant). For manufacturers of many commercial high-tech multi-disciplinary systems,
however, the market conditions often require that production-ready systems are de-
livered to the customers at the earliest possible date. At least in the semiconductor
equipment industry in which ASML is operating, a short time-to-market is of utmost
importance for commercial success. As a result, the business drivers of lithographic
equipment manufacturers such as ASML can be characterized by T-Q-C. In practice,
the importance of time-to-market results in strict constraints on the system develop-
ment process, such as agreements between the manufacturer of the system and the
customer to ship the system before a fixed deadline, with high financial penalties for
exceeding this deadline.

6 Chapter 1. Introduction

1.2 Integration and test problem

By looking at how the challenges mentioned in the previous section are dealt with in the cur-
rent system development process, several conflicts between the challenges can be identified.
These conflicts are disadvantageous for the I&T phases, e.g., resulting in unnecessary high
costs and long lead times for integration and testing as well as delayed system shipments,
i.e., increased time-to-market.

Conflict 1: System decomposition increases system complexity and reduces system overview
System decomposition results in smaller parts that are easier to comprehend by a
single person. Although this is necessary to deal with system complexity, it may as well
increase system complexity since more components are developed and, accordingly,
more requirements and design documents are created. As a result, the relations
between components, e.g., physical relations and interfaces, and the corresponding
relations between documents become less clear and more difficult to understand
and manage, resulting in a reduced system overview. Sometimes, the exact relations
between the components remain unclear until the realized components are integrated
and tested, i.e., the system overview ‘suddenly emerges’ when the actual system
behavior becomes visible. Moreover, integration problems that were not foreseen
during development might show up only when the system is integrated and tested.

Conflict 2: Limited resources and time-to-market pressure hinder complete system overview
Due to system complexity, a large amount of time would be required to obtain a com-
plete set of system requirements (i.e., complete system overview) before starting the
design and realization phases of the system development process. Besides that achiev-
ing complete system overview is nearly impossible in most cases, resource limitations
and time-to-market pressure further reduce the time available for obtaining system
overview. In practice, the developers may deliberately start designing even if some
requirements are not yet known. During the design, realization, and integration
phases, their understanding and overview of the system improves, which helps to
specify the requirements that are still missing. Although this approach might not
result in building the system ‘first time right’, it might be a necessary step to get to a
complete system at all. In some cases, also the I&T phases may already start before
all requirements are known, and, moreover, some specifications might not become
clear until some tests are executed on the system that is integrated. One can observe a
paradox in the fact that tests are performed even when not all requirements are known,
while, by definition, testing should check whether the requirements are met by the
system. In practice, this paradox is resolved by engineers who, based on previous
experiences, analogies, and engineering intuition, suggest tests even for parts of the
system that are not yet sufficiently covered by the requirements. Practice shows that
some of these tests appear to be quite successful for the validation or falsification
of the desired system behavior and for clarifying some of the requirements that
are still missing. Other tests, however, yield little information and, as such, can be
characterized as unfortunate waste of resources.

1.2. Integration and test problem 7

Conflict 3: Insufficient system overview leads to rework and increased time-to-market
Although tests help to increase system overview, tests that do not yield the expected re-
sults or tests that detect unforeseen or unsolved problems in the system usually result
in additional rework in the system development process. This rework may be limited
to retesting some functionality, but it can also involve time consuming and costly re-
work in the requirements, design, and realization phases. Besides the costs of rework
in terms of time and money, it also increases the pressure on the I&T phases of the
involved components. In this way, the I&T phases get ‘squeezed’ between, on the one
hand, the component development phases that suffer from time consuming rework
and corresponding late component deliveries, and, on the other hand, the time-to-
market pressure represented by the fixed system shipment date agreed with the cus-
tomer. Furthermore, the I&T phases remain on the critical path of the system de-
velopment process, meaning that any delay in the I&T phases directly influences the
time-to-market and threatens timely shipment of the system. As a result, the quality
of the shipped systems is sufficient for operation, but additional testing after the ship-
ment date is required to optimize the quality. Figure 1.3, taken from the TANGRAM
project plan [Brugman and Beenker 2003], shows how the I&T phases are squeezed
between component development and system shipment, and how testing continues
after shipment to improve the quality of the shipped system.

effort

component
development I&T

T [] »time
shipment
date

Figure 1.3: I&T phases ‘squeezed’ between component development and system shipment

As the system development challenges described in Section 1.1 grow, these three conflicts
for the I&T phases also become more critical. As a result, the role of the I&T phases within
the system development process becomes crucial for successful delivery of systems with
sufficient quality within the resource and time-to-market constraints.

These trends related to integration and testing are also recognized in several studies
found in literature. For example, [Muller 2007] provides a good overview of the complexity of
the I&T process and the many relations it has with system development and other organiza-
tional aspects that are also becoming more and more complex. [Bratthall et al. 2000] shows
that the main effort of the industrial system development process is shifting from the design
and implementation phases to the I&T phases. Problems detected during the I&T phases
can only be fixed late in the development process, or even worse, at the customer’s site, which
can be up to 100 times more expensive than detecting and fixing the problems during the
requirements and design phases [Boehm and Basili 2001]. Company losses related to system
failures may exceed 10% of the company’s turnover [Sorqvist 1998]. Together, the costs for

8 Chapter 1. Introduction

testing and the rework required to fix the detected problems take up a significant portion
(over 50%) of the total system development costs [Boehm and Basili 2001; Engel et al. 2004].

The overall conclusion related to these conflicts and trends is that the current system
development process suffers from an I&T problem, in which the I&T phases have a large and
growing disadvantageous influence on the T-Q-C business drivers. As described in [Prins
2004], research is required to solve this I&T process, which immediately leads to the main
objective of this thesis.

The main objective of this thesis is to show how the disadvantageous influence of the
I&T phases on the time-to-market, product quality, and costs (T-Q-C) for developing
high-tech multi-disciplinary systems can be reduced.

In order to reach this objective, the influence of the I&T phases on the T-Q-C business
drivers needs to be investigated in more detail and possible solutions to the I&T problem
need to be identified, which is done in the next sections of this chapter.

1.3 Business drivers

By relating Figure 1.3 to the T-Q-C business drivers, the disadvantageous influence of the
I&T phases on these business drivers and the effects of possible solutions can be visualized.
In this intuitive explanation, we focus on the two most important business drivers for litho-
graphic equipment manufacturers such as ASML, time-to-market T and product quality Q.
Initially, the costs C are not taken into account. For time-to-market T, the relation to Figure 1.3
is simple: the time-to-market T is the time between the start of component development and
the system shipment date. For product quality Q, the relation to Figure 1.3 is less obvious,
and another interpretation of the figure is needed.

Research on integration and test strategies often uses remaining risk as a measure for
product quality Q [De Jong et al. 2006] and as a means to determine when to stop testing
[Williams and Ambler 2002; Boumen et al. 2006]. As explained in [De Jong et al. 2006], the
remaining risk in a system, denoted by R, is defined as the sum of the risks for all possible
faults in the system. The risk for a certain fault is defined as the probability that the fault is
present in the system multiplied by the impact of the fault when it is present and when it
manifests itself in the system behavior, e.g., the costs of a system failure. Possible faults, and
thus the risk related to them, are introduced in the system via component development (i.e.,
faults in a component) and via component integration (i.e., faults in the interaction between
components). By testing a component or a system of integrated components and by fixing the
detected problems, the risk in the components and their interaction, and thus the remaining
system risk R, is reduced (i.e., the quality Q is improved). Before system risk can be reduced by
testing, however, it has to be revealed in the system, i.e., possible faults, whose introduction
may remain unnoticed during component development and integration, have to manifest
themselves in the tested system behavior to be detected. In many cases, some time elapses
between the moment of introducing risk and the moment that this introduced risk reveals
itself, e.g., an interface error that is overlooked during component design may only become
visible when the component realization is integrated into the system. The way that system

1.3. Business drivers 9

risk R is introduced, revealed, and reduced during different phases of system development
can be visualized in a so-called risk profile [De Jong et al. 2006], which graphically represents
the remaining system risk over time.

Figure 1.4 is another interpretation of Figure 1.3 and shows typical risk profiles for each
phase of the current system development process. Here, we only consider risk on the system
level, caused by faults in components that influence the system behavior and by faults in the
component interaction. This means that we do not consider component risk that does not
influence system behavior, assuming that this ‘internal’ component risk is dealt with during
component development and component testing. The figure shows when the system risk R,
introduced by component development and component integration, reveals itself and how it
is reduced by testing on the system level and by fixing the detected problems. For simplicity
reasons, linear abstractions of the risk profiles are used, which is sufficient for this intuitive
explanation of the influence of the I&T phases on the T-Q-C business drivers. Note that the
system risk R on the y-axis considers both revealed risk (for risk profiles above the ‘zero risk’
line, denoted by R,) and reduced risk (for risk profiles below R,).

system risk R

Rimax i
Y]
2
g
e
<
g
&
-
Y]
wn
g
E led risk -
i Ryeduced reveale r.1s = — L 8
© — — reduced risk - -

remaining risk
P time
to tdev tint tship

component development integration

i
N«

system testing

Figure 1.4: Typical risk profiles for current system development

The dash-dotted line in Figure 1.4 depicts the risk revealing profile for the development
and integration phases. During the component development phase from t, to ty4ey, the focus
is typically more related to the component level rather than to the system level, and only a
small portion of the total system risk is revealed. The largest portion of the total risk on the
system level, however, is revealed when the developed components are combined and the ac-
tual system behavior becomes visible, which happens during the integration phase from t4e,
to tin. Since only system level risk is considered here, the figure shows a risk revealing pro-
file that slowly increases between t, and tgqe, (component development phase), after which
it increases significantly between tg4ey and t;,; (integration phase). When all components are
integrated, we assume that all potential system risk is revealed, i.e., it can be reduced by test-

10 Chapter 1. Introduction

ing and by fixing the detected problems. In the figure, this is depicted by the risk revealing
profile that remains constant at its maximum Ry, after t;,;.

In contrast to the risk revealing profile described above, the dashed line in Figure 1.4
depicts the risk reduction profile for the test phase. It is important to note that the risk
reduction profile depends on the risk revealing profile in the following way. In this intu-
itive explanation, we assume that system risk can only be reduced by performing tests on a
combination of at least two realized and integrated components and by fixing the detected
problems. This means that the risk reduction profile for the test phase depends on the
point at which the integration phase starts, tq4e, in the figure. Before t4ey, N0 component re-
alizations are integrated and no system risk can be reduced by testing, resulting in a risk
reduction profile that remains at R,. At t4ey, the first components are integrated and system
tests can be performed to reduce the system risk, represented in the figure by the negative
values of the dashed line. Testing continues after all components are integrated, i.e., after t;,;.
How much and how fast risk can be reduced by testing depends on the quality of the system
tests, the efficiency of their execution, and the time needed for diagnosing and fixing the
detected problems. This rate of risk reduction over time is represented in the figure by the
angle « of the linear abstraction of the risk reduction profile. Depending on the risk reduc-
tion rate, a certain amount of risk Ryequced can be reduced before the (fixed) system shipment
date tip, depicted by the bold vertical line similar to Figure 1.3. After tg,, when the system
is operating at the customer site, the risk reduction rate often decreases because less test
time is available and the conditions for testing are less optimal when compared to the test
phase before system shipment. This lower risk reduction rate for testing after shipment is
represented in the figure by the angle B, which is smaller than « for testing before shipment.
Note that we assumed here that only one system was used for testing. Practical experience
shows that when multiple systems of the same type are shipped and used concurrently at
different customer sites, e.g., during beta testing, more problems are detected and the total
risk reduction rate for that particular system type may even increase after system shipment.

The overall remaining risk profile for the system development process is obtained by
combining the risk revealing profile and the risk reduction profile, which results in the solid
line in Figure 1.4. Between t, and tgey, the remaining risk is equal to the revealed risk during
component development. Between tqey and tiy, a significant amount of risk is revealed during
integration while some risk is reduced by testing, resulting in an overall remaining risk that
still increases. After ty,;, the remaining risk profile follows the risk reduction profile with risk
reduction rates & and B. The remaining risk at system shipment date tgi, is denoted by Rgp,
which is used as a measure for the product quality Q: a lower Rg;, implies a higher quality Q
of the shipped system.

1.4 Solutions to the I&T problem

Using Figure 1.4, possible solutions can be identified to reduce the disadvantageous influ-
ence of the I&T phases on the T-Q-C business drivers. The following subsections describe
three possible solutions, for which the resulting effects are expressed and visualized in terms
of time-to-market T and remaining risk R, similar to Figure 1.4.

1.4. Solutions to the I&T problem 11

1.4.1 Development phase improvement

This solution focuses on the development phase, aiming at better requirements, designs,
and realizations of the components. With better component designs and realizations, less
risk is introduced (and thus revealed) during component development and component inte-
gration, meaning that less risk needs to be reduced by testing. Under the assumption that
the quality and efficiency of the test phase and thus the risk reduction rates do not change,
Figure 1.5 shows the changes in the risk profiles compared to those in Figure 1.4. For easier
comparison, some parts of Figure 1.4 are included in Figure 1.5, namely the risk revealing
profile (grey dash-dotted line), the remaining risk profile (grey solid line), and the original
shipment date tq.;; (grey and bold vertical line).

system risk R

4

wn

g

bl

(5]

g

©

~

=4

wn

g

E — - - revealed risk =

E Rieduced revealed ris > B
o — — reduced risk —)

remaining risk
- P time
to tdev tint t ship tship

Figure 1.5: Risk profiles for development phase improvement

Compared to Figure 1.4, the total amount of revealed risk decreases from Ry.x t0 R'yay,
and therefore the remaining risk profile (black solid line) is shifted downwards as well. Look-
ing at the remaining system risk at time of shipment for the current way of working, Repi, at
time tg,;p in Figures 1.4 and 1.5, the same product quality level is now reached at time t'gy;p
instead of tep, meaning a shorter time-to-market T. If the shipment date remains at tg,p,
however, the system can be shipped with less remaining risk, R’ instead of Rg,ip, meaning
an improvement of quality Q. In this way, this solution enables a choice of how the T-Q-C
business drivers are influenced, resulting in an earlier shipment date between t'sni, and tepnip
with corresponding risk between R’gip, and Rgpip.

In current industrial practice, improvements to the development phase are usually trans-
lated into allocating more resources for component development. However, adding more
resources is not always possible (see Challenge 3 in Section 1.1) and might even have nega-
tive effects [Brooks 1995]. Besides adding resources, the component development process
itself can also be improved. For instance, techniques can be applied from areas such as
systems engineering [Martin 1996; INCOSE 2000], requirements engineering [Hull et al.
2005], model-based design [Gomaa 2000; The Mathworks — SIMULINK 2007], and code

12 Chapter 1. Introduction

generation [De Wulf et al. 2005; Huang et al. 20006], which already receive major attention
in research. Although these approaches may show promising research results, large scale
implementations in industrial practice are scarce and, at least at ASML, are not expected in
the near future, meaning that the I&T problem still remains. Furthermore, it is unknown
whether these approaches can deal with practical challenges such as described in Section 1.1,
and whether they are sufficiently effective at preventing integration problems to solve the
I&T problem. Moreover, one explicit constraint of the TANGRAM project was that the current
way of working for the requirements, design, and realization phases (i.e., the left-hand side
of the V-model) should be taken for granted and may not be changed [Brugman and Beenker
2003]. Because of these reasons, this solution is not considered in this Ph.D. project.

1.4.2 Test phase improvement

A second solution lies in the test phase of the system development process. By improving
the efficiency of the test phase activities, risk could be reduced faster, i.e., the risk reduction
rate increases. Under the assumption that the risk revealing profile (dash-dotted line) does
not change, Figure 1.6 shows the changes in the risk profiles compared to those of Figure 1.4.
Again, some parts of Figure 1.4 are included (in grey) for easier comparison.

system risk R

Ronas P I)
'M .
wn
o
o
9] Rani
?'3 snip
Q>) R ship
-
— Ro
A
wn
=
3 =
u [.
= Rreduced revealed r}sk N
S IR — — reduced risk ~L
reduced remaining risk ~ F
’ =P time
to tdev tint t ship tShip

Figure 1.6: Risk profiles for test phase improvement

Compared to Figure 1.4, the angles representing the risk reduction rates before and af-
ter system shipment, increased to a’ and f’, respectively. As a result of the increased risk
reduction rate, more risk can be reduced within the same test time and R,equceq iNCreases
t0 Reduced- The remaining risk profile (black solid line) shows the improvements to T and Q,
i.e., earlier shipment between t'g,i, and ten;, with corresponding risk between R’g,ip and Repip.

One way to increase the risk reduction rate is to allocate more resources for testing, diag-
nosis, and problem fixing, however also these resources are limited, e.g., a limited number of
test benches and prototypes on which tests can be performed. Another way to achieve this is

1.4. Solutions to the I&T problem 13

to improve the quality of the tests and the efficiency of test execution, diagnosis, and problem
fixing, e.g., by automating test and diagnosis activities, by using a flexible test environment
allowing easy configuration of (exceptional) test conditions, or by optimizing the sequence of
all activities in the I&T process. These improvements were investigated in other parts of the
TANGRAM project, see [Tretmans 2007] for an overview.

Although this solution may enable faster risk reduction, the point at which the test phase
can start remains at tgey, Since the tests still require that at least some components are realized
and integrated. When the starting point for system testing remains at t4ey, it is questionable
whether the improvements to the risk reduction profile after t4., provide enough compensa-
tion for the large amount of risk that is only revealed in the component integration phase,
which also starts after tye,.

1.4.3 Early integration and testing

The point at which the test phase can start, tgey in the current way of working, is the focus
of the third solution, which aims at earlier integration and testing of system risk. When
system tests could be performed before the components are realized and integrated, i.e.,
before t4ey, the test effort and corresponding risk reduction could be distributed over a wider
time frame. Performing system tests before the system is available requires a method that
enables system risk to be revealed earlier and in another way than in current component
development and integration, enabling earlier risk reduction by testing. Such a method
should provide techniques to represent and integrate the components and the corresponding
risks at an early stage, such that system tests can be applied on this early representation of the
integrated system. Under the assumption that such a method for early integration and testing
exists and that the amount of introduced risk and the risk reduction rates do not change,
Figure 1.7 shows the changes in the risk profiles compared to those in Figure 1.4. Again,
some parts of Figure 1.4 are included (in grey) for easier comparison.

system risk R

Rmax P2 -
- /)
3 -
:
2 Rship e
8 ’ . /
q>) R ship - \
~
1 R — <
'ﬁ ~ \Z n) n
"8 . ~
2 | R — - —revealed risk ~
_= reduced . — \}\) ‘B
o — — reduced risk —
remaining risk p T
5 P time
to tearly tdev tint t ship tship

Figure 1.7: Risk profiles for early integration and testing

14 Chapter 1. Introduction

In Figure 1.4, component integration and system testing could only start at tgey, since the
current way of working requires at least some components to be realized and integrated. The
assumed method uses other techniques than component realizations to represent, integrate,
and test system risk at an early stage, such that these activities can already start at teany.
Although the risk revealing profile (black dash-dotted line) starts its major increase earlier,
the total amount of revealed system risk Ry, still depends on the realized and integrated
components. Since the development and integration process for component realizations
may not be changed, R,,.x and the point in time at which all potential system risk is revealed,
tint, are the same as in the current way of working. The system risk that is revealed earlier by
means of the early I&T method is immediately available for testing. This means that the test
phase and the corresponding risk reduction can start earlier as well, i.e., at teayy instead of tgey.
This is depicted by the risk reduction profile (black dashed line), which has the same risk
reduction rates « and B as in the current way of working. Again, this enables improvements
to T and Q by earlier shipment between t'g,i, and tg,i, With corresponding risk between R’gpip
and Rgpip, as shown by the remaining risk profile (black solid line) in Figure 1.7.

The main challenge of this solution lies in the assumed method that enables early inte-
gration and testing of system risk before the actual components are realized and integrated.
This thesis takes on the challenge, and investigates the possibilities, requirements, practical
applicability and profitability of a method that enables early integration and system testing.

1.5 Research questions

As previously mentioned, the main objective of this thesis is to show how the disadvanta-
geous influence of the I&T phases on the time-to-market, product quality, and costs (T-Q-C)
for developing high-tech multi-disciplinary systems can be reduced. In the previous section,
three possible solutions to the I&T problem were identified. Development phase improve-
ment is not further investigated, because it already receives major attention in research and
because of the explicit constraint of the TANGRAM project that the current way of working
for the requirements, design, and realization phases (left-hand side of V-model) should be
taken for granted. While test phase improvements are investigated in other parts of the TAN-
GRAM project, this Ph.D. project focuses on the third solution: a method that enables early
integration and system testing. This section defines the research questions that need to be
addressed when such an early I&T method is proposed, starting with questions related to the
main goal of early integration and testing, as discussed in the previous section.

QUESTION 1.1 How can system risk be revealed and subsequently reduced when no com-
ponent realizations are available?

QUESTION 1.2 How can system risk be revealed and subsequently reduced when only
some component realizations are available?

As in all projects organized by the Embedded Systems Institute (ESI) [Embedded Sys-
tems Institute 2007], one particular goal of the TANGRAM project is to provide a proof of

1.5. Research questions 15

concept showing that the proposed methods, techniques, and tools are applicable and prof-
itable in industrial practice. In this so-called ‘industry as laboratory’ research concept [Potts
1993; Embedded Systems Institute 2000], research is performed in a close relation with
the actual system development activities of a carrying industrial partner, which is ASML for
the TANGRAM project. This also means that the proposed methods, techniques, and tools
should be able to deal with the (not always optimal) conditions and constraints of current
industrial practice, a requirement that is not often considered in academic research projects.
For example, the fact that the current system development process is based on documents
that may be scattered, incomplete, outdated, and may contain information that is ambiguous
and inconsistent, should just be accepted and dealt with in some way. Due to this practical
context of the TANGRAM project, the answers to the research questions should be supported
by a proof of concept showing their industrial applicability and profitability. Assuming that
the answers to QUESTIONS 1.1 and 1.2 result in a method for early integration and testing,
then the following additional question should be answered as well.

QUESTION 1.3 Is it feasible and profitable to apply the proposed early I&T method in
current industrial practice?

The proposed early I&T method adds new integration and test activities to the I&T pro-
cess in order to reduce time-to-market T or to increase the product quality Q. However, a
method that reveals system risk early such that it can be reduced by testing will probably
require additional resources during the system development process. For example, a certain
amount of time will be needed to represent and integrate the components and the corre-
sponding risks, and to perform tests on this early representation of the integrated system.
Since resources are limited, it is important to determine whether application of the early I&T
method is profitable and whether the resources required for it are used wisely and not in vain.
To determine this profitability, the third and, according to the T-Q-C order, least important
business driver, costs C, has to be taken into account, which was not the case in Section 1.3.
By quantifying the costs C required to enable the benefits of shorter time-to-market T and
higher product quality Q, the profitability of early integration and testing can be determined.
This supports the decision making process of where and when the I&T process can profit
from early integration and testing, as expressed in the second set of research questions for
this thesis.

QUESTION 2.1 Which activities in the current I&T process can be supported by the early
I&T method?

QUESTION 2.2 When is it profitable to apply the early I&T method?

QUESTION 2.3 Isitfeasible in current industrial practice to quantify the costs of the early
I&T method and to decide where and when the method should be applied?

In the remainder of this thesis, QUESTIONS 1.1 and 1.2 are answered by proposing meth-
ods, techniques, and tools to enable early integration and testing. QUESTIONS 2.1 and 2.2 are

16 Chapter 1. Introduction

answered by proposing methods, techniques, and tools to quantify the costs and profitability
of applying the early I&T method. To provide an answer to QUESTIONS 1.3 and 2.3, the pro-
posed methods, techniques, and tools were applied to a relevant industrial case study, which
is used throughout the thesis as an example. This case study involves the EUV wafer scanner
as shown in Figure 1.1.

1.6 Outline

Due to the practical context and constraints of this Ph.D. project, it is a research project
with a strong engineering component. The engineering nature of the Ph.D. project is also
reflected in this thesis, in which theories and techniques from specific research domains are
used and combined to answer the research questions. The proposed early I&T method is
based on theories and techniques from research domains related to model-based engineering,
in which computer models are used to describe, analyze, and test components and systems.

Chapter 2 first describes the current system development process in more detail. Subse-
quently, theories and techniques from several research domains related to model-based en-
gineering are used and combined to answer QUESTIONS LI and 1.2, resulting in the model-
based integration and testing method. Finally, this method is instantiated with a particular
paradigm, corresponding mathematics, and tools, which are used in the subsequent chap-
ters to answer QUESTION 1.3 on the applicability and profitability of the method in industrial
practice.

These subsequent chapters discuss the three main activities of the method in more de-
tail: system analysis (Chapter 3), component testing (Chapter 4), and integration and system
testing (Chapter 5). After some rationale and background for the discussed activity, each of
these three chapters describes theory and techniques from related research domains that are
used in the method. Subsequently, each chapter describes the practical side of applying the
discussed activity to the EUV case study, providing an answer to QUESTION L.3.

Chapter 6 focusses on QUESTIONS 2.1 through 2.3. The chapter starts with a description
of where, i.e., in which activities, the current I&T process can be improved by applying the
early I&T method described in the previous chapters, answering QUESTION 2.1. Then it is
shown how integration and test sequencing techniques can be used to quantify the costs
of various I&T processes, in order to decide when it is profitable to apply early integration
and testing in the I&T process, answering QUESTION 2.2. Subsequently, QUESTION 2.3 is
answered by applying this quantitative decision making process to the I&T process of a new
version of the EUV wafer scanner.

Finally, some concluding remarks are given in Chapter 7.

CHAPTER 2

Model-based integration and testing

The ‘how’ and the ‘with what'. . .

As described in the previous chapter, this Ph.D. project focuses on a method for early
integration and testing. Before answering the research questions related to this method, a
description of the current system development process is given in Section 2.1, specifically
focusing on the I&T activities involved in the process.

Section 2.2 introduces the model-based engineering approach and the related research do-
mains that provide several model-based theories and techniques. This model-based engi-
neering approach is used as the ‘enabler’ for early integration and testing, resulting in several
model-based I&T techniques proposed in Section 2.3 as answers to QUESTIONS LI and 1.2.
By combining the proposed model-based I&T techniques with the current system develop-
ment process, the model-based integration and testing method or MBI&T method is obtained,
which enables earlier and faster integration and testing with lower costs.

Before the MBI&T method can be applied to real industrial I&T problems, it needs to be
instantiated with a paradigm and related mathematical techniques and tools which are suit-
able to perform the MBI&T activities. Section 2.4 describes the instantiation of the MBI&T
method. In the same section, we present our hypothesis that a particular instantiation of the
MBI&T method, based on the paradigm of concurrent processes and process algebra tech-
niques and tools, is suitable to perform all MBI&T activities in industrial practice regarding
component interaction and time behavior. In the remainder of this thesis, this hypothesis is
tested by applying the particular instantiation of the MBI&T method to the EUV case study,
thus answering QUESTION L.3.

2.1 Current system development process

This section describes the current system development process, which is based on the V-
model as shown in Figure 1.2. Although the focus of this figure was on the different phases
of system development, this section concentrates on the different representations of compo-
nents and systems. Three different representations are considered: requirements, designs,
and realizations. Requirements, denoted with R, typically specify the required functionality

7

18 Chapter 2. Model-based integration and testing

and performance, as well as other constraints that should be satisfied by a component or sys-
tem. Requirements usually originate either from customer demands or from requirements
and designs on a higher hierarchy level. During the requirements phase, customer demands
are translated into technical requirements taking the estimated technological capabilities
into account, and the influence of higher level requirements and design decisions on the
lower level requirements is determined. For example, the required throughput of a system
is translated into required accelerations and thus into required electrical power of the mo-
tors, and the architecture of the system design dictates the interfaces that each component
should provide. Designs, denoted with D, typically specify how the component or system
should be built in order to satisfy its requirements, e.g., the intended implementation of the
provided interfaces and the internal component behavior. Higher level designs often also
contain the decomposition into smaller parts and the corresponding translation of higher
level requirements and design decisions into requirements for the smaller parts, as well as
the architecture, layout, and intended interaction of the smaller parts. Realizations, denoted
with Z, are the real components (e.g., mechanics, electronics, software) and systems consist-
ing of integrated components, which are built according to the design and should satisfy the
requirements defined for it.

Requirements Acceptance
definition testing

R
Z. - Z,

Integration/
system testing

D
Z, ~Z,

System design

Component Component
design testing

tRB '"E% Z, | Zy

Component
realization

Figure 2.1: V-model: from phases (in grey) to representations (in black)

Figure 2.1 shows how these representations (in black) relate to the phases of the V-model
from Figure 1.2 (in grey). The figure considers the development of a system S that con-
sists of n components C; , (in this thesis, a set {X;, ..., X,} is denoted by X; ,). The initial
phases of system development result in the system requirements R and the system design D,
which form an early representation of system S. Subsequently, each component C; € C, , is

2.1. Current system development process 19

separately developed, resulting in three different representations of the component, namely
the requirements R;, the design D;, and the realization Z;. On the right-hand side of the
V-model, each component realization Z; is first tested in isolation in the component testing
phase. Subsequently, the component realizations Z, , are integrated such that the integrated
system can be tested to determine whether it corresponds to system design D and whether
it satisfies the system requirements R and finally the customer demands.

The integration of component realizations Z; , is achieved by using a certain infrastruc-
ture I, graphically represented by a rounded rectangle in Figure 2.1. Anything that is needed
to connect components is considered as infrastructure, e.g., nuts and bolts (mechanical in-
frastructure), signal cables (electronic infrastructure), or communication networks (software
infrastructure). By connecting the individual components, the infrastructure I establishes
the component interaction according to the system design D in order to fulfill the system re-
quirements R. In this thesis, different types of infrastructure will be introduced. For now, it
is sufficient to abstract from these different types of infrastructure and consider only the ‘gen-
eralized’ infrastructure I. The integration of realizations Z, , by means of infrastructure I is
denoted by {Z; ,};. The reason why the infrastructure is not considered as a component C;
is explained later in this chapter.

A graphical representation of the current development process of system S is shown in
Figure 2.2, corresponding to a ‘flattened’ version of the V-model. The arrows depict the dif-
ferent development phases and the boxes depict the different representations of systems and
components. The rounded rectangle depicts the infrastructure I that connects the compo-
nent realizations Z, ,. For simplicity, the figure shows a ‘sequential’ development process
per component, i.e., a phase only starts when the previous phase has been finished. In prac-
tice, however, different phases of the development process are executed in parallel, e.g., the
design phase may already start while not all requirements are completely defined and under-
stood. As previously mentioned, this is often necessary due to the time-to-market pressure
to deliver a system with sufficient quality in time. Furthermore, the real system develop-
ment process has a more incremental and iterative nature, involving multiple versions of the
requirements, designs, and realizations, and feedback loops from certain phases to earlier
phases, e.g., from the realization phase back to the design phase.

L> R}’L —design » Dn —realize »| Zn —integrate »

Y
r» RI —design » DI —realize »| ZI —integrate
—~
define o
2
—define» R —design » D é
a3
define L'é
N

Figure 2.2: Current system development process

20 Chapter 2. Model-based integration and testing

As mentioned in Chapter 1, this thesis and therefore also Figure 2.2 only considers the
system decomposition between two subsequent hierarchy levels, referred to as the system and
the components. Although real systems usually have more than two hierarchy levels, most
system development activities focus either on just one hierarchy level (e.g., system require-
ments definition and component development) or on the relation between two subsequent
hierarchy levels (e.g., system design and system integration). This means that Figure 2.2
can be applied to all hierarchy levels of the real system by mapping the considered hierarchy
levels onto the generic system and components hierarchy levels in the figure.

In the remainder of this section, we focus on the possible I&T activities in the current
system development process as shown in Figure 2.2. In particular, we only consider I&T
activities that aim at detecting problems at the system level, i.e., reducing system risk, as
explained in Section 1.3. This means that we do not consider activities related to component
development and testing, assuming that the ‘internal’ component risk is dealt with during
the component development and testing phase. In the current system development process,
two I&T activities on the system level can be identified, namely requirements and design
analysis and system testing, which are described in the following subsections.

2.1.1 Requirements and design analysis

In the current system development process, requirements and design analysis can be ap-
plied to check the consistency between requirements and designs on the component level
and those on the system level. This consistency heavily depends on the decomposition from
system design D into the component requirements R, ,. In order to determine this con-
sistency, the separate component requirements R, , have to be combined (i.e., integrated)
and interpreted together. The same holds for the separate component designs D, ,. The
combined interpretation of R, , or D, , can then be be compared (i.e., tested) to the require-
ments R and design D on the system level, which is graphically represented by the dashed
arrows in Figure 2.3, in which the not involved component representations are greyed out.
An example of requirements analysis involves understanding the relation between system
level requirements R and component requirements R, , in both directions, which is called
requirements traceability [Hull et al. 2005]. An example of design analysis is that when the
system design D specifies a certain architecture with corresponding interfaces between the
components, the component designs D, , should comply with this architecture and these
interfaces.

Since most of the requirements and designs are currently captured in documents, these
activities usually boil down to reviewing and comparing lots of documents, which is a tedious
and difficult task. The integration of documents is a rather abstract form of integration,
which requires more activities than just combining the components in order to determine
the emerging system behavior. For example, the result of integrating two component design
documents is just a larger document which does not immediately show the integrated sys-
tem behavior. Instead, the engineers should create a ‘mental’ model to interpret the behavior
of the integrated components and to check its consistency with the intended system behav-
ior, which requires significant knowledge of the components as well as system overview. In
current industrial practice, automated tooling for document-based requirements and design

2.1. Current system development process 21

RI design DI realize ZI

define

infrastructure I

define

Rn design Dn realize ZH
L ——— analyze — 1 ————— }

Figure 2.3: Requirements and design analysis

define R design D
: '
| |

\
\

\
\

\

analysis is available, e.g., [Requirements Assistant 2007], but scarce, so these activities are
usually performed by reviewing and discussing each document and by applying assessment
techniques such as failure mode and effect analysis (FMEA) to identify risks in the sys-
tem design. Practical experience shows that the available time for reviewing and the system
overview are often insufficient to detect and fix all problems regarding the relations between
higher level and lower level documents. This means that some problems remain hidden in
the design and may only be discovered during testing, or even worse, during operation at the
customer site.

2.1.2 Integration and system testing

While the integration of requirements or design documents is rather abstract, the integration
of component realizations Z; , results in the real system, i.e., {Z, ,};. When this integrated
system realization is available, it can be tested against the system requirements R and the
intended system design D, graphically represented by the dashed arrows in Figure 2.4. De-
pending on the considered system hierarchy level, the integrated system realization can be,
for example, an integrated set of software components, a test bench with some but not all
hardware components, or a complete (prototype of a) system. Testing involves defining tests
for the considered aspects of the system, executing these tests on the system realization,
and determining the test outcome (pass or fail) by comparing the test results to the require-
ments R and the design D. During the execution of a test, the test conditions of the system
are influenced by providing test inputs or stimuli, and the resulting system behavior is ob-
served via test outputs, which should conform to the expected test outputs. Different types
of tests exist, ranging from functional tests to performance tests, as well as regression and
acceptance tests, which are described in more detail in Chapter 6. A common property of
these tests is that they require realized and integrated components. This implies that these
tests can only be performed in the I&T phases and, when problems are detected and need to
be fixed, the effort invested in these phases increases and timely shipment of the system is
directly threatened.

22 Chapter 2. Model-based integration and testing

SR
RI design DI realize ZI —integrate
~
define v
£
define R design D é
2
+ ? define dé
|
‘ | R}’l design DI/L realize Zn —integrate
| :
| N
\ | N J
————— .

Figure 2.4: Integration and system testing

2.2 Model-based engineering

As previously mentioned, the current system development process is mostly based on doc-
uments, which has several disadvantages. First, practical experience shows that documents
may be scattered, incomplete, or outdated, and that they may contain information that is
ambiguous or inconsistent, usually with more focus on the nominal behavior than on the
exceptional behavior. As a result, it is difficult to obtain a good system overview and to de-
tect inconsistencies and potential problems based on documents only. Second, the informal
structure of documentation complicates automated analysis techniques such as inconsis-
tency detection, which currently leaves manual document reviewing as the main technique
used for document analysis. Third, documentation is a static piece of information which
makes it difficult to express and analyze dynamic system behavior. As opposed to that,
executable specifications [Fuchs 1992] enable a more thorough and systematic analysis of
dynamic system behavior. Fourth, determining the integrated system behavior based on
component documentation only is a difficult task that requires a considerable amount of
component design knowledge as well as system overview. In other words, using documenta-
tion to represent a component is not suitable for early integration and testing, which leaves
the (later available) realization as the only representation of a component that is suitable for
I&T activities.

An emerging alternative to document-based system development is to use models to rep-
resent the components of a system, and to use a range of model-based techniques and tools
to support the system development process. In general, we consider a model to be an ab-
stract representation of a real component or system, used in experiments to gain knowledge
about the real component or system. Although different types of models can be used, e.g.,
scale models of cars to analyze aesthetics as well as aerodynamics, we particularly focus on
computer models describing the behavior of components and systems. Such models have
several advantages over documentation. First, they provide a structured and systematic ap-
proach to specify component and system behavior with more consistency and less ambiguity
than documents, because the model semantics precisely defines what a certain modeling
construct means. Second, well-defined model semantics also allows automatic reasoning by

2.3. Model-based integration and testing method 23

tools, enabling model execution and the use of various sophisticated and automated analysis
techniques. Third, executable models make it easier to analyze dynamic behavior as well
as the performance of a component or a system. Fourth, when a modeling language sup-
ports model composition, integrating component models and observing the emergent sys-
tem behavior becomes as easy as modeling and analyzing a component model only. These
advantages show that, as an alternative to the component realization, also a model is a rep-
resentation of a component that is suitable for I&T activities. In the case that models of the
components are available before the realizations, the models can effectively be used for early
integration and testing.

Many fields of academic research investigate and develop model-based techniques and
tools that support a reduction of effort invested in particular phases of the system develop-
ment process. Although the general approach of using models to support the system devel-
opment process is not an established research field as such, we refer to it as the model-based
engineering approach.

Examples of model-based engineering techniques and tools are model-based require-
ments engineering [Von der Beeck et al. 2002], model-based design [Gomaa 2000; The
Mathworks — SIMULINK 2007], model checking [Katoen 1999], model-based code generation
[De Wulf et al. 2005; Huang et al. 2006], hardware/software co-simulation [Rowson 1994;
PTOLEMY project 2007], hardware-in-the-loop testing and rapid prototyping [Hanselmann
1996; Deppe et al. 2004], and model-based testing [Brinksma and Tretmans 2001; Hartman
2002]. In most cases, however, these model-based engineering techniques are investigated
in isolation and only cover specific phases of the system development process, and little
work is reported on combining such techniques into an overall model-based engineering
method. Although model-based systems engineering [Ogren 2000] and the Model-Driven
Architecture [Kleppe et al. 2003], which uses the Unified Modeling Language (UML) [UML
2007] for software development, are such overall model-based engineering methods, they
mainly focus on the requirements, design, and implementation phases, rather than on the
I&T phases. Furthermore, literature barely mentions realistic industrial applications of such
overall methods, at least not for high-tech multi-disciplinary systems.

In the remainder of this chapter, the model-based engineering approach is used to an-
swer the research questions related to early integration and testing. Since a wide range of
methods, techniques, and tools related to model-based engineering are already available and
still being developed in other research projects, we have the intention to reuse these results
as much as possible, instead of developing new methods, techniques, and tools. Where nec-
essary, the available methods, techniques and tools will be adapted, extended, and combined
to accommodate the requirements for early integration and testing.

2.3 Model-based integration and testing method

This section proposes several model-based I&T techniques as answers to QUESTIONS I.I
and 1.2. The model-based I&T techniques are inspired by the model-based engineering ap-
proach as introduced in the previous section.

24 Chapter 2. Model-based integration and testing

2.3.1 System analysis

This subsection provides an answer to QUESTION 1.1, which is repeated below.

UESTION 1.1 How can system risk be revealed and subsequently reduced when no com-
y q Y
ponent realizations are available?

Many model-based techniques that are used during the system development process only
consider models of the intended system behavior, i.e., how the system should work. The goal
of these techniques is to guide the activities in the system development process such that the
correctness of the system model, i.e., the intended system behavior, is preserved throughout
the process. In this top-down approach, the abstract system model is continuously refined
using correctness preserving model transformations, ultimately resulting in realizations that
are synthesized from the models. However, applying this in the current document-based
way of working would imply many changes to the system development process, which is not
considered in this Ph.D. project.

Nevertheless, model-based techniques can still support the current I&T process by using
a bottom-up approach instead of a top-down approach. This can be achieved by using mod-
els as representations of the actual behavior of the components, i.e., as they are designed
and realized in the current, unchanged way of working. The integration of these component
models yields a system model that is an early representation of the actual system behav-
ior. This implies that also the corresponding system risk is revealed before the components
themselves are realized and integrated, which answers the first part of QUESTION 1.I on
revealing risk. In contrast to the above mentioned top-down model-based approaches that
aim at preserving correct system behavior, the integration of models that contain the actual
component behavior may often result in incorrect system model behavior, e.g., due to an un-
foreseen conflict in the component designs. This bottom-up approach perfectly matches the
main goal of integration and testing, namely detecting system level problems that emerge
from the integrated components as early as possible.

The following requirements need to be satisfied when models of components are used to
reveal system risk early, such that it can be reduced before the components are realized.

Information sources for modeling The modeling activities require sufficient sources of in-
formation on what should be modeled, e.g., the model boundary with inputs and out-
puts, the assumptions of the model, and the internal model behavior. In this case,
the models should represent the components as they are designed, so the component
designs themselves are chosen as the main information sources for modeling. The
available design documents are taken as a starting point for modeling, and, if they do
not provide sufficient information, discussions with the involved engineers are used to
clarify the designs. In this way, the discussions during the modeling activities also help
to detect problems, inconsistencies, and potential issues in the design documentation
and to increase the system overview for the engineers.

Model expressivity To be able to represent components by models, the modeling language
that is used should offer sufficient expressivity to describe the considered aspects of the

2.3. Model-based integration and testing method 25

considered components. Modeling different aspects of different components may re-
quire different modeling language paradigms and corresponding techniques and tools,
which is described in more detail in Section 2.4.

Model compositionality Integrating component models such that a system model is ob-
tained, requires a modeling language that supports compositionality. This means that
modeling constructs should be provided that can be used to couple different compo-
nent models, similar to the infrastructure I in Figure 2.2 that is used to couple different
component realizations.

Model correctness When models are replacing the realizations of components to detect
problems by early I&T activities, it is essential that the models are correct representa-
tions of the components as they are designed (and subsequently realized). This means
that the correctness of a model with respect to the component as it is designed should
be analyzed. Since the component designs are captured in (informal) documents, it
is difficult to define a strict correctness relation between the model and the design
documentation. In practice, manually comparing the model against the design docu-
mentation and discussing the model with the involved engineers (possibly supported
by model execution) can be used to improve the confidence in the model. This model
validation process continues until there is sufficient confidence that the model is a
correct representation of the component and therefore a suitable replacement of its
realization to be used for system testing.

The second part of QUESTION 1.1 concerns reducing the system risk that is revealed early
by using models as described above. To achieve this, the behavior of the integrated sys-
tem model should be analyzed to check whether it satisfies the system requirements R and
whether it corresponds to the intended system design D. When the system model behavior
is found to be correct with respect to R and D, the probability of faults that cause incorrect-
ness decreases, i.e., the corresponding system risk is directly reduced. When the system
model behavior is found to be incorrect with respect to R and D, a problem is detected which
can be fixed at an early stage, i.e., the corresponding system risk is indirectly reduced. This
means that model-based techniques for system analysis enable a reduction of system risk
before the component realizations are available and integrated, which completes the answer
to QUESTION LI

In order to analyze and test the integrated system model such that system risk can be
reduced at an early stage, the following requirements need to be satisfied.

Determine model behavior Techniques are required to interpret the modeling constructs
used to express the component designs, from which the resulting behavior of the sys-
tem can be determined.

Analyze model behavior Besides techniques to determine the system model behavior, other
techniques and tools are required to analyze this system model behavior. For example,
the determined system model behavior should be executed and the executed behavior
should be presented in a form that can easily be compared to the intended system
behavior, or the determined system model behavior should be checked against certain
required properties.

26 Chapter 2. Model-based integration and testing

Figure 2.5 shows the proposed model-based I&T technique of creating and integrating
component models such that the resulting system model can be analyzed against the sys-
tem requirements R and system design D. Each component C; € C, , is represented by a
model M; that is based on the design D;. The component models M, , are integrated us-
ing a model of the infrastructure Iy, yielding the integrated system model {M, ,};,. The
integrated system model {M, ,},,, is analyzed against the system requirements R and the
system design D (graphically represented by the dashed arrows) by deriving properties and
scenarios from R and D, for which the correctness is determined using various model-based
analysis techniques, which is explained in more detail in Chapter 3. Note that the infrastruc-
ture can be modeled as I), on different levels of abstraction, ranging from completely ignored
infrastructure, e.g., when infrastructure details are unknown or irrelevant for system analy-
sis, up to detailed infrastructure models, e.g., when details of the component interaction are
important for system analysis. This is explained in more detail in Chapter 5.

R
RI —design DI model@integrate »> 2
—~
define ::
g
—define» R —design D %
O
+ A define g
| | :
‘ | Rn —design» Dn model*@integrate* L‘é
| | N
| | . iy y
fffff J*f*femalyzefff*f*f*f*f*f*J

Figure 2.5: Model-based system analysis

Besides model-based system analysis, in which only models are considered for the anal-
ysis, it would also be interesting to analyze and test the system when only some component
realizations are available, as expressed in QUESTION 1.2. Before answering QUESTION 1.2,
however, another model-based technique is introduced that focuses on testing component
realizations on the component level rather than on the system level.

2.3.2 Component testing

In current industrial practice, when a component realization Z; is available, it is tested against
its requirements R; and its design D;. As previously mentioned, testing involves defining
tests for the considered aspects of the component, executing these tests on the component
realization, and determining the test outcome (pass or fail) by comparing the test results to
the requirements R; and the design D;. Currently, most of these test activities are performed
manually, e.g., defining tests based on documents that specify the requirements R; and the
design D;, which makes current component testing a tedious and time consuming task.
When a component is represented by a model M; for which the correctness has been shown,
e.g., using the model-based analysis techniques presented in the previous subsection, the

2.3. Model-based integration and testing method 27

model can also be used as a reference for component testing.

In the model-based testing research field [Brinksma and Tretmans 2001], which is the
topic of another part of the TANGRAM project, theories, techniques and tools are developed
that use models for automatic testing of component realizations. Using a test generation
algorithm, tests are automatically generated from the model and subsequently executed on
the component realization, which means that more tests can be executed per time unit.
Although this model-based technique does not directly answer one of the QUESTIONS in
this thesis because it does not focus on system risk, more tests per time unit is a test phase
improvement as proposed by the second solution in Section 1.4, which does contribute to the
main objective of reducing the disadvantageous influence of the I&T phases on the T-Q-C
business drivers. Therefore, model-based component testing is included in the proposed
method of using model-based techniques for early integration and testing.

The following requirements need to be satisfied for model-based component testing.

Suitable test generation algorithm A test generation algorithm should be available that is
suitable for automatic model-based testing of the considered aspects of the considered
components. If the test generation algorithm requires a certain modeling language as
input, this language should offer sufficient expressivity to describe these aspects.

Test tool with connection to realization A test tool is required that implements the test gen-
eration algorithm and contains functionality for automatic test execution. Further-
more, the test tool should provide easy access to the considered interfaces of the real-
ization under test, i.e., the interfaces to which test inputs are provided and from which
test outputs are observed.

Figure 2.6 contains a graphical representation of model-based component testing in the
context of the development process of a component C; (with R;, D;, and Z;, corresponding
to Figure 2.2). The figure shows that, based on the design D;, a model M; is created (cor-
responding to Figure 2.5). Using a model-based test tool, tests are automatically generated
from model M; and executed on the component realization Z; to test whether Z; conforms
to M;, which is graphically represented by the dashed arrows.

model i : |

—define» Rl —design» Dl — test
realize |

;'Zi L

Figure 2.6: Model-based component testing

2.3.3 Integration and system testing

This subsection provides answers to QUESTION 1.2, which is repeated below.

QUESTION 1.2 How can system risk be revealed and subsequently reduced when only
some component realizations are available?

28 Chapter 2. Model-based integration and testing

In the case that only some component realizations are available, i.e., without a complete
system, it is impossible to perform system tests in the current way of working. However, in
the case that components are represented by models, these models can replace component
realizations that are not yet available. By integrating models with available component real-
izations, a model-based integrated system is obtained, i.e., an early representation of the system
realization in which the corresponding system risk is revealed before all components realiza-
tions are available. When the integrated models and realizations can be executed together,
this model-based integrated system can be used for early system testing and corresponding
risk reduction, thus answering QUESTION IL.2.

Since model-based integration and system testing does not require that all component
realizations are available, and since models can usually be available earlier than realizations,
this model-based I&T technique enables earlier detection and prevention of problems when
compared to real system testing. Furthermore, models usually allow easier adaptation and
configuration than realizations, which means that they are well suited for system testing
under different conditions. Especially for exceptional behavior testing, creating the non-
nominal test conditions, e.g., a broken component, is usually easier and less expensive when
models are used instead of realizations. Besides that this improves the coverage and thus
the quality of tests, the ability to rapidly change test conditions using models also improves
the efficiency of test execution. As such, model-based system testing not only allows earlier
testing, but it also increases the risk reduction rate for the test phase, as proposed by the
second solution in Section 1.4.

In order to integrate models and realizations and to perform system tests on the resulting
model-based integrated system, the following requirements need to be satisfied.

Connect models and realizations When models and realizations are integrated, they need
to interact and communicate with each other. Communication actions specified in a
model are normally interpreted and executed in a model environment only. However,
to establish a connection between the model of a component and realizations of other
components, these communication actions in the model have to be transformed into
real communication actions. For example, a send action in the model needs to be
transformed into a real message that is sent to other components, while real messages
sent to the model need to be transformed into receive actions in the model itself.

Execute models in realization environment Since a model-based integrated system includes
at least some realizations, tests have to be executed in the realization environment,
which means that also the model behavior should be executed in the realization envi-
ronment, i.e., in real-time. This means that all actions, e.g., the physical actions that
are modeled, but also calculations and communication actions, take a certain amount
of time to be executed, i.e., the real-time behavior corresponds to the model time be-
havior. For example, when a model specifies a movement from position A to position
B which takes ten seconds, then the real-time execution of this behavior consists of
updating the position variable from A to B and performing a real-time delay of ten
seconds. When the same model would be simulated in a model environment using
model time, the execution of this behavior would consist of updating the position vari-
able from A to B and adding ten seconds to the variable that represents the time in

2.3. Model-based integration and testing method 29

the simulation model. In real-time, it takes only a small amount of time, e.g., a few
milliseconds, to perform these variable updates, i.e., the real-time behavior does not
correspond to the time behavior in the simulation model.

Determine and analyze model-based integrated system behavior Similar to system analysis,
techniques are required to determine and analyze the behavior of a model-based inte-
grated system, e.g., by using the same tests as for the system realization. As previously
mentioned, different configurations of the models can be used to test the system be-
havior under different (non-nominal) conditions.

As shown in Figure 2.2, the infrastructure I establishes the interaction between the real-
izations of the components. For successful interaction between two component realizations,
they must use the same interaction type, e.g., function calls or message passing. However,
models of components may use interaction types that differ from those used by realizations,
e.g., more abstract interaction types to reduce the complexity of the model. For the inte-
gration of models and realizations, this means that two interacting components may use
different interaction types, which requires an infrastructure I that enables a connection be-
tween the involved interaction types. This infrastructure is referred to as the model-based
integration infrastructure, denoted by Iz, and is discussed in more detail in Chapter 5.

Figure 2.7 contains a graphical representation of model-based integration and system
testing. When only the depicted components C,; and C, are considered, the figure shows
that component C, is represented by model M, (corresponding to Figure 2.5), while compo-
nent C, is represented by realization Z, (corresponding to Figure 2.2). Using the model-
based integration infrastructure Iz, model M; and realization Z, are integrated, yielding
the model-based integrated system {M,, Z,},,,- This early representation of the system is
then tested on the system level using tests derived from the system requirements R and the
system design D, which is graphically represented by the dashed arrow.

r’ RI —design» DI model»@»integrate*
—define» R —design» D —{
: :
|
|
|
|
|
|
|

Inviz J

model-based
integration
infrastructure

L» Rn —design » Dn —realize Zn —integrate »

)

Figure 2.7: Model-based integration and system testing

30 Chapter 2. Model-based integration and testing

2.3.4 MBI&T method

The previous subsections proposed several model-based I&T techniques as answers to QUES-
TIONS 1.I and 1.2. These techniques were presented individually without explicit relations
to each other or to the current system development process from Section 2.1. These rela-
tions can easily be identified by combining the previous figures of this chapter, i.e., Fig-
ure 2.2 showing the current system development process, Figure 2.5 showing model-based
system analysis, Figure 2.6 showing model-based component testing, and Figure 2.7 show-
ing model-based integration and system testing. The result, which is referred to as the model-
based integration and testing method or MBI&T method is shown in Figure 2.8, leaving out the
dashed arrows of the previous figures that depicted the different analysis and test activities.
Similar to the current system development process of Figure 2.2, this figure shows a ‘se-
quential’ development process for simplicity, abstracting from the parallelism, increments
and iterations that exist in practice. The development process of each component C; (with
requirements R; and design D;) results in a realization Z; as well as in a model M;. When the
system is integrated, each component C; is represented by either model M; or realization Z;,
which is graphically represented by the integration ‘switches’. For example, the positions of
the integration switches in Figure 2.8 imply that model M, and realization Z, are integrated,
i.e., {M;, Z,};. Note that with code generation [De Wulf et al. 2005; Huang et al. 2000], the
realization of a software component Z; could also be synthesized from its model M;, however
this is not further considered in this thesis.

YN
I >
model
r» RI —design DI — integrate
realize
—~
define — ZI —© ©
=]
—define» R —design» D é
g
define — "‘é
model
Rn —design Dn — integrate
realize f
-2y
N

Figure 2.8: System development process in the MBI&T method

Depending on the component representations that are integrated, i.e., only models, com-
bined models and realizations, or only realizations, a different type of infrastructure I may
be required. When only models are integrated, the infrastructure model Iy as shown in
Figure 2.5 is used. When combined models and realizations are integrated, a model-based
integration infrastructure Iz as shown in Figure 2.7 is used. Finally, when only realiza-
tions are integrated, which is also the case for the current system development process as
shown in Figure 2.2, the infrastructure realization, denoted with I, is used. Chapter 5 gives
a more detailed description of these different types of infrastructure and their usage in the

2.3. Model-based integration and testing method 31

MBI&T method. Figure 2.8 abstracts from these different types of infrastructure, and uses
the ‘generalized’ infrastructure I. Note that the infrastructure I could also be considered as a
component C; in the MBI&T method. This would mean that it can only exist as infrastructure
model I, or as infrastructure realization I, similar to M; and Z; for a component C;. How-
ever, when the infrastructure is used to integrate models and realizations, it has to be able to
connect these different component representations, i.e., it should include some parts of Iy, to
connect models and some parts of I; to connect realizations. Because of this ‘intermediate’
type of infrastructure, i.e., the model-based integration infrastructure Iz, infrastructure I is
distinguished from the components C; , in the MBI&T method. Nevertheless, similar to the
components C; ,, the infrastructure I also has requirements and a design, which are usually
part of the system requirements R and system design D.

The following procedure summarizes all activities of the MBI&T method, which are re-
ferred to as MBI&T activities. The procedure considers a system with n components, and
takes the component designs D; and the infrastructure design, which is part of system de-
sign D, as a starting point.

1. Modeling

(a) Modeling of the components M; based on D;.

(b) Modeling of the infrastructure I, based on D, possibly on different abstraction
levels, depending on the availability of the infrastructure design and on the goal
of the analysis in activity 2b.

2. System analysis

(a) Integration of component models M, , using the infrastructure model I, result-
ing in the system model {M; ,},,,.

(b) Analysis of system model {M, ,},,, using various model-based techniques.

3. Integration and system testing
In the system model {M, ,},,,, the infrastructure model I, is replaced by the model-
based integration infrastructure Iy, yielding {M; ,},,. Then, for each realized com-
ponent Z; € Z, , that becomes available:

(a) Testing of component realization Z; against M; using automatic model-based test-
ing.
(b) Removal of model M; from the system {..., M;, ...}, and integration of realiza-

tion Z; as its replacement, yielding {..., Z;,...};,,. This activity corresponds to
‘flipping’ the integration switch of component C; from M; to Z; in Figure 2.8.

(c) Testing of the integrated system obtained in activity 3b, using tests derived from
system requirements R and system design D.

Note that these MBI&T activities are complementary to the current way of working and
do not require changes in the current system development process. However, the activities
do require a certain amount of time to be invested by the involved engineers for answering

32 Chapter 2. Model-based integration and testing

questions about unclarities in their designs and for discussing the models and the analysis
results. In return, the MBI&T activities provide them with valuable feedback on the system
behavior and increase their system overview. In addition to these time investments, a MBI&T
activity that involves component realizations requires that test resources, e.g., a component
realization or a prototype system, are allocated to perform the MBI&T activity. This may
influence the current I&T process in a sense that there are more possible I&T activities to
which the (limited) test resources must be allocated. This trade-off between the costs and the
benefits of the MBI&T activities is discussed in Chapter 6, which also proposes a quantitative
method to decide where (QUESTION 2.1) and when (QUESTION 2.2) the I&T process can
profit from using models.

2.4 Method instantiation

The previous section presented the MBI&T method in a generic way, without explicit notion
of which components and aspects are considered, which types of models and infrastructure
are used, and which analysis and test techniques are applied. Although this generic MBI&T
method was sufficient to explain how QUESTIONS 1.1 and 1.2 are answered, it is not sufficient
to answer QUESTION 1.3, repeated below, on the applicability and profitability of the method
in current industrial practice.

QUESTION 1.3 Is it feasible and profitable to apply the proposed early I&T method in
current industrial practice?

This research question is answered by applying the proposed MBI&T method to the EUV
case study introduced in Chapter 1. However, before the MBI&T method can be applied to
any system, it needs to be instantiated. This means that the generic MBI&T method of the
previous section is ‘filled in’ with concrete components and aspects considered, with types
of models and infrastructure to be used, and with suitable analysis and test techniques to
achieve the objectives of the MBI&T activities, i.e., revealing and reducing system risk at an
early stage.

2.4.1 Paradigm, mathematics, tools

An instantiation of the MBI&T method consists of a paradigm together with related math-
ematical techniques and tools. A paradigm is “a set of assumptions, concepts, values, and
practices that constitutes a way of viewing reality for the community that shares them, espe-
cially in an intellectual discipline” [American Heritage Dictionary of the English Language
2007]. In the context of the MBI&T method, a paradigm provides a way of thinking and
reasoning about a system, as well as a way of modeling and analyzing the system. The suit-
ability of a particular paradigm for an instantiation of the MBI&T method depends on the
considered aspects of the system (often related to particular engineering disciplines) and on
the objectives of the MBI&T activities.

2.4. Method instantiation 33

In order to actually perform MBI&T activities in a particular paradigm, suitable and ad-
equate mathematical techniques for modeling and analysis are required, which should be
implemented in tools to be useful in practice. These techniques and tools should satisfy
the requirements of the MBI&T activities described in Section 2.3. Research related to dif-
ferent paradigms focus on different modeling and analysis techniques, which means that
the maturity and applicability of particular techniques and the availability of practical tools
varies per paradigm. An example of using different paradigms, mathematics, and tools for
model-based analysis of an industrial system is given in [Braspenning et al. 20006a].

A main characteristic to differentiate between paradigms and corresponding mathemat-
ics is the way they consider time behavior [Van Beek and Rooda 2000]. Many systems have
properties that vary continuously in space and/or time, e.g., mechanical, electrical, and phys-
ical systems. Such systems are usually modeled by describing their continuous-time behavior
in the form of differential equations. Other systems have properties that change only at
discrete points in time (events), e.g., operation research, supervisory machine control, and
real-time systems. Such systems are usually modeled by describing their discrete-event behav-
ior in the form of states and events, e.g., in state machines or petri nets. To bridge the gap
between these different concepts of describing time behavior, discrete-time models or hybrid
models can be used. Discrete-time models are often used in digital applications, e.g., dig-
ital control of continuous-time systems, in which the continuous-time behavior is sampled
and the state changes are described at equidistant points in time using difference equations.
As such, a discrete-time model can also be considered as a special case of a discrete-event
model in which the events are equidistantly spaced in time. Finally, several modeling lan-
guages combine continuous-time and discrete-event concepts to model hybrid systems such
as chemical process plants, see [Van Beek and Rooda 2000] for an overview.

The next paragraphs describe different model-based analysis techniques and give a flavor
of different paradigms in which these techniques are used. Some paradigms use models
that describe only one possible behavior, which can be calculated based on a set of equations.
For example, models in the dynamics and control paradigm are often based on differential
equations, which can be used to exactly calculate, amongst others, trajectories, settling times,
and eigenfrequencies [Franklin et al. 2005]. Models in the structural mechanics paradigm
and in the fluid dynamics paradigm are usually based on partial differential equations, for
which an approximate solution, e.g., deformation and stress in structures or velocity and
pressure in fluids, can be determined using numerical techniques such as the finite element
method (FEM) [Chandrupatla and Belegundu 2002].

Another common and widely available technique to analyze the behavior of a system be-
fore it is realized is simulation, in which one possible model behavior is determined. For
example, in the electronics paradigm, circuit simulators [SPICE 2007] are able to translate
the elements and connections of a circuit into differential algebraic equations, which can be
used, for example, to determine and optimize the power consumption of the circuit. Mod-
els may describe many possible behaviors, especially when they include stochastic elements,
e.g., noise in a dynamics and control model or different economical scenarios in a business
process model to estimate economical risks and expected profits, or when they include par-
allelism and non-determinism, e.g., models of software components and their interaction in
the concurrent process paradigm. In cases where analytical techniques, e.g., using Markov

34 Chapter 2. Model-based integration and testing

chains [Tijms 2003], cannot be applied, multiple simulation runs, e.g., using Monte Carlo
techniques [Liu 2001], may be used to deal with the uncertainty in the analysis results.

In most cases, simulation is not exhaustive, i.e., not all possible behaviors are analyzed,
which means that simulation can only show that a model might have correct behavior. Espe-
cially in the concurrent processes paradigm, proving the correctness of a model in general is
important, e.g., to detect and avoid deadlocks in software. Therefore, a lot of research in this
paradigm focuses on formal verification techniques such as model checking [Katoen 1999], an
analysis technique to determine and check all possible model behaviors against a specified
property. Also other paradigms are investigating model checking as a potential analysis tech-
nique, e.g., by extracting formal models from informal models in the dynamics and control
paradigm [The Mathworks — SIMULINK design verifier 2007].

In contrast to the widely applied analysis techniques mentioned above, which focus on
models only, model-based integration techniques that combine models and realizations are
less common for many paradigms. In the dynamics and control paradigm, e.g., in auto-
motive and mechatronics applications, hardware-in-the-loop testing (controller realization
with plant model) and rapid prototyping (controller model with plant realization) are fre-
quently used [Hanselmann 1996; Deppe et al. 2004; Verhoef et al. 2007]. Also applications
in the real-time embedded software paradigm often use hardware/software co-simulation
techniques, in which the software realization is executed on a model of the hardware plat-
form [Rowson 1994; PTOLEMY project 2007]. For other paradigms such as the concurrent
processes paradigm, however, less attention is paid to the analysis and testing of combined
models and realizations.

In general, most of the example instantiations mentioned above are useful for modeling
and analyzing mono-disciplinary components or systems for which all components can be
expressed in the same paradigm. Since the MBI&T method focuses on the analysis and test-
ing of multi-disciplinary systems, an instantiation should be capable of dealing with multiple
paradigms. Several approaches can be used to combine multiple paradigms or disciplines
in one analysis method, e.g., the glued approach or the integrated approach as described in
[Saleh and Newton 1990; Fleurkens 19906]. In the glued approach, the components are mod-
eled using the most appropriate and therefore often different paradigms, mathematics, and
tools. Analysis of the system behavior is possible by coupling (parts of) different analysis
tools, either on the execution engine level, i.e., the coupled execution engines negotiate a
priori which actions will be executed, or on the executed behavior level, i.e., the execution en-
gines react a posteriori on the model behavior as executed by other execution engines. These
couplings involve a mapping and conversion of communication signals and a synchronized
time advancement mechanism, usually implemented in so-called ‘glue’ software. Examples
of this glued approach are couplings between discrete-event models of real-time software
controllers and continuous-time models of the controlled machine dynamics [Hooman et al.
2004; Verhoef et al. 2007], and couplings between electronic circuit simulators and FEM
tools for electro-thermal analysis [Wiinsche 1996]. In many cases, this approach can only
be applied to a subset of the involved paradigms, which means a reduction of the modeling
expressivity.

In the integrated approach, the behavior of the components from different disciplines is
expressed in one set of mathematics and tools, i.e., coupled on the model level, which can be

2.4. Method instantiation 35

done in two ways. The first type of the integrated approach requires one set of mathematics
and tools that supports and combines multiple paradigms. A major problem in this approach
is to obtain this one set of mathematics such that the different semantics of all supported
paradigms and mathematics are combined and integrated in a consistent way, e.g., by using
formal model transformations or a protocol that synchronizes certain actions. Examples
based on this type of the integrated approach are STATEFLOW [The Mathworks — STATEFLOW
2007], which extends the dataflow block diagrams (for modeling continuous-time behavior)
from SIMULINK [The Mathworks — SIMULINK 2007] with statecharts (for modeling discrete-
event behavior), and PTOLEMY [PTOLEMY project 2007], a software platform that focuses
on heterogeneous mixtures of different models of computation to design hybrid embedded
systems.

The second type of the integrated approach uses one paradigm in which equivalents of
other paradigms can be expressed. This approach requires that the chosen paradigm is sup-
ported by mathematics and tools that have sufficient expressivity to model the equivalents of
the other paradigms, at least for those parts that are significant for the system behavior to be
analyzed. Examples of the second type of the integrated approach are budget-based modeling
[Freriks et al. 2000], in which design choices for individual components (from different dis-
ciplines) are related to the system performance parameters using simple equations; SYSML
[SYSML 2007], an adaptation of the software-focussed UML [UML 2007] to model systems
engineering applications including non-software components such as hardware, processes,
and personnel; MODELICA [MODELICA project 2007], which contains libraries to express
components from many different engineering disciplines as differential and algebraic equa-
tions; and process algebraic languages such as x (Chi) [Van Beek et al. 2006a] whose ex-
pressivity allows for (abstract) modeling of concurrent processes as well as various physical
phenomena.

The examples of the glued and integrated approach mentioned above show that there are
many developments in the area of multi-disciplinary system modeling and analysis. How-
ever, in most cases, not all semantics of the supported paradigms have been formalized.
Furthermore, most of the mentioned examples do not support all proposed activities of the
MBI&T method. As described in the following subsection, we investigate whether the pro-
cess algebraic language x, which does have a complete formal semantics, can be used to
perform all MBI&T activities in current industrial practice.

2.4.2 MBI&T instantiation in this thesis

In this thesis, the MBI&T method is instantiated with the paradigm of concurrent processes,
together with mathematical techniques and tools based on process algebra [Baeten and Weij-
land 1990; Fokkink 2000]. Our hypothesis is that this instantiation fulfills all requirements
of the proposed MBI&T activities and that it is suitable to perform these activities in indus-
trial practice, focusing on component interaction and time behavior. In the remainder of this
thesis, this hypothesis is tested by applying the instantiated MBI&T method to the EUV case
study introduced in Chapter 1, which answers QUESTION 1.3.

In the concurrent processes paradigm, system behavior is considered to be composed of
several dynamic and active processes that are executed concurrently, where these processes

36 Chapter 2. Model-based integration and testing

exchange static and passive data in order to influence each other’s behavior [Fokkink 2000].
Concurrent processes are well suited to describe and reason about component interaction
and time behavior, which are important aspects of the emergent system behavior when in-
tegrating and testing high-tech multi-disciplinary systems. Practical experience shows that
designing and analyzing component interaction and time behavior is a difficult and error-
prone task, resulting in a significant system risk that, in the current way of working, is dif-
ficult to reduce without having an integrated system realization available. This means that
the potential benefits of a MBI&T method that focuses on interaction behavior and time be-
havior are significant. Furthermore, there is not yet an established industrial way of working
for modeling and analysis in the concurrent processes paradigm, at least not in a sense as
SIMULINK for the dynamics and control paradigm. This absence of an established industrial
way of working makes it an interesting and promising area to investigate.

The mathematics and tools used in the remainder of this thesis are based on x (Chi), a
process algebraic language with a complete formal semantics, developed at the Eindhoven
University of Technology [Van Beek et al. 2006a; Man and Schiffelers 2006; Baeten et al.
2007]. The x language and the corresponding toolset [Systems Engineering Group 2007;
Hofkamp and Rooda 2007] are used as a carrier to show the practical applicability and the
profitability of the MBI&T method. The) language is intended for modeling, simulation,
verification, and real-time control of discrete-event, continuous-time, or combined, i.e., hy-
brid, systems. Examples of industrial systems that have successfully been modeled in x
include integrated circuit manufacturing plants [Haagh et al. 1998], process industry plants
[Van Beek et al. 2002], and machine control systems [Van de Mortel-Fronczak et al. 2001].
The) toolset allows modeling and simulation of y models, as well as translation of x models
to other formalisms that enable the use of model checking tools such as UPPAAL [UPPAAL
2007] and SPIN [SPIN 2007]. Real-time and distributed execution of Y models, optionally in
combination with other non-y components, is possible by using a real-time simulator and a
suitable middleware solution. This thesis also investigates the possibility of using x models
for automatic model-based component testing with the test tool TORX [TORX 2007], which
was also used in another part of the TANGRAM project. The following chapters of this the-
sis describe in more detail how these x model-based techniques were used to perform the
MBI&T activities.

The x modeling language has a consistent equations semantics that supports differential
algebraic equations, functions, and calculations on variables of different data types. This en-
ables the modeling of various physical phenomena such as motion, flow, and friction, as well
as electronic circuits, supervisory machine control, and process plants, as shown in [Man
and Schiffelers 2006]. This corresponds to the second type of the integrated approach as
described in Subsection 2.4.1: although the) language focuses on the concurrent processes
paradigm, it is sufficiently expressive to model equivalents of other paradigms as well. In the
instantiated MBI&T method, however, the focus is on early analysis and testing of compo-
nent interaction and time behavior, which is not directly influenced by details of the internal
component behavior such as the physical phenomena mentioned above. To analyze or test
the component interaction and the emerging system behavior, these details can safely be ab-
stracted, e.g., by expressing only relevant action durations and parameter changes. Taking
motion as an example, parameters such as position, speed and acceleration could in prin-

2.5. Conclusions 37

ciple be calculated in detail by using the supported features of x. In many cases, however,
other components are not influenced by the motion itself, but only by relevant positions and
durations of movements between these relevant positions, e.g., a sensor that detects a cer-
tain position of the component. When these relevant positions and durations are known,
e.g., calculated using domain-specific paradigms, mathematics, and tools, they can be used
to model the motion behavior in an abstract but equivalent way.

2.5 Conclusions

This chapter started with a description of the current system development process, which was
improved by applying a range of model-based engineering techniques particularly focusing
on early integration and testing. Several MBI&T activities were proposed as answers to QUES-
TIONS 1.I and 1.2. Model-based system analysis involves the modeling of each component,
the integration of the component models, and the analysis of the integrated system model.
Model-based component testing involves automatic generation of tests from a component
model, as well as automatic execution of the generated tests on the component realization.
Model-based integration and system testing involves the integration of realized components
with models of not yet realized components, and subsequent testing of this model-based
integrated system. Each of these MBI&T activities has several requirements for the models
and for the analysis techniques to be used.

Combining these MBI&T activities with the current system development process yielded
the MBI&T method as shown in Figure 2.8. Before this method can be applied in practice, it
needs to be instantiated with a paradigm, mathematics, and tools. In this thesis, the MBI&T
method is instantiated with the concurrent processes paradigm, together with mathematics
and tools based on process algebra. In particular, the process algebraic language x and
its toolset are used as carrier to show the applicability and the profitability of the MBI&T
method in current industrial practice, as expressed in QUESTION 1.3. Our hypothesis is that
this instantiation fulfills all requirements of the proposed MBI&T activities and that it is
suitable to perform these activities in industrial practice, focusing on component interaction
and time behavior. In the next three chapters, the acceptability of this hypothesis is tested
by applying the instantiated MBI&T method to the EUV case study introduced in Chapter 1,
answering QUESTION L3.

38

Chapter 2. Model-based integration and testing

CHAPTER 3

System analysis

How to analyze a system without a system?

It is in the nature of all people, especially those who invent and engineer new things, to
see whether their ideas really work in practice. Engineers involved in the development of a
high-tech multi-disciplinary system want to know whether the system, with all their ideas
integrated in it, will work, since this provides them confidence that they are on the right
track. They also want to know as soon as possible whether the system will not work, since
this gives them early feedback on the problems and gives them more time to solve these
problems. In both cases, some form of system analysis is required to determine whether the
system will work as expected or which problems need to be solved in the system.

In the current system development process, engineers usually know reasonably well what
the system should do (based on requirements R) and what they expect that the system will do
(based on system design D and component designs D, ,). In contrast to this intended system
behavior, it is often more difficult to show the actual system behavior before the system
realization is available, i.e., before all components of the system are realized and integrated.
Analyzing the actual system behavior without a realized system requires significant system
overview as well as knowledge of components, which can only be obtained by combining
information from many design documents into a ‘mental’ model. Only a few engineers
might be capable of obtaining sufficient system overview such that they can determine and
analyze (a part of) the actual system behavior. If this is the case, the system analysis results
are based on personal capabilities, assumptions, and mental models, rather than on solid and
objective experiments and proofs. In this chapter, we investigate how formal and executable
models can be used to analyze the actual system behavior without a realized system.

In this chapter, we use the second type of the integrated approach as explained in the
previous chapter to model and analyze multi-disciplinary system behavior. The expressivity
of the x language is used to represent the concurrent behavior of interacting processes, as
well as important aspects of other paradigms than concurrent processes, e.g., various phys-
ical phenomena such as motion, pressure, and flow. By combining the x models of the
components, an integrated system model is obtained, which can be analyzed using various
techniques and tools.

39

40 Chapter 3. System analysis

This chapter is mainly based on [Braspenning et al. 2008], in which co-author Bortnik
provided the x to UPPAAL translation scheme, and is organized as follows. Section 3.1 de-
scribes model-based system analysis techniques in general, particularly focusing on using
the model checker UPPAAL to verify x models. Section 3.2 answers QUESTION 1.3 by show-
ing how these model-based system analysis techniques were applied in the EUV case study.
The conclusions of this chapter are given in Section 3.3.

3.1 Theory: model-based analysis techniques

In literature, analysis techniques are often categorized into validation and verification tech-
niques. Validation concerns the question “are we creating the right product?”, usually involv-
ing user requirements, while verification concerns the question “are we creating the product
right?”, usually involving design requirements [Boehm 1981]. Although these simple defi-
nitions are widely accepted, the difference is not always clear and their usage is subjective;
both terms are often used by different people to refer to the same type of analysis technique.
In this thesis, this subjectivity is avoided by disregarding a strict categorization of analysis
techniques, because the exact difference between the categories (validation or verification) is
irrelevant in practice. In our view, the purpose of all analysis techniques is the same: to ob-
tain system overview and to detect problems as early as possible in the system development
process, no matter whether these problems are related to user or design requirements.

Considering the MBI&T method instantiation used in this thesis, we focus on model-
based analysis techniques that can be used in the concurrent processes paradigm, particu-
larly those that are suitable for process algebras such as y. Common model-based techniques
to analyze the behavior of concurrent processes are simulation and model checking, which
were already introduced in the previous chapter. Simulation involves determining some be-
havior of a model, which is analyzed for its correctness by comparing it with the intended
behavior, while model checking involves determining all behaviors of a model, which are an-
alyzed for their correctness by proving that certain properties are valid. Typical properties that
can be analyzed by model checking are deadlock freeness, i.e., there are no states in the be-
havior in which no further actions are possible, and livelock freeness, i.e., there are no states
in the behavior in which actions are still possible, but no progression is made (e.g., looping
behavior). Furthermore, model checking is often used to check safety properties, i.e., some
‘bad thing’ such as machine damage or a hazardous situation does not happen, liveness prop-
erties, i.e., some ‘good thing’ does happen (eventually), as well as system specific behavioral
properties, involving, e.g., required action sequences or required system performance.

In the remainder of this chapter, we focus on the analysis of systems expressed in the
X language, using both simulation and model checking techniques. First, the timed discrete-
event version of x [Van Beek et al. 2005] as used in this thesis is explained informally. We
refer to [Van Beek et al. 2005] and to [Van Beek et al. 2006a; Man and Schiffelers 2000] for
a complete syntax definition and a formal semantics of timed x and hybrid y, respectively,
and to [Systems Engineering Group 2007; Hofkamp and Rooda 2007] for more information
on the implementation of the language and its tools.

The informal explanation of x in the next paragraphs is inspired by [Trcka 2006]. The

3.1. Theory: model-based analysis techniques 41

atomic process terms of x, explained below, are process constructors and cannot be split into
smaller process terms. Note that, besides the explicit delay process term, some process terms
can also implicitly delay. The deadlock process term J cannot perform actions or delays. The
skip process term performs an internal action T and cannot delay. The (multi)assignment
process term x,, := e,, where x,, and e, are vectors of n variables and expressions, respectively,
assigns the value of the expression e; to the variable x;, 1 < i < n. It does not have the possibility
to delay. The delay process term Ae delays a number of time units equal to the value of the
expression e. The send process term h!le, sends the values of the expression vector e, along
the channel h and cannot delay. The delayable send h!e, behaves as h!le, but it can delay
arbitrarily long. The receive process term h ?? x,, receives the values for the variable vector x,
over the channel h and cannot delay. The delayable receive h ? x,, behaves as h ?? x,, but it can
delay arbitrarily long.

X contains several operators to create compound process terms, which are informally ex-
plained below. The guarded process term b — p behaves as p when the value of the boolean
guard b is true and blocks otherwise. The delay enabling operator [p] enables p to perform
arbitrary delays, without changing the action behavior of p. The sequential composition p; q be-
haves as p followed by g. The alternative composition p || q stands for a non-deterministic choice
between p and g, which can only delay if both p and g can delay. The repetition operator *p

behaves as p repeated arbitrarily many times. The guarded repetition process term b — p is
interpreted as ‘while b do (skip; p)’. The parallel composition operator p || g executes p and g
concurrently in an interleaved fashion. It can only delay if both p and g can delay. In addition,
if one of the process terms can execute a send action and the other one can execute a receive
action on the same channel, then they can also communicate. For example, the process term
h!1 || h?x can execute the communication action on channel h and assign the sent value 1 to
the receive variable x. The scope operator is used to declare local channels and variables, i.e.,
the process term [h,,, x, :: p] behaves as p with local channels h,, and local variables x,. The
encapsulation operator d,(p) disables all actions of p that occur in the parameter set A. The
abstraction operator T;(p) ‘hides’ (renames to 7) all actions of p that occur in the parameter
set I. The urgent communication operator vy (p) gives communication actions of p via chan-
nels from the parameter set H a higher priority than the passage of time, i.e., p cannot delay
if a communication action is possible. Finally, process definitions, e.g., proc P(h,,, x,) = p],
can be used to define a parameterized process which can be instantiated many times, possi-
bly with different parameters.

The x language supports the following basic data types: booleans, naturals, integers,
rational and real numbers, and typed channels. Most of the usual constants, operators and
relations are defined for each data type and can be used together with variables to build
expressions. Furthermore, x provides mechanisms to build compound data types from all
basic types except channels, e.g., tuples (notation < type, type >) and lists (notation [type]), and
to define functions which enable functional programming.

With all these process terms, operators, data types, and functions, yx satisfies the model
expressivity and compositionality requirements as described in Subsection 2.3.1. The expres-
sivity and wide applicability of x has been shown in several occasions, e.g., in the examples
shown in [Man and Schiffelers 2006] and in industrial case studies as reported in, amongst
others, [Haagh et al. 1998; Van de Mortel-Fronczak et al. 2001; Van Beek et al. 2002].

42 Chapter 3. System analysis

For example, Figure 3.1(a), taken from [Bortnik et al. 20035a], shows the x model of the
tester process of a turntable system that drills holes in products. The tester process is used
to check whether the drilling process of the turntable system was successful, i.e., whether it
drilled the hole completely through the product, see [Bortnik et al. 2005b] for more details.
The tester process receives commands via the cTesterUpDown channel and uses an actua-
tor to move the tester up or down. The tester process contains two position sensors, one
above the product and one below the product, which send a signal via the cTesterUpDone
and cTesterDownDone channels, respectively, when the presence of the tester is detected.
The tester process has the following repetitive behavior. After receiving a command via
cTesterUpDown to start testing, the tester moves down into the hole in the product, which
is modeled by a delay of 2 time units (abstracting from motion details). If the tester reaches
the lower sensor position, i.e., a signal is sent via cTesterDownDone, the hole was drilled deep
enough and the test passes, otherwise the test fails and the product should be redrilled.
In the x model, these possible test outcomes are modeled by a non-deterministic choice
between an undelayable cTesterDownDone !l (pass) and a skip process term (fail). After the
test, the process waits for the command to move the tester up to the initial upper position
([cTester UpDown ??]), which takes 2 time units. When the upper sensor position is reached,
a signal is sent via cTester UpDone and the test is finished.

cTesterUpDown? _ c<=»

proc Tester(chan cTester Up Down. ? =0

, cTesterUpDone!
, cTesterDownDone! : void)= 2
[*([cTesterUpDown ??]

; A2.0 ' |
; (cTester DownDone !l |] Skip) cTesterUpDone! cTesterDownDone!
; [cTesterUpDown ??]
; A2.0 cTesterUpDown?
; [cTesterUpDone!!] =

)

]l c<=2

(a) x model (b) UrPAAL timed automaton

Figure 3.1: Example of x to UPPAAL translation

To determine and analyze a possible behavior of a y model, a simulator can be used.
The basis of a simulator is a mechanism that is able to determine all possible actions for a
certain state of a model and to execute such actions using an implementation of the model
semantics. Based on this mechanism, called the ‘stepper’ for x [Van Beek et al. 2006D],
the principle of a simulator for x processes is simple: determine all possible actions for
the current state of the process, select one of them (non-deterministically), and execute this
action to determine the new current state of the process. Simulation is continued either until
the process and thus the simulation run is finished, or until no further actions are possible
while the process is not yet finished, resulting in the deadlock process term .

3.1. Theory: model-based analysis techniques 43

As previously mentioned, simulation can only show that a model might have correct be-
havior, since not all possible behaviors are determined and analyzed. To analyze all possible
behaviors of a x model, we use UPPAAL [UPPAAL 2007], a tool for simulation and model
checking of real-time systems that can be modeled as a network of timed automata [Bengts-
son and Yi 2004]. UPPAAL has been used in a number of industrial case studies, see [UPPAAL
2007] for an overview. To be able to verify xy models in UPPAAL, a translation scheme from
X models to UPPAAL timed automata has been formally defined [Bortnik et al. 2005a] and
the proofs of its correctness have been given [Bortnik et al. 2007]. Since it is not possible to
define a general translation for all (combinations of) x process terms, the translation scheme
is defined for a subset of x, which has been defined according to the following requirements:

« Make the translation as simple as possible. For this reason, a minimal subset of x
was translated. For instance, the delayable send process h!e, is a syntactic extension,
formally defined as [h!!e,]. Replacing h!e, with [h!le,] does not change behavior of
the model but makes it translatable.

« Make the translation as general as possible. For instance, a general translation of
the guard operator b — p could not be defined, but there are many specific cases for
which guarded process terms can be translated, namely guarded skip, guarded multi-
assignment, guarded send and receive, and guarded repetition’.

« Make the translated UPPAAL timed automata as readable as possible. For example,
nested parallel composition can be translated as an alternative composition of all pos-
sible transitions [Man and Schiffelers 20006], but it would make the resulting automata
less readable.

The translatable subset of x contains all models of the form d,vy(p), where A contains
all individual send and receive actions, H contains all channels, and p does not contain
abstraction, encapsulation, nor the urgent communication operator. Experience shows that
most x models of discrete-event systems are of this form. From now on, we only refer to
the process p, omitting the top-level encapsulation and urgent communication operators.
Since UPPAAL does not support nested automata, the process term p may either be a single
sequential process or a parallel composition of multiple sequential processes, i.e., only one
level of parallelism is allowed. The sequential processes of p may only contain the following
translatable process terms and operators: skip, multi-assignment, delay, undelayable send
and receive, guarded skip, guarded multi-assignment, guarded send and receive, guarded
repetition, delay enabling operator, sequential and alternative composition, and repetition.
We refer to [Bortnik et al. 2007] for more details on the) to UPPAAL translation scheme.

As an example we consider the translation of the x tester model from Figure 3.1(a), result-
ing in the UPPAAL timed automaton shown in Figure 3.1(b), taken from [Bortnik et al. 2005a].
The nodes depict the automaton locations (states) with invariants and the edges depict the
transitions with guards, channel synchronizations, and actions. The upper left location is the

"In a more recent version of x [Van Beek et al. 2008], the guard operator b — p has been replaced by a
restricted set of guarded process terms: guarded skip, guarded multi-assignment, guarded send, and guarded
receive.

44 Chapter 3. System analysis

initial location, depicted by the double circle. A clock variable ¢ is used to model the delays in
certain locations of the model. The incoming edge of a delay location contains a clock reset
(¢ == 0), while the outgoing edge contains a guard on the duration of the delay (c == 2), which
means that the delay location can only be left when two time units have elapsed. Together
with an invariant in the delay location itself (c <= 2), which means that it is not possible to
stay in the location for more than two time units, this models the A2.0 process term of the
x model. Furthermore, the non-deterministic choice between an undelayable send action
and skip is modeled in the automaton by using multiple outgoing transitions and by making
the location urgent, depicted by the U-sign in the location. An urgent location means that
the automaton cannot delay in that location when an outgoing transition is enabled, which is
always the case for the unlabeled transition that models the skip process term of the x model.

The translation scheme from a subset of x to UPPAAL timed automata has been imple-
mented and integrated into the) toolset. Together with the x simulator, which is able to
analyze)} models that are not restricted to the subset, the model checking capabilities of
the x toolset provide a powerful model-based analysis environment that satisfies the require-
ments for determining and analyzing model behavior, as described in Subsection 2.3.1.

The EUV case study, described in the next section, was the first industrial application in
which the x to UPPAAL translator was used. Therefore, one of the subgoals of this case study
was to investigate the applicability and usability of the translator, e.g., whether the defined
subset of x that can be translated is sufficiently expressive in practice.

3.2 Practice: analysis of the EUV vacuum-source interface

As mentioned in Chapter 1, the EUV wafer scanner of Figure 1.1 is used as a case study
throughout this thesis to answer QUESTION 1.3 on the practical applicability of the MBI&T
method. In particular, the application of the MBI&T method to the EUV case study focuses
on the interaction and time behavior of the vacuum system component C,, which controls
the vacuum conditions, and the source component C;, which generates the EUV light. These
components need close interaction to provide correct vacuum conditions and correct EUV
light properties at all times. Since the internal states of these components are interdepen-
dent (e.g., the source may only be active under certain vacuum conditions to avoid machine
damage), some combinations of component states are not allowed and should be prevented.

The EUV case study is a representative example of a high-tech multi-disciplinary system,
as it includes multiple interacting components involving aspects from different disciplines,
as schematically shown in Figure 3.2. The vacuum system component C, contains a control
part and a physical part. The C, physical part consists of, for example, pumps, valves, and
pressure sensors, arranged according to a particular architecture such that the pressure and
flow in the EUV system can be controlled according to the system requirements. The C,
control part, consisting of electronics and (embedded) software, sends commands to the C,
physical part (e.g., ‘turn on pump’) and receives the status of the C, physical part (e.g., ‘pump
is running’) as well as the pressure as measured by the pressure sensors. The source com-
ponent C; also contains a control part and a physical part. The C; physical part consists
of a source of plasma-generated EUV light together with heaters, coolers, reflective optics,

3.2. Practice: analysis of the EUV vacuum-source interface 45

and sensors to control the temperature and the light quality according to the system require-
ments. Similar to the C, control part, the C; control part uses electronics and (embedded)
software to send commands to the C; physical part (e.g., ‘turn on source’) and to receive the
status (e.g., ‘source is active’) as well as the measured temperature.

C, - control vented— Cj - control
C goto_state_req —» — pre-vacuum —»
¢ goto_state_rep — exposure —
commands A# -« qgctive commands #
control environment status, # status,
pressure temperature
. physical .
C, - thSICS interaction Cs - thSICS
(pumps, valves, | (pressure, temp., | (heaters, coolers,
\ sensors)) light, etc.) _ optics, sensors))
vacuum system source

Figure 3.2: Components involved in the EUV case study and their interaction

The vacuum system and the source interact with each other on the physical as well as
on the control level. On the physical level, for example, the pressure in the vacuum system
influences the generation of EUV light, i.e., the vacuum conditions must be correct before
the source is activated to prevent source damage. On the control level, C, and C; exchange
information about their internal states via an interface consisting of four latches®: three
latches from vacuum system to source and one latch from source to vacuum system:

Vented When active, this latch indicates that the vacuum system is vented.

Pre-vacuum When active, this latch indicates that the vacuum conditions are sufficient to
activate the source, however not sufficient for exposure.

Exposure When active, this latch indicates that the vacuum conditions are correct for expo-
sure.

Active When active, this latch indicates that the source is active and that the vacuum system
is not allowed to go to the vented state (to avoid machine damage).

Besides these latches to interact with the C; control part, the C, control part provides a
function goto_state to interact with the control environment of the system, which is repre-
sented here as component C,. The control environment, e.g., a vacuum system operator or a
higher level software controller, can send a request via goto_state_req to instruct the vacuum
system to go to either the vacuum or the vented state. After receiving a request from C,, the
vacuum system sends back a reply ‘OK’ via goto_state_rep. Note that, by design, this reply

2Latch: electronic circuit based on sequential logic with inputs ‘set’ and ‘reset’ that is capable of storing one
bit of information, i.e., a high or a low voltage. See Chapter 5 for more details.

46 Chapter 3. System analysis

does not indicate that the requested state is reached; it only indicates that the request is suc-
cessfully received and that the vacuum system will perform the actions necessary to get to the
requested state. The progress of these actions and the state of the vacuum system can only
be observed via the vacuum system user interface without explicit notification that a certain
state is reached, which was sufficient for the system design considered in the case study.

Throughout the thesis, the main focus of the case study is on the interaction and time
behavior of the control parts of the vacuum system and the source, using abstractions of
physical aspects such as pressure and temperature when these aspects are important for the
analyzed system behavior. An example of such an abstraction is shown later in this section.
The interaction behavior of the integrated system under nominal conditions is depicted by
the message sequence chart in Figure 3.3. This figure shows the different states of the com-
ponents and the communication between them for the vacuum sequence. In order to go
to the requested vacuum state, first the ‘vented’ latch is deactivated after which the vacuum
pumps are started and some initial preparation actions are executed by the source. After
some pumping down, when the vacuum conditions are sufficient to activate the source, the
‘pre-vacuum’ and subsequently the ‘active’ latch are activated, and the source goes to the ac-
tive state. Finally, when the vacuum conditions are correct for exposure, the ‘exposure’ latch
is activated and the source goes to the exposure state. For the other way around, going from
vacuum/exposure conditions to vented/inactive conditions, a similar, reversed sequence is
specified.

C, C, - control C; - control

T T
| |
! state = vented AN !
| |
| |
| |

|

|

———request: go to vacuum——

|
——— . —_
! reply OK ﬁvented =0

state = inactive

I

4"‘0 o~

II

state = pre—vacuum% pre-vacuum = 1——p» |state = prepared
|

-——— aCtiVe =1

< B es

state = active

Ssgono
44‘ D+ ® <=+ 0

|
state = vacuum AN exposure = I————p

4~{*U><m‘

state = exposure

Figure 3.3: Nominal system behavior for the vacuum sequence

3.2. Practice: analysis of the EUV vacuum-source interface 47

The nominal sequence described above does not cover preemption. The sequence can
be interrupted at any time by a new request from C,, and the vacuum system should handle
these interrupts. For instance, when the vacuum system operator decides to go back to the
vented state while the vacuum system is performing the vacuum sequence (i.e., going from
vented to vacuum as shown in Figure 3.3), the vacuum system should immediately interrupt
the vacuum sequence and start with the venting sequence to go to the vented state.

Finally, errors with different severity levels can be raised during operation, which lead
to specified exceptional behavior that is not covered in Figure 3.3. For example, the source
should leave the exposure state but remain active when a low level error occurs, however it
should immediately deactivate and switch to manual mode when a high level error occurs. In
manual mode, only a human operator is able to reactivate the source, after proper inspection
of the error.

The following subsections describe how the MBI&T activities of the procedure described
in Section 2.3 were applied to the EUV case study. First, the components of Figure 3.2, and
the control parts in particular, were modeled as x processes (MBI&T activity 1). Subsequently,
the system model was analyzed using x simulation and UPPAAL model checking (MBI&T
activity 2). In these activities, the focus was on the order of actions during the vacuum and
venting sequences, on the interrupt and error handling, on machine damage prevention, and
on the time behavior of the system. Several requirements R concerning these issues will be
model checked using UPPAAL.

3.2.1 Modeling the components in x (activity 1)

Conforming to the first requirement as described in Subsection 2.3.1, the informal design
documentation of the vacuum system and the source was used as the main information
source for modeling. The system level design documentation (corresponding to D in Fig-
ure 2.8) described the interactions between the vacuum system and the source as shown in
Figure 3.2. The design documentation for the source component, D;, was reasonably com-
plete and contained a good overview of the behavior in the form of a state diagram, which
clearly showed the possible actions and communications for each state of the source. How-
ever, the design documentation of the vacuum system component, D,, mainly focused on
the physical actions for the vacuum and venting sequences, and did not contain informa-
tion about the communication with the source on the control level. It became clear that
the designers of the vacuum system were not yet fully aware of the communication behavior
between their component and the source component. In general, the design documenta-
tion for both components mainly described the nominal behavior and hardly mentioned the
handling of exceptional behavior, and also the action durations were not completely specified.

During our modeling activities, we obtained the missing information about the com-
ponent designs by combining knowledge of both components and by discussion with the
engineers involved. For example, the specifications of the communication of the vacuum
system that was missing in D, could be derived from the system and source design doc-
uments D and D,;. The updated and more complete design specifications were validated
for their correctness by discussion with the designers of the vacuum system and source,
corresponding to the model correctness requirement as described in Subsection 2.3.1. We

48 Chapter 3. System analysis

experienced that in most cases, the issues that arose during the modeling activities in fact
indicated unknown or incomplete design issues such as missing states, obsolete states, or
errors in the communication sequence. By incremental modeling, intermediate simulation,
discussion, and design review, the specification documents were further corrected and com-
pleted, which also helped the engineers to obtain a better system overview. This is a practical
example showing that the system development process, whether or not models are used, has
a more incremental and iterative nature than the simplified ‘sequential’ process depicted in
Figures 2.2 and 2.8.

There were some remaining modeling and design issues, for which no solution was avail-
able or for which the corresponding behavior was not known at all, even by the engineers in-
volved. According to the engineers, the system behavior concerning these remaining issues
was not important because it would never occur in the real system. This is a typical example
of the current way of working in industrial practice that had to be taken for granted in the
TANGRAM project. In order to deal with such incompleteness issues and statements that
particular behavior would never occur, the behavior concerning these issues was abstracted
in the model by using an explicit indication of ‘undefined behavior’. In activity 2 of the case
study, we verify whether this undefined behavior indeed can never occur.

The next paragraphs describe how the source C;, the vacuum system C,, and the control
environment C, were modeled as) processes. Figure 3.4 shows how the x processes of
the system model (depicted by rounded rectangles) and the control level communication
between them (depicted by arrows) are mapped onto the system design shown in Figure 3.2,
abstracting from the physical parts and their physical interaction. The bold lines between
processes of one component depict shared variables (two for the vacuum system and three
for the source), which are used to exchange data between processes of one component.

\
\

—— pre-vacuum ——»
L exposure ——»

active

7
-

T
goto_state_req |
M. goto_state_rep ‘

control environment vacuum system source

Figure 3.4: Process layout of the) system model

The control environment is modeled as a single process M, that can be configured to send
requests and receive replies at certain points in time, depending on the analysis technique.
For simulation and testing, specific scenarios with specific delays between the requests are
used, while for verification, all scenarios (with any possible delay) are analyzed.

The vacuum system M, is modeled as a parallel composition of processes v1 through v3,
i.e., (v1 || v2 || v3). Process v is the core process and describes the internal behavior of the
vacuum system, including the influence of relevant pressure levels, as explained in the fol-
lowing paragraphs. Processes v2 and v3 model the interaction with M, and M;, respectively.
Besides receiving the incoming requests from M,, process v2 also handles these requests,
i.e., depending on the state of the core process vi, process v2 changes the variables shared
with process v1 such that a new sequence is started or the current sequence is interrupted.

3.2. Practice: analysis of the EUV vacuum-source interface 49

The internal behavior of the vacuum system as modeled in v1 is influenced by the pres-
sure level that changes due to actions in the physical part of the vacuum system, see Fig-
ure 3.2. In the x model, this pressure is represented by a variable P. In principle, the physics
behind pressure P can be modeled in the continuous-time paradigm using differential equa-
tions, which, combined with the discrete-event control part, results in a hybrid x model.
However, the simple pump example in Figure 3.5 shows that it is sufficient for the analyzed
behavior in the EUV case study to use a discrete-event abstraction of the physics.

Puented pressure Pin (p1 || p2)

proc pt = ‘ — — pressure Pin (p1|| p3)

[pump_on := 1.0 ; vented!false
5 P < Pprevacuum — pre-vacuum true
; P < Pexposure — exposure! true

]

pressure

proc p2 =
[P’ = pump_on Cpump * (Pend — P)]

proc p3 =
[pump_on = 1.0 — skip .
; Aty Pi= Ppre-vacuum
; Aty Pi= Pexposure

]

Pexposure

t; t, time

(@) x model (b) Pressure behavior

Figure 3.5: Modeling a simple pump: continuous-time vs. discrete-event

The left-hand side of Figure 3.5 shows three x processes, p1 through p3, omitting the
declaration and initialization of channels and variables for simplicity. Process p1 models
a control process that performs a simple vacuum sequence, starting in the ‘vented’ state
(P = Pyenseq) as in Figure 3.3. In this example, we assume that the vacuum sequence is not in-
terrupted and that no errors occur. After turning on the pump and informing the source via
the vented latch that the system is not vented anymore, process p1 waits until the pre-vacuum
and the exposure pressure levels are reached and updates the latch values accordingly. Pump
process p2 models the physics behind pressure P in the continuous-time paradigm, using a
simple differential equation. In this equation, the pressure derivative P’ depends on whether
the pump is running (pump_on, controlled by p1), on the pump characteristics C,,, (here,
we assume constant pump speed with no startup/brake effects), and on the difference be-
tween the end pressure P,,; and the current pressure P. For the integrated system model
(pt || p2), the simulated trajectory of the pressure variable P is depicted by the solid line on
the right-hand side of Figure 3.5. In the figure, the dots indicate the pressure levels Py,
Pyrevacuum> and Pegposure at which the latch values are updated by p1. This example shows how
the continuous-time physics of the vacuum system can be modeled in hybrid . We refer to
[Man and Schiffelers 2006; Van Osch 2007] for more details about modeling in hybrid x.

50 Chapter 3. System analysis

In the EUV case study in this thesis, however, only the latch interaction with the source is
important for the analysis, i.e., the points in time at which the particular pressure levels are
reached. Using the second type of the integrated approach as described in Subsection 2.4.1,
we replace the continuous-time pump model in process p2 by the discrete-event pump model
as shown in process p3. In this process, the pressure trajectories between the particular pres-
sure levels are modeled by assigning new values for P at discrete points in time. The duration
of the time delays between these discrete points in time, t1 and t2 in the example, can be cal-
culated using a continuous-time pump model as in process p2. For the integrated system
model (p1 || p3), the simulated trajectory of the pressure variable P is depicted by the dashed
line on the right-hand side of Figure 3.5. Independent of whether the continuous-time pump
model in p2 or the discrete-event pump model in p3 is used, control process p1 updates the
corresponding latch values at the same points in time. This means that the discrete-event
abstraction of the physics behind pressure P does not influence the system behavior that
is important for the analysis, i.e., the control level interaction and the time behavior of the
integrated vacuum system and source. This example of multi-disciplinary modeling using
the second type of the integrated approach as described in Subsection 2.4.1 shows that the
expressivity of x can be effectively used to model equivalents of other paradigms than the
concurrent processes paradigm in an abstract way.

The source M; is modeled as a parallel composition of processes st through s4, i.e., (st ||
s2 || s3 || s4). Process st is the core process that models the internal behavior of the source,
while processes s2, 53, and s4 model the latch interaction with the vacuum system. To give
an impression of the x model, a part of the source model M; is shown in Figure 3.6, in
which process st is shown on lines 2—19, and the processes s2, s3, and s4 are shown on
lines 20, 21, and 22, respectively. For simplicity, the declaration and initialization of channels
and variables are omitted and the model of the core process st only shows the behavior in the
active state. All omitted parts are denoted by three dots {...).

The processes s2, 53, and s4 model the interaction with the vacuum system via the latch
channels vented, pre-vacuum, and exposure, respectively, which is described in more detail
in Chapter 5. The behavior of the repetitive processes s2, s3, and s4 is similar to each other.
Each time when the vacuum system sends a signal via one of the latch channels, the received
value is assigned to the corresponding boolean variable vnt, pre, or exp, respectively. These
shared boolean variables indicate the states (active or inactive) of the latches, and can be read
by process si. When a new latch value is received, the auxiliary variable newvalue is set to true
to notify process st that the state of some latch was changed.

The core process st models the internal behavior of the source as specified in the informal
state diagram that was found in the source design documentation D;. The state of process s1
is modeled by the variable src_state, which can take on the values inactive, prepared, active or
exposure, see Figure 3.3. The variable error is used to model an error; error = o means that
there is no error, the values 1, 2, 3, 4, 5 indicate different error levels with increasing severity.
Finally, the variable manual indicates that the source has switched to manual mode due to
a severe error, and the variable undefined indicates that the source has reached a state in
which its behavior is undefined. Remember that undefined behavior was not described in
the design documentation and should never occur according to the engineers.

The behavior of the core process s1 is state dependent. This example only shows the

3.2. Practice: analysis of the EUV vacuum-source interface 51

I proc M; =

2 [* (src_state = inactive — ...

3 | src_state = prepared — ...

4 | src_state = active ~ — skip

5 ; (error =5 — skip; AGo; manual = true

6 | error = 4 — manual = true

7 [error < 4 — skip

8 ; newvalue — newvalue = false

9 (0 ovnt — error =35

10 [-vnt A pre A exp — src_state = exposure
11 | -vnt A -pre A exp — undefined :=true
2 | -wnt A pre A —exp — skip

13 | -wvnt A —pre A —exp — AGoO

4 ; src_state := prepared
15 ; active!l false

16)

17)

18 | src_state = exposure — ...

19)

20 || * (vented ?? vnt; newvalue = true)

21 || % (pre_vacuum ?? pre; newvalue := true)

22 || * (exposure ?? exp; newvalue := true)

23 |

Figure 3.6: Part of the source model M; in x

behavior in the active state, in which the process checks if there is an error and, depending
on the severity of the error, takes certain actions to prevent further problems. For example,
it error = 5 (line 5), the source deactivates the EUV light source, modeled as a delay for
60 time units, and switches to manual mode. Again, this is an example of multi-disciplinary
modeling using the second type of the integrated approach as described in Subsection 2.4.1,
i.e., the details of deactivating the EUV light (which might involve complex physical behavior)
source are abstracted and replaced by a time delay.

If there is no severe error (error < 4, line 77), the source checks if any of the latch values has
changed, indicated by the variable newvalue. If the newvalue guard is false, the process waits
until it becomes true, i.e., until a new value is received via one of the latches. If newvalue
is true, it is reset to false without a delay and the process continues by checking the current
values of the three incoming latches (vnt, pre, exp) to determine the actions that should be
performed (lines 9—13). If vnt = true (vacuum system is vented), the variable error is set to
the highest error level 5, since the source is still in its active state. Otherwise, if pre and
exp are true, the state of the source is switched to the exposure state, corresponding to the
nominal behavior of the vacuum sequence. The situation in which pre is false and exp is
true is one of the situations that should never occur and for which the behavior is undefined
(undefined = true). If pre is true and exp is false, no action is taken (skip) and the process

52 Chapter 3. System analysis

remains in the active state. If both pre and exp are false, the process performs the actions
required to go back to the prepared state, which are modeled by a delay of 60 time units.
After switching to the prepared state, the ‘active’ latch channel to v3 of the vacuum system is
deactivated (active ! false).

In the model shown in Figure 3.6, the process term skip, i.e., an internal action that can-
not delay or change variables, was used for different reasons. In lines 4 and 7, we used skip
to avoid guarded alternative composition (b — (p1 || p2)), and nested guards (b, — b, — p),
which had not been implemented yet in the x toolset. Then, in line 5, skip was included to
make the choice immediate and to avoid that the required delay of 6o time units is inter-
rupted when, in the meantime, the error level is lowered and another alternative is selected,
which is undesired behavior. Finally, in line 12, no latch value has changed which means that
the source remains in its active state. By using skip, the process st returns to line 2 without
delay and without changing variables.

In this chapter, the focus is on functional analysis of the integrated system behavior,
for which the exact details of the component interaction, e.g., how the control environment
sends a request to the vacuum system, are unimportant. Here, only the result of the inter-
action is important for the analysis, e.g., the fact that a request is received by the vacuum
system at a certain point in time. This means that details of the component interaction can
be abstracted from in the model, resulting in an abstract infrastructure model Iy, using only
the parallel composition operator || to synchronize the component models on communica-
tion and time. With this abstract infrastructure model I, the system model {M,, M,, Mi},,, is
modeled in x as the parallel composition of the component processes: (M, || M, || M;). Chap-
ter 5 provides more details about modeling, analysis, and implementation of the component
interaction in the EUV case study to enable model-based integration and system testing.

3.2.2 Integrated system analysis using x simulation (activity 2)

In order to analyze the behavior of the integrated vacuum system-source model by means of
simulation, different scenarios are needed that focus on different aspects of the system. A
good information source for possible scenarios is the intended system behavior specified in
the system requirements and design documentation, i.e., R and D. Unfortunately, only one
scenario could directly be derived from the documentation used in the EUV case study. This
scenario corresponds to the nominal behavior of the system.

From ASML testing experience, it is known that analyzing only the nominal behavior is
not sufficient. In many cases, it is the exceptional behavior that gives the problems, since
this behavior is less documented and thus less clear when compared to the nominal be-
havior. Therefore, it is important to analyze the exceptional behavior as soon as possible.
Unfortunately, no simulation scenarios for exceptional behavior could be derived directly
from the documentation. However, based on the system overview obtained by modeling the
components, and by discussion with the involved engineers, four additional scenarios for
exceptional behavior analysis were derived. These scenarios cover the behavior of the system
when the vacuum and venting sequences are interrupted at certain points in time.

Besides incomplete documentation, there is another problem with the analysis of excep-
tional behavior in the current, non model-based, way of working. Since only realizations can

3.2. Practice: analysis of the EUV vacuum-source interface 53

be used for system analysis, it may be difficult, expensive, or risky to create the non-nominal
conditions needed to analyze the exceptional behavior, e.g., a broken component. In the
MBI&T method, creating these non-nominal conditions using models is easier, less expen-
sive, and less risky. For example, the model can easily be adapted such that a communication
signal is send earlier or later than expected, or that a different signal or no signal at all is sent.
In the case study, we used specific configurations of the control environment model M, to
analyze the integrated system behavior for the five scenarios mentioned above, one with nom-
inal and four with exceptional behavior. The simulation results were visualized by means of
animated automata, message sequence charts, and Gantt charts (see Figure 3.7 for an im-
pression), which greatly improved the interpretation and analysis of the simulation results.

State Diagram, vcs-src-simulatable-with-viz

IF closed

System_ SR4_ SR4_ Venting_
Vented Melt_Tin Exposure Prohibited
/
R | -
4 Animate ., Manual << < |21 > Close Window

BEE0

Message Sequence Chart, vcs-src-simulatable-with-viz

File Help |

TE] [Vs | | System_vented | | SRC | | sRa_MeltTin | [venting_Franibitec| [SR4_Exposure |

£]
0.0:3
0.0: 1o
0.0: lo
10.0: hi
10.0: hi
10.0: hi
10.0: hi
40.0: hi
40.0: hi
45.0; 0K
5 5 7y §y F J |
N =

Close Window

Gantt Chart, vcs-sic-simulatable-with-viz

File Help

——

SRC

1 10 20 30 40 50 B0 70 a0 30 100
N—1

-

Close Window

Figure 3.7: Visualization of simulation results: animated automata (top), message sequence
chart (middle), and Gantt chart (bottom)

54 Chapter 3. System analysis

One situation with incorrect behavior was detected, which surprisingly also occurred in
the nominal behavior scenario. The incorrect behavior occurs during the venting sequence,
in which the vacuum system first deactivates the ‘exposure’ and ‘pre-vacuum’ latches. Ac-
cording to its design, the source should first observe the deactivated ‘exposure’ latch and
perform some actions before observing the deactivated ‘pre-vacuum’ latch. However, the vac-
uum system was designed to deactivate both latches at the same time, which means that the
source can also receive the deactivated ‘pre-vacuum’ latch during the actions it performs to
reach the prepared state, or even before receiving the deactivated ‘exposure’ latch. In both
cases, the source raises an error and switches to manual mode, which is certainly not ac-
ceptable for nominal behavior. Further diagnosis showed that this incorrect behavior indeed
was an integration problem between the vacuum system and the source, which could now
be solved early in the design phase.

3.2.3 Integrated system analysis using UPPAAL (activity 2)

During simulation, some problems were discovered and solved, which increased the confi-
dence, but did not prove the correctness of the model. To check whether the model behaves
correctly in all possible scenarios and to gain more system overview, it has to be verified. To
enable verification of all possible scenarios, the control environment model M, was config-
ured such that any possible delay can occur between subsequent vacuum system requests
and the) system model was translated to a network of UPPAAL timed automata using the
automatic x to UPPAAL translator as described in Section 3.1. Subsequently, the UPPAAL
model checker was used to analyze particular properties of the integrated system model.

Since the original y model was created without considering its translation to UPPAAL, it
uses some process terms for which no translation is defined, e.g., the scope operator, process
definition and instantiation, delayable send and receive, nested parallelism, and guarded de-
lay. These process terms need to be transformed manually to make the xy model translatable.
To remove the scope operators and the process definitions from the x model, all variables
were lifted to the global scope and given unique names such that the local scope operators
and the process definitions can be removed without changing the behavior. As previously
mentioned, the delayable send and receive process terms can be replaced by their formal
definitions without changing the behavior. The original x model contained nested paral-
lelism of the form p;; ((p.; ps) || ps); ps- Process p, changes the value of a variable after
which process p, should immediately perform an undelayable action and terminate. Closer
analysis showed that this particular case can also be modeled as p;; p,; p,; ps; ps without us-
ing the nested parallel operator. Finally, the original x model also contained guarded delays
of the form (b — p) || (-b — Ad), where p € {skip, x, :=e,}. In a way similar to the proofs of
the x properties in [Van Beek et al. 2006a; Man and Schiffelers 2000}, it can be shown that
this process term is bisimilar to the translatable process term (b — p) [Ad.

This part of the case study showed that the translatable subset of x should be extended
with the scope operator and process definition. Furthermore, the support for data types
should be extended to avoid unnecessary model transformations such as the encoding of
boolean variables and strings into integer variables, which was still needed in the case study
to make the model translatable.

3.2. Practice: analysis of the EUV vacuum-source interface 55

After transforming the original x model as described above to make it translatable, it
was translated automatically to eight UPPAAL timed automata including five clocks and 29
variables. Figure 3.8 shows the four UPPAAL timed automata generated for the partial
x source model M; of Figure 3.6, where the same parts are omitted and denoted by three
dots (...). The initial location S43 of s1 relates to the alternative composition of different
source states (starting on line 2 in Figure 3.6), where the source states are now numbered
from 1 through 4. Location S38 relates to the alternative composition of different error levels
(starting on line 5 in Figure 3.6), and location S36 relates to the alternative composition on
different latch values (starting on line g in Figure 3.0).

S28

src_state == 4

active!
activeo=0

&

true

vnt == 0 && pre == 0 && exp =1
dummy!
undefined =1

newvalue == 1
dummyl!
newvalue = o,
cAo =0

| dummy! vnt == 0 && pre ==1&& exp==0
dummy!
S16
| vnt==1 |
dummy!
error =5 true
src_state == 3 vnt==0 && pre ==1 l&& exp==1
d | dummy!
ummy!
| error == 4 cAo<=6o src_state = 4 |
dummy!
manual =1 error == 35
dummy!
| cAo =0 |
error < 4
538 dummy!
- et |
true
N
/ vented? N / pre_vacuum? N / expose? N

exp=exposeo

S2 newvalue = 1

N — = =

newvalue = 1 /

A A
Figure 3.8: Generated UPPAAL timed automata for the source processes

The following properties, derived from the system requirements R and the system de-
sign D, were verified using the UPPAAL model checker. The properties are expressed as
UPPAAL queries using timed computation tree logic (TCTL) [Bengtsson and Yi 2004], in
which A[] p means that, for all traces, property p should hold always, while A<> p means
that, for all traces, property p should hold eventually, i.e., after some time.

56 Chapter 3. System analysis

1. Deadlock freeness: A[] deadlock imply env.end, where env.end denotes the location of the
control environment automaton indicating successful termination, which is the only
location at which deadlock is allowed.

2. Livelock freeness: A<>env.end. When all requests from the control environment are
processed by the vacuum system and the source, the control environment process ter-
minates. This means that if the control environment automaton eventually reaches its
end state env.end for all traces, there is no livelock in the system.

3. No undefined behavior: A[] undefined == o. In some particular situations, the system
behavior was not specified since it would never occur according to the engineers. These
situations were modeled by assigning a non-zero value to the variable undefined, e.g.,
in line 11 of Figure 3.6.

4. No errors: A[] error == o, where error is the variable indicating the error severity level
of the source (error > o), or the absence of an error (error = o).

5. The vacuum system may not be vented while the source is active to avoid machine
damage: A[] not (vnt and act), where the variables vnt and act indicate the vented state
of the vacuum system and the active state of the source, respectively.

6. The duration of the vacuum and venting sequences is at most 6 hours and 1 hour,
respectively: A[] vacuum imply clk < 21600 and A[| venting imply clk < 3600, where the
variables vacuum and venting indicate which sequence is being performed, and clk is a
clock variable used to determine the duration of the performed sequence (in seconds).

The translated model was verified in UPPAAL using the following options: generation of
the fastest trace, breadth first search order, conservative space optimization, and state space
representation using minimal constraint systems. The largest number of states (20510) was
explored while verifying the first property. The total amount of memory used during model
checking was just under 1 MB.

During verification of properties 1 and 2, two design errors were detected that caused
deadlock. Both deadlocks were caused by non-determinism in the interleaving of the core
process vi and the interrupt handling process v2 of the vacuum system model. The way to
handle this non-determinism in general was not specified in the design documentation, and
model checking indicated this design incompleteness. One of the deadlocks occurred in
the specific situation that an interrupt request was sent exactly at the start of the sequence.
Again, this indicated an incompleteness in the design documentation, which did not men-
tion the assumption that an interrupt could only occur after the start of a sequence. After
informing the involved engineers about these design incompleteness issues, an alternative
design for the interrupt handling process v2 was proposed. With this alternative design, and
after restricting the control environment M, such that interrupts can only occur after the
start of a sequence, the model satisfies both properties 1 and 2.

Property 3 was satisfied by the model, indicating that the engineers were correct when
they claimed that the situations with undefined behavior would never occur. Verification of
property 4 detected the same design error as detected by simulation, i.e., incorrect behav-
ior in the venting sequence, resulting in an error level larger than zero. Besides that, no
other errors were raised in any trace of the model. Two minor mistakes were discovered

3.3. Conclusions 57

by verification of property 4 and 5, one modeling mistake and one mistake in the manual
transformation from the original y model to the translatable x model.

To verity property 6, we decorated the model (using the approach from [Lindahl et al.
2001]) with additional boolean variables vacuum and venting to indicate which sequence is
being performed and a clock clk to determine the duration of a sequence, without changing
the behavior of the model. Both queries of property 6 were satisfied.

After discussing the detected design errors with the ASML engineers, fixes were applied
to the design and, correspondingly, to the model. The fixed model was verified again and
now all properties were satisfied by the model.

3.3 Conclusions

This chapter started with a description of techniques suitable for the analysis of system mod-
els in the concurrent process paradigm, i.e., simulation and model checking. These tech-
niques are supported in the x toolset, providing a x model simulator and translators from x
to other formalisms that are suitable for model checking, e.g., UPPAAL timed automata.
The results of the EUV case study provide a positive answer to QUESTION 1.3: it is feasible
and profitable to apply the MBI&T method in current industrial practice when no compo-
nent realizations are available. The experience in the case study showed that the x toolset,
including the new) to UPPAAL translator, is well suited for model-based system analysis,
satisfying all requirements described in Subsection 2.3.1. The informal design documen-
tation and discussions with involved engineers were effectively used as information source
for modeling. The x language is sufficiently expressive to model the considered aspects in
the case study (supervisory machine control in software, interrupt behavior, electronic com-
munication) and to deal with practical issues such as incomplete design specifications. The
integrated) system model could easily be obtained from the x component models by using
the available composition operators. The correctness of the xy models was evaluated by in-
cremental modeling, intermediate simulation, and discussion with the involved engineers,
demonstrating the incremental and iterative nature of a system development process in prac-
tice. The discussions with the engineers also showed that xy models are relatively easy to un-
derstand and that intermediate simulation results and visualizations are helpful to improve
system overview. Finally, simulation and model checking were well suited to determine and
analyze the system behavior before any component realization was available, which means
that, for this MBI&T activity, the hypothesis on the applicability of the x toolset is accepted.
Besides showing the practical applicability, the case study also showed relevant advan-
tages for the system development process. First, the modeling activities helped to clarify,
correct, and complete the design documentation, and to improve the system overview for the
involved engineers. By simulation and model checking, a number of design and integration
problems were detected and fixed during the system design phases. In terms of the T-Q-C
business drivers, this means that the product quality Q could be improved earlier (lower
time-to-market T) and with lower fix costs C when compared to current system development.
In total, five errors were detected by simulation and model checking. Three of these
errors were design errors; only one of them was discovered by means of simulation. The

58 Chapter 3. System analysis

other two design errors, discovered by verification only, both concern the non-deterministic
behavior of parallel processes. This behavior is difficult, if not impossible, to understand
and to analyze by simulation or by reviewing the design documentation only. Nevertheless,
when this non-deterministic behavior contains errors that remain undetected, it may cause
‘strange’ and unexpected problems on the system level, e.g., the system suddenly ‘hangs’
or it shows different behavior while the circumstances did not change. These problems are
also difficult to diagnose, i.e., pinpointing the (unknown) errors in the non-deterministic
behavior as the root cause for this strange and unexpected system behavior. This illustrates
that verification should be used for designing real industrial systems, which often involve
both high-level parallelism and non-deterministic behavior. Especially for systems with high
risks for machine damage or human safety, analyzing all possible behaviors is essential in
order to guarantee correct and safe system behavior under all circumstances. The other two
errors were minor mistakes in the modeling and model transformation activities. To prevent
model transformation errors, the translation scheme from Y to UPPAAL should be extended
with the scope operator, process definition, and more data types. With these extensions, the
translation scheme is well suited for translating most x models. Unfortunately, the guarded
delay and nested parallelism cannot be translated in the general case and these process terms
should be avoided while modeling; otherwise they have to be transformed manually.

The fact that the largest state space generated for our system is reasonably small (order
20000 states) indicates that the approach is applicable to similar size or even more com-
plex industrial systems. However, giving quantitative statements on the scalability of this
approach is difficult. The UPPAAL model checker verifies the properties by generating the
symbolic state space on-the-fly. This means that it does not need to generate the entire
state space to verify a property, resulting in a significant reduction of the needed amount
of time and memory. However, the size of the generated state space is, then, dependent on
the property to be verified. Furthermore, the size of the state space heavily depends on the
model itself, for instance, the number of automata, clocks, and variables, the level of non-
determinism, and the structure of the automata. This is also recognized in literature, e.g.,
in [Diethers and Huhn 2004], which shows that a detailed but rather deterministic model
could easily be handled, while the analysis of a small example with high non-determinism
failed. The state space size is also influenced by model checker options such as depth-first or
breadth-first search. This means that predicting the size of the state space, and thus making
statements on the scalability of the approach, is difficult.

This chapter showed that model checking is a relevant analysis technique to detect prob-
lems in industrial systems and that the computational limits were not reached in the case
study. Although the potential state space explosion problem remains the main obstacle when
model checking more complex systems, the size of problems that can be handled increases
due to sustained research work and tool improvements, e.g., a recently developed symmetry
reduction technique [Behrmann et al. 2006] and efficient state space storage [David et al.
2003]. Besides the development of techniques to reduce the state space and memory usage,
the computing power available for model checking also increases continuously, with faster
processors, more memory, and distributed computing techniques [Behrmann et al. 2000].
All these techniques provide a wide range of model checking solutions to tackle problems of
different types and sizes, see [UPPAAL 2007] for an overview.

CHAPTER 4

Component testing

How to test a component automatically?

In current industrial practice, a component realization is usually tested on the compo-
nent level before it is integrated and tested with other components, i.e., on the system level.
In many cases, the activities related to component testing are performed manually, e.g., the
definition of tests based on documents that specify the requirements and design of the com-
ponent. The MBI&T method uses models instead of documents to represent components,
for example, to enable early analysis of the system behavior as described in Chapter 3. In
this chapter, we investigate whether these models can also be used for automatic testing of
component realizations when they become available.

Automatic testing is receiving lots of attention as an alternative to manual testing, which
is often not sufficient anymore to detect all problems within the given amount of test time.
A well-known and widely used technique to speed up component testing is to use automatic
test execution techniques and tools [Fewster and Graham 1999]. However, these techniques
and tools still require manual definition of the tests that need to be executed and the mecha-
nism to determine the test outcome (pass or fail), which is often called the ‘test oracle’. Test
automation can be taken one step further when also the definition of tests and the test ora-
cle is automated. In the model-based testing research field [Brinksma and Tretmans 2001],
models are used as reference of correct behavior from which tests and test oracles can be gen-
erated automatically. Model-based component testing is a promising technique to automate
testing, however in turn it depends on the availability, quality and completeness of models.
In current industrial practice, models are not always available and their quality and com-
pleteness may not be sufficient for model-based testing. This is also recognized in [Willemse
2000], in which test automation is taken another step further by also generating the models
for model-based testing.

In this chapter, we investigate whether the models developed in the MBI&T method have
sufficient quality and completeness to use them for automatic model-based component test-
ing. Since automatic testing of components focuses on reducing component risk rather
than system risk, it does not directly answer one of the QUESTIONS in this thesis. However,
in the context of the MBI&T method, automatic model-based component testing increases

59

60 Chapter 4. Component testing

the number of tests that can be executed per time unit. As described in Section 1.4, this in-
creased risk reduction rate is a test phase improvement that contributes to the main objective
of reducing the disadvantageous influence of the I&T phases on the T-Q-C business drivers.

This chapter is mainly based on [Braspenning et al. 2006b] and is organized as follows.
Section 4.1 introduces the research field of model-based testing, particularly focusing on
how the x models of the MBI&T method can be used to automatically test component real-
izations. The applicability of model-based component testing in industrial practice is shown
in Section 4.2, which is followed by the conclusions in Section 4.3.

4.1 Theory: model-based testing

In the model-based testing research field, theories, techniques and tools are developed that
use models for automatic testing of component realizations. Test theories define a certain
conformance relation between realizations and models, from which a test generation algo-
rithm can be derived. Two important and preferred properties of generated tests are sound-
ness and completeness with respect to the conformance relation. Soundness means that
all tests generated by the algorithm will pass when the realization conforms to the model,
while completeness means that for a realization that does not conform to the model, the
algorithm can in principle generate a test that detects such a non-conformance. An im-
plementation of the test generation algorithm, combined with functionality for automatic
test execution, enables automatic on-the-fly testing of a component realization Z; based on
its model M;, which satisfies the corresponding requirements for model-based component
testing described in Subsection 2.3.2. In practice, such an on-the-fly test tool generates test
inputs from the model M;, provides these inputs to the realization Z;, and checks whether the
outputs observed from Z; conform to the expected outputs as specified in M;. This process
is continued until either a non-conformance is detected, resulting in the test outcome ‘fail’,
or until testing is stopped based on a certain criterion (e.g., test duration or test coverage),
resulting in the test outcome ‘pass’.

The main advantage of model-based testing is that tests are automatically generated and
executed, which means that more tests can be executed per time unit. Furthermore, the
soundness and completeness properties guarantee that the generated tests are reliable, i.e.,
they will not result in incorrect test outcomes and any non-conformances can in principle
be detected. Note that this does not guarantee that all non-conformances will be detected.
Finally, instead of maintaining large sets of tests, only the models used to generate these
tests need to be maintained.

Model-based component testing is the topic of another part of the TANGRAM project
[Tretmans 2007], in which the research is based on the input-output conformance (ioco) test
theory [Tretmans 1996]. The ioco test theory defines a conformance relation between im-
plementations expressed as input-output transition systems and specifications expressed as
labeled transition systems. Informally said, an implementation i is ioco-correct with respect
to its specification s if and only if all traces (with inputs, outputs, and quiescence which
means no output) that can be executed by i based on inputs specified in s, can also be exe-
cuted by s. The fact that quiescence can also be included in the tests improves the expressivity

4.1. Theory: model-based testing 61

and coverage of tests, e.g., it allows explicit testing of the absence of output between two con-
secutive inputs. The ioco test theory also defines a test generation algorithm that produces a
sound and complete test set, which is implemented in the test tool TORX [TORX 2007].

In this chapter, the ioco test theory and the TORX test tool are used to investigate whether
the models developed in the MBI&T method can be used for automatic testing of the compo-
nent realizations. Although extensions towards timed testing [Bohnenkamp and Belinfante
2005], hybrid testing [Van Osch 2006] and testing with more complex data [Frantzen et al.
2000] were developed in the TANGRAM project, the work described in this chapter is based
on a version of TORX that only supports model-based testing of untimed discrete-event sys-
tems without complex data.

In this thesis, the MBI&T method is instantiated with the x process algebra language
and the corresponding toolset. Although the semantics of x models is defined in terms of
transition systems [Van Beek et al. 2005, 2006a; Man and Schiffelers 2006], on which also
the ioco test theory is based, x is currently not supported by TORX. However, TORX does
support PROMELA [De Vries and Tretmans 2000], the specification formalism for the model
checker SPIN [SPIN 2007]. PROMELA and SPIN can also be used to verify xy models [Bortnik
et al. 2005b], using a translation scheme from) to PROMELA as proposed in [Trcka 20006].
By combining the x to PROMELA translation scheme and the PROMELA support of TORX,
it is possible to automatically determine the conformance of a component realization with
respect to the y model. In the context of the MBI&T method, this approach for model-based
component testing is visualized in Figure 4.1, which is based on Figure 2.6. In the figure,
a component C; is represented by a x model M;,, which is subsequently translated into a
PROMELA equivalent M; . TORX is used to automatically generate tests from the model M; p
and to execute these tests on the realization Z;, in order to determine whether Z; is ioco

conforming to M; p and thus to M;,.
’—>translate — — generate tests

model

—define | Ri —design» Di 4{ TORX

realize |
| Zi — — execute tests

A4

Figure 4.1: Model-based component testing with xy and TORX

Similar to the x to UPPAAL translation scheme used in Chapter 3, the x to PROMELA
translation scheme is also based on a subset of the x language. PROMELA does not support
nested parallelism, so a process term p is only translatable if it contains at most one level of
parallelism, i.e., a single sequential process or a parallel composition of multiple sequential
processes. The sequential processes of p may only contain the following translatable process
terms and operators: skip, multi-assignment, delay, undelayable send and receive, delayable
send and receive, guards, sequential and alternative compositions, repetition, guarded repe-
tition, and the scope operator. Note that only simplified versions of guarded process terms

62 Chapter 4. Component testing

and the scope operator can be translated, for which some preprocessing steps have been de-
fined to make any x model translatable. Besides these process terms, the x to PROMELA
translation scheme also provides some support to translate compound data types such as
tuples and bounded lists. We refer to [Trcka 2006] for more details on the y to PROMELA
translation scheme. Although time and data are supported by the x to PROMELA translation
scheme, these aspects are not supported by the version of TORX used in this chapter. This
means that the subset of x that is translatable to PROMELA should be sufficiently expressive
for model-based testing with TORX.

When a x model is translated to PROMELA, it has to be made suitable for model-based
testing with TORX. In contrast to a PROMELA model used for simulation or model checking
with SPIN, a PROMELA model used for model-based testing must be an open model, which
means that some channels of the processes are not connected to other processes. These
unconnected channels are the so-called observable channels, on which test inputs can be pro-
vided and test outputs can be observed [De Vries and Tretmans 2000]. In the PROMELA
model, these observable channels are distinguished from the non-observable channels by a
special channel attribute ‘OBSERVABLE’. The TORX test generation algorithm only consid-
ers communication actions via these observable channels (test inputs and test outputs) and
the absence of test outputs (quiescence). All other actions in the PROMELA model, including
communication actions via non-observable channels, are considered to be internal T actions
in the generated tests. With the translation from) to open PROMELA models, the TORX
test generation algorithm can be used for model-based component testing, satisfying the test
generation algorithm requirement as described in Subsection 2.3.2.

As visualized in Figure 4.1, TORX is connected to the model M;p on one side (test gen-
eration), and to the realization Z; on the other side (test execution). To connect TORX to a
component realization, the abstract test inputs from the PROMELA model need to be trans-
formed into real test inputs via the real interfaces of the component and vice versa for the
test outputs. For example, this may involve calling certain functions of a software component
realization and receiving the replies of these functions, including transformation or ‘mar-
shalling’ of the function arguments and results. Transforming test inputs and test outputs
and connecting to the real component interfaces is done by the adapter component of TORX,
whose contents are case-specific and depend on the component interfaces that need to be
connected and on the behavior that is tested. As shown in the next section, connecting to
the real component interfaces, i.e., satisfying the corresponding requirement as described in
Subsection 2.3.2, can be quite difficult in practice.

4.2 Practice: automatic testing of the laser source

This section describes how x models were used for model-based component testing with
ToRX in an industrial case study. At the time of conducting the model-based component
testing experiments in industrial practice, the realizations of the vacuum system and the
EUV source, as analyzed in Chapter 3, were not available. Therefore, model-based compo-
nent testing using x models was applied to the light source of another type of wafer scanner,
in which laser light is used to expose wafers. In particular, we focused on the interaction be-

4.2. Practice: automatic testing of the laser source 63

tween a dose control component of the wafer scanner and the external laser source. Note that
this is different from the vacuum-source interaction as analyzed in Chapter 3, since the wafer
scanner type considered in this chapter does not have a vacuum system. The dose control
component and the laser source need to interact in order to get the required ‘dose’ (amount
of laser light) for each exposure. Experience has shown that the interaction between the dose
control component and the laser is difficult to understand, integrate and diagnose. This is
mainly caused by the fact that the laser source is produced by a third party manufacturer,
meaning that the ASML engineers do not have full insight in and control over the behavior
as implemented in the laser source. Therefore, correct integration of the dose control com-
ponent and the laser source is an important aspect for the performance and reliability of the
wafer scanner.

Due to safety and cost, a hardware laser simulator was used in the model-based com-
ponent testing experiments instead of the real laser. This hardware laser simulator has the
same software and electronic components and is specified to behave the same as the real
laser, however it does not have the physical components to generate laser light. The laser
simulator was developed by ASML and is used for testing the dose control software and elec-
tronics of the wafer scanner without the need for a real laser (including the required and
expensive cleanroom facilities). In order to avoid faulty test outcomes or, even worse, faulty
fixes in the dose control component when the laser simulator is used for testing, it is im-
portant that the behavior of the laser simulator satisfies the behavior specification of the real
laser.

The remainder of this section describes how the MBI&T activities of the procedure de-
scribed in Section 2.3 were applied to the dose control component and the laser source. First,
the components were modeled as) processes (MBI&T activity 1). The integrated x system
model was analyzed by x simulation and, after translation to PROMELA, verified for certain
properties using the SPIN model checker (MBI&T activity 2). Subsequently, the conformance
of the hardware laser simulator with respect to the PROMELA equivalent of the laser source
X model was automatically tested using TORX (MBI&T activity 3a).

4.2.1 Modeling the components in x (activity 1)

Similar to the modeling activities in Chapter 3, the requirements and design documents
of the dose control component, the laser source, and their interaction were taken as main
information sources for modeling the components. Again, the modeling activities helped
in detecting and clarifying errors, inconsistencies, and incompleteness issues in the docu-
ments.

Figure 4.2 shows the process layout of the x system model, in which the circles depict
the processes and the arrows depict the channels that model the communication between
processes. The dose control component is modeled as a single process DC, which can be
configured (using an external configuration file) to execute specific command sequences,
e.g., operational sequences as specified in the documentation. The laser source is modeled
as the parallel composition of three processes: (IO || LC || LS). The I/O interface process IO
receives commands from DC and, after a command has been handled by either LC or LS,
it sends the responses back to DC. The laser communication process LC describes the

64 Chapter 4. Component testing

state behavior of the laser source. The process receives commands from DC that are passed
through by IO. According to its behavior configuration (stored in an external configuration
file), it performs the necessary actions (e.g., a state change) and creates the corresponding
responses. Furthermore, LC contains the error handling of ‘unknown’ commands (unspec-
ified commands) and ‘bad context’ commands (specified commands that are not allowed in
a certain state). Finally, the laser state process LS keeps track of the laser state, which is
used by IO to immediately respond to a laser state query command from DC, independent
of whether the LC process is idle or busy.

[Wafer scanner l

PR — N — |

config

command response

_____ I

Laser
| source

| command

response

config

Figure 4.2: Processes and channels of dose control and the laser source

As previously mentioned, the version of TORX that was used in the case study did not
support time and complex data. Therefore, time abstractions and data abstractions [Pren-
ninger and Pretschner 2004] were applied to make the x model suitable for model-based
testing with TORX. These abstractions do not influence the state and communication behav-
ior that is analyzed and tested in activities 2 and 3a of the case study, e.g., the ordering of
events remains unchanged.

The resulting x processes are configurable in a sense that the command sequences of the
dose control component and the behavior of the laser source can be modified in external
configuration files without modification and recompilation of the) system model. This
flexibility of modeling system behavior showed its advantage during the case study when it
became clear that the hardware laser simulator was not available for a certain laser type and
another laser type had to be modeled. The resulting) system model contains 350 lines of
code in total, including the necessary data definitions and functions.

4.2. Practice: automatic testing of the laser source 65

4.2.2 Integrated system analysis using x simulation and SpPIN (activity 2)

The integrated system model developed in activity 1 of the case study was first analyzed using
the simulator of the) toolset. Several simulation runs were executed, in which the command
sequences from the specification documents, e.g., for switching the laser source on and off,
were specified in the configuration file of the dose control component process DC. Based on
the simulation results, the laser source behavior conforms to the specification documents
for all command sequences.

Subsequently, the x system model was translated to PROMELA using the translation
scheme from [Trcka 20006], allowing the verification of certain properties using the SPIN
model checker. Since an automatic y to PROMELA translator had not been implemented yet
at the time of conducting the model-based component testing experiments, the translation
was performed manually. This was a tedious and error-prone task, especially when changes
were made to the x model and, accordingly, to the translated PROMELA model. The result-
ing PROMELA system model contains 1850 lines of code, which illustrates the expressivity of
the x model, which contained 350 lines of code. Especially the number of lines needed to
represent the rather simple data types (9oo lines of PROMELA code) and the equivalents of
the functions used in the x model (300 lines of PROMELA code) drastically increases when
translating x to PROMELA, which is mainly caused by the laborious translation of compound
data types such as tuples and lists.

Eight properties of the system were verified. The first property concerns the absence
of deadlock or invalid end states, which is a standard model checking option in SPIN. The
second property concerns a system invariant related to the precondition and the postcondi-
tion of the PROMELA translation of a specific x statement. In linear temporal logic (LTL)
[Holzmann 1997], this is expressed in the formula: [] (precondition —> <> postcondition).
Here, [] p means that property p should hold always, <> p means that property p should
hold eventually, and p —> q means p implies g, i.e., if p holds, g should also hold. The
other six properties concern model specific behavior. Two of them concern the allowed
order of state transitions. For example, from the ‘off’ state, the laser state may only be-
come ‘standby’ without being ‘on’ in the meantime, which is expressed in the I'TL formula
[] (state_off —> —state_on U state_standby), in which p U q means p until g, i.e., p should hold
until g holds. The other four model specific behavioral properties concern all possible ac-
tions and responses to each command. For example, when the laser receives the ‘go_off’
command while it is in the ‘off” state or in the ‘on’ state, it remains in the current state and
responds with ‘not_allowed’, or, when it receives the ‘go_off’ command while it is in the
‘standby’ state, it goes to the ‘off” state and responds with ‘state_off’. This is expressed in the
LTL formula:

[] (cmd_go_off —> <> ((state_off U rsp_not_allowed)V
(state_on U rsp_not_allowed)V
(state_standby U (state_off \ (state_off U rsp_state_off)))))

All these properties were verified and found to be correct. The results of simulation and
verification in this activity gave sufficient confidence that the laser source model is a good

66 Chapter 4. Component testing

representation of the requirements and design of the real laser source, i.e., a good basis for
automatic model-based testing of the hardware laser simulator.

4.2.3 Model-based testing of the laser source using TorX (activity 3a)

In this activity, the laser source model developed in activity 1 and analyzed in activity 2 was
used for automatic model-based testing of the hardware laser simulator using TORX.

Model-based testing requires an open PROMELA model with observable channels, which
was obtained by removing the DC process from Figure 4.2 and by giving the unconnected
command and response channels of process IO the special attribute ‘OBSERVABLE'". The
resulting model of only the laser source contains 1000 lines of code, including 300 lines for
representing all data definitions and 300 lines for representing all functions.

In reality, the interaction between dose control and the laser is established by two bidirec-
tional communication interfaces: a serial RS232 interface for commands and responses and
a parallel interface for multiple status signals. Also the hardware laser simulator provides
these interfaces to its environment, which are usually connected to the real dose control
software and electronics for testing. Unfortunately, direct access of these interfaces from
outside, which is required for model-based testing with TORX, was limited. While direct ac-
cess functionality was provided for the common RS232 serial interface, this was not the case
for the parallel interface, which uses an ASML specific communication protocol that is em-
bedded in the electronics of the dose control component. This limitation in interface access
from outside drastically reduces the laser source state space that can be reached and tested
automatically. For example, the ‘on’ state, which was included during SPIN model checking
(see last LTL formula of the previous subsection), can only be reached by using the parallel
interface. Nevertheless, the reduced behavior that can be tested with serial communication
only is still sufficient to demonstrate automatic testing with TORX based on x models. For
correct communication over the serial interface, the adapter component of TORX is used to
transform the abstract model commands into real laser commands (e.g., a left justified string
of 128 bits) and to send these real commands over the serial interface using the provided di-
rect access functionality. The adapter also receives the real responses from the laser source
and transforms them back into the abstract responses as used in the PROMELA model. This
experience shows that connecting the test tool to the realization, i.e., satisfying the corre-
sponding requirement as described in Subsection 2.3.2, can be quite difficult in practice and
that limited connectivity can drastically reduce the test coverage.

Now both the model and the realization are connected to TORX, the conformance of the
hardware laser simulator with respect to the model can be tested. For all three model-based
test runs that were performed, the test inputs were randomly selected from the possible
commands in the PROMELA model. The selected commands are sent to the laser simulator
using the adapter component and the provided direct access functionality, and subsequently
the responses from the laser simulator are observed and compared to the expected responses
as specified in the model.

The first model-based test run had a limited depth (less than 20 events) and took less
than ten seconds until a discrepancy between realization and model was detected. To clar-
ify this discrepancy, Figure 4.3 shows the state diagram of the laser source behavior that

4.2. Practice: automatic testing of the laser source 67

was automatically tested using the serial interface only. In this figure, the nodes depict
the states of the model, the solid edges depict the commands sent over the serial interface
(starting with ‘LS’), and the dashed edges depict the responses to the commands (starting
with ‘LS’ or ‘??’). The central states at the top and bottom denote the actual laser states ‘off’
and ‘standby’, numbered ‘00’ and ‘03’, respectively. The ‘state change’, ‘state query’, and
‘bad context’ states are intermediate states between the commands and the corresponding
responses. Note that any other command not shown in the figure results in an ‘unknown
command’ response (‘??=00’).

‘=02’ ‘I:S=O§’

Figure 4.3: Laser source behavior that was tested

Figure 4.4 shows the message sequence chart of the first model-based test run. The
figure shows the test inputs that TORX provides to the laser as well as the observed test
outputs. After the fourth test input (laser state query command ‘LS?’), the hardware laser
source responds with ‘LS=03’, indicating that it is in the ‘standby (03)’ state. Subsequently,
TORX provides the fifth test input ‘LS=03" and observes the test output ‘LS=03". However,
according to the behavior specification in Figure 4.3, giving the command ‘LS=03’ in the
‘standby (03)’ state, i.e., a command to go to the current state, should result in a ‘bad context’
response (‘??=02’). This discrepancy between the observed test output and the expected test
output results in the test outcome ‘fail, as indicated by the last arrow in Figure 4.4.

The result of this model-based test run shows that the hardware laser simulator does not
conform to the model and, correspondingly, to the laser source requirements and design.
Further diagnosis showed that this non-conformance is due to an incorrect implementation
of the error handling behavior in the hardware laser simulator. Directly fixing this error
in the laser simulator software was impossible, because the required knowledge and tools
were not available at that moment. Therefore, in order to enable further testing, a small
modification was made in the model such that for the next test run there is no discrepancy
between model and realization for the handling of the ‘bad context’ error.

68 Chapter 4. Component testing

test

TORX laser outcome

test input 1: ‘LS=00"—»
-4——test output: ‘LS=00’

test input 2: ‘LS»——»
<—test output: ‘LS=00’

test input 3: ‘LS=03"—»
-—test output: ‘LS=03’

test input 4: ‘LSY’——»
-—test output: ‘LS=03’

test input 5: ‘LS=03"—»
<«——test output: ‘LS=03’

—— test outcome = FAIL — expected test output: ‘??=02" —»

I EE—— I

Figure 4.4: Message sequence chart showing the discrepancy

The second model-based test run had a limited depth as well (less than 20 events) and
again took less than ten seconds until another discrepancy was detected, involving the han-
dling of the ‘unknown command’ error. The laser source documentation, and thus the
model as well, specified that any laser command other than ‘LS=00’, ‘LS=03’, or ‘LS?’ is un-
known and should result in an 'unknown command’ response (??=00). However, when such
an ‘unknown’ command was selected during the test run, e.g., ‘LS=o1’ which is an allowed
test input, the laser simulator responded with the current laser state, as if the laser state
query command 'LS?” was given. Further diagnosis showed that also this non-conformance
is due to an incorrect implementation of the error handling behavior in the hardware laser
simulator. To enable further testing, the set of allowed test inputs to be selected by TORX was
restricted to known commands only, i.e., ‘LS=00’, ‘LS=03’, or ‘LS?’, such that for the next test
run the ‘unknown command’ error handling behavior of the laser simulator would not be
reached.

In the third model-based test run, the behavior related to the discrepancies detected in
the first two test runs is not reached any more. This test run kept going for more than
15 minutes with a test depth of more than 1000 events, without detecting new discrepancies.
Although the used version of TORX did not support coverage metrics, the test results of the
third model-based test run and the size of the considered state space provided sufficient
confidence that no other discrepancies would be detected.

The two implementation errors that were detected by automatic model-based testing are
both related to the error handling behavior of the laser simulator. After discussion with
the ASML engineers, it became clear that the laser simulator was mainly used for testing
the dose control component under nominal behavior conditions. Although the errors may

4.3. Conclusions 69

appear to be trivial and should normally not be encountered during nominal testing with the
laser simulator, this case study showed that such errors are not easily detected in the current
way of working, and that a more systematic approach such as model-based testing certainly
has potential. Furthermore, when these errors would remain undetected, they may still have
a substantial impact in the case that the dose control component contains errors related to
the implementation errors in the laser simulator. In that case, the errors in the dose control
component may not be detected when the development tests rely on the laser simulator,
which may cause problems later when the dose control component is used together with a
real laser in a real production environment.

4.3 Conclusions

This chapter described how the models developed in the MBI&T method can be used to
automatically test the component realizations, in particular using x models and the test
tool TORX. Although model-based component testing does not directly answer one of the
QUESTIONS since it focuses on component risk rather than on system risk, it does increase
the risk reduction rate, which is a test phase improvement as proposed by the second solution
in Section 1.4. As such, it contributes to the main objective of reducing the disadvantageous
influence of the I&T phases on the T-Q-C business drivers.

The proof of concept showed that x models can be used for model-based testing with
TORX, satisfying the requirements described in Subsection 2.3.2. Nevertheless, further en-
hancements are required to improve the general applicability in industrial practice. First, the
expressivity of the x language regarding state behavior, time behavior, and data types could
not be fully exploited due to limitations of the (manual) x to PROMELA translation process
and the untimed discrete-event version of TORX used in the case study. This means that not
all aspects of the system behavior, which usually include at least some time behavior, can
be covered by model-based component testing and that other test activities are still required.
This situation already improved since the x to PROMELA translation scheme was recently
implemented and integrated into the x toolset, and new versions of TORX were developed
that extend the expressivity of model-based testing with data [Frantzen et al. 2006], time
[Bohnenkamp and Belinfante 2005], and hybrid behavior [Van Osch 2006]. Furthermore,
ToRX has recently been extended to support untimed discrete-event x models as direct input
formalism. The ability to use) directly for model-based testing with TORX also suits the new
versions of TORX, since their input formalisms are also closely related to x. For example, the
timed version of TORX is based on timed automata, the same class of models as used for
UPPAAL model checking in Chapter 3 that can also be expressed in timed) [Van Beek et al.
2005], and a prototype tool for hybrid model-based testing is entirely based on hybrid x [Van
Osch 2007]. With these enhancements, the expressivity of x models can effectively be used
for automatic model-based testing, which means that, for this MBI&T activity, the hypothesis
on the applicability of the x toolset is accepted. However, as recognized in [Willemse 2000],
obtaining models with sufficient quality and completeness for model-based testing remains
difficult in current industrial practice.

The case study also showed that connecting the test tool to the realization under test can

70 Chapter 4. Component testing

be quite difficult and should be taken into account when deciding where to apply model-
based component testing. Otherwise, as shown by the inability to use the parallel interface
in the case study to provide test inputs, limited connectivity can drastically reduce the test
coverage of model-based component testing. To improve this, the TORX adapter should sup-
port more generic connectivity techniques, rather than case-specific and ad hoc solutions.
For example, the generic infrastructure to test ASML software components as developed in
another part of the TANGRAM project [Denissen 2006; Tretmans 2007], as well as the infras-
tructure to connect models and realizations described in Chapter 5, could be used to improve
the connectivity of the test tool. Unfortunately, these TANGRAM project results were not yet
available or implemented at the time of conducting the industrial case study described in
this chapter, leaving their application to model-based component testing as future work.

Besides showing the practical applicability, the case study also illustrated the profitability
of model-based system analysis and model-based component testing using x, SPIN, and
TORX. These MBI&T activities helped to detect and clarify errors, inconsistencies, and
incompleteness issues in the documentation, and provided automatic detection of non-
conformances between a component realization and its requirements. In terms of the T-Q-C
business drivers, the case study did not really reduce the time-to-market T, since the tested
laser source was already in operation at customer sites and no major problems were de-
tected. Nevertheless, the case study provided a proof of concept showing that the test ex-
ecution speed and thus the risk reduction rate can be increased, which potentially reduces
time-to-market T in future applications. Furthermore, the detected non-conformances in the
error handling behavior of the laser simulator did improve its quality Q, which potentially re-
duced the costs C in the case that related problems in the dose control component remain
undetected when the laser simulator is used for testing.

In the model-based test runs that were performed, only the relation between individual
commands and responses was tested using the regular testing features of TORX. However,
it would also be interesting to test the specific behavioral properties as verified in activity 2
of the case study, involving relations of subsequent state transitions and combinations of re-
sponses and current states. Focussing model-based test runs towards such specific behaviors
can be achieved by defining test purposes, a feature that is supported by TORX [De Vries and
Tretmans 200i1].

In principle, automatic model-based testing could be used for all test activities in the
MBI&T method, including system testing in which the integrated system realization {Z, ,},,
or a model-based integrated system with combined models and realizations is tested with re-
spect to the integrated system model {M, ,};,,. This is possible as long as the size and com-
plexity of the integrated system model is not beyond the limitations of the test tool (model
abstraction can be used to solve this issue), and as long as the test tool can access the required
test interfaces of the integrated system realization. Moreover, research on compositional
model-based testing [Van der Bijl et al. 2003; Benz 2007] could be used to imply the con-
formance of the integrated system based on the conformance of the individual components.
However, a detailed investigation of applying model-based component testing techniques in
industrial practice was not part of our research. Our goal in this chapter was to provide a
proof of concept showing that the x models developed in the MBI&T method can also be
used for automatic testing of component realizations.

CHAPTER 5

Integration and system testing

How to go from models to realizations?

Although the previous chapters described how MBI&T activities 1, 2 and 3a support the
analysis and testing of a system model (Chapter 3) or a component realization (Chapter 4),
nothing is yet said about the final product of the system development process, i.e., the inte-
grated system realization. This chapter concentrates on the remaining MBI&T activities 3b
and 3¢, in which models are used to test the integrated system at an early stage. In these activ-
ities, the interaction between models and realizations of components and the infrastructure I
to establish this interaction play a major role.

In a high-tech multi-disciplinary system, many different interaction types are used, e.g.,
electrical signals between electronic components, function calls or message passing between
software components, and memory mapped I/O between software and electronic compo-
nents. Establishing the interaction between components requires that the infrastructure
supports these different interaction types. When models are included in the I&T process,
the (more abstract) interaction types used by the models should also be supported by the
infrastructure. Furthermore, for model-based analysis of the integrated system behavior, the
behavior of the infrastructure may also be important for the analysis, meaning that it should
also be included in the model. Finally, the infrastructure should facilitate the replacement
of a component model by the corresponding realization when it becomes available. This
chapter investigates all these infrastructure requirements in more detail and describes how
the infrastructure is used in the MBI&T method.

As explained in Section 2.4, combining models and realizations for early system analysis
and testing is a well-known and common approach for some paradigms, e.g., hardware-
in-the-loop testing and rapid prototyping in the dynamics and control paradigm, and hard-
ware/software co-simulation in the real-time embedded software paradigm. However, it is
less well-known and common for the concurrent processes paradigm, and this chapter con-
tributes to this research area, with particular focus on the issues of synchronous and asyn-
chronous communication. In this thesis, the components are modeled in a process alge-
braic language that uses synchronous communication, i.e., corresponding send and receive
actions take place simultaneously. The reason for using a language with synchronous com-
munication is that it allows easier reasoning about the interaction behavior, e.g., at which

71

72 Chapter 5. Integration and system testing

points in time the interactions take place, because all processes involved need to be ready
in order to execute the synchronous communication action. Furthermore, the fact that each
process must be ready for interaction at specific points in time requires the engineer to think
more carefully about the system, resulting in a better understanding of the system behavior.
Finally, synchronous communication reduces the number of states in the model which im-
proves the capabilities of model checking.

In contrast to the synchronous communication used in models, real systems often use
asynchronous communication, i.e., send and receive actions do not take place simultane-
ously. This means that analysis results based on models using synchronous communication,
e.g., correctness of behavioral properties derived from the system requirements, do not nec-
essarily remain valid when the models are used for integration and testing with realizations
in an asynchronous environment. Due to the different behavior of the asynchronous infras-
tructure, the models might interact differently with the other components, possibly resulting
in wrong conclusions about the test results. Even worse, when certain safety requirements
(regarding machine damage and human safety) are influenced by the infrastructure behav-
ior, the safety, which was analyzed and found to be correct using the models, cannot be
guaranteed in the realization environment, possibly resulting in hazardous situations. This
example shows that it is important to ensure that the behavioral and infrastructural proper-
ties analyzed with a synchronous system model remain valid when models and realizations
are integrated and tested using an asynchronous infrastructure. The approach described in
this chapter shows how to deal with these infrastructural properties in the MBI&T method.

This chapter is mainly based on [Braspenning et al. 2007b,c] and is organized as fol-
lows. Section 5.1 contains some more background on the issues of synchronous and asyn-
chronous communication. Furthermore, it introduces the different forms of infrastructure I
and shows how the infrastructure is modeled, analyzed, and implemented within the MBI&T
method. Subsequently, the applicability of this approach is shown by giving two examples
of interaction types that are common for wafer scanners (Section 5.2) and by showing how
the approach was used in the EUV case study to enable model-based integration and system
testing (Section 5.3). Finally, the conclusions are drawn and discussed in Section 5.4.

5.1 Theory: infrastructure in the MBI&T method

Literature provides several approaches that deal with the implementation of synchronous
models in an asynchronous environment. However, these approaches cannot be applied in
the MBI&T method since the perspective on the goal of modeling is different. In most ap-
proaches found in literature, the goal is to automatically transform models into (software)
realizations such that the communication remains synchronous. The models usually need
some adaptations before they can be implemented in the asynchronous realization envi-
ronment. For example, some approaches are based on a restricted subset of the modeling
language or put certain constraints on the model [Groote 1988; Jones 2001; Mork 2001].
This means that also the synchronization between components should be modeled and im-
plemented within the corresponding subset and constraints, e.g., by adding explicit acknowl-
edgement messages or by using semaphores. Other approaches augment the models with

5.1. Theory: infrastructure in the MBI&T method 73

additional communication messages according to some protocol in order to negotiate which
components will communicate [Awerbuch 1985; Knabe 1993; Demaine 1998]. A common
challenge in all these approaches is the correct implementation of the non-deterministic
choice operator [Palamidessi 1997; Nestmann 2000], since this may offer many communi-
cation alternatives of which only one may be selected.

In contrast to these approaches, the MBI&T method focuses on detecting problems in
the system as it is designed by the engineers. This means that the models are based on the
‘as is” designs of the (software and hardware) components and the infrastructure. When the
above mentioned approaches from literature would be applied, the models would need to
be adapted for asynchronous implementation, e.g., language constructs that are not in the
implementable subset would have to be removed or behavior for communication negotiation
would have to be added. This means that the models would deviate from the ‘as is’ designs,
which does not suit the MBI&T method. Using the ‘as is’ designs as basis for modeling
also means that when a non-deterministic choice appears in a component design, it must
also be included ‘as is’ in the model. The model can then be used to analyze potential
problems caused by the non-deterministic choice in an asynchronous environment. In our
view, solving the problems related to non-deterministic choice is not part of the modeling
and asynchronous implementation activities (as in the approaches found in literature), but
of the design activities performed by the engineers. Of course, when problems occur, they
can be solved by applying the approaches found in literature to the design (and subsequently
to the model).

In the MBI&T method, the asynchronous component interaction as specified in the sys-
tem design and realized in the infrastructure is explicitly expressed in the synchronous mod-
eling language using additional processes. This is a long known approach [Milner 1989] that
is often applied in process algebra [De Boer et al. 1992; Baeten and Bergstra 1992] and in
synchronous programming, e.g., in the area of so-called globally asynchronous locally syn-
chronous (GALS) systems [Halbwachs and Baghdadi 2002; Mousavi et al. 2004]. By model-
ing the asynchronous interaction behavior in a synchronous modeling language, we can use
the powerful analysis techniques available for synchronous models to analyze the system be-
havior in an asynchronous environment. Most literature on this approach describes only how
to model and analyze asynchronous system behavior using a synchronous language, while
usually the implementation and execution of the resulting models in a real asynchronous
environment is not discussed.

This chapter does cover the modeling, analysis, as well as the implementation of asyn-
chronous component interaction in the context of the MBI&T method. First, the asyn-
chronous interaction behavior of the components, as it is designed, is included in the syn-
chronous system model for early system analysis. Subsequently, the modeled interaction
behavior is implemented in an infrastructure that enables gradual replacement of models by
realizations and early system testing of integrated models and realizations. This is done in
such a way that the analysis results based on the synchronous system model remain valid
during the integration and testing of models and realizations in an asynchronous environ-
ment.

Although we do not specifically focus on time behavior in this chapter, we use a similar
‘model the behavior as it is designed’ approach for time behavior as for the interaction be-

74 Chapter 5. Integration and system testing

havior. Also in the area of time behavior, literature provides several approaches to transform
models into realizations while preserving the proven time behavior properties [De Wulf et al.
2005; Huang et al. 2006]. In the MBI&T method, however, we model the time behavior
according to the ‘as is’ component designs, possibly including solutions to prevent poten-
tial problems in the time behavior, e.g., a time synchronization protocol. Whether or not
such solutions are included in the designs, we use the models, based on the ‘as is’ designs,
for early system analysis and system testing to detect problems in the (time) behavior of the
designed system as early as possible.

As described in Section 2.3, the MBI&T procedure consists of three main activities: mod-
eling the components and their interaction, analysis of the resulting system model, and
testing of integrated models and realizations of components. As shortly introduced in Chap-
ter 2, three different forms of infrastructure are used in these activities: an infrastructure
realization I (also used in the current way of working), an infrastructure model Iy, and a
model-based integration infrastructure I;z. As shown in Figure 5.1, these three forms imply
different contents of the rounded rectangle that represented the ‘generalized’ infrastructure I
in Figure 2.8. The remainder of this section describes each infrastructure form, particularly
focusing on the issues of synchronous and asynchronous communication.

middleware

Figure 5.1: Different forms of infrastructure in the MBI&T method

5.1.1 Infrastructure realization I

This is the ‘real’ infrastructure used in the system realization to implement the component
interaction according to system design D, e.g., via signal cables and communication net-
works. For example, Figure 5.1(a) shows two component realizations Z; and Z, (boxes) and
the infrastructure realization I (bold arrows) that enables the communication between the
components. For most interactions between electronic and software systems, on which we
focus in this chapter, the communication in the real infrastructure is asynchronous, i.e.,
send and receive actions do not take place simultaneously.

5.1. Theory: infrastructure in the MBI&T method 75

5.1.2 Infrastructure model I,

Besides that the components are modeled as M; in the MBI&T method, also the infrastruc-
ture that enables component interaction is explicitly modeled and analyzed. The infrastruc-
ture can be modeled on different abstraction levels. During the initial modeling and analysis
phases, there may be reasons to use synchronous communication in the model, i.e., com-
pletely ignoring the asynchronous behavior. One reason may be that a detailed infrastructure
design is unavailable, but system model analysis with a synchronous abstraction of the in-
frastructure is still helpful. Another reason may be that the infrastructure details are not
important for certain model-based analysis activities and would only increase the complexity
and state space when they are included in the model. For example, analyzing the function-
ality of the system may be possible when only the result of an interaction is known (e.g., a
message being transferred), without knowing exactly how that interaction is established. The
latter reason was used in the EUV case study in Chapter 3.

Although the asynchronous infrastructure behavior may be ignored in the model initially
as described above, it must be considered eventually. After all, the models developed in the
MBI&T method will eventually be integrated and tested with realizations that do require an
asynchronous infrastructure as in I;. When infrastructure details are considered during
system modeling and analysis, the asynchronous behavior of the infrastructure as designed
in D and realized in I, must be expressed in the modeling language that is used. For cer-
tain interaction types, the modeling language may have constructs to directly express that
type of infrastructure. For interaction types that cannot directly be expressed in a modeling
language, it may be possible to model their equivalent behavior. For example, asynchronous
communication can be modeled by using additional processes in a synchronous language
such as x, which is a common and widely used approach [Milner 1989; De Boer et al. 1992;
Baeten and Bergstra 1992; Halbwachs and Baghdadi 2002; Mousavi et al. 2004]. These ad-
ditional processes are placed between two component processes to model the asynchronous
behavior of that particular component interaction, e.g., a message buffer. Different types of
component interaction may require different additional processes in the model, as shown for
some examples in the next section of this chapter. We denote the modeling constructs used
to express the component interaction behavior as the infrastructure model Iy, For exam-
ple, Figure 5.1(b) shows four processes (circles) which, conforming to the process algebraic
language, use synchronous communication (arrows). The processes M, and M, represent
the component models and the unlabeled processes represent the infrastructure model I,
resulting in asynchronous communication behavior between component models M, and M,.

5.1.3 Model-based integration infrastructure I,

To integrate combinations of models and realizations, a so-called model-based integration
infrastructure Iyz is needed that implements the component interaction as designed in D
and modeled in Ij. Several requirements should be satisfied by I.

First of all, the communication paradigm of I,z should be asynchronous, since the re-
alizations which are integrated by it will also communicate asynchronously. Furthermore,
different types of component interaction may require different infrastructure behavior that

76 Chapter 5. Integration and system testing

should be supported by Iz, similar to the different behavior that can be modeled in the in-
frastructure model Iy,. Finally, I);z should allow easy integration of models and realizations,
i.e., they can be connected via the infrastructure with minimal effort. To achieve this, the
connection of components to the infrastructure should be independent of how other compo-
nents are represented (model or realization) and independent of their exact name, location
and interfaces. This makes the integration of components independent of whether models
or realizations are used.

The last requirement, independency of connected components, is one of the main fea-
tures of so-called middleware, which consists of intermediate software that connects soft-
ware components with each other. Examples of middleware are remote procedure calls
(synchronous and asynchronous), object request brokers, and message oriented middle-
ware (e.g., publish-subscribe) [Hurwitz 1998]. The components only need to connect and
communicate with the middleware, independent of the representation, name, location, and
interfaces of the other components. As described in the next section, the MBI&T method in-
stantiation in this thesis also uses a model-based integration infrastructure Iy that is based
on middleware.

To connect the components to the middleware, the communication paradigms used by
the component models or realizations must be adapted to the communication paradigm of
the middleware. This is done by creating connectors for the models and realizations such that
they communicate via the communication paradigm of the middleware. Different types of
components, e.g., software components expressed in different languages, may require dif-
ferent connectors to be created. We denote the middleware together with the connectors for
the models and realizations as the model-based integration infrastructure Ij;z. For exam-
ple, Figure 5.1(c) shows the integration of a model M, and a realization Z, using middleware
(vertical double headed arrow). Both components are connected to the middleware via con-
nectors (small rectangles) that adapt the communication paradigm of M, (normal arrows, as
in Figure 5.1(b)) and the communication paradigm of Z, (bold arrows, as in Figure 5.1(a)) to
the middleware and vice versa. The middleware is configured such that the component in-
teraction corresponds to that of Figure 5.1(a) and Figure 5.1(b), i.e., the middleware connects
the outgoing communication of M; to the ingoing communication of Z, and vice versa.

In the MBI&T method instantiation used in this thesis, the following approach is used to
model, analyze, and implement the infrastructure such that it supports all MBI&T activities
while the analysis results based on the model remain valid during model-based integration
and system testing. This approach is based on the MBI&T procedure of Section 2.3 and
uses the different forms of infrastructure as introduced in this section. In MBI&T activi-
ties 1a and 1b, the components are modeled as M, , based on component designs D, , and
the infrastructure is modeled as I, based on system design D, respectively. Here, additional
processes are used to model the asynchronous infrastructure behavior in a process algebraic
language that uses synchronous communication. In MBI&T activity 2a, the component
models M, , are integrated using I, resulting in system model {M; ,};,. In MBI&T activ-
ity 2b, model-based techniques such as simulation and model checking are used to analyze
the behavior of this system model, including particular properties related to the infrastruc-
ture behavior. Here, the entire system is expressed in a model, so determining and reasoning
about the system behavior is completely based on the semantics of the modeling language,

5.2. Practice: common interaction type examples 77

including synchronization on communication and model time. In MBI&T activity 3, the in-
frastructure model Iy, is implemented as model-based integration infrastructure Iz, result-
ing in {M, ,},,,,, in such a way that the infrastructure behavior of I, is preserved (examples
are given in the next sections). This model-based integration infrastructure I,z enables the
replacement of a component model M; with the corresponding realization Z; when this real-
ization becomes available (MBI&T activity 3b). The resulting model-based integrated system
with combined models and realizations is used for early system testing in MBI&T activity 3c.
Using real-time simulation techniques, the models are now executed as ‘surrogate’ realiza-
tions in an environment with asynchronous communication and real-time behavior. This
means that determining and reasoning about the system behavior can no longer be based on
the modeling language semantics as in simulation and model checking. Instead, the behav-
ior of the model-based integrated system is determined by testing, using system tests that
would also be executed when all component realizations are available and integrated.

In the following sections, we describe different applications of this approach, inspired by
the ASML wafer scanners. Section 5.2 gives two intuitive examples of the approach applied
to interaction types that are common for wafer scanners. Subsequently, Section 5.3 describes
how the approach was used in the EUV case study.

5.2 Practice: common interaction type examples

As previously mentioned, the MBI&T method instantiation used in this thesis mainly fo-
cuses on the behavior of concurrent processes that communicate data. This behavior is an
important aspect of software and electronic components and strongly relates to the inter-
action between these components. In general, concurrent behavior is less relevant for me-
chanical components, and these components themselves are often controlled via electronics
and software. Therefore, we concentrate on software and electronic components and their
interaction. In the following subsections, we give intuitive examples of the main software
and electronic interaction types used in the ASML wafer scanner, namely function calls in
software and sequential logic in electronics. For each interaction type, we explain the be-
havior and properties of the infrastructure realization I; and show how this behavior can be
captured in a synchronous process algebra model I, The system model with all compo-
nent models M; and the infrastructure model I, is used to analyze behavioral properties of
the system and the infrastructure. Subsequently, we show how each interaction type can be
implemented in a model-based integration infrastructure I,z using middleware.

To enable model-based integration and system testing in the instantiated MBI&T
method, the x toolset supports integration of x component models with other (non-y) com-
ponents and real-time execution of x models. This part of the) toolset is based on a stream-
ing XML technology called JABBER [JABBER Software Foundation 2007], extended with a pro-
tocol that enables communication via the publish-subscribe paradigm [Eugster et al. 2003;
Millard et al. 2006]. The communication paradigm of publish-subscribe is simple. All
publish-subscribe messages are related to a so-called ‘topic’, which identifies the contents
and type of a message. Components can publish messages of a certain topic to the middle-
ware, and components can subscribe to a certain topic, which means that they will receive all

78 Chapter 5. Integration and system testing

published messages of that topic. The publish-subscribe paradigm satisfies all requirements
for Iy as defined in the previous section. Communication via a publish-subscribe mid-
dleware is asynchronous since a message is first published to the middleware by a sending
component, and then delivered by the middleware to the subscribed components, i.e., the
middleware acts as a message buffer. Different types of component interaction, also mod-
eled in different models I, can be configured by quality of service (QoS) properties of the
publish-subscribe middleware, e.g., the number of messages to keep as history and the reli-
ability of message delivery. Finally, since the components do not need to know the exact rep-
resentation, name, location, and interfaces of the other components, the publish-subscribe
communication paradigm is suitable to decouple components and thus to integrate both
models and realizations with minimal effort.

With a publish-subscribe middleware, the transition from Iy to Iz is straightforward,
namely all send and receive actions in the models must be related to corresponding write
actions (to publish messages of a topic) and read actions (to receive messages of a subscribed
topic) of the publish-subscribe middleware. Relating send and receive actions to correspond-
ing write and read actions is accomplished in the model connectors, which can automatically
be generated from the x models using the x toolset. The generated x model connectors use
the stepper [Van Beek et al. 2006D], also used for simulation, to determine the possible next
actions of a model and to execute the selected actions in the model. Possible actions include
internal behavior, communication behavior, and time behavior. Actions related to internal
behavior, e.g., assignments, choices between alternatives, and calculations, are directly exe-
cuted according to the x semantics as implemented in the stepper. The execution of actions
related to communication behavior, i.e., the send and receive actions, is implemented in
the connector using the publish-subscribe middleware in the following way. A send action,
e.g., altrue, is executed by publishing the value (true) of the corresponding topic (a, the name
of the channel) to the middleware, and by updating the state of the model to the state that
follows the send action. In the case of a receive action, e.g., b ? x, the connector determines
whether a new value of the corresponding topic (b, the name of the channel) is available to
be received by the model. Since the connector is subscribed to all topics that correspond to
incoming channels of a component model, it will receive all published values of those topics,
which are stored in a queue within the connector. Finally, the execution of actions related to
time behavior, e.g., real-time delays and time-outs on receive actions, is implemented in the
connector, using features from the event-driven networking framework TWISTED [TWISTED
Matrix Labs 2007], in which also the publish-subscribe middleware is implemented. For
time-outs on receive actions, the connector checks whether the read action corresponding to
the receive action in the model can be executed within the specified amount of time. Oth-
erwise, a time-out is triggered and the corresponding actions in the model are selected and
executed.

The connectors for component realizations depend on the components themselves and
may, for example, involve adapters that translate subscribed messages to function calls and
function replies back to published messages, or software/hardware adapters that translate
between software messages and electronic signals.

As shown in the remainder of this chapter, the combination of a publish-subscribe mid-
dleware with generated model connectors and case-specific realization connectors enables

5.2. Practice: common interaction type examples 79

model-based integration and system testing of x models and realizations, satistying the cor-
responding requirements described in Subsection 2.3.3.

5.2.1 Function calls (software)

A wafer scanner is controlled by a large amount of software, consisting of more than 12 mil-
lion lines of code. The main interaction type used in this software system is the function call.
A function call consists of an asynchronous request from a client to a server that provides
the requested function, followed by waiting for an asynchronous reply from the server with
the results of the function. The ‘wait for reply’ action can possibly contain a time-out that is
triggered when the reply is not received within a specified amount of time. In practice, these
time-outs are used to detect problems in the communication between client and server or in
the function execution by the server.

There are two different types of function calls, blocking and non-blocking. In a blocking
function call, no other statements may be executed between the request and the reply, while
this is allowed in a non-blocking function call. Furthermore, blocking function calls do not
use time-outs. Since a blocking function call is a special case of the non-blocking function
call (with no statements between request and reply and no time-out), we only discuss the
more generic non-blocking function call here.

Important properties of function calls as used at ASML are:

FIFO order Requests and replies between client and server may not overtake each other.
Buffer size The number of messages in the asynchronous communication buffer is limited.

Consistency The number of requests is equal to the number of replies or at most one larger
(during function execution).

Wait/time-out A time-out may only be triggered when the reply buffer is empty for the spec-
ified amount of time since the start of the ‘wait for reply’ action.

Note that using the time-out as a detection mechanism for communication problems
could be captured in a property ‘time-outs may never occur’, however this property is not
related to infrastructure but to required system behavior.

Function calls with asynchronous communication can easily be modeled in a syn-
chronous modeling language such as x by including a buffer process between two com-
municating processes. The x code of a buffer process B is shown in Figure 5.2, with two
communication channels, input a and output b, for messages of type msg. The process
repetitively checks for buffer overflow (lines 3—4), i.e., whether the length of message list xs
exceeds the configured buffer size n. If this is not the case, the process continues with two
alternatives (lines 6—7) of which the one that is enabled first will be selected. Either a new
message x is received via channel a, which is then appended to xs (line 6), or, if xs is not
empty, the head (first item) of xs is sent via channel b, after which the tail (all but first item)
of xs remains (line 7).

Using multiple instantiations of buffer process B, we can model a function call as used at
ASML as shown in Figure 5.3(a). For simplicity, the declaration and initialization of channels

80 Chapter 5. Integration and system testing

proc B(chana?, b!: msg, val n:nat)=
[var xs: [msg] =[], x : msg
« ((len(xs)>n — overflow := true

[len(xs) =n — skip
)
s (arx ;XS = XS+H[x]
[len(xs) >0 — blhd(xs); xs :=tl(xs)
)
)

OV o Ot b Ww N H

—

]

Figure 5.2: Buffer process B

and variables are omitted and only the body of the x model is shown, namely four processes
in parallel composition. The first process (lines 1—8) is a partial specification (denoted by . ..)
of a client that calls some function f. This function call is modeled as a sequential compo-
sition of sending an asynchronous request with the function arguments (f_req! arg, line 2)
and receiving an asynchronous reply of the function with the results (f_rep ? res, line 4). Be-
tween these two statements, other actions (denoted by ..., line 3) may be performed (not for
blocking function calls). The possible time-out on the ‘wait for reply’ action is modeled as
an alternative composition of the receive action (line 4) and a delay of ¢ time units (line 5),
which means that either the reply is received or the delay is finished, resulting in a time-out.
Note that ¢ is infinity (no time-out) for blocking function calls. The second process (lines 9—
11) models the server, which repetitively waits for requests for the only function it provides,
function f (more functions can be added in a similar way). Upon receiving a function call
request from a client with certain arguments arg (line 9), the result of function f executed
on arg is sent back as a reply (line 10). Finally, two instantiations of buffer process B (lines 12
and 13) are used to model the asynchronous communication. The buffer processes are con-
nected to the request and reply channels of the client and server, similar to Figure 5.1(b).
The buffer sizes are set to one since a client process may only call one function at a time.
To simplify the example, we assumed that a function is required by only one client. More
complex clients and servers with different properties can be modeled in a similar way, e.g.,
clients that make multiple subsequent calls, servers that allow multiple calls to be ‘pending’,
or servers that provide functions required by multiple clients.

Using this infrastructure model I, for function calls, we can include the infrastructural
properties mentioned earlier in this section during system model analysis. In this chapter,
we only make a reasonable case for the correctness of these properties by informal explana-
tion, formal proofs are subject of further research. Due to the use of lists and their head and
tail functionality in the buffer processes, it is not possible for two messages to overtake each
other in the buffer, so the FIFO order property is satisfied. The validity of the buffer size
property depends on the behavior of all components, and can be checked by performing a
reachability analysis of the buffer overflow state of all buffer processes, e.g., by using a model

5.2. Practice: common interaction type examples 81

I (...

2 ; freqlarg

3 P o :

4 ; (forep P res |

5 | At; time-out = true f_req—» |

6) f_rep . |
. . % i

&) s Tmz

o |+ Lreqtag S T |

10 ; f—rep’ 'f(a’rg) S rl=f_req i

I) /}

12 || B(fireq, freq, 1) NS -

5 || B(frep, frep, 1)

4]

(@) Im (b) Inz

Figure 5.3: Iy and Ijz for function call example

checker as in Chapter 3. In the model of the server, each incoming request is immediately
followed by sending the reply, so the number of requests is always equal to or at most one
larger than the number of replies, satisfying the consistency property. For more complex
server models, e.g., with functions required by multiple clients, request and reply counters
can be added and a model checker can be used to determine whether the consistency prop-
erty o < nr_requests — nr_replies < 1 holds in all possible states. The wait/time-out property
is covered in the infrastructure model I, of Figure 5.3(a), because the communication in
the x model is urgent, meaning that a process may not delay if a communication action is
enabled. This implies that the time-out At can only be triggered when after ¢ time units the
receive action f_rep ? res has not been enabled. Besides these already listed properties, two
properties of blocking function calls, namely subsequent requests and replies (no intermedi-
ate statements) and no time-outs (t is infinity), can be checked by static analysis of the model
structure, e.g., by a compiler.

When integrating models and realizations of components that use function calls to inter-
act, the model-based integration infrastructure I,z can easily be implemented in the publish-
subscribe middleware. Since the middleware uses asynchronous communication and acts as
a message buffer itself, it is well suited as implementation of the buffer processes B from I
in Figure 5.3(a) and of the real buffers used in the real function calls in I;. Figure 5.3(b)
shows the implementation of Iy, for the example of Figure 5.3(a), with a model of client Mc,
a realization of server Zs, and topics for the requests and replies. The client is configured as
publisher of requests for function f (topic f_req), and it is subscribed to its replies (topic f_rep).
The server is subscribed to function call requests for its provided function f, and publishes
the corresponding replies.

As previously mentioned, the connectors are subscribed to all topics that correspond to
the incoming channels of the component models, and all received values of these topics are
stored in a queue within the connector. For the function call interaction type, the queue

82 Chapter 5. Integration and system testing

behavior of the connectors is FIFO. As we can see in the next example, the queue behavior
can be influenced via the QoS properties of the publish-subscribe middleware. With the
FIFO queues in the connectors, a possible receive action a? x in the model can only be
selected if there is at least one message in the queue for the corresponding topic a. If the
receive action is selected, the value of the oldest message in the queue is assigned to the
receive variable x and the message is removed from the queue. In this way, the model-based
integration infrastructure I,z behaves in a similar way as the infrastructure model I, and
the earlier defined properties, which were analyzed and found to be correct for Iy, remain
valid in the realization environment.

For the integration of a client or server realization, the connector should translate be-
tween publish-subscribe messages and real function call requests and replies, including the
transformation or ‘marshalling’ of the arguments. For example, when a server realization Z;
is integrated and when its connector receives a request of the topic f_req, the real function f
of Zs should be called by the connector, after which the result is published to the middleware
with f rep as topic. In the case that ASML software component realizations are integrated,
the generic test infrastructure developed in another part of the TANGRAM project [Denissen
2000; Tretmans 2007] can be used to simplify the execution of real function calls by a mid-
dleware connector. Finally, when a client realization Zc is integrated, its connector does not
have to handle time-outs, because this is done by Z itself.

5.2.2 Sequential logic (electronics)

Many interaction types for electronic components are based on sequential logic, which de-
pends not only on the current state, but also on the previous state. Itis typically used to create
memory in which values are stored as voltages in the circuits. Latches and flip-flops are well-
known sequential circuits that appear in many forms for direct communication between
electronic components (e.g., via signal cables) or for communication between software and
electronics (e.g., via memory mapped I/O or distributed I/O). In all these forms of sequential
logic, the sending component is able to set a certain value that is stored in the circuit, and the
receiving component is able to observe or read this value. Taking the set/reset or SR-latch as
a simple example, a sending component can set the SR-latch to active or reset it to inactive
(i-e., high or low voltage). In most cases, the state of an SR-latch relates to some internal state
of the sending component, e.g., ‘standby’, ‘ready for next action’, or ‘error’. Via the SR-latch,
the receiving components can observe this internal state at all times.
Below are some typical sequential logic properties, taking the SR-latch as an example.

Continuous value The output value of an SR-latch is continuously active or inactive.

Unidirectional The value of an SR-latch can only be changed by a set or reset input from the
sending component.

Set/reset A set or reset input results in an active or inactive latch output, respectively.

Although the SR-latch contains both discrete-event and continuous behavior, which could
directly be modeled in hybrid y, we restrict ourselves to the discrete-event version of x, in
which we abstract from the continuous behavior of the SR-latch. A discrete-event model of

5.2. Practice: common interaction type examples 83

the SR-latch is shown in Figure 5.4(a), in which the declaration and initialization of channels
and variables are omitted for simplicity. The highest level of parallel composition (|| on line 5)
contains the processes of the sending component (lines 1—4) and the receiving component
(lines 5—8) of the ready_latch, which indicates whether the sending component is ready for
some next action. The sending process first sets the latch output to false (line 1) and later,
when it is ready, to true (line 3). The receiving process waits until the other component is
ready by using the latch value ready as a guard (line 5), which has to become true before the
process continues. The discrete-event abstraction of the latch communication is modeled
by adding another parallel process (line 6) to the model of the receiving component, i.e.,
on the second level of parallel composition (|| on line 6). This additional process of the
receiving component repetitively waits for new values of the ready_latch from the sending
component. The variable ready is used to store the latest latch value and to share it with the
other processes in the parallel composition of the receiving component. In this way, only the
latest latch value is considered in the behavior of the receiving component.

[(ready_latch!false

: |
2 D 3
3 ; ready_latch ! true o |
4) E 3
5 | (ready — ... S IMZi
6 || *(ready_latch ? ready) g |
7) ready i
8 1 j
@) T (b) Tz

Figure 5.4: Iy and Iz for SR-latch example

The properties given for the SR-latch are satisfied by the model since the ready variable
always has a value (mimicking continuous behavior) and only the sending component can
change the latch value by setting it to true (active) or by resetting it to false (inactive).

Figure 5.4(b) shows the implementation of I); for the SR-latch example of Figure 5.4(a),
with a realization of the sending component Zs, a model of the receiving component Mg,
and a topic ready for the SR-latch. Here, the publish-subscribe middleware is configured
with different QoS properties than for the function call interaction type. For function calls,
the queues in the connectors act as multi-message FIFO buffers from which the messages
are removed after delivery to the receiving component. For the SR-latch, however, the queue
in the connector for a receiving component should store and keep only the last value that is
received from the sending component, similar to the behavior of the additional process on
line 6 of Figure 5.4(a). This is achieved by configuring the publish-subscribe middleware
with the QoS property ‘keep one message as history’, denoted with a * in Figure 5.4(D).
This QoS property changes the behavior of the connector queue in such a way that only
one message is stored in the queue, and that the message is not removed from the queue
after delivery to the receiving component. Besides this difference in queue behavior for the

84 Chapter 5. Integration and system testing

receiving component, the model connectors for the SR-latch interaction type are generated
in the same way as for the function call interaction type. For a component realization that
uses the SR-latch or another sequential logic interaction type (implemented in electronics),
e.g., Zs in Figure 5.4(b), the connector should adapt from software and electronic signals to
publish-subscribe messages and vice versa. An example of such a realization connector is
given in the industrial case study described in the next section.

In the described SR-latch example, only one value is stored (single-address memory).
The infrastructure model I, and its implementation I,7 can easily be extended to represent
multi-address memories as often used in memory mapped I/O and distributed I/O.

5.3 Practice: integration and testing of vacuum system model
and real EUV source

The described approach on how to deal with infrastructure in the MBI&T method was ap-
plied to the EUV case study in order to answer QUESTION 1.3 on the practical applicability
and profitability of model-based integration and system testing when only some component
realizations are available. In Chapter 3, the focus of the EUV case study was on the functional
behavior of the components and the system. In this chapter, however, we do not go into detail
about the functional behavior; we now focus on the interaction behavior of the system and
on the modeling, analysis, and implementation of the infrastructure.

Figure 5.5 recalls the components and interfaces involved in the EUV case study, ab-
stracting from the physical parts and their physical interaction as shown in Figure 3.2. The
vacuum system provides a function goto_state via which the control environment C, of the
system, e.g., a vacuum system operator or a higher level software controller, can instruct the
vacuum system to go to either the vacuum or the vented state. To exchange information
about their internal states, the vacuum system C, and the source C; are connected by an
interface consisting of four SR-type latches.

vented —»
C goto_state_req — C —— pre-vacuum —» C
€ goto_state_rep v eXpoSure ——» s
+——active

control environment vacuum system source

Figure 5.5: Components and interfaces involved in the EUV case study

The following subsections describe how the MBI&T activities of the procedure described
in Section 2.3 were applied to the EUV case study. The focus is on the infrastructure, which is
modeled as I, (MBI&T activity 1b) to be included during system analysis (MBI&T activity 2),
and implemented as Iz such that component models M; can gradually be replaced by real-
izations Z; (MBI&T activity 3b) for early system testing of the model-based integrated system
(MBI&T activity 3¢). Where necessary, we give a summary of the other MBI&T activities,
which have been described in more detail in Chapter 3.

5.3. Practice: integration and testing of vacuum system model and real EUV source 85

5.3.1 Modeling the components and their interaction in x (activity 1)

In activity 1a of the MBI&T method, described in Chapter 3, the components shown in Fig-
ure 5.5 were modeled as the x processes shown in Figure 5.6. The control environment was
modeled as a single process M, that can be configured to send requests and receive replies
at certain points in time. The vacuum system M, was modeled as a parallel composition of
three processes, (v1 || v2 || v3), in which the core process v models the internal state behavior
and processes v2 and v3 model the interaction with M, and M;, respectively. The source M;
was modeled as a parallel composition of four processes, (s1 || s2 || s3 || s4), in which the core
process st models the internal state behavior and processes s2, s3, and s4 model the latch
interaction with M,. The bold lines between processes of one component depict shared vari-
ables (two for the vacuum system and three for the source), which are used to exchange data
between processes of one component.

\ 7/
\
I

goto_state_ vented .
M req req’ —— pre-vacuum 4#1 ST i
€ rep—_ B = rep’ ——exposure ——{ 54) !
active —]
control environment vacuum system source

Figure 5.6: Process layout of the) system model

In activity 1b, the interaction between the components was modeled using an infrastruc-
ture model I. The interaction between M, and M, is based on the non-blocking function
call interaction type as explained in Subsection 5.2.1. The infrastructure model I, for this
interaction behavior is similar to Figure 5.3(a) with M, as the client and process v2 of M,
as the server. Requests and replies of the goto_state function are modeled via the channels
goto_state_req and goto_state_rep, respectively, using two buffer processes B to model the asyn-
chronous communication. These buffer processes B were not discussed in Chapter 3, since
at that point they were not important for the analysis of functional behavior.

The interaction between M, and M; is based on the SR-latch interaction type as explained
in Subsection 5.2.2. The infrastructure model I), for the SR-latches in the case study was
already partly shown in Figure 3.6 in Chapter 3. In that figure, processes s2, 53, and s4 on
lines 20, 21, and 22, respectively, were added to M; to model the interaction for the ‘vented’,
‘pre-vacuum’, and ‘exposure’ latches from M, to M;. Process v3 is a similar process that was
added to M, to model the interaction for the ‘active’ latch from M; to M,,.

5.3.2 Integrated system and infrastructure analysis (activity 2)

In Chapter 3, the functional behavior of the) system model was analyzed by simulation of
both nominal and exceptional scenarios and by UPPAAL model checking of formal properties
derived from the system requirements R and the system design D. During this model-based
system analysis, several design and integration problems were detected and fixed at an early
stage of the development process. In this subsection, we only discuss the analysis of the
infrastructural properties of the system model.

86 Chapter 5. Integration and system testing

As described in Subsections 5.2.1 and 5.2.2, most of the function call and SR-latch prop-
erties are directly satisfied by the infrastructure model, independent of the system behavior.
However, two function call properties depend on the system behavior and should be verified
in the context of the system model. These properties, limited buffer size and consistency
between the number of requests and replies, were verified in the case study in the following
way. To detect buffer overflows, a boolean variable overflow was added to the model which
becomes true whenever a buffer overflow is detected (line 3 of Figure 5.2). The limited buffer
size property was verified by model checking the UPPAAL query A[] not overflow, which is
only valid when overflow is false in all possible states of the model. To verify consistency,
two counting variables, nr_requests and nr_replies, were added to the model and the UPPAAL
query A[] o < nr_requests - nr_replies < 1 was used for model checking. These two infrastruc-
tural properties of the function call interaction type were both satisfied for the system model
developed in activity 1 of the case study.

5.3.3 Model-based integration and system testing (activities 3b and 3¢)

In these activities of the case study, the source model M; was replaced by its realization Zj,
i.e., the real EUV light source. This means that the interaction between the vacuum system
model M, and the source realization Z, needed to be established. In the infrastructure real-
ization I, the latch communication between Z, and Z; is established via a multi-pin signal
cable, of which four pins relate to the four latches. Since Z; can only communicate with its
environment via this multi-pin signal cable, the communication between M, and Z; should
also be established via this multi-pin signal cable.

Integration of the control environment model M,, the vacuum system model M, and the
source realization Z; was achieved by using a model-based integration infrastructure Iz as
shown in Figure 5.7(a), using a publish-subscribe middleware and appropriate component
connectors. The interaction between M, and M, via the goto_state function was implemented
in Iz by defining the topics request and reply and by configuring the published and sub-
scribed topics in M, and M, accordingly, similar to Figure 5.3(b). For the interaction be-
tween M, and Z;, a topic was defined for each of the four latches and the connectors for the
receiving components were configured with the QoS property ‘keep one message as history’,
denoted with a * in Figure 5.7(a). In the figure, the arrows for the three SR-latches from M,
to Z; (‘'vented’, ‘pre-vacuum’, ‘exposure’) are combined and denoted by 3*latch.

The middleware configuration described above and the model connectors for M, and M,
were automatically generated from the x system model using the x toolset. The behavior of
the message queues in the connectors was configured using the QoS properties correspond-
ing to the interaction types, as described in the examples in Subsections 5.2.1 and 5.2.2.

The realization connectors, however, are case-specific and should be separately developed
or, if available, selected from a library with generic and configurable connector templates.
In the case study, the connector for Z; should adapt the real latch communication via the
multi-pin signal cable to the publish-subscribe communication used in the middleware and
vice versa. To achieve this, a software/hardware adapter was used in the form of a remote I/O
unit that allows different forms of analogous and digital input and output [Opto 22 2007;
National Instruments 2007]. In the case study, we used a digital input module to receive

5.3. Practice: integration and testing of vacuum system model and real EUV source 87

/ A\
|
|
|

\

|

request—» i
reply—i—| i
| |

| |

| |

|

|

|

|

()
| =
requestw % I
3‘*'\'latchE;> 3 M |
active:— % "g !

Cable connectors to/ 8 infrastructure Iz,
from EUV source Z visualization tools

i 2, % Models M, and M,,

(@) (b)

Figure 5.7: Iy for the case study

values of the ‘active’ latch and a digital output module to set values of the ‘vented’, ‘pre-
vacuum’, and ‘exposure’ latches, see Figure 5.7(b) for a photo impression. Another aspect
of Iz concerns its performance, i.e., the execution speed of the real-time) simulator, the
publish-subscribe middleware, and the connectors. In the case study, this execution speed
was sufficient to properly handle the interaction between the vacuum system model and the
source realization in time. In this interaction, the smallest amount of time between two
consecutive events was in the order of multiple seconds. A more detailed investigation of the
performance of Ij;z and its limits in applications with more time-critical interaction is left as
future work.

Using the resulting model-based integration infrastructure Ij;z, we were able to test the
model-based integrated system {M,, M,, Z};,,, significantly earlier (20 weeks before all real-
izations were available and integrated) and with less costs (no critical cleanroom time was
needed as for real system testing). Similar to the simulation analysis in activity 2 of the
case study, model M, was configured with specific scenarios to test the model-based inte-
grated system on different aspects, for both nominal and exceptional behavior. Creating non-
nominal conditions to test exceptional behavior was easy in a model environment, whereas
this may be quite difficult, time consuming, and risky when testing with realizations.

Besides showing the applicability of this MBI&T activity, the profitability also became
clear because six integration problems were detected. The problems, which appeared to be
caused by implementation errors in the source, could potentially lead to source damage (i.e.,
at least one full day of down time) and unnecessary waiting in the source (i.e., multiple
hours of test time) during the real I&T phases in the ASML cleanroom. The models sup-
ported fast and easy diagnosis (i.e., determining the cause of an problem) and fixing of the
detected implementation errors, as well as immediate retesting of the fixed system, reducing
the diagnosis and fix time from hours to minutes. This means that the MBI&T activities
probably saved several days of expensive cleanroom time during real integration and testing
20 weeks later (if the problems would remain undetected until that time). In the period af-

88 Chapter 5. Integration and system testing

ter the model-based system tests, no additional problems related to the analyzed and tested
aspects of the vacuum-source interaction were detected. This means that, because of the
MBI&T method, the system quality was improved at an early stage, preventing late and thus
expensive fixing during real system integration and testing.

The total amount of time used for testing, diagnosis, fixing, and retesting of the model-
based integrated system was significantly lower than the estimated amount of time that
would be required to perform the same tests on the real system: one half of a day against
four days. This time reduction, which also indicates a test phase improvement with an in-
creased risk reduction rate as proposed in Section 1.4, is caused by several factors. First,
experience in real system testing shows that setting up the system for testing may consume
a considerable amount of time. In the case study, for example, a certain test may require that
the initial vacuum system state is vented while the end state of the previous test was vacuum.
This also holds for the re-execution of tests that change the system state, e.g., a test that
starts in the vented state and ends in the vacuum state. In model-based system testing, less
test setup time is required because setting up a model to another initial state usually boils
down to changing some variables, e.g., changing the initial value of the vacuum system state
variable. Second, testing with realizations may also suffer from time lost on solving minor
system problems that are unimportant for the tests. In the case study, for example, the real
vacuum system contains many potential problem sources (e.g., a malfunctioning sensor or
valve) that could result in a system that is unable to initialize, thus prohibiting test execution.
Model-based system testing does not suffer from this issue, since the models only contain
the behavior that is important for the tests and abstract from the minor problems that poten-
tially prohibit test execution. Third, the use of models for testing reduces the time spent on
diagnosis of problems when compared to real system testing. On the one hand, the number
of sources that could potentially cause a problem is reduced since the models only contain
the behavior that is important for the tests, i.e., abstracting from all other components and
aspects which form potential problem sources in real system testing. On the other hand, the
complete insight in and control over the models makes the distinction between the potential
problem sources more clear. Note that diagnosis in the case study, although supported and
improved by the models, was still performed manually. As investigated in another part of the
TANGRAM project [Pietersma and van Gemund 2007; Tretmans 2007], models can also be
used for automated diagnosis.

5.4 Conclusions

This chapter described an approach to model, analyze, and implement component interac-
tion in the MBI&T method, using a modeling language with synchronous communication,
such that the infrastructural properties analyzed using the system model remain valid dur-
ing the integration of models and realizations. In the presented approach, the behavior of
the (asynchronous) infrastructure realization I, based on the ‘as is’ system design D, is
modeled as infrastructure model I), using synchronous communication, e.g., in the form
of message buffers between components. This infrastructure model I is included in the
system model in order to analyze properties related to infrastructural and system behavior,

5.4. Conclusions 89

e.g., by simulation and model checking. Subsequently, the infrastructure as designed in D
and modeled in Iy is implemented in a model-based integration infrastructure I, using
a publish-subscribe middleware and appropriate connectors, allowing easy integration and
testing of combined models and realizations. Using this approach in the MBI&T method
enables early integration and system testing when only some component realizations are
available, which satisfies the requirements described in Subsection 2.3.3 and answers QUES-
TION IL.2.

The described industrial applications, which concerned examples of two common in-
teraction types and the EUV case study, provide a positive answer to QUESTION 1.3: it is
feasible and profitable to apply the MBI&T method in current industrial practice when only
some component realizations are available. In these industrial applications, the transition
from synchronous process algebraic models to distributed asynchronous realizations proved
to be straightforward. The considered asynchronous interaction types (function calls and
SR-latches) can easily be modeled in a synchronous modeling language such as x, using ad-
ditional processes in the system model. These synchronous system models provide a good
understanding of system behavior and enable verification of properties related to both in-
frastructural and system behavior. The publish-subscribe middleware and the connectors
provide a simple means to implement the modeled interaction behavior, allowing easy inte-
gration of models and realizations. Here, the interaction between models and realizations
and the real-time behavior are no longer handled according to the formal model semantics.
The handling of component interaction and real-time behavior should be implemented such
that the overall system behavior is equivalent to the modeled and analyzed system behavior,
possibly with some acceptable restrictions, e.g., regarding the execution speed. For exam-
ple, different QoS properties of the middleware can be used to influence the behavior of the
connector queues in accordance with the modeled behavior, e.g., the ‘keep one message as
history’ QoS property for the SR-latch interaction type. For the industrial examples in this
chapter, we gave an informal and intuitive indication that the correctness of the infrastruc-
tural properties is preserved when replacing Iy, with I;z. The described approach can be
applied to other interaction types in a similar way.

The EUV case study showed that the x toolset, including the real-time x simulator and the
publish-subscribe middleware based on JABBER, is suitable for the integration and testing of
combined models and realizations, which means that, for this MBI&T activity, the hypothe-
sis on the applicability of the x toolset is accepted. Furthermore, the modeling and analysis
activities in the case study, as described in Chapter 3 and this chapter, showed relevant ad-
vantages for the system development process. In terms of the T-Q-C business drivers, the
modeling activities helped to clarify, correct, and complete the design documentation, im-
proving the product quality Q. By simulation and verification, several design and integration
problems were detected and fixed earlier (i.e., reduced time-to-market T) and with less costs
C when compared to current system development. Finally, the integration of models and
realizations using the model-based integration infrastructure enabled us to perform system
tests earlier (several months before the real I&T phases), faster, and with lower costs. During
the system tests, multiple implementation errors in the realization were detected, immedi-
ately fixed, and retested, saving significant amounts of time and rework during the real I&T
phases and thus reducing time-to-market T. Here, the complete insight in and control over

90 Chapter 5. Integration and system testing

the models and the (non-nominal) test conditions improved the test execution process, i.e.,
also the risk reduction rate increased as proposed by the second solution in Section 1.4.

CHAPTER 6

Integration and testing process

Where and when to apply models?

Chapters 3, 4, and 5 described the MBI&T activities as introduced in Chapter 2, and
showed the applicability and profitability of each activity in practice. For the I&T process,
which is the focus of this chapter, these MBI&T activities form new possibilities to reduce
time-to-market T or to increase the product quality Q. In contrast to these benefits for the I&T
process, the MBI&T method also introduces additional costs C, e.g., time is needed to model
the components. These investments in modeling need to be made before the actual benefits
become clear, often without knowing if and to which extent the benefits outweigh the costs.
In some cases, the investments in modeling are profitable, e.g., when the realization of a
component is available only late in the development process or when testing with realizations
is expensive. In other cases, it is wise not to invest in models but to perform the tests with
realizations only, e.g., for mature or low risk components.

Making decisions on whether or not to use models for integration and testing can be
supported by estimations on the involved risk in the system, on the development or delivery
times and the availability of realizations, and on the costs of testing with realizations. In cur-
rent industrial practice, the decision making process is usually based on personal intuition
and experience. In this chapter, we introduce a quantitative decision making process that
takes the costs C into account to determine where (QUESTION 2.1) and when (QUESTION 2.2)
the I&T process can profit from models.

This chapter is mainly based on [Braspenning et al. 2007d,a], in which co-author
Boumen provided the I1&T sequencing techniques, and is organized as follows. Section 6.1
first describes the current I&T process and distinguishes nine categories of I&T activities.
Subsequently, this section shows how the MBI&T method and techniques are applied to the
current I&T process and how each of the nine categories can be supported by models, an-
swering QUESTION 2.1. Section 6.2 shows how the integration and test sequencing method
from [Boumen 2007] can be used to quantify the costs of various I&T processes in order to
decide when it is profitable to apply models in the I&T process, answering QUESTION 2.2. An
industrial application of this quantitative decision making process is shown in Section 6.3,
which answers QUESTION 2.3 on the practical applicability. Finally, the conclusions are given
in Section 6.4.

o1

92 Chapter 6. Integration and testing process

6.1 Current and model-based I&T process

This section first describes the current I&T process such as used at ASML in more detail.
Subsequently, QUESTION 2.1, repeated below, is answered by showing which activities in the
current I&T process can be supported by models.

QUESTION 2.1 Which activities in the current I&T process can be supported by the early
I&T method?

As an example, we use an I&T process that is common for many high-tech multi-
disciplinary systems: upgrading a system with new hardware and software to improve the
system performance, e.g., adding a new sensor with accompanying control software to im-
prove the measurement accuracy. In this example, the goals of integration and testing are to
show the functionality and performance of the system upgrade as soon as possible, and to
show that the system upgrade does not negatively affect the functionality and performance
of the original system. We show how such a system upgrade is dealt with in both the current
I&T process and the model-based I&T process.

6.1.1 Current I&T process

Let us consider an existing system that consists of several hardware and software compo-
nents. The system is upgraded by implementing some new or improved functionality, which
is denoted by a delta sign (A). To implement this A-functionality, certain components of the
original system need to be upgraded, or new components need to be developed and added
to the system. Similar to Figure 2.2 in Chapter 2, our view on the development process
of this A-functionality starts with the global requirements R, and design D,, as shown on
the left-hand side of Figure 6.1. After that, the software and hardware components for the A-
functionality, denoted by ASW and AHW, respectively, are separately developed, starting with
the requirements Rasw and Rapw, followed by the designs Dasw and Dapw and, finally, the
realizations Zasw and Zapw.

define design realize integrate
> Rasw > Dysw Lsw

L >

integrate 7
SW

define R, de51gn7 D,

define design realize integrate integrate
> Runw > Dy > Zanw Ziw

I
[infrastructure |]

Figure 6.1: Current development and integration of a A-functionality

The right-hand side of Figure 6.1 shows the integration of the A components Zxsw
and Zxyw with the software and hardware components of the original system, considered

6.1. Current and model-based I&T process 93

here as one software component Zsw and one hardware component Zyy, respectively. The
four components are integrated by means of some infrastructure I. In this chapter, we ab-
stract from the different forms of infrastructure as explained in Chapter 5 and only consider
the ‘generalized’ infrastructure I.

The four component realizations Zasw, Zanw, Zsw and Zyy can be integrated and tested
in many ways during the I&T process. Within the current I&T process at ASML, nine dif-
ferent categories of I&T activities can be distinguished, which focus on different aspects of
the components or the system and require different combinations of realized and integrated
components. These nine categories are listed in Table 6.1, where the integration of compo-
nent realizations Z; and Z; by means of infrastructure I is denoted as {Z;, Z},.

Table 6.1: Categories of I&T activities in current I&T process

‘ Category | Required components ‘ Explanation ’
1. SW qualification | {Zsw, Zuw}: and Periodic qualification of the so-called ‘qualified
testing later {Zasw, Zsw, Zuw}1 | baseline’ (QBL) [Horch 2003], a common repos-
itory for all new software developments that sup-
ports all machine types, by testing it on a set of
representative hardware systems Zyw

2. SW component | Zasw Testing the new software component in isolation

testing

3. SW integration | {Zasw, Zsw}i Testing the new software component in combi-

testing nation with the original software system Zgw

4. SW regression | {Zasw, Zsw, Zuw}1 Testing whether any of the original system func-

testing tions are negatively affected by the new software
component, performed on the original hardware
system Zpw

5. HW component | Zapw Testing the new hardware component in isola-

testing tion

6. HW integration | {Zapw, Zuw}i Testing the new hardware component in combi-

testing nation with the original hardware system Zyw

7. A-functionality | {Zasw, Zsw, Zanw}i Testing the new A-functionality (also called pro-

test bench testing gression testing) on a ‘test bench’, i.e., a partial
hardware system including the new hardware
component Zapw, used for development tests

8. A-functionality | {Zasw, Zsw, Zanw, Zuw} | Testing the new A-functionality on a complete

system testing system, i.e., Zyw upgraded with Zxpw

9. System testing | {Zasw, Zsw, Zauw, Zuw}i | Testing the functionality and performance of the
complete system after all A-functionalities are in-
tegrated and tested, before system shipment

Figure 6.2 shows a typical I&T process for a system upgrade. From left to right, the se-
quence of I&T activities, denoted by vertical lines, is shown. The numbers correspond to
the nine categories of I&T activities in Table 6.1, and the dots indicate which components
are integrated and tested. The horizontal lines depict the lifetime of each component: a

94 Chapter 6. Integration and testing process

dashed line means that the component is being developed; a flag symbol followed by a solid
line means that the component realization is available. The flag symbols and the letters
indicate the following milestones: (a) QBL Zsw passes qualification tests; (b) development
of Zasw and Zapy is started, possibly based on the original system (denoted by dashed up-
ward arrows); (c) Zasw is available; (d) Zasw passes software tests and is integrated in the
QBL Zsy (denoted by downward arrow); (e) upgraded QBL {Zasw, Zsw }r passes qualification
tests; (f) Zanw is available; (g) Zasw and Zapw pass test bench tests; (h) Zayw passes hard-
ware integration tests and the hardware system Zyy is upgraded to {Zapw, Zuw} (denoted
by downward arrow); (i) similar to the depicted A-functionality, the other A-functionalities
are integrated and tested; (j) complete system with all A-functionalities passes tests and is
shipped to customer. Note that the figure only shows a sequence and does not contain in-
formation on the possible start times and durations of the activities. For example, in the
case that the hardware upgrade is available earlier than the software upgrade (i.e., milestone
f before b), I&T activities 5 and 6 could be performed before I&T activities 2, 3, and 4.

ZAsw

Figure 6.2: Typical I&T process for the system upgrade example

Note that by removing particular components and related I&T activities from the system
upgrade example, other I&T processes can also be represented. For example, a software only
I&T process is obtained by removing the hardware components and all I&T activities that
involve hardware. The I&T process of a completely new system is obtained by removing the
original system software and hardware, implying that there is no initial software QBL, and
that the first software component that is realized becomes the software QBL.

The main disadvantage of the current I&T process is that the I&T activities can only be
performed when the realizations are available. Especially for testing on the system level (cate-
gories 7, 8, and 9) this is problematic, because it means that feedback on the system behavior
and performance is obtained late in the process, where fixing the problems is expensive. The
previous chapters of this thesis showed that early integration and testing is possible by using
models in the I&T process. The remainder of this section shows which activities of the I&T
process can be supported by models, using the same system upgrade example.

6.1.2 Model-based I&T process

Figure 6.3 shows the development and integration of a A-functionality using the MBI&T
method, with models Masw, Manw, and My of the A software component, the A hardware

6.1. Current and model-based I&T process 95

component, and the original complete hardware system, respectively. The reason for hav-
ing Myw but not Msy is explained later. The choice of integrating either the model or the
realization of a component, or none of them, is depicted by the integration ‘switches’. In
contrast to the current I&T activities, in which only realizations are used, the MBI&T activi-
ties from Chapters 3 through 5 can be performed with models instead of realizations, which
has several advantages as shown in these chapters. Regarding the costs C of testing, many of
the MBI&T activities can be performed on a common computer system using modeling and
analysis software tools. The test costs in such a desktop environment are generally lower than
the costs of realization tests, which, in the case of ASML, may require expensive machine
time and cleanroom facilities.

> Rysw — Dasw o o 0+ Zgy

—
ZASW —© ©
—
£
—» R, » D, — £
@ g
[$=}
0 =t O
> Ryuw > Danw 07 Oo—
Zppw 0 o Zyw
o/

Figure 6.3: Development and integration of a A-functionality in the MBI&T method

Although models can support all nine categories of I&T activities as shown in Table 6.1,
they cannot fully replace testing with realizations, since models are always abstractions of
reality and usually do not cover all aspects of a component. For example, the models in
the EUV case study used throughout this thesis focus on component interaction and time
behavior, which are suitable to test and detect problems in these aspects but unsuitable to
test other aspects such as the quality of the EUV light. Sooner or later, when they become
available, the realizations of the components and the system will be used to test at least
the remaining aspects. However, these realization tests can probably be performed faster
and with less costs, since the MBI&T activities already reduced some risk by detecting and
preventing several problems. This was also experienced in the EUV case study as described
in Chapter 5: in the period after the successful MBI&T activities on the source realization,
no further problems were detected in the component interaction and time behavior, i.e., all
test time could be spent on other aspects such as the quality of the EUV light.

In the current I&T process of ASML, the software qualification tests (category 1) consume
quite some machine time, approximately one full day of testing each week. Besides that
machine time is limited and expensive, experience shows that also setting up the system for
testing may consume a considerable amount of time. Moreover, much time may be lost on
solving minor machine problems that are unimportant for the tests, e.g., a malfunctioning

96 Chapter 6. Integration and testing process

sensor that is not involved in the test but prevents the system to initialize. Test time and
costs may be reduced by using hardware models instead of hardware realizations for certain
parts of the qualification tests. For example, the qualification of the system throughput in
principle depends only on the sequence and durations of all hardware actions. When the
durations of these hardware actions are modeled as time delays in a model Myy of the
hardware system Zyy, and when the software Zgy executes the sequence of actions on the
model Myy, the system throughput can be qualified without a hardware realization Zyy.
In this way, software qualification tests can be performed in a low cost desktop environment
with a hardware model Myyw, using {Zsw, Mpw}; instead of {Zsw, Zuw};. Furthermore,
models require less test setup time, and they do not suffer from the minor problems that
may occur in other components not involved in the tests, since the hardware model only
contains the behavior important for the tests and abstracts from these problems. When
hardware models Myy are used for periodic software qualification testing, it is important
that these models are continuously maintained and qualified as well, which can be achieved
by establishing a QBL for the hardware models Myy, similar to the software QBL Zgy. As
long as the hardware models are correct representations of the hardware realizations for the
aspects covered by the software qualification tests, they can safely replace the realizations for
these tests.

For software component and integration testing (categories 2 and 3), a model Mjgy of
the A software component can be used as replacement of Zxsw. As shown in Chapters 3
and 5, (real-time) simulation techniques can be used to analyze the behavior of the model
in isolation or in combination with the other software Zgyw. When the realization Zxsw is
available, automatic model-based testing can be used to determine its conformance to the
model Masw, as shown in Chapter 4. The model Mjsw can also replace Zxsw for software
regression testing (category 4), which can be performed either on the real hardware sys-
tem Zyw or on the hardware model Myy, in a way similar to model-based software qual-
ification testing (category 1). To enable these MBI&T activities, the software components
directly related to the tested component may also be modeled as its environment. In princi-
ple, such an environment model is a partial model of the original software Zsy, which could
be denoted by Mgy. However, we expect that continuous development, maintenance, and
qualification of a complete model Mgy (as is done for My in category 1) is not necessary.
Since testing with Zgy is also performed in a desktop environment, the cost advantage of
using a model Mgy instead of Zsy will probably be lower than for Myy. This means that the
effort invested in maintaining and qualifying Mgy will be less profitable, and that it is better
to directly use Zsyw when the complete software is required for testing. Nevertheless, parts
of Mgy can and will still be used as environment model for other MBI&T activities.

Similar to its software counterpart, a model Mjyw can support component and inte-
gration testing of the A hardware component (categories 5 and 6) by means of simula-
tion, automatic model-based testing, and model-based analysis of the upgraded hardware
model {Myw, Mapw -

Testing the complete A-functionality using a test bench (category 7) can be supported by
four MBI&T activities. First, the A-functionality can be tested by using the integrated models
of the A components, i.e., {Masw, Manw}s, in which Mapw is a model of test bench Zapw.
Since only models are used in this test, model-based analysis techniques such as model

6.1. Current and model-based I&T process 97

checking can be used for exhaustive analysis of all possible behaviors of the system model, as
shown in Chapter 3. Second, the model Mgy can be integrated with the other software Zsy,
and tested on the test bench model Mayy. Third, the realization of the upgraded software
system, i.e., {Zasw, Zsw}1, can be tested on the model of the test bench Mapw. Finally, in
the case that Zxw is available before the software realization Zxgw, the model Masw can be
tested with Zgy on the test bench realization Zxpw. The four MBI&T activities that support
the A-functionality system testing (category 8) are similar to those of category 77, but now they
involve the complete hardware system instead of the test bench only, i.e., including My
or Zuw, depending on whether Mapw or Zauw is used, respectively. Similar to software
qualification testing (category 1), system testing (category 9) can be supported by a model of
the (upgraded) hardware, replacing the hardware realization to partially test the functionality
and performance of the system.

The following list summarizes and identifies all possible I&T activities for each category,
including both the current I&T activities from Table 6.1 and the new MBI&T activities as
described above, thus answering QUESTION 2.1. For each of the nine categories, the I&T
activities with realizations only are marked with a ‘Z’, and the MBI&T activities are marked
with an ‘M’, followed by a letter in the case of multiple MBI&T activities.

1. Software qualification testing:

17a: {Zsw, Zuw}i

IMa: {Zsw, Mpw};

1Zb: {Zasw, Zsw, Zuw}
IMb: {ZASW: ZSW; MHW}I

SM]) ZAHW VS. MAHW

6. Hardware integration testing:

6Z: {ZAHWx ZHW}I
6M: {Manw, Muw}hi

7. A-functionality test bench testing:

7Z: {Zasw, Zsw, Zanw}i
7Ma: {Masw, Manw i
7Mb: {Masw, Zsw, Manw}1
TMc: {Zasw, Zsw, Manw}
TMd: {Masw, Zsw, Zanw}

2. Software component testing:

27: ZASW
2Ma: Masw
2Mb: ZAS\X/ VS. MAS\)V

3. Software integration testing:

323 {ZASWf ZSW}I
3M: {Masw, Zsw}

8. A-functionality system testing:

8Z: {Znsw, Zsw, Zauw, Zuw 1

4. Software regression testing:

4Z: {Zasw, Zsw, Zuw}i
4Ma: {MASW: ZSW; MHW}I
4Mb: {Masw, Zsw, Zuw}i

5. Hardware component testing:

SZ: ZAHW
5Ma: Mapw

8Ma: {Masw, Mauw, Muw}
8Mb: {Masw, Zsw, Marw, Muw} 1
8Mc: {Zxsw, Zsw, Manw, Muw}i
8Md: {Masw, Zsw, Zanw, Zuw }i

9. System testing:

9Z: {Zasw, Zsw, Zarw, Zuw 1
OM: {Zasw, Zsw, Manw, Muw}i

98 Chapter 6. Integration and testing process

Figure 6.4 shows all I&T activities of the MBI&T process, in a way similar to Figure 6.2.
The flag symbols and the letters indicate the following milestones: (a) QBL Zsy passes qual-
ification tests; (b) modeling of Masw and Mayw is started, possibly based on the original
system (denoted by dashed upward arrows); (c) Masw and Mapw are available; (d) Masw
and Mapw pass model tests; (e) development of Zysw and Zypw is started, possibly based
on the original system and the models (denoted by dashed upward arrows); (f) Zysw is avail-
able; (g) Zasw passes software tests (model-based component testing, i.e., testing realiza-
tion against model, is denoted by a double headed arrow) and is integrated in the QBL Zsy
(denoted by downward arrow); (h) upgraded QBL {Zasw, Zsw}; passes qualification tests;
(i) Zanw is available; (j) Zasw and Zauw pass test bench tests; (k) Zapw passes hardware inte-
gration tests and both Zyyw and My are upgraded (denoted by downward arrows); (1) similar
to the depicted A-functionality, other A-functionalities are integrated and tested; (m) com-
plete system with all A-functionalities passes system tests and is shipped to the customer.

As an example, the circles indicate the I&T activities of category 7, A-functionality test
bench testing. Their positions in the development process clearly illustrate how models en-
able earlier testing on the system level when compared to the current I&T process, in which
only the realization test 7Z can be performed late in the process.

Mb ., [7Md! z
e Ff 2z : 32/_\8 & E
3M

A
M
b Fcz- 7Ma| 8Ma 7Mb8MIZ1.Ma4MbE1 A \ 7Md sMd

J 52 fy { @ 82 1 M 9Zm

e | g g

b ﬁ;sMa 6M ﬁi

Figure 6.4: Model-based integration and testing process

Although Figure 6.4 shows more I&T activities than Figure 6.2, the number of activities
does not relate to the total duration of the I&T process, because the possible start times
and the durations of the I&T activities are not included. For example, in the case that the
hardware upgrade is realized earlier than the software upgrade (i.e., milestone i before f), the
MBI&T activities 7Md and 8Mc could be performed before 2Z.

6.2 Theory: integration and test sequencing

Although all possible (model-based) I&T activities have been defined in the previous section,
there is still a problem that needs to be addressed before the MBI&T process can be applied

6.2. Theory: integration and test sequencing 99

to a real I&T problem. This problem, which also exists in the current I&T process, is called
integration and test sequencing, which was investigated in another part of the TANGRAM
project [Boumen 2007; Tretmans 2007]. Integration and test sequencing involves making
decisions on which components should be integrated when, and which tests should be per-
formed in which order on which components. These decisions result in a sequence of I&T
activities that can be optimized towards criteria such as lead time, total test time, test costs,
and remaining risk (i.e., quality) in the system, depending on the importance of the T-Q-C
business drivers as explained in Chapter 1.

For the MBI&T process, there is not only the problem of deciding on the sequence of
the I&T activities, but there is also a choice whether or not to use models for certain I&T
activities, as expressed in QUESTION 2.2, which is repeated below.

QUESTION 2.2 When is it profitable to apply the early I&T method?

Answering QUESTION 2.2 involves a trade-off between the potential benefits of applying
the MBI&T method (e.g., shorter time-to-market T and improved product quality Q) and the
additional costs C needed to enable the MBI&T activities (e.g., time needed to model and
integrate the components). We use the I&T sequencing method from [Boumen 2007] to
determine the (nearly) optimal I&T sequences and to quantify the related costs for various
I&T processes. By comparing the costs of I&T processes with and without models, this
provides a quantitative decision making process to decide when it is profitable to use models
for integration and testing.

In this section, we introduce this quantitative decision making process by giving an illus-
trative example that is based on the system upgrade I&T process from the previous section.
The system upgrade example is instantiated once with realizations only (as in the current
I&T process), and once with the possibility to use models as well (as in the MBI&T process),
such that the resulting I&T sequences and related costs can be compared.

The input for the I&T sequencing method is an I&T process model that contains an
abstract representation of an I&T problem. An I&T process model defines properties of and
relations between the components and interfaces of a system, the potential faults related to
the components and interfaces, and the tests that can be performed on certain combinations
of integrated components to detect certain faults.

Figure 6.5 and Table 6.2 show the information used for the I&T process models of the
system upgrade example. Figures 6.5(a) and 6.5(b) depict the components (boxes for realiza-
tions and circles for models) and interfaces (lines) for the current and for the model-based
I&T process, respectively. The numbers between the brackets denote the development or de-
livery times of each component. This example uses fictitious but representative development
times for the system upgrade I&T process, in which the original hardware and software are
available from the start (development time is zero) and the A software component is available
after 60 time units, which is 20 time units before the A hardware component. In the MBI&T
process, the models of the A components are available after 40 time units. Note that an inter-
face can also indicate a possible integration of components that is only needed for a certain
I&T activity. For example, the interface between Zsy and Zyyw is only needed for test bench
testing and does not necessarily exist in the actual system. Also note that the model-based

100 Chapter 6. Integration and testing process

interface layout is symmetrical except for the additional interface between Masw and Mapw.
This interface is used for model-based analysis of the A-functionality (I&T activity 7Ma),
which can be performed early in the I&T process without realizations (see Figure 6.4).

Zasw Zasw Masw
(60) (60) (40)
ZSW ZSW
(0) (0)
Zanw Znw Zanw Zuw Myw Manw
(80) (0) (80) (©) (©) (40)
(a) Current I&T process (b) MBI&T process

Figure 6.5: Components and interfaces for the system upgrade example

Table 6.2 shows the available tests in the I&T process model of the system upgrade exam-
ple, including the components that need to be available and integrated for each test, and the
test durations. The tests in the table relate to all 29 I&T activities of the nine categories listed
in the previous section, i.e., including both the current and the model-based I&T activities.
In the I&T process model, the choice of using models or realizations for a certain test can
be expressed in several ways. For the system upgrade example, we express it in a simple way
which is sufficient to explain the quantitative decision making process in this section. In
the industrial application described in the next section, we use a more detailed and more
realistic way of expressing this choice.

For the system upgrade example, we subdivide all tests into tests that can be performed
with realizations only (denoted with a “Z’ in Table 6.2) and into tests that can possibly be
performed with models (denoted with an ‘M’ in Table 6.2). This subdivision is done for both
the current and model-based I&T process, under the assumption that the aspects covered
by an ‘M’ test can also be tested using realizations, i.e., also in the current, non model-
based, I&T process. This assumption is valid in most cases since the models are abstract
representations of the realizations and their behavior, implying that the tested behavior of a
model will also occur in the corresponding realization. As a result, the ‘M’ tests contain a
choice of using realizations as an alternative to the models, which is denoted by the round
brackets in the second column in Table 6.2. For the current I&T process, only the realization
alternatives can be chosen, while for the MBI&T process, both alternatives can be chosen.
In this way, we can use a single set of tests to compare the current and model-based I&T
process. Taking category 1 as an example, we see that I&T activity 1Za requires Zsy and Zywy
to be available and integrated. I&T activity 1Ma always requires Zgy, but gives a choice to
use either the hardware system model Myyw or the realization Zyy. For the current I&T
process, only the equivalent realization test with Zyw can be used for 1Ma, while in the
MBI&T process, the model Myy can also be used for 1Ma if this is profitable.

6.2. Theory: integration and test sequencing 101

Table 6.2: Available tests for the system upgrade example
Test | Required components Time
IZa {st, ZHW}I 6
Ma | {Zsw, (Maw/Zuw)}
1Zb | {Zasw, Zsw, Zuw)i
IMb | {Zasw, Zsw, (Muw/Zuw)}i
27 ZASW
2Ma | (Masw/Zasw)
2.Mb ZASW VS. MASW
372 {Zasw, Zsw}i
M| {(Masw/Zasw), Zsw i
47 {Zasw, Zsw, Zuw}r
4Ma | {(Masw/Zasw), Zsw, (Muw/Zuw)
4Mb | {(Masw/Zasw), Zsw, Zuw} 1
57 Zanw
SMa | (Manw/Zanw)

SMb ZAauw VS. Mapw

6Z | {Zsuw, Zuw}r

6M | {(Mauw/Zauw), (Muw/Zaw)}

7Z {Zasw, Zsw, Zanw

7Ma | {(Masw/Zasw), (Manw/Zanw)}

7Mb | {(Masw/Zasw), Zsw, (Marw/Zavw)} i

7Mc | {Zasw, Zsw, (Manw/Zanw)}i

7Md | {(Masw/Zasw), Zsw, Zarw 1

82 {Zasw, Zsw, Zavw, Zrw

8Ma | {(Masw/Zasw), (Manw/Zanw), (Muw/Zaw)}r
8Mb | {(Masw/Zasw), Zsw, (Manw/Zanw), (Muw/Zuw)}H
8Mc | {Zasw, Zsw, (Manw/Zanw), (Muw/Zuw)}
8Md | {(Masw/Zasw), Zsw, Zanw, Zuw 1

9Z {Zasw, Zsw, Zaviw, Zrw

oM | {Zasw, Zsw, (Manw/Zanw), (Muw/Zuw)}H

N NMNDNDNMBEA ADNDNAHDNDMND AW AHHDNDNDNDHWAHDNDHAHH=ADNDOGONN

N N
O o

The test durations in the third column of Table 6.2 are fictitious but give a representative
distribution of the test time over all I&T activities of the system upgrade I&T process. For
simplicity, this example I&T process model uses constant test durations, which is sufficient
to explain the quantitative decision making process and to compare the current and model-
based I&T process for the system upgrade example. In reality, the duration of a test depends
on the remaining risk in the system, i.e., on how much risk is already reduced by previous
tests, on different risk reduction rates of certain tests, e.g., tests with realizations or with
models, and on the stopping criterion of a certain test, e.g., reduce all risk or stop at a certain
remaining risk threshold. The industrial application in Section 6.3 uses a more detailed I&T
process model that incorporates potential faults and their risks to determine test durations.

Although the I&T process model for the system upgrade does not express differences in
durations or costs for testing with realizations or with models, the differences can be deter-
mined and analyzed afterwards, based on the generated I&T sequences and on different test
costs per time unit for testing with realizations or with models. Taking software qualification
testing (category 1) as an example, Table 6.2 shows that the main part of this category can

102 Chapter 6. Integration and testing process

be executed with realizations only (I&T activity 1Za, 6 time units), while some aspects could
possibly be tested with models (I&T activity 1Ma, 2 time units). For the current I&T pro-
cess, the aspects tested in 1Ma are covered by equivalent realization tests with the same test
duration (also 2 time units). Since testing with realizations is usually more expensive than
testing with models, we see that the test costs of 8 time units of expensive realization testing
in the current I&T process are higher than 6 time units of expensive realization testing and
2 time units of low cost model testing in the MBI&T process. In this way, we can determine
and compare the test costs for specific I&T sequences without using different test times in
the integration model, which is sufficient for this example.

Based on an I&T process model as described above, the I&T sequencing algorithm from
[Boumen 2007] determines all feasible I&T sequences. For the example in this section,
an I&T sequence is feasible when all components are integrated via the defined interfaces,
when all defined tests are performed, and when the tests are not performed before the re-
quired components are integrated. Determining these sequences is based on an assembly-
by-disassembly technique [De Mello and Sanderson 1991], which starts with a complete sys-
tem and iteratively subdivides the system into smaller parts by removing interfaces until only
components are left. Reversing the result gives all possible integration sequences from sin-
gle components to a complete system. Since the number of feasible sequences can be very
large, heuristics can be applied to remove sequences that are expected to have a low perfor-
mance according to the optimization criteria used. For more details on the I&T sequencing
algorithm, we refer to [Boumen 2007].

As explained in Chapter 1, the time-to-market T is the most important business driver
for ASML, therefore we use the duration of the complete I&T process, the lead time, as the
optimization criterion for I&T sequencing. Note that the lead time is different from the total
time used for integration and testing, which is the sum of the durations of all separate I&T
activities. By performing multiple I&T activities in parallel, the total time used for integration
and testing remains equal but the lead time is reduced. To reduce the number of sequences
and the corresponding computation time, we applied a heuristic that prefers I&T sequences
with as much parallelism as possible.

Figure 6.6 shows the determined I&T sequences for the current (top) and model-based
(bottom) I&T process models, in the form of a Microsoft Project Gantt Chart. The figure
shows all activities related to component development (dashed bars), component modeling
(white bars at the bottom), integration (diamonds), and testing (black bars) over time, and
the precedences between the activities (arrows). On the topmost line of the I&T sequences,
the long white bar with triangular line ends indicates the lead time.

Several conclusions can be drawn from these sequences. First, the lead time of the
MBI&T sequence is shorter, 167 time units against 190 time units for the current I&T se-
quence, a reduction of 12%. Besides lead time, also the duration of the final system test
phase (the long black bars at the right-hand side of Figure 6.6) is important for ASML, since
this phase is on the critical path and has a major influence on the time-to-market T. The
final system test phase is 78 time units for the MBI&T sequence, 26% less than the 106 time
units for the current I&T sequence.

The profitability of using models in the I&T process is determined by quantifying the
costs C of enabling the above mentioned benefits of shorter lead time and shorter final sys-

6.2. Theory: integration and test sequencing

103

Current I&T process <

Test[8Mb, 8Ma ,7Z,7Md, 7Mc, —

7Mb, oM, 8Z,8Mc, 8Md, 6Z,7Ma |
Integrate [Zsw-Zdhw, Zhw-Zdhw]
Test[2Z, 2Mb, 3M, 3Z, 2Ma | r—
Integrate [Zsw-Zdsw |

Develop Zsw
Develop Zdsw s

Test[4Mb, 4Ma, 1Zb, 4Z, 1Mb]
Integrate [Zsw-Zdsw |

Test[1Za, 1Ma]
Integrate [Zsw-Zhw | E_

Develop Zhw

Develop Zsw
Test[5Mb, 5Z, 5Ma]
Develop Zdhw

lead time
reduction

>—>

MBI&T process <
Test[4Z, 7Z, 2Mb, 8Z, 9Z, 17Zb]

f
iy

Integrate [Zsw-Zhw, Zsw-Zdhw, C
Zsw-Mdhw, Zsw-Mdsw |
Test [6M] A
Integrate [Mhw-Mdhw |
Test[3M] —
Integrate [Zsw-Zdsw]
Test[4Ma]
Integrate [Zsw-Mhw, Zsw-Zdsw | o
Test[7Mb] €
Integrate [Zsw-Mdhw, Zsw-Zdsw] '
Test[3Z]
Integrate [Zsw-Zdsw | '
Test[8Ma, 8Mb]
Integrate [Zsw-Mhw, Zsw-Mdhw] '
Test[1Ma]
Integrate [Zsw-Mhw | 'I
Test[1Mb]
Integrate [Zsw-Mhw, Zsw-Zdsw | '
Test[7Mc] d
Integrate [Zsw-Mdhw, Zsw-Zdsw] .
Test[2Z7]
Test[7Ma] q
Integrate [Zsw-Mdhw, Zsw-Zdsw] '
Test[9M, 8Mc | f
Integrate [Zsw-Zdsw, Zsw-Mhw] '
Develop Mhw =
Develop Zdsw L
Test[yMd, 6Z, 8Md, 5Mb]
Integrate [Zsw-Zdhw, Zhw-Zdhw]
Test[4Mb]
Integrate [Zsw-Mdsw, Mdsw-Mdhw]
Test[1Za]
Integrate [Zsw-Zhw |
Develop Zhw
Develop Zsw H

1y BN

==

TS

Test[5Z]
Develop Zdhw e !
Test[2Ma]
Develop Mdsw = —
Test[5Ma]
Develop Mdhw = ——

Figure 6.6: Current (top) and model-based (bottom) I&T sequences

104 Chapter 6. Integration and testing process

tem test phase. As previously mentioned, costs were not explicitly expressed in this system
upgrade example but can be compared afterwards, using different costs per time unit for
testing with realizations or with models. At ASML, the costs per time unit for realization
testing are orders of magnitude higher than for testing software or models in a desktop en-
vironment. The use of models influences the costs of the I&T process in both a positive and
in a negative sense. On the one hand, the costs of the I&T process increase due to the effort
invested in modeling the components, e.g., 8o time units in a relatively low cost desktop en-
vironment for the system upgrade example. On the other hand, the costs of the I&T process
decrease due to the reduction of time spent on realization testing and due to the possibility
to diagnose and fix problems earlier. In Figure 6.6, the current I&T process uses 138 time
units of realization testing, while the MBI&T process uses 91 time units of realization testing
(34% less) and 47 time units of testing with models, with relatively lower costs. Besides a
reduction in these direct costs of testing, the use of models in the I&T process also reduces
indirect costs such as diagnosis and fix costs when problems are detected. Compared to the
current I&T process, the I&T activities in the MBI&T process are performed earlier and more
in parallel, see for example the position of the I&T activities of category 7 in both sequences,
indicated by the circles in Figure 6.6. As a result, design and integration problems can be
detected and prevented at an earlier stage of development where the costs for fixing them are
lower. For example, as explained in Chapter 5, the MBI&T activities applied in the EUV case
study prevented problems that, if they would remained undetected, would result in source
damage in the real I&T phases, with high costs for fixing the problems and for the accompa-
nying downtime. Although these benefits of early testing cannot directly be expressed in the
I&T process model of the system upgrade example, they can be expressed in terms of risk,
as shown in the industrial case study in the next section. Summarizing, besides the benefits
of a shorter lead time and a shorter final system test phase in the I&T process, using models
is also beneficial for the costs of testing, diagnosis, and fixing.

This quantification of benefits and costs can be used as a basis for deciding whether it is
profitable to use models in the I&T process. In the system upgrade example, the estimated
benefits of using models, e.g., a lead time reduction of 12%, a reduction of realization test
time of 34%, and reduced costs for testing, diagnosis, and fixing, probably justify the onetime
investments needed for model development, which are 8o time units of modeling in a (low
cost) desktop environment.

As an overall result, this example showed the ingredients of the following quantitative
decision making process, which can be used to determine when it is profitable to use models
in the I&T process, answering QUESTION 2.2:

1. Create an I&T process model with component realizations only.

2. Create a second I&T process model by extending the first I&T process model with
component models and by giving a choice of using either a model or a realization for
certain I&T activities.

3. Determine the I&T sequences for both I&T process models using the I&T sequencing
method.

6.3. Practice: which components of a new EUV wafer scanner should be modeled? 105

4. Compare the resulting I&T sequences based on the quantified benefits and costs, e.g.,
on lead time and test costs.

5. Decide whether the benefits of using models outweigh the additional costs to achieve
the benefits.

In the next section, this quantitative decision making process is used in a case study to
determine for which parts of a new version of an EUV wafer scanner it is profitable to create
a model for early integration and testing.

6.3 Practice: which components of a new EUV wafer scanner
should be modeled?

In Chapters 3, 4, and 5, different activities of the MBI&T method were successfully applied
to a current version of the EUV wafer scanner. The goal of these applications was to provide
a proof of concept showing that models can effectively be used for early integration and
testing, answering QUESTION 1.3. Although these chapters showed that the MBI&T method
is applicable as well as profitable in industrial practice, the estimated profitability was not a
main criterion for deciding where to apply the method for this proof of concept. Instead,
these decisions were mainly based on the estimated applicability, e.g., problem size and
characteristics, and on the personal involvement of ASML engineers in both the TANGRAM
project and in the development of the EUV wafer scanner.

After seeing the applicability and potential profitability of the MBI&T method, the devel-
opers of the current version of the EUV wafer scanner would like to know, for future versions
of the EUV wafer scanner, which components are the most interesting and profitable can-
didates for model-based integration and testing. Assuming that a new version of the EUV
wafer scanner should be developed, the next subsections describe how the five steps of the
quantitative decision making process were executed in order to decide which components
should be modeled, providing an answer to QUESTION 2.3, repeated below.

QUESTION 2.3 Isitfeasible in current industrial practice to quantify the costs of the early
I&T method and to decide where and when the method should be applied?

6.3.1 Step 1: Create an I&T process model with component realizations
only

In a new version of the EUV wafer scanner, some components of the current version may
be reused or adapted, while other components may be new and need to be developed from
scratch. These reused, adapted, and new components should then be integrated according
to a predetermined system architecture. Figure 6.7 shows an example of a part of such a
system architecture, in which the boxes represent the components and the lines represent
the interfaces. The figure shows five subsystems, A through E, for which the grey values

106 Chapter 6. Integration and testing process

of the boxes denote different characteristics of the components. The light grey component
realizations (subsystems A and B) are reused from the current version of the EUV wafer
scanner, which means that these components will be available earlier and have less risk
since they are more mature. In the I&T process model, the development time of a light grey
component is 40 time units. The dark grey components (subsystems C, D and E) are newly
developed component realizations, which means that they will be available later and have
more risk since they have never been used and tested before. In the I&T process model, the
development time of a dark grey component is 160 time units. Finally, the white ‘switch’
components, denoted by S, are not part of the real system but they are ‘dummy’ components
to express the risk reduction of testing with models in a more realistic way, which is explained
later in this section. Since they are ‘dummy’ components, they have zero development time
and add no risk to the system.

| | —

SA SB SC SD SE
I e I B
Za; Zp: 1 | Za Zp: (1 | ZE:s

Figure 6.7: Components and interfaces of a new version of the EUV wafer scanner

The interfaces in Figure 6.7 connect the components using different interaction types as
explained in Chapter 5. Most interfaces are used to connect components of the same subsys-
tem. Connections between components of different subsystems are mostly established via
the interfaces shown at the top of the figure that represent software interfaces, although three
other connections exist as well: between Z, and Zp,, between Zg, and S, and between Zp,
and Sg.

The different characteristics of the components and the interfaces influence the amount
of risk that they introduce in the system, as well as the amount of time that is needed to
reduce this risk by testing and by fixing the detected problems. In contrast to the system up-
grade example, in which Table 6.2 expressed the simple relation between tests, components,
and fixed test durations, the I&T process model in this case study incorporates risk to express
this relation and to determine test durations. In the I&T process model, risk is expressed by
multiplying the probability and the impact of fault states [Boumen et al. 2008], which denote

6.3. Practice: which components of a new EUV wafer scanner should be modeled? 107

possible problems that may be present in the system. Fault states may consider many differ-
ent types of problems, for instance a broken component, an error in the interface, missing
or erroneous functionality, or insufficient performance. A fault state has a certain probabil-
ity that it is present in the system. When a fault state is present in the system and when it
manifests itself in the system behavior, it has a certain impact on the system development
process, e.g., restarting the system, replacing a broken component, or even worse, revising
the component or system design to prevent the problem. The impact of a fault state usually
also depends on the point in time at which its presence is detected: later detection usually
means more impact. In the I&T process model of a new version of the EUV wafer scanner,
however, differences in fault state impacts are not considered, i.e., impact = 1, which means
that the risk only depends on the fault state probability.

Table 6.3 defines the fault states and shows the risk contribution of each component and
interface to these fault states. To reduce the size and the complexity of the table, only the com-
ponents and the interfaces related to subsystems A, B, and E are shown. The components
and internal interfaces of subsystem B are grouped and denoted by Zp* and B-internal*,
respectively. On the left-hand side, the table shows five fault states denoted by an f with
a subscript: three (internal) fault states for the individual subsystems, one fault state for
the interaction between subsystems A and E, and one fault state for the interaction between
subsystems B and E. The numbers in the table denote the relative risk contribution of the
components and interfaces to each fault state, where different numbers imply different lev-
els of risk contribution, e.g., based on the maturity of a component or on the partitioning
of interfaces, which is explained later. For example, Z,, introduces less risk than Zg,, since
subsystem A is reused from the current version of the EUV wafer scanner, while subsys-
tem E is newly developed, as indicated by the grey values in Figure 6.7. Note that for Zg* and
B-internal*, each of the grouped components and interfaces has an individual risk contribu-
tion of 0.3 to fault state fg.

Table 6.3: Contribution of components and interfaces to fault states

components interfaces
; =R e
NOoa g 8 04 7 N
2 0% a8 L Los g
N N N) %) 2} %) %) N %) N
Ja | o3
fs 0.3 0.3
fE 0.6
far 0.2 0.6 0.2
feE 02 0.6 0.6 02 o2

In a way similar to Table 6.3 that expresses how risk is introduced via components and
interfaces, Table 6.4 expresses how risk can be reduced by performing tests. The table shows
the fault states f on the left-hand side and possible tests, denoted with ¢, at the top. The indi-
vidual subsystems can be tested by t4, tg, and tg. To test the interaction between subsystems,
ta,g and tg,p can be used. Finally, the complete system can be tested by tpencnh using a test

108 Chapter 6. Integration and testing process

bench with only a part of the system, or by tsem using the complete system. The numbers
in the table denote the coverage of each test, i.e., the probability that a certain test detects a
certain fault state. For example, the internal subsystem fault states are completely covered
by the subsystem tests and partially by the interaction tests, which in turn completely cover
the interaction fault states. Besides the relation between tests and fault states, the table also
shows the duration of each test at the bottom. Different tests may have different durations,
e.g., an interaction test takes more time than an internal subsystem test, but less time than
a system level test. Note that information about which components need to be realized and
integrated to perform a certain test, similar to the second column of Table 6.2, is omitted
here, because it is straightforward in this case study: all tests except tpench require all com-
ponents of the involved subsystems, i.e., either one, two, or all subsystems. The test bench
used in tpenn consists of all components except for the components on the lowest level of
Figure 6.7.

Table 6.4: Tests and their coverage on the fault states

tA tB tE ta+E !B+E tbench tsystem
fa |1 0.5 0.5 I
fs I 0.5 0.5 I
fe I 05 05 05 I
fA-E I 0.5 I
fB-E I 0.5 I
time | 8 & &8 16 16 16 24

In this case study, the test durations in the I&T sequences are determined in another
way than in the system upgrade example of Section 6.2, which used constant test durations
as defined in Table 6.2. In this case study, the test durations are not constant, but they
depend on the remaining risk at the moment that a test is executed and thus on the pre-
ceding I&T sequence. Here, we only give an informal explanation of how the remaining
risk and the expected test duration at a certain point in the I&T sequence are calculated,
we refer to [Boumen 2007] for more details. When two system parts, i.e., one component
or multiple integrated components, are integrated by connecting an interface between these
system parts, the probability of a related fault state, and thus the risk, increases. This in-
creased risk is calculated using the fault state risks of the separate system parts and the risk
contribution of the connected interface as defined in Table 6.3. For example, when two sys-
tem parts with risks of 0.6 and 0.4 for a certain fault state are integrated via an interface
that contributes o.2 risk to that fault state, the increased fault state risk after integration is
I-(1-0.6)* (I-0.4)* (I -0.2) = 0.808. When a test is performed on a system part, the
risk of a fault state covered by this test decreases. This decreased risk is calculated using
the fault state risk before the test and the test coverage as defined in Table 6.4. For exam-
ple, when a system part has a risk of 0.8 for a certain fault state, and when it passes a test
that has o.5 coverage for that fault state, the risk after testing is 0.8 * (1 — 0.5) = 0.4. Using
risk calculations like these, the fault state risks continuously change with each integration or
test activity in the I&T sequence. This influences the expected duration of a particular test

6.3. Practice: which components of a new EUV wafer scanner should be modeled? 109

activity in the following way. A test activity may involve the execution of multiple tests, for
which the optimal test sequence is determined using a test sequencing algorithm [Boumen
et al. 2008]. This algorithm is based on a sequential diagnosis method [Pattipati et al. 1991]
and uses AND/OR graphs to represent test trees, showing which tests should be executed
depending on whether previous tests passed or failed. The expected duration of such a test
tree is calculated by multiplying the test durations defined at the bottom of Table 6.4 with
the probabilities that each test in the tree will be executed, which in turn depend on the
‘pass’ and ‘fail’ probabilities of previous tests in the tree. The ‘pass’ and ‘fail’ probabilities of
a test depend on the test coverage as well as on the fault state risks before the test, which are
calculated as described above.

6.3.2 Step 2: Extend the I&T process model of step 1 with component
models

As shown in Figure 6.7, subsystem E contains a new component E1 that needs to be devel-
oped from scratch. Besides that this means relatively long development times as described
in the previous subsection, subsystem E also interacts with many other subsystems, which
increases the risk of problems. Considering this high risk, it is expected that a model of com-
ponent Er would be a good candidate to improve the I&T process of a new version of the EUV
wafer scanner. In contrast to component E1, component A1 of subsystem A is reused from
the current version of the EUV wafer scanner and it has only one interface, i.e., it is available
earlier and has a lower risk. This means that including a model of component A1 probably
has a low profitability. By creating I&T process models that include these component models
and by analyzing the resulting I&T sequences, we investigate whether the quantitative deci-
sion making process can be used to confirm these expectations on the profitability of using
a model of components A1 and Er1.

Including component models in the I&T process model results in several changes with
respect to the information shown in Figure 6.7, Table 6.3 and Table 6.4. As shown in Fig-
ure 6.8, additional components (circles) and interfaces are introduced to represent the mod-
els Ma; and Mg,. In this case study, the development time for the models is defined at 16 time
units, which is shorter than the 40 and 160 time units of development time for the corre-
sponding realizations Z, and Zg,. The models have similar interfaces as the corresponding
realizations, connecting them to the same ‘switch’ components, one for M, and two for Mg,.
As previously mentioned, these ‘switch’ components are not part of the real system but they
are ‘dummy’ components to express the risk reduction of testing with models in a more re-
alistic way. Without the ‘switch’ components in the I&T process model, a model of a compo-
nent would have interfaces to all other components to which the corresponding realization is
connected as well, e.g., Mg, in Figure 6.8 would have interfaces to Z,, through Zp,, as well as
to Zg, and Zp,. Testing the combination of Mg, and some of these other components would
then require that the model interfaces, e.g., between Mg, and Z,,, are integrated, while the
realization interfaces, e.g., between Zg, and Z,,, are not integrated. This means that the risk
of the realization interface is not tested with the model, and will completely be introduced
when the component realization is integrated via the interface. This does not correspond
to reality, since an important aspect of using models for integration and testing is that the

110 Chapter 6. Integration and testing process

interaction between components, i.e., the risk in the interfaces, is at least partly tested at an
early stage. This is the reason why the ‘switch’ components were introduced and the inter-
faces were partitioned. For example, a test that uses Mg, and Z,, already includes a large part
of the interface risk between Zg, and Z,,, namely the interface between Sg and S (with a
relatively large risk contribution to fault state fy g, see Table 6.3) and the interface between Sx
and Z,,. Together with the interface between Sg and Mg,, a large part of the final realization
interface and its corresponding risk is reduced when testing with models. Later, when Mg,
is replaced by Z,, only the risk related to the interface between the Zg, and Sg is added to
the system risk and needs to be reduced by testing.

| | —
Sa Sg Sc Sp Sg [

I e A
@ ZA1 ZBI | ZCI ZDI] ZEI @9

!
S E
[J

Figure 6.8: Including models of components A1 and E1

Table 6.3 changes in a sense that new columns for the models and the related interfaces
are added and their relative risk contribution to each fault state is defined. In principle,
models should be abstract representations of the realizations and they should not introduce
additional risk on top of the risk introduced by the realizations themselves. In practice, how-
ever, there is a possibility that models differ from the actual realization, which introduces
some additional risk in the system. This is expressed in Table 6.3 by giving the models and
related interfaces a small relative risk contribution to the same fault states as their realization
counterparts. For example, Mg, gets a relative risk contribution of o.1 to fault state f¢, and
the interface between Sg and Mg, gets a relative contribution of o.1 to both fy ¢ and fg g. This
additional risk introduced by the models should also be reduced by testing, which is part of
the additional costs of using models in the I&T process. Table 6.4 remains unchanged when
models are added. The information about the required components for each test changes
in a sense that whenever a test requires Z, or Z,, there is also a choice of using the cor-
responding models Ma; and Mg, similar to the choices denoted by the round brackets in
Table 6.2. The I&T sequencing algorithm as used in the next step of the quantitative de-
cision making process decides which of the choice alternatives is the most profitable with
respect to the used optimization criteria.

6.3. Practice: which components of a new EUV wafer scanner should be modeled? 111

6.3.3 Step 3: Determine the I&T sequences for all I&T process models

Applying the changes described in the previous subsection results in three different I&T
process models: one without component models (A), one with a model Mg, (B), and one
with a model My, (C). For each I&T process model, the (nearly) optimal I&T sequence is
determined using the I&T sequencing algorithm from [Boumen 2007], using the lead time
as optimization criterion, a ‘reduce all risk’ stopping criterion for each test activity, and a
heuristic that reduces the number of 1&T sequences by preferring those that have as much
parallelism as possible.

For I&T sequencing, the heuristics should be used with care since their settings regard-
ing the number of considered alternatives combined with the fact that the I&T sequencing
algorithm uses estimations to choose between alternatives showed to be quite sensitive for
the results. By increasing the number of considered alternatives for a heuristic (with the
expectation that better sequences may be found), certain alternatives may be ‘overruled’ by
alternatives that have a higher estimated profitability at the time of making the choice (e.g.,
shorter lead time by skipping a test), but in fact these alternatives result in a lower profitabil-
ity when the complete sequence is determined (e.g., since a skipped test leaves more risk that
needs be reduced later). To overcome this issue, the I&T sequencing algorithm was executed
multiple times with different heuristic settings regarding the number of alternatives taken
into consideration. The best results for each I&T process model are shown in Table 6.5, with
the lead time (total duration of the I&T sequence), the test time (the amount of time spent on
all I&T activities), and the total time (the amount of time spent on all activities, i.e., including
development) as well as the relative differences when compared to I&T process model A.

Table 6.5: Results of the three I&T process models

I&T process model | Lead time Difference | Testtime Difference | Total time Difference
A. without models 438 - 426 1922 -

B. with Mg, 396 -9.6% 508 +19.2% 2020 +5.1%
C. with Ma, 439 +0.2% 438 +2.8% 1950 +1.5%

Figure 6.9 shows the resulting I&T sequences for I&T process models A and B, in the
form of a Microsoft Project Gantt Chart. The figure shows all activities related to devel-
opment and integration (dashed bars), modeling (white bar at third line from below) and
testing (black bars) over time, and the precedences between the activities (arrows). On the
topmost line of the I&T sequences, the long white bar with triangular line ends indicates the
lead time of the sequence. For simplicity, the development and integration activities of some
subsystems and the ‘switch’ components are grouped (denoted with < and > brackets). Note
that the main ‘branches’ of the two I&T sequences are different. In I&T process model A,
one main branch contains subsystems B and D, while the other main branch contains the
‘switch’ components and the subsystems A, C, and E. In I&T process model B, subsystems C
and E are ‘moved’ from the second main branch to the first main branch with subsystems B
and D, while subsystem A and the ‘switch’ components remain in the second main branch,
which now also includes Mg, for early testing of the interface between subsystems A and E.

112 Chapter 6. Integration and testing process

A. without models < >
Test (‘A-7',['testtree'])
Integrate ['B+D','switches+Zg+C+Z4, ']
Test ('A-G',['testtree'])

Integrate ['subsystem B','subsystem D']

Test (‘A-5',['testtree']) r—l
<Develop/integrate subsystem B>

<Develop/integrate subsystem D> E y
Test ('A-4',['testtree'])

Integrate ['switches',' Zg,','subsystem C','Zx,']
<Develop/integrate switches> C
Test (‘A-3',['testtree'])

Develop Z, C 3

Test ('A-2',['testtree']) m
<Develop/integrate subsystem C>
<l

Test ('A-1',['testtree'])
Develop Za;

lead time
reduction

D

B. with model Mg,
Test ('B-7',['testtree'])
Integrate ['B+Zg+C+D','switches+ Mg+ Z4;']
Test ('B-6',['testtree'])
Integrate ['B+Zp,','Zg,','C+D -/- Zp,']
Integrate ['subsystem B','Zp |
Test ('B-5',['testtree'])
<Develop/integrate subsystem B>
Develop Zp,
Test ('B-4',['testtree'])
Develop Zg, L ¥
Integrate ['subsystem C','subsystem D -/- Zp,]
Test ('B-3',['testtree'])
<Develop/integrate subsystem C>
<Develop/integrate subsystem D -/- Zp,> C <
Test ('B-2',['testtree'])
Integrate ['switches',' Mg;',' Za;']
<Develop/integrate switches>
Develop Mg,
Test ('B-1',['testtree'))
Develop Z,

Figure 6.9: I&T sequences for I&T process model A (top) and B (bottom)

6.3. Practice: which components of a new EUV wafer scanner should be modeled?

113

Risk

3-5

2.5

L5

0.5

—— Zp; k- ZAp

A4

N

aAl

A3

50

I00

150

200

250 300 350 400

Time

450

(a) I&T process model A (without models)

Risk

3.5

2.5

|—o—Zpi --#--Zar —+- Mg |

\B-6 B-7

S EEE R SR P

AR

B-4

50

100

150

200

250 300 350 400

Time

450

(b) I&T process model B (with M)

Figure 6.10: Risk profiles

114 Chapter 6. Integration and testing process

6.3.4 Step 4: Compare the resulting I&T sequences on quantified benefits
and costs

Several conclusions can be drawn from the results shown in Table 6.5 and Figure 6.9. First,
these quantitative results support the initial expectations that creating Mg, would be prof-
itable, i.e., the lead time is reduced by 9.6%, and that creating M, would be less profitable,
i.e., the lead time even increases with 0.2% due to the additional risk introduced by the
model. As expected, Mg, enables early testing of the interaction between subsystem E and
the other subsystems. For example, by looking at the numbered test trees in Figure 6.9, the
interface between subsystems A and E can be tested after 60 time units when Mg, is used
(test tree B-2), while this is only possible after 192 time units when no models are used (test
tree A-4). Second, the test time results in Table 6.5 show that more time is available for
testing when a model is used, which increases the system overview and the product quality.
This is not only caused by the possibility of earlier testing with the model, but also by the
possibility of more parallel testing, as shown by the black testing bars in Figure 6.9. This
increased test time is also responsible for the major part of the increased total time as shown
in the last column of Table 6.5. The other and much smaller part of the increased total time
is caused by model development, which took 16 time units in this case study.

Another view on the effects of using models in the I&T process is shown in Fig-
ures 6.10(a) and 6.10(b), which contain the risk profiles for I&T process models A and B,
respectively. Similar to the T-Q-C figures of Sections 1.3 and 1.4 in Chapter 1, the risk in-
creases when components are developed and integrated, i.e., potential problems related to
the fault states are revealed, and the risk decreases when a system part is tested and the
detected problems are fixed (the numbers at the slopes correspond to the test trees in Fig-
ure 6.9). For simplicity, the figures only show the risk profiles for Zg,, Za,;, and Mg,, because
using Mg, has the most influence on these risk profiles. Furthermore, linear abstractions of
the risk profiles are used since the I&T sequencing algorithm only calculates the risk at the
start and at the end of each integration or test activity (the points in the figure); especially the
decrease of risk during testing will have a more exponential shape in reality. Also note that
when system parts are integrated in the I&T sequence, the corresponding risk profiles are
combined and continued as one risk profile. This also explains the higher risk peak at the
end of the I&T sequence in Figure 6.10(b), where all components and thus all risk profiles
are integrated just before the last test activity (test tree B-7 in Figure 6.9). In Figure 6.10(a),
however, the main risk of Zg, and Z,, is tested halfway the I&T sequence (test tree A-4 in
Figure 6.9). At this point, subsystems B and D of the other main branch are not integrated
yet, i.e., also their risk profiles are not yet combined with the Z, risk profile in Figure 6.10(a).

The results of the case study are preliminary and need further investigation before real
decisions regarding the use of models in the I&T process (step 5) are to be based on it.
For example, the relative probabilities and impacts of fault states, as well as the coverage and
durations of the tests should be validated, the use of heuristics should be investigated in more
detail, and more risk data should be obtained, e.g., using I&T process simulation techniques
[De Jong et al. 2007b]. Nevertheless, these preliminary results show that the shapes of the
risk profiles in Figure 6.10 correspond to the initial intention of early integration and testing
as shown in Figure 1.7 in Chapter 1. By using a model Mg, the system risk is revealed at an

6.4. Conclusions 115

earlier stage, after which it is immediately reduced by testing (in test tree B-2), resulting in a
lead time reduction for the I&T process.

6.4 Conclusions

This chapter started with a description of the current I&T process, using a system upgrade
example that is common in industry. Nine different categories of I&T activities were identi-
fied that cover different system aspects. Since tests can only be performed with realizations,
the test costs are relatively high and the tests can only be performed late in the process,
where fixing the detected problems is relatively expensive. Subsequently, it was shown how
the model-based analysis and testing techniques of the MBI&T method can be applied in
each category of I&T activities to enable earlier and more parallel testing with lower costs,
which answers QUESTION 2.1.

By using the I&T sequencing method from [Boumen 2007], we showed how (nearly)
optimal sequences of I&T activities can be determined and how the costs of using models in
the I&T process can be quantified. This quantification of costs supports the decision making
process of when the use of models is profitable, thus answering QUESTION 2.2. The results
of a basic system upgrade example showed that the lead time and costs of the current I&T
process can be reduced by performing tests earlier with models.

Finally, to answer QUESTION 2.3, the proposed quantitative decision making process was
applied to the I&T process of a new version of the EUV wafer scanner, showing that it is
feasible in current industrial practice to quantify the costs of the MBI&T method and to
decide where and when the method should be applied. Three different I&T process models
were created that described different scenarios regarding the use of component models. The
resulting I&T sequences showed that the profitability of using models can be quantified in
terms of reduced lead time, increased and more parallel test time, and risk profiles that
show the early revealing of risk which can subsequently be reduced early by testing. The
quantitative decision making process supported the initial expectations on the profitability
of using different models in the I&T process. Using a model of a new component with
many interfaces proved to be profitable (9.4% lead time reduction), while using a model of a
reused and more mature component even increased the lead time a bit by 0.2%, due to the
additional model risk that has to be reduced by testing as well.

Using this quantitative decision making process in practice requires estimations of the
development or delivery times of realizations and models. Furthermore, explicit knowledge
is required about possible fault states of the system with their (relative) probability and im-
pact, and about the available tests with their (relative) coverage and duration. As described
in [Boumen 2007], ASML test engineers that currently use the I&T sequencing method for
periodic software qualification testing (I&T activity 1 of Table 6.1) are able to make these es-
timations and to maintain the corresponding I&T process model. However, I&T sequencing
should not be considered as a ‘push the button’ technique, since the heuristics and their
configuration may be quite sensitive for the results and should thus be used with care.

In this chapter, we focused on quantifying the costs C of reducing the time-to-market T
using the MBI&T method. As shown in the previous chapters, reducing time-to-market T is

116 Chapter 6. Integration and testing process

not the only advantage of the MBI&T method. It can also increase the system overview and
the product quality Q, it can test all possible behaviors using model checking, the costs for
diagnosing and fixing problems can be reduced, and models enable easier and less expensive
testing of exceptional behavior. Although these advantages were not considered in the case
study of the quantitative decision making process, they can be expressed in the I&T process
model in the following way. As previously mentioned, the effects on product quality can be
expressed in terms of risk, e.g., by optimizing the I&T sequences towards minimal risk at a
fixed system shipment date. When model checking is considered to be a form of testing the
system model with very high coverage, i.e., all possible behaviors, this can be defined in the
I&T process model by a high coverage test that can be performed with models only. Although
they were not incorporated in the case study, the costs for diagnosing and fixing a fault state
can also be expressed in the I&T process model. This can be used to express the lower
diagnosis and fix costs when models are used for early testing, e.g., by letting the fix costs
increase over time. Furthermore, the tests in the I&T process model can be defined such
that they can be performed using only models or only realizations, possibly with different
test costs. This allows the modeling of, for example, tests related to machine damage control
that can be performed at low costs with models (since machine damage situations can be
simulated) but not at all or only at high costs with realizations (with the risk that real machine
damage occurs). Finally, ‘what if” scenarios can be used to investigate, for example, the effects
of developing more detailed models, implying higher model development times, but also a
higher coverage of the MBI&T activities and less I&T activities that can be performed with
realizations only. Also decisions between longer but low cost model testing and shorter
but more expensive realization testing can be made by analyzing ‘what if” scenarios. These
possible extensions show that I&T sequencing is a suitable technique to get insight in and to
analyze possible scenarios for industrial I&T processes, e.g., already during system design,
and to make decisions on which I&T activities should be performed in which order, and
whether or not models should be used for these I&T activities.

CHAPTER 7

Concluding remarks

In this thesis, a model-based integration and testing (MBI&T) method has been proposed to
reduce the disadvantageous effects of the integration and test phases on the time-to-market,
product quality, and costs business drivers of high-tech multi-disciplinary system develop-
ment. The method uses formal and executable models to enable thorough system analysis
when no component realizations are available (QUESTION 1.I), as well as automatic com-
ponent testing and integrated system testing when only some component realizations are
available (QUESTION 1.2). Relevant industrial case studies showed that the MBI&T method
is applicable and profitable in current industrial practice (QUESTION 1.3). In order to decide
where (QUESTION 2.1) and when (QUESTION 2.2) it is profitable to apply this method in an
industrial I&T process, a quantitative decision making process has been proposed to quan-
tify and compare the costs of various I&T processes. Also the practical applicability of this
quantitative decision making process was shown in an industrial case study (QUESTION 2.3).

In principle, the MBI&T method could be instantiated with paradigms, mathematics,
and tools for any system development process in which the components are separately de-
veloped and for which it is difficult to analyze and test the system without having a realized
and integrated system available. In this thesis, the MBI&T method was instantiated with the
concurrent processes paradigm, together with mathematics and tools based on the process
algebraic language x. The hypothesis was that this instantiation fulfills all requirements of
the proposed MBI&T activities in Section 2.3 and that it is suitable to perform these activi-
ties in industrial practice, focusing on component interaction and time behavior. Chapters 3
through 5 showed that this hypothesis was accepted and that the x toolset is indeed suitable
to apply all MBI&T activities in industrial practice. The x language is an expressive and
compositional language to model systems in the concurrent processes paradigm, including
equivalents of other paradigms, e.g., physical phenomena, that are important for the consid-
ered system behavior. Due to its formal semantics, the behavior of a x model can be precisely
determined and analyzed, and it can in principle be translated automatically into other forms
required for particular analysis and testing techniques such as model checking, automatic
model-based testing, and real-time execution in combination with non-Y components.

17

118 Chapter 7. Concluding remarks

The main academic contribution of this Ph.D. project is a method based on models in
the concurrent processes paradigm that, in addition to simulation and model checking, also
provides a consistent and systematic way to integrate and test combinations of models and
realizations of industrial systems, using the same modeling language and toolset. Although
this model-based integration approach is well-known and common for other paradigms, e.g.,
hardware-in-the-loop testing in the dynamics and control paradigm, it is a rather new and un-
explored area for the concurrent processes paradigm. In the model-based integrated system,
the interaction between models and realizations and the real-time behavior are no longer
handled according to the formal model semantics. The handling of component interaction
and real-time behavior is implemented using a model-based integration infrastructure such
that the overall system behavior is equivalent to the modeled and analyzed system behav-
ior, possibly with some acceptable restrictions, e.g., regarding the execution speed. For the
industrial examples in Chapter 5, we gave an informal and intuitive indication that the cor-
rectness of the infrastructural properties is preserved when the model of the infrastructure
is replaced by this model-based integration infrastructure. Formal proofs that these infras-
tructural properties remain valid for different interaction types and for real-time behavior are
left as future work.

The main industrial contribution of this Ph.D. project is that the MBI&T method showed
several benefits compared to the current industrial way of working. The modeling activities
help to clarify, correct, and complete the design documentation, which directly improves the
system quality. By discussing the questions and issues raised in the modeling activities with
the involved engineers, their system overview increases and the communication between the
engineers improves, which indirectly improves the system quality. Using simulation and
model checking techniques, design and integration problems are detected at an earlier stage
of system development, where the costs for fixing them are lower. Formal model checking
proved to be useful to analyze all possible behaviors of the system, including the exceptional
behavior and the non-deterministic behavior which are often insufficiently documented and
understood while they may cause major problems and unexpected, hard to diagnose behavior
on the system level. Especially for systems with high risks for machine damage or human
safety, analyzing all possible behaviors is essential in order to guarantee correct and safe sys-
tem behavior under all circumstances. Finally, the integration of models and realizations
using a model-based integration infrastructure yields an early representation of the real in-
tegrated system. The fact that this model-based integrated system can be established much
earlier compared to a real integrated system means that integration and testing can start
significantly earlier (several months before real integration) and that the total I&T effort is
distributed over a wider time frame, i.e., the real I&T phases become less critical. Because
of the complete insight in and control over the models used in a model-based integrated sys-
tem, system tests can be performed more efficiently and with lower costs for diagnosis and
fixing, e.g., creating non-nominal conditions to test exceptional behavior is easier, less ex-
pensive, and less risky when models are used instead of realizations. Recalling the possible
solutions to the I&T problem from Chapter 1, the MBI&T method did not only enable early
integration and testing but also contributed to the other two solutions. In the test phase,
the risk reduction rate is increased by providing sophisticated and automated analysis and
testing techniques with complete insight in and control over the test conditions. In the devel-

119

opment phase, the maximum system risk is reduced by providing early system level feedback
to the component designers. This means that the effects of using the MBI&T method on the
T-Q-C business drivers combines the effects as shown in Figures 1.5 through 1.7, enabling a
reduction of the time-to-market T and costs C of system development while maintaining or
even improving the product quality Q.

Looking at the investigated application area of the MBI&T method, i.e., component inter-
action and time behavior, the behavior of the encountered systems was not extremely com-
plex, which, of course, is also the intention of the designers. During the MBI&T activities,
the level of concurrency and non-determinism remained manageable and comprehensible,
e.g., it did not feature true concurrency, and the used interaction types were straightforward.
This level of complexity could easily be dealt with using proven technology and tools from
academic research, e.g., the computational limits of model checking regarding state space
size were not reached, and, for model-based integration, the asynchronous interaction types
used in the application could easily be modeled and implemented using additional buffer
processes.

One of the lessons learned in this Ph.D. project is that, when applying academic results
in industry, one should realize and accept that the (not always optimal) conditions and con-
straints, e.g., incomplete and ambiguous designs, are part of the current industrial problem
which should be and can be dealt with, also when using formal techniques that often rely on
complete specifications.

Another lesson learned is that when models are used for integration and testing, the
perspective on the goal of modeling is different than for model-based approaches used in
system development. Many model-based approaches are ‘top-down, i.e., the intended system
behavior is modeled, after which correctness preserving model transformations are used to
obtain more detailed models (refinement) and eventually component realizations (code gen-
eration). In contrast to this, models for integration and testing should represent the actual
component and system behavior, i.e., as it is designed, including the issues and potential
system level problems. Then, using a ‘bottom-up’ approach, the ‘as is’ component models
are integrated and the (potentially incorrect) emerging system behavior, e.g., the interaction
and time behavior of the components, is determined such that system level problems are
detected as early as possible.

As intended, the activities of the MBI&T method are complementary to the current way
of working and do not require changes in the system development process. Creating the
models is based on the ‘as is’ component designs, independent of the form of these designs
(mental model, document, computer model) and without posing additional requirements on
the current way of working for the requirements definition, design, and realization phases.
However, the activities do require a certain amount of time to be invested by the involved
engineers for answering questions about unclarities in their designs and for discussing the
models and the analysis results. In return, the MBI&T activities provide them with valuable
feedback on the system behavior and increase their system overview. In addition to these
time investments, a MBI&T activity that involves component realizations requires that test
resources, e.g., a component realization or a prototype system, are allocated to perform the
MBI&T activity. This may influence the current I&T process in a sense that there are more
possible I&T activities to which the (limited) test resources must be allocated. In order to

120 Chapter 7. Concluding remarks

determine whether these additional costs introduced by the MBI&T method outweigh the
benefits, and to determine when it is profitable to use the MBI&T method, the quantitative
decision making process as proposed in Chapter 6 can be used.

Looking back at this Ph.D. project, it is clear that it is a good example of the ‘industry
as laboratory’ approach utilized by the Embedded Systems Institute: proven technology and
tools from academic research were used, adapted, and combined in order to apply them
in industrial practice. The proof of concept application focused on a real industrial system
in its development phase. As a consequence and as a side-effect, some immediate lessons
were learned by the involved engineers which helped them in their daily work and enabled
them to improve the system quality at an earlier stage. In this manner, it has been proven
in theory and in practice that the MBI&T method really reduces the I&T lead time and
thus time-to-market and costs for ASML. Furthermore, this project increased the awareness
of ASML engineers that models offer a systematic way of working, which enables them to
obtain more complete and less ambiguous designs, and, with proper model semantics, to
automatically analyze all possible behaviors of a system, which is essential but hardly possible
in the current, document-based way of working.

References

Airbus (2007). Website. http://www.airbus.com.

American Heritage Dictionary of the English Language (2007). Definition of “paradigm” at
dictionary.com. http://dictionary.reference.com/browse/paradigm.

ASML (2007). Website. http://www.asml.com.

Awerbuch, B. (1985). Complexity of network synchronization. Journal of the ACM, vol. 32,
no. 4, pp. 804-823.

Baeten,].C.M. and Weijland, W.P. (1990). Process algebra, vol. 18 of Cambridge Tracts in Theo-
retical Computer Science. Cambridge University Press.

Baeten, J.C.M. and Bergstra, J.A. (1992). Asynchronous communication in real space pro-
cess algebra. In: Proceedings of the 2nd International Symposium on Formal Techniques in
Real-Time and Fault-Tolerant Systems (FTRTFT’92), Nijmegen, the Netherlands, vol. 571 of
Lecture Notes in Computer Science, pp. 473—492. Springer-Verlag.

Baeten, J.C.M., van Beek, D.A., and Rooda, J.E. (2007). Process algebra. In: CRC Handbook
of Dynamic System Modeling, chap. 19, pp. 19.1-19.19. Chapman & Hall/CRC.

von der Beeck, M., Braun, P., Rappl, M., and Schroder, C. (2002). Model-based require-
ments engineering for embedded software. In: Proceedings of the IEEE Joint International
Conference on Requirements Engineering (RE’02), Essen, Germany, p. 92.

van Beek, D.A. and Rooda, J.E. (2000). Languages and applications in hybrid modelling and
simulation: positioning of Chi. Control Engineering Practice, vol. 8, no. 1, pp. 81-91.

van Beek, D.A., van der Ham, A., and Rooda, J.E. (2002). Modelling and control of process
industry batch production systems. In: Proceedings of the 15th Triennial World Congress of
the International Federation of Automatic Control (IFAC’02), Barcelona, Spain. CD-ROM.

van Beek, D.A., Man, K.L., Reniers, M.A., Rooda, J.E., and Schiffelers, R.R.H. (2005). Syntax
and semantics of timed Chi. Computer Science report o5-09, Eindhoven University of
Technology.

I21

122 References

van Beek, D.A., Man, K.L,, Reniers, M.A., Rooda, J.E., and Schiffelers, R.R.H. (2006a). Syn-
tax and consistent equation semantics of hybrid Chi. Journal of Logic and Algebraic Pro-
gramming — Special issue on Process Theory for Hybrid Systems, vol. 68, no. 1—2, pp. 129—210.

van Beek, D.A., Man, K.L., Reniers, M.A., Rooda, J.E., and Schiffelers, R.R.H. (20006D).
Deriving simulators for hybrid chi models. In: Proceedings of IEEE International Symposium
on Computer-Aided Control Systems Design (CACSD’06), Munich, Germany, pp. 42—49.

van Beek, D.A., Hofkamp, A.T., Reniers, M.A., Rooda, J.E., and Schiffelers, R.R.H. (2008).
Syntax and formal semantics of Chi 2.0. Systems Engineering report 2008-or1, Eindhoven
University of Technology. ISSN: 1872-1567.

Behrmann, G., Hune, T., and Vaandrager, F.W. (2000). Distributing timed model checking
—how the search order matters. In: Proceedings of 12th International Conference on Computer
Aided Verification (CAV’00), Chicago, IL, USA, vol. 1855 of Lecture Notes in Computer Science,
pp. 216—231. Springer-Verlag.

Behrmann, G., David, A., Hikansson, J., Hendriks, M., Larsen, K.G., Pettersson, P., and Yi,
W. (20006). UPPAAL 4.0. In: Proceedings of the 3rd International Conference on Quantitative
Evaluation of Systems (QEST’006), Riverside, CA, USA, pp. 125-120.

Bengtsson, J. and Yi, W. (2004). Timed automata: semantics, algorithms and tools. In:
Lectures on Concurrency and Petri Nets, vol. 3098 of Lecture Notes in Computer Science, pp.
87-124. Springer-Verlag.

Benz, S. (2007). Combining test case generation for component and integration testing.
In: Proceedings of the 3rd international workshop on Advances in Model-Based Testing (A-
MOST’oy), London, UK, pp. 23—33. ACM Press.

van der Bijl, M., Rensink, A., and Tretmans, J. (2003). Compositional testing with ioco.
In: Proceedings of the 3rd International Workshop on Formal Approaches to Software Testing
(FATES’03), Montreal, Canada, vol. 2931 of Lecture Notes in Computer Science, pp. 86-100.
Springer-Verlag.

Boehm, B.W. (1981). Software engineering economics. Prentice Hall.

Boehm, B.W. and Basili, V.R. (2001). Software defect reduction top 10 list. IEEE Computer,
vol. 34, no. 1, pp. 135-137.

de Boer, E.S., Klop, J.W., and Palamidessi, C. (1992). Asynchronous communication in
process algebra. In: Proceedings of the 7th annual IEEE symposium on Logics in Computer
Science (LICS’92), Los Alamitos, CA, USA, pp. 137-147. IEEE Computer Society.

Bohnenkamp, H. and Belinfante, A. (2005). Timed testing with TORX. In: Proceedings of
the International Symposium of Formal Methods Europe (FM’05), Newcastle, UK, vol. 3582 of
Lecture Notes in Computer Science, pp. 173—-188. Springer-Verlag.

References 123

Bortnik, E.M., van Beek, D.A., van de Mortel-Fronczak,].M., and Rooda, J.E. (2005a). Verifi-
cation of timed Chi models using UPPAAL. In: Proceedings of the 2nd International Confer-

ence on Informatics in Control, Automation and Robotics (ICINCO’05), Barcelona, Spain, pp.
486—492. INSTICC Press.

Bortnik, E.M., Trcka, N., Wijs, A.J., Luttik, S.P., van de Mortel-Fronczak, .M., Baeten,].C.M.,
Fokkink, W.J., and Rooda, J.E. (2005b). Analyzing a x model of a turntable system using
SPIN, CADP and UPPAAL. Journal of Logic and Algebraic Programming, vol. 65, no. 2, pp.

5I-104.

Bortnik, E.M., van de Mortel-Fronczak,].M., and Rooda, J.E. (2007). Verifying Chi models
in UPPAAL. Systems Engineering report 2007-06, Eindhoven University of Technology.
ISSN: 1872-1567.

Boumen, R., de Jong, [.S.M., Vermunt,].W.H., van de Mortel-Fronczak, .M., and Rooda, J.E.
(2000). A risk-based stopping criterion for test sequencing. Internal Report SE 420460,
Eindhoven University of Technology. Submitted for publication in IEEE Transactions on
Systems, Man, and Cybernetics — Part A: Systems and Humans.

Boumen, R. (2007). Integration and test plans for complex manufacturing systems. Ph.D. thesis,
Eindhoven University of Technology.

Boumen, R., de Jong, I.S.M., Vermunt,].W.H., van de Mortel-Fronczak, J.M., and Rooda,
J.E. (2008). Test sequencing in complex manufacturing systems. IEEE Transactions on
Systems, Man, and Cybernetics — Part A: Systems and Humans, vol. 38, no. 1, pp. 25—37.

Braspenning, N.C.W.M., Kosti¢, D., van de Mortel-Fronczak,].M., and Rooda, J.E. (2006a).
Model-based support for early integration and testing of a multi-disciplinary industrial
system. In: Proceedings of the 5th European Systems Engineering Conference (EuSEC’00),
Edinburgh, UK. CD-ROM.

Braspenning, N.C.W.M., van de Mortel-Fronczak,].M., and Rooda, J.E. (2006b). A model-
based integration and testing method to reduce system development effort. Electronic Notes
in Theoretical Computer Science — Proceedings of the 2nd workshop on Model-Based Testing
(MBT’006), Vienna, Austria, vol. 164, no. 4, pp. 13—28.

Braspenning, N.C.W.M., Boumen, R., van de Mortel-Fronczak,].M., and Rooda, J.E. (2007a).
A quantitative method to decide where and when it is profitable to use models for integra-
tion and testing. Systems Engineering report 2007-14, Eindhoven University of Technol-
ogy. ISSN: 1872-1567. Submitted for publication in Computers in Industry.

Braspenning, N.C.W.M., van de Mortel-Fronczak,].M., and Rooda, J.E. (2007b). Analysis and
implementation of infrastructure for model-based integration and testing. In: Proceedings
of the 5th Annual Conference on Systems Engineering Research (CSER’0y), Hoboken, NJ, USA.
CD-ROM. Available online at http://www.stevens.edu/cser/.

124 References

Braspenning, N.C.W.M., van de Mortel-Fronczak, J.M., and Rooda, J.E. (2007¢). Modeling,
analysis, and implementation of infrastructure for model-based integration and testing.
Systems Engineering report 2007-08, Eindhoven University of Technology. ISSN: 1872—
1567. Submitted for publication in IEEE Transactions on Automation Science and Engi-
neering.

Braspenning, N.C.W.M,, van der Ploeg, D.O., van de Mortel-Fronczak, .M., and Rooda, J.E.
(2007d). Model-based techniques for intelligent integration and testing in industry. In:

Proceedings of the 17th International Symposium of INCOSE (INCOSE’07), San Diego, CA,
USA. CD-ROM.

Braspenning, N.C.W.M., Bortnik, E.M., van de Mortel-Fronczak, J.M., and Rooda, J.E.
(2008). Model-based system analysis using Chi and UPPAAL: an industrial case study.
Computers in Industry, vol. 59, no. 1, pp. 41-54.

Bratthall, L.G., Runeson, P., Adelsward, K., and Eriksson, W. (2000). A survey of lead-time
challenges in the development and evolution of distributed real-time systems. Information
and Software Technology, vol. 42, no. 13, pp. 947—958.

Brinksma, E. and Tretmans, J. (2001). Testing transition systems: an annotated bibliography.
In: Revised tutorial lectures of the 4th Summer School on Modelling and Verification of Parallel
Processes (MOVEP’00), Nantes, France, vol. 2067 of Lecture Notes in Computer Science, pp.
187-195. Springer-Verlag.

Brooks, F.P. (1995). The mythical man-month: essays on software engineering — 20th anniversary
edition. Addison-Wesley Professional, 1st edn.

Brugman, T. and Beenker, F. (2003). TANGRAM project plan. Technical report 2002-10060,
ASML and Embedded Systems Institute (ESI).

Chandrupatla, T.R. and Belegundu, A.D. (2002). Introduction to finite elements in engineering.
Prentice Hall, 3rd edn.

Curtis, B., Krasner, H., and Iscoe, N. (1988). A field study of the software design process for
large systems. Communications of the ACM, vol. 31, no. 11, pp. 1268-1287.

David, A., Behrmann, G., Larsen, K.G., and Yi, W. (2003). A tool architecture for the next
generation of UPPAAL. In: UNU/IIST 1oth Anniversary Colloquium — Formal Methods at
the Cross Roads: from Panacea to Foundational Support, Lisbon, Portugal, no. 27757 in Lecture
Notes in Computer Science, pp. 352—366. Springer-Verlag.

Demaine, E.D. (1998). Protocols for non-deterministic communication over synchronous
channels. In: Proceedings of the 12th International Parallel Processing Symposium and gth
Symposium on Parallel and Distributed Processing (IPPS—SPDP’98), Orlando, FL, USA, pp.
24—30. IEEE Computer Society.

Denissen, W.J.A. (2006). A multidisciplinary model-based test and integration infrastruc-
ture. In: Proceedings of IEEE International Symposium on Computer-Aided Control Systems
Design (CACSD’06), Munich, Germany, pp. 1916—1921.

References 125

Deppe, M., Zanella, M., Robrecht, M., and Hardt, W. (2004). Rapid prototyping of real-
time control laws for complex mechatronic systems: a case study. Journal of Systems and
Software, vol. 40, no. 3, pp. 263—274.

Diethers, K. and Huhn, M. (2004). Vooduu: verification of object-oriented designs using
UPPAAL. In: Proceedings of Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’04), Barcelona, Spain, vol. 2988 of Lecture Notes in Computer Science, pp. 139—143.
Springer-Verlag.

Embedded Systems Institute (2006). ESI research agenda on embedded systems engineer-
ing. Tech. rep., Embedded Systems Institute.

Embedded Systems Institute (2007). Website. http://www.esi.nl.

Engel, E., Bogomolni, I., Shachar, S., and Grinman, A. (2004). Gathering historical lifecycle
quality costs to support optimizing the VVT process. In: Proceedings of the 14th International
Symposium of INCOSE (INCOSE’o4), Toulouse, France. CD-ROM.

Eugster, P.Th., Felber, P.A., Guerraoui, R., and Kermarrec, A. (2003). The many faces of
publish/subscribe. ACM Computing Surveys, vol. 35, no. 2, pp. I14—131.

FEI Company (2007). Website. http://www.fei.com.

Fewster, M. and Graham, D. (1999). Software test automation: effective use of test execution tools.
Addison Wesley.

Fleurkens,].W.G. (1996). Interactive modelling and simulation of heterogeneous systems. Ph.D.
thesis, Eindhoven University of Technology.

Fokkink, W.J. (2000). Introduction to process algebra. Texts in Theoretical Computer Science,
An EATCS Series. Springer-Verlag, 1st edn.

Franklin, G.F., Powell,].D., and Emami-Naeini, A. (2005). Feedback control of dynamic systems.
Prentice Hall, 5th edn.

Frantzen, L., Tretmans, J., and Willemse, T.A.C. (20006). A symbolic framework for model-
based testing. In: Proceedings of Formal Approaches to Testing and Runtime Verification
(FATES/RV’006), Seattle, WA, USA, vol. 4262 of Lecture Notes in Computer Science, pp. 40—
54. Springer-Verlag.

Freriks, H.J.M., Heemels, W.P.M.H., Muller, G.J., and Sandee, J.H. (2006). On the sys-
tematic use of budget-based design. In: Proceedings of the 16th International Symposium of
INCOSE (INCOSE’06), Orlando, FL, USA. CD-ROM.

Fuchs, N.E. (1992). Specifications are (preferably) executable. IEE/BCS Software Engineering
Journal, vol. 7, no. 5, pp. 323-334.

Gomaa, H. (2000). Designing concurrent, distributed, and real-time applications with UML.
Addison-Wesley Professional, 1st edn.

126 References

Groote, J.F. (1988). Implementations of events in LOTOS specifications. Technical report
009/88EN, Philips CFT, Eindhoven, the Netherlands.

Haagh, P.A.M., Wilkens, A.U., Rulkens, H.J.A., van Campen, E.]J.J., and Rooda, J.E. (1998).
Application of a layout design method to the dielectric decomposition area in a 300 mm
wafer fab. In: Proceedings of the 7th International Symposium on Semiconductor Manufactur-
ing (ISSM’98), Tokyo, Japan, pp. 69—72. Ultra Clean Society.

Halbwachs, N. and Baghdadi, S. (2002). Synchronous modeling of asynchronous systems.
In: Proceedings of the 2nd International Workshop on Embedded Software (EMSOFT 02),
Grenoble, France, vol. 2491 of Lecture Notes in Computer Science, pp. 240—251. Springer-
Verlag.

Hanselmann, H. (1996). Hardware-in-the-loop simulation testing and its integration into
a CACSD toolset. In: Proceedings of the 1996 IEEE International Symposium on Computer-
Aided Control System Design (CACSD’906), Dearborn, MI, USA, pp. 152—156.

Hartman, A. (2002). Model-based test generation tools. AGEDIS report, AGEDIS project.

Herbsleb, J.D. and Kuwana, E. (1993). Preserving knowledge in design projects: what design-
ers need to know. In: Proceedings of the SIGCHI conference on Human factors in computing
systems (CHI '93), Amsterdam, the Netherlands, pp. 7-14. ACM Press.

Hofkamp, A.T. and Rooda, J.E. (2007). Chi 1.0 reference manual. Tech. rep., Eindhoven
University of Technology. Available online at http://se.wtb.tue.nl/sewiki/chi.

Holzmann, G.J. (1997). The model checker SPIN. IEEE Transactions on Software Engineering,
vol. 23, no. 5, pp. 279-295.

Hooman, J., Mulyar, N., and Posta, L. (2004). Coupling SIMULINK and UML models. In:
Proceedings of Symposium on Formal Methods for Automation and Safety in Railway and Au-
tomotive Systems (FORMS/FORMATS 04), Braunschweig, Germany, pp. 304—311.

Horch,].W. (2003). Practical guide to software quality management. Artech House, 2nd edn.

Huang, J., Voeten, J., and Corporaal, H. (2006). Correctness-preserving synthesis for real-
time control software. In: Proceedings of the 6th International Conference on Quality Software
(QSIC’006), Bejjing, China, pp. 65—73. IEEE Computer Society.

Hull, E., Jackson, K., and Dick, J. (2005). Requirements engineering. Springer, 2nd edn.
Hurwitz, J. (1998). Sorting out middleware. DBMS Magazine, vol. 11, no. 1, pp. I0-I2.
INCOSE (20006). Systems engineering handbook. INCOSE, 3rd edn.

JABBER Software Foundation (2007). Website. http://www.jabber.org/.

Jones, G. (2001). Programming in occam — web edition. Available online at http://
web.comlab.ox.ac.uk/oucl/work/geraint.jones/publications/book/Pio1/. Originally in: Pren-
tice Hall International Series in Computer Science, 1988.

References 127

de Jong, [.S.M., Boumen, R., van de Mortel-Fronczak,].M, and Rooda, J.E. (2000). Integra-
tion and test strategies for semi-conductor manufacturing equipment. In: Proceedings of
the 16th International Symposium of INCOSE (INCOSE’06), Orlando, FL, USA. CD-ROM.

de Jong, I.S.M., Boumen, R., van de Mortel-Fronczak, .M., and Rooda, J.E. (2007a). An
overview of integration and test plans in organizations with different business drivers.
In: Proceedings of the 5th Annual Conference on Systems Engineering Research (CSER’07),
Hoboken, NJ, USA. CD-ROM. Available online at http://www.stevens.edu/cser/.

de Jong, I.S.M., Boumen, R., van de Mortel-Fronczak, .M., and Rooda, J.E. (2007b). Test
strategy analysis for manufacturing systems. Systems Engineering report 2007-10, Eind-
hoven University of Technology. ISSN: 1872—1567. Submitted for publication in IEEE Trans-
actions on Systems, Man, and Cybernetics — Part A: Systems and Humans.

Katoen, J-P. (1999). Concepts, algorithms and tools for model checking, vol. 32—1 of Arbeitsberichte
der Informatik. Friedrich-Alexander-Universitit Erlangen-Niirnberg.

Kleppe, A., Bast, W., and Warmer, J. (2003). MDA explained — the model driven architecture:
practice and promise. Addison-Wesley Professional, 1st edn.

Knabe, F. (1993). A distributed protocol for channel-based communication with choice. Com-
puters and Artificial Intelligence, vol. 12, no. 5, pp. 475—-490.

Lindahl, M., Pettersson, P., and Yi, W. (2001). Formal design and analysis of a gearbox
controller. International Journal on Software Tools for Technology Transfer (STTT), vol. 3,

no. 3, pp. 353-368.

Liu, J.S. (2001). Monte Carlo strategies in scientific computing. Springer Series in Statistics.
Springer-Verlag.

Man, K.L. and Schiffelers, R.R.H. (20006). Formal specification and analysis of hybrid systems.
Ph.D. thesis, Eindhoven University of Technology.

Martin, J.N. (1996). Systems engineering guidebook: a process for developing systems and products.
CRC Press.

de Mello, L.S.H. and Sanderson, A.C. (1991). A correct and complete algorithm for the gen-
eration of mechanical assembly sequences. IEEE Transactions on Robotics and Automation,
vol. 7, no. 2, pp. 228-240.

Millard, P., Saint-Andre, P., and Meijer, R. (2006). XEP-o06o0: publish-subscribe. Jabber
Software Foundation. Available online at http://www.xmpp.org/extensions/xep-0060.html.

Milner, R. (1989). Communication and concurrency. Prentice Hall.
MODELICA project (2007). Website. http://www.modelica.org/.

Mork, Simon (2001). Distributed implementation of a process algebra based programming
language for embedded systems. Nordic Journal of Computing, vol. 8, no. 1, pp. 121-158.

128 References

van de Mortel-Fronczak, J.M., Vervoort, J., and Rooda, J.E. (2001). Simulation-based design
of machine control systems. In: Proceedings of the 15th European Simulation Multiconference,
Prague, Czech Republic.

Mousavi, M.R,, le Guernic, P., Talpin, J-P., Shukla, S.K., and Basten, T. (2004). Modeling and
validating globally asynchronous design in synchronous frameworks. In: Proceedings of the
Conference on Design, Automation and Test in Europe (DATE’04), Paris, France, pp. 384—389.
IEEE Computer Society.

Muller, G. (2007). Coping with system integration challenges in large complex environ-
ments. In: Proceedings of the 17th International Symposium of INCOSE (INCOSE’07), San
Diego, CA, USA. CD-ROM.

NASA (2007). Website. http://www.nasa.gov.

National Instruments (2007). Compact Fieldpoint product information. Website. http:
//www.ni.com/compactfieldpoint.

Nestmann, U. (2000). What is a ‘good’ encoding of guarded choice? Journal of Information
and Computation, vol. 156, no. 1—2, pp. 287-319.

Océ (2007). Website. http://www.oce.com.

Ogren, I. (2000). On principles for model-based systems engineering. Systems Engineering,
vol. 3, no. 1, pp. 38—49.

Opto 22 (2007). SNAP PAC System product information. Website. http://www.opto22.com/
ad/pac.aspx.

van Osch, M.P.W.]. (2006). Hybrid input-output conformance and test generation. In: Pro-
ceedings of Formal Approaches to Testing and Runtime Verification (FATES/RV’06), Seattle,
WA, USA, vol. 4262 of Lecture Notes in Computer Science, pp. 70—84. Springer-Verlag.

van Osch, M.P.W.J. (2007). Model-based testing of hybrid systems. In: J. Tretmans, editor,
TANGRAM: model-based integration and testing of complex high-tech systems, chap. 10, pp.
129-141. Embedded Systems Institute, Eindhoven, the Netherlands. See also [Tretmans
2007].

Palamidessi, C. (1997). Comparing the expressive power of the synchronous and the asyn-
chronous 7t-calculus. In: Proceedings of the 24th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL97), Paris, France, pp. 256—265. ACM Press.

Pattipati, K.R., Deb, S., Dontamsetty, M., and Maitra, A. (1991). START: system testability
analysis and research tool. IEEE Aerospace and Electronic Systems Magazine, vol. 6, no. 1,

pp. 13—20.

Philips Medical Systems (2007). Website. http://www.medical.philips.com.

References 129

Pietersma, J. and van Gemund, A.].C. (2007). Benefits and costs of model-based fault diag-
nosis for semiconductor manufacturing equipment. In: Proceedings of the 17th International
Symposium of INCOSE (INCOSE’o07), San Diego, CA, USA. CD-ROM.

Potts, C. (1993). Software-engineering research revisited. IEEE Software, vol. 10, no. 5, pp.
19—28.

Prenninger, W. and Pretschner, A. (2004). Abstractions for model-based testing. Electronic
Notes in Theoretical Computer Science — Proceedings of the International Workshop on Test and
Analysis of Component Based Systems (TACoS’04), Barcelona, Spain, vol. 116, pp. 59—71.

Prins, M. (2004). Testing industrial embedded systems — an overview. In: Proceedings of the
1yth International Symposium of INCOSE (INCOSE’o4), Toulouse, France. CD-ROM.

PTOLEMY project (2007). Website. http://ptolemy.eecs.berkeley.edu/.
Requirements Assistant (2007). Website. http://www.requirementsassistant.nl.

Rook, P. (1986). Controlling software projects. Software Engineering Journal, vol. 1, no. 1, pp.
17-10.

Rowson, J.A. (1994). Hardware/software co-simulation. In: Proceedings of the 31st Design
Automation Conference (DAC’94), San Diego, CA, USA, pp. 439—440. ACM Press.

Saleh, R.A. and Newton, R.A. (1990). Mixed-mode simulation. Kluwer Academic Publishers.

Sorqvist, L. (1998). Poor quality costing. Ph.D. thesis, Royal Institute of Technology, Stock-
holm, Sweden.

SPICE (2007). Website. http://bwrc.eecs.berkeley.edu/Classes/IcBook/SPICE/.
SPIN (2007). Website. http://spinroot.com.

SRON (2007). Website. http://www.sron.nl.

SYSML (2007). Website. http://www.sysml.org.

Systems Engineering Group (2007). Chi language and tools. Mechanical Engineering De-
partment, Eindhoven University of Technology, Website. http://se.wtb.tue.nl/sewiki/chi.

TANGRAM project (2007). Website. http://www.esi.nl/tangram.
The Mathworks — SIMULINK (2007). Website. http://www.mathworks.com/products/simulink/.

The Mathworks — SIMULINK design verifier (2007). Website. http://www.mathworks.com/
products/sldesignverifier/.

The Mathworks — STATEFLOW (2007). Website. http://www.mathworks.com/products/
stateflow/.

Tijms, H.C. (2003). A first course in stochastic models. Wiley.

130 References

TORX (2007). Website. http://www.purl.org/net/torx/.

Tretmans, J. (1996). Test generation with inputs, outputs and repetitive quiescence.
Software—Concepts and Tools, vol. 17, no. 3, pp. 103—120.

Tretmans, J., editor (2007). TANGRAM: model-based integration and testing of complex high-tech
systems. Embedded Systems Institute, Eindhoven, the Netherlands. Available online at
http://www.esi.nl/tangram/.

Trcka, N. (2006). Verifying Chi models of industrial systems with SPIN. In: Proceedings of
the 8th International Conference on Formal Engineering Methods (ICFEM’06), Macao, China,
vol. 4260 of Lecture Notes in Computer Science, pp. 132—148. Springer-Verlag.

TWISTED Matrix Labs (2007). Website. http://twistedmatrix.com.
UML (2007). Website. http://www.uml.org.
UPPAAL (2007). Website. http://www.uppaal.com.

Verhoef, M., Visser, P., Hooman, J., and Broenink, J. (2007). Co-simulation of distributed
embedded real-time control systems. In: Proceedings of 6th International Conference on
Integrated Formal Methods (IFM’07), Oxford, UK, vol. 4591 of Lecture Notes in Computer
Science, pp. 639—658. Springer-Verlag.

de Vries, R.G. and Tretmans, J. (2000). On-the-fly conformance testing using SPIN. Interna-
tional Journal on Software Tools for Technology Transfer (STTT), vol. 2, no. 4, pp. 382—393.

de Vries, R.G. and Tretmans, J. (2001). Towards formal test purposes. In: Proceedings of the
Workshop on Formal Approaches to Testing of Software (FATES’o1), Aalborg, Denmark, vol.
NS—o1—4 of BRICS Notes Series, pp. 61—76. University of Aarhus.

Willemse, T.A.C. (2006). Heuristics for ioco-based test-based modelling. In: Proceedings of the
11th International Workshop on Formal Methods for Industrial Critical Systems (FMICS’06),
Bonn, Germany, vol. 4346 of Lecture Notes in Computer Science, pp. 132—147. Springer-Verlag.

Williams, D. and Ambler, A.P. (2002). System manufacturing test cost model. In: Proceedings
of the IEEE International Test Conference (ITC’02), Baltimore, MD, USA, pp. 482—490.

de Wulf, M., Doyen, L., and Raskin, J-F. (2005). Almost ASAP semantics: from timed models
to timed implementations. Formal Aspects of Computing, vol. 17, no. 3, pp. 319—34L

Wiinsche, S. (1996). Simulator coupling for electro-thermal simulation of integrated cir-
cuits. In: Proceedings of the 2nd International Workshop on Thermal Investigations of IC’s and
Microstructures (Therminic’96), Budapest, Hungary, pp. 89—93.

Curriculum Vitae

N.C.W.M. (Niels) Braspenning was born on the 18th of June, 1979 in Breda, the Netherlands.
In 1997, he finished VWO at the Katholieke Scholengemeenschap Etten-Leur in Etten-Leur,
the Netherlands. From 1997 to 2003, he studied Mechanical Engineering at the Eindhoven
University of Technology, the Netherlands. Within the Systems Engineering Group, he per-
formed his graduation project on the topic ’Scheduling and Behavior Verification of Ma-
chines based on Task-Resource Models’, as part of a Ph.D. project performed at ASML. After
graduating in 2003, he started his Ph.D. project within the same group, on the topic "Model-
based Integration and Testing of High-tech Multi-disciplinary Systems’. This Ph.D. project
is part of the TANGRAM project on integration and testing, in close co-operation with ASML,
the Embedded Systems Institute, and other industrial and academic partners.

131

132 Curriculum Vitae

M.C. van Wezel. Neural Networks for Intelligent Data
Analysis: theoretical and experimental aspects. Faculty
of Mathematics and Natural Sciences, UL. 2002-01

V. Bos and].]J.T. Kleijn. Formal Specification and Anal-
ysis of Industrial Systems. Faculty of Mathematics and
Computer Science and Faculty of Mechanical Engi-
neering, TU/e. 2002-02

T. Kuipers. Techniques for Understanding Legacy Soft-
ware Systems. Faculty of Natural Sciences, Mathemat-
ics and Computer Science, UVA. 2002-03

S.P. Luttik. Choice Quantification in Process Algebra.
Faculty of Natural Sciences, Mathematics, and Com-
puter Science, UVA. 2002-04

R.J. Willemen. School Timetable Construction: Algo-
rithms and Complexity. Faculty of Mathematics and
Computer Science, TU/e. 2002-05

M.LA. Stoelinga. Alea Jacta Est: Verification of Prob-
abilistic, Real-time and Parametric Systems. Faculty of
Science, Mathematics and Computer Science, KUN.
2002-06

N. van Vugt. Models of Molecular Computing. Faculty
of Mathematics and Natural Sciences, UL. 2002-07

A. Fehnker. Citius, Vilius, Melius: Guiding and Cost-
Optimality in Model Checking of Timed and Hybrid Sys-
tems. Faculty of Science, Mathematics and Computer
Science, KUN. 2002-08

R. van Stee. On-line Scheduling and Bin Packing. Fac-
ulty of Mathematics and Natural Sciences, UL. 2002-
©9

D. Tauritz. Adaptive Information Filtering: Concepts
and Algorithms. Faculty of Mathematics and Natural
Sciences, UL. 2002-10

M.B. van der Zwaag. Models and Logics for Process Al-
gebra. Faculty of Natural Sciences, Mathematics, and
Computer Science, UVA. 2002-11

133

| Titles in the IPA Dissertation Series since 2002

J.I. den Hartog. Probabilistic Extensions of Semantical
Models. Faculty of Sciences, Division of Mathematics
and Computer Science, VUA. 2002-12

L. Moonen. Exploring Software Systems. Faculty of
Natural Sciences, Mathematics, and Computer Sci-
ence, UVA. 2002-13

J.I. van Hemert. Applying Evolutionary Computation
to Constraint Satisfaction and Data Mining. Faculty of
Mathematics and Natural Sciences, UL. 2002-14

S. Andova. Probabilistic Process Algebra. Faculty of
Mathematics and Computer Science, TU/e. 2002-15

Y.S. Usenko. Linearization in yCRL. Faculty of Math-
ematics and Computer Science, TU/e. 2002-16

J.J.D. Aerts. Random Redundant Storage for Video on
Demand. Faculty of Mathematics and Computer Sci-
ence, TU/e. 2003-01

M. de Jonge. To Reuse or To Be Reused: Techniques
for component composition and construction. Faculty of
Natural Sciences, Mathematics, and Computer Sci-
ence, UVA. 2003-02

J-M.W. Visser. Generic Traversal over Typed Source
Code Representations. Faculty of Natural Sciences,
Mathematics, and Computer Science, UVA. 2003-03

S.M. Bohte. Spiking Neural Networks. Faculty of
Mathematics and Natural Sciences, UL. 2003-04

T.A.C. Willemse. Semantics and Verification in Process
Algebras with Data and Timing. Faculty of Mathemat-
ics and Computer Science, TU/e. 2003-05

S.V. Nedea. Analysis and Simulations of Catalytic Reac-
tions. Faculty of Mathematics and Computer Science,
TU/e. 2003-06

M.E.M. Lijding. Real-time Scheduling of Tertiary Stor-
age. Faculty of Electrical Engineering, Mathematics
& Computer Science, UT. 2003-07

134

Titles in the IPA Dissertation Series since 2002

H.P. Benz. Casual Multimedia Process Annotation —
CoMPAs. Faculty of Electrical Engineering, Mathe-
matics & Computer Science, UT. 2003-08

D. Distefano. On Modelchecking the Dynamics of
Object-based Software: a Foundational Approach. Fac-
ulty of Electrical Engineering, Mathematics & Com-
puter Science, UT. 2003-09

M.H. ter Beek. Team Automata — A Formal Approach
to the Modeling of Collaboration Between System Compo-
nents. Faculty of Mathematics and Natural Sciences,
UL. 2003-10

D.].P. Leijen. The A Abroad — A Functional Approach
to Software Components. Faculty of Mathematics and
Computer Science, UU. 2003-11

W.P.A.]J. Michiels. Performance Ratios for the Differenc-
ing Method. Faculty of Mathematics and Computer
Science, TU/e. 2004-01

G.I. Jojgov. Incomplete Proofs and Terms and Their Use
in Interactive Theorem Proving. Faculty of Mathemat-
ics and Computer Science, TU/e. 2004-02

P. Frisco. Theory of Molecular Computing — Splicing
and Membrane systems. Faculty of Mathematics and
Natural Sciences, UL. 2004-03

S. Maneth. Models of Tree Translation. Faculty of
Mathematics and Natural Sciences, UL. 2004-04

Y. Qian. Data Synchronization and Browsing for Home
Environments. Faculty of Mathematics and Com-
puter Science and Faculty of Industrial Design, TU]e.
2004-05

F. Bartels. On Generalised Coinduction and Probabilis-
tic Specification Formats. Faculty of Sciences, Division
of Mathematics and Computer Science, VUA. 2004-

o6

L. Cruz-Filipe. Constructive Real Analysis: a Type-
Theoretical Formalization and Applications. Faculty of
Science, Mathematics and Computer Science, KUN.
2004-07

E.H. Gerding. Autonomous Agents in Bargaining
Games: An Evolutionary Investigation of Fundamentals,
Strategies, and Business Applications. Faculty of Tech-
nology Management, TU/e. 2004-08

N. Goga. Control and Selection Techniques for the Au-
tomated Testing of Reactive Systems. Faculty of Mathe-
matics and Computer Science, TU/e. 2004-09

M. Niqui. Formalising Exact Arithmetic: Representa-
tions, Algorithms and Proofs. Faculty of Science, Math-
ematics and Computer Science, RU. 2004-10

A. Loh. Exploring Generic Haskell. Faculty of Mathe-
matics and Computer Science, UU. 2004-11

I.C.M. Flinsenberg. Route Planning Algorithms for Car
Navigation. Faculty of Mathematics and Computer
Science, TU/e. 2004-12

R.J. Bril. Real-time Scheduling for Media Processing
Using Conditionally Guaranteed Budgets. Faculty of
Mathematics and Computer Science, TU/e. 2004-13

J. Pang. Formal Verification of Distributed Systems. Fac-
ulty of Sciences, Division of Mathematics and Com-
puter Science, VUA. 2004-14

F. Alkemade. Evolutionary Agent-Based Economics.
Faculty of Technology Management, TU/e. 2004-15

E.O. Dijk. Indoor Ultrasonic Position Estimation Us-
ing a Single Base Station. Faculty of Mathematics and
Computer Science, TU/e. 2004-16

S.M. Orzan. On Distributed Verification and Verified
Distribution. Faculty of Sciences, Division of Mathe-
matics and Computer Science, VUA. 2004-17

M.M. Schrage. Proxima - A Presentation-oriented Edi-
tor for Structured Documents. Faculty of Mathematics
and Computer Science, UU. 2004-18

E. Eskenazi and A. Fyukov. Quantitative Prediction of
Quality Attributes for Component-Based Software Archi-
tectures. Faculty of Mathematics and Computer Sci-
ence, TU/e. 2004-19

P.J.L. Cuijpers. Hybrid Process Algebra. Faculty of
Mathematics and Computer Science, TU/e. 2004-20

N.J.M. van den Nieuwelaar. Supervisory Machine Con-
trol by Predictive-Reactive Scheduling. Faculty of Me-
chanical Engineering, TU/e. 2004-21

E. Abrahdm. An Assertional Proof System for Multi-
threaded Java -Theory and Tool Support- . Faculty of
Mathematics and Natural Sciences, UL. 2005-01

R. Ruimerman. Modeling and Remodeling in Bone Tis-
sue. Faculty of Biomedical Engineering, TU/e. 2005-
02

C.N. Chong. Experiments in Rights Control - Expres-
sion and Enforcement. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science, UT. 2005-03

H. Gao. Design and Verification of Lock-free Parallel
Algorithms. Faculty of Mathematics and Computing
Sciences, RUG. 2005-04

H.M.A. van Beek. Specification and Analysis of Inter-
net Applications. Faculty of Mathematics and Com-
puter Science, TU/e. 2005-05

M.T. Ionita. Scenario-Based System Architecting - A
Systematic Approach to Developing Future-Proof System

Titles in the IPA Dissertation Series since 2002

135

Architectures. Faculty of Mathematics and Computing
Sciences, TU/e. 2005-06

G. Lenzini. Integration of Analysis Techniques in Se-
curity and Fault-Tolerance. Faculty of Electrical En-
gineering, Mathematics & Computer Science, UT.
2005-07

I. Kurtev. Adaptability of Model Transformations. Fac-
ulty of Electrical Engineering, Mathematics & Com-
puter Science, UT. 2005-08

T. Wolle. Computational Aspects of Treewidth - Lower
Bounds and Network Reliability. Faculty of Science,
UU. 2005-09

O. Tveretina. Decision Procedures for Equality Logic
with Uninterpreted Functions. Faculty of Mathematics
and Computer Science, TU/e. 2005-10

AM.L. Liekens. Evolution of Finite Populations in Dy-
namic Environments. Faculty of Biomedical Engineer-
ing, TU/e. 2005-11

J. Eggermont. Data Mining using Genetic Program-
ming: Classification and Symbolic Regression. Faculty
of Mathematics and Natural Sciences, UL. 2005-12

B.J. Heeren. Top Quality Type Error Messages. Faculty
of Science, UU. 2005-13

G.F. Frehse. Compositional Verification of Hybrid Sys-
tems using Simulation Relations. Faculty of Science,
Mathematics and Computer Science, RU. 2005-14

M.R. Mousavi. Structuring Structural Operational Se-
mantics. Faculty of Mathematics and Computer Sci-
ence, TU/e. 2005-15

A. Sokolova. Coalgebraic Analysis of Probabilistic Sys-
tems. Faculty of Mathematics and Computer Science,
TU/e. 2005-16

T. Gelsema. Effective Models for the Structure of pi-
Calculus Processes with Replication. Faculty of Math-
ematics and Natural Sciences, UL. 2005-17

P. Zoeteweij. Composing Constraint Solvers. Faculty of
Natural Sciences, Mathematics, and Computer Sci-
ence, UVA. 2005-18

J.J. Vinju. Analysis and Transformation of Source Code
by Parsing and Rewriting. Faculty of Natural Sciences,
Mathematics, and Computer Science, UVA. 2005-19

M.Valero Espada. Modal Abstraction and Replication
of Processes with Data. Faculty of Sciences, Division
of Mathematics and Computer Science, VUA. 2005-
20

A. Dijkstra. Stepping through Haskell. Faculty of Sci-
ence, UU. 2005-21

YW. Law. Key management and link-layer security of
wireless sensor networks: energy-efficient attack and de-
fense. Faculty of Electrical Engineering, Mathematics
& Computer Science, UT. 2005-22

E. Dolstra. The Purely Functional Software Deployment
Model. Faculty of Science, UU. 2006-01

R.J. Corin. Analysis Models for Security Protocols. Fac-
ulty of Electrical Engineering, Mathematics & Com-
puter Science, UT. 2006-02

P.R.A. Verbaan. The Computational Complexity of
Evolving Systems. Faculty of Science, UU. 2006-03

K.L. Man and R.R.H. Schiffelers. Formal Specification
and Analysis of Hybrid Systems. Faculty of Mathemat-
ics and Computer Science and Faculty of Mechanical
Engineering, TU/e. 2006-04

M. Kyas. Verifying OCL Specifications of UML Models:
Tool Support and Compositionality. Faculty of Mathe-
matics and Natural Sciences, UL. 2006-05

M. Hendriks. Model Checking Timed Automata - Tech-
niques and Applications. Faculty of Science, Mathe-
matics and Computer Science, RU. 2006-06

J. Ketema. Bohm-Like Trees for Rewriting. Faculty of
Sciences, VUA. 2006-07

C.-B. Breunesse. On JML: topics in tool-assisted veri-
fication of JML programs. Faculty of Science, Mathe-
matics and Computer Science, RU. 2006-08

B. Markvoort. Towards Hybrid Molecular Simulations.
Faculty of Biomedical Engineering, TU/e. 2006-09

S.G.R. Nijssen. Mining Structured Data. Faculty of
Mathematics and Natural Sciences, UL. 2006-10

G. Russello. Separation and Adaptation of Concerns
in a Shared Data Space. Faculty of Mathematics and
Computer Science, TU/e. 2006-11

L. Cheung. Reconciling Nondeterministic and Proba-
bilistic Choices. Faculty of Science, Mathematics and
Computer Science, RU. 2006-12

B. Badban. Verification techniques for Extensions of
Equality Logic. Faculty of Sciences, Division of Math-
ematics and Computer Science, VUA. 2006-13

A.]J. Mooij. Constructive formal methods and protocol
standardization. Faculty of Mathematics and Com-
puter Science, TU/e. 2006-14

T. Krilavicius. Hybrid Techniques for Hybrid Systems.
Faculty of Electrical Engineering, Mathematics &
Computer Science, UT. 2006-15

136

Titles in the IPA Dissertation Series since 2002

M.E. Warnier. Language Based Security for Java and
JML. Faculty of Science, Mathematics and Computer
Science, RU. 2006-16

V. Sundramoorthy. At Home In Service Discovery. Fac-
ulty of Electrical Engineering, Mathematics & Com-
puter Science, UT. 2006-17

B. Gebremichael. Expressivity of Timed Automata
Models. Faculty of Science, Mathematics and Com-
puter Science, RU. 2006-18

L.C.M. van Gool. Formalising Interface Specifica-
tions. Faculty of Mathematics and Computer Science,
TU/e. 2006-19

C.J.F. Cremers. Scyther - Semantics and Verification of
Security Protocols. Faculty of Mathematics and Com-
puter Science, TU/e. 2006-20

J.V. Guillen Scholten. Mobile Channels for Exogenous
Coordination of Distributed Systems: Semantics, Imple-
mentation and Composition. Faculty of Mathematics
and Natural Sciences, UL. 2006-21

H.A. de Jong. Flexible Heterogeneous Software Systems.
Faculty of Natural Sciences, Mathematics, and Com-
puter Science, UVA. 2007-01

N.K. Kavaldjiev. A run-time reconfigurable Network-on-
Chip for streaming DSP applications. Faculty of Electri-
cal Engineering, Mathematics & Computer Science,
UT. 2007-02

M. van Veelen. Considerations on Modeling for Early
Detection of Abnormalities in Locally Autonomous Dis-
tributed Systems. Faculty of Mathematics and Com-
puting Sciences, RUG. 2007-03

T.D. Vu. Semantics and Applications of Process and Pro-
gram Algebra. Faculty of Natural Sciences, Mathemat-
ics, and Computer Science, UVA. 2007-04

L. Brandan Briones. Theories for Model-based Testing:
Real-time and Coverage. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science, UT. 2007-05

I. Loeb. Natural Deduction: Sharing by Presentation.
Faculty of Science, Mathematics and Computer Sci-
ence, RU. 2007-06

M.W.A. Streppel. Multifunctional Geometric Data
Structures. Faculty of Mathematics and Computer
Science, TU/e. 2007-07

N. Trcka. Silent Steps in Transition Systems and Markov
Chains. Faculty of Mathematics and Computer Sci-
ence, TU/e. 2007-08

R. Brinkman. Searching in encrypted data. Faculty
of Electrical Engineering, Mathematics & Computer
Science, UT. 2007-09

A. van Weelden. Putting types to good use. Faculty
of Science, Mathematics and Computer Science, RU.
2007-10

J.A.R. Noppen. Imperfect Information in Software De-
velopment Processes. Faculty of Electrical Engineering,
Mathematics & Computer Science, UT. 2007-11

R. Boumen. Integration and Test plans for Complex
Maonufacturing Systems. Faculty of Mechanical Engi-
neering, TU/e. 2007-12

A.J. Wijs. What to do Next?: Analysing and Optimising
System Behaviour in Time. Faculty of Sciences, Divi-
sion of Mathematics and Computer Science, VUA.
2007-13

C.FJ. Lange. Assessing and Improving the Quality
of Modeling: A Series of Empirical Studies about the
UML. Faculty of Mathematics and Computer Sci-
ence, TU/e. 2007-14

T. van der Storm. Component-based Configuration, In-
tegration and Delivery. Faculty of Natural Sciences,
Mathematics, and Computer Science,UVA. 2007-15

B.S. Graaf. Model-Driven Evolution of Software Archi-
tectures. Faculty of Electrical Engineering, Mathemat-
ics, and Computer Science, TUD. 2007-16

A.H.J.Mathijssen. Logical Calculi for Reasoning with
Binding. Faculty of Mathematics and Computer Sci-
ence, TU/e. 2007-17

D. Jarnikov. QoS framework for Video Streaming in
Home Networks. Faculty of Mathematics and Com-
puter Science, TU/e. 2007-18

M. A. Abam. New Data Structures and Algorithms for
Mobile Data. Faculty of Mathematics and Computer
Science, TU/e. 2007-19

W.Pieters. La Volonté Machinale: Understanding the
Electronic Voting Controversy. Faculty of Science,
Mathematics and Computer Science, RU. 2008-01

A.L. de Groot. Practical Automaton Proofs in PVS. Fac-
ulty of Science, Mathematics and Computer Science,
RU. 2008-02

M. Bruntink. Renovation of Idiomatic Crosscutting
Concerns in Embedded Systems. Faculty of Electrical
Engineering, Mathematics, and Computer Science,
TUD. 2008-03

AM. Marin. An Integrated System to Manage Cross-
cutting Concerns in Source Code. Faculty of Electrical
Engineering, Mathematics, and Computer Science,
TUD. 2008-04

N.C.W.M. Braspenning. Model-based Integration and
Testing of High-tech Multi-disciplinary Systems. Faculty
of Mechanical Engineering, TU/e. 2008-05

	Preface
	Summary
	Samenvatting
	Contents
	1. Introduction
	2. Model-based integration and testing
	3. System analysis
	4. Component testing
	5. Integration and system testing
	6. Integration and testing process
	7. Concluding remarks
	References
	Curriculum Vitae

