

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 20, 2017

Test-Driven, Model-Based Systems Engineering.

Munck, Allan; Madsen, Jan; Lindqvist, Lars; Schmidt, Flemming ; Pop, Paul

Publication date:
2017

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Munck, A., Madsen, J., Lindqvist, L., Schmidt, F., & Pop, P. (2017). Test-Driven, Model-Based Systems
Engineering. DTU Compute. (DTU Compute PHD-2017, Vol. 444).

http://orbit.dtu.dk/en/publications/testdriven-modelbased-systems-engineering(80754cfa-3aee-4428-b9a7-530cce6bedd5).html

Test-Driven, Model-Based Systems
Engineering

Allan Munck

Kongens Lyngby 2017
PhD-2017-444

Technical University of Denmark
Department of Applied Mathematics and Computer Science
Matematiktorvet, building 303B,
2800 Kongens Lyngby, Denmark
Phone +45 4525 3351
compute@compute.dtu.dk
www.compute.dtu.dk

PhD-2017-444
ISSN 0909-3192

Summary (English)

Hearing systems have evolved over many years from simple mechanical devices (horns)
to electronic units consisting of microphones, amplifiers, analog filters, loudspeakers,
batteries, etc. Digital signal processors replaced analog filters to provide better per-
formance end new features. Central processors were added to provide many functions
for monitoring and controlling other parts of the devices. Hearing systems have thus
evolved into complex embedded system.

Radio systems were added to allow hearing aids to communicate with accessories,
auxiliary equipment, third-party products, etc. Many new features are enabled by
such radio communication. Monitoring and controlling hearing aids from remote
control devices or smart phones have been incorporated into several products. Di-
rect audio streaming between hearing aids and dedicated streaming devices or smart
phones is possible with some products. Also emerging are advanced features that are
based on interactions with internet services, clouds, etc. Hearing systems are thus
evolving into large and complex smart systems.

Designing complex embedded systems or large smart systems are notoriously difficult.
Many systems are still developed using document-based methods, where requirements
and proposed architecture are described textually with the addition of a few figures
and tables. Such documents cannot be subjected to testing, so it is impossible to
predict the functionality and performance or even feasibility of the intended systems.

Replacing documents with models have several advantages. Models can be simulated
and analyzed such that functionality and performance can be predicted before any
parts have been built. Potential flaws in the specification can therefore be corrected
in early phases, which may reduce development effort and costs.

ii

This thesis concerns methods for identifying, selecting and implementing tools for
various aspects of model-based systems engineering. A comprehensive method was
proposed that include several novel steps such as techniques for analyzing the gap
between requirements and tool capabilities. The method was verified with good
results in two case studies for selection of a traceability tool (single-tool scenario)
and a set of modeling tools (multi-tool scenarios).

Models must be subjected to testing to allow engineers to predict functionality and
performance of systems. Test-first strategies are known to produce good results
in software development. This thesis concerns methods for test-driven modeling of
hearing systems.

A method is proposed for test-driven modeling of embedded systems of medium com-
plexity. It utilizes formal model checking to guarantee functionality and performance.
Test-driven design space exploration is enabled by using statistical model checking
to obtain estimates that are verified formally at the final stages of the method. The
method was applied with good results to a case study, where two solutions to a de-
sign problem were developed and verified. Feasible ranges for critical parameters
were identified. Both solution conformed to all requirements.

Smart systems are typically too large and complex to be verified by formal model
checking, and the research showed that statistical model checking in its current form
cannot be used for verifying such systems. A new method is therefore proposed for
test-driven modeling of smart systems. The method uses formal verification of basic
interactions. Simulations are used for verifying the overall system. To predict perfor-
mance for scenarios that are too large to be simulated, the method uses mathematical
forecasting based on simulating series of smaller scenarios, fitting simulation results
to estimator functions, and extrapolating beyond the simulated data set. Mathe-
matical forecasting allowed us to predict the performance of system scenarios that
were much too large to be simulated. Such performance estimates may be somewhat
imprecise but are nevertheless valuable because they provide answers that cannot be
obtained otherwise.

The research has thus proposed and verified methods for selecting modeling tools and
for test-driven systems modeling for the benefit of GN Hearing and other organiza-
tions involved in development of complex embedded systems of large smart systems.

Summary (Danish)

Høresystemer har udviklet sig igennem mange år fra simple mekaniske anordninger
(horn) til elektroniske apparater bestående af mikrofoner, forstærkere, analoge filtre,
højttalere, batterier, osv. Digitale signalprocessorer har erstattet analoge filtre for at
give bedre og mere avanceret lydbehandling. Centrale processorer blev tilføjet for at
gøre det muligt at overvåge og styre andre dele af apparaterne. Høresystemer har
således udviklet sig til komplekse indlejrede systemer.

Radiosystemer blev tilføjet, så høreapparater kan kommunikerer med tilbehør, extraud-
styr, tredjeparts produkter, etc. Mange nye funktioner bliver mulige med sådanne
radio systemer. Overvågning og styring af høreapparater fra fjernbetjeningsenheder
eller smartphones er allerede indarbejdet i flere produkter. Direkte audio-streaming
mellem høreapparater og dedikerede streaming-enheder eller smartphones er muligt
med nogle produkter. Også nye avancerede funktioner, der er baseret på interaktioner
med internettjenester, clouds, osv., er ved at dukke op. Høresystemer er således ved
at udvikle sig til store og komplekse smart-systemer.

Design af komplekse indlejrede systemer eller store smart-systemer er notorisk vanske-
ligt. Mange systemer bliver stadig udviklet ved hjælp af dokumentbaserede metoder,
hvor krav og foreslået arkitektur er beskrevet med tekst og tilhørende figurer og tabel-
ler. Sådanne dokumenter kan ikke udsættes for testafvikling, hvorfor det er umuligt at
forudsige funktionalitet og ydeevne, eller om de påtænkte systemer er gennemførlige.

Udskiftning af dokumenter med modeller har flere fordele. Modeller kan simuleres
og analyseres således, at funktionalitet og ydeevne kan forudsiges, før systemernes
komponenter udvikles og fremstilles. Potentielle fejl i specifikationen kan derfor rettes
i tidlige faser, hvilket kan reducere udviklingsarbejdet og omkostninger.

iv

Denne afhandling omhandler metoder til at identificere, udvælge og indføre værktøjer
til forskellige aspekter af modelbaseret system-ingeniørarbejde. En omfattende me-
tode, der inkluderer flere nye elementer såsom teknikker til at analyse gabet mellem
behov og værktøjers formåen, er blevet foreslået. Metoden blev verificeret med gode
resultater i to studier for udvælgelse af et sporbarhedsværktøj (scenarie med et enkelt
værktøj) og et sæt af modelleringsværktøjer (scenarie med flere værktøjer).

Modeller skal testes for at tillade ingeniører at forudsige systemers funktionalitet og
ydeevne. Test-først strategier er kendt for at give gode resultater i softwareudvikling.
Denne afhandling omhandler metoder til testdrevet modellering af høresystemer.

En metode til testdrevet modellering af indlejrede systemer af medium kompleksitet
er blevet foreslået. Metoden benytter formel verifikation af modeller til at garante-
re funktionalitet og ydeevne. Testdrevet udvikling af designalternativer er muliggjort
ved hjælp af statistisk verifikation af modeller, hvor estimater efterfølgende verificeres
formelt. Metoden blev brugt med gode resultater i et studie, hvor to forskellige løs-
ninger til et designproblem blev udviklet og verificeret. Mulige intervaller for kritiske
parametre blev identificeret. Begge løsninger opfyldte alle krav.

Smart-systemer er typisk for store og komplekse til at blive verificeret med formel
verifikation, og den gennemførte forskning viste, at statistisk verifikation i sin nu-
værende form ikke er egnet til verifikation af sådanne systemer. En ny metode til
testdrevet modellering af smart-systemer er derfor blevet foreslået. Metoden bru-
ger formel verifikation af basale interaktioner. Simuleringer bruges til at verificere
det samlede system. For at kunne forudsige systemers ydeevne for scenarier, der er
for store til at blive simuleret, benytter metoden matematiske prognoser baseret på
simulering af en række mindre scenarier, udledning af estimeringsfunktioner fra si-
muleringsresultaterne, og extrapolering udover det simulerede datasæt. Matematiske
prognoser tillod os at forudsige ydeevnen for scenarier, der var for store til at blive
simuleret. Sådanne estimater for systemers ydeevne kan være noget upræcise, men
ikke desto mindre værdifulde, fordi de giver svar, som ikke kan opnås på anden vis.

Forskningen har således foreslået og verificeret metoder til udvælgelse modellerings-
værktøjer og for testdrevet systemmodellering til gavn for GN Hearing og andre or-
ganisationer, der udvikler komplekse indlejrede systemer eller store smart-systemer.

Preface

This thesis was prepared at the Department of Applied Mathematics and Computer
Science at the Technical University of Denmark in fulfillment of the requirements for
acquiring a PhD degree.

The thesis deals with the application of test-driven, model-based systems engineering
for developing advanced hearing systems in a medical device company, GN Hearing.

Professor Jan Madsen from DTU Compute and Senior Vice President Lars Lindqvist
from GN Hearing supervised the work. Professor Paul Pop from DTU Compute and
Systems Engineering Architecture Manager Flemming Schmidt from GN Hearing co-
supervised the work. Director of Systems Engineering Michael Woeroesch from GN
Hearing provided invaluable support for completing the project.

Lyngby, 28-February-2017

Allan Munck

vi

Papers

The papers included in this thesis are:

• Allan Munck and Jan Madsen, Test-driven modeling of embedded systems.
Nordic Circuits and Systems Conference (NORCAS): NORCHIP & Interna-
tional Symposium on System-on-Chip (SoC), 2015. IEEE, 2015. Published.

• Allan Munck and Jan Madsen, A systematic and practical method for selecting
systems engineering tools. Accepted for presentation at 11th Annual IEEE
International Systems Conference, 2017. To be published in the conference
proceedings in IEEE IEL and IEEE Xplore.

• Allan Munck and Jan Madsen, Test-driven modeling and development of cloud-
enabled cyber-physical smart systems. Accepted for presentation at 11th Annual
IEEE International Systems Conference, 2017. To be published in the confer-
ence proceedings in IEEE IEL and IEEE Xplore.

viii

Acknowledgments

I would like to thank my primary supervisors, Professor Jan Madsen from DTU
Compute and Senior Vice President Lars Lindqvist from GN Hearing, for initiating,
funding and supporting the project throughout all phases. Especially I would like
to thank Jan Madsen for his continuous involvement, tireless optimism, help and
support.

I would also like to thank my co-supervisors, Professor Paul Pop from DTU Compute
and Systems Engineering Architecture Manager Flemming Schmidt from GN Hearing
for help, support and stimulating discussions. Especially my frequent interactions
with Flemming Schmidt have been of great value. I would also like to thank Director
of Systems Engineering Michael Woeroesch from GN Hearing for his interest and
engagement at promoting the completion of the work.

I would like to thank various students and staff members at DTU Compute as well
as various co-workers at GN Hearing for inspiring discussions and for their interest
in the PhD project.

I would like thank GN Hearing, Innovation Fund Denmark and the Confederation
of Danish Industry for funding this PhD project. Finally, I would like to thank all
persons involved in the ITOS project under the Confederation of Danish Industry,
especially Senior Advisor and Project Leader Henrik Valentin Jensen for his involve-
ment and strong interest in this PhD project.

My studies became extremely interesting due to their involvement, help and support.

x

Contents

Page

Summary (English) i
Summary (Danish) iii
Preface v
Papers vii
Acknowledgments ix
Contents xi
List of Figures xvii
List of Tables xix
Vocabulary xxi

1 Introduction 1
1.1 GN Hearing . 4
1.2 Market situation . 5
1.3 SWOT analysis . 6
1.4 Hearing systems . 6
1.5 Research questions . 8
1.6 Research methods . 10
1.7 Hypotheses . 13
1.8 Stakeholders . 15

1.8.1 PhD student . 15
1.8.2 GN Hearing . 15
1.8.3 Employees . 16
1.8.4 Technical University of Denmark 16
1.8.5 DI ITEK ITOS & Infinit . 17
1.8.6 Tool providers . 17
1.8.7 INCOSE . 18
1.8.8 Embedded systems industry . 18
1.8.9 Society . 18

xii CONTENTS

1.9 Thesis . 19
1.9.1 Purpose and scope . 19
1.9.2 Style and conventions . 20
1.9.3 Abbreviations and terms . 20
1.9.4 Thesis outline . 20

1.10 References . 22

2 Modeling technologies 27
2.1 Introduction . 28
2.2 Related work . 31

2.2.1 Vendor selection . 31
2.2.2 Requirements management tool selection 31
2.2.3 Modeling tool selection . 33
2.2.4 Simulation tool selection . 33
2.2.5 General software selection . 35
2.2.6 Lists of available tools . 36
2.2.7 Evaluation of specific tools . 36
2.2.8 Heterogeneous systems modeling tools 36
2.2.9 Evaluating and ranking tools 37
2.2.10 Related work summary . 38

2.3 Proposed selection method . 38
2.3.1 Single-tool ranking method . 41
2.3.2 Multi-tool selection method . 41
2.3.3 Gap analysis . 42
2.3.4 Prerequisites . 43

2.4 System classification . 43
2.5 Modeling disciplines . 45

2.5.1 Fundamental modeling . 48
2.5.2 Behavioral simulation modeling 52
2.5.3 Architectural analyses modeling 54
2.5.4 Architecture/behavior co-modeling 55
2.5.5 Coherent modeling . 56
2.5.6 Integrated engineering . 57
2.5.7 Enterprise modeling . 59
2.5.8 Other engineering activities . 59
2.5.9 Other activities beyond engineering 60

2.6 Case study: Traceability tool (single-tool scenario) 60
2.7 Case study: Modeling tools (multi-tool scenario) 66
2.8 Discussion . 71

2.8.1 Results . 71
2.8.2 Observations . 72
2.8.3 Learning points . 72
2.8.4 Advantages . 73
2.8.5 Disadvantages . 74

CONTENTS xiii

2.8.6 Limitations . 75
2.8.7 Improvements . 75
2.8.8 Future work . 76
2.8.9 Conclusion . 77

2.9 References . 79

3 Test-driven modeling of Embedded Systems 89
3.1 Introduction . 90
3.2 Systems characteristics . 91
3.3 Related work . 93

3.3.1 Model-driven development (MDD) 93
3.3.2 Test-driven development (TDD) 94
3.3.3 Test-driven modeling (TDM) 96
3.3.4 Model-driven/-based testing (MDT, MBT) 98
3.3.5 Tools . 98
3.3.6 Related work summary . 99

3.4 Case study . 100
3.4.1 Context . 100
3.4.2 Problem . 101

3.5 Proposed method . 102
3.5.1 Basic TDM method . 102
3.5.2 Design space exploration . 104

3.6 Applying method on case . 106
3.6.1 Models . 108
3.6.2 Model checking results . 110
3.6.3 Debugging . 111

3.7 Discussion . 113
3.7.1 Results . 113
3.7.2 Observations . 113
3.7.3 Learning points . 117
3.7.4 Advantages . 118
3.7.5 Disadvantages . 119
3.7.6 Limitations . 119
3.7.7 Improvements . 120
3.7.8 Future work . 121
3.7.9 Conclusion . 122

3.8 References . 124

4 Test-driven modeling of smart systems 129
4.1 Introduction . 130
4.2 Characteristics . 131
4.3 Challenges . 132
4.4 Related work . 134

4.4.1 Test-driven, model-based development 134

xiv CONTENTS

4.4.2 Internet of Things (IoT) . 134
4.4.3 Cloud modeling & simulating 135
4.4.4 Large-scale simulators . 137
4.4.5 Technologies . 137
4.4.6 Simjava2 . 138
4.4.7 Related work summary . 139

4.5 Case study . 140
4.5.1 System under consideration . 141
4.5.2 Main scenario . 141
4.5.3 Randomness . 144
4.5.4 Goals . 144

4.6 Proposed method . 145
4.7 Implementing the method . 150

4.7.1 Descriptive models . 150
4.7.2 Formal models . 151
4.7.3 Modified framework . 152
4.7.4 Traditional modeling . 152
4.7.5 Avoiding ports . 155
4.7.6 Usage example . 155

4.8 Applying method on case . 157
4.9 Discussion . 164

4.9.1 Results . 164
4.9.2 Observations . 165
4.9.3 Learning points . 166
4.9.4 Advantages . 167
4.9.5 Disadvantages . 167
4.9.6 Limitations . 168
4.9.7 Improvements . 169
4.9.8 Future work . 169
4.9.9 Conclusion . 170

4.10 References . 171

5 Discussion 177
5.1 Results and research answers . 177

5.1.1 MBSE tool selection . 178
5.1.2 Test-driven modeling . 181

5.2 Evaluating research hypotheses . 186
5.2.1 MBSE tool selection . 186
5.2.2 Test-driven modeling . 188

5.3 Observations . 192
5.4 Problems . 194
5.5 Open issues . 195
5.6 Future work . 195
5.7 Impact . 198

CONTENTS xv

5.8 Conclusion . 199
5.9 References . 202

xvi CONTENTS

List of Figures

1.1 GN Hearing organization (simplified, confidential). 4
1.2 Hearing aids market shares . 5
1.3 Example of hearing system from GN Hearing 7

2.1 Modeling needs and technologies . 30
2.2 Major steps of proposed method for selecting MBSE tools. 40
2.3 Examples of system classification keywords. 46
2.4 Modeling disciplines. 48
2.5 Examples of two integration approaches 56

3.1 TDD for software development. 94
3.2 Potential new architecture to be analyzed. 101
3.3 Behavioral test case modeling in UPPAAL 103
3.4 TDM for modeling of architecture and behavior 105
3.5 Test-driven design space exploration 107
3.6 Process used for conducting case study. 108
3.7 Time spent on different activities during the case study. 118

4.1 Smart system characteristics according to definition 4.1. 132
4.2 RFT interactions . 142
4.3 Test-driven modeling process for smart systems. 146
4.4 Model of model . 151
4.5 Formal model of basic interaction . 153
4.6 Formal verification of basic interaction 153
4.7 ExtSim class diagram . 154
4.8 SimJava2 tutorial example . 154
4.9 Minimal example scenario model . 156
4.10 Simplified block diagram for simulation model 158

xviii LIST OF FIGURES

List of Tables

2.1 Typical elements of fundamental modeling. 49
2.2 Requirements distribution for traceability tool 62
2.3 Specification conformance and gaps for traceability tools. 63
2.4 Requirements conformance for tool (excerpt) 64
2.5 Requirements gap for tool #1 (mandatory requirements only). 65
2.6 Requirements gap for tool #1 (desired requirements only). 65
2.7 Correlation table example . 69

3.1 Mapping of TDD steps and the proposed TDM steps. 104
3.2 Is the SPI architecture feasible? . 114
3.3 Is the UPPAAL tool feasible? . 115
3.4 Is the proposed TDM method feasible for the case study? 116

4.1 Cloud system size . 142
4.2 Mapping TDD steps to steps of the proposed method. 145
4.3 Data fitting constants used with equation (4.1). 162
4.4 Verification of the estimator functions. 163

5.1 Evaluations of research hypotheses. 201

xx LIST OF TABLES

Vocabulary

Abbreviations and terms

20-sim 20sim modeling tool.

AADL Architecture Analysis and Design Language.

AAM Architectural Analyses Modeling.

ABCM Architecture/Behavior Co-Modeling.

ABMS Agent-Based Modeling and Simulating.

ADL Architecture Description Languages.

AHP Analytical Hierarchy Process, tool selection method.

AIS Artificial Intelligence Systems.

Algo DSP Algorithm Software.

ALM Application life-cycle Management.

AMDD Agile Mode-Driven Development.

AMS Analogue mixed signal.

API Application Programming Interface.

APP Mobile APPlication, in case study.

#AR Number of All Requirements, in tool selection.

Architecture Hierarchy, properties and interconnections systems.

ASIC Application Specific Integrated Circuit

xxii Vocabulary

Assertion Logical test that forces execution to create an ex-
ception and crash if the test evaluates to false, in
simulation.

Basic interaction Set of strongly related messages between entities in
simulation model, e.g. transmission and confirma-
tion of a specific type of notification.

Battry Electrical element that supply power to electronic
devices.

BDD SysML Block Definition Diagram.

BDS Big-Data systems.

Bluetooth bridge Device that facilitate communication between HIs
and mobile devices (smartphones).

BOM Bill Of Materials.

Bottom-up Modeling method where modeling starts at the low-
est level of details and progresses by adding elements
at increasingly higher levels of abstraction, in con-
trast to top-down.

BPEL Business Process Execution Language.

BPMN Business Process Modeling Notation.

BPSS Business Process Simulation Software

BSM Behavioral Simulation Modeling.

BTB BlueTooth Bridge device.

CAE Computer Aided Engineering.

CAPI Common API.

CASE Computer Aided Systems Engineering

CECPS Cloud-Enabled Cyber Physical Smart, system.

Channel 1: Frequency range, in radio communication.
2: Communication variable, in the UPPAAL model-
ing language.

CM Coherent modeling.

cmds Commands.

Code generation The activity of generating (simulation) code from
models (semi-) automatically.

Contextual system Systems in the system domain the SUD interfaces to.

xxiii

Co-variation Varying two or more parameters in a single simula-
tion experiment.

CPS Cyber-Physical System.

CPU Central Processing Unit.

Crowd Large collection of users

CT Continuous Time, in simulation

Cyber-physical system System that comprise both physical parts and
(internet-based) cyber parts.

D Desired, requirements or features, in tool selection.

Data fitting Technique to derive estimator functions that fit data
sets as closely as possible (or with sufficient preci-
sion).

DBSE Document Based Systems Engineering.

DE 1: Discrete Event, in simulation.
2: Domain Expert, in SE and modeling.

Deadlock A situation where two or more processes wait in-
finitely for each other, in simulation.

Descriptive model Model that is used for describing (a part of) a system
without adding details that allow simulation or other
forms of analysis.

DI Confederation of Danish Industry.

Document-based Development method that uses documents to de-
scribe the intended system.

Domain See system domain.

Double-conformation Pattern for basic interaction between two entities to
ensure that data are transferred reliably, in simula-
tion.

#DR Number of "Desired" Requirements, in tool selection.

DSE Design space Exploration.

DSML Domain-Specific Modeling Language.

DSP Digital Signal Processing/Processor.

DTU Technical University of Denmark.

DTU-Compute Department of Applied Mathematics and Computer
Science at DTU.

xxiv Vocabulary

E2E End-2-End.

EA Enterprise Architecture.

EAF Enterprise Architecture Framework.

ECSAM Embedded Computer-based System Analysis
Method.

EM Enterprise Modeling.

Embedded system Physical system that comprises an embedded com-
puter.

EmbeddedWiki Project under the Inifinit network.

Emergent behavior Behavior of a system that (only) emerges by combin-
ing the parts of a system, often unintended.

End user Primary user of systems.

Enterprise modeling The activity of modeling the entire enterprise of en-
gineering systems.

Entity Computational unit that represent a user, an envi-
ronmental system, a sub-system, or a component of
a systems; in simulation.

Environmental system System in the environment that affects the operation
of a SOI.

ESE Embedded Systems Engineering, section at DTU-
Compute.

EU End user, in case study.

Event Message with associated that are sent from one entity
to another, in simulation.

Expert system Tool for selecting SE and other tools based on col-
lections of data concerning the tool of interest.

Extreme programming Agile development method.

F Feature requirements, in tool selection.

FDA U.S. Food and Drug Administration.

Flash Electronic memory circuit for non-volatile storage.

FM 1: Frequency Modulation.
2: Fundamental Modeling.

FMC Formal Model Checking.

xxv

FMEA Failure Modes and Effects Analysis.

Formal models Models that are described in formal modeling lan-
guage using precise semantics.

Formal modeling Representing systems as formal models.

Formal verification Technique to verify formal models such that all
reachable state are analyzed.

FPU Floating Point Unit, processor.

FSM Finite State Machine.

FSW Fitting SoftWare, in case study.

G General requirements, in tool selection.

Gap analysis Analysis of the gaps between required and provided
functionality, performance, reliability, etc.

GHz Giga Hertz, unit of frequency

GN Great Nordic, company.

GNH GN Hearing, company within GN.

GPU Graphics Processing Unit

GUI Graphical User Interface.

Hearing system A system that includes hearing instruments, acces-
sories, 3rd-party devices, web-services, cloud sys-
tems, etc.

HCP Hearing Care Professional, in case study.

HDF Heterochronous Data Flow, in simulation.

HE Hypothesis Evaluation, evaluation of a RH.

Hearing care
professional

Person at hearing clinics that fit HIs to end-users.

Heterogeneous system System that contains elements that require different
modes of computation to simulate.

HI Hearing Instrument.

HKBS Hybrid Knowledge-based System, expert tool.

Homogeneous system System where all constituent elements can be mod-
eled and simulated by using only one mode of com-
putation.

HW Hardware.

xxvi Vocabulary

IaaS Infrastructure as a Service.

IBD SysML Internal Block Diagram.

IE Integrated Engineering.

IM IMplementation domain.

INCOSE The International Council on Systems Engineering.

Infinit Danish network for innovative utilization of IT.

info Information.

Invariant Condition that must hold at all times during simu-
lation.

IoT Internet of Things.

ITEK Business community for IT, telecom, electronics and
communications under DI.

ITOS Project under DI ITEK.

LED Light Emitting Diode.

LTL Linear temporal Logic.

M Mandatory, requirements or features, in tool selec-
tion.

MARTE Modeling and Analysis of Real Time and Embedded
systems (OMG standard).

Mathematical
forecasting

Technique to predict values of variables for scenarios
that cannot be simulated, based on data fitting and
extrapolation.

MB 1: Mega Byte, unit of memory size.
2: Model Builder, in SE and modeling.

MBSE Model-Based Systems Engineering.

MBT Model-Based Testing, see also MDT.

MDA Model-Driven Architecture, modeling with code gen-
eration.

MDD Model-Driven Development.

MDE Model-Driven Engineering.

MDT Model-Driven Testing, see also MBT.

Methodology Methods applied in engineering.

MHz Mega Hertz, unit of frequency.

xxvii

µS Micro Second, unit of time.

MM Master model, in coherent modeling.

MoC Mode of Computation, in simulations.

Mock-up Simple physical model of device or system.

Model-based Development method that uses models instead of
documents (or as supplement to documents).

Modelica Modeling tool for heterogeneous systems.

Modeling technologies Sum of modeling methodologies, languages, and
tools.

MOO Multi-Objective Optimization, in tool selection.

#MR Number of Mandatory Requirements, in tool selec-
tion.

MSC Message Sequence Charts, in simulation.

Multi-tool scenario Scenario in tool selection, where a set of complemen-
tary tools are selected such that all essential require-
ments are met.

NFP Non-Functional Property.

Notification Message that is sent from one entity to another, in
simulation.

O Optional, requirements or features, in tool selection.

OCL Object Constraint Language (OMG standard).

OMG Object Management Group.

OOSEM Object Oriented System Engineering Method.

#OR Number of "Optional" Requirements, in tool selec-
tion.

OUC Object Under Consideration.

PaaS Platform as a Service.

PD Product Development.

PLM Product Life-cycle Management

Poll Feature in mobile applications that contacts service
provider regularly for obtaining messages or data.

Post-condition Condition that must hold after completion of a sim-
ulation.

xxviii Vocabulary

Pre-condition Condition that must hold before starting a simula-
tion.

PtII Ptolemy-II.

Ptolemy-II Modeling and simulating tool for heterogeneous sys-
tems.

Push Feature in mobile devices that allow users to regis-
ter for automatic pushing of messages from service
providers to the mobile application.

Qualitative methods Method for evaluating based on descriptive analysis
of features, in tool selection.

Quantitative methods Method for evaluating based on quantitative analy-
sis using WSM, AHP or similar techniques, in tool
selection.

Query Expression that represent a formal requirement that
most hold for a system model, in UPPAAL.

RA Research Answer, answer to research question.

Radio system Part of hearing instruments that facilitate commu-
nication between the devices and other parts of the
hearing system.

RAM Random Access Memory.

RC Remote Control.

R&D Research and Development.

req Request.

RFT Remote Fine Tuning, in case study.

RFP Remote Fine Tuning Package, in case study.

RH Research Hypothesis.

RM Requirements Management

ROOM Real-time Object Oriented Modeling.

RQ Research Question

rsp Response.

RTOS Real Time Operating System.

SaaS Software as a Service.

SAS Stationary Audio Streamer.

xxix

Scenario Sequence of events and activities, in simulation.

Scenario simulation Simulating a model that implements a specific sce-
nario without exercising all reachable states.

SCF Source code files.

SCP Smart-Connected Products/devices.

SD 1: Sequence diagram.
2: Specification Document.

SDF Synchronous Data Flow, in simulation.

SDS System Design Specification.

SE Systems Engineering.

Simulink Modeling tool from MathWorks.

SimJava2 Simulation framework for DE simulations.

SimTAny Modeling tool for the TAS method, see also VeriTAS.

Simulation Execution of models to predict functionality and per-
formance.

Simulation domain See MoC.

Simulation framework Extendable simulation software.

Simulation series Series of simulations where exactly one parameter is
changed progressively from one value to another in
small steps such that one simulation is executed for
each step.

Simulation software Software tool that allow engineers to simulate mod-
els.

Single-tool scenario Scenario in tool selection, where only one tool must
be selected to cover the requirement as good as pos-
sible.

Smart system System that provide smart features that utilizes web-
services, cloud solutions, artificial intelligence, etc.

SMC Statistical model checking.

SM Spouse microphones, same as WM.

SOI System of Interest.

SoS System of Systems.

SPI Serial Peripheral Interface, bus.

xxx Vocabulary

SPL Sound Pressure Level.

SRD System Requirements Documents.

State explosion Exponential growth of system states causing memory
exhaustion, in simulation.

Stateflow Modeling tool from MathWorks.

Statistical model System models that are described in modeling lan-
guages that support statistical verification.

Statistical
verification

Method to verify models statistically such that func-
tionality and performance can be guaranteed with
specifiable probability.

SUC System Under Consideration.

SUD System Under Development.

SW Software.

SWOT Strengths, weaknesses, opportunities, and threats;
analysis of.

SysML Systems Modeling Language.

System domain Operational context of a system and its users and
environmental systems.

System of systems System that includes sub-systems over which the de-
velopers of the SOI have no control.

SystemC Systems modeling language that utilize C++.

Tag Enumeration value that identify a specific type of
message, in simulation.

TAS Test-Driven Agile Simulation, method.

TCP/IP Transmission Control Protocol / Internet Protocol.

TCTL Timed Computational Tree Logic.

TDA Test-Driven Approach.

TDD Test-Driven Development.

TDM Test-Driven Modeling.

TDMS Test-Driven Modeling Suite.

TD-DSE Test-Driven Design Space Exploration.

TD-MBSE Test-Driven, Model-Based Systems Engineering.

TDMBWE Test-Driven Model-Based Web Engineering.

xxxi

TDSC Test-Driven Scenario Modeling.

Tech Technology, abbreviation for.

Test-driven Development method where test cases are written
before models or code of the SOI.

Test system System that is used for testing devices or SOIs.

TFS Microsoft Team Foundation Server.

TLM Transaction-Level Modeling.

Top-down Modeling method where modeling starts at the con-
cept level and progresses by adding details at increas-
ingly lower levels, in contrast to bottom-up.

Traceability The ability to trace artifacts to requirements of orig-
inating stakeholders.

UCD Use Case Diagram.

UI User Interface.

UID User Interaction Diagram.

UML Unified Modeling Language (OMG standard).

UPPAAL Tool for modeling and verifying formal models, de-
veloped jointly at UPPsala University and AALborg
university.

UPPAAL-SMC UPPAAL tool variant for Statistical Model Check-
ing.

UTP UML Testing Profile (OMG standard).

Validation Method to determine if requirements, designs or im-
plementations conform to the wishes of stakeholders.

VDM Vienna Development Method, modeling languages.

Verification Method to determine if designs or implementations
conform to the requirements.

VeriTAS Modeling tool for the TAS method, see also Sim-
TAny.

VHDL Very High Speed Integrated Circuit Hardware De-
scription Language

Virtual prototype Realistic computer model of device or system.

VSL Value Specification Language (OMG standard).

xxxii Vocabulary

WebML Language for modeling web applications.

WM Wireless Microphones, same as SM.

WoT Web of Things.

WS Web Services.

WSM Weight Scoring Method, in tool selection.

XP Extreme programming.

xtUML Executable UML models.

Chapter 1

Introduction

Embedded systems include all types of products that contain a central electronic
processor with associated software, except actual computer systems. The processor
units of embedded systems are typically used for controlling and monitoring other
components of the products and for dedicated computing beyond a simple monitoring-
controlling scheme. The spread of embedded systems is growing rapidly at an annual
growth rate of approximately 9% from a level of around 160 billion Euro in 2009 [7].

The complexity of embedded systems is also growing rapidly at annual rates of 10 to
30% for software [7], while hardware still follow Moore’s Law [8][9], doubling approx-
imately every 18 to 25 months. This shows that software lacks behind hardware with
the consequence that the possibilities offered by rapid hardware development cannot
be fully exploited at the system level. To utilize hardware better, one must therefore
either improve the software development rate or move functionality from software to
hardware. In both cases, we need a more holistic system perspective and improved
development processes and methods.

Previously, systems were often independent of the surroundings and communicated
only with a limited number of systems using fixed connections. Many modern sys-
tems, in contrast, are often part of systems-of-systems and exchange information
with the surroundings via the Internet and other open communication technologies.
Such complex smart systems have the potential to provide features that are more
interesting but they require more rigorous development methods to ensure reliability.

2 Introduction

Today, embedded and smart systems are often developed using document-based sys-
tem engineering (DBSE) methods. Requirements, designs, tests, etc., are described
using plain text, figures and tables. Common office applications are typically used for
creating and maintaining such documents. DBSE is easy to implement, but has nu-
merous drawbacks. The inability to predict the system behavior based on simulations
constitute a particular problem, [10].

Many challenges are associated with the development of embedded and smart sys-
tems. The number of potential defects and faults is often substantial, which leads to
a need for an even greater number of test cases with a complexity and size that often
exceeds the system itself [10].

With DBSE, it is not possible to run simulations or execute test cases to find and
correct errors at an early stage. By great and thorough effort, however, the industry
has repeatedly shown that it is possible to create at least simple systems of good
quality.

Engineering of large complex systems requires a different approach to ensure quality
and development efficiency. This has led to various agile methods such as extreme
programming (XP) and test-driven development (TDD) that have been used with
good but varying results [11]. Unfortunately, these methods do not solve the basic
problem of predicting the behavior of integrated systems at an early stage before they
are implemented and can be subjected to testing. The soundness of requirements and
intended system designs can only be demonstrated or proved by simulating models
of the overall integrated system.

Dividing the development of constituent technologies (e.g. hardware, software, me-
chanics, etc.) at an early stage, introduces significant risks into the development
projects. Insufficient system performance or even incompatibilities between parts
and components may result from separating the engineering disciplines. Such errors
are typically found very late in the developments process. This may lead to poor
product quality, increased development time, financial losses, etc. Cancellation of
projects may be required in severe cases.

Models have been used in various engineering disciplines since antiquity. Good system
models make it possible at an early stage to predict system behavior and performance,
leading to improved development efficiency and better products. There are many
good reasons for and a growing tendency to replace DBSE with model-centric methods
such as model-based system engineering (MSBE), model-driven design (MDD) and
model-driven engineering (MDE), [12].

Several MBSE methodologies such as the embedded computer-based system analysis
method (ECSAM) [10] and the object oriented system engineering method (OOSEM),
see [13] or [14], have been proposed and used occasionally, but seems not to be widely

3

used [15]. There are numerous modeling languages available to implement various
model-based methods, including: ECSAM [10], SystemC [17], UML [18], xtUML [19],
SysML [13], Matlab with Simulink [20] and Stateflow [21] and other more specialized
modeling languages [15]. For each of these modeling languages there is at least one
available tool [15]. Different combinations of methodologies, modeling languages and
associated tools are used for different purposes with distinct characteristics, advan-
tages and disadvantages. However, as individual technologies standing alone they
cannot cover all modeling needs for companies such as GN Hearing due to limited
expressiveness, unnecessarily complicated syntax and semantics. Currently, there are
no straightforward and commonly accepted ways of combining models in different
languages into a single overall system model, [15] [16]. Thus, there is a need for
investigating how to combine, integrate and use different modeling technologies to
enable systems engineers to validate and verify system concepts before commencing
development of hardware and software.

The transition from DBSE to MBSE can be rather overwhelming due to the tremen-
dous number of available methodologies, modeling languages and tools. To ease such
transitions, this PhD project includes investigations of methods to identify feasible
modeling setups based on thorough analyses of the actual modeling needs and of the
possibilities offered by different modeling technologies.

From TDD it is known that the test code can be considerably more complex than
the code used in the actual product [7]. A similar relationship can be expected for
system models and the test cases that must be made to verify the models. Many
MBSE methods focus on the system models and ignore the test cases to a large
degree. At best, test cases are created afterwards by a systematic analysis of the
models [10]. However, experience shows that there are advantages of developing test
cases before models, [11]. Several methods for test-driven modeling (TDM) exist,
but none have gained popularity or been widely adopted by system engineers for
several reasons. The advantages of TDM may not have been demonstrated and
communicated effectively or the need may not have emerged yet for the average
system engineer. Early adopter may have hesitated because of severe drawbacks
such as the need for specialized and complex modeling languages and tool chains.
This PhD project includes investigations of new methods for test-driven, model-
based systems engineering (TD-MBSE) that with luck will gain more widespread
acceptance.

The overall purpose of the PhD project is to investigate methods that facilitate the
transition from documents to models. One aim is to develop methods for identifying
and implementing suitable modeling setups. Another aim is to create a prototype of a
development tool or a modeling framework that supports TD-MBSE at GN Hearing.

The remaining parts of this chapter are structures as follows: Section 1.1 introduces
the company GN Hearing and shows how the PhD project fit into the organization.

4 Introduction

Figure 1.1: GN Hearing organization (simplified, confidential).

Section 1.2 describes the market situation. Section 1.3 describes the strengths, weak-
nesses, opportunities and threats (SWOT) for the company. Section 1.4 describes
the characteristics of the systems of interests. Section 1.5 describes the research
questions addressed in the PhD project. Section 1.6 describes the research methods.
Section 1.7 describes the hypotheses. Section 1.8 describe the stakeholders involved
in the PhD project. Section 1.9 describes the structure and content of the remaining
parts of the thesis and section 1.10 finally lists the references cited in this chapter.

1.1 GN Hearing

GN Hearing A/S is part of the company GN Store Nord A/S. The products and
services offered by GN Hearing are hearing systems consisting of hearing instruments,
remote controllers, streaming devices, auxiliary devices, mobile applications and cloud
services, as well as fitting software and associated equipment.

Figure 1.1 shows a simplified organization chart of GH Hearing. The PhD project
is associated with the System Architecture team in the Systems Engineering depart-
ment, which is part of the SE-PMO (systems engineering and project management
office) department in R&D (research and development) in GN Hearing. The project
is related to other engineering disciplines in the R&D department, e.g. software
development and hardware platform development.

1.2 Market situation 5

Son
ova

Willia
n Dem

ant
Sie

me
ns

GN
Sto

re N
ord

Sta
rke

y T
ech

nol
ogi

es
Wide

x 0

5

10

15

20

25

17
18

23

14

11
9

24
23

17
16

9 9

P
er
ce
nt
ag
e
(%

)

2005
2012
Future

U
n
d
er
-p
er
fo
rm

U
n
d
er
-p
er
fo
rm

U
n
d
er
-p
er
fo
rm

O
ve
r-
p
er
fo
rm

U
n
kn

ow
n

U
n
d
er
-p
er
fo
rm

Figure 1.2: Hearing aids market shares. Sonova is the owner of Phonak et al.
William Demant is the owner of Oticon et al. GN Store Nord is the
owner of GN ReSound (now GH Hearing) et al. Source: Kirkwood [22].

1.2 Market situation

10.8 million hearing aids corresponding to a whole sale value of 5.4 billion USD were
sold in 2012 according to [22]. 45% were sold in Europe, 29% in North America and
26% in the rest of the world. The total market is expected to double over a 25-
year period corresponding to 3% yearly growth driven by a similar growth in main
user group of people over 65 years [23]. Approximately 20% of hearing impaired
persons use hearing aids [24]. 98% of the units sold are manufactured by six large
companies [22] with market shares as shown in figure 1.2. From the figure, it is seen
that GN Hearing was expected to gain market shares in the future1. The situation
may have changed since 2013 because the competitors of GN Hearing have acquired
wireless and other technologies that make their products more attractive.

1 The analysis ([22]) was published in 2013.

6 Introduction

1.3 SWOT analysis

The strengths, weaknesses, opportunities and threats of the company were analyzed
at the beginning of this project to outline the current situation of the company. The
SWOT is company confidential and cannot be shown in this thesis.

1.4 Hearing systems

The fundamental purpose of hearing systems is to remedy hearing impairment by
compensating for the end-users hearing loss. The hearing systems from GN Hear-
ing are enriched with many features that allow end-users to control their hearing
instruments remotely and to connect directly to various (electronic) sound sources.
Hearing systems also typically include features that allow hearing care professionals
(HCP) to calibrate and adjust the hearing aids to the specific needs of the end-users.
The ability to connect hearing systems to the Internet allows features that are more
advanced, such as remote haring aid firmware updating, remote fine tuning of hearing
aids, etc.

Figure 1.3 shows an example of a complex hearing system from GN Hearing. From the
figure, it is seen that hearing systems may include many different types of components
and means of communication between the parts.

The central devices of hearing systems are the hearing instruments (HI), which pro-
vide amplification of sounds, tinnitus management, audio control, and other features.
HIs contain advanced electronics and electro-acoustical components to implement
these and other features.

Advanced HIs can communicate with other devices and systems such as programming
devices (Airlink-2 and Speedlink), mobile devices, remote controls (RC), Bluetooth
bridging devices (BTB), wireless microphones (WM) or spouse microphones (SM),
stationary audio streaming devices (SAS) that are connected to TV sets, HIFI equip-
ment, computers or similar electrical sound sources. HIs are finally able to receive
signals from frequency modulated (FM) systems and magnetic loop systems. The
HIs can be connected to the Internet through mobile devices.

The communication between components is facilitate by several types of connections:
Bluetooth (standard and Low energy), Proximity (2.4 GHz proprietary standard of
GN Hearing), WAN/WLAN, Wired, and magnetic induction.

The components and communication paths of hearing systems from GN Hearing are

1.4 Hearing systems 7

Figure 1.3: Example of hearing systems from GN Hearing.
Source: GN Hearing R&D Systems Engineering.

further described in chapter 2 in [1].

The characteristics of systems determines which technologies can be used for
modeling and simulating. Systems classification keywords (section 2.4) can be used
to determine the overall characteristics of hearing systems. The descriptions of typical
characteristics of embedded systems (section 3.2) and smart systems (section 4.2) are
additionally used for the following characterizations.

A hearing system consisting of two hearing instruments, a remote control, an extra
external microphone, and a stationary audio streamer can be classified as a system
of embedded sub-systems. Concerning hardware, the parts includes analog and digi-
tal electronics, batteries, mechanical and electro-acoustical components. Concerning
software, the parts contains operating systems, system logic, user interfaces and digi-
tal signal processing algorithms. Environmentally, the system includes acoustical and
electrical sound sources, as well as human operators.

8 Introduction

The HIs, RC, SAS, WM, BTB have characteristics of heterogeneous systems, whereas
mobile applications, fitting software and cloud services have characteristics that are
closer to homogeneous systems.

Performance is very important especially regarding power consumption and sound
quality. The size and form-factor of the HIs are equally or more important for many
users. The systems has critical elements regarding safety, security or timing. Con-
cerning safety, the hearing instruments are not allowed to damage the ears of its
users by excessively loud sounds. Concerning security, the systems must resist any
attempt to interfere with safe operation of the hearing systems. Concerning timing,
the devices must conform to the timing constraints of internal electronic component
and of the external communication protocols.

The business model includes dispensers (hearing care professionals) to calibrate the
hearing aids for the end-user. The dispensers pose special requirements that must be
included in system models. The usage of the systems may include scenarios where
some parts of the system are discarded or replaced with new parts while other parts
are kept.

The hearing system may be part of a larger system where third party gadgets such
as smart-phones or tablets are used to mediate web services and cloud solutions. The
use of third party devices and services adds the characteristics of systems of system
(SoS). Interaction with large crowds of users adds the characteristics of internet of
things (IoT), smart systems, and big-data systems.

The modeling complexity must therefore be considered as medium to high. The
simulation complexity on the other hand must be consider as high to very high,
because it requires several modes of computation (e.g. continuous time and discrete
events) to simulate the overall system. However, in many cases, it will be possible to
abstract and simplify models such that the systems can be expressed using only the
discrete event formalism.

The selection of suitable technologies and methodologies for modeling of such systems
is discussed in chapter 2.

1.5 Research questions

The overall purpose of the PhD project is to investigate modeling methods, languages,
tools and processes to facilitate the transition from documents to models. This thesis
addresses two major research questions:

1.5 Research questions 9

RQ 1 How can organizations select and implement tools for (model-based) sys-
tems engineering?

RQ 2 How and to what effect can test-driven methods be applied to model-based
systems engineering?

The first question, RQ 1, is relevant for all organizations that embark on the transition
from documents to models. RQ1 can be elaborated into the following set of research
questions concerning selection of MBSE tools:

RQ 1.1 Which methods have previously been applied to selecting, implementing
and using systems engineering tools?

RQ 1.2 Which limitations or disadvantages of existing methods for selecting and
implementing systems engineering tools necessitate modified or new meth-
ods?

RQ 1.3 How can tool solutions be verified and validated before they are imple-
mented and used on a daily basis?

RQ 1.4 What can be achieved by using existing or newly proposed methods for
selecting and implementing tools?

RQ 1.5 What are the advantages of the proposed method for selecting, imple-
menting and using tool solutions?

RQ 1.6 What are the disadvantages and limitations of the proposed method for
selecting, implementing and using tool solutions.

The second question, RQ 2, is relevant for organizations that require models of high
quality and trustworthiness. RQ 2 can be elaborated into the following set of sub
research questions concerning test-driven modeling of embedded and smart systems:

RQ 2.1 How have test-driven methods previously been applied to systems mod-
eling?

RQ 2.2 Which limitations of existing methods for test-driven systems modeling
necessitate modified or new methods?

RQ 2.3 What are the advantages, disadvantages and limitations of different veri-
fication techniques for test-driven systems modeling?

RQ 2.4 What can be achieved and what are the experiences of using test-driven
modeling for design of embedded and smart systems?

10 Introduction

RQ 2.5 What are the advantages of the proposed methods for test-driven systems
modeling?

RQ 2.6 What are the disadvantages and limitations of the proposed methods for
test-driven systems modeling?

Questions regarding the effectiveness, advantages and disadvantages of using DBSE
versus MBSE versus TD-MBSE have deliberately been avoided because such question
are very difficult to answer in our case due to the following reasons:

1. We do not have a solid base line to compare with.

2. We will not be able to conduct enough modeling cases to get results with suf-
ficient statistical significance.

3. We do not have the resources to conduct comparative studies.

4. It is very difficult to define metrics and measure the causes of success due to
the uniqueness of each case as described by Muller [26, p. 1100]: "It is close to
impossible to make hard claims of success related to specific methods, since we
cannot unravel the causes of success."

1.6 Research methods

The research methods used in this study are devised to give adequate answers to
the research questions taking the nature and characteristics of the project and its
unavoidable constraints into consideration.

This research project has characteristics of or relates to numerous sciences including:

• Natural science:

– Human biology and audiology.

• Social science:

– Communication, psychology and sociology.

– Economics, business and industrial sciences.

• Formal science:

1.6 Research methods 11

– Systems theory and science.

– Computer science.

– Mathematics, logic and statistics.

• Applied science:

– Systems engineering.

– Systems modeling and simulation.

– Formal and statistical model checking.

– Hardware engineering.

– Software engineering.

The systems under consideration for modeling at GN Hearing are fundamentally of
a technological kind as described in section 1.4. However, the characterization of
hearing impairment and interactions between systems and their environments relate
more to natural science. How users interact with the systems under considerations
also has elements that are best described by social and applied science.

Systems engineering and MBSE have strong elements of the formal and applied sci-
ences. However, systems engineers are heavily involved in communication with stake-
holders, driving processes, etc. Such skills are best described by the social sciences.

Modeling languages, tools, methodologies and processes are the cornerstones of MBSE.
These elements fall naturally into the group relating to formal and applied sciences.
However, their conception are always a product of the fusion of ideas and opinions of
various stakeholders. Therefore, their characteristics also relate to social science.

The choice of research methods was restricted by the following constraints: Minimal
involvement of employees at GN Hearing to avoid reduced productivity of regular
R&D activities. The employees can therefore only be involved as sources of informa-
tion or as evaluators of results. All activities of investigating, modeling, simulating,
etc., must be conducted by the PhD student (me). Limited resources and time there-
fore prevent certain research methods such as comparative studies.

The characteristics and constraints of the project as described above dictates the use
and fusion of various methods. The research method used in this study are:

1. Literature studies of DBSE, MBSE, tool selection, modeling, simulating, veri-
fying, model checking, test-driven methods, etc.

12 Introduction

2. Investigations of modeling disciplines that relate to different aspects of MBSE
for the purpose of identifying the needs and requirements to feasible MBSE se-
tups (modeling languages, tools, methods, and processes). These investigations
are mainly based on literature studies.

3. Investigations of available modeling technologies (modeling languages, tools,
methods and processes) for the purpose of being able to identify the best can-
didates for the relevant MBSE scenarios. These investigations are based on lit-
erature studies and modeling experiments to evaluate the technologies. These
investigations are the foundation upon which the proposed methods are build.

4. Propose and test methods for selecting and implementing modeling setups. The
proposals are mainly based on literature studies. Testing and evaluating the
proposed methods are based on case studies conducted at GN Hearing. One
case study concerns selecting a traceability tool used throughout R&D. Another
case study concerns selecting modeling tools for systems engineering.

5. Propose and test methods for TD-MBSE. The proposals are based on the find-
ings from literature studies and investigations of modeling disciplines, tech-
nologies, methods and processes. Testing and evaluating the proposed methods
are based on case studies conducted at GN Hearing. One case study concerns
test-driven modeling and design space exploration of an embedded system of
medium complexity. Another case study concern a smart system. The size
and complexity of this system challenges any attempt to obtain trustworthy
predictions about the functionality and performance of the system.

6. Identify and analyze expected as well as unexpected findings from the case
studies.

7. Report research results as papers, thesis chapters and company presentations.

Other research methods might also have been relevant, such as:

• Observational studies of systems engineers during modeling sessions to gain
more insight into the effects of using the proposed methods.

• Surveys for obtaining data from systems engineering stakeholder to gain insight
into the effect of using the propose methods.

• Triangulating data obtained from different case studies and other sources to
compare the results of using different methods, e.g. DBSE versus MBSE versus
TD-MBSE, or different forms of TD-MBSE.

• Series of case studies to explore the proposed methods from different angles and
for obtaining statistical significant results.

1.7 Hypotheses 13

• Longitudinal studies to gain insight into the long-term effects of using the pro-
posed methods, e.g. changes in productivity, work satisfaction, etc.

• Action research with the aim of changing the organization or work methods or
processes. The case studies include some elements of action research because
they aim to pave the way for changes but do not include all elements such as
client involvement.

However, these and other research methods [27, chp.5] were deliberately avoided
for several reasons. They required more resources and involvement from GN Hearing
than possible. They concern different research questions than those that were selected
for the project. The 7 selected research methods are believed to provide satisfying
answers to the research questions described in section 1.5.

1.7 Hypotheses

The following research hypotheses will be assumed concerning RQ 1:

RH 1.1 Several methods for selecting tools that relate to some parts of systems
engineering exist but are inadequate for general selection of MBSE tools.

RH 1.2 New methods are needed for systematic analyzing tool requirements to
develop relevant selection criteria for MBSE tool selection.

New methods are needed for evaluating, selecting, and implementing tool
solutions to accommodate situations not previously addressed.

RH 1.3 Correlating requirements and tool capabilities to identify non-conformance
to different groups of requirements can be used for avoiding tool solutions
that cannot be verified.

Tailoring the elicitation of tool requirements to the individual organiza-
tion increases the likelihood of obtaining solutions that can be validated.

RH 1.4 Using systematic method for selecting and implementing tools increases
the likelihood of obtaining good solutions that are accepted by the stake-
holders.

RH 1.5 The research will provide comprehensive methods that allow successful
selection, implementation and subsequent use of MBSE tool solutions.

RH 1.6 The disadvantages of the proposed methods will not cause the organiza-
tions to select and implement infeasible tool solutions.

14 Introduction

The following research hypotheses will be assumed concerning RQ 2:

RH 2.1 Several test-driven modeling methods exist but they are inadequate for
modeling and verifying hearing systems.

RH 2.2 New methods for test-driven modeling and verification are needed for
allowing system engineers to guarantee system functionality and perfor-
mance of embedded systems.

New methods are needed for modeling, simulating and predicting func-
tionality and performance of large and complex smart systems.

RH 2.3 Formal and statistical model checking can be used in methods for test-
driven modeling and verification of functionality and performance of medi-
um complex embedded systems.

Simulating can be used in methods for test-driven modeling and verifica-
tion of functionality and performance of large complex smart systems.

Some systems are too large and complex to be verified with model check-
ing or simulation. The functionality and performance of such systems can
be predicted by mathematical forecasting based on simulation results for
smaller and simpler versions of the system of interest.

RH 2.4 The use of test-driven modeling will increase productivity, improve qual-
ity and reduce the cognitive load during modeling.

The modelers will gain deeper insight into the systems of interest and
they will be able to answer questions that otherwise cannot be answered
sufficiently.

The modelers will be able to explore the design space and evaluate dif-
ferent versions of the intended systems before starting the actual devel-
opment of system parts.

RH 2.5 The research will produce test-driven methods that has several advan-
tages compared to previous development methods (including previous
test-driven methods).

Combining different verification methods will allow modeling of a wide
variety of systems and provide more trustworthy verification results.

RH 2.6 The disadvantages of the proposed test-driven methods will not nega-
tively affect creativity, productivity, reliability, or trustworthiness of the
verification results. Disadvantages will only concern verification time and
required computer resources.

Notice that each research question has exactly one research hypothesis (e.g. RQ 1.3
<—> RH 1.3).

1.8 Stakeholders 15

1.8 Stakeholders

Several stakeholder are involved in or affected by the project. The roles and value
propositions for the various stakeholders are described in the following subsections.

1.8.1 PhD student

Role: My role in the PhD project is to conduct research within the discipline of
model-based systems engineering and disseminate the result to the company, the
university and other involved parties. For the university, I shall build knowledge about
MBSE and disseminate in the form of published articles. For the company, I shall
conduct experiments that relate to the core business of the company and disseminate
in the form of information meetings, workshops and training. For the ITOS and Infinit
projects (see section 1.8.5), I shall provide content for the Infinit EmbeddedWiki [28]
and the ITOS Fieldbook [29] in collaboration with other industrial projects.

Value proposition: The PhD project provides me a unique opportunity to pursue
and explore the field of model-based systems engineering and obtain a PhD degree
for improved future career prospects.

1.8.2 GN Hearing

Role: The project is initiated by the company GN Hearing A/S (GNH). GNH is
a manufacturer of hearing systems including hearing aids, accessories and auxiliary
systems. The complexity of the hearing systems is continually growing. GNH has
therefore seen a need for a more formalized systems engineering methodology that al-
lows them to develop future systems. R&D Senior Vice President Lars Lindqvist from
GNH is the company supervisor on the project and Systems Engineering Manager
Flemming Schmidt from GNH is the company co-supervisor. The role of GNH is to
provide the cases and resources that are needed to conduct the research experiments
and case studies.

Value proposition: The PhD project provides the company an opportunity to
investigate how to introduce modeling into systems engineering at a low level of costs
and risks. The project will include experiments that can be utilized as demonstrator
to reduce potential resistance towards the introduction of new methods, processes
and tools. The company will be able to keep their technological competitiveness by

16 Introduction

building skills in test-driven, model-based approaches to create better and more at-
tractive product offerings faster, cheaper and with lower levels of risks. The company
will be able to offer jobs that are more attractive when document authoring is re-
placed by modeling. The company will finally be able to gain a reputation for using
the best methods to design their systems.

1.8.3 Employees

Role: Several employees at GNH were involved in this PhD project. From the orga-
nization chart in figure 1.1, it is seen that PhD project is directly associated with the
Systems Architecture team in the Systems Engineering group. This team is highly
involved in the project. The project also affects and partly involves the Require-
ments Engineering and System Verification teams. Employees from various teams
in the Software Development department are also highly involved. Employees from
other departments (particularly Hardware Platform Development) may ultimately be
affected by the methods gain by the project.

Value proposition: The systems engineers and developers will increase their skill
sets in a field of increasing importance (model-based systems engineering), which in
turn will increase their attractiveness and career prospects. The job content will be
more interesting for engineers and similar personalities, when documents are replaced
by models. Using the best methods allows employees to perform at their best and to
be perceived as professionals. Collaborating on models finally allow social integration
of employees from different teams.

1.8.4 Technical University of Denmark

Role: The project is conducted in collaboration with the Technical University of
Denmark (DTU) at the Department of Applied Mathematics and Computer Science
(DTU-Compute) in the Embedded Systems Engineering (ESE) section. Professor Jan
Madsen at DTU-Compute is university supervisor on the project and Professor Paul
Pop is the university co-supervisor. The role of the university is to provide access
to state of the art knowledge within the area of systems engineering. The university
will also provide or facilitate the teaching and training needed to undertake the PhD
project successfully. Finally, the university grants the PhD degree.

Value proposition: The PhD project provides ESE with opportunities to build
competences in the field of general and test-driven model-based systems engineering

1.8 Stakeholders 17

to complement their expertise in embedded systems design. This new knowledge can
be commercialized as new courses or educations in model-based systems engineering.

1.8.5 DI ITEK ITOS & Infinit

Role: The project is co-funded by the Confederation of Danish Industry (DI) at de-
partment for IT, Tele, Electronics and Communications (ITEK) under the Industrial
technology and Software (ITOS) project. The purpose of the ITOS project is to create
knowledge and enhance skills and techniques used to develop embedded technologies
(systems with embedded computers). Senior Consultant Henrik Valentin Jensen from
DI is the project manager for ITOS project and associate Professor Ulrik Nyman from
Aalborg University (AAU) is the coordinator of ITOS activities. The ITOS project
is associated to numerous organizations and projects regarding model-based systems
engineering including: (1) PhD project at Technical University of Denmark (DTU)
in collaboration with MAN Diesel conducted by PhD student Nicolai Pedersen. (2)
PhD project at Aalborg University (AAU) in collaboration with Seluxit conducted
by PhD student Thomas Pedersen. (3) PostDoc project at Aarhus University (AUC)
in collaboration with Terma conducted by PostDoc Sune Wolff. (4) EmbeddedWiki
project funded by Infinit and managed by Project Manager Mads Kronborg Ågesen.
Other stakeholders were involved in the ITOS and Infinit projects, e.g. as supervi-
sors. Collaboration between all involved parties produced the EmbeddedWiki [28],
ITOS Fieldbook [29], ITOS Workbook [30], and other ITOS publications.

Value proposition: The PhD project provides the ITOS and Inifinit projects a
very general knowledge about model-based systems engineering. This PhD project
is much more general than the other industrial cases in the ITOS project and will
therefore be of more interest to many users of the ITOS publications and the Infinit
EmbeddedWiki. This PhD project provides general knowledge about model-based
systems engineering to the other industrial cases, which are more focused on special-
ized modeling methods, tools and application domains.

1.8.6 Tool providers

Role: Tool providers and open source tool projects are not directly involved in the
project, but may be affected by the methods gained from the project.

Value proposition: The proposed method for test-driven modeling may be lever-
aged by tool providers to develop plugins or extensions to existing modeling tools for

18 Introduction

the benefit of their customers.

1.8.7 INCOSE

Role: The Danish chapter of the International Council on Systems Engineering
(INCOSE) is an important stakeholder that may be affected by the project even
though they are not directly participating in the project. Learning model-based
systems engineering methods is difficult and the number of skilled people is probably
too low to satisfy the actual need both in Denmark and internationally. INCOSE
provides a great network for promoting model-based systems engineering.

Value proposition: The method for selecting, implementing and using model-
based systems engineering tools may be leveraged by INCOSE to help organizations
to commence the transition from documents to models.

1.8.8 Embedded systems industry

Role: The embedded systems industry is not directly participating in the project
but the research relate strongly to objectives of the industry, which may therefore be
affected by the results of the research.

Value proposition: The PhD project provides the embedded systems industry
methods that can be applied to many different domains. The knowledge produced by
the project will allow the industry to efficiently create systems that are larger, more
complex, and of higher quality. The required skill level is lowered when methods
that are more systematic are adopted such that more people are able to contribute
to successful systems engineering. Using the best methods will also be attractive to
students, which will contribute to preventing the lack of skilled people in the future.

1.8.9 Society

Role: The project is co-funded by the Innovation Fund Denmark. The society
therefore provide means for conducing this PhD project but is not otherwise involved
in the research. However, society as such may be affected by the results of the project.

1.9 Thesis 19

Value proposition: The PhD provides the society a knowledge base that will en-
able it to develop large complicated system for the benefit of all citizens. It will
contribute to promoting useful educations, interesting jobs and meaningful lives. In-
creased tax revenue from a successful embedded systems industry is will also benefit
society.

1.9 Thesis

1.9.1 Purpose and scope

The purpose of the thesis is to document the research undertaken during and relat-
ing to the PhD project " Test-Driven, Model-Based Systems Engineering ". A vast
amount of work relating to the purpose of the project (e.g. learning the subtleties
of numerous modeling methods and technologies) has been undertaken as prepara-
tion for the execution of the case studies and other research activities. Some of this
preparatory work is has produced results that are included in the chapters and appen-
dices of this thesis. However, most parts of the preparatory work has not produced
new results of relevance for stakeholders or academia, so these parts are not included
in the thesis. The scope of the thesis is limited to include descriptions of the research
that was conducted to provide answers for the research questions and evaluations for
the hypotheses.

This PhD project was initiated by GN Hearing with the idea of addressing some chal-
lenges concerning development of future embedded and smart systems. The overall
purpose of the project is therefore to conduct research that allow GN Hearing to
identify potential solutions to these issues.

The scope of the project is limited to the disciplines of model-based systems engi-
neering where major improvements are considered reachable. Specialty engineering
disciplines such as hardware or software development have occasionally been involved
in the project. However, the project has a strong focus on methods that allow systems
engineering to commence the transition from documents to models.

The scope of project is also limited to systems of interest for GN Hearing, i.e. products
and services involved in complex hearing systems. Large and complex hearing systems
include elements such as crowds of users, devices, clouds, web services, etc. This
project has a focus on embedded and smart systems, because most devices are in
the embedded systems category and because hearing systems currently and onwards
are evolving from simple predictable systems into large and complex smart systems.
Other aspect of hearing systems are managed within specialty engineering and are

20 Introduction

therefore excluded from the project.

The PhD project aims at (1) developing methods that allow GN Hearing and similar
companies to commence the transition from documents to models, and (2) developing
a test-driven, model-based systems engineering framework and accompanying devel-
opment tool set for creating, verifying and validating system models of high quality.
To obtain viable long-term industrial solutions, it is preferred to use and tailor proven
tools instead of developing specialized tools that may be hard to maintain. The focus
is thus centered on methodologies and processes rather than tools and other forms of
supporting technologies.

1.9.2 Style and conventions

This thesis conforms to the traditions at the Embedded Systems Engineering section
at DTU Compute. The term "we" and "us" are used instead of "I" or "me" to
implicit acknowledge that the work presented here builds upon the work of others.
However, all research described in this thesis is conducted by the author (me), albeit
under the guidance of the supervisors from DTU and GN Hearing.

1.9.3 Abbreviations and terms

Abbreviations are defined directly in the text whenever needed. The full term is
written first followed by the abbreviation in parentheses. Previously defined abbre-
viations may be repeated or redefined whenever convenient. The abbreviations and
terms are furthermore listed in the vocabulary starting on page xxi.

1.9.4 Thesis outline

Chapters

Chapter 1 introduces the PhD project. It briefly describes the company GN Hearing
and the market situation. It further describes research questions, methods and hy-
potheses. The roles of and value proposition for the stakeholders of the project are
described. The content and structure of the thesis is finally outlined.

Chapter 2 describes the research concerning methods for selecting, implementing and
using MBSE tools. Review of related work is described and new methods are pro-
posed, tested and evaluated by case studies. The chapter includes classifications of

1.9 Thesis 21

systems and modeling disciplines as prerequisites for using the proposed methods.
Results, observations, learning points, advantages, disadvantages, limitations, poten-
tial improvements, and suggested future work are discussed and concluded.

Chapter 3 describes the research concerning test-driven modeling of embedded sys-
tems. Prior work relating to test-driven modeling is reviewed. New methods for
test-driven modeling and design space exploration are proposed, tested and evaluated
by a case study. Results, observations, learning points, advantages, disadvantages,
limitations, potential improvements, and suggested future work are discussed and
concluded.

Chapter 4 describes the research concerning test-driven modeling of smart systems.
Prior work relating to methods and technologies for modeling and simulating systems
that resembles smart systems is reviewed. New methods that include formal model
checking, simulating and mathematical forecasting are proposed, tested and evaluated
by a case study. Results, observations, learning points, advantages, disadvantages,
limitations, potential improvements, and suggested future work are discussed and
concluded.

Chapter 5 discusses and summarizes the research results. The chapter includes guide-
lines for implementing selected MBSE tools, using various modeling disciplines, test-
driven modeling of embedded and smart systems. The guidelines supplement the
proposed methods by giving advice on when, for what and by whom the methods be
applied. Answers to the research questions are provided in the results section. Ob-
servations, problems, open issues, future work, and potential impact of the project
are summarized and discussed. Evaluations of the research hypotheses are included
in the final conclusion.

Cited references are available at the end of each chapter.

Navigation

A summary of this thesis is available on page i, a summary in Danish is available on
page iii, and the preface is available on page v.

The papers that are included in this thesis are listed on page vii.

Acknowledgments of important stakeholders are available on page ix.

Lists of contents, figures and tables are starting on page xi, xvii and xix, respectively.

A vocabulary of abbreviations and major terms used in this thesis is started on

22 Introduction

page xxi.

Technical reports

The content presented in this thesis is further elaborated in a series of associated
technical reports as described below.

Chapter 2 in [1] describes the product parts of hearing systems from GN Hearing.

Chapter 2 in [2] contains guides and detailed descriptions of how to conduct model-
based systems engineering based on experience obtained from experiments that were
conducted during the project.

Chapter 2 in [3] contains the details of the analysis that was conducted to identify a
set of feasible modeling technologies (used in chapter 2).

Chapter 2 in [4] contains model diagrams, source code listings, analysis queries, and
verification results for various experiments and the case discussed in chapter 3.

Chapter 2 in [5] contains details concerning verification methods for smart systems
and suggested improvements of the implementation of the method proposed in chap-
ter 4.

Chapter 3 through 5 in [5] and chapter 2 through 4 in [6] contains model diagrams,
source code listings, analysis queries, and verification results for various experiments
and the case discussed in chapter 4.

Chapter 3 in [2] contains guidelines for the use of the methods that are proposed in
this thesis.

1.10 References
[1] Allan Munck

"Hearing systems."
Technical report, Technical University of Denmark, Department of Applied
Mathematics and Computer Science.

[2] Allan Munck
"Model-Based Systems Engineering Guidelines."
Technical report, Technical University of Denmark, Department of Applied
Mathematics and Computer Science.

23

[3] Allan Munck
"Modeling tool selection."
Technical report, Technical University of Denmark, Department of Applied
Mathematics and Computer Science.

[4] Allan Munck
"Embedded systems models."
Technical report, Technical University of Denmark, Department of Applied
Mathematics and Computer Science.

[5] Allan Munck
"Smart systems modeling."
Technical report, Technical University of Denmark, Department of Applied
Mathematics and Computer Science.

[6] Allan Munck
"Smart systems simulation code and results."
Technical report, Technical University of Denmark, Department of Applied
Mathematics and Computer Science.

[7] Christof Ebert and Casper Jones.
"Embedded software: Facts, figures and future."
IEEE Computer Magazine, 2009, Volume 42, Issue 4.

[8] Gordon E. Moore.
"Progress in digital integrated electronics."
Electron Devices Meeting. Vol. 21. 1975.

[9] Robert R. Schaller.
"Moore’s law: past, present and future."
Spectrum, IEEE 34.6 (1997): 52-59.

[10] Jonah Z. Lavi and Joseph Kudish.
"Systems Modeling and Requirements Specication Using ECSAM: An Analysis
Method for Embedded and Computer-Based Systems."
Dorset House Publishing, New York, 2005.
ISBN-10: 0-932633-45-5, ISBN-13: 978-0932633453

[11] Piet Cordemans, Sille Van Landschoot, Jeroen Boydens, Eric Steegmans and
Janusz Kacprzyk.
"Studies in Computational Intelligence - Embedded and Real Time System De-
velopment: A Software Engineering Perspective: “Concepts, Methods and Prin-
ciples” - Test-Driven Development as a reliable embedded software engineering
practice." (book chapter).
Springer Verlag, 2013, ISSN: 1860-949X.

24 Introduction

[12] John Hutchinson, Jon Whittle, Mark Rouncefield and Steinar Kristoffersen.
"Emperical Assessment of MDE in Industry."
ICSE ’11, Proceedings of the 33rd International Conference on Software Engi-
neering, 2011.

[13] Sanford Friedenthal, Alan More and Rick Steiner.
"A Practical Guide to SysML: The Systems Modeling Language."
Morgan Kaufmann; 2nd Revised edition (26 Nov 2011), ISBN-10: 0123852064.

[14] Jeffrey A. Estefan.
"Survey of Model-Based Systems Engineering (MBSE) Methodologies."
Rev. B, INCOSE Technical Publication, Document No.: INCOSE-TD-2007-003-
01, International Council on Systems Engineering, San Diego, CA, June 10, 2008.

[15] Allan Munck.
"Investigation of formal methods for the planning, analysis, design and verifica-
tion of complex embedded computer systems."
Master thesis, Technical University of Denmark, Informatics and Mathematical
Modeling, 2012.

[16] Albert Albers and Christian Zingel.
"Challenges of Model-Based Systems Engineering: A Study towards Unified
Term Understanding and the State of Usage of SysML."
Smart Product Engineering - Proceedings of the 23rd CIRP Design Conference,
Bochum, Germany, March 11th - 13th, 2013, pp 83-92. Springer-Verlag Berlin
Heidelberg, 2013, ISBN: 978-3-642-30816-1

[17] IEEE Standard 1666-2011.
"IEEE Standard for Standard SystemC R© Language Reference Manual."
ISBN 978-0-7381-6801-2 STD97162.

[18] Object Management Group (OMG).
"Unified Modeling Language (UML), Version 2.4.1."
http://www.omg.org/spec/UML/2.4.1/

[19] Mentor Graphics: Bill Chown and Dean McArthur.
"The style guide to xtUML modeling", Revision 1.1, November 10, 2011.
"The xtUML modeling guide", Revision 1.1, November 10, 2011.

[20] Mathworks Matlab/Simulink.
"Simulation and model-based design for dynamic and embedded systems."
Website (last visited 2016.01.24):
http://www.mathworks.se/products/simulink/

[21] Mathworks Matlab/Stateflow.
"Design environment for developing state charts and flow graphs tightly inte-
grated with MATLAB and Simulink."

http://www.omg.org/spec/UML/2.4.1/
http://www.mathworks.se/products/simulink/

25

Website (last visited 2016.01.24):
http://www.mathworks.se/products/stateflow/

[22] David Kirkwood citing Sanford C. Bernstein.
"Research firm analyzes market share, retail activity, and prospects of major
hearing aid manufacturers."
http://hearinghealthmatters.org/hearingnewswatch/2013/research-
firm-analyzes-market-share-retail-stores-prospects-of-major-
hearing-aid-makers/

[23] Søren Nielsen.
"Dynamics of the hearing aid market."
http://files.shareholder.com/downloads/ABEA-4C7PH1/
1474586245x0x392115/e0be1288-fbc0-4ece-aa15-96d5a0432ec5/CMD3_
1.pdf

[24] Niels Jacobsen and Søren Nielsen.
"Trends and directions in the hearing healthcare market."
http://files.shareholder.com/downloads/ABEA-4C7PH1/
2626050094x0x671887/cb72e485-ebc6-4c72-b4c7-428388a8ee13/CMD_
2013_Trends_and_directions_in_the_hearing_healthcare_market.pdf

[25] Nordic Semiconductor.
"Hearing system."
Web resource (last visited 2017.01.26):
http://www.nordicsemi.com/var/ezwebin_site/storage/images/news/
press-releases/product-related-news/nordic-2.4ghz-technology-
enables-miniature-hearing-aid-to-stream-audio-direct-from-
tvs-and-other-consumer-devices/151883-1-eng-GB/Nordic-2.4GHz-
technology-enables-miniature-hearing-aid-to-stream-audio-direct-
from-TVs-and-other-consumer-devices.jpg

[26] Gerrit Muller.
"Systems Engineering Research Methods."
Conference on Systems Engineering Research (CSER’13), March 19-22, 2013,
Procedia Computer Science 16 (2013) 1092 – 1101.

[27] Jill Collis and Roger Hussey.
"Business research: A practical guide for undergraduate and postgraduate stu-
dents."
Third edition, Palgrave macmillan, 2009.

[28] Infinit.
"EmbeddedWiki."
http://embeddedwiki.cs.aau.dk/wiki/Main_Page

http://www.mathworks.se/products/stateflow/
http://hearinghealthmatters.org/hearingnewswatch/2013/research-firm-analyzes-market-share-retail-stores-prospects-of-major-hearing-aid-makers/
http://hearinghealthmatters.org/hearingnewswatch/2013/research-firm-analyzes-market-share-retail-stores-prospects-of-major-hearing-aid-makers/
http://hearinghealthmatters.org/hearingnewswatch/2013/research-firm-analyzes-market-share-retail-stores-prospects-of-major-hearing-aid-makers/
http://files.shareholder.com/downloads/ABEA-4C7PH1/1474586245x0x392115/e0be1288-fbc0-4ece-aa15-96d5a0432ec5/CMD3_1.pdf
http://files.shareholder.com/downloads/ABEA-4C7PH1/1474586245x0x392115/e0be1288-fbc0-4ece-aa15-96d5a0432ec5/CMD3_1.pdf
http://files.shareholder.com/downloads/ABEA-4C7PH1/1474586245x0x392115/e0be1288-fbc0-4ece-aa15-96d5a0432ec5/CMD3_1.pdf
http://files.shareholder.com/downloads/ABEA-4C7PH1/2626050094x0x671887/cb72e485-ebc6-4c72-b4c7-428388a8ee13/CMD_2013_Trends_and_directions_in_the_hearing_healthcare_market.pdf
http://files.shareholder.com/downloads/ABEA-4C7PH1/2626050094x0x671887/cb72e485-ebc6-4c72-b4c7-428388a8ee13/CMD_2013_Trends_and_directions_in_the_hearing_healthcare_market.pdf
http://files.shareholder.com/downloads/ABEA-4C7PH1/2626050094x0x671887/cb72e485-ebc6-4c72-b4c7-428388a8ee13/CMD_2013_Trends_and_directions_in_the_hearing_healthcare_market.pdf
http://www.nordicsemi.com/var/ezwebin_site/storage/images/news/press-releases/product-related-news/nordic-2.4ghz-technology-enables-miniature-hearing-aid-to-stream-audio-direct-from-tvs-and-other-consumer-devices/151883-1-eng-GB/Nordic-2.4GHz-technology-enables-miniature-hearing-aid-to-stream-audio-direct-from-TVs-and-other-consumer-devices.jpg
http://www.nordicsemi.com/var/ezwebin_site/storage/images/news/press-releases/product-related-news/nordic-2.4ghz-technology-enables-miniature-hearing-aid-to-stream-audio-direct-from-tvs-and-other-consumer-devices/151883-1-eng-GB/Nordic-2.4GHz-technology-enables-miniature-hearing-aid-to-stream-audio-direct-from-TVs-and-other-consumer-devices.jpg
http://www.nordicsemi.com/var/ezwebin_site/storage/images/news/press-releases/product-related-news/nordic-2.4ghz-technology-enables-miniature-hearing-aid-to-stream-audio-direct-from-tvs-and-other-consumer-devices/151883-1-eng-GB/Nordic-2.4GHz-technology-enables-miniature-hearing-aid-to-stream-audio-direct-from-TVs-and-other-consumer-devices.jpg
http://www.nordicsemi.com/var/ezwebin_site/storage/images/news/press-releases/product-related-news/nordic-2.4ghz-technology-enables-miniature-hearing-aid-to-stream-audio-direct-from-tvs-and-other-consumer-devices/151883-1-eng-GB/Nordic-2.4GHz-technology-enables-miniature-hearing-aid-to-stream-audio-direct-from-TVs-and-other-consumer-devices.jpg
http://www.nordicsemi.com/var/ezwebin_site/storage/images/news/press-releases/product-related-news/nordic-2.4ghz-technology-enables-miniature-hearing-aid-to-stream-audio-direct-from-tvs-and-other-consumer-devices/151883-1-eng-GB/Nordic-2.4GHz-technology-enables-miniature-hearing-aid-to-stream-audio-direct-from-TVs-and-other-consumer-devices.jpg
http://www.nordicsemi.com/var/ezwebin_site/storage/images/news/press-releases/product-related-news/nordic-2.4ghz-technology-enables-miniature-hearing-aid-to-stream-audio-direct-from-tvs-and-other-consumer-devices/151883-1-eng-GB/Nordic-2.4GHz-technology-enables-miniature-hearing-aid-to-stream-audio-direct-from-TVs-and-other-consumer-devices.jpg
http://embeddedwiki.cs.aau.dk/wiki/Main_Page

26 Introduction

[29] DI ITEK ITOS. "Fieldbook: Developing embedded systems & smart products in
practice."
English version: http://publikationer.di.dk/dikataloger/676/
Danish version: http://publikationer.di.dk/dikataloger/675/

[30] DI ITEK ITOS.
"Workbook: Smarte produkter i praksis - worhshop øvelser."
Danish version: http://publikationer.di.dk/dikataloger/674/

http://publikationer.di.dk/dikataloger/676/
http://publikationer.di.dk/dikataloger/675/
http://publikationer.di.dk/dikataloger/674/

Chapter 2

Modeling technologies

The transition from document-based to model-based systems engineering is a manda-
tory exercise for many organizations due to increasing system complexity and esca-
lating requirements regarding increased quality, reduced development time and costs,
etc. This transition can be overwhelming due to the tremendous number of method-
ologies, modeling languages and tools available. Instead of conducting a thorough
analysis, many organizations tend to choose a setup that only supports a small part
of the immediate needs. However, choosing a wrong setup may have severe impact
on the future success of the organization.

This chapter presents a systematic and practical method for selecting systems engi-
neering tools with a focus on modeling technologies (methodologies, languages, and
tools). The method describes how to justify and initiate the change project, how to
develop tool specifications and evaluation criteria, how to investigate tools and select
the best candidates, and how to implement, maintain and evolve the chosen solution.

The entire model-based systems engineering discipline is categorized into distinct sub-
disciplines for which desired features can be formulated. This grouping allow us to
obtain a comprehensive set of requirements that are evaluated for all tool candidates.
The evaluation process therefore becomes highly systematic.

Correlating requirements and tool capabilities enables us to identify the best tool for
single-tool scenarios or the best set of tools for multi-tool scenarios. For single-tool

28 Modeling technologies

scenarios, simple ranking techniques are used to identify the best candidates. Ana-
lyzing the gaps between required and obtained properties prevents selecting infeasible
tools. For multi-tool scenarios, set theory and simple reduction techniques are used
to identify the best tool set candidates, and gap analyses prevents selecting infeasible
sets of tools.

The method was utilized to select a set of tools that we used on pilot cases at GN
Hearing for modeling, simulating and formally verifying embedded systems and com-
plex smart systems.

The remaining parts of this chapter are divided into the following sections. Section 2.1
introduces the background for and the topic of selecting modeling technologies. The
related works on tool selection are described in section 2.2. Section 2.3 describes the
proposed method for selecting modeling tools. Proper use of the proposed method
requires understanding systems under consideration as described in section 2.4 and
knowledge of the applicable modeling disciplines as described in section 2.5. Sec-
tion 2.6 describes the application of the method to selecting a traceability tool for
GN Hearing and section 2.7 describes the application of the method to selecting tools
for modeling pilot-cases at GN Hearing. Section 2.8 discusses the results of using the
proposed method, observations, learning points, advantages, disadvantages, limita-
tions, potential improvements and future work. The section is ended by an overall
summary of and conclusion on the chapter. References cited in the chapter are finally
listed in section 2.9. This chapter extends and refines the paper [73].

2.1 Introduction

Many companies in the embedded systems sector have dedicated systems engineering
(SE) departments to perform the formalized SE activities. Typically, various other
employees are also involved in the SE activities of complex systems over the entire
life cycle from ideation to disposal. All successful companies involved in embedded
systems are performing SE activities to some degree even if they do not have dedicated
SE departments.

SE covers a large span of activities. Forty sections are dedicated to describing SE
processes and specialty engineering activities in the INCOSE SE handbook [5]. Most
engineering activities are transforming artifacts from input sources to output re-
cipients. Typical examples of artifacts include sketches, documents, spreadsheets,
presentations, models, mock-ups, virtual and actual prototypes, test systems, and
end-products. The quality of the end-products are to a large degree determined by
the early SE artifacts.

2.1 Introduction 29

Historically1, SE has been managed with simple tools such as pen and paper, type-
writers, pocket calculators. Such simple tools have mostly been replaced by com-
puters today. Tools to edit spreadsheets and text documents with embedded images
are popular in SE. Some organizations have progressed further and are using tools
dedicated to modeling, simulating, and managing of requirements, tests, defects, etc.
However, many continue with simpler or fewer tools.

The growing complexity of systems makes it increasingly difficult to conduct suc-
cessful SE without using proper tools. Requirements management (RM) tools can
facilitate structured processes for defining constraints and requirements. Test man-
agement (TM) tools can have the same effect on test case definition, test planning
and executing. Application and product lifecycle management (ALM, PLM) tools
can facilitate integration of several engineering disciplines. Modeling tools can facil-
itate better communication between stakeholders and support thorough analyses of
both problem and solution spaces. Simulation tools can facilitate early identification
of problems so they can be corrected before it becomes too expensive or difficult to
do so. Sometimes developers ignore requirements and implement what they think is
correct. SE tools with traceability features can be used to remedy this problem and
ensure that requirements are respected and applied.

Good tools therefore make it possible for organizations to manage processes more
efficiently. A wide variety of tools is available for various aspects of SE. However, the
sheer number of available tools makes the process of selecting the best tools somewhat
intimidating.

Some organizations have fallen into the trap of selecting tools that do not meet all
immediate and future needs. Thorough analyses are ignored in such cases and tools
seem to be chosen on basis of fragmentary experiences of a few randomly selected
people. For modeling and simulation tools, there has also been limited knowledge
about available methodologies, modeling languages, supporting tools, required train-
ing, costs, risks, etc. This has led to the choice of modeling setups that may not be
optimal for current or future modeling needs.

However, selecting the wrong tools may have severe consequences for the success of
the companies. Considerable costs may be wasted on licenses, consultants, training,
installation, and configurations of tools that do not meet the needs, requirements and
constraints of the company. Selecting even the most optimal tools is not sufficient to
ensure success, if they are implemented or used inappropriately.

1 From INCOSE’s definition of SE, it can be concluded that many parts of SE have been applied
for centuries to analyze, design and realize whole systems even though the modern form of SE
originates from the 1930’s [5, pp.7-8].

30 Modeling technologies

Figure 2.1: Modeling needs and technologies. The black ellipse illustrates the mod-
eling needs. The colored circles illustrate the needs covered by different
modeling technologies. None of the technologies covers all needs. Most
but not all needs can be covered. The combination of Tech #2, Tech
#5, Tech #6 and Tech #7 could provide a satisfying solution. Tech #1
and Tech #3 have other capabilities than needed and they are therefore
irrelevant. Tech #4 is redundant in this case.

Finding a feasible setup is basically a matter of identifying a set of modeling tech-
nologies that covers the needs as illustrated in figure 2.1, where seven different tech-
nologies cover most but not all needs. A valid method must therefore provide means
for identifying the needs, identifying the available technologies, and selecting the
best alternatives. To ensure successful adoption and use of the selected tools, such
a method must also consider how to implement, maintain and evolve the solution.
The method presented in this chapter includes all these elements. It was used to
select a traceability tool (section 2.6) and a set of modeling tools (section 2.3) for
GN Hearing.

The proposed method may be adopted by organizations to select various forms of
SE tools including modeling tools. The amount of work that is required to conduct
such an analysis should not be underestimated, however. Companies involved in
the development of embedded products may be able to re-use the results to select
modeling tools, without much further analysis. Other organizations may use the
presented results as a starting point, though it may be necessary to verify that the
results hold for their cases. Most likely it will be necessary to extend the analyses
with their specific needs, constraints and conditions.

2.2 Related work 31

2.2 Related work

Searching the literature concerning selection of SE and MBSE tools reveals very little.
Tools for various aspects of SE are sporadically mentioned in the INCOSE systems
engineering handbook (2011) [5], but selection criteria and methods are not provided.
However, the search has identified several articles and book chapters on related issues,
which allow the review of existing work regarding:

• Application domains (selection of vendors, simulation tools, requirements man-
agement tools, traceability tools, modeling tools, software packages, etc.).

• Evaluation criteria for various domains.

• Selection and implementation methods.

• Specific tool evaluations.

• Lists of tools for selected domains.

Section 2.2.1 to 2.2.5 describe selection criteria, evaluation methods, and specific
tool evaluations in various systems engineering domains. Lists of available tools are
described in section 2.2.6. Section 2.2.7 and 2.2.8 summarize evaluations of specific
tools. Techniques for evaluating and ranking tools are summarized and described
in section 2.2.9. Section 2.2.10 summarizes the related work and introduces the
contribution to the field of this thesis.

2.2.1 Vendor selection

Weber et al. [6] reviewed 74 articles concerning vendor selection in the context of
industrial purchasing and identified 23 selection criteria, of which some are also im-
portant for selecting systems engineering tool vendors. Criteria for tool capabilities
are extremely important for tool selection but are out of scope of their work and were
therefore not included.

2.2.2 Requirements management tool selection

Requirements management (RM) is a major part of SE and may benefit from using
dedicated tools. Several researcher have investigated RM tool selection.

32 Modeling technologies

Wiegers provided a comparison of four popular RM tools [7] and a weighting-based
method to select a tool [8, chp. 21].

Hoffmann et al [9] presented a comprehensive catalog of requirements for RM tools
according to different user roles.

Zainol and Mansoor [10] defined a set of elements that requirements management
tools must provide, and they conducted a comparative study of 10 tools. They
concluded that no tool provided all the elements they required.

Algazzawi et al. [11] made a comparative study of four popular requirements man-
agement and systems modeling tools for development of secure enterprise software.
The methods that were applied, the evaluation criteria and the sources of data were
not reported.

Schwaber and Sterpe [12] discuss the important top-level factors to include and ex-
clude concerning requirements management. Their recommendation is to aim for ap-
plication life-cycle management (ALM) tools instead of stand-alone RM tools. Both
ALMs and product life-cycle management (PLM) tools were considered as candidates
in the cases in section 2.6 and 2.7.

The evaluation of specific tools are mostly obsolete because quality and availability
of relevant tools have evolved significantly since the cited works were published.
However, several of the recommended evaluation criteria were utilized as inspiration
for the questionnaire that was used during the development of the tool specification
in the case of selecting a traceability tool (section 2.6).

Gotel and Mäder [13] promote a problem-oriented approach to select requirements
management tools as part of a wider solution that also includes management of pro-
cesses, people, expectations, etc. Later [14], they presented a 7-step guide to selecting
traceability tools, which included steps to optimize processes to benefit maximally
from new tools. The 7 steps (agree on problem and terminology; understand the
problem and commit to tackling it; identify stakeholders; determine requirements
and constraints; design the wider requirements management system; assess and select
tools; plan for tool introduction, adoption and ongoing use) provide a solid founda-
tion for selecting RM tools and can easily be adapted for general selection of SE tools.
After the adaption and inclusion of more details and additional steps, we found it
more practical to divide the steps into 4 major steps with several novel sub-steps as
described in section 2.3.

Matulevičius et al. [15] reported an experiment where 4 groups of students evalu-
ated 2 goal modeling tools using 2 different evaluation approaches. An interesting
finding was that the best quality of the goal model was achieved with the tool and
language that were rated lowest. Thus, extremely precise evaluating and ranking do

2.2 Related work 33

not guarantee optimal tool selection.

2.2.3 Modeling tool selection

Systems modeling is becoming increasingly important in SE due to the continual
growth of systems complexity. Several researcher have investigated MBSE tools.

Bone and Cloutier [16] conducted a survey on the state of MBSE in 2009 with a focus
on SysML and identified a set of inhibitors to the adoption of MBSE. Resistance to
change, lack of management support, startup costs, and modeling tools were the
worst inhibitors.

Le Blanc and Korn [17] have presented a structured approach to screen, evaluate,
assure and finally select computer-aided systems engineering (CASE) tools. The
requirements for the tools must be developed prior to using this method.

Estefan [18] describes some popular model-based systems engineering methodologies,
languages and tools. The survey focuses on methodologies rather than languages and
tools. The survey is purely descriptive and no selection criteria are provided.

Friedenthal et al. [76] and Algazzawi et al. [11] also discussed selection of modeling
tools.

However, we did not find any common understanding of what MBSE includes. For
some, it only facilitates communication between stakeholders. For others, it includes
systems simulations, code generation, modeling of the entire enterprise of the orga-
nization, etc. Different tools are required for such varied purposes. We therefore
developed a classification of the MBSE disciplines. This classification was utilized for
defining proper evaluation criteria in the case of selecting modeling tools (section 2.7).

2.2.4 Simulation tool selection

Verification of system models by running simulations are becoming increasingly im-
portant as complexity grows. Several researchers have investigated simulation tool
selection.

Banks [19] has presented a method for selecting simulation software, where the num-
ber of tool candidates is reduced to a manageable set by evaluating the input, pro-
cessing, output, environment and cost features using a weighted scoring model. The

34 Modeling technologies

evaluation is based on already available information. Only the tools that pass the
first screening are tried and tested.

Benjamin et al. [20] have presented an expert system for easing the selection of
simulation tools. The user enters data concerning the simulation problem and the
tool returns a list of applicable tools.

Greenstein [21] has discussed selection criteria for selecting computer-aided engi-
neering (CAE) simulation tools for ASIC designs with a focus on standards and
synchronized simulators.

Davies and Williams [22] used the analytic hierarchy process to evaluate and select
manufacturing simulation software for an engineering company. After determining
the best tool out of five, the weights were changed to achieve a more desirable long-
term solution.

Nikoukaran et al. [23] made a survey of methodologies, evaluation techniques, criteria
and recommendations for selecting simulation software in manufacturing. The survey
identified a lack of a unified approach. Later, Nikoukaran and Paul [24] developed a
hierarchical criteria framework for evaluating simulation software where new criteria
can be added to the hierarchy as needed. Their framework is an attempt at a unified
approach.

Azadeh and Shirkouhi [25] describe a fuzzy analytical hierarchical process for evaluat-
ing simulation software to reduce the effects of uncertainties associated with selection
criteria.

Attia et al. [26] conducted a study to identify selection criteria for simulation tools
for building architects and engineers. From a list of 389 tools, 10 were selected for
evaluation. The study showed a wide gap between architects’ and engineers’ selection
priorities and ranking of tools.

Ereeş et al. [27] presented an application of the analytical hierarchy process (AHP)
for selecting simulation software in education based, where 20 criteria in 6 groups
were compared pairwise by 13 academic experts. Consistent comparisons were made
by 5 experts only. They did not evaluate any tools but demonstrated the use of AHP
to prioritize criteria. Simulation is just one of the parts of MBSE, so the criteria
that are used in the cases in this thesis are much more comprehensive and reflect the
actual needs of real stakeholders.

Franceschini et al. [28] conducted a survey of frameworks using discrete event system
specification and defined 8 selection criteria. 7 out of 12 frameworks were evaluated,
and performance analyses were made for 3 frameworks. No selection method was
reported.

2.2 Related work 35

Robinson [29, chp. 3] described some popular simulation software and how to select
among alternatives based on a 5-step process and a set of possible evaluation criteria.

Damij et al. [30] presented a hierarchical decision model to selection of business
process simulation software (BPSS) based on a novel approach. They made detailed
investigations for 33 out of 120 available BPSS tools and found similar results as in
a previous analysis, thus verifying their method.

Rashidi [31] conducted a survey on taxonomies for simulation software. 6 taxonomies
were defined and 62 simulation software were categorized according to the taxonomies.
Detailed criteria and methods were outside the scope of the article.

The evaluations of specific tools in the cited works were not sufficiently detailed to
clarify the capabilities of the tools. However, several of the recommended evaluation
criteria were used as inspiration for developing requirements for the MBSE disciplines
in the case in section 2.7. Several steps of the recommended methods were also used
as inspiration for the method that is proposed in section 2.3.

2.2.5 General software selection

Many modeling and simulation tools used in SE utilize tool chains that are built
on top of existing software frameworks. Selection of general software is therefore
increasingly important in SE.

Jadhav and Sonar [32] conducted a comprehensive survey of methods, techniques,
criteria and support tools for selecting software packages. They identified a lack
of a generic approach and proposed future work to define a common framework.
Later [33], they presented a framework consisting of a generic methodology, evaluation
criteria and metrics, and a hybrid knowledge based system (HKBS) (i.e. expert tool)
to assist decision-making. The advantages of HKBS were demonstrated. However,
their case showed that AHP, WSM and HKBS produced the same ranking with almost
identical relative scores. However, WSM was shown to be easier to calculate: For
M alternatives and N criteria AHP requires M*(M -1)*N/2 pairwise comparisons,
whereas WSM only requires M*N . Their work influenced our choice of evaluation
method as described in section 2.2.9.

Sarrab and Rehman [34] defined quality characteristics to evaluate and select open
source software, and they applied them to the selection of network tools and learning
management systems. However, they defined several selection criteria of general
interest such as quality (availability, reliability, performance, usability, functionality,
maintainability, reusability, testability, security, documentation, level of support),
intention of use, user satisfaction, and net benefits.

36 Modeling technologies

2.2.6 Lists of available tools

The websites of Alexander [35], Ludwig Consulting Group [36], and the Volere project
of Atlantic Systems Guild Ltd [37] provide comprehensive lists of tools related to
management of requirements, life-cycles, etc. These lists were used to identify tool
candidates in the case of selecting a traceability tool (section 2.6). Weilkiens’ [38]
website provides a list of popular SysML modeling tools. These tools were considered
as candidates in the case of selecting modeling tools (section 2.7).

2.2.7 Evaluation of specific tools

Specific tools were evaluated or discussed in several works. Tools that were evaluated
in [7], [12], [15], and [10] were considered as candidates in the case of selecting a
traceability tool (section 2.6). Tools that were evaluated in [17], [26], [28], and [34]
were considered as candidates in the case of selecting modeling tools (section 2.7).
The tool evaluations in [11] [31] and [30] were published too late for the cases in this
thesis but are included here for completeness.

2.2.8 Heterogeneous systems modeling tools

Ptolemy-II (PtII) is an open source simulation tool that currently supports 22 do-
mains or modes of computation (MoC) [59]. With PtII, it is possible to combine
the various domains in more or less arbitrary order. PtII takes care of synchronizing
the simulation of the different domains, so the modelers are not required to have
strong knowledge of the underlying technology. However, the modelers must have
basic knowledge of the different domain and MoC to obtain valid simulation results.
PtII is widely used in education and academia, but it seems not to have been widely
adopted by the commercial industries.

The Simulink [74] product family from MathWorks contains numerous tools for
heterogeneous systems simulation. The core tool, Simulink, supports the essential
MoCs [60] and [61]. Additional tools such as Stateflow [75] and SimEvent [62] in-
crease the number and diversity of possible MoCs. MathWorks provide numerous
toolboxes and specialized features. Simulink is therefore widespread and may be
considered as industry standard.

Destecs [54] is an open-source modeling tool that integrates the 20sim simulation
engine [53] with the modeling language used in the Vienna development method
(VDM). Modeling in Destecs is different from modeling in PtII or Simulink. The

2.2 Related work 37

textual VDM models have no graphical views in Destecs so modeling resembles source
code programming. VDM is used for the discrete event (DE) domain. Other domains
are modeled in the 20sim tool. With 20sim, models are entered graphically as with
PtII and Simulink. The modeler is responsible for defining the contract between
the VDM simulator and the 20sim. The contract must contain a list of shared and
monitored variables that are used to synchronize the two simulators.

With Modelica [57] and [58], it is possible to mix the different MoC domains implicitly,
whereas most simulation tools require explicit separation of the domains.

Heterogeneous systems may be modeled and simulated with other tools, such as
Mentor Graphics SystemVision [55], variants of SystemC, National Instruments Lab-
View [56], UPPAAL [52], etc.

2.2.9 Evaluating and ranking tools

Different qualitative and quantitative methods have been proposed and utilized for
ranking and selecting tools.

Qualitative methods based on feature analysis were discussed in [17], [7], [9], [12],
[33], [10], [11], and [28]. Such methods are easy to apply but they cannot be used for
ranking because no values are provided for weights, scores and priorities.

Quantitative weighting scoring methods (WSM) were discussed in [6], [19], [23], [7]
[8, chp. 21], [15], [32] [33], and [34]. WSM methods are generally easy to use.

Quantitative methods based on various variants of Saaty’s [39] analytical hierarchy
process (AHP) were discussed in [22], [23], [24], [25], [32] [33], and [27]. Expert
systems to assist in selection of tools were proposed and discussed in [20], [30], and
[32].

The AHP methods are sometimes claimed as being superior to WSM, because (1) the
pairwise relative comparisons used in AHP are assumed to provide better judgments
than the absolute ratings used with WSM, and (2) the consistency of the evaluations
can only be calculated with the AHP method. However, in [33] it was shown that
WSM produced results that were comparable to the results from AHP and similar
methods, but with fewer calculations.

Quantitative tool ranking is a case of multi-objective optimization (MOO). Marler
and Arora [40] analyzed and compared a large range of MOO methods including the
methods discussed above. Other methods may also be applicable to tool selection, and
they can perhaps produce results that are more precise. However, more precision does

38 Modeling technologies

not guarantee optimal tool selection as shown in [15]. In this thesis, the simplest form
of WSM to rate and rank tools is chosen, because it offers ease of use and sufficient
precision.

2.2.10 Related work summary

In tool selection situations, there are generally two cases: (1) Select the best tool
and accept its shortcomings. (2) Select a set of complementary tools that fulfills
all requirements. The cited works only concern with the first case, where it is also
assumed that there is a clear winner (highest score). None has addressed the situation
where there are several tools with almost identical scores, and none has considered
the need for gap analyses to avoid selecting the wrong tools. Our method handles
both case (1) and (2). For case (1), it includes gap analysis to avoid selecting tools
with essential shortcomings. For case (2), it utilizes set theory to identify feasible
sets of tools that meet all (essential) selection criteria.

Most cited works concern requirements management or simulation tool selection
based on generic criteria frameworks and evaluation of features as claimed by tool
vendors. Tool comparisons in older literature may be obsolete or incomplete because
the availability and quality of such tools change rapidly. In this thesis, selection cri-
teria were derived from both from generic frameworks (literature) and from actual
needs of real stakeholders and a large collection of tools were evaluated by conducting
experiments rather than relying on claimed qualities.

We were unable to identify any comprehensive literature on the selection of tools for
general SE, e.g. MBSE tools. The classification of MBSE disciplines that is proposed
in section 2.4 made it possible to select a set of modeling tools to implement MBSE in
an industrial setting. The method that is proposed in section 2.3 can be generalized
to selection of other types of SE tools by substituting evaluation criteria.

No cited works reported how the selected tools actually performed in industrial, aca-
demic, educational or similar organizations. In this thesis, a discussion and evaluation
of the tools that were selected for a manufacturer of medical embedded systems are
presented.

2.3 Proposed selection method

The method for selection of systems engineering tools proposed in this section is
inspired by several sources as described in section 2.2. Several steps were added to

2.3 Proposed selection method 39

selected steps of related methods to accommodate more scenarios and to remedy
severe shortcomings of previous methods. Most significantly, gap analyses to prevent
selecting infeasible tools and techniques to select tools for both single- and multi-tool
scenarios were added. The resulting steps were divided into 4 groups corresponding
to 4 major phases of change projects. The major steps are shown in figure 2.2 and
outlined below with their associated activities:

1. Justify and initiate change project by:

• Identifying the core problem.

• Demonstrating the need for new tools.

• Developing a business case.

• Considering the implications of introducing new tools.

• Analyzing benefits beyond solving the core problem.

• Identifying and addressing potential obstacles.

2. Develop specification and evaluation criteria by:

• Identifying stakeholders including potential users.

• Interviewing stakeholders and optionally observing how potential users
currently perform their work.

• Analyzing answers and observations.

• Specifying requirements and constraints.

• Approving specifications with stakeholders.

• Developing selection criteria and priorities from the specifications.

3. Investigate tools and select best candidate(s) by:

• Scanning the tool market to get a comprehensive list of candidates.

• Screening candidates based on claimed features, pricing, overall impres-
sions of the tools and vendors, etc.

• Installing, trying and evaluating likely tool candidates.

• Rating all evaluation criteria for each tool.

• For single-tool solutions: Ranking the tools by applying WSM, AHP or
similar methods, and selecting the highest-ranking tools for further analy-
sis (see section 2.3.1 below).

• For multi-tools solutions: Identifying feasible sets of tools that meets all
essential requirements, followed by ranking and selecting the best sets of
tools for further analysis (see section 2.3.2 below).

40 Modeling technologies

Figure 2.2: Major steps of proposed method for selecting MBSE tools.

• Analyzing the gaps or non-conformance for the (set of) candidates and
selecting the best tool (set).

4. Implement, maintain, and evolve solution by:

• Installing, configuring and customizing tools.

• Adjusting processes and optionally adjusting the organization to benefit
maximally from the introduction of new tools.

• Developing user guides and conducting training.

• Migrating existing data to new tools.

• Conducting pilots followed by phased rollout.

• Maintaining and evolving tool solution to accommodate new needs or pos-
sibilities.

This list of steps and sub-steps suggests a strict sequential process but many activities
can be conducted concurrently. The ordering of the activities may also be slightly
modified. As an example, it may be beneficial to consider the activities of adjusting
the processes and organization from step (4) earlier than shown here. Finally, it
may be necessary to iterate through the activities several times, as new information
becomes available.

The ranking method for single-tool scenarios is described in section 2.3.1 and the
selection method for multi-tool scenarios is described in section 2.3.2. Section 2.3.3
describes the part of the method that concerns gap analyses. The prerequisites of
using the method are presented in section 2.3.4.

2.3 Proposed selection method 41

2.3.1 Single-tool ranking method

Ranking of tools can be achieved by using WSM, AHP or similar methods. Here, we
have use a simplified WSM where the rank (R) of each tool are calculated as:

R =
∑

i∈[1..N]

Wi · Si (2.1)

Here, N is the number of criteria. Wi and Si are the weight and the score of the i’th
criteria, respectively.

The rank should also be calculated for each level of importance (e.g. mandatory,
desired, and optional requirements) to facilitate the gap analyses, see section 2.3.3.

2.3.2 Multi-tool selection method

For multi-tool solutions, a set of complementary tools that meet all essential criteria
is needed. For each essential criteria, one composes a set of technologies (modeling
methodology, language and tool) that meet the criteria to a satisfying degree. The
following shorthand notations, operations and rules are used:

Si = Set that meets criteria i (2.2)
{A or B} = Set requiring either A or B (2.3)

{C and D} = Set requiring both C and D
= {C} ∪ {D}

(2.4)

Si in eq. (2.2) is the set of technologies that meet criteria number i. {A or B} in
eq. (2.3) is a set where either technology A or B are needed to meet the criteria.
{C and D} in eq. (2.4) is a set where both technology C and D are needed to meet
the criteria. The total set Stot that meets all N criteria equals the union of sets Si

that meet the i’th criteria:

Stot =
⋃

i∈[1..N]

Si (2.5)

For example, one may have three sets of tools supporting three groups of criteria:

S1 = {{A or B} and {C or D}}
S2 = {{A or B} and {E or F or G}}
S3 = {{H} and {E or J}}

42 Modeling technologies

The total set required for this example is thus:

Stot = S1 ∪ S2 ∪ S3

= {{A or B} and {C or D} and
{E or F or G} and {H} and {E or J}}

This set can be reduced to the following two types of solutions:

Stot1 = {{A or B} and {C or D} and {H} and {E}}
Stot2 = {{A or B} and {C or D} and {H} and {J} and {F or G}}

Further reduction yields the following 12 potential solutions:

Stot1,1 = {A and C and E and H}
Stot1,2 = {A and D and E and H}
Stot1,3 = {B and C and E and H}
Stot1,4 = {B and D and E and H}
Stot2,1 = {A and C and E and F and J}
Stot2,2 = {A and D and E and F and J}
Stot2,3 = {B and C and E and F and J}
Stot2,4 = {B and D and E and F and J}
Stot2,5 = {A and C and E and G and J}
Stot2,6 = {A and D and E and G and J}
Stot2,7 = {B and C and E and G and J}
Stot2,8 = {B and D and E and G and J}

Choosing between these alternatives requires further analysis. To select the best
alternative, we must choose the set with the highest rank. The ranking method from
section 2.3.1 is thus applied to the complete set of tools (instead of to the individual
tools). A gap analysis completes the selection method for multi-tool solutions.

The multi-tool selection method was used in the case in section 2.7. The details of
the analysis are presented in section 2.2 in [2].

2.3.3 Gap analysis

Ranking tool candidates is not sufficient to find the best alternative. Tools with high
rankings may lack essential features that disqualify them as candidates. Tools with
lower scores are more applicable in such cases.

2.4 System classification 43

An obvious solution to this problem would be to adjust the weights of the require-
ments to produce a more correct and fair ranking of the tools. However, adjusting
of weights to get a feasible solution is time consuming and this approach does not
guarantee a solid solution without inspected all requirements after each adjustment.
Thus, it will be time consuming and error prone.

Instead, we propose using simple forms of gap analyses. Such analyses can easily
be obtained from existing data, if the scoring and ranking of tools are calculated for
each level of importance as mentioned in section 2.3.1.

Table 2.4 on page 64 shows an excerpt of a tool evaluation where the rankings are
calculated separately for mandatory, desired and optional requirements. The gap
analyzes are obtained simply by using filters within the spreadsheet. An example
of conformance gaps to mandatory requirements is shown in table 2.5 on page 65.
Table 2.6 on page 65 shows an example where unfulfilled "desired" requirements are
listed. The tables produced by such filtering can be further processed to produce
more "user friendly" presentations of the gaps. Comparing the gaps of different tools
on a single presentation was very informative in this case (but not shown in this
thesis).

As mentioned in section 2.3.2, gap analyses should also be used in multi-tool scenarios.
However, the gaps are not analyzed for individual tools in such cases but for the entire
set of tools in each potential solution.

2.3.4 Prerequisites

Using the proposed method to select modeling tools requires an understanding of the
types of systems under consideration, because different technologies and methods are
needed for modeling different types of systems. Section 2.4 introduces classification
of systems.

Knowledge of different modeling disciplines are similarly required, because they ad-
dress different needs and objectives. Section 2.5 introduces classification of modeling
disciplines.

2.4 System classification

Systems can be divided into many different groups depending on the context in which
the classification is to be used. Here, the discussion will be limited to classifications

44 Modeling technologies

that are of significance for the model-based systems engineering activities.

When value propositions are considered, systems can be classified as services, com-
modities or combinations hereof. Services are often modeled with the Business Pro-
cess Modeling Notation (BPMN), Business Process Execution Language (BPEL),
Unified Modeling Language (UML) or similar modeling languages that allow the
systems engineer to model the processes of the services. The optimum choice of mod-
eling methodology, language and tools depends on the nature of the service. Services
therefore need further classification into sub categories such as web services, postal
services, flight service, etc. Commodities must similarly be classified further to find
an optimum set of modeling methodologies, languages and tools. Commodities can
be even further classified by the nature of their composition.

Simple systems are typically easier to model than complex systems. Homogeneous
systems are typically easier to model than heterogeneous systems. Complex hetero-
geneous systems often contain many kinds if hardware (analog and digital electronics,
mechanical parts, electro-acoustic elements, biology, human operators, etc.) and sev-
eral kinds of software (operating systems, system logic, user interfaces, digital signal
processing algorithms, mathematical computations, etc.). Modeling such systems is
significantly more difficult than modeling homogeneous systems that only contain a
few equivalent domains.

Special methodologies might be needed for modeling systems that contain harmful
elements such as microwave radiators, toxic chemicals, radioactive sources, infectious
biology, etc. For safety critical systems, it will probably be necessary to model the
quality properties that are needed for executing safety analyses such as fault trees,
error propagations, failure mode and effects analysis (FMEA), etc. Other quality
aspects may be more important for other kinds of systems. Detailed modeling of
timing, performance and reliability is highly relevant for real-time systems. Security
(protection against unintended use of the system) may be very important for some
systems.

Only one mode of computation is needed for simulating homogeneous systems, whereas
the simulations of heterogeneous systems require several modes of computation such
as continuous time (CT), discrete events (DE), finite state machines (FSM), hete-
rochronous dataflow (HDF), etc. For a list of supported domains in the Ptolemy-II
modeling tool, see [59]. Other tools may support different domains or modes of
computation as discussed in section 2.2.8.

When business models are considered, systems can be divided into groups consisting
of purchased, rented or subscribed products. Some business models include advertis-
ing while others do not. Some business models are based on open source strategies
while others are not. The business model can have big impact on the required mod-
eling activities, because it can affect the requirements concerning system behavior,

2.5 Modeling disciplines 45

architecture, performance, documentation, etc.

Usage scenarios of systems can also have a big impact on the required modeling.
Throw-away-systems that are only used once may require less modeling than systems
that are (re)used in different many contexts, by many different kinds of users, or as
parts of other systems.

The major classification criteria that should be considered for successful modeling of
embedded devices are:

• Modeling complexity:

– Systems that can be modeled with a single modeling language and tool.

– Systems that require several modeling languages and tools to provide com-
plete and accurate descriptions of system behavior, performance, etc.

• Simulation complexity:

– Systems that can or shall be analyzed with formal methods.

– Homogeneous systems that can be simulated with a single mode of com-
putation.

– Heterogeneous systems that require several modes of computation for suc-
cessful simulation.

Figure 2.3 shows examples of keywords that can be used to classify embedded and
smart systems. These keywords were used to describe the characteristics of hearing
systems in section 1.4. The characteristics of typical embedded systems and smart
systems are further discussed in section 3.2 and 4.2, respectively.

2.5 Modeling disciplines

Informal conversations with various practitioner and specialists involved in MBSE
have revealed huge differences in their perception of the nature and objectives of
MBSE.

For some experts, MBSE is just considered as the modeling activities that formal-
izes SE. For other experts, MBSE is mainly concerned with a small subset of SE,
e.g. defining use cases, interfaces or system structure. For many others, MBSE is ex-
panded into the software engineering domain by focusing on e.g. code generation with

46 Modeling technologies

Figure 2.3: Examples of system classification keywords.

2.5 Modeling disciplines 47

model-driven architecture (MDA). Finally, some consider MBSE as the discipline of
modeling the entire enterprise of the concerned organization.

Presenting various "definitions" of MBSE to some practitioners did not streamline
the perceptions. Without a common understanding, it is very difficult to determine
the correct requirements for the modeling tools. Clearly, a categorization of the
various sub-disciplines of MBSE is needed to let organizations accurately determine
the needs by asking questions that are more precise.

Searching existing literature did not reveal any satisfactory taxonomy. Therefore, we
propose the following classification:

• Fundamental modeling (FM) as described in section 2.5.1.

• Behavioral simulation modeling (BSM) as described in section 2.5.2.

• Architectural analyses modeling (AAM) as described in section 2.5.3.

• Architecture/behavior co-modeling (ABCM) as described in section 2.5.4.

• Coherent modeling (CM) as described in section 2.5.5.

• Integrated engineering (IE) as described in section 2.5.6.

• Enterprise modeling (EM) as described in section 2.5.7.

• Other engineering activities as described in section 2.5.8.

• Other activities beyond engineering as described in section 2.5.9.

This classification is based on elements that should be familiar to experienced systems
engineers even though it may not be agreed upon by the MBSE communities (e.g.
INCOSE). However, it provides a sufficient framework for the proposed method. It
may be argued that CM and IE are enablers for model consistency rather than true
modeling disciplines. However, CM involves application of meta models, and EI
integrates modeling with other engineering activities. The other activities may also
include forms of modeling. Therefore, the term "modeling discipline" is used for all
the classified disciplines even though it may not be entirely correct to do so.

Figure 2.4 illustrates the relationships between the various sub-disciplines. Notice
that there can be several BSM, AAM and ABCM models for each FM. CM facilitates
consistency between these different models. IE facilitates consistency between models
and other engineering activities. EM facilitates consistency across all activities of the
companies.

48 Modeling technologies

Figure 2.4: Modeling disciplines.

The characteristics of each discipline must be understood thoroughly in order to
successfully use the presented method, because each classified element gives rise to
numerous questions that allow the analyst to correlate the needs and available tech-
nologies. Sections 2.5.1 through 2.5.7 are therefore dedicated to describing the char-
acteristics of each modeling discipline. Modeling guides for parts of FM, AAM, BSM,
CM and EM are available in chapter 2 in [1].

2.5.1 Fundamental modeling

Fundamental modeling (FM) formalizes the fundamental system engineering activ-
ities and makes it possible to model life-cycle phases, stakeholders, requirements,
constraints, use cases, behavior, and architecture for the system under considera-
tion (SUC), its environment and users. FM, as defined here, focuses on facilitating
the communication and collaboration between stakeholders to collect and analyze
all ideas, requirements and constraints of the SUC. The modeling rigor needed for
automated analyses and simulations is considered outside the scope of FM. Funda-
mental models typically include at least some of the model elements listed in table 2.1.
Modeling guides for parts of FM are available in section 2.2 in [1].

SysML [46] is a very versatile language for fundamental modeling. It can be learned
from various sources including the books [47], [76] [48], and [49]. SysML is supported
by several commercial and open source tools. With many modeling tools, it is pos-
sible to combine SysML and other modeling languages into a single model, which
increases the overall expressiveness. Other modeling languages such as UML [50] or
MARTE [51] may be used as alternatives to SysML in some cases. In the following

2.5 Modeling disciplines 49

Table 2.1: Typical elements of fundamental modeling.

Elements Purpose and content

Phases The lifecycle model describes all phases of the SUC and ensures
that they are considered during the early analysis and design
phases.

Stakeholders The stakeholder model describes all stakeholders involved in the
project including users of the SUC, and it ensures that all impor-
tant stakeholders and their concerns, needs, requirements and
constraints are considered.

Requirements The requirement model describes the requirements of all stake-
holders as well as the constraints of the project and the condi-
tions relating to the SUC and its environment.

Use cases The use case model describes the functions that the SUC shall
provide during its lifecycle phases.

Test cases The test case model describes the test cases the SUC shall be
subjected to as part of the verification and validation process.

Behavior The behavioral model describes how the SUC reacts to exter-
nal and internal stimuli. It therefore describes which system
outputs are generated for a given set of system inputs, environ-
mental conditions, and internal states such as malfunctions of its
components. Thus, it gives detailed information about wanted
as well as unwanted behavior. Behavior is typically modeled as
activities, sequences or state machines.

Structure The structural model describes the system domain, context and
architecture. The domain describes the hierarchy, properties
and interconnections of the blocks that represent the SUC, the
environmental systems and the users. The system architecture
similarly describes the hierarchy, properties and interconnec-
tions of the blocks that represent the SUC and its sub-systems
and components. Architectures are typically categorized as
functional, logical or physical. The most important metrics to
characterize architectures concern the number and structure of
building blocks and the resulting interfaces and dependencies.

Data The data model describes the data types of information and
physical items that are used in the system and the domain.

Traceability Traceability is an important aspect of fundamental modeling
to obtain healthy designs by ensuring that all model elements
can be traced to the originating requirements and stakeholders.
Traceability is obtained by associating related elements.

50 Modeling technologies

description of the elements from table 2.1, it is assumed that SysML is used for FM.

The system life-cycle is modeled to ensure that all phases are represented in the
model. SysML has no special means for modeling of the system life-cycle, but it can
be modeled as SysML requirements that are stereotyped «lifecycle» or similar.

Stakeholders are modeled to ensure that all important stakeholders and their con-
cerns, needs, requirements and constraints are represented. Stakeholders are typically
modeled on SysML use case diagrams. Both project influencers and system users are
modeled.

Textual requirements and constraints can be modeled on requirements diagrams or in
tables in a SysML requirements model. Many organizations prefer to use dedicated
requirements management tools, because such tools offer many features that are
absent in SysML modeling tools, e.g. version control, automated history logging,
etc. In such cases, the requirements elements must be mirrored in the SysML tool
to allow traceability to other modeling elements. Several tool vendors have solutions
for synchronizing SysML requirements and requirements stored in other tools.

Use cases describe the functions provided by the SUC, and their relationships to the
users and environmental systems. They are typically modeled on SysML use case
diagrams.

Test cases are modeled to ensure that important aspects of the system are tested
correctly, and they can be modeled on either use case diagrams or requirements
diagrams.

Behavioral models describe how the SUC reacts to external and internal stimuli.
It therefore describes which system outputs are generated for a given set of system
inputs, environmental conditions, and internal states such as malfunctions of its com-
ponents. Thus, it can give detailed information about wanted as well as unwanted
behavior. Activity, sequence or state machine models are used to describe system
behavior in SysML. Other languages such as UML or MARTE offer additional be-
havioral modeling constructs that can be used if the behavior cannot be expressed
in SysML. The fundamental behavioral models may be refined into the behavioral
simulation models as described in section 2.5.2.

Structural models describe the system domain or context as well as the system archi-
tecture. The domain describes the hierarchy, properties and interconnections of the
blocks that represent the SUC, the environmental systems and the users. The system
architecture similarly describes the hierarchy, properties and interconnections of the
blocks that represent the SUC and its sub-systems and components.

Good architectures are developed in several stages. Functional architectures describe

2.5 Modeling disciplines 51

the system functions or capabilities. Each function is modeled as a «functional» block.
The logical architecture is developed from the functional architecture by adding the
«logical» blocks that represent internal system functions such as fault detection,
database maintenance and similar functions. These behavioral architectures must be
decomposed to a degree that allows each functional and logical block to be allocated
to exactly one «physical» block from the physical architecture. The functional, logical
and physical blocks are thus related by means of allocations. A simplified approach,
where behavioral elements (activities, sequences, state machines, etc.) are allocated
directly to physical blocks, can be used for simple systems.

The most important metrics to characterize architectures concern the number and
structure of building blocks and the resulting interfaces and dependencies. The block
structure can be modeled on SysML block definition diagrams (BDD) for all types of
architectures. Interfaces or interconnections can be modeled on SysML internal block
diagrams (IBD). Other important architectural metrics concern competitive quality
properties as well as development cost, development time schedule and required re-
sources, etc.

The data model describes the information and physical items that flow in the system
or its domain. Data structures can be modeled as SysML blocks or UML classes.

Traceability is an important aspect of fundamental modeling to obtain healthy de-
signs, where all model elements can be traced to the originating stakeholders and their
requirements. Traceability can be modeled by adding �trace�, �deriveReqt�,
�verify�, �satisfy�, �refine�, and�allocate� relationships between the differ-
ent elements of the model.

Fundamental modeling may also include other elements that make the model more
“user friendly”. The model may be structured by using packages. Model elements
may be annotated with comments. Special views can be created for individual stake-
holders. Etc.

All information about the system is collected into a system model, which is typically
contained in a central repository. This repository can be kept in a database that allows
many stakeholders to access and contribute to the system model concurrently. A
high degree of transparency is therefore attainable. The repository is often machine-
readable and can be subjected to automated model checking and other forms of
analyses. Humans typically interact with the model via diagrams. It is not uncommon
to have separate views and diagrams for different stakeholders.

Section 2.2 in [1] further describes modeling needs (2.2.1), languages and tools (2.2.2)
associated with fundamental modeling. Guides for modeling of systems life cycles
(2.2.3), stakeholders (2.2.4), system context (2.2.5), requirements and constraints
(2.2.6), use cases (2.2.7), scenarios (2.2.8), test cases (2.2.9), and traceability (2.2.10)

52 Modeling technologies

are also presented in the appendix. A summary of the proposed fundamental model-
ing techniques is presented in 2.2.11.

2.5.2 Behavioral simulation modeling

Behavioral simulation modeling (BSM) augments the fundamental behavioral models
by producing models that can be subjected to automated and interactive simulations.
BSM therefore makes it possible to predict system behavior and correct errors before
actually building the physical system. Separate behavioral models may be developed
for the functional, logical and physical architectures.

The approach for behavioral modeling depends largely on the type of SUC. Homo-
geneous and heterogeneous systems require vastly different approaches to modeling
and simulating. Homogeneous systems can be simulated by using a single mode of
computation (MoC), as described in section 2.5.2.1. Heterogeneous systems require
several MoCs during simulation (e.g. continuous time (CT), synchronous data flow
(SDF), finite state machines (FSM)), as described in section 2.5.2.2. Each MoC
typically requires a separate simulator, so simulating heterogeneous systems requires
synchronization of several separate simulators.

Simulating behavioral models may be interactive or automated depending on the
needs, the capabilities of the simulation tool, etc.

Section 2.4 in [1] further describes needs (2.4.1), characteristics (2.4.2), elements
(2.4.3) and benefits (2.4.4) of behavioral modeling. Examples of modeling languages
and tools associated with behavioral simulation modeling are also presented (2.4.5).
Guides for behavioral modeling of homogeneous systems (2.4.6) heterogeneous sys-
tems (2.4.7) with different modeling technologies are presented. A summary of the
proposed behavioral modeling techniques is presented in 2.4.8.

2.5.2.1 Homogeneous systems

Homogeneous system models are characterized by requiring only a single mode of
computation (MoC) during simulation. Examples of homogeneous systems are (1)
pure software systems that can be modeled and simulated with SysML, UML, AADL,
etc., or (2) pure digital hardware systems that can be modeled and simulated with
VHDL, SystemC or Verilog. The modeling languages and tools used for heterogeneous
systems may also be used for homogeneous systems but dedicated domain specific
tools may be a better choice.

2.5 Modeling disciplines 53

In many cases, it will be possible to create valid system models in SysML or other
UML-based languages such as xtUML or MARTE. Some modeling tools can simulate
the models directly inside the tool and visualize the execution by highlighting active
actions or states in the diagrams. Other tools may not have this feature but can
generate executable simulation code from the models. Generated code is typically
compiled and executed in external software development tools such as Eclipse. Suc-
cessful code generation requires that all behaviors be executed by blocks or classes.
In SysML, this is ensured by using «allocate» relationships. However, some code
generators do not recognize such relationships but require careful structuring of the
model, such that the behaviors can be executed as (or called from) so-called class
behaviors.

Homogeneous modeling does not necessarily exclude heterogeneous systems. In some
cases, it can be justified to simplify a heterogeneous system into a homogeneous model
to take advantage of the many good modeling and simulation tools that are available
for homogeneous systems. For an audio system that contains both analog and digital
processing as an example, it may be feasible to model the whole system in either the
analog or the digital domain. The success of this approach depends on the level of
fidelity that is required from the model and the simulation results.

Examples of homogeneous systems modeling are presented in section 2.4.6 in [1].

2.5.2.2 Heterogeneous systems

Heterogeneous systems contain two or more different modeling domains that require
different MoC during simulation. In audio processing equipment as an example,
the analog domain requires continuous time (CT) computation, whereas the digital
domain may use synchronous data flow (SDF) computation, and the system controller
may use finite state machine (FSM) computation. Many different domains and MoC
have been described and implemented in various tools. Each MoC may require a
separate simulation engine. These must be coordinated by using shared variables
and time synchronization to obtain valid simulations of the overall system.

Heterogeneous system behavior may be modeled in SysML by using stereotypes such
as «continuous», «sdf», «fsm» for the behavioral elements. However, currently SysML
modeling tools do not provide engines for simulating or generating code that make
such models executable. So alternatives are needed. Section 2.2.8 describes some
tools that may be used for modeling the behaviors of heterogeneous systems.

Examples of heterogeneous systems modeling are presented in section 2.4.7 in [1].

54 Modeling technologies

2.5.3 Architectural analyses modeling

Architectural analysis modeling (AAM) augments the fundamental structural model-
ing by producing models that can be subjected to automated and interactive analyses.
The fundamental modeling of block hierarchies and interconnections define what is
needed to make a system that can provide the desired system functions. To make the
most optimal system one also need to model the properties of system components as
well as the constraints and conditions under which they apply. The parameters and
constraints are related through equations.

The architectural analysis consists of predicting the properties of the SUC:

• System performance, reliability and other quality attributes.

• Parameter sensitivity and impact.

• Faults propagation and impact.

• Risks, cost, etc.

Analyzing the architectural models may be interactive or automated depending on
the needs, tool capabilities, etc.

Very simple static equations such as summing of weights can be analyzed by using
ordinary spreadsheets or mathematical scripts such as Matlab, Python, etc. However,
this approach may not be feasible for dynamic equations that depend on e.g. system
modes. In addition, it may be difficult to ensure traceability and consistency from
such artifacts to the fundamental system models.

Another option is to use a dedicated architecture modeling language such as AADL,
which facilitates easy modeling and analyzing of certain system properties. How-
ever, customized analyses may be difficult to obtain with such languages, which may
therefore not be the best choice in all cases.

A third option is to use generic simulation tools such as Simulink, Ptolemy-II, UP-
PAAL, Modelica, etc. High levels of customizations are possible with these tools.
However, even the most simplistic analyses requires detailed modeling in contrast to
dedicated architectural modeling languages, where many analyses are predefined.

A fourth option is to use a SysML tool that can run architectural analyses by exe-
cuting parametric models. This option has the advantage that consistency and trace-
ability between FM and AAM can be ensured. However, not all SysML tool support
parametric modeling, and even fewer have the ability to execute such models.

2.5 Modeling disciplines 55

The best choice of tools for AAM depends on the actual needs concerning easy stan-
dard analyses, customized analyses, parameter sensitivity analyses, or analyses of
fault propagations, dynamic architectures, etc.

Section 2.3 in [1] further describes needs (2.3.1), characteristics (2.3.2), elements
(2.3.3) and benefits (2.3.4) of architectural modeling. Examples of modeling lan-
guages and tools associated with architectural analyses modeling are also presented
(2.3.5). Guides are presented for architectural modeling of system hierarchies (2.3.6),
interconnections (2.3.7), structures (using AADL) (2.3.8), systems properties (2.3.9),
and flow and time (2.3.10) with different modeling technologies. Advanced modeling
of errors, dynamic architectures, and real-time operating systems (RTOS) are also
discussed (2.3.11). A summary of the proposed architectural modeling techniques is
presented in 2.3.12.

2.5.4 Architecture/behavior co-modeling

The architecture and behavior modeling discussed in the previous sections assume
that system behavior and the architectural properties are independent and therefore
can be seen in isolation. However, architectural resources are often shared such that
seemingly independent functions are competing for allocation of resources, which may
lead to unforeseen interdependence. In addition, architectural properties are often
affected by behavioral elements (e.g., when a user activates or deactivates compo-
nents of subsystems). Behavioral elements may likewise be affected by architectural
properties (e.g. certain features may be disabled at high temperatures). In such
cases, it will be necessary to co-simulate the behavior and the architecture.

This kind of co-simulation requires synchronization of simulators for behavioral el-
ements and equation solvers for the architectural elements. Architecture/behavior
co-simulation is therefore even more complex than simulation of heterogeneous behav-
ioral systems, which only require synchronizing different simulators but not equation
solvers. However, equation solvers can be replaced by simulators in some cases. Sec-
tion 2.4.7 in [1] shows examples of interdependent architectures and behaviors mod-
eled as heterogeneous systems with Ptolemy-II (example 2.17, 2.18 and 2.19). Het-
erogeneous modeling with Simulink/Stateflow and VDM/20-sim are also discussed.

Code generation from models may also be classified as architecture/behavior co-
modeling (ABCM) because the behavioral elements must be allocated to and executed
by architectural elements (classes). Section 2.4.6 in [1] includes an example (2.16) of
modeling for code generation.

56 Modeling technologies

Figure 2.5: Examples of two integration approaches.

2.5.5 Coherent modeling

As mentioned in section 2.5.1, it is important to ensure traceability between the
various elements of the models. This can be difficult to achieve if the elements of the
models are spread over different modeling tools or expressed in different modeling
languages. However, it is even more important in such cases because there is a risk
of having undetected inconsistencies between the involved models, which can lead to
disastrous errors later. Therefore, a mechanism to ensure consistency and traceability
between the various models is needed. Coherent modeling (CM) intends to ensure
this by using (semi-) automated model transformations2.

Figure 2.5 illustrates two different approaches to ensure consistency between models
and other artifacts. In this example, 5 types of artifacts are shown as circles: A funda-
mental model (FM), an architectural analysis model (AAM), a behavioral simulation
model (BSM), a set of specification documents (SD), and a set of software source
code files (SCF). Transformations are shown as arrows. The left part of the figure
shows an approach with point-to-point integration where model transformations are
required between all types of models. It can be shown that this requires N*(N-1)
transformations between N models. The right part of the figure shows a centralized
approach, where a master model (MM) contains all information such that all other
models can be generated by model transformation from the master model. It can be
shown that this requires 2*N transformations between N slave models and 1 master
model.

2 Techniques to ensure consistency between models and other artifacts are also discussed in
appendix 2.5.

2.5 Modeling disciplines 57

Using the centralized approach with master modeling will always be optimal in terms
of number of required transformations. Master modeling has other advantages as
well. The overall modeling effort is reduced because the properties and interfaces are
modeled only once. The tools used for master modeling typically make it much easier
to get an overview of the model and to generate informative documents, compared
to specialized modeling or simulations tools.

Master models are typically created in SysML, MARTE or similar UML-based mod-
eling languages, where the base language is extended with special profiles for the
slave models. The master models must contain all the information needed to gen-
erate the slave models, in the form of properties and stereotypes. The slave models
for various targets can then be generated by customized plugins that facilitate the
model transformations. Several examples of using SysML or MARTE as front-ends
for AADL have been reported, e.g. [63]. Examples of using UML as front-ends for
Simulink have also been reported, e.g. [64].

Master modeling also has some disadvantages, though. The most important of these
is the need for creating and maintaining model transformation tools and meta-models
of the slave models. In addition, it may not be possible to represent all aspects of
the target language in the master modeling language.

Therefore, alternatives must be identified for those cases. Integrated engineering as
described in section 2.5.6 is another approach for reducing the risk of inconsistent
models that can be used in cases where coherent modeling is infeasible or impractical.

2.5.6 Integrated engineering

Several modeling languages and tools are often needed to describe all aspects of a
SUC. A separate tool may be used for requirements managements. A SysML modeling
tool may be used for fundamental modeling. Architectural modeling may be done in
AADL, whereas behavioral modeling may be done in Simulink or Ptolemy-II. These
models will be used as preparation for implementing physical system artifacts, such
as hardware, software, user documentation, manufacturing instructions including bill
of materials (BOM), etc. The system information is thus distributed across a large
set of interdependent artifacts.

The overall purpose of integrated engineering (IE) is to bring all the separate engi-
neering disciplines into an integrated whole by providing a suitable environment.

Cyber-environments with a central data-base containing all system artifacts (require-
ments, model elements, source code, hardware design files, bill of materials, etc.)
facilitate virtual integration of all disciplines and team members that collaborate

58 Modeling technologies

concurrently on the artifacts.

Product life-cycle management (PLM) tools are typically used as backbone for IE
because they offer features that make it possible to highlight those artifacts that are
affected by changes to a requirement, a model or other artifact, thus minimizing (but
not eliminating) the possibility of inconsistencies between models and other artifacts.
Besides version control and automatic history logging, they usually also offer features
for defining base lines, platforms, etc. Traceability can typically be shown as text
documents, tables, matrices or as visual graphs.

Several solutions for integrating modeling with PLM tools have been reported, e.g.
[65], [66], [67], and [68]. Some approaches use loose integration where artifacts are
linked by hyperlinks. Other approaches use tighter integration between the PLM and
the modeling tool. Tight integration is implemented either by integrating modeling
into the PLM tool or by integrating PLM functions into the modeling tool. Currently
there is little evidence regarding the advantages and disadvantages of these different
approaches.

In databases, artifacts are represented as data nodes, and relations between artifacts
are represented as links. Each artifact is thus part of a net to which it is linked.
The whole net can automatically be marked as suspect whenever one of the artifacts
are modified. By using queries and visualization techniques, it is therefore easy to
identify inconsistent artifacts.

However, full consistency cannot be guaranteed because the actual contents of the
artifacts are not analyzed. IE is therefore not as strong as CM, but IE may never-
theless be chosen because it requires fewer resources to implement and maintain (no
meta-models and transformation tools are required). Future IE tools may be able to
analyze the actual content of the artifacts for stronger consistency checks.

The physical setup and work environment for the team working on the SUC is an-
other aspect of IE that may influence the resulting quality. When working on highly
interdependent artifacts, it may be beneficial to bring the domain experts together.
The use of a dedicated project room, where the team members are placed in clusters
around a central large screen monitor to facilitate both individual and collective work,
has been reported, e.g. [69]. Such setups may be desirable but not always be possible.
However, with suitable IT tools, it is possible to establish virtual team rooms with
many of the same characteristics.

2.5 Modeling disciplines 59

2.5.7 Enterprise modeling

Enterprise modeling (EM) is the practice of modeling the entire enterprise of ana-
lyzing, designing, implementing, manufacturing, operating, servicing, maintaining,
evolving and finally disposing series of systems or products. EM includes models
of the organizational structure, processes, resources and other business information.
EM has numerous advantages compared to a document-centric approach. All infor-
mation can be highly structured and located in a single repository, which makes the
information easily accessible. Document generators and dashboards make it possible
to present the information in a format that makes sense to the stakeholders. The use
of well-defined modeling languages reduces ambiguity. By combining EM with other
forms of systems modeling, it is possible to analyze and optimize the relationship
between system properties and enterprise constraints such as available development
resources. EM may thus be seen as the ultimate goal for modeling.

EM is beyond the scope and capacity for many organizations, including the company
for which the analysis was made. EM is therefore not discussed further in this thesis.
However, section 2.6 in [1] concerning advanced modeling includes a discussion of
using enterprise architecture frameworks and modeling tools to facilitate EM.

2.5.8 Other engineering activities

Modeling as described in the previous sections is part of a larger set of engineering
activities that are orchestrated in various phases of developing products and systems.
Ideation [70] and design thinking [71] [72] are examples of activities in the early
phases. Designing, implementing, testing, and validating hardware and software are
examples of activities in the later phases.

Simulating system models with hardware or software prototypes in the loop is an-
other example of cross-cutting engineering activities. Sometimes a domain cannot
be modeled properly because it is too complex or because the fundamental laws of
the domain are unknown or cannot be described easily in the modeling languages.
Physical prototypes can replace low-fidelity models and be included in the simulation
of the overall system. Simulating with hardware and/or software in the loop thus
provides better predictions of the functionality or performance of the overall system.
Additionally, simulating with hardware and/or software in the loop can be used to
ensure that prototypes of system parts behave as specified by the models. In these
cases, the simulation engines must therefore be able to simulate with hardware and/or
software in the loop to give realistic predictions of the system behavior, performance,
etc.

60 Modeling technologies

2.5.9 Other activities beyond engineering

Researching, manufacturing, marketing, servicing, operating, and dismissing systems
are examples of activities that may be considered beyond engineering. Modeling and
simulating may also be applied to such activities. For example, some systems may
require complex scenarios for service and maintenance, which may be difficult to
validate. Building prototypes may be impractical due to costs or other reasons. In
such cases, it may be possible to use virtual reality interaction during the specification
or validation of the scenarios.

2.6 Case study: Traceability tool (single-tool sce-
nario)

The proposed method was applied to selecting a traceability tools for GN Hearing.
The tool should be able to provide traceability between product claims, requirements,
test cases, test results, defects, etc. It was decided early to focus on single-tool scenar-
ios, such that all types of traceable artifacts could be managed without complicated
tool chains. The steps of the method were applied in the following manner:

Step 1 - Justify and initiate change project:

FDA (food and drug administration, USA) [41]and other authorities require full trace-
ability from requirements to test cases, test results, and potential defects for medical
devices. Historically this has been done manually at GN Hearing by entering all
required data into spreadsheets. However, the company must show the full history of
the product development course and not just the final state. The manual processing
consumed many resources and produced few benefits beyond the required traceability.
So it was decided to search for a traceability tools.

Introducing a traceability tool was expected to lead to better and more effective re-
quirements management, test management, defect management, task management,
and project monitoring. A business case was built based on more than 500 potential
users (system engineers, developers, testers, project leaders, quality assurance spe-
cialists, etc.) with varying types of access types/licenses. A cost limit for a 5-year
scenario was defined as a fundamental constraint. Using the same cost scenario for
all tools made it easier to compare different license models.

2.6 Case study: Traceability tool (single-tool scenario) 61

Step 2 - Develop specification and evaluation criteria:

Approximately 40 stakeholders (potential users, line managers, IT specialists, etc.)
were identified as important. Most stakeholders were identified during the interviews.
A questionnaire with 27 questions was prepared for the interviews. Most interviews
were conducted as face-to-face meetings with individual stakeholders but some were
conducted as group interviews, virtual meetings, email correspondence, etc. The in-
terviews produced 232 unique answers that were collecting in a spreadsheet. Answers
representing conflicting requirements were clarified with the stakeholder and resolved
(whenever possible) or ignored (when the conflicts were unsolvable). The remaining
answers were reformulated and thus converted into 176 requirements.

The requirements were prioritized and divided into 22 categories with 4 categories
of general (G) requirements and 18 categories of feature (F) requirements, as shown
in table 2.2. Requirements were prioritized as either mandatory, desired or optional.
The numbers of these requirements are shown in column #MR, #DR, #OR and
#AR, respectively. The specification also includes 5 assumptions (e.g. how various
functions are moved from previous tools to the new traceability tool) and 7 constraints
(conformance to various standards, supported operating systems and web browsers,
etc.). The specification was reviewed by all stakeholders and approved by the steering
group.

Selection criteria were developed directly from the specifications. The weights of the
criteria were set to 5 for mandatory requirements, to 3-4 for desired requirements,
and to 1-3 for optional requirements. These criteria were later utilized to rank the
evaluated tools.

Step 3 - Investigate tools and select best candidate:

The tool market was scanned for candidates. A list of 133 tools was created by
searching the internet and by inspecting websites such as Alexander [35], Ludwig [36],
Volera [37].

More than 100 websites of tool vendors were inspected for the first screening of can-
didates. 33 tool were excluded from the analysis because data could not be obtained
within the scheduled period of the investigation. 67 tools were excluded during the
first screening because they seemed to lack essential parts of the features that were
identified from the specification: management of traceability, requirements, testing,
reviewing, reporting, work-flow, etc. 6 tools were excluded after receiving further
information from the tool vendors due to license pricing or lacking functionality. 4
tools were excluded after watching demonstrations. 26 tools were installed or tested
online. In some cases, our own testing did not confirm the vendors’ rather optimistic

62 Modeling technologies

Table 2.2: Requirements distribution for traceability tool.
G = General requirements.
F = Feature requirements.
#MR = number of mandatory requirements.
#DR = number of desired requirements.
#OR = number of optional requirements.
#AR = number of all requirements.

Requirements category Type #MR #DR #OR #AR

Tool components G 8 3 3 14
Interfaces G 2 3 6 11
Usability G 6 10 2 18
Deployment & usage G 4 1 1 6

Requirements management F 6 2 2 10
Implementation & design F - 3 2 5
Testing management F 16 8 4 28
Release & configuration F 4 - - 4
Issue & defect management F - 3 3 6
Base lining & branching F - 3 2 5
Change & workflow management F 3 3 1 7
Review management F 2 3 - 5
Version management & control F 5 2 - 7
Task management F - 5 2 7
User management & security F 3 1 - 4
Dashboards & reporting F 4 3 1 8
Traceability & analysis F 8 2 2 12
Export & import round-tripping F 1 2 1 4
Integration features F 2 2 4 8
Risk and hazard analysis F - - 2 2
General repository features F - - 2 2
Global glossary features F - - 3 3

Total 74 59 43 176

2.6 Case study: Traceability tool (single-tool scenario) 63

Table 2.3: Specification conformance and gaps for traceability tools.

Conformance Gap / Non-conformance
Requirements: All Mandatory Desired Optional

Tool 1 71% 19% 33% 54%
Tool 2 63% 27% 44% 58%
Tool 3 70% 22% 38% 41%
Tool 4 82% 15% 17% 35%

claims. 4 of the remaining tools turned out to be too expensive. 1 tool was excluded
due to lack of sufficient evaluation data. The remaining 18 tools were subjected to
further analysis.

Evaluating all 176 criteria for 18 tools was considered to require too much effort and
time. Instead, we evaluated the 18 feature groups to give an overall impression of
the tools. 9 tools could not be fully evaluated due to malfunctions or inadequate
feature coverage. 4 tools within the acceptable price range were selected for further
analysis, which included full evaluations of the 176 criteria. WSM as described in sec-
tion 2.3.1 was used fourfold: For mandatory, desired, optional, and all requirements.
An overview of the summed ratings and gaps is shown in table 2.3. Notice that all
tools have gaps in the conformance to even the mandatory requirements. Table 2.4
shows more details of the evaluation of tool #1. Table 2.5 and 2.6 show parts of the
gap analysis for mandatory and desired requirements, respectively. Gaps for optional
requirements are not shown. The tables 2.4, 2.5 and 2.6 are generated from the same
spreadsheet by using different filters for the "kind" and "verdict" columns.

Combining several tools to overcome the gaps was not considered because it would be
too difficult to integrate the tools and ensure the required traceability, so in this case
we had to select the best tool and accept its shortcomings. Further analysis of the
gaps resulted in the exclusion of tool 1 and 2, so the final choice was between tool 3
and 4. Tool 4 achieved the highest score and was deemed easy to introduce but with
poor defect tracking capabilities. Tool 3 scored somewhat lower, it but was deemed
as a better long-term solution that would be easier to integrate with the company’s
software development activities. Tool 3 was finally selected after much discussion.

Step 4 - Implement, maintain, and evolve solution:

The tool was installed in a protected environment, configured and customized to re-
flect the work processes of the company. However, some processes had to be modified
to reflect the change from document-centric to database-centric methods of writing
requirements and test cases, perform testing, report defects, conduct reviews, etc.

64 Modeling technologies

Table 2.4: Requirements conformance for tool #1 (excerpt). M = Mandatory, D
= Desired, O = Optional. The verdict "yes" gives full score 1.0*weight,
"partial" gives half score 0.5*weight, and other verdicts gave zero score.

2.6 Case study: Traceability tool (single-tool scenario) 65

Table 2.5: Requirements gap for tool #1 (mandatory requirements only).

Table 2.6: Requirements gap for tool #1 (desired requirements only).

66 Modeling technologies

User guides were created and training of developers, testers, reviewers, managers,
etc., was commenced. Existing requirements and test cases were migrated to the tool
for a pilot project that lasted 3 months. The tool was validated according to internal
company standards 1 month after the pilot project.

One year after the implementation started, the tool was used for all development
projects by 400 users from 5 different sites distributed around the globe. The project
entered maintenance mode 3 month later. The tool has been in continual operation
since 2013, with only minor changes to the configurations and setup.

The tool has successfully achieved the primary objective (automatic generation of
traceability reports for various authorities), secondary objectives (improved manage-
ment of requirements, testing, defects, etc.), and some unplanned positive side effects
(clarification and improvement of work processes).

2.7 Case study: Modeling tools (multi-tool scenario)

The proposed method was applied to selecting modeling tools for pilot modeling cases
at GN Hearing. The tools should enable several modeling disciplines. It was decided
early to focus on multi-tool scenarios because no single tool was expected to provide
a satisfying solution. The steps of the method were applied in the following manner:

Step 1 - Justify and initiate change project:

The hearing systems from GN Hearing are becoming increasingly complex and it is
required to reduce the risks of making errors in the specification and development
phases. Errors in the requirements specification are particularly problematic because
such errors typically are found very late. These observations follow the general trend
for embedded systems as described by Ebert and Jones (2009) [3]. Many believe
that MBSE can address these and other problems. Friedenthal et al. (2012) [76,
p.20] outlines the following potential benefits of MBSE: Enhanced communication,
reduced risks, improved quality, increased productivity, etc. GN Hearing has therefore
initiated activities to determine if MBSE shall be included in future SE work.

Introduction of MBSE to the company was considered a large step even though
modeling is used in various sub-disciplines. It was therefore decided to run a series
of pilot projects to evaluate if and how to introduce systems modeling.

2.7 Case study: Modeling tools (multi-tool scenario) 67

Step 2 - Develop specification and evaluation criteria:

From knowledge about the organization and its environment, a list of relevant stake-
holder were identified and prioritized. The systems engineering team is the primary
stakeholder. Secondary stakeholders are management, testers, software and hardware
developers, audiologists, marketing, production, and a few others.

Informal interviews with stakeholders revealed huge differences in their perception
and expectations of MBSE. Presentation of various "definitions" of MBSE did not
streamline the perceptions. It was clear that a complete categorization of the various
sub-disciplines of MBSE was needed to ask questions that are more precise. We
therefore introduced a classification of MBSE as described in section 2.5.

From the knowledge about the types of systems under consideration (section 1.4
and 2.4) and the characteristics of the modeling disciplines (section 2.5), we prepared
questionnaires for subsequent interviews. First, we asked which of the modeling dis-
ciplines were relevant for the organization. Next, we asked questions that were more
detailed. As an example, we asked if the organization should be able to model e.g.
state machines, activities, timing constraints as part of the fundamental modeling.
For the behavioral simulation modeling, we asked if the organization should be able to
model and simulate homogeneous or heterogeneous systems; etc. General questions
concerning trustworthiness of vendors and tools, affordability, availability, etc., were
also considered as recommended by Jadhav and Sonar [33], Nikoukaran et al. [24],
and others.

After conducting the interviews, the answers were analyzed presented to relevant
stakeholders. The analysis showed that most parts of fundamental modeling, be-
havioral simulation modeling, architectural analyses modeling, architecture/behavior
co-modeling, and coherent modeling were needed. It was decided to postpone the
decision about integrated engineering until the more basic modeling disciplines are
mastered. Enterprise modeling is outside the scope of the company and it is there-
fore not included in the selection criteria. The output of the process was a table
of selection criteria for the various modeling sub-disciplines. The selection criteria
were prioritized and expressed in decreasing order of importance as "yes", "maybe",
"later" or "no", as shown in table 2.7. The criteria may be refined further into an
actual specification of the required technology.

Step 3 - Investigate tools and select best candidates:

Potential tool candidates were identified from searching the internet intensively.
Rashidi (2016) [31] provided a list of 62 simulation tools. Tools for the systems
or unified modeling languages (SysML, UML) were identified from websites such as

68 Modeling technologies

Weilkiens [38], Diagramming.org [43], Softdevtools.com [44], Modeling-languages.com
[45], and from other sources. For GN Hearing, the tools listed in section 2.1 were
identified as potential technologies (methodologies, languages, tools).

After installing the tools, tutorials were executed to learn how to use the tools, and to
find out their capabilities. The rating of the technologies was based on comprehensive
collection of information and extensive experimentation with different tools on smaller
pilot projects. A few criteria were assessed by other means, e.g. by information
obtained from others, and some criteria for some tools could unfortunately not be
assessed by testing due to bugs, missing functionality, wrong configurations of demo
tools, etc. We used a numbering scheme with ratings from 1 to 5 stars representing the
degree of conformance to the criteria. The ratings have different meanings for different
criteria and different technologies. Some criteria could be analyzed precisely, where
others were more difficult to evaluate (e.g. conformance to usability requirements).
The confidence or precision of the ratings therefore vary. Stars are thus used instead of
numerical values to avoid giving an impression of a high degree of precision. However,
the star ratings do show the feasibility of each technology with regard to different
criteria.

Table 2.7 shows an extract of the evaluation results for some of the most relevant
tools. Numerous other tools and technologies have been evaluated but not shown in
the table because they were infeasible or otherwise unattractive. Some of the other
relevant technologies are mentioned in the modeling guides in chapter 2 in [1], though.
The amount of work required to evaluate the tools was not recorded but took several
weeks.

For this case study, the multi-tool selection method described in section 2.3.2 was
used because (1) no single-tool solution was close to fulfilling all evaluation criteria,
and (2) using separate tools for different modeling disciplines was found acceptable.
The analysis is presented in chapter 2.2 in [2]. From the analysis, the following set
of tools were identified (RQ72r):

{ {SysML and AADL and UPPAAL and OpenModelica and PLM} and
{PtolemyII or SystemC} and {SimJava2 or Simulink} }

The AADL tool could be ignored because SysML cover the most essential needs
for AAM. The OpenModelica could be ignored because the requirements were not
mandatory. PLM tool plugins could be ignored because CM and IE is beyond the
scope of the company’s current modeling plans. Simulink could be excluded because
PtolemyII + SimJava2 + SystemsC are more affordable and provide similar func-
tionality. The final setup could therefore be reduced as described in the appendix
(RQ72f):

{ {SysML and UPPAAL and SimJava2} and {PtolemyII or SystemC} }

2.7 Case study: Modeling tools (multi-tool scenario) 69

Table 2.7: Example of table showing the correlation between modeling needs and
features provided by different technologies. Notice that the different
technologies are not necessarily comparable because they address vastly
different needs using notably different means. The table is further dis-
cussed in section 2.2 in [2]. The table is enlarged as table 2.1, 2.2 and 2.3
in [2] for improved readability.

70 Modeling technologies

PtolemyII and SystemC-TLM/AMS were included mainly for modeling heteroge-
neous systems. However, the need for modeling such systems is not imminent. The
use of PtolemyII and SystemC can therefore be postponed. The set of tools for the
pilot cases and initial setup could therefore be reduced as described in the appendix
(RQ72i):

{SysML and UPPAAL and SimJava2}

SysML will mainly be used for fundamental modeling. Examples of SysML models
are included in chapter 2 in [1]. UPPAAL will primarily be used for test-driven
modeling of embedded systems as described in chapter 3. SimJava2 will mainly be
used for test-driven modeling of smart systems as described in chapter 4.

Step 4 - Implement, maintain, and evolve solution:

The company has purchased licenses for a SysML tool, which has been installed and
used for creating diagrams that were included in architecture description documents.
Furthermore, the SysML tool and an evaluation version of UPPAAL (including SMC)
have been used on a pilot case for test-driven modeling of embedded systems as de-
scribed in section 3.6. The combination of SysML, UPPAAL and SimJava2 has been
used on a pilot case for modeling a large and complex smart system as described
in section 4.8. Ptolemy-II has been used during the evaluation period to create
and simulate small models of elements of hearing systems. The remaining modeling
technologies have also been used during the evaluation period to create various sys-
tems models, meta models, model transformations, special menus and tool plugins
for demonstrating the feasibility of potential future upgrades to the chosen modeling
setup.

Redesign of development process, making of user guides, conducting of training, mi-
grating of data, and reorganizing the company are postponed until the full learning
of pilot cases are analyzed and incorporated into an overall MBSE strategy.

The complexity of embedded systems is growing almost exponentially, according to
Ebert (2009) [3]. It is therefore likely that the analysis has to be repeated in the
future to maintain and evolve the tool set such that modeling scenarios of the future
can be handled. A need for simulators that are faster and can handle extremely large
models is already apparent.

2.8 Discussion 71

2.8 Discussion

2.8.1 Results

The proposed method was applied to the selection of a traceability tool for the medical
device company GN Hearing as described in see section 2.6. A large collection of
tools were investigated, tested, and evaluated. Tools that were ranked higher than
the selected tool were dismissed because the gap analyses showed that they missed
essential requirements. The selected tool has been in continual operation since 2013.
It is used daily for tracing and managing requirements, implementations, tests, bugs,
defects, issues, tasks, etc.

The proposed method was also used for identifying a set of modeling tools that meets
the immediate and some future needs of GN Hearing.

SysML was identified as a good modeling language for FM. Licenses for a commercial
tool have been purchased. The tool has been used in case studies as described in
chapter 3 and 4.

UPPAAL was identified as good choice for formal modeling of some parts of BSM,
AAM and ABCM. UPPAAL-SMC was similarly identified as a good choice for statis-
tical model checking. Both standard UPPAAL and UPPAAL-SMC have been used
in case studies as described in chapter 3 and 4.

SimJava2 was identified as a good choice for modeling and simulating systems that
are too large or complex for UPPAAL. SimJava2 was used with the Eclipse tool to
model and simulate a smart system in a case study as described in chapter 4.

Simulink was identified as a good choice for modeling and simulating heterogeneous
system models. This tool can be used for both BSM, AAM and ABCM. Further-
more, it can be integrated with the chosen SysML modeling tool to facilitate complex
parametric simulations. The feasibility of Simulink has been demonstrated on small
modeling projects but a larger modeling case has not been conducted yet.

Other modeling technologies have also been used during the evaluation period to
create various systems models, meta models, model transformations, special menus
and tool plugins for demonstrating the feasibility of potential future upgrades to
the chosen modeling setup. The more advanced forms of modeling are postponed
until the setup with SysML, UPPAAL and SimJava2 has been proved useful on real
projects in the company.

72 Modeling technologies

2.8.2 Observations

GN Hearing has a dedicated department for SE. This department is responsible for
defining top-level requirements, defining and executing system tests, defining system
architectures, and facilitating communication between different stakeholders. Mod-
eling has only be used occasionally in the SE department.

However, various forms of modeling and simulating are used in other departments for
software design, chip design, antenna design, mechanical design, acoustical design,
etc. Each discipline uses different modeling languages and tools that cannot easily
be integrated for holistic systems modeling.

The company has successfully developed and marketed a large range of product using
the existing setup. Great success in the past could lead to lack of motivation to
change the setup, because the benefits of implementing a new, costly setup might
be perceived as unnecessary. However, the increasing complexity of hearing systems
has demonstrated that new methods and processes are needed for development of
future systems. Thus, there is a general acceptance in the company of investigating
if modeling of systems, software, etc., should be part of future development methods.

2.8.3 Learning points

Early in this PhD project, it was suspected that single-tool solutions were unable to
satisfy all modeling needs of the company. Different objectives require vastly different
features of the modeling tools and languages as seen from the following few examples:

• Modeling for communication requires that the tools are capable of providing
specialized views, reports or presentations for individual stakeholders.

• Modeling for verification of system functionality and performance requires that
the tools are able to simulate or formally verify the models, or to generate
simulation code that can be executed with external simulations.

• Modeling for traceability requires that the modeling languages include elements
and notations for linking model items, such that views, reports or tables of
relationships can be generated.

From a few informal interviews of people involved in systems engineering at various
companies and other organizations, it was realized that solid methods for selecting
tools were rarely used. Often, tools are selected without comprehensive analyses of

2.8 Discussion 73

actual needs and available tools. The proposed method was develop for allowing GN
Hearing to conduct a more thorough analysis.

Vendors often promise more than the tool can actually do. Questions concerning
unsupported features are often reformulated by vendors such that circumventions
can be identified. This type of behavior is most praiseworthy, because it allows the
potential users to find new and better ways of using the tools. However, blind trust
in the statements of vendors may lead to selecting tools that are not optimal for the
organization. Tools may safely be disqualified by assessing vendors’ information, but
candidates should not be qualified without further evaluation, where the tools are
tested by creating models that reflect the intended use.

Modeling is generally difficult and most disciplines have very steep learning curves.
Learning how to model certain system aspects in various languages can be very time
consuming because modeling communities seldom offer more than rudimentary help.
Modeling tools are often filled with many features that require much time and effort
to learn to use correctly and optimally. Thus, the evaluation of tools can be very
time consuming, and there may be a risk of wrong conclusions because the language
constructs or features are used and assessed wrongly. However, many tool vendors
are willing to assist greatly during tool evaluation periods.

2.8.4 Advantages

The proposed method (section 2.3) has the following advantages over previous meth-
ods for selecting modeling tools:

• The method is systematic and includes steps for justifying and initiating the tool
change project, developing specification and evaluation criteria, investigating
tools and selecting candidates, implementing, maintaining and evolving the
chosen solution.

• The method is practical and does not require expensive special tools for calcu-
lating evaluation scores and tool rankings.

• The method for specifying the tool requirements includes thorough analysis of
the modeling disciplines of interest for the company. This makes it easy to
include future modeling scenarios that are otherwise easily overlooked.

• The method can be applied to both single-tool and multi-tool scenarios. Single-
tool solutions are applicable for many SE disciplines, e.g. requirements man-
agement. However, multi-tool solutions are often required for MBSE, because
there is no current single-tool solution that covers all modeling needs.

74 Modeling technologies

• The method for selecting multi-tool solutions is based on set theory and simple
operations that allow companies to identify feasible sets of tools that cover all
essential needs.

• The method for selecting multi-tool solutions uses ranking of the identified
sets of tools to find the best set. The proposed method therefore has a high
likelihood of identifying the (sets of) tools that best meet the actual needs of
the company.

• The method for selecting tools include gap analyses to validate the feasibility of
the chosen tool set. The proposed method therefore has a low risk of selecting
tools that fail to meet essential requirements.

Some of the previous methods are also systematic and practical, but do not have any
of the other advantages. No previous work considers multi-tool scenarios. Ranking
methods are also used in previous work, but only for individual tools and not for set
of tools. No previous work includes gap analysis to validate the chosen tools.

2.8.5 Disadvantages

The proposed method has the following disadvantages compared to previous methods
for selecting modeling tools:

• Using the proposed method is time consuming and many resources are required
to conduct all included steps systematically. Highlighting all steps before com-
mencing the analyses may cause decision paralysis, which may lead to using
less rigorous selection methods or to abandoning the tool selection altogether.

• Knowledge of various modeling disciplines is needed to develop the tool spec-
ification and evaluations criteria successfully. Identifying analysts with deep
knowledge of all relevant modeling disciplines may be difficult. Using people
with limited skills to perform the analyses introduces risks of overlooking es-
sential needs.

• Detailed analyses of all required features for every tool candidate can be very
time-consuming and may require modeling skills that have not been acquired
in advance. This may cause incomplete or erroneous evaluations, which in turn
may lead to selecting infeasible tools.

These potential disadvantages should be mitigated to benefit from the advantages of
the proposed method.

2.8 Discussion 75

2.8.6 Limitations

The proposed method is intended for selection of tools for various MBSE disciplines.
However, the method is generally applicable to selection of SE tools, as discussed
in [73].

The method has been applied to selection of a traceability tool (appendix 2.6) and a
set of modeling tools (section 2.7) for GN Hearing. The traceability tool has been in
successful operation since 2013. The set of modeling tools has only been used on pilot
projects. The validation of the method is therefore limited for multi-tool scenarios.

2.8.7 Improvements

Needs for improving the proposed method have not been identified so far. However,
some steps of the method could benefit from automating, particularly for multi-tool
scenarios.

In the modeling tool selection case (section 2.7), a spreadsheet was used for the
correlation matrix (table 2.7) to give an overview of tool evaluations. Composing
the set of tools for each requirement requires that properties of different tools be
compared even though they may not be directly comparable. This part of the process
may be affected by irrational decisions, if the analyst has bias towards some of the
evaluated tools. Manually performing the operations to obtain the feasible sets that
cover all requirements is probably error-prone as well. The usability of the method
could therefore be improved by developing a tool to analyze the feasible sets of tools
by using the equations (2.2) to (2.5).

The ranking of tools for single-tool scenarios is easily performed by using equation
(2.1). This can easily be done in spreadsheets as shown in the example in section 2.6.
However, ranking of individual tools is irrelevant for multi-tool scenarios because it is
the rank of the entire set of tools, which is important. Using spreadsheets for ranking
set of tools is cumbersome. The usability of the method could therefore be further
improved by developing a tool to calculate the rank of all feasible sets of tools.

Analyzing the gaps between tool capabilities and the required, desired and optional
requirements is easily done by using spreadsheet tools with filtering functions for
single-tool scenarios. However, using this technique is cumbersome for multi-tool
scenarios. The usability of the method could therefore be even further improved by
developing a tool to analyze the gaps for all feasible sets of tools.

76 Modeling technologies

2.8.8 Future work

From the description of potential improvements (section 2.8.7), it can be deduced
that development of analysis tools for multi-tool selection scenarios is among the
candidates for future work. Even though it is recommended to perform the analyses
at regular intervals, it will nevertheless be done with a low frequency. The benefits of
having good analysis tools therefore cannot justify the effort required to develop and
maintain such tools for most separate organizations. However, modeling communities
may be interested in future work on commercial or open source tools that can be easily
be used by analysts from many different companies.

The modeling tools that were selected in the case study (section 2.7) have only been
applied to pilot projects. Implementing the tools setup for daily use is the most
obvious future work that must be conducted in the company.

Incorporating SysML for FM has been initiated and licenses have been purchased.
To leverage SysML fully, additional future work has to be commenced. It must be
decided how FM shall be included in the systems engineering processes. Currently,
requirements are managed in document for the early phases and in a traceability tool
for later phases. The current version of the SysML tool cannot replace the exist-
ing traceability tool because SysML lacks essential features (such as version control,
access control, automatic history logging, etc.) for managing requirements, tests,
defects, tasks, etc. However, SysML provides a holistic approach to requirements en-
gineering and system design that cannot be obtained with the previously used tools.
Integrating FM and SysML into the existing processes and tool setup is a major
issue that the company should address in the future work. Training of systems engi-
neers and domain experts in the FM discipline, the SysML formalism, and the chosen
SysML tool should also be undertaken before SysML is launched for daily use.

Other engineering disciplines such as software development and chip design may
also benefit from parts of FM. The future work should include an analysis of how
to integrate FM for systems engineering with these other disciplines. Especially it
should be determined if SysML can be used as a common modeling language or if
the other engineering disciplines have requirements that call for different languages.
If different languages are required, the question of integration emerges, which should
be further investigated.

Other activities in the company (e.g. marketing) may similarly benefit from adopting
FM with SysML for modeling of scenarios, etc. The future work should include an
analysis of the benefit of expanding the use of FM with SysML or similar language
to the entire organization.

The case studies that are described in chapter 3 and 4 are examples of modeling

2.8 Discussion 77

with elements of BSM, AAM and ABCM. This form of modeling can be introduced
independently of FM. The future work should identify cases where these forms of
modeling can be beneficial. Training in the formalism of UPPAAL and SimJava2 (or
equivalent languages) is required before they can be launched for daily use.

The CM, IE and EM modeling disciplines are currently out of scope because they
do not add value unless FM, BSM, AAM or ABCM are practiced on a daily basis.
However, the company may prepare their introduction as part of the future work.

The application of the proposed method should be repeated at regular intervals be-
cause new needs and new technologies emerge over time. Rather than leaving it to
chance, it may be beneficial to define a fixed interval at which the analyses should be
repeated, e.g. every third year.

The application of the proposed method was limited to two cases as described in
section 2.7 and 2.6. The case of selecting a traceability tool verifies all steps of the
proposed method for single-tool scenarios. The additional steps for multi-tool scenar-
ios were applied to the case of selecting modeling tools. However, the modeling tools
have not yet been implemented for daily use, which prevents exhaustive verification.
The future work should therefore include a more thorough validation of the proposed
method, especially for multi-tool scenarios.

2.8.9 Conclusion

This chapter has addressed the need for a systematic and practical method for se-
lecting MBSE tools. Reviewing literature of related work showed that:

(1) Comprehensive methods for selection of MBSE tools have not been reported.
Some authors provided generic advices. Other authors compared specific tools.
Most selection methods concern other domains than MBSE, such as selection
of vendors, RM tools, simulation tools, etc.

(2) There is no common understanding of what MBSE includes and which features
MBSE tools must provide.

(3) No reported method considers the case where multi-tool solutions are needed to
meet all essential needs. Reported methods only consider the single-tool case,
where the best possible tool is selected and its imperfections are accepted.

(4) Reported methods use either simple qualitative methods (e.g. feature evalua-
tion) or quantitative methods (e.g. WSM, AHP) for ranking tools.

78 Modeling technologies

(5) No reported method specifically addresses the problem of verification and vali-
dation, i.e. analyzing if the selected tool solutions are acceptable and meet all
essential requirements.

(6) Most reported work appears to be of academic origin without any industrial
validation.

The proposed method was developed to overcome limitations of previous methods and
was specifically developed for the domain of MBSE, but it can be used in generalized
form for selecting other types of SE tools. The method was developed from existing
methods by combining elements from various works and by adding new elements that
are unique for this approach. It describes how to

1. Justify and initiate projects for selecting or changing tools.

2. Develop tool specifications and evaluation criteria.

3. Investigate and select best tool candidates.

4. Implement, maintain and evolve the chosen solution.

Proper use of the proposed method require

1. Knowledge about various characteristics of the systems under consideration
because they pose different modeling needs.

2. Knowledge about modeling disciplines because they address different needs and
objectives.

The systems under consideration are classified according to business model, value
proposition, quality requirements, usage scenarios, composition (simple, complex,
homogeneous, heterogeneous), major modeling and simulating criteria, constituent
hardware and software, etc. The modeling and related disciplines are classified into
fundamental modeling, behavioral simulating modeling, architectural analyses mod-
eling, architecture/behavior co-modeling, coherent modeling, enterprise modeling,
other engineering activities, and activities beyond engineering. The classifications
of systems and disciplines are used for determining the tool requirements. These
requirements are subsequently translated into prioritized evaluation criteria.

Each evaluation criteria is investigated for each modeling technology (method, lan-
guage and tool). Tables that correlate needs and capability are thus created during
the application of the method. For single-tool solutions, the candidates are ranked by

2.9 References 79

WSM. For multi-tool solutions, feasible sets of tools that meet all requirements are
obtained by combining the sets that are needed to meet each individual requirement.
The combined sets are subsequently ranked by WSM. Analyses of the gaps between
needs and capabilities are finally performed to identify the most acceptable choice
for both single- and multi-tool scenarios.

The proposed method has been applied for selecting a traceability tool for the medi-
cal device company GN Hearing. A large collection of tools were investigated, tested,
and evaluated. Tools that were ranked higher than the selected tool were dismissed
because the gap analyses showed that they missed essential requirements. The se-
lected tool has been in continual operation since 2013. It is used for tracing and
managing requirements, implementations, tests, bugs, defects, issues, tasks, etc.

The proposed method has also been applied to selecting a set of modeling and simu-
lation tools for SE at GN Hearing. A large collection of modeling technologies were
investigated, tested and evaluated. A set of 3 tools for the initial setup was identified.
The chosen setup may be extended by other tools that were identified. The tools in
the initial setup has been used in the case studies in chapter 3 and 4. Other tools that
were identified for possible future extensions have been used on evaluation projects.

Proper verification of the proposed method and selection techniques requires more
than two cases so the future work should concentrate on identifying and executing
more cases to get statistical significance. However, it is hoped that the proposals pre-
sented in this chapter may help others in the process of selecting SE tools henceforth.

2.9 References
[1] Allan Munck

"Model-Based Systems Engineering Guidelines."
Technical report, Technical University of Denmark, Department of Applied
Mathematics and Computer Science.

[2] Allan Munck
"Modeling tool selection."
Technical report, Technical University of Denmark, Department of Applied
Mathematics and Computer Science.

[3] Christof Ebert and Casper Jones.
"Embedded software: Facts, figures and future."
IEEE Computer Magazine, 2009, Volume 42, Issue 4.

[4] Confederation of Danish Industry (DI), Community of IT, Tele, Electronics and
Communication (ITEK), Project Industrial Technology and Software (ITOS).

80 Modeling technologies

Website (last visited 2014.04.24):
http://itek.di.dk/projekter/itos/

[5] INCOSE SE Handbook Working Group.
"INCOSE systems engineering handbook v. 3.2.2."
INCOSE-TP-2003-002-03.2.2. October, 2011.

[6] Charles A. Weber, John R. Current, and W. C. Benton.
"Vendor selection criteria and methods."
European journal of operational research 50.1 (1991): 2-18.

[7] Karl E. Wiegers.
"Automating requirements management."
Software Development 7.7 (1999): 1-5.

[8] Karl E. Wiegers.
"Software requirements."
Microsoft Press; 2 edition (8 Mar. 2003).

[9] Matthias Hoffmann, Nikolaus Kuhn, Matthias Weber and Margot Bittner.
"Requirements for requirements management tools."
Requirements Engineering Conference, 2004. Proceedings. 12th IEEE Interna-
tional. IEEE, 2004.

[10] Azida Zainol and Sa’ad Mansoor.
"An investigation of a requirements management tool elements."
Open systems (ICOS), 2011 IEEE conference on. IEEE, 2011.

[11] Daniyal M. Alghazzawi, Shams Tabrez Siddiqui, Mohammad Ubaidullah Bokhari
and Hatem S Abu. Hamatta.
"Selecting Appropriate Requirements Management Tool for Developing Secure
Enterprises Software."
International Journal of Information Technology and Computer Science
(IJITCS) 6.4 (2014): 49.

[12] Carey Schwaber and Peter Sterpe.
"Selecting The Right Requirements Management Tool—Or Maybe None What-
soever."
Management (2006).

[13] Orlena Gotel and Patrick Mäder.
"How to select a requirements management tool: Initial steps."
2009 17th IEEE International Requirements Engineering Conference. IEEE,
2009.

[14] Orlena Gotel and Patrick Mäder.
"Acquiring tool support for traceability."
Software and Systems Traceability. Springer London, 2012. 43-68.

http://itek.di.dk/projekter/itos/

81

[15] Raimundas Matulevičius, Patrick Heymans and Guttorm Sindre.
"COMPARING GOAL-MODELLING TOOLS WITH THE RE-TOOL EVAL-
UATION APPROACH."
Information Technology And Control 35.3 (2006).

[16] Mary Bone and Robert Cloutier.
"The Current State of Model Based Systems Engineering: Results from the
OMGTM SysML Request for Information 2009."
Proceedings of the 8th Conference on Systems Engineering Research. 2010.

[17] Louis A. Le Blanc and Willard M. Korn.
"A structured approach to the evaluation and selection of CASE tools."
Proceedings of the 1992 ACM/SIGAPP symposium on Applied computing: tech-
nological challenges of the 1990’s. ACM, 1992.

[18] Jeff A. Estefan.
"Survey of model-based systems engineering (MBSE) methodologies."
Rev A, May 25, 2007, Incose MBSE Focus Group 25.8 (2007).

[19] Jerry Banks.
"Selecting simulation software."
Proceedings of the 23rd conference on Winter simulation. IEEE Computer Soci-
ety, 1991.

[20] Colin O. Benjamin and Ossama A. Hosny.
"EXSEMA-An EXpert System for SElecting Simulation Software for Manufac-
turing Applications."
CAD/CAM Robotics and Factories of the Future’90. Springer Berlin Heidelberg,
1991. 315-320.

[21] Mark S. Greenstein.
"CAE simulation tool selection criteria for today’s ASIC designs."
Fourth Annual IEEE International ASIC Conference and Exhibit — 1991, pp.
T6-1.1-T6-1.3

[22] Lesley Davis and Glyn Williams.
"Evaluating and selecting simulation software using the analytic hierarchy pro-
cess."
Integrated manufacturing systems 5.1 (1994): 23-32.

[23] Jalal Nikoukaran and Ray J. Paul.
"Software selection for simulation in manufacturing: a review."
Simulation practice and theory 7.1 (1999): 1-14.

[24] Jalal Nikoukaran, Vlatka Hlupic and Ray J. Paul.
"A hierarchical framework for evaluating simulation software."
Simulation Practice and Theory 7.3 (1999): 219-231.

82 Modeling technologies

[25] M. A. Azadeh and S. Nazari Shirkouhi.
"Evaluating simulation software using fuzzy analytical hierarchy process."
In Proceedings of the 2009 Spring Simulation Multiconference (SpringSim ’09).
Society for Computer Simulation International, San Diego, CA, USA, , Article
41 , 9 pages.

[26] Shady Attia, Jan LM Hensen, Liliana Beltrán and André De Herde.
"Selection criteria for building performance simulation tools: contrasting archi-
tects’ and engineers’ needs."
Journal of Building Performance Simulation 5.3 (2012): 155-169.

[27] Suay Ereeş, EmelKuruoğlu and Nilgün Moralı.
"An application of Analytical Hierarchy Process for simulation software selection
in education area."
Frontiers in Science 3.2 (2013): 66-70.

[28] Romain Franceschini, Paul-Antoine Bisgambiglia, Luc Touraille, Paul Bisgam-
biglia and David Hill.
"A survey of modelling and simulation software frameworks using Discrete Event
System Specification."
OASIcs-OpenAccess Series in Informatics. Vol. 43. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2014.

[29] Stewart Robinson.
"Simulation: the practice of model development and use."
Palgrave Macmillan, 2014.

[30] Nadja Damij, Pavle Boškoski, Marko Bohanec and Biljana Mileva Boshkoska.
"Ranking of Business Process Simulation Software Tools with DEX/QQ Hierar-
chical Decision Model."
PloS one 11.2 (2016): e0148391.

[31] H. Rashidi.
"Discrete simulation software: a survey on taxonomies."
Journal of Simulation (2016).

[32] Anil S. Jadhav and Rajendra M. Sonar.
"Evaluating and selecting software packages: A review."
Information and software technology 51.3 (2009): 555-563.

[33] Anil S. Jadhav, and Rajendra M. Sonar.
"Framework for evaluation and selection of the software packages: A hybrid
knowledge based system approach."
Journal of Systems and Software 84.8 (2011): 1394-1407.

83

[34] Mohamed Sarrab and Osama M. Hussain Rehman.
"Empirical study of open source software selection for adoption, based on soft-
ware quality characteristics."
Advances in Engineering Software 69 (2014): 1-11.

[35] Ian Alexander.
"Tool Vendors : List of Requirements Management Tools, Requirements Engi-
neering Tools."
Website (last visited 2016.06.10):
http://www.scenarioplus.org.uk/

[36] Ludwig Consulting Services, LLC.
"Requirements management tools."
Website (last visited 2016.07.14):
http://www.jiludwig.com/Requirements_Management_Tools.html

[37] Volere - Atlantic Systems Guild Ltd.
"Requirements Tools."
Website (last visited 2016.06.10):
http://www.volere.co.uk/tools.htm

[38] Tim Weilkiens.
"Popular SysML Modeling Tools."
Website (last visited 2016.06.10):
http://list.ly/list/23A-popular-sysml-modeling-tools

[39] Thomas L. Saaty.
"How to make a decision: the analytic hierarchy process."
European journal of operational research 48.1 (1990): 9-26.

[40] R. Timothy Marler and Jasbir S. Arora.
"Survey of multi-objective optimization methods for engineering."
Structural and multidisciplinary optimization 26.6 (2004): 369-395.

[41] U.S. Food and Drug Administration (FDA).
"Protecting and Promoting Your Health."
Website (last visited 2017.01.24):
http://www.fda.gov/

[42] Christof Ebert and Capers Jones.
"Embedded software: Facts, figures, and future."
Computer 42.4 (2009): 0042-52.

[43] Diagramming.org.
"The Master Directory of Diagramming Tools."
Website (last visited 2016.07.18):
http://www.diagramming.org/

http://www.scenarioplus.org.uk/
http://www.jiludwig.com/Requirements_Management_Tools.html
http://www.volere.co.uk/tools.htm
http://list.ly/list/23A-popular-sysml-modeling-tools
http://www.fda.gov/
http://www.diagramming.org/

84 Modeling technologies

[44] Softdevtools.com.
"Tools directory: approach: UML Unified Modeling Language."
Website (last visited 2016.07.18):
http://www.softdevtools.com/modules/weblinks/viewcat.php?cid=54

[45] Modeling-languages.com.
"UML tools."
Website (last visited 2016.07.18):
http://modeling-languages.com/uml-tools/

[46] OMG-SysML.
"Systems Modeling Language"
Website (last visited 2014.05.26):
http://www.omgsysml.org/

[47] Lenny Delligatti.
"SysML Distilled: A Brief Guide to The Systems Modeling Language."
Pearson Education, Inc., 2014.

[48] Jon Holt and Simon Perry.
"SysML for Systems Engineering."
(Professional Application of Computing Series 7), IET, 2008.

[49] Tim Weilkiens.
"Systems Engineering with SysML/UML: Modeling, Analysis, Design."
Kaufmann, 2006.

[50] OMG-UML.
"Unified Modeling LanguageTM (UML R©)."
Website (last visited 2014.05.26):
http://www.uml.org/

[51] OMG-MARTE.
"The UML Profile for MARTE: Modeling and Analysis of Real-Time and Em-
bedded Systems."
Website (last visited 2014.05.26):
http://www.omgmarte.org/

[52] Gerd Behrmann, Alexandre David, and Kim G. Larsen.
"A Tutorial on Uppaal 4.0”, “Updated November 28, 2006."
http://www.uppaal.com/admin/anvandarfiler/filer/uppaal-tutorial.
pdf.

[53] 20sim.
"What is 20-sim?", v4.4.
Website (last visited 2014.04.24):
http://www.20sim.com/

http://www.softdevtools.com/modules/weblinks/viewcat.php?cid=54
http://modeling-languages.com/uml-tools/
http://www.omgsysml.org/
http://www.uml.org/
http://www.omgmarte.org/
http://www.uppaal.com/admin/anvandarfiler/filer/uppaal-tutorial.pdf
http://www.uppaal.com/admin/anvandarfiler/filer/uppaal-tutorial.pdf
http://www.20sim.com/

85

[54] Destecs.org.
"DESTECS (Design Support and Tooling for Embedded Control Software)."
Website (last visited 2014.04.24):
http://www.destecs.org/

[55] Mentor Graphics.
"SystemVision Multi-Discipline Development Environment."
Website (last visited 2016.07.18):
https://www.mentor.com/products/sm/system_integration_simulation_
analysis/systemvision/

[56] National Instruments.
"LabVIEW System Design Software."
Website (last visited 2016.07.18):
http://www.ni.com/labview/

[57] Peter Fritzson.
"Introduction to Modeling and Simulation of Technical and Physical Systems
with Modelica."
Wiley, 2011.

[58] Peter Fritzson.
"Principles of Object-Oriented Modeling and Simulation with Modelica 2.1."
Wiley 2004.

[59] UC Berkeley EECS.
"Ptolemy-II domains", ptII8.1.
Website (last visited 2014.04.24):
http://ptolemy.eecs.berkeley.edu/ptolemyII/ptII8.1/ptII/doc/
domains.htm

[60] Mathworks.
"Supported Models for Time- and Frequency-Domain Data", R2014a,
Website (last visited 2014.04.24):
http://www.mathworks.se/help/ident/ug/supported-models-for-time-
and-frequency-domain-data.html#bs24kjk-1

[61] Mathworks.
"Supported Continuous- and Discrete-Time Models", R2014a,
Website (last visited 2014.04.24):
http://www.mathworks.se/help/ident/ug/supported-continuous-and-
discrete-time-models.html

[62] Mathworks Matlab/Simevents.
"SimEvents - Model and simulate discrete-event systems."
Website (last visited 2014.04.24):
http://se.mathworks.com/products/simevents/

http://www.destecs.org/
https://www.mentor.com/products/sm/system_integration_simulation_analysis/systemvision/
https://www.mentor.com/products/sm/system_integration_simulation_analysis/systemvision/
http://www.ni.com/labview/
http://ptolemy.eecs.berkeley.edu/ptolemyII/ptII8.1/ptII/doc/domains.htm
http://ptolemy.eecs.berkeley.edu/ptolemyII/ptII8.1/ptII/doc/domains.htm
http://www.mathworks.se/help/ident/ug/supported-models-for-time-and-frequency-domain-data.html#bs24kjk-1
http://www.mathworks.se/help/ident/ug/supported-models-for-time-and-frequency-domain-data.html#bs24kjk-1
http://www.mathworks.se/help/ident/ug/supported-continuous-and-discrete-time-models.html
http://www.mathworks.se/help/ident/ug/supported-continuous-and-discrete-time-models.html
http://se.mathworks.com/products/simevents/

86 Modeling technologies

[63] Pierre de Saqui-Sannes and Jérôme Hugues.
"Combining SysML and AADL for the Design, Validation and Implementation
of Critical Systems."
ERTS2 2012, Toulouse, France, 2012.

[64] Carl-Johan Sjöstedt , Jianlin Shi, Martin Törngren, David Servat, DeJiu Chen,
Viktor Ahlsten, Henrik Lönn.
"Mapping Simulink to UML in the design of embedded systems: Investigating
scenarios and transformations."
OMER4 Post-proceedings, 2008, pp. 1 37-160.

[65] Derek Piette.
"PTC MDM: Commercial Management Approach."
International Council on Systems Engineering (INCOSE), International Work-
shop 2013, Presentation,
www.omgwiki.org/MBSE/lib/exe/fetch.php?media=mbse:incose_mbse_ws_
ptc_final.pdf.

[66] Mark Sampson.
"MBSE Workshop - Model Management in PLM - Teamcenter Model Manage-
ment."
International Council on Systems Engineering (INCOSE), International Work-
shop 2013, Presentation,
www.omgwiki.org/MBSE/lib/exe/fetch.php?media=mbse:siemens_tc_mbse_
status_01-21-13v2.pdf.

[67] Amit Fisher.
"IBM System and Software Solutions –Design and Model Management across
the Product Development Lifecycle."
International Council on Systems Engineering (INCOSE), International Work-
shop 2013, Presentation,
www.omgwiki.org/MBSE/lib/exe/fetch.php?media=mbse:ibm_model_
management_-_incose_workshop_jan_26-27.pdf.

[68] Manas Bajaj.
"SLIM for Model-Based Systems Engineering."
International Council on Systems Engineering (INCOSE), International Work-
shop 2013, Presentation,
www.omgwiki.org/MBSE/lib/exe/fetch.php?media=mbse:slim_-_bajaj_-
_incose-iw_2013-01.pdf.

[69] Hans Peter de Koning.
"Multi-Domain Model-Based Engineering."
International Council on Systems Engineering (INCOSE), International Work-
shop 2013, Presentation,

www.omgwiki.org/MBSE/lib/exe/fetch.php?media=mbse:incose_mbse_ws_ptc_final.pdf
www.omgwiki.org/MBSE/lib/exe/fetch.php?media=mbse:incose_mbse_ws_ptc_final.pdf
www.omgwiki.org/MBSE/lib/exe/fetch.php?media=mbse:siemens_tc_mbse_status_01-21-13v2.pdf
www.omgwiki.org/MBSE/lib/exe/fetch.php?media=mbse:siemens_tc_mbse_status_01-21-13v2.pdf
www.omgwiki.org/MBSE/lib/exe/fetch.php?media=mbse:ibm_model_management_-_incose_workshop_jan_26-27.pdf
www.omgwiki.org/MBSE/lib/exe/fetch.php?media=mbse:ibm_model_management_-_incose_workshop_jan_26-27.pdf
www.omgwiki.org/MBSE/lib/exe/fetch.php?media=mbse:slim_-_bajaj_-_incose-iw_2013-01.pdf
www.omgwiki.org/MBSE/lib/exe/fetch.php?media=mbse:slim_-_bajaj_-_incose-iw_2013-01.pdf

87

www.omgwiki.org/MBSE/lib/exe/fetch.php?media=mbse:07b-2013_incose_
mbse_workshop-multi-domain_model-based_engineering--dekoning.pptx.

[70] Darren W. Dahl and Page Moreau.
"The influence and value of analogical thinking during new product ideation."
Journal of Marketing Research 39.1 (2002): 47-60.

[71] Kees Dorst.
"The core of “design thinking”and its application."
Design studies 32.6 (2011): 521-532.

[72] C. L. Dym, A. M. Agogino, O. Eris, D. D. Frey and L. J. Leifer.
"Engineering design thinking, teaching, and learning."
Journal of Engineering Education, 2005, 94.1, 103-120.

[73] Allan Munck and Jan Madsen.
"A systematic and practical method for selecting systems engineering tools."
Accepted for presentation at 11th Annual IEEE International Systems Confer-
ence, 2017. To be published in the conference proceedings in IEEE IEL and IEEE
Xplore.

[74] Mathworks Matlab/Simulink.
"Simulation and model-based design for dynamic and embedded systems."
Website (last visited 2016.01.24):
http://www.mathworks.se/products/simulink/

[75] Mathworks Matlab/Stateflow.
"Design environment for developing state charts and flow graphs tightly inte-
grated with MATLAB and Simulink."
Website (last visited 2016.01.24):
http://www.mathworks.se/products/stateflow/

[76] Sanford Friedenthal, Alan More and Rick Steiner.
"A Practical Guide to SysML: The Systems Modeling Language."
Morgan Kaufmann; 2nd Revised edition (26 Nov 2011), ISBN-10: 0123852064.

www.omgwiki.org/MBSE/lib/exe/fetch.php?media=mbse:07b-2013_incose_mbse_workshop-multi-domain_model-based_engineering--dekoning.pptx
www.omgwiki.org/MBSE/lib/exe/fetch.php?media=mbse:07b-2013_incose_mbse_workshop-multi-domain_model-based_engineering--dekoning.pptx
http://www.mathworks.se/products/simulink/
http://www.mathworks.se/products/stateflow/

88 Modeling technologies

Chapter 3

Test-driven modeling of
Embedded Systems

To benefit maximally from model-based systems engineering (MBSE) trustworthy
high quality models are required. From the software disciplines, it is known that
test-driven development (TDD) can significantly increase the quality of the prod-
ucts. Using a test-driven approach with MBSE is likely to have a similar positive
effect on the quality of the system models and the resulting products. To define a
test-driven model-based systems engineering (TD-MBSE) approach, one must define
this approach for numerous sub-disciplines such as modeling of requirements, use
cases, scenarios, behavior, architecture, etc. In this chapter, we present a method
that utilizes the formalism of networks of timed automatons with formal and sta-
tistical model checking techniques for applying test-driven modeling (TDM) of the
architecture and behavior of embedded systems of medium complexity. The results
obtained suggest that the method provides a sound foundation for rapid development
of high quality system models leading to well-designed products.

The remaining parts of this chapter are divided in the following sections. Section 3.1
introduces the background of test-driven modeling of embedded systems. The char-
acteristics of such systems are described in section 3.2. Section 3.3 describes related
works. The case study concerning parts of an embedded system is introduced in
section 3.4, and the proposed method is described in section 3.5. The application of
the proposed method to the case is described in section 3.6. Section 3.7 discusses

90 Test-driven modeling of Embedded Systems

the results of using the method, observations, learning points, advantages, disadvan-
tages, limitations, potential improvements and future work. The section is ended by
an overall conclusion on the chapter. References of cited works are finally listed in
section 3.8. This chapter extends and refines the paper [2].

3.1 Introduction

The complexity of embedded and other systems has grown rapidly during the last
couple of decades and this trend is expected to continue in the future [7]. To handle
this growing complexity, many organizations have progressed from document-based
systems engineering (DBSE) to MBSE. MBSE provides numerous advantages com-
pared to DBSE, including the possibility of building models that can be analyzed
or simulated to get early indications of design flaws, performance issues and other
problems. However, growing complexity of systems will lead to growing complexity
of models in the future. Therefore, it is not difficult to project a future, where sys-
tem models are much more complex than implementations of contemporary systems.
Even now, some organizations work with vary large models that can be understood
only by looking at smaller parts at a time. The risk of incomplete and inconsistent
models is thereby growing. Means to handle the growing complexity of models are
therefore needed.

The use of abstractions, layering, hierarchies, specialized view for individual stake-
holders, simulations, and other MBSE techniques, has previously made it possible for
system engineers to design, verify and validate complex systems. Such techniques,
however, will most likely not suffice in the future when models become too complex
for human minds to comprehend. Therefore, system engineers and developers need
modeling methodologies, where analyzing and testing are automated and replace or
complement manual model inspections, reviews, etc.

Software development is another discipline that has been challenged by size and com-
plexity. Several techniques have been proposed and used to handle such complexity.
It is known that the use of TDD can increase the quality of software significantly [8],
[9], [47], [10], [49]. In this project, it is assumed that TDM similarly can increase
the quality of system models and make it possible to handle large and more complex
systems.

Transforming TDD into a TD-MBSE method is not straightforward. In TDD, the
test-driven approach (TDA) is mainly used to ensure that the functions of the units
under testing behave as expected. In TD-MBSE, the TDA can be used in a much
more general way to ensure correctness of the models of stakeholders, life cycle phases,
requirements and constraints, use cases, behavior including error handling, architec-

3.2 Systems characteristics 91

ture and performance, data and objects, traceability, etc. While overall TD-MBSE
may be desirable, it is assumed in this project that TDM of system architecture and
behavior will be more valuable. The hypothesis is that the UPPAAL family of mod-
eling languages and tools can facilitate this form of TDM for developing embedded or
similar systems. This chapter therefore focuses on this limited form of TDM, while
the general application of TDA to other modeling disciplines is left for future work.

3.2 Systems characteristics

Embedded systems define a wide variety of products that are:

• Detecting their environments through sensors.

• Converting inputs to outputs through processors.

• Acting in their environment through actuators.

The sensors used for detecting environments or users can include various forms of
buttons, touch-screens, microphones, light detectors, cameras, magnetometers, smoke
detectors, electronic noses, flow sensors, thermal sensors, bio-sensors, chemical sen-
sors, accelerometers, etc. Sensors may include electronics and software parts for
pre-processing of raw sensor data into meaningful information.

The processors used for converting inputs to outputs can include general central
processing units (CPUs), sound and image processors including digital signal proces-
sors (DSPs), network processors, graphics processing units (GPU), various types of
co-processors such as floating-point units (FPUs), memory systems, etc. Historical
processors are described in details by Heath [6, chp. 2]. Most types of processors
include both hardware and software parts.

The actuators used for acting in the environments or for informing or affecting users
can include various forms of mechanical actuators using electrical, pneumatic (pres-
surized air) and hydraulic (liquids) forces; electric actuators using conducting cur-
rents, magnetic loops, and antennas; thermal actuators; visual actuators using lamps,
light emitting diodes (LEDs), and computer screens; audio and vibrational actuators
using loudspeakers, vibrators, etc. Actuators may include electronics and software
for converting commands into useful actions.

The characteristics of embedded systems can be expressed in terms of the require-
ments and constraints to which they must conform. Wiegers [4] and the INCOSE

92 Test-driven modeling of Embedded Systems

Systems Engineering Handbook [5] contain long lists of functional requirements (busi-
ness, user and system requirements) and non-functional requirements (business rules,
quality attributes, interface requirements and architectural constraints) that also ap-
ply to embedded systems.

Human life often depend strongly on embedded systems. Malfunction may harm
the environment, damage objects, and injure or even kill users or bystanders. For
such safety critical systems, functionality and performance must be guaranteed under
adverse circumstances. Embedded systems must therefore be reliable and include
some of the following functions:

• Fault detection.

• Fault forecasting.

• Fault tolerance.

• Fault prevention.

• Fault removal.

• Fault recovery.

Embedded systems are also subject to various types of timing constraints:

• Hard real-time constraints.

• Firm real-time constraints.

• Soft real-time constraints.

For the hard real-time constraints, failure to respond within the specified range causes
total system failure. For the firm real-time constraints, occasional failure to respond
within the specified range is tolerable, but causes useless results, and repeated fail-
ures may degrade the system. For the soft real-time constraints, repeated failure to
respond within the specified range is permissible, but the usefulness of results degrade
after missing deadlines. Real-time requirements can originate from several sources
such as users, environmental systems, regulations and standards, system architecture,
communication protocols, etc.

The hearing systems from GN Hearing contain several products that may be clas-
sified as embedded systems. Hearing instruments may not damage the ears of the
users. Fault prevention dictates that the sound pressure level (SPL) must be limited
and never exceed specified levels in presence of errors and failures under operational

3.3 Related work 93

conditions. Timing within the hearing instruments are mainly constrained by the
system architecture and the protocols used for communicating with accessories. The
case described in section 3.4 contains hard real-time constraints caused by hardware
architecture and the protocols for communicating with the constituent parts. Failure
to meet deadlines may cause total system failure and damage to components.

3.3 Related work

There is a huge amount of literature relating to TDM of embedded systems. Model-
driven development is discussed in section 3.3.1 and test-driven development is dis-
cussed in section 3.3.2. Different attempts at TDM are discussed in section 3.3.3.
The difference between TDM and model-driven/-based testing is described in sec-
tion 3.3.4. The foundations of the proposed method (tools, verification techniques,
formal and statistical model checking, simulating) are described in 3.3.5. A summary
of the related work is finally presented in section 3.3.6.

3.3.1 Model-driven development (MDD)

MBSE and MDD have been applied in various forms by numerous organizations.

Friedenthal et al. [14], Delligatti [15], Wielkins [16], and Holt and Perry [17] de-
scribed modeling with SysML. Lavi and Kudish [18] described systems modeling
with the ECSAM method. Numerous authors have described modeling using other
methodologies, languages and tools.

Ambler [20] argues that model driven development (MDD) should be agile and as
simple as possible. He thus rejects the idea of "generative" MDD (code generation,
using model driven architecture (MDA)) due to the lack of proper modeling languages,
tools and skilled developers. Models should be used as a means to think before coding.
Later Ambler [21] discussed how to benefit from modeling, without suffering from the
drawbacks, by using just-good-enough models, such that the obtained value versus
the effort spent could be optimized. The proposed agile model-driven development
(AMDD) is characterized by active stakeholder participation, collective ownership,
model with others, and prove-it-with-code. AMDD is enabled by TDD and various
forms of refactoring.

However, reliability and timing should be thoroughly verified for embedded systems.
Verification by testing on actual hardware and software will at best find errors late
in the development cycle, and there is a great risk of overlooking errors by applying

94 Test-driven modeling of Embedded Systems

Figure 3.1: TDD for software development.

indiscriminate testing. Using models that can be executed, simulated, or verified
formally or statistically is probably a better approach to guarantee the functionality
and performance of embedded systems. Ambler’s AMDD approach therefore cannot
be used for reliable development of embedded systems. However, it can be used for
preparing executable models.

3.3.2 Test-driven development (TDD)

TDD has been used in agile software development for making better customer-
oriented products. TDD may also be adapted to development of better embedded
systems. Several variants of the TDD method exist, e.g. [47], [48], [49]. The TDD
method can be described as a process consisting of the following steps:

TDD-1 Write a new test case representing a new requirement.

TDD-2 Run the new test case to ensure that it fails.

TDD-3 Write new production code or modify existing code.

TDD-4 Run all tests until all tests are passed or until a test case fails. In case of
failure, go to step (TDD-3), otherwise continue from step (TDD-5).

TDD-5 Clean up the code (refactoring).

TDD-6 Repeat the process for the next requirement, go to step (TDD-1).

This interpretation of TDD is illustrated in figure 3.1. The step of cleaning up the
code (TDD-5) is optional in some variants.

3.3 Related work 95

Janzen and Saiedian [22] described the effect of using TDD for software development.
Using TDD results in smaller and less complex units that are better tested, and the
average line coverage (percentage of lines of subjected to automated testing) is shown
to be significantly higher. However, claims of improved cohesion and lower coupling
could not be confirmed.

Shull et al. [23] presented a review of 33 studies concerning TDD. The effect of using
TDD on delivered quality was perceived as better, comparable or worse in 13, 5 and
2 studies, respectively. The effect on internal code quality was perceived as better,
comparable or worse in 6.5, 4 and 3.5 studies, respectively (some studies showed mixed
results, thus acquiring the grades 0.5). The effect on productivity was perceived as
better, comparable or worse in 10, 6, and 9 studies, respectively. It is uncertain if
the writing of test cases was included for the non-TDD cases. Maintenance of code
may also not have been included in the metrics. For systems modeling, model quality
is of highest importance, whereas the internal code quality has lower importance,
because models often are simplified abstractions of hardware, software, users and
environments, so they cannot be reused for code generation, anyway.

Grenning [24] described how to adapt and apply TDD practices to embedded software
development. He distinguished between unit testing and acceptance testing (scenarios
to test integrated groups of units). He defined 5 stages: (1) TDD on the development
system; (2) Compile for target; (3) Run test on evaluation boards; (4) Run test
in target hardware (HW); (5) Manual target testing (under realistic environmental
conditions). HW is abstracted as interface classes or functions and mock-ups are
used in stage 1 and 2 for allowing early development and testing of SW (before HW
is available). Greening’s approach mainly concerns development of the software of
embedded systems, after the system requirements and design have been determined.
Greening’s method should therefore be preceded by TDM, where the basic system
design is modeled and verified, before commencing expensive and resource demanding
development of hardware and software.

Collier and Ozik [25] discussed TDD for agent-based modeling and simulating (ABMS)
using specific toolkits. ABMS is typically used for analyzing so-called natural systems
(biology, economics, social systems, business, networks, etc.) to gain insight into the
collective behavior of agents. ABMS methods may be adapted for development of
embedded systems.

Overall, it can be concluded that TDD has the potential to improve quality and
productivity, and it can be adapted to other domains than those for which it was
originally intended.

96 Test-driven modeling of Embedded Systems

3.3.3 Test-driven modeling (TDM)

The idea of TDM is not new, but the translation from TDD to TDM is not straight-
forward. This may be one of several reasons for the limited progress in this area.
However, some attempts have been reported as described in the paragraphs below.

Zhang [11] described a method for test-driven software modeling utilizing simulations
of message sequence charts (MSC). Experimental data shows that this methodology
can be applied to large projects resulting in high productivity and quality in terms
of the number of code defects. However, his method with its focus on using MSC
in a limited software domain may not scale to verification of embedded systems
comprising numerous concurrent hardware activities and software processes. State
machine formalisms are probably better for expressing the behavior of such systems.

Hayashi et al. [12] described a method for test-driven UML-based modeling of software
systems that utilizes simulations of unit and scenario tests. They also developed a
simple tool for their methodology. Model elements are created semi-automatically
from failed test cases. The usability of this tool is unfortunately not at the level we
are used to from more mature UML-based modeling tools. A better tool solution
may contribute to a more widespread adoption of the proposed approach.

Luna et al. [26] described an approach for test-driven model-based web engineering
(TDMBWE) utilizing the following steps in small increments: (1) Creating UI mock-
ups (HTML) of the intended web applications; (2) Creating user interaction diagrams
(UID) of expected behavior; (3) Writing and executing test cases (based on interac-
tion requirements) using standard web testing tools; (4) Modeling the logic layer in
WebML, incorporate the UI mockup as presentation layer, and generating the com-
plete testable application; (5) When the tests pass, they continue with refactoring or
adding new requirements. Their approach focuses on presentation or navigation layer,
whereas ordinary TDD focuses on the logic layer. Later, Luna et al. [27] expanded
the TDMBWE approach to include usability requirements with functional impact,
without changing the fundamental approach. Their approach is thus applicable to
testing of simple web application. Design and verification of complex embedded sys-
tems are beyond the scope of TDMBWE, but it may be used for developing the UI
layers.

Zhang and Patel [28] described an AMDD approach for software developments uti-
lizing UML sequence diagrams for tests and UML state machines for system models.
The UML models are translated to simulation models by code generation. The case
study showed a threefold productivity increase of their TDM method compared to
hand coding, and increased quality (less defects). These results were obtained despite
"many team members had no MDD background or prior agile experience."

3.3 Related work 97

Zugal et al. [29] presented a test-driven modeling suite (TDMS) to support TDM of
declarative processes. Later, Zugal et al. [30] evaluated such methods empirically.
They were not able to demonstrate improved model quality, but they concluded
that adoption of test cases lowered the cognitive load during modeling, increased the
perceived quality, and facilitated improved communication between domain experts
(DE) and model builders (MB). They argued that the sequential nature of test cases
provides an intuitive way of describing processes for DEs.

Mou and Ratiu [31] proposed a method for model-based test-driven systems develop-
ment with seemingly limited scope. No experimental data are provided, which makes
it difficult to evaluate the applicability of their method.

Dietrich, Dressler, Dulz, German, Djanatliev, Schneider, Yupatova and Deitsch de-
veloped a test-driven agile simulation (TAS) method and a complex tool chain called
VeriTAS (later SimTAny) utilizing UML [40], SysML [39], MARTE [41], UPT [42],
and various tools and frameworks, as described in the following paragraphs:

Dietrich et al. [32] presented an approach to validate UML models with model-level
unit tests (also defined with UML). Their approach was integrated into a framework
called Syntony. They applied their method to several cases and uncovered errors in
existing and previously used models.

Djanatliev et al. [33] presented the VeriTAS modeling environment supporting the
TAS method for software development, where system models and test models are sep-
arated and developed concurrently. The MARTE profile is used for creating systems
models. Markov chain formalism is used for test models, which enable statistical
test case generation. The tool chain within VeriTAS converts the system and test
models to simulation code, which is executed and visualized in the tool. VeriTAS is
implemented in the Eclipse RCP platform, and it integrates Papyrus UML, Enter-
prise Architect, .getmore, MCUEditor, Syntony, Eclipse Zest Visualization Toolkit,
OMNet++ simulator, plus novel plugins developed specifically for VeriTAS.

VeriTAS was later updated by Schneider and German [34] to support distributed
development teams. Model transformation, test case generation, simulation and test
execution, analysis and statistical calculations are offered as services that are ac-
cessed from the VeriTAS front-ends via a ModelBus. Using distributed services is
transparent to the users.

Schneider et al. [35] described how UML, SysML, MARTE and UTP are utilized in
the TAS approach without suffering inconsistencies due to conflicting semantics of
the applied profiles. SysML is used for requirements and high-level structural and
behavioral modeling. UTP is used for describing test cases. MARTE is used for
low-level modeling of non-functional properties, for defining hardware/software and
for allocations. MARTE is also used for refining behavioral models.

98 Test-driven modeling of Embedded Systems

Further development of TAS and VeriTAS was described by Schneider et al. [36].

VeriTAS is now replaced by SimTAny. It allows the user to create, verify and validate
both system models and test models in small incremental steps, thus facilitating
agile software development. TAS with VeriTAS/SimTAny seems to be very useful for
development of embedded systems, and the included UML, SysML, MARTE and UTP
profiles have many appealing features for TDM of heterogeneous embedded systems.
However, the learning curves of using these profiles and associated tools are very steep.
The TAS method may therefore be too cumbersome for most systems engineers. The
exclusive focus on simulation rather than formal or statistical verification also limits
the scope of their method. Thus, there is still a great need for TDM methods with
simpler tool setups using fewer and less complicated modeling languages, which can
nevertheless be utilized for accurate design and thorough verification of embedded
systems.

Overall, it can be concluded that TDM has the potential to lower the cognitive load
during modeling and to improve productivity and the quality of the models. However,
the reviewed methods are not likely to be useful for design and verification of complex
embedded systems, so new methods are needed.

3.3.4 Model-driven/-based testing (MDT, MBT)

Model-driven testing (MDT) and model-based testing (MBT) are strongly related to
but different from TDM. In TDM, testing is utilized to create models of the system of
interest (SOI). In MDT and MBT, modeling is utilized to create tests for acceptance
or production testing of products or systems. TDM is a test-first approach, whereas
MDT and MBT are model-first approaches. The experience of applying MDT and
MBT has been investigated by several authors such as Amyot et al. [37] and Hartman
et al. [38].

3.3.5 Tools

Modeling tools are needed to facilitate the proposed method. In the case study, three
types of tools were used:

1. Tools for creating simple overview diagrams.

2. Tools for creating and analyzing models of networks of timed automatons.

3. Tools for analyzing verification results.

3.3 Related work 99

For overview diagrams, SysML can be utilized. Weilkiens’ [46] website provides a
list of popular SysML modeling tools. In this project, several SysML tools were
tested including Astah, Cameo Systems Modeler (NoMagic), Enterprise Architect
(Sparx), Modelio, Papyrus, Rhapsody (IBM) and Topcased. Other tools utilizing
other modeling languages can also be used. In the case study, Cameo Systems Modeler
was used.

For modeling and analyzing networks of timed automatons or similar representa-
tions of real-time embedded systems, several tools are available. Wikipedia [45]
listed a large collection of model checking tools. The DEVINE, DREAM, RED, and
UPPAAL tools utilize the timed automata formalism to describe the system under
analysis, whereas other tools use different formalisms such as timed petri nets. For
property checking, RED and UPPAAL use a subset of timed computational tree logic
(TCTL), whereas other tools use different property languages such as linear temporal
logic (LTL). Many but not all tool are targeted at real-time systems. Some tools use
exhaustive model checking, whereas other use probabilistic or stochastic techniques.
Several variants of UPPAAL exist. The plain version [43][13] uses exhaustive formal
verification and it is targeted at real-time systems. The UPPAAL-SMC version [44]
[19] uses statistical model checking and it is targeted towards a broad range of appli-
cations, including analyzing real-time systems. Other UPPAAL variants have more
specialized applications. In the case study, the UPPAAL and UPPAAL-SMC tools
were used. Model checking with UPPAL is further described in section 2.1 in [1]. The
formalism of networks of timed automatons and the UPPAAL query language for for-
mal model checking are described in section 2.1.1 in [1]. The formalism of networks
of priced/stochastic timed automatons and the UPPAAL-SMC query languages are
described in section 2.1.2 in [1].

For processing and analyzing verification results, several tools can be used such as
graph programs, spreadsheets, etc. In the case study, the graph tool that is built
into UPPAAL was used for creating simple graphs, and spreadsheets were used for
data-fitting, extrapolating and analyzing data more thoroughly.

3.3.6 Related work summary

Modeling has been used in systems engineering as well as in software engineering, for
analyzing or creating systems or products.

From the software disciplines, it is known that the use of TDD can increase the quality
of software. TDD can and has been adapted to other domains such as embedded
software development.

Several TDM approaches have been reported. TDM has the potential to lower cogni-

100 Test-driven modeling of Embedded Systems

tive load during modeling and to improve productivity and model quality. However,
none of the existing TDM methods have gained widespread acceptance so far, which
may be caused by several factors: All reported methods require specialized tools that
may not be readily available for potential users. Some tools have bad usability. Other
methods use complex tool chains that are difficult to setup and use. The modeling
formalism has very steep learning curves in some cases. The methods may simple by
too cumbersome to use for most systems engineers.

Existing methods are restricted to unit and scenario testing, which may fail to identify
errors that emerge from combining the parts into an overall system. Without tech-
niques to exercise the entire state-space, it is not possible to guarantee functionality
and performance under all operating conditions.

Our approach to TDM differs from earlier attempts:

• It uses only existing tools that do not require integration.

• It is relatively easy to use due to the use of uncomplicated modeling methods,
languages and tools.

• It includes simulations as well as formal and statistical model checking for
verifying intended behavior and for capturing unintended emergent behavior.

The hypothesis is that the formalism of networks of (priced/stochastic) timed au-
tomatons with formal and statistical model checking can facilitate a TDM approach
for modeling of the behavior and architectural properties of embedded systems. It
is also hypothesized that UPPAAL and UPPAAL-SMC can implement such a TDM
method.

3.4 Case study

3.4.1 Context

A new hardware architecture has been proposed for future hearing instruments at
GN Hearing. One of the characteristics of the new architecture is that a common
serial peripheral interface (SPI) bus is used for the main system, the memory system
and the radio system as shown in figure 3.2. Thus, the SPI bus has become a scarce
resource. The main system comprises an integrated chip with a central processor unit
(CPU) and a digital signal processor (DSP). The memory system consists of a single
flash memory chip. The radio system consists of an integrated chip with a wireless

3.4 Case study 101

Figure 3.2: Potential new architecture to be analyzed.

radio and a local control processor. The new architecture contains numerous other
elements that are not shown in the figure because they are irrelevant for the case
study.

3.4.2 Problem

The problems to be investigated in the case study concern the feasibility of the new
architecture, of the modeling tool, and of the proposed methodology, as outlined
below:

1. Is the SPI architecture feasible?

• Can bus conflicts be avoided and how?

• Can time-bounded use cases be executed without failure?

• What is the penalty on flash operations due to activities of the radio?

• What is the penalty on radio operations due to activities of the flash?

• What are the sensitive parameters? How are the margins?

2. Is FMC and SMC with UPPAAL feasible for the case study?

• Is the expressiveness of the UPPAAL modeling language sufficient?

• Will state explosion1 prevent the use of formal model checking?

• Is statistical model checking feasible and needed for this case?

• Is probability estimation relevant and useful for this case?

1 State explosion occur when the size of a state space of a system grows exponentially due to the
number of processes and variables [3].

102 Test-driven modeling of Embedded Systems

• Is value estimation relevant and useful for this case?

• Will simulation traces provide additional knowledge about the system?

• What level of expertise is needed for such UPPAAL modeling?

• Does UPPAAL provide features for easy modeling, verification and simu-
lation?

3. Is the proposed TDM method feasible for the case study?

• Can requirements be modeled as UPPAAL queries before creating the
actual model elements?

• Can the queries and model elements be built in small increments with or
without the use of refactoring?

• Is model debugging supported by the proposed TDM method and the
modeling tool?

• Does the proposed TDM method support design space exploration (DSE)?

The case study should be conducted such that these questions could be answered.

3.5 Proposed method

3.5.1 Basic TDM method

The proposed TDM methodology is based on TDD as described in section 3.1. The
six steps of the TDD method were described in section 3.3.2. In the transformation
from TDD to TDM, one must consider what to add, to modify or to remove.

The step TDD-1, "Write new test case", must be modified and expanded for TDM.
First, one must obtain and specify the architectural and behavioral requirements
(step TDM-1), followed by a phase of refining the requirements (step TDM-2), such
that they can be modeled by (semi) formal techniques (step TDM-3).

In case of behavioral requirements (i.e. required functionality), modeling in step
TDM-3 is separated into two parts. First, the requirements are expressed as queries
that are verified to fail before continuing. These queries mainly concern the template
locations, timing and values of data. Then, the scenarios of behavioral requirements
are modeled as test case templates that interact with the system templates via global
communication channels and variables as shown in figure 3.3.

3.5 Proposed method 103

Figure 3.3: Behavioral test case modeling in UPPAAL. Test cases communicate
with system templates through global channels and variables. Commu-
nication between different system templates is also facilitated by such
means.

In case of architectural requirements (i.e. required quality attributes such as per-
formance, reliability, etc.), modeling in step TDM-3 is similarly separated into two
parts. First, invariants are defined as queries that are verified to fail before contin-
uing. These queries mainly concern relationships between parameters and system
properties or quality attributes. Then, the constants and variables are modeled in
the templates or global declarations. See section 2.2 in [1] for further details and
examples of architectural requirements modeling.

The step TDD-2, "Run new test case", can be expanded for TDM. New queries are
verified to fail in the model verifier (step TDM-4). Execution traces (TDM-5) may be
generated for failed test cases if facilitated by the model verifier. Such traces are very
effective means for driving the development of the system models as well as for the
test case scenarios. Using these traces in conjunction with interactive simulations
(step TDM-6) makes it relatively easy to find and correct both architectural and
behavioral faults.

The step TDD-3, "Write code", must be replaced by the step of modifying the system
model in the TDM approach (step TDM-7). Sequences, activities, state machines,
timed automatons, or similar model elements may be used. With UPPAAL, this step
consists of refining the locations, transitions, and local declarations of the templates
as well as the global declarations of the model.

The step TDD-4, "Run all tests", is identical in the TDM approach (step TDM-8)
except that we may use execution traces and interactive simulations as described
above for the transformation of step TDD-2, "Run new test case".

The step TDD-5, "Clean up code" is similar in TDM where the model may be re-
structured for various reasons (step TDM-9).

104 Test-driven modeling of Embedded Systems

Table 3.1: Mapping of TDD steps and the proposed TDM steps.

Steps TDD content Steps TDM content

TDD-1 Write new test TDM-1 Obtain requirement
TDM-2 Refine requirement
TDM-3 Model test case

TDD-2 Run new test TDM-4 Run new test case
TDM-5 Execution trace
TDM-6 Interactive simulation

TDD-3 Write code TDM-7 Change system model

TDD-4 Run all tests TDM-8 Run all test cases

TDD-5 Clean up code TDM-9 Clean-up model

TDD-6 Repeat TDM-10 Repeat

Using these transformations, a TDM method using formal modeling was developed.
The relationships between TDD steps and TDM steps are listed in table 3.1. Fig-
ure 3.4 shows the overall process for the proposed TDM method. Potential minor
loops and the fact that the use of execution traces and interactive simulations can be
omitted is not shown in the figure.

3.5.2 Design space exploration

An important part of systems engineering is design space exploration (DSE) where
alternative designs are modeled and analyzed to get the best possible solution. This
part has no equivalent in the basic TDD method so DSE has to be added to the
overall process.

The proposed DSE method starts by using the TDMmethod described in section 3.5.1
(step DSE-1) to produce a verified base design (step DSE-2).

Alternative designs are then derived from the base design by changing behavioral
elements or by varying constants representing architectural properties (step DSE-3).

For behavioral variants, the sequences, activities, state machines, or timed automa-
tons are modified in step DSE-3. The queries from the base design are mostly reused
for analyzing the impact on functionality, performance, etc. However, it may be
necessary to add new or to modify existing queries.

3.5 Proposed method 105

Figure 3.4: TDM for modeling of architecture and behavior.
The circled numbers represent the TDM-steps.

106 Test-driven modeling of Embedded Systems

For architectural variants, the constants that represent parameters of the model are
modified in step DSE-3. Queries from the base design can be reused, but additional
queries are needed for obtaining estimates of essential system properties or quality
attributes (as function of the varied parameters). These estimates are obtained (step
DSE-4) by using property estimation (step DSE-5) or simulation (step DSE-6), as
described in section 2.1.2.2 in [1]. The parameters can be varied until satisfying esti-
mates of the monitored system properties and quality attributes have been obtained.
Thus, several iterations of step DSE-3 to DSE-6 may occur.

Satisfying estimates indicate potential solutions, but do not guarantee the feasibility
of the chosen design. The preferred architectural variant must therefore be subjected
to formal model checking (step DSE-7) to verify the impact on functionality (step
DSE-8) and performance (step DSE-9).

Design alternatives may include both behavioral and architectural changes, because
changed behaviors may cause a need for changed parameters, and changed parameters
may cause a need for changed behaviors. In such cases, it may be necessary to
add or redefine queries to verify design variants for guaranteed functionality and
performance.

This proposed approach to test-driven design space exploration (TD-DSE) is illus-
trated in figure 3.5, using informal notation.

3.6 Applying method on case

The proposed method (section 3.5) was applied to the case study (section 3.4). The
overall process that was used for conducting the case study is illustrated in figure 3.6,
and it included the following steps:

• Collecting information:

– Bi-weekly meetings with systems engineers to get information concerning
requirements and constraints for the overall system.

– Weekly meetings with software developers to get detailed information con-
cerning existing use cases, protocols, timing issues, power management
constraints, etc.

– Occasional meetings with hardware developers to get detailed information
concerning physical parts (processor, memory, radio) in the system.

• Processing information:

3.6 Applying method on case 107

Figure 3.5: Test-driven design space exploration (TD-DSE).
The circled numbers represent the DSE-steps.

108 Test-driven modeling of Embedded Systems

Collecting information

Processing information

Getting results

Design space exploration

Figure 3.6: Process used for conducting case study.

– Capturing information as SysML models for structuring the system knowl-
edge and for easier communication with stakeholders.

– Using the obtained information to create UPPAAL models according to
the proposed TDM method.

• Getting results:

– Evaluating information from SysML diagrams, tables, and generated re-
ports.

– Formal verification of potential design solutions using the UPPAAL models
and queries.

– Statistical simulations of UPPAAL-SMC models to get results concerning
system properties and quality attributes.

• Design space exploration / alternative solutions:

– "Efficient": Maximum utilization of the SPI bus.

– "Fast": Minimum streaming delay and jitter (adjustable).

This process was followed by steps of evaluating the proposed method and the ob-
tained design solutions.

3.6.1 Models

SysML was used to capture the information from the stakeholders. Section 2.3 in [1]
presents a selected set of diagrams from the model. More than 30 highly interacting
use cases or system functions that were potentially affected by the new architecture
were identified. Several of these were constrained by strict timing requirements de-
fined mainly by communication protocols. However, many use cases could not be
executed concurrently because they require more current than the battery of the

3.6 Applying method on case 109

hearing instrument can deliver, so the scheduling was fairly complex and based on
priorities of the functions. A worst-case combination of concurrent use cases was
identified for subsequent modeling and analyzing, using the proposed TDM method.
The creation of SysML models is not essential to or an integral part of the proposed
method and these models will therefore not be discussed further.

The formal UPPAAL models were developed in small increments in accordance with
the proposed method. These models are presented in section 2.4 in [1], where the
details can be inspected. A brief overview of the two design alternatives is outlined
in the following paragraphs, though.

Efficient solution

The streaming algorithm for the "efficient" solution is presented in section 2.4.5 in [1].
The StreamingEfficient automaton is based on the following basic algorithm:

1. Receive all wireless data.
2. Request access to SPI bus.
3. Wait for access.
4. Offload data to DSP.

This solutions has the advantages of simple implementation and of 100% utilization
of the SPI bus. The disadvantage is that offloading streaming data is delayed.

Fast solution

The streaming algorithm for the "fast" solution is presented in section 2.4.6 in [1].
The StreamingFast automaton is based on the following basic algorithm:

1. Receive some wireless data.
2. Request access to SPI bus.
3. Receive remaining wireless data

(while holding on to the SPI bus).
4. Wait for SPI access.
5. Offload data (if data is valid).

This solution has the advantage of minimal waiting time to access the SPI bus. The
disadvantages are that the SPI bus may be blocked in vain, that it requires more
complex implementation, and that the radio must support threading.

110 Test-driven modeling of Embedded Systems

3.6.2 Model checking results

Formal model checking

The queries that were used for the formal model checking are listed in section 2.5.1
in [1] and the verification results are shown in section 2.5.2 in [1].

The "efficient" solution passed testing of all queries if the strAllowableDelay pa-
rameter is adjusted to the following values:

Fflash clk 8 · Fmin 4 · Fmin 2 · Fmin

strAllowableDelay 256 µs 512 µs 1024 µs
Queries Pass Pass Pass

The formal model checking also showed that the system deadlocks when the flash
clock rate is below Fmin (company confidential). In this case, the system will not be
able to comply with the timing requirements of the wireless streaming protocol.

The "fast" solution also passed testing of all queries if the strAllowableDelay pa-
rameter is adjusted to the following values:

Fflash clk 8 · Fmin 4 · Fmin 2 · Fmin

strAllowableDelay 0 µs 18 µs 530 µs
Queries Pass Pass Pass

The "fast" solution also deadlocks when the flash clock rate is below Fmin.

Two alternative design solutions have thus been obtained by using the proposed TDM
method. Both solutions have been formally verified, and limits for the flash clock
frequency and the maximum delay for streaming scenarios have been identified. The
verification results shown that the "fast" solution causes less streaming delay than
the "efficient" solution. The "fast" solution therefore is faster in terms of providing
minimal streaming delay.

Statistical model checking

The queries that were used for the statistical model checking are listed in section 2.6.1
in [1] and the verification results are shown in section 2.6.2 in [1].

3.6 Applying method on case 111

The verification results showed that the "efficient" solution uses less overhead (300 µs)
in the SPI bus communication than the "fast" solution does (560 µs). The "efficient"
solution therefore is more efficient in terms of utilizing the SPI bus.

The use of mathematical manipulations of verification results to obtain derived in-
formation (e.g. the sum of two variables) is discussed in section 2.6.2 in [1]. It was
concluded that:

Performing mathematical operations on verification results shall be under-
taken with extreme caution. Mathematical manipulations should always
be performed within the queries and not on queried results.

Formal verification of such expressions are not possible as explained in the appendix,
so estimates can only be obtained by statistical verification or by simulation.

Simulation graphs

The queries that were used for generating the simulation graphs are listed in sec-
tion 2.6.3 in [1] and the simulation results are shown in section 2.6.4 in [1].

The simulation results show that the overheads for the "efficient" and the "fast"
solutions are much closer than indicated by the estimates that were obtained with
statistical estimation. It was concluded that:

Peak values obtained from graphs with large peak-to-average ratios cannot
be trusted, because peak values most likely occur between time steps rather
than on the exact time of the sampling. The problem is increased by large
time steps and it is decreased by small time steps. Peak values should
always be verified by statistical value estimation.

However, simulation graphs can be used for debugging the model, for inspecting
system behavior, for optimizing the performance, etc. In the case study, the plots
were mainly used for debugging.

3.6.3 Debugging

Models are rarely "right the first time". Normally, one must debug the models to get
the models to work and to obtain the intended system functionality and performance.

112 Test-driven modeling of Embedded Systems

UPPAAL provides the following features for debugging:

• Formal verifications:

– Pass: Quality ensured.

– Fail: Produces detailed traces that can be inspected.

• Interactive simulations:

– Inspecting locations, transitions and variables during simulation.

• Statistical probability and value estimations:

– Obtaining values to be verified by formal verification.

• Simulation plots:

– Graphs of values for variables versus time.

From the case study, it was experienced that:

• The interactive simulations are particularly useful in the early phases to get the
functionality right and to debug severe modeling errors.

• The simulation plots are particularly useful for inspecting and fine-tuning se-
quences of events, timing, and variable assignments.

• Statistical probability estimation is particularly useful for identifying frequently
used execution paths, which can be utilized for subsequent performance opti-
mizations.

• Statistical value estimation is particularly useful for estimating upper bounds on
execution times for specific locations or paths. Such bounds should be verified
by formal model checking.

• Formal verification is very useful for identifying unintended system behavior
and for generating traces that can be further investigated with the interactive
simulator.

The combined use of these features enabled easy model debugging in the case study.

3.7 Discussion 113

3.7 Discussion

3.7.1 Results

The problems to be investigated in the case study were outlined in section 3.4.2.

Table 3.2 summarizes the results regarding the feasibility of the SPI architecture. It
can thus be concluded that there are two feasible solutions, where the "efficient" solu-
tion gives maximum utilization of the SPI bus and the "fast" solution gives minimal
delay or jitter on the streaming operations. The preferred solution depends on the
acceptable levels for these effects. It is outside the scope of the case study to make
that choice.

Table 3.3 summarizes the results regarding the feasibility of the UPPAAL tool. It can
thus be concluded that UPPAAL is very good for conceptual modeling where formal
and statistical model checking plus interactive simulations make model debugging
and verification straightforward. However, it has limitations for low level modeling
which may prevent it from being feasible for all potential modeling cases.

Table 3.4 summarizes the results regarding the feasibility of the proposed TDM
methodology. It can thus be concluded that the system model can easily be created
in small increments driven by verification of requirements expressed in the UPPAAL
query language. Model debugging is greatly supported by the method and the UP-
PAAL tool. The design space is easily explored, and variants can be optimized by
using the various model checking features.

3.7.2 Observations

The products from GN Hearing have a long legacy. Both hardware and software have
evolved over time. New features have been added frequently. Existing implementa-
tions have been updated repeatedly for optimized performance of individual products.
Solid engineering methods have been used to ensure sufficient quality. However, oc-
casionally unintended behavior has been detected in early phases when products were
integrated in the overall hearing systems. Dependencies from legacy code cause many
such problems. This kind of problems is notoriously difficult to solve. For such rea-
sons, investigations of systems modeling and test-driven approaches were commenced
at the company.

A large range of tools were tested and tried for enabling TDM. During the tool
evaluations, UPPAAL was identified as a strong candidate because it offers a unique

114 Test-driven modeling of Embedded Systems

Table 3.2: Is the SPI architecture feasible?

Can bus conflicts be avoided
and (if yes) how?

Yes, radio requests shall have highest priority.
DSP algorithms compete for access to flash and
they must therefore be queued.

Can time-bounded use cases
be executed without failure?

Yes, if the flash clock rate is ≥ Fmin.

What is the penalty on flash
operations due to activities of
the radio?

The overhead is less than 7,3% for the "effi-
cient" solution with 8 · Fmin clock rate and
4 kbyte block reads. Larger blocks yield less
overhead. The "fast" solution has a maximum
overhead of 13,7%.

What is the penalty on radio
operations due to activities of
the flash?

The streaming delay is 256 µs, 512 µs and 1024
µs for the "efficient" solution with flash clock
rate 8 ·Fmin, 4 ·Fmin and 2 ·Fmin, respectively.
The streaming delay is 0 µs, 18 µs and 530
µs for the "fast" solution with flash clock rate
8 · Fmin, 4 · Fmin and 2 · Fmin, respectively.

What are the sensitive param-
eters? How are the margins?

The flash clock rate and the time reserved to
wake up the radio are the most important pa-
rameters. The margins depend on the actual
choice of several parameters. Further specifi-
cations are required to determine the margins.

3.7 Discussion 115

Table 3.3: Is the UPPAAL tool feasible?

Is the expressiveness of the
UPPAAL modeling language
sufficient?

Yes, but UPPAAL does not only allow mod-
eling of real type numbers with formal model
checking. However, it is possible with statisti-
cal model checking or simulating.

Will state explosion prevent
the use of formal model check-
ing?

No, state explosion was not encountered dur-
ing this case study. However, much abstrac-
tion and simplification were needed to avoid
state explosion. This prevented modeling of
low-level hardware behavior.

Is statistical model checking
feasible and needed for this
case?

Yes. Certain expressions cannot be analyzed
formally or simulated with sufficient resolution.
Only statistical model checking can provide re-
liable performance estimates.

Is probability estimation rele-
vant and useful for this case?

Yes, it was used to estimate the probability
of certain execution paths for subsequent opti-
mization.

Is value estimation relevant
and useful for this case?

Yes, it is good for estimating delays, variable
values, etc. However, mathematical manipula-
tion of results can lead to wrong conclusions.
Formulas should be included in the queries and
not used in post-processing of verification re-
sults.

Will simulation traces provide
additional insight about the
system?

Yes, and they were used to debug the model
and to fine-tune the timing of the algorithms.

What level of expertise is
needed for such UPPAAL
modeling?

Theoretical knowledge of timed automata with
cost functions are required and the UPPAAL
query language must be mastered. However,
the tool is not overly complex and does not
require much training.

Does UPPAAL provide fea-
tures for easy modeling, ver-
ification and simulation?

Yes, UPPAAL has a number of unique features
that ease modeling by providing detailed traces
of all execution steps, statistical estimates, and
simulations graphs. Guaranteed system behav-
ior is enabled by formal verifications.

116 Test-driven modeling of Embedded Systems

Table 3.4: Is the proposed TDM method feasible for the case study?

Can requirements be modeled
as UPPAAL queries before
creating the actual model ele-
ments?

Yes, this was done throughout the case study.
The model verifier generates exceptions when-
ever model elements do not exist, as expected.

Can the queries and model el-
ements be built in small incre-
ments with or without the use
of refactoring?

Yes, this was done throughout the case study.
However, queries often have to be updated to
pass verification as the model evolves.

Is model debugging sup-
ported by the proposed TDM
method and the modeling
tool?

Yes, the proposed method utilizes execution
traces from failed tests as means for debugging.
The UPPAAL tools additionally facilitate de-
bugging by providing interactive simulations,
statistical probability and value estimations,
and simulation plots.

Does the proposed TDM
method support design space
exploration (DSE)?

Yes, several variants were created and analyzed
in the case study. Two behavioral variants, "ef-
ficient" and "fast", was created. Several archi-
tectural variants concerning flash clock speed,
memory block size, etc., were analyzed for both
behavioral variants. All variants passed verifi-
cation after adjusting the parameters for each
variant.

3.7 Discussion 117

mix of features. Using the interactive simulator with the execution traces generate
by UPPAAL for failed queries made it easy to debug and update the system model.
Other UPPAAL features also supported the test-driven approach.

The proposed method proved to be very effective for simple conceptual models with
limited lengths of execution traces. For mixed-level model (low-level hardware models
combined with long-lasting high-level scenarios), one typically has very large ratios
between the longest and shortest duration of interest. In such cases, very long execu-
tion traces would be generated. However, creation of such long traces causes memory
exhaustion because the entire variable space is saved for each execution step. This
form of memory exhaustion was observed often for bottom-up modeling (starting at
the component level). Top-down modeling (starting at the concept level) solved this
problem, as described in section 3.7.3.

Section 2.7 in [1] further outlines the observations concerning the features of UP-
PAAL.

3.7.3 Learning points

The following important learning points were obtained from conducting the case
study:

• Usable information is hard to get from existing documentation:

– Much time was spend on identifying use cases and interactions.

– Accurate scenario information was hard and occasional impossible to get.

– Legacy implementations have huge impact on possible solutions.

– Implementation details affect model elements and results significantly.

• Top-down vs bottom-up modeling approaches:

– The first attempt was to use the component data sheets as a starting
point for creating system models. Such a bottom-up approach seemed
simple in the beginning. However, the required effort quickly outgrew the
capabilities of the modeler and the tool.

– The second attempt was to use a conceptual or top-down approach. This
approach quickly lead to good models and interesting results.

The time spent on the different activities during the case study was not measured but
loosely estimated after completion. Figure 3.7 illustrates these estimates. Most time

118 Test-driven modeling of Embedded Systems

Information collecting.

Bottom-up modeling.

Top-down modeling.

Figure 3.7: Time spent on different activities during the case study.

was spent on collecting the relevant information (red). Much time was spent on failed
attempts to model the system with a bottom-up approach (blue). The conceptual
modeling with a top-down approach required the least time but provided most of
the results (green). It can therefore be concluded that the proposed TDM method
provides quick results, if the required information is available and if the modeler is
sufficiently experienced.

3.7.4 Advantages

During the case study, the following benefits of using the proposed TDM method
were observed:

• System knowledge gained during modeling activities.

• Easy experimentation and design space exploration.

• Conceptual models require little information but provide good value.

• Avoiding detailed design activities on doomed concepts.

The following benefits of using UPPAAL as the principal modeling tool were observed
prior to and during the case study:

• Formal verification can clarify issues that are impossible to test.

• Statistical simulations can show characteristics that are difficult to test or an-
alyze with other methods.

3.7 Discussion 119

• Easy model debugging due to complete traces.

• Existing SW can be included in the model (to some degree).

3.7.5 Disadvantages

The following disadvantages of the proposed method and UPPAAL were observed:

• Much abstraction and simplification are required.

• Limited expressiveness in the UPPAAL modeling and query languages.

• Parametric sweeps must be done manually.

• Careless use of statistical value estimation may lead to wrong conclusions as
discussed in section 3.6.2 and section 2.6.2 in [1].

• Careless use of simulation plots may lead to wrong conclusions as discussed in
section 3.6.2 and section 2.6.4 in [1].

• Low-level modeling of electronic components and high-level modeling of long-
lasting scenarios cannot be combined.

• Memory exhaustion due to long execution traces.

• State explosion due to large and complex models.

The risk of memory exhaustion and state explosion constantly forces the modeler
to limit the size and complexity of the models. However, the value of formal and
statistical verification is weakened by the need for abstraction and simplification.
Limited expressiveness also prevents models of high fidelity. These disadvantages
pose some limitations on the usefulness of the proposed method.

The disadvantages are mainly caused by the limitations and problems of UPPAAL.
Improving UPPAAL or identifying alternative tools may remedy these issues.

3.7.6 Limitations

Formal model checking of large models inevitably causes state explosion and memory
exhaustion as discussed in section 3.7.5. The proposed method is therefore limited to

120 Test-driven modeling of Embedded Systems

modeling and analyzing relatively small and simple systems2. This scalability issue
can be overcome to some degree by using abstractions and simplifications during
modeling, but not without loss of fidelity.

The scalability problem may be resolved to some degree by modifying the memory
management strategy of the tool. However, models of future systems can be expected
to become very large due to increasing complexity. The need for more memory is
likely to grow faster than the capabilities of future versions of the tool. The problem
of state explosion and memory exhaustion may therefore persist despite improved
tool capabilities.

The proposed method is limited to analyzing discrete events (DE). The DE formal-
ism is suitable and sufficient to describe and analyze embedded software controllers.
However, many types of embedded systems contain elements that cannot be de-
scribed and analyzed by using the DE formalism. For example, differential equations
are needed to describe electronic circuits that include energy storage elements such as
coils and capacitors. Such parts can only be analyzed by using continuous time (CT)
simulators. Combining DE, CT and other modes of computations into integrated
heterogeneous models that can be analyzed or simulated is beyond the scope of the
proposed approach.

3.7.7 Improvements

The disadvantages and limitations discussed in section 3.7.5 and 3.7.6, respectively,
are candidates for potential improvements. Other potential improvements of the
proposed methods are to extend the proposed TDM method for:

• Modeling of different types of systems.

• Other forms of systems modeling.

The proposed TDM method is limited to embedded systems and systems of similar
complexity. However, embedded systems are currently evolving into complex smart
systems, which are beyond the scope of the proposed method. A TDM method for
such systems is proposed and described in section 4.6.

2 The hearing systems of GN Hearing are generally large and complex so it could be concluded
that the method is useless for the company. However, the method can be very useful for
designing and verifying basic concepts or partial implementations. Furthermore, the method
is included in the method for modeling and verifying large and complex smart systems as
described in chapter 4.

3.7 Discussion 121

The proposed TDM method only concerns modeling and analysis of system behav-
ior and architectural properties relating to quality attributes. However, important
metrics such as the number of interfaces, coupling between modules, etc., arise from
architectural design choices that may also benefit from a test-driven approach. Mod-
eling of user interfaces may similarly benefit from a test-driven approach. Even the
modeling of stakeholders, use cases, requirements, etc. may benefit from a test-driven
approach. Research concerning the general application of TD-MBSE is beyond the
scope of this project, however.

3.7.8 Future work

The candidates for future work falls into the following categories:

• Better validation of the proposed method.

• Improving the proposed method and tools.

• Implementing the proposed method in the industry.

The proposed method has shown its value in the case study. However, better valida-
tion can be obtained by:

• Conducting additional case studies to evaluate the method for different but
similar forms of embedded systems.

• Conducting comparative studies, where the results from using the proposed
method are compared with results obtained from using other methods.

• Verification of the method by other researchers.

The proposed method can be improved to accommodate large and complex smart
systems. This work has been done and is described in chapter 4. For the intended
use of developing embedded systems, no potential improvements of the methodology
has been identified. However, improving the tools to support the method should be
part of the future work, which may include:

• Create front ends for improved usability:

– Queries expressed in "human" language.

– Automatic generation of UPPAAL models from SysML.

122 Test-driven modeling of Embedded Systems

• New and updated features to improve UPPAAL:

– “Preprocessor and compiler directives” for separating model element for
formal and statistical verification.

– Automatic creation and management of clocks for every location of the
templates to facilitate easy temporal modeling and analyzing.

– More efficient memory management (started).

Successful implementation of the proposed method in the industry requires more
future work, which may include:

• Implementing TDM at GN Hearing:

– Conduct more case studies to demonstrate the value of TDM.
– Teach modeling skills to system engineers, software engineers, and domain

experts.
– Hire expert modelers permanently or as consultants.
– Define and use libraries of templates and queries.
– Integrate TDM into the overall development process.

• Implementing TDM in industry of embedded systems:

– Conduct more research and publish scientific results.
– Publish for target group in popular media of the industry.

Some of these activities have been started, while others may start in the near future.
It is not yet determined when the remaining future work will be launched.

3.7.9 Conclusion

This chapter has addressed the need for test-driven modeling of embedded systems.
The review of literature concerning related work (section 3.3) showed that:

(1) MDD has been used for development of various types of systems. MDD with-
out testing has limited value because functionality and performance cannot be
predicted, verified and validated during the modeling phase.

(2) TDD has the potential to improve software quality and development produc-
tivity. TDD has been adapted to other domains such as embedded software
development. TDD has also inspired various TDM methods.

3.7 Discussion 123

(3) TDM has the potential to lower the cognitive load during modeling and to
improve productivity and model quality. Such effects have been demonstrated
for both academic cases and larger industrial projects.

(4) All reviewed TDM methods use specialized and often complex tool chains with
somewhat poor usability and steep learning curves.

(5) Formal or statistical verification have not been used in reported TDM methods.
All reviewed methods rely on simulation frameworks.

(6) Verification to capture behavior that emerges from combining the parts of the
overall system have not been addressed adequately. Existing methods focus
mostly on testing of unit and system parts.

To overcome limitations of previous work a method for test-driven modeling of em-
bedded systems has been proposed. The proposed method was developed from tra-
ditional TDD, by transforming traditional TDD steps and adding new steps that are
unique for TDM of embedded systems. In addition to test-driven development of
singular solutions, the proposed method facilitates exploration of the design space.

The method uses formal verification for verifying the system behavior. Statistical
verification is used for estimating probabilities and values of system properties and
quality attributes. Simulations are used for inspecting system states and properties.

The method was applied to an industrial case from GN Hearing for the purpose
of verifying the method and for investigating potential solutions for an embedded
system. Information about the system was collected into SysML models. Much time
was spent on identifying and relating relevant use cases. This resulted in a large
use case interaction matrix from which worst-case combinations were identified. The
TDM method was utilized for developing and verifying two basic design alternatives,
where an "efficient" solution gave maximum utilization of the internal bus and a
"fast" solution gave minimum delay and jitter for an audio streaming scenario. It
has been shown that the flash clock rate must be equal to or larger than 2 · Fmin

(confidential) to avoid deadlock. Other critical parameters and their feasible ranges
were also identified.

The proposed method is mainly limited by the use of formal and statistical model
checking. The size and complexity of the models must be limited by abstractions and
simplification to avoid state explosion and memory exhaustion of the verifier.

Future work has been identified for providing better validation of the proposed
method, for improving the tool support, and for implementing the proposed method
in the industry.

124 Test-driven modeling of Embedded Systems

3.8 References

[1] Allan Munck
"Embedded systems models."
Technical report, Technical University of Denmark, Department of Applied
Mathematics and Computer Science.

[2] Allan Munck and Jan Madsen.
"Test-driven modeling of embedded systems."
Nordic Circuits and Systems Conference (NORCAS): NORCHIP & International
Symposium on System-on-Chip (SoC), 2015. IEEE, 2015.

[3] Martin Kot.
"The state explosion problem", 2003.
http://www.cs.vsb.cz/kot/down/Texts/StateSpace.pdf

[4] Karl E. Wiegers.
"Software requirements."
Microsoft Press; 2 edition (8 Mar. 2003).

[5] INCOSE SE Handbook Working Group.
"INCOSE systems engineering handbook v. 3.2.2."
INCOSE-TP-2003-002-03.2.2. October, 2011.

[6] Steve Heath.
"Embedded systems design."
Newnes, 2002.

[7] Christof Ebert and Casper Jones.
"Embedded software: Facts, figures and future."
IEEE Computer Magazine, 2009, Volume 42, Issue 4.

[8] Piet Cordemans, Sille Van Landschoot, Jeroen Boydens and Eric Steegmans.
"Test-Driven Development as a Reliable Embedded Software Engineering Prac-
tice." In: "Embedded and Real Time System Development: A Software Engi-
neering Perspective."
Springer Berlin Heidelberg, 2014. p. 91-130.

[9] E. Michael Maximilien and Laurie Williams.
"Assessing test-driven development at IBM."
Software Engineering, 2003. Proceedings. 25th International Conference on.
IEEE, 2003.

[10] Dave Astels.
"Test driven development: A practical guide."
Prentice Hall Professional Technical Reference, 2003.

http://www.cs.vsb.cz/kot/down/Texts/StateSpace.pdf

125

[11] Yuefeng Zhang.
"Test-driven modeling for model-driven development."
Software, IEEE 21.5 (2004): 80-86.

[12] Susumu Hayashi et al.
"Test driven development of UML models with smart modeling system." In:
"«UML» 2004 - The Unified Modeling Language. Modeling Languages and Ap-
plications."
Springer Berlin Heidelberg, 2004. 395-409.

[13] Gerd Behrmann, Alexandre David, and Kim G. Larsen.
"A Tutorial on Uppaal 4.0 - Updated November 28, 2006."
http://www.uppaal.com/admin/anvandarfiler/filer/uppaal-tutorial.
pdf

[14] Sanford Friedenthal, Alan Moore and Rick Steiner.
"A Practical Guide to SysML, Second Edition: The Systems Modeling Lan-
guage."
Publisher: Morgan Kaufmann; 2 edition (October 17, 2011). ISBN-10:
0123852064. ISBN-13: 978-0123852069.

[15] Lenny Delligatti.
"SysML Distilled: A Brief Guide to The Systems Modeling Language."
Pearson Education, Inc., 2014.

[16] Tim Weilkiens.
"Systems Engineering with SysML/UML: Modeling, Analysis, Design."
Kaufmann, 2006.

[17] Jon Holt and Simon Perry.
"SysML for Systems Engineering."
(Professional Application of Computing Series 7), IET, 2008.

[18] Jonah Z. Lavi and Joseph Kudish.
"Systems Modeling and Requirements Specification Using ECSAM: An Analysis
Method for Embedded and Computer-Based Systems."
Dorset House Publishing, New York, 2005. ISBN-10: 0-932633-45-5 / ISBN-13:
978-0932633453.

[19] Peter Bulychev, Alexandre Davidm, Kim Guldstrand Larsen, Marius Mikuc̆ionis,
Danny Bøgsted Poulsen, Axel Legay, Zheng Wang.
"UPPAAL-SMC: Statistical Model Checking for Priced Timed Automata."
arXiv preprint arXiv:1207.1272, 2012.

[20] Scott W. Ambler.
"Agile model driven development is good enough."
IEEE Software 20.5 (2003): 71-73.

http://www.uppaal.com/admin/anvandarfiler/filer/uppaal-tutorial.pdf
http://www.uppaal.com/admin/anvandarfiler/filer/uppaal-tutorial.pdf

126 Test-driven modeling of Embedded Systems

[21] Scott W. Ambler.
"Agile Model Driven Development (AMDD)."
XOOTIC Symposium 2006, (p.13). 2006.

[22] David S. Janzen and Hossein Saiedian.
"Does test-driven development really improve software design quality?"
Software, IEEE 25.2 (2008): 77-84.

[23] Forrrest Shull, G. Melnik, B. Turhan, L. Layman, M. Diep and H. Erdogmus.
"What do we know about test-driven development?."
IEEE software 27.6 (2010): 16-19.

[24] James Grenning.
"Applying test driven development to embedded software."
Ieee Instrumentation & Measurement Magazine 10.6 (2007): 20-25.

[25] Nicholson Collier and Jonathan Ozik.
"Test-driven agent-based simulation development."
Proceedings of the 2013 Winter Simulation Conference: Simulation: Making
Decisions in a Complex World. IEEE Press, 2013.

[26] Esteban Robles Luna, Julián Grigera, and Gustavo Rossi.
"Bridging test and model-driven approaches in web engineering."
International Conference onWeb Engineering. Springer Berlin Heidelberg, 2009.

[27] E. R. Luna, J. I. Panach, J. Grigera, G. Rossi and O. Pastor
"Incorporating Usability Requirements In a Test/Model-Driven Web Engineering
Approach."
J. Web Eng. 9.2 (2010): 132-156.

[28] Yuefeng Zhang and Shailesh Patel. "Agile model-driven development in prac-
tice."
IEEE software 28.2 (2011): 84.

[29] Stefan Zugal, Jakob Pinggera and Barbara Weber.
"Creating declarative process models using test driven modeling suite."
Forum at the Conference on Advanced Information Systems Engineering
(CAiSE). Springer Berlin Heidelberg, 2011.

[30] S. Zugal, C. Haisjackl, J. Pinggera and B. Weber.
"Empirical evaluation of test driven modeling."
International Journal of Information System Modeling and Design (IJISMD) 4.2
(2013): 23-43.

[31] Dongyue Mou and Daniel Ratiu.
"Binding requirements and component architecture by using model-based test-
driven development."

127

Twin Peaks of Requirements and Architecture (Twin Peaks), 2012 IEEE First
International Workshop on the. IEEE, 2012.

[32] I. Dietrich, F. Dressler, W. Dulz and R. German.
"Validating UML simulation models with model-level unit tests."
Proceedings of the 3rd International ICST Conference on Simulation Tools and
Techniques (p. 66). ICST (Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering), 2010.

[33] A. Djanatliev, W. Dulz, R. German and V. Schneider.
"Veritas - A versatile modeling environment for test-driven agile simulation."
Proceedings of the 2011 Winter Simulation Conference (WSC), (pp. 3657-3666).
IEEE, 2011.

[34] Vitali Schneider and Reinhard German.
"Integration of test-driven agile simulation approach in service-oriented tool en-
vironment."
Proceedings of the 46th Annual Simulation Symposium. Society for Computer
Simulation International, 2013.

[35] V. Schneider, A. Yupatova, W. Dulz and R. German.
"How to avoid model interferences for test-driven agile simulation based on stan-
dardized UML profiles (work in progress)."
Proceedings of the Symposium on Theory of Modeling & Simulation-DEVS In-
tegrative (p. 35). Society for Computer Simulation International, 2014.

[36] V. Schneider, A. Deitsch, W. Dulz and R. German.
"Combined Simulation and Testing Based on Standard UML Models."
Principles of Performance and Reliability Modeling and Evaluation. Springer
International Publishing, 2016. 499-523.

[37] Daniel Amyot, Jean-François Roy and Michael Weiss.
"UCM-driven testing of web applications."
International SDL Forum. Springer Berlin Heidelberg, 2005.

[38] Alan Hartman, Mika Katara and Sergey Olvovsky.
"Choosing a test modeling language: A survey."
Haifa Verification Conference. Springer Berlin Heidelberg, 2006.

[39] OMG.
"Systems Modeling Language."
Website (last visited 2014.05.26):
http://www.omgsysml.org/.

[40] OMG.
"Unified Modeling LanguageTM (UML R©)."
Website (last visited 2014.05.26):
http://www.uml.org/.

http://www.omgsysml.org/
http://www.uml.org/

128 Test-driven modeling of Embedded Systems

[41] OMG.
"The UML Profile for MARTE: Modeling and Analysis of Real-Time and Em-
bedded Systems."
Website (last visited 2014.05.26):
http://www.omgmarte.org/.

[42] OMG.
"Formal Versions of UTPTM."
Website (last visted 2016.09.27):
http://www.omg.org/spec/UTP/.

[43] Uppsala University and Aalborg University.
"UPPAAL."
Website (last visted 2017.01.24):
http://uppaal.org/

[44] Alexandre David.
"Statistical Model-Checker - New SMC Extension of UPPAAL."
http://people.cs.aau.dk/~adavid/smc/

[45] Wikipedia.
"List of model checking tools."
Version: 19:07, 12 September 2016.
https://en.wikipedia.org/wiki/List_of_model_checking_tools

[46] Tim Weilkiens.
"Popular SysML Modeling Tools."
Website (last visited 2016.06.10):
http://list.ly/list/23A-popular-sysml-modeling-tools

[47] Kent Beck.
"Test-driven development: by example."
Addison-Wesley Professional, 2003.

[48] Laurie Williams, E. M. Maximilien and M. Vouk.
"Test-driven development as a defect-reduction practice."
Software Reliability Engineering, 2003. ISSRE 2003. 14th International Sympo-
sium on (pp. 34-45). IEEE, 2003.

[49] Thirumalesh Bhat and N. Nagappan.
"Evaluating the efficacy of test-driven development: industrial case studies."
Proceedings of the 2006 ACM/IEEE international symposium on Empirical soft-
ware engineering, pp. 356-363. ACM, 2006.

http://www.omgmarte.org/
http://www.omg.org/spec/UTP/
http://uppaal.org/
http://people.cs.aau.dk/~adavid/smc/
https://en.wikipedia.org/wiki/List_of_model_checking_tools
http://list.ly/list/23A-popular-sysml-modeling-tools

Chapter 4

Test-driven modeling of smart
systems

When the size and complexity of the system under consideration outgrow the capa-
bilities of formal model checking tools, the methods described in chapter 3 become
impractical or even impossible. Methods to overcome such limitations are investi-
gated in this chapter. It will be shown that test-driven modeling of such systems
can be done by combining formal methods for the basic interactions with informal
simulations of scenarios with thousands of active users. Finally, a method that allow
predicting the performance of extremely large and complex systems will be presented.

The remaining parts of this chapter are divided in the following sections. Section 4.1
introduces the background of test-driven modeling of smart systems. Section 4.2 de-
scribes the characteristics of such systems. The challenges associated with modeling
and verifying smart systems are derived and presented in section 4.3. Related work
is described in section 4.4. The case study for evaluating the proposed method is
described in section 4.5. Section 4.6 presents the proposed method for test-driven
modeling of smart systems. The implementation of the proposed method that was
used in the case study is described in section 4.7. Section 4.8 describes the applica-
tion of the method on the case. The obtained results, observations, learning points,
advantages, disadvantages, limitations, potential improvements and future work are
discussed, summarized and concluded in section 4.9. Reference of cited works are
finally listed in section 4.10. This chapter extends and refines the paper [5].

130 Test-driven modeling of smart systems

4.1 Introduction

Mechanical products have been enriched with embedded computer systems since the
late 1960’s to improve functionality, performance and perceived value. Increasing
amounts of intelligence have been incorporated into embedded products ever since.
Currently, there is a tendency to move the intelligence to clouds or dedicated servers
in order to provide functionality and performance that are not achievable by separate
embedded products. Thus, products have evolved into complex cloud-enabled cyber-
physical smart (CECPS) systems.

Engineering of such systems is much more complicated than engineering simple me-
chanical or embedded systems, and it may benefit from using models throughout
the life cycle of the system under consideration (SUC). In the early phases, sim-
ple sketches or similar simple models may suffice, [6][7]. Later, behavioral models
of the overall system can be utilized to simulate, verify and validate behavioral re-
quirements. Structural models can be used to clarify the connection between system
parts, users and external environmental systems. Both behavioral, structural and
parametric models can be used during design of system parts and test cases.

The complex characteristics of smart systems make it very difficult to predict and
guarantee functionality, safety, security and performance. Test-driven methods has
been used to improve the quality of software and to increase productivity, [8][9].
Methods that include test-driven modeling are similarly likely to allow effective de-
velopment of large and complex smart systems with guaranteed qualities. However,
the test-driven methods that are applied to development of simpler systems do not
scale to smart systems because the modeling technologies cannot handle the com-
plexity and size of the systems.

A method for test-driven modeling that scales to very large and complex smart sys-
tems is therefore proposed and described in this chapter. The method uses a combina-
tion of formal verification of basic interactions, simulations of complex scenarios, and
mathematical forecasting to predict system behavior and performance for extremely
large and complex scenarios. The method was utilized to analyze, design and develop
scenarios for remote fine tuning of hearing aids for a cloud-enabled hearing system
from GN Hearing. The proposed method may be adapted and further improved for
future development of very large and complex smart systems in various domains.

4.2 Characteristics 131

4.2 Characteristics

There have been many proposals for a definition of smart systems. Section 2.13 in [1]
describes a few of these proposals. However, most definitions of smartness do not
sufficiently describe the types of systems under consideration in this chapter. A fea-
sible solution to this problem is to provide an alternative definition. The advantage
of using such a definition is that it allows a more precise description of the character-
istics of the types of systems under consideration in this chapter. The disadvantage
is that it may differ from definitions used in other work. However, we consider the
advantages outweigh the disadvantages and therefore provide the following definition:

Definition 4.1 "A smart system is a system of (independent) systems (SoS) con-
taining cyber physical (sub) systems (CPS), smart (wireless) connected products and
devices (SCP), clouds or web services (WS), big-data systems (BDS), and artificial
intelligence systems (AIS), that service large crowds of users."

Figure 4.1 illustrates the content of a smart system according to this definition.

The following characteristics can be associated to smart systems:

• Smart features are provided by fusing sensor inputs, user interfaces, actuator
outputs, web services, cloud data, big-data algorithms, artificial intelligence,
etc.

• Thousands to millions or even billions of concurrent asynchronous entities (users,
devices, applications, clouds, web services, etc.) interact in an unpredictable
manner.

• Big volumes of data with complex structures are generated at high but irregular
speed by a variety of sources in varying incompatible formats. Data may be
incomplete or corrupted, and it is shared via unreliable channels. Data may
be consumed or processed in a manner that have not been intended by the
producer of the data.

• Sub-systems may not behave as expected, and messages between sub-systems
may be delayed, corrupted or lost.

• The independence of sub-systems may cause unpredictable changes to the over-
all systems architecture.

Hearing systems from GN Hearing have many but not all of these characteristics.
Currently, GN Hearing is in control of all subsystems except the services used for

132 Test-driven modeling of smart systems

Smart
systems

System
of

Systems

Crowds

Clouds

Web
Services

Smart
Connected
Products

Cyber
Physical
Systems

Artificial
Intelligence
Systems

Big-data
Systems

Figure 4.1: Smart system characteristics according to definition 4.1.

pushing messages to the end-users’ mobile devices. The characteristics and problems
associated with systems of (independent) systems are therefore less noticeable. How-
ever, GN Hearing’s systems do have large crowds of users generating big volumes of
data. The risk of losing data in transmissions between parts is high for such hearing
systems, especially for communication between hearing instruments and mobile de-
vices due to limited transmission power. Thus, many characteristics of general smart
systems also apply to systems from GN Hearing.

4.3 Challenges

Many challenges beyond the scope of this thesis can be associated with the engineering
of smart systems. However, from the characteristics described in section 4.2, the
following minimal list of challenges can be derived:

4.3 Challenges 133

• Distributing processing over several (independent) sub-systems makes it diffi-
cult to optimize the subsystems and the overall system simultaneously.

• The high level of complexity makes the design process challenging with many
risks relating to maintainability, portability, extensibility, and scalability, which
may compromise functionality and performance when the system evolves.

• Unintended emergent behavior may arise, when subsystems are combined. This
may jeopardize the services, functions, performance and integrity of the whole
system and its subsystems, which may ultimately compromise the safety of the
users.

Many techniques and tools must be utilized to address such challenges. Thorough
project management and rigorous systems engineering practices are the most likely
means to provide good solutions. Careful requirements engineering and solid archi-
tecture descriptions provide a solid foundation upon which well-designed systems can
be based. Formally analyzing and simulating system models increase the confidence
in planned designs and provide means for finding and correcting errors at an early
stage. Using test-driven approaches to develop system models will further increase
development efficiency and product quality according to the hypotheses described in
section 1.7. However, using a test-driven approach for modeling smart systems has
its own set of challenges:

• Describing smart features requires modeling languages with excellent express-
ibility.

• Big volumes of complex data also require excellent expressibility and easy means
for initializing standard or special values.

• The modeling language must also be able to express the complex behavior of
subsystems, e.g. interrupt handling, database maintenance, error corrections,
etc.

• Simulating or formally analyzing the system models requires very powerful en-
gines due to the huge numbers of concurrent asynchronous entities.

• Different modes of computation may be required for different subsystems due
to heterogeneity. The need for synchronizing independent simulators limits the
number of available tools and modeling languages considerably.

The method that was used for test-driven modeling of embedded systems as described
in chapter 3 does not scale to modeling of smart systems because:

• The modeling language has limited expressibility.

134 Test-driven modeling of smart systems

• The large number of concurrent entities will lead to state explosion.

• Large amount of data also lead to state explosion.

The method for embedded systems cannot be easily updated to accommodate smart
systems. This chapter therefore proposes a novel method for test-driven modeling of
smart systems.

4.4 Related work

There is a huge amount of literature relating to test-driven development of smart
systems. Test-driven model-based development is mentioned in section 4.4.1. Internet
of things is discussed in section 4.4.2. Section 4.4.3 discusses modeling and simulating
of clouds. Simulators are discussed in section 4.4.4. Potential technologies for the
proposed method are discussed in section 4.4.5 and 4.4.6.

4.4.1 Test-driven, model-based development

The work related to TDM of embedded systems is also applicable to the subject of
TDM of smart systems and shall not be repeated here. The reader is referred to the
descriptions in section 3.3, where MDD, TDD, TDM, MDT and MBT are described.

4.4.2 Internet of Things (IoT)

IoT systems may be considered as special cases of CECPS systems. Several re-
searchers have investigated modeling and simulation of such systems.

Manta-Caro and Fernández-Luna [51] presented a simulator, WoTSIM, for the web of
things (WoT). WoT models include spatial contexts (intelligent zones, smart spaces
and sub-spaces) and temporal contexts (virtual things and virtual sensors). WoTSIM
was applied to a case with 1 intelligent zone, 1 smart space, 421 smart sub-spaces,
600 virtual things and 6000 virtual sensor. Nothing indicates that WoTSIM scales to
very large systems.

Brambilla et al. [24] have proposed a platform based on DEUS and OSMobility and
utilizing Cooja and ns-3 for simulating large-scale internet of things (IoT) scenarios,
where IoT nodes communicate, move, enter the simulation (dynamic creation) and

4.4 Related work 135

leave the simulation (dynamic destruction). A scenario with more than 200 thousand
nodes and 120 million events was simulated in less 22 hours using a server with Xeon
2 GHz CPU, 16 GB RAM, and Ubuntu Linux operating system.

Zhang et al. [25] or [26] presented an approach for automated unit testing of cloud
applications. The cloud was modeled by writing stubs to simulate the real cloud.
However, the cloud infrastructure was not included in the model, thus limiting the
usefulness. Their approach was limited to platform-as-a-service (PaaS) computing.

Miche et al. [27] presented a concept for simulating distributed smart systems utilizing
four layers (applications, overlay services, overlay networks, and underlay networks)
to define their simulation models. The Common API (CAPI) (Dabek et al. [28])
defines the interface between the overlay services and networks. The modeling con-
cept was applied to a smart aircraft-manufacturing scenario where the topology was
created with the BRITE (Medina et al. [29]) tool. Actual simulations were assigned
to the future work. These seems not been published, however.

The idea of using advanced network simulators such as ns-3 is also very interesting
for CECPS systems because it allows precise modeling of communication between
the sub-systems. However, we opted for simpler solution that can easily be applied
by most systems engineers.

4.4.3 Cloud modeling & simulating

Currently there is a great interest in modeling and simulating cloud applications,
architectures and deployment strategies. A total of 31 cloud simulators (CDOSim,
CEPSim, CloudAnalyst, CloudSim, CloudSimSDN, DCSim, DynamicCloudSim, Eca-
lyptus, EMUSIM, FlexCloud, GDCSim, GloudSim, GreenCloud, GroudSim, Ground-
Sim, iCanCloud, MDCSim, MR-CloudSim, NetworkCloudSim, ns2, OCT, OpenCir-
rus, OpenCloud, OpenStack, Opnet, PICS, secCloudSim, SimIC, SmartSim, SPECI,
and TeachCloud) were investigated as potential tools in [30], [31], [32], [33], [34], [35],
[36], and [37]. The simulators were characterized in terms of provider, underlying
programming languages and platforms, simulator type (event-based or packet-level),
cost modeling features (yes, no), communication modeling features (full, limited,
no), energy modeling features (yes, no, rough), federation modeling features (yes,
no), network modeling capabilities (limited or full), TCP/IP modeling support (none
or full), GUI support (yes, no, limited), simulation time (seconds, minutes), services
(IaaS, PaaS, or SaaS), implementation category (software, hardware, both), software
category (software framework, simulation software, or scientific testbed), operating
systems, license, availability (open source, commercial, limited, not available) and
popularity.

136 Test-driven modeling of smart systems

Buyya et al. [38] and Calheiros et al. [39] described the need for cloud simulation
tools and presented the CloudSim toolkit. The design, implementation, and usage
of CloudSim were briefly described. CloudSim was based on GridSim, which in turn
was based on SimJava.

Calheiros et al. [40] presented CloudSim 2.0, in which the SimJava was replaced by
a new event management framework called CloudSim Core to overcome limitations
in SimJava. The new version provides better features (starting, pausing, resuming
and stopping of entities or the entire simulation) and performance (because multi-
threaded SimJava was replaced with the single-threaded CloudSim Core).

Calheiros et al. [41] presented EMUSIM, which utilizes emulation of real cloud com-
puting applications to generate simulation models that can be used for simulating
different scenarios, environments, etc. Emulation is somewhat slow and only a lim-
ited number of cloud requests can be emulated. However, the request rate can be
increased significantly in simulation models, because simulating is much faster than
emulating. Deployment of cloud applications can therefore be tested and optimized
without using real cloud infrastructures.

Wickremasinghe et al. [52] developed the CloudAnalyst tool for modeling and sim-
ulating cloud applications. The tool provides easy means for analyzing the effects
of varying the deployment configurations (geographical locations, virtual machines,
service brokers, etc.) on costs, response and processing time, etc. Thus, the tool is
suitable for initial analyses of cloud scenarios. Detailed design is out of scope, though.

Kathiravelu and Veiga [49] and [50] presented Cloud2Sim as an extension to the
CloudSim simulator. Cloud2Sim distributes simulation tasks to distributed com-
puter nodes. Simulations that involve time-consuming processes are accelerated sig-
nificantly compared to the simple sequential execution on CloudSim. However, the
distribution causes overheads that renders the approach ineffective for simulating
systems with processes that are less time-consuming to compute.

Other aspects of cloud modeling were addressed by Perez and Rumpe [42] (CloudADL
used with CloudArc), Caglar et al. [43] (DSML used with e.g. CloudSim), Bergmayr
et al. [44] (CAML UML extension & 10 reusable templates), and Fleck et al. [45]
(pattern-based multi-objective optimization of cloud applications).

Cloud architecture and deployment configurations are of course important for CECPS
systems. However, in our work, we are mainly interested in the overall system. For
valid systems simulations, cloud models must reflect the functionality and perfor-
mance of the intended cloud systems. The details of the architecture and deployment
configuration are less relevant for the development phases that are currently addressed
by the proposed method. The cloud simulation frameworks are of interest for future
work on our method, however.

4.4 Related work 137

4.4.4 Large-scale simulators

Realistic scenarios of CECPS systems include huge crowds of users, devices and other
sub-systems. Most simulators cannot handle systems of this scale. However, some
researchers have investigated large-scale simulators.

Looga et al. [46] proposed a platform, MAMMotH, for massive-scale emulations of
internet-of-things scenarios. The goal was to support up to 20 million node instances.
However, development of MAMMotH seems to have stopped in 2013 [48], after its
author pursued other interests [47].

D’Angelo et al. [48] proposed a multi-level simulation technique for overcoming scal-
ability issues of existing tools to simulate IoT. Details concerning design, implemen-
tation and availability of the simulator are still to be published.

The VeriTAS/SimTAny (previously discussed in section 3.3.3) and Cloud2Sim (pre-
viously discussed in section 4.4.3) tools support distributed computing to enable
large-scale simulations. However, their approach may not always be beneficial due to
the overhead needed for distributing the workload. The overheads have little effect
in case of heavy workloads (e.g. image processing), but overheads have severe impact
on simulation time in case of many small tasks.

Good solutions for large-scale simulators need more research. In our work, we use
mathematical extrapolations based on simulations of smaller scenarios to obtain es-
timates for large-scale scenarios. This method may not provide extremely accurate
and trustworthy predictions. However, it may suffice until good large-scale simulators
become widely available.

4.4.5 Technologies

The proposed process for test-driven modeling of smart systems requires a set of
tools for creating descriptive models, a set of tools for creating and verifying formal
models, a set of tools for creating and verifying scenario models, and a set of tools
for data fitting and mathematical forecasting.

Processes, methods, languages and tools for descriptive fundamental modeling and for
test-driven modeling with formal models are previously described in section 2.5, 2.7,
3.3.5, and 3.5. The discussions concerning these elements shall not be repeated here.
However, it should be mentioned that SysML was selected for descriptive modeling
and UPPAAL was selected for formal modeling in the case study in this chapter.

138 Test-driven modeling of smart systems

There are many potential modeling languages and tools that can be used for creat-
ing and verifying scenario-simulation models according to the proposed test-driven
approach, including:

• SystemC [14][15]

• VDM/VDM++/VDM-RT/VDM-10 [16]

• SimJava2 [17]

• JavaSim (not to be confused with SimJava) [18]

• C++Sim [19]

• JSIM [20]

It is likely that all of these technologies can be used with the proposed method. Other
simulators cited in section 2.2.4 may also be feasible. The SimJava2 framework was
chosen for the case study, because it provides the desired features without being
overly complex. Further, it is relatively easy to modify SimJava2 and tailor it for the
proposed method.

There are also many potential tools that can be used for mathematical forecasting,
such as spreadsheets, programming or scripting languages (e.g. Matlab, Octave, and
Python), etc. Simple spreadsheets were used in the case study for convenience.

4.4.6 Simjava2

SimJava2 is well described on the official website [17]:

"SimJava is a discrete event, process oriented simulation package. It is an
application programming interface (API) that augments Java with build-
ing blocks for defining and running simulations. The original SimJava
was based on HASE++, a C++ simulation library. HASE++ was in
turn based on SIM++.

The approach to simulating systems adopted by SimJava is similar to
other process based simulation packages. Each system is considered to be
a set of interacting processes or entities as they are referred to in SimJava.
These entities are connected together by ports and communicate with each
other by passing events. A central system class controls all the threads,
advances the simulation time, and delivers the events. The progress of the

4.4 Related work 139

simulation is recorded through trace messages produced by the entities
and saved in a file.

As of version 2.0, SimJava has been augmented with considerable statis-
tical and reporting support. The modeler has the ability to add detailed
statistical measurements to the simulation’s entities and perform output
analysis to test the quality of the collected data. Furthermore much effort
has gone into the automation of all possible tasks allowing the modeler to
focus on the pure modeling aspects of the simulation. Automated tasks
range from seeding the random number generators used in the simulation,
to producing detailed and interactive graphs."

It should be noted that it is possible to communicate between entities by passing
events without using ports. To facilitate easy modeling in this manner, we made
some minor changes and additions to SimJava2 as described in section 4.7.

More information about SimJava2 can be found on the official website [17]. SimJava
is freely available and can be acquired from the download website [21]. The SimJava2
API is documented at the specification website [22]. A tutorial is available from the
SimJava tutorial website [23]. Parts of the tutorial are discussed in section 4.7.

4.4.7 Related work summary

Several test-driven modeling approaches have been reported but they have not gained
widespread acceptance due several factors such as poor usability, need for specialized
and complex tool chains, demanding modeling formalisms, steep learning curves,
etc. Previous work focuses mainly on unit or scenarios testing, whereas the proposed
method concerns the entire interconnected system such that emergent behavior can be
analyzed. Most prior work uses complicated and special-designed tool chains, whereas
the proposed method uses simple, independent and existing modeling languages and
tools that can be exchanged individually without changing the methodology.

IoT systems have many of the same characteristics as smart systems and several
methods for modeling and simulating such IoT systems have been proposed. The
idea of using network simulators is appealing even though the simpler and more
generic SimJava2 framework was chosen for the case study in this chapter.

Smart systems are likely to include cloud elements, and much work has been reported
concerning modeling and simulating cloud infrastructures and configurations. While
the details of cloud architecture and deployment are less important for the overall
systems modeling, the cloud simulation frameworks are of interest for future work on
the proposed method.

140 Test-driven modeling of smart systems

Simulating realistic smart system scenarios requires large-scale simulators. Several
methods and simulators have been proposed and reported. However, more research is
needed to provide good simulators. Mathematical forecasting techniques were chosen
for the case study in this chapter due to lack of feasible simulators.

Our work contributes to the field of test-driven modeling by providing a method that:

• Scales to very large and complex CECPS systems.

• Focuses on the overall interconnected systems rather than separate units.

• Captures both intended and unintended emergent behavior.

• Uses formal verifications of basic interactions.

• Uses simulations for verification of overall scenarios.

• Uses mathematical forecasting for predicting results for scenarios that are too
large to be simulated.

• Uses simple, independent and exchangeable tools.

• Is easy to learn because it mainly requires basic programming skills.

For the case study, the following tools were chosen: SysML (for overview models),
UPPAAL (for formal verification of basic interactions), SimJava2 (for simulating the
overall system models) and spreadsheets (for data fitting and mathematical forecast-
ing).

4.5 Case study

The proposed method was evaluated by conducting a case study where the method
was applied (see section 4.8). The case study concerns an industrial case from GN
Hearing. The aim of the company was to develop a cloud solution that supports
remote fine tuning, remote firmware updating and usage logging features as described
in section 2.11 in [1]. However, only the main scenario of the remote fine tuning
feature was included in the case study because it was simple enough to demonstrate
the method and complex enough to uncover the challenges. The schedule of the case
study also prevented inclusion of additional scenarios.

The system under consideration in this case is further described in section 4.5.1.
Section 4.5.2 describes the main scenario of the remote fine tuning feature and sec-
tion 4.5.3 describes the randomness of the scenario. The goals of the case study are
described in section 4.5.4.

4.5 Case study 141

4.5.1 System under consideration

An example of hearing systems from GN Hearing was previously shown in figure 1.3.
This system provides a large collection of features and functions that have been added
and accumulated over time. It has thus evolved from simpler systems in several
development stages. The current developments cycle focuses particularly on adding
cloud-based features. The parts of the hearing system that relate to the remote fine
tuning feature constitute the system under consideration (SUC) for the case study.

Figure 4.2 shows the basic parts of the system for the remote fine tuning feature. The
system may have up X million (confidential) end-users (EU). Each EU typically has
one set of hearing instruments (HI) and one mobile device/application (APP), but
the number of HIs and APPs can range from a one to many, independently. Each
EU is associated with exactly one hearing care professional (HCP). However, each
HCP may service up to hundreds of EUs. Each HCP typically has one fitting station
with one fitting software (FSW) installation, but multiple stations and/or multiple
FSW installations may also be possible. The typical numbers and their ranges are
summarized in table 4.1.

Figure 4.2 also shows the major lines of communication in the system (many details
and interactions that are irrelevant to the remote fine tuning feature are excluded
from the figure). We assume that the communication between the EUs and the
APPs always succeed. This assumption also applies to the communication between
the HCPs and FSWs. The communication with the Cloud is conducted over the
internet, which may fail, so there is no guarantee that sent messages will arrive
at the destination. The communication between the HIs and the APPs is highly
volatile, because there is a high risk of degraded signal quality due to path loss1
and interference from other unrelated devices operating in the same frequency band
(2.4 GHz). Therefore, this communication may fail. In addition to the potentially
failing communication links, the acting system entities (Cloud, APPs, FSWs and HIs)
may fail to receive, process, or send messages due to internal errors.

4.5.2 Main scenario

The main scenarios under consideration concerns a remote fine tuning features that
allow HCPs to fit the HIs of EUs remotely via the internet. For this scenario, we
assume as a pre-condition that all HCPs have received a request for generating a
new remote fine-tuning (RFT) package for all HIs of every EU in the systems. The

1 Increasing the distance between sender and receiver increases the path loss, which causes re-
duced signal to noise ratio at the receivers, leading to bit errors or loss of entire data packages.

142 Test-driven modeling of smart systems

Figure 4.2: Basic parts and interactions for the remote fine tuning feature. The
system may include millions of end users (EU), mobile devices/applica-
tions (APP) and hearing instruments (HI). The system also includes one
cloud entity and it may include thousands of hearing care professionals
(HCP) and fitting software (FSW) stations.

Table 4.1: Typical, minimum and maximum size of the system under consideration.
The actual expected system size X ∈ R+ is confidential.

Entities Typical Minimum Maximum

EUs Up to X millions 250.000 X millions
HCPs 1 per 50-200 EUs 5.000 20.000
APPs 1 per EU 250.000 X millions
HIs 2 per EU 500.000 2·X millions
FSWs 1 per HCP 5.000 20.000
Cloud 1 1 1

Total entities (approximately) 1.000.000 to 4·X millions

4.5 Case study 143

main scenario can therefore be considered as a worst-case situation. The scenario
to be simulated and analyzed concerns reliable transmission of remote fine-tuning
packages (RFPs). It was developed specifically for simulation purposes and it does
not necessarily reflect the final system developed by GN Hearing. It includes the
following steps:

(a) The HCP commands the FSW to send a RFP for a specific HI and EU.

(b) The FSW sends the RFP to the Cloud and expects a confirmation response
within a specified time range. The RFP will be re-send if the time limits are
exceeded.

(c) The Cloud saves the RFP in its databases.

(d) The Cloud sends a confirmation response back to the FSW.

(e) The Cloud sends a notification to the APP of the EU, if the EU has enabled
the Push Notification feature in the APP.

(f) The APP polls the Cloud regularly for available RFPs, if the EU has disabled
the Push Notification feature in the APP.

(g) The APP informs the EU about the new available RFP.

(h) The EU chooses either to ignore or apply the RFP to the HI.

(i) The APP send the RFP to the HI, if the EU chose "apply" in the previous step.

(j) The HI may succeed or fail to apply the new RFP and responds accordingly
back to the APP.

(k) The APP sends the status (applied, ignored, or failed) to the Cloud by issuing
status update requests, and it expects a confirmation response within a specified
time range. The status will be re-send if the time limits are exceeded.

(l) The Cloud updates the status fields in its databases and sends confirmations
back to the APP.

(m) This scenario is repeated until all RFPs are stored in the Cloud and have reached
the "applied", "ignored" or "failed" status.

The scenario applies to all HCPs and EUs.

144 Test-driven modeling of smart systems

4.5.3 Randomness

There is a high level of randomness in the scenario as indicated in section 4.5.1. The
following unpredictable behavior can be identified for step (a) of the scenario:

• The HCPs may commence the scenario in random order and at any time.

• The HCPs may select the EUs to service in random order.

• The HCP may select the HIs of the selected EU in random order.

For step (b) of the scenario, the following forms of randomness can be identified:

• The FSWs may fail to send the message to the Cloud due to internal errors.

• The message may get lost during transmission.

• The Cloud may fail to receive the message due to internal errors.

• The FSWs may fail to re-transmit messages when needed.

• The FSWs may fail to stop re-transmissions when no longer needed.

By inspecting the main scenario, many similar forms of randomness can be identified.
The model shall be able to handle all error scenarios arising from this randomness.
The numbers of permutations caused by the randomness make manual inspection
infeasible, though. Thorough formal analysis is neither feasible due to the size and
complexity of the system. Simulating test cases to verify reliable transmission of
data packages seems feasible, though. The case is therefore a good candidate for
evaluating the proposed method.

4.5.4 Goals

The goals of conducting the case study were defined as:

1. Evaluate the proposed method.

2. Verify the applicability of the chosen modeling technologies.

3. Develop viable solutions to the design problem for the case.

4.6 Proposed method 145

Table 4.2: Mapping TDD steps to steps of the proposed method.

TDD steps Proposed steps Unique steps

Step 1 Create descriptive models
Step 2 Setup simulation model

Add test Step 3
Run test Step 4-7
Write code Step 11 A, B & C
Run tests Step 4-7
Refactor code Step 8 → step 11
Repeat Step 8 → step 3

Step 9 Parameter variation
Step 10 Mathematical Forecasting

The goal of developing viable solutions was further outlined:

4. Verify absence of deadlocks.

5. Verify that stored data always have the correct values.

6. Verify that messages, events and data are routed correctly.

7. Estimate processing and turn-around times.

8. Estimate cloud loading (number of events, queue size, etc.).

9. Explore the design space for alternative solutions and compare their individual
performance based on simulations and mathematical forecasting.

4.6 Proposed method

The proposed method for test-driven modeling of smart systems was developed from
traditional TDD (by transforming TDD steps and by adding new unique steps) using
the modeling approach discussed in section 2.1 in [3].

The method is illustrated in figure 4.3. The mapping between TDD steps and the
steps of the proposed method is shown in table 4.2. The major steps of the method
is further described in following paragraphs.

146 Test-driven modeling of smart systems

Figure 4.3: Test-driven modeling process for smart systems.

4.6 Proposed method 147

Step 1 is to create descriptive models to get an overview of the use cases, structure
and interfaces of the SUC, its users and environmental systems. An agile approach
without adding too many details is sufficient. These models can be created using
SysML, UML, white-board drawings or similar means. Overview models are not
necessarily updated when the scenario model evolves, so they may be treated as
throw-away-models. After completing the overview models, go to step 2.

Step 2 is to setup the simulation model that facilitates TDM. In theory, it is
possible to use any kind of modeling language and tool that supports assertions and
allow execution of simulations. The SimJava2 simulation framework was used in
this work due to its well-known properties and because it can be modified easily
as described in section 4.4.5. The main class of the simulation is created and stop
conditions are defined to ensure that the simulation can be stopped in a controlled
manner. This can be done by specifying the maximum simulation time or by defining
boolean expressions based on the states or data of the model. Classes that represent
acting entities (users, devices, clouds, etc.) are created. Strongly related classes
(e.g. users and their devices) are associated, see chapter 5 in [3] for further details.
Classes for various data types are also created. Finally, an enumeration for identifying
message events is created. After completing the setup, go to step 3.

Steps 3 is to insert new test cases. In ordinary TDD, all test steps and assertions
would be implemented in special test units that are separated from the units of the
software under testing. In TDM, it is difficult to separate the SUC and testing because
the scenarios are integral parts of the SUC. Scenario steps are therefore added to the
behaviors of entities that represent users or environments. Three kinds of assertions
are added to enable checking of correct execution: (1) Pre-condition assertions are
checked before starting the simulation. (2) Invariant assertions check the state of the
model during simulation. (3) Post-condition assertions check the state of the model
after completed simulation. Pre- and post-condition assertions are typically added
to functions in the main program. Invariant assertions are inserted into the entities
where the invariants are expected to hold. Special entities may be created just for
monitoring and testing. The first failed assertion stops the simulation by generating
an exception. After adding the new test cases, go to step 4.

Step 4 is to start the execution by instantiating the model. All classes necessary
to describe the system, users and environments are instantiated and associated. Ini-
tializing the classes ensures that the pre-conditions can be asserted successfully. The
model and simulation framework are initialized but not started yet. The source code
of the simulation model must be structured such that pre-conditions are evaluated
after initializing the model (go to step 5).

148 Test-driven modeling of smart systems

Step 5 is to assert the pre-conditions to ensure that the model is in the correct
state before starting the simulation. Initially there is nothing to check but after
several iterations, there might be data elements that must be checked. Normally,
pre-conditions pass and the simulation can be started (go to step 6). In case of
failure, the model must be refined (go to step 11).

Step 6 is to start the simulation. During simulation, an invariant assertion may
fail. This should always happen initially in TDM; otherwise, the new test case is
redundant. In case of failure, the model must be refined (go to step 11). Else, the
simulation will stop normally by reaching the stop condition or by exceeding the
maximum simulation time limit that has been defined in previous steps (go to step
7).

Step 7 is to assert the post-conditions to ensure that the model has entered the
expected state after termination of the simulation. The data elements of the model
are thus checked to verify that they have been routed correctly between entities (e.g.
download from cloud). Various variables representing system states may likewise be
evaluated. In case of failure, the model must be refined (go to step 11). In case of
success, go to step 8.

Step 8 is to decide how to proceed after successful completion of the simulation.
There are four cases as indicated by arrows out of the decision nodes (8a) and (8b)
in figure 4.3. In the first case, [done], the process will be terminated because results
are satisfying and no more simulations are needed. In the second case, [refactor
model], the model will be cleaned up (go to step 11). In the third case, [add new test
case], another test case or scenario will be added (go to step 3). In the fourth case,
[more simulations needed], additional simulations of the same basic model but with
modified parameters (constants within the model) are needed (go to step 9).

Step 9 is to execute the model with different values of certain parameters to get
simulation results for different system configurations, reaction patterns, etc. Param-
eters that typically would be varied concerns the number of entities (users, devices,
services, etc.), the size and amount of data, communication error rates, and probabil-
ities of various events including user choices. Assertion for pre-conditions, invariants,
and post-conditions may fail due to modified parameters, in which case the model
must be refined (go to step 11). In case of success, continue by analyzing the results
(go to step 10).

4.6 Proposed method 149

Step 10 is to analyze the simulation results and to forecast results mathematically
for scenarios that cannot be executed in reasonable time. Data points for each vari-
able and parameter of interest are plotted. Data points are fitted by approximate
functions. If extrapolations are needed, the fitting functions must fit the data be-
yond the simulated scenarios, which most likely requires exponential functions. If the
results obtained from interpolation or extrapolation are satisfying, [ok], the process
terminates. If the results are unacceptable, [fail], the model must be refined (go to
step 11).

Step 11 is the step of refining the model. This step can be reached in several cases:
Failing assertions, adding new test cases, obtaining unacceptable results, or choosing
model refactoring to achieve better readability, maintainability, simulation efficiency,
etc. System functionality and the behavior of users and environmental systems must
be implemented in the body()function of the relevant entity classes2. Communication
between entities must be implemented by sending messages with associated data.
Normally, one works directly in the scenario simulation model. However, sometimes
it can be difficult to arrive at satisfying solutions, because the overall model can
be difficult to comprehend in its entirety, especially due to concurrent activities.
Therefore, it may be beneficial to utilize the optional steps to create (step A) and
verify (step B) formal models of basic interactions to obtain solid patterns, before
translating and integrating the solutions into the overall simulation model (step C).
Using the TDM method for embedded systems that was proposed in section 3.5 is a
convenient way to develop the patterns in a test-driven manner. The formal models
are not necessarily updated when the scenario model evolves, so they may be treated
as throw-away-models. All changes to the scenario simulation model should be made
in small increments to avoid failing assertions and thus breaking the model, because
it can be difficult and time-consuming to repair such complex models. After every
small set of refinements, re-test the model (go to step 4).

The model is thus build in a test-driven manner. Initially, the model size (number
of users and related entities, and size of data) can be limited to enable fast simulations.
The size of the model can be increased later for simulating scenarios that are more
realistic. During parametric variation one wants to come as close as possible to the
realistic scenarios. Simulations should always be preferred over forecasts, so step 9
and 10 are only used when simulating realistic scenarios becomes impractical.

2 The body() function contains the principal behavior of the entity class and is called automati-
cally by the SimJava2 simulation framework when the simulation is started. Other simulation
frameworks may use different names for such functions.

150 Test-driven modeling of smart systems

4.7 Implementing the method

The method that was proposed and described in in section 4.6 provides a blueprint for
test-driven modeling of smart systems. The implementation of the method depends
on the actual choice modeling technologies, i.e. the modeling languages and tools.

The implementation that was used in the case study is described in the following
sections. Section 4.7.1 describes how descriptive models are implemented in SysML
and section 4.7.2 describes how formal models of basic interactions are implemented
in UPPAAL. How scenario simulation models are implemented, is described in the
following sections: The modifications of and extensions to the SimJava2 framework
are described in section 4.7.3. Section 4.7.4 describes how SimJava2 traditionally
is used. To simplify modeling, ports can be avoided as described in section 4.7.5.
Section 4.7.6 shows examples of using the modified and extended framework.

4.7.1 Descriptive models

One purpose of creating descriptive models is to gain an understanding of the system
under consideration. Early experiments showed that it could be difficult to compre-
hend and maintain an overview of complex scenario-simulation models as they evolve.
A second purpose of the descriptive models is to provide this overview such that the
simulation models can be developed and maintained easily.

Descriptive models are not subjected to simulations but are cases of fundamental
modeling (see section 2.5.1). To gain an understanding of the system under consid-
eration, it may be beneficial to model stakeholders, life cycles, requirements, envi-
ronments, users, system structure, data structure, system behavior, interfaces, para-
metric dependencies, etc. Examples of such fundamental modeling are provided in
section 2.2 in [2].

SysML was used in the case study for creating descriptive models for the reasons
described in the case study for selecting modeling tools (section 2.7 in [3]).

To provide an overview of the simulation model, it is beneficial to model the basic
blocks of the simulation model on SysML block definition diagrams, BDD. Interac-
tions and communications between entities can also be modeled on SysML BDD or
more elaborately on SysML internal block diagrams, IBD. Figure 4.4 shows an ex-
ample of a descriptive overview model where the entities and their interactions are
modeled on a single SysML BDD. In this case, lightweight annotations (text com-
ments) were used to indicate the tags or types of messages that would be exchanged
between entities.

4.7 Implementing the method 151

Figure 4.4: Descriptive model of simulation model showing a SysML block defi-
nition diagram depicting the interactions between the entities of the
simulation model. The comments on the right are lightweight means of
indicating the types of messages exchanged between the entities.

Behavioral SysML diagrams of activities, sequences or state machines were not used
in the case study but such models can added to easy the subsequent development of
the simulation models.

4.7.2 Formal models

The UPPAAL modeling language and tool were used for formal modeling in the case
study for the reasons described in the case of selecting modeling tools (section 2.7).
The formal models were developed using the test-driven method described in chap-
ter 3.

Formal models were not made for all parts of the simulation model but only for the
most difficult interactions. Small separate models for each type of interaction were
preferred over large integrated models, because separation of concerns is expected
to result in models that are easier to create, maintain, translate and integrate into

152 Test-driven modeling of smart systems

the overall simulation model. Each model can therefore be considered as a verified
pattern for a specific type of interaction. Formal model checking of such basic patterns
increases the confidence that the more complicated scenario simulation model will
behave as expected.

Formal models are not necessarily updated as the scenario simulation model evolves
because new models can easily be created whenever the need arises.

Figure 4.5 and 4.6 shows an example of a formal model of basic interactions and
the verification results, respectively. This double-conformation pattern was used in
several places in the overall scenario simulation model in the case study.

4.7.3 Modified framework

The SimJava2 simulation framework was chosen for the case study as described in
section 4.4.5. It was modified and extended as described in chapter 4 in [3].

SimJava2 was modified to support easy modeling and analysis of the Cloud queue size
as described in section 4.1 in [3]. These changes were made directly to the original
SimJava2 classes. This solution is not optimal but it was chosen to avoid unnecessary
complications such as creating an entirely new integrated simulation framework.

Furthermore, SimJava2 was extended with derived classes to facilitate simplified mod-
eling as described in section 4.2 in [3]. To facilitate easy and efficient messaging, the
classes Sim_entity and Sim_event were extended as shown in figure 4.7. These
classes, ExtSim_entitity and ExtSim_event, are collected in a separate package,
/dtu/extsim.

The changes and modifications only add convenience function to the SimJava2 simu-
lation framework and do not change the fundamental architecture or behavior of the
simulation engine.

4.7.4 Traditional modeling

The SimJava2 tutorial [23] describes how to use the framework to model systems.
Figure 4.8 illustrates the major example from the tutorial. In this example, the
ProcessorSubsystem class instantiates the entities (Source, Processor, Disk1, Disk2),
links the ports, and starts the simulation in the main(...) function. The entity
classes are extended from the Sim_entity class of the SimJava2 framework. The
Disk1 and Disk2 are instantiated from the same entity class, Disk. The body()

4.7 Implementing the method 153

Figure 4.5: Formal model of basic interaction. This example shows a UPPAAL
model of a double confirmation pattern that was used in several places
in an overall scenario simulation model in the case study.

Figure 4.6: Formal verification of the basic interaction that was modeled and shown
in figure 4.5. The green circles shows that the queries passed the formal
verification.

154 Test-driven modeling of smart systems

Figure 4.7: ExtSim class diagram. The ExtSim_entity extends the Sim_entity
with functions to facilitate communicating and tracing. The
ExtSim_event extends the Sim_event with functions for easily iden-
tifying the sender and the type of message.

Figure 4.8: Model example from the SimJava2 tutorial [23]. The Source sends
messages to the Processor, which upon reception of this message sends
a message to either Disk1 or Disk2. The ProcessorSubsystem sets up
the model and starts the simulation.

4.7 Implementing the method 155

functions of the entities are called by the SimJava2 framework when the simulation
is started. From the figure, it is seen that the Source sends 100 messages separated
by a random delay to the Processor. The Processor receives the messages from the
Source and sends messages randomly to either Disk1 or Disk2. These messages are
finally received and processed by Disk1 or Disk2. Notice that the communication
between entity instances is carried out by sending and receiving messages through
ports. The messages are passed from the output ports of the sending entities into
central event queues in the Sim_system class. The messages are then forwarded to
the input ports of the receiving entities. More details about the example is provided
in the tutorial.

The use of ports to encapsulate the entities can be considered as a good modeling
practice. Encapsulations make it is easy to reuse entities as in the example where
the Disk entity class was reused for both Disk1 and Disk2. However, using ports
has a penalty in the form of increased modeling and simulation complexity, because
ports and links and links must be resolved, whenever messages are transmitted. For
models with extensive messaging, it will therefore be preferable to exchange messages
between entities without using ports.

4.7.5 Avoiding ports

With SimJava2, it is possible to bypass the use of ports3. To accomplish this, the
Sim_entity.sim_schedule(dest, delay, tag, data) function is utilized. Here
dest is an integer that identifies the receiving entity. This identifier is obtained from
the get_id() function of the receiving entity. The delay specifies the amount of delay
between sending and receiving the message. The tag is an integer that identifies the
type of message, which can be used by the receiving entity to determine what to do
with the message. The data is an object (of any type) attached to the message.

4.7.6 Usage example

The SimpleCloud model included in section 3.2 in [3] can be used to illustrate the
method of modeling with the extended simulation framework. Figure 4.9 shows a
simplified class diagram that include partial descriptions of the implementations in
the main() and body() functions.

3 It will not be possible to send directly from entity to entity because the events must be queued
such that the simulation framework can fetch and send the events when their timestamps match
the simulation time. All messages are therefore stored in global event queues in the Sim_system
class. However, the use of ports can be eliminated as described in the text.

156 Test-driven modeling of smart systems

Figure 4.9: Minimal example of scenario model based on SimJava2 and ExtSim.
Notice that the Cloud entity is not shown in the diagram.

The SimpleCloud main class contains an instance of the Cloud class and lists of HCP
and FSW instances. The main() function initializes the simulation framework, creates
the entity instances, starts the simulation, and asserts the final post-conditions after
the simulation is stopped by the simulation framework.

The HCP class represents hearing care professionals and it extends the ExtSim_entity
class. When the body() function is called at the beginning of the simulation, it
sends a message to an associated FSW instance after setting up the correct val-
ues in the _data object. Here we want to model the message exchange on a sta-
ble connection because the FSW will always react to user inputs. This is done by
using the scheduleStable(...) function (which wraps the previously mentioned
Sim_entity.sim_schedule(...)) defined in the ExtSim_entity class. The mes-
sage is tagged HCP_FSW_Uploading_Start.

The FSW entity represents the fitting software and it extends the ExtSim_entity class.
When the body() function is called at the beginning of the simulation, it waits for the
arrival of event messages. This is done by the calling sim_get_next(...) function
defined in the ExtSim_entity class. If the tag of the received event message matches
HCP_FSW_Uploading_Start then the FSW knows that it should start uploading _data
to the cloud. In this case, the message from the FSW to the Cloud is modeled on
an unstable connection, because there is some possibility that the message will be

4.8 Applying method on case 157

lost in transmission. This is done by using the scheduleUnstable(...) function
defined in the ExtSim_entity class. If the event message received by the FSW entity
matches any other event tags, e.g. Cloud_FSW_Uploading_Done, then those events
are processed instead.

If the message is received by the Cloud entitity (not shown in the figure) and if the
tag matches FSW_CLOUD_Uploading_Start, it will process the associated data object.
A confirmation message tagged CLOUD_FSW_Uploading_Done will then be sent back
to the FSW entity.

Notice that a global enumeration, EventTags, is used for keeping track of the tags
used in the model. The names of the tags conform to the following format:

SOURCE_DESTINATION_CommandOrMessageName

With this naming scheme, it will be easy to get an overview of the messaging in the
various parts of the model.

The minimal example that was presented above and shown in figure 4.9 does not
describe the finer details of getting the model to work as intended. The SimpleCloud
main class must provide functions to get access to the HCP, FSW or Cloud instances. If
there are more than one pair of HCP and FSW, one must be able to identify the correct
instance by associating identifiers of the relevant instances. Numerous initializations
are performed but not shown for the HCP, FSW and Cloud entities. Many details of the
body() functions have also been hidden in the figure. Finally, the example does not
show how assertions are implemented. Such details are available in the code listings
in section 3.2 in [3], however.

While the minimal example and the SimpleCloud example are acceptable for de-
scribing the basic methodology of modeling with SimJava2 and ExtSim, they are not
sufficiently complex to evaluate the proposed approach to test-driven scenario mod-
eling. The evaluation is therefore based on the test-driven modeling of a much more
complex and large system as described in section 4.8.

4.8 Applying method on case

To evaluate the proposed method (section 4.6) and its implementations (section 4.7),
the steps of the method were applied to the case study (section 4.5) as described in
the following paragraphs4.

4 There is no correspondence between the modeled system and the system developed by GN
Hearing, because it was decided by the company to isolate the modeling activities from the

158 Test-driven modeling of smart systems

Figure 4.10: Simplified block diagram for simulation model (SysML BDD).

Step 1: A block diagram of the simulation model was created using SysML block
definition diagram (BDD) notation as shown in figure 4.10. Notice that the associa-
tions are not used for communication between the classes but for identifying related
entities, e.g. the FSW of the HCP. Communication is facilitated by sending messages
as previously shown in figure 4.2. The SystemModel block represents the main class
of the simulation model. The EU, APP, HI, HCP, FSW, and Cloud blocks represent the
acting entities in the SUC. The ModelMonitor block is used for monitoring the state
of the Cloud block during simulation to ensure that the simulation is terminated
correctly. Data represents RFP and it contains a collection of status fields that are
used for checking correct routing during and after the simulation. Each class and
their associations are further described in chapter 5 in [3].

Step 2: SimJava2 was used as simulation framework. All acting entities (EU, APP,
HI, HCP, FSW, Cloud, and ModelMonitor) were derived from the Sim_entity class.
The SystemModel main class was derived from java.lang.object, and it included
the main() function to initialize the simulation framework, to instantiate the sub-
system classes, and to start the simulation. After termination of the simulation, the
main() function continues by calling a function assertFinal()to assert the post-
conditions.

activities of developing the actual system, such that interference from the case study did not
cause delays in the extremely tight development schedule.

4.8 Applying method on case 159

Step 3: The first action in the scenario (a) was added to the body() function of
the HCP, such that a command was sent for each EU associated with the HCP. For the
second step in the scenario (b), it was asserted that all FSW instances had uploaded
the correct number of Data elements.

Step 4-6: The model was compiled and executed (step 4). No pre-conditions was
added in this case study (step 5). The simulation was then started (step 6).

Step 7: The post-conditions failed as expected because the functionality of the
scenario actions (a) and (b) was not yet defined in the FSW and Cloud entities.

Step 11: The missing functionality of the scenario actions (a) and (b) was then
added to the body() functions of the FSW and Cloud entities.

Step 4-7: The model was initialized and executed again. No assertions failed after
implementing the body() functions.

Step 8: New test cases were added to the model incrementally by iterating back to
step 3, where new assertions representing post-conditions were added to the function
assertFinal(). Assertions representing invariants were added to the body() functi-
ons of the involved entities. Several iterations of steps (3, 4, 5, 6, 7, 8, and 11) were
completed to get an acceptable solution behaving according to the scenario from
section 4.5.2.

Step A-C: Some parts of the modeling were notoriously difficult. Especially the
loss of messages in the communication between various entities tended to cause in-
consistent system states in early versions of the model. The optional sub-steps A-C
were applied in such cases to provide robust patterns. A solid solution to the over-
all design problem required double-confirmation of several message exchanges due
to the randomness of the scenario. Such patterns were therefore formally modeled
and verified using the test-driven method described in chapter 3. Figure 4.5 shows
an example of one of the double-confirm patterns that were used in the model (step
A). Figure 4.6 shows four invariants expressed in the UPPAAL query language. The
green dots show that the queries passed formal verification (step B). The UPPAAL
models were manually converted to Java statements and incorporated into the simu-
lation model (step C). Several such formally verified patterns were made during the
development of the scenario models.

160 Test-driven modeling of smart systems

Further iterations of steps 3, 4, 5, 6, 7, 8 and 11 were executed to obtain a
complete solution for the scenario. Test-driven modeling according to the proposed
method was applied throughout the development of the scenario models. New func-
tionality was added to model in small successive steps. We always adhered the rule of
adding test case assertions, test case steps and finally system functionality in the se-
quence prescribed by the test-driven approach. Refactoring to clean up the model was
applied several times during the modeling sessions. Simulation results often depended
on the values of model parameters. Some values resulted in successful evaluation of
assertions, while other values resulted in failed assertions or even fail to complete the
simulations. To raise the level of trustworthiness, varying sets of parameters were
simulated whenever major changes were made to the model.

Step 9: Numerous simulations with different parameter values were executed to
obtain results for the mathematical forecasting that was used for predicting the func-
tionality and performance of the system under realistic conditions. We focused on
predicting the total number of events and the size of the event queues associated with
the Cloud entity. We also focused on predicting the simulation time to investigate
the feasibility of verifying the mathematical forecasting5. There are millions of act-
ing entities (EUs, APPS, HIs, HCPs, FSWs, etc.) in realistic worst-case scenarios.
However, the number of acting entities was limited to a maximum of approximately
200.000 for technical reasons and for limiting the required simulation time6.

Simulation series: Several parameter constellations were simulated. First, a base
simulation was run with a fixed set of parameters as described in section 2.1 and 2.2
in [4]. Then, three simulation series were run with varying parameters. The total
number of RFPs was varied between 5.000 and 50.000 in one series. The total number
of acting entities was varied between 20.102 and 200.102 in another series. The push
probability was varied between 0 and 100 % in a third series. All simulations were
conducted such that only one parameter was varied in each series. The other param-
eters were set to the same value as the base simulation. Further details concerning
the parametric variation are provided in section 2.1 in [4].

Simulation results: Several data were logged during simulation. The impact of design
decisions could therefore be analyzed and visualized. Examples of the results obtained
from the simulations are discussed below.

5 Different methods must be utilized to simulate with more than 200.000 to 300.000 acting entities
because it will not be possible to create and run more threads. Such alternative methods are
the discussed in section 4.9.7.

6 Each entity is executed in a separate thread in SimJava2, which limits the number of entities to
a little above 300.000 on the computer that was used for the simulations. Experiments showed
that using more than approximately 200.000 caused significantly increased simulation time,
which was probably due to significant growth in the overhead due to task swapping.

4.8 Applying method on case 161

Processing time (PT) is a measure of the time it takes to process a RFP from it has
been defined by the HCP until its final status has been set by the Cloud. Analyzing
the simulation data showed that PT is largely independent of the number of acting
entities and number of processed RFPs. However, lowering the push probability from
90 % to 60 % increased PT 3-4 times as shown in section 2.3 in [4].

The number of retries (NR) is a measure of how many times messages are re-send
to counteract the loss of data during transmission. Analyzing the simulation data
showed that no interaction required more than 6 retries. NR is largely independent of
the number of acting entities and RFPs. Lowering the push probability changes the
message patterns (decreasing the number push messages and increasing the number
of notify messages) but does not change the distribution of NR significantly as shown
in section 2.4 in [4].

The correlation of PT and NR is analyzed in section 2.5 in [4]. The correlation coef-
ficient ρ = −0, 101 calculated from the simulation data shows that there is virtually
no correlation between PT and NR.

Step 10: To get indications concerning the feasibility of simulating scenarios with
more entities and data packages, we wanted to estimate the simulation time (ST). To
predict the data traffic into the cloud for such scenarios, we wanted to estimate the
number of cloud events (CE) and the cloud event queue size (QS). Both CE and QS
are essential parameters of the intended cloud solution.

The mathematical forecasting was based on data fitting and extrapolation techniques.
Data fitting was used to identify a set of expressions that represented the data. It
was assumed that each of these functions could be extrapolated beyond the data with
acceptable accuracy.

Data fitting: We plotted ST, QE and QS versus the varied parameters for the sim-
ulation data obtained in step 9. All simulation data could be fitted with acceptable
accuracy using the following generic function:

F (X) = F0 ·
{
1 + k · (X −X0)

q
}

(4.1)

where F represent ST, QS or CE. F0 is the value of the function for the base simula-
tion. k is a scaling constant. X is the variable under consideration. X0 is the value
of the variable under consideration for the base simulation. And q is a quotient.

Table 4.3 shows 9 set of values for F0, X0, k and q that provide acceptable fit to
the simulated data. Graphs of simulation data and the functional fits are shown in
section 2.6 in [4].

162 Test-driven modeling of smart systems

Table 4.3: Data fitting constants used with equation (4.1).

Simulation Time Events Queue Size
F0 = 00:03:52 F0 = 107291 F0 = 481

Packages k = 2.60 · 10−6 k = 2.56 · 10−6 k = 2.70 · 10−2
X0 = 5000 q = 1.6 q = 1.6 q = 0

Entities k = 1.65 · 10−9 k = 3.72 · 10−5 k = 5.17 · 10−5
X0 = 20101 q = 2.1 q = 1.0 q = 1.0

Push probability k = −7.00 · 10−2 k = −7.15 · 10−2 k = −9.90 · 10−2
X0 = 90% q = 1.0 q = 1.0 q = 1.0

Estimating: If the variables are independent, then each estimator function can be
separated into a product of functions that only depends on one variable. Using the
notation F̃n = Fn/F0, we get the following generic function:

F (X,Y, Z) = F0 · F̃1(X) · F̃2(Y) · F̃3(Z) (4.2)

The specific estimator functions were derived from equation (4.1) and (4.2) using the
constants from table 4.3. The resulting functions are presented in section 2.7 in [4].
ST, CE and QS were then calculated for seven different scenarios that were later
simulated to investigate the accuracy of the estimator functions as described below.

Verifying estimates: The results of the verifications are shown in table 4.4. From
the table it is seen that (1) the simulated values of ST, CE, and QS deviated up to
+102%, -50%, and +6.4% from the estimates, respectively; and (2) the parameters of
the scenarios were far from realistic scenarios but rather close to the parameters used
in the simulation series from which the estimates are calculated. These results clearly
show that estimates should always be verified before they are used in forecasts, as done
here. The root causes of the deviations concerning ST and CE were not investigated
further, but hidden dependencies between the parameters were suspected of partially
invalidating the approach of separating the parameters in this particular case.

Using estimates: The estimates of ST and QE are somewhat imprecise and the
deviations may grow further for parameters representing different scenarios. However,
lacking other means for predicting performance, the estimator functions were used
for estimating a large but realistic scenario. The estimates for processing X millions
RFPs (confidential) in a realistic system (Y millions EUs (confidential), 1.000 HCPs,
90% push probability, 2 HIs and 1 APP per EU, and 1 FSW per HCP) are:

ST > 9.000 years QE > 1.6 · 1011 QS ∼ 100.000

These values clearly show that it is virtually impossible to simulate such scenarios.

4.8 Applying method on case 163

Table 4.4: Verification of the estimator functions.

Check nr.: #1 #2 #3 #4 #5 #6 #7

Parameters:

HCPS 50 60 70 80 100 120 75

RUNS 500 100 100 100 100 100 175

EUS / HCP 200 100 100 100 100 100 175

HIS / EU 2 2 2 2 2 2 2

Push Prob. 90 90 90 90 90 90 95

Entities 40.101 24.121 28.141 32.161 40.201 48.241 52.651

Packages 25.000 6.000 7.000 8.000 10.000 12.000 13.125

Simulation time:

Simulated 07:31:02 00:07:03 00:11:19 00:19:01 00:37:35 01:03:16 01:31:51

Predicted 03:43:19 00:04:47 00:07:18 00:12:11 00:34:06 01:24:09 01:24:53

Deviation 102,0% 47,4% 55,0% 56,1% 10,2% -24,8% 8,2%

Number of cloud events:

Simulated 4.226.190 147.685 193.420 255.968 377.847 511.053 563.999

Predicted 3.834.636 143.258 207.628 301.023 585.280 1.017.667 885.404

Deviation 10,2% 3,1% -6,8% -15,0% -35,4% -49,8% -36,3%

Cloud queue size:

Simulated 1.041 578 672 809 988 1.138 655

Predicted 978 581 681 781 981 1.181 652

Deviation 6,4% -0,5% -1,3% 3,6% 0,7% -3,6% 0,5%

164 Test-driven modeling of smart systems

4.9 Discussion

4.9.1 Results

The proposed method was applied to the modeling and verification of a large and
complex smart system. The modeled system contains 6 kinds of entities (EUs, HCPs,
APPs, HIs, FSWs and the Cloud) with an expected total of up to 4·Xmillion instances
(confidential).

Knowledge about the intended system was collected into a descriptive SysML model.
SysML was also used for creating a block diagram to provide an overview of the
scenario simulation model. The simulation model was developed in small steps ac-
cording to the proposed test-driven approach. The SimJava2 simulation framework
was modified and extended to facilitate easy modeling that allows communication
between entities without using ports.

The model has been simulated with different combinations of parameters. Simulations
were executed in series where only one parameter was varied. In one series, the model
was simulated with 5.000 to 50.000 processed RFT packages. In another series,
the model was simulated with 5.000 to 200.102 acting entities. In a third series,
the model was simulated with a push probability from 0% to 100%. Based on the
simulations we could conclude that the processing times for the RFT packages are
largely independent of the number of entities and packages. The push probability,
however, affects both the average processing time and the number of re-transmissions
that were required to compensate for lost message.

The simulation results were subjected to further analysis. Data fitting of simulation
results and extrapolating beyond the data allowed us to forecast mathematically
the required simulation time, number of cloud events and size of the cloud event
queue for other combinations of parameters. To verify the estimates provided by
the mathematical forecasting, additional series of simulations were executed. The
estimates of simulation time were generally too optimistic and required up to 100%
more than predicted. The estimates of the number of cloud events were found to
be somewhat too pessimistic. The actual number of events were only 50% of the
predicted value in one case. The estimates of the required cloud queue size were
found to be more precise. The maximum deviation between predicted and simulated
queue sizes was less than 7%.

The goals of the case study were outlined in section 4.5.4. The goal of evaluat-
ing the proposed method has been achieved by successfully conducting the activities
described in section 4.8 even though it was shown that the part concerning mathe-
matical forecasting is somewhat problematic because it may lead to imprecise results.

4.9 Discussion 165

The goal of verifying the applicability of the chosen modeling technologies has been
achieved successfully even though the choice of SimJava2 poses some limitations as
described in section 4.9.6. The results obtained from the case study indicates that
the proposed method is useful for developing viable solutions to the design problem.

The detailed goals for developing viable solutions were generally achieved. Absence
of potential deadlocks cannot be guaranteed by executing simulations without guar-
anteeing that all states and parts of the model have been exercised. However, the
absence of deadlocks was verified by formal model checking for basic interaction
patterns, which increases the trustworthiness of the overall simulation model. No
deadlocks were observed in the final versions of the simulation models. The goals of
verifying that stored data always have the correct values and that messages, events,
and data are routed correctly were achieved, by passing all assertions relating to
these requirements. The goal of estimating cloud loading (number of events, queue
size, etc.) was achieved by mathematical forecasting based on data fitting and ex-
trapolation techniques. However, the estimates cannot be verified as described in
section 4.9.5. The goal of exploring the design space was achieved by simulating the
model with different parameter values. Feasible ranges for sensitive parameters were
identified during such experiments.

4.9.2 Observations

During the modeling sessions, it was observed that:

(1) Using a programming language (Java) for the simulation model caused a ten-
dency to change the focus from systems thinking to programming.

(2) Comprehending and maintaining an overview of exchanging messages in com-
plex simulation models can be difficult, which occasionally makes it challenging
to create good solutions to the design problem.

(3) Defining stop conditions can be very tricky, because the simulation must stop
eventually but not before all data and entities have reached the states that
allow the post-conditions to pass.

For issue (1), it was found easier to make a few formal models in UPPAAL to solve
specific problems and later convert these models to scenario simulation models. Sys-
tems thinking and solving programming problems could therefore be separated into
separate phases.

Issue (2) was addressed by creating SysML sequence diagrams of selected parts of the
modeled scenario, SysML internal block diagrams showing message exchanges, and

166 Test-driven modeling of smart systems

call graphs showing the functional hierarchies. The UPPAAL models also helped to
provide a better overview.

Issue (3) may appear to be trivial, but it turned out to be somewhat difficult to define
proper stop conditions. For the case study, this issue was addressed partly by adding
a ModelMonitor entity that checked the state of all data stored within the Cloud
at regular intervals. The effort and insight required to define proper stop conditions
should not be underestimated.

Using the test-driven approach with such mitigations resulted in a process that was
relatively easy to execute. The cognitive load during modeling was perceived as low,
even though it was not quantified in this project.

4.9.3 Learning points

Important learning points from conducting the case study are:

• Useful information is hard to get from stakeholders or existing documentation:

– Much time was spent on identifying relevant use cases and scenarios.
– It was difficult to get accurate information concerning the desired steps

and interactions of the scenario under consideration.
– Test cases based on well-defined requirements are needed for using test-

driven modeling methods successfully. Clarifying and converting require-
ments into usable test cases required much effort.

• Textual modeling using programming languages tend to cause issues that pre-
vent developing the best solution. Graphical modeling with SysML and UP-
PAAL was useful for maintaining an overview of the problem and for obtaining
well-designed solutions.

• The model is easily broken when large or many changes are made. Repairing
models to pass assertions can be very time consuming. It was found better
to make changes in very small increments and run simulations between each
change.

• Large scenarios require much time to simulate. It was found better to test with
small scenarios during the development of the model. To ensure that the model
can pass assertions in all cases, larger scenarios must be simulated regularly,
though.

• Manual data fitting is somewhat cumbersome and error prone. A more auto-
mated process using dedicated tools is desirable.

4.9 Discussion 167

• Estimator functions for mathematical forecasting can be very imprecise (prob-
ably due to hidden dependencies between parameters) and should be checked
by comparing estimates and simulations results for various scenarios.

Otherwise, the proposed method was found to be easy to apply to the case study.

4.9.4 Advantages

The proposed method has several advantages:

1. It allows test-driven modeling and verification of very large and complex sys-
tems, which is difficult or impossible using previous methods.

2. Simulating all parts of the model concurrently exposes unintended emergent
behavior, which is not exposed or captured by e.g. unit testing.

3. Using formal model checking of basic interactions increases the trustworthiness
of the models.

4. Mathematical forecasting based on data fitting and extrapolating allow analysis
of large scenarios that cannot be simulated or otherwise analyzed.

5. It utilized only existing tools which may be substituted independently by better
tools in the future without changing the methodology.

6. Programmers with experience in TDD and Java can easily learn the method.

7. Existing software source code can easily be included in the models, if it is
written in the same or compatible programming languages (e.g. Java source
code in SimJava2 models, or assembler source code in SystemC models).

The proposed method is therefore considered a major contribution to the field of
test-driven modeling of CECPS systems.

4.9.5 Disadvantages

The proposed method has the following disadvantages:

1. Many simulations are required with parameter co-variation to estimate large-
scale scenarios.

168 Test-driven modeling of smart systems

2. Mathematical forecasting is difficult, potentially imprecise and cannot be thor-
oughly checked due to infeasible simulation times.

3. Programming skills are required for creating simulation models, and knowledge
of formal modeling is required if the optional steps are utilized.

Most severe is the disadvantage of potentially imprecise mathematical forecasting.
Moderately imprecise estimates are likely to be very useful in the early phases of
engineering the system under consideration. The knowledge of the system may be
somewhat limited and the models may be the result of much abstraction and simpli-
fication. Moderate precision may therefore be sufficient at this stage of development.
Extremely imprecise estimates that deviate orders of magnitudes from correct val-
ues are useless, because it is impossible to conclude anything from the forecasts.
Contrarily, such estimates may lead to wrong conclusions, if the uncertainty is ig-
nored. Guesstimating may provide results that are more reliable in such extreme
cases. Between these cases, there is a range where the imprecision may be large but
not extreme. In such cases, the estimates may provide knowledge of system prop-
erties, which may otherwise be very difficult to get. Here, the estimates may be of
strong value even though the precision is limited. Future work should explore other
simulation frameworks that might allow simulating larger scenarios and reducing the
need for mathematical forecasting.

4.9.6 Limitations

The proposed method and its implementation have some limitations:

1. SimJava2 uses one thread per entity, which limits the number of entities to
approximately 200.000 on the computer used in the case study7.

2. Simulating with relevant parameters may be impractical, because varying pa-
rameters simultaneously may result in extremely long simulation times8.

3. Modeling and verification of user interfaces are not included in the method.

4. Unit testing of individual entities is not included in the method.

7 Computer: 16 GHz RAM and Intel i7-3630QM CPU @ 2.40GHz.
8 In the case study, scenarios with 200.000 entities and 5.000 packages could be simulated in less

than 12 hours, and scenarios with 20.000 entities and 50.000 packages could be simulated in less
than 5 hours. However, simulating with 200.000 entities and 50.000 packages was estimated
to take from 10 days to 3 months depending on the value of the push probability. Realistic
scenarios with 4·X million entities (confidential) and Y million packages (confidential) was
estimated to require more than 9.000 years!

4.9 Discussion 169

5. The case study only addressed discrete event simulations, while cyber-physical
systems often necessitate heterogeneous models that require several modes of
computation during simulation.

These limitations will not be relevant for all potential users of the method, but they
should nevertheless be addressed in future work.

4.9.7 Improvements

The disadvantages and limitations of the proposed method can partly be addressed by
introducing improvements to the implementation of the proposed method. Reduction
of simulation time is of major importance because:

• It will allow simulating larger scenarios and reduce the need for potentially
imprecise mathematical forecasting.

• It will reduce the time needed for designing and analyzing systems and thus
increase engineering efficiency.

Several methods for reducing simulation time are possible:

1. Use super computers with massive parallelism.

2. Use distributed computing.

3. Use more efficient simulation frameworks.

4. Use SimJava2 with brokers to avoid massive generation of threads.

5. Create new simulation engine.

These proposals are further discussed in section 2.2 in [3].

4.9.8 Future work

Eliminating the need for mathematical forecasting should be prioritized in the future
work due to its limitations. However, significantly faster simulators are needed for
this. The case study indicated that the required simulation time for a realistic scenario
would exceed 9.000 years. The simulator should therefore be able to execute at least

170 Test-driven modeling of smart systems

1.000.000 times faster to allow simulation of such scenarios. Several breakthroughs
are needed to achieve this. Future work should therefore be devoted to the following:

• Substituting SimJava2 with a thread-lean simulation framework such as the
core of CloudSim to reduce simulation time.

• Incorporating distributed computing in the simulation framework to reduce
simulation time further.

• Using super computers with massive parallel computing for fast distribution of
simulation tasks.

• Incorporating multi-level simulation techniques [48] in the simulation framework
to reduce simulation time further.

Finally, more cases should be modeled to verify the method further.

4.9.9 Conclusion

Amethod for test-driven modeling of smart systems has been proposed and described.
The method utilizes a combination of descriptive models (SysML), formal models
(UPPAAL), scenario simulation models (SimJava2), and mathematical forecasting
based on data fitting and extrapolation techniques. Other tools may substitute the
chosen tools without changing the method.

By using the proposed method, it was possible to analyze and design scenarios for
transmitting and processing data reliably in a cloud-enabled hearing system. Basic
interactions were verified by using formal model checking with the UPPAAL tool.
SimJava2 was used for creating a simulation model of the overall scenario. The
simulation model was executed in several series with varying values for parameters of
interests. Fitting the obtained simulation data with mathematical functions allowed
us to predict system qualities for scenarios that were too large to simulate.

The modeling and simulating provided insight into the critical parameters and their
impact on system behavior and performance. We were able to quantify the impact,
and define acceptable ranges for the values of these parameters.

Future work is needed to overcome some difficulties of the proposed method. Identi-
fying and using more efficient simulation frameworks are required to allow simulation
of larger systems and to reduce simulation time. Several breakthroughs are needed
to create feasible simulators, though. Until such simulators become available, the
proposed method provides a reasonable alternative to analyze CECPS systems with
millions of users.

4.10 References 171

4.10 References
[1] Allan Munck

"Hearing systems."
Technical report, Technical University of Denmark, Department of Applied
Mathematics and Computer Science.

[2] Allan Munck
"Model-Based Systems Engineering Guidelines."
Technical report, Technical University of Denmark, Department of Applied
Mathematics and Computer Science.

[3] Allan Munck
"Smart systems modeling."
Technical report, Technical University of Denmark, Department of Applied
Mathematics and Computer Science.

[4] Allan Munck
"Smart systems simulation code and results."
Technical report, Technical University of Denmark, Department of Applied
Mathematics and Computer Science.

[5] Allan Munck and Jan Madsen.
"Test-driven modeling and development of cloud-enabled cyber-physical smart
systems".
Accepted for presentation at 11th Annual IEEE International Systems Confer-
ence, 2017. To be published in the conference proceedings in IEEE IEL and IEEE
Xplore.

[6] Scott W. Ambler.
"Agile model driven development is good enough."
IEEE Software 20.5 (2003): 71-73.

[7] Scott W. Ambler.
"Agile Model Driven Development (AMDD)."
XOOTIC Symposium 2006, (p.13). 2006.

[8] David S. Janzen and H. Saiedian.
"Does test-driven development really improve software design quality?"
Software, IEEE 25.2 (2008): 77-84.

[9] Forrrest Shull et al.
"What do we know about test-driven development?"
IEEE software 27.6 (2010): 16-19.

[10] Wikipedia.
"Smart system."

172 Test-driven modeling of smart systems

Revision: 14:59, 5 January 2015,
https://en.wikipedia.org/wiki/Smart_system.

[11] Diane Cook and Sajal Das.
"Smart environments: Technology, protocols and applications."
Vol. 43. John Wiley & Sons, 2004.

[12] Max Mühlhäuser.
"Smart products: An introduction."
Constructing ambient intelligence. Springer Berlin Heidelberg, 2007. 158-164.

[13] Georges Akhras.
"Smart materials and smart systems for the future."
Canadian Military Journal 1.3 (2000): 25-31.

[14] Accellera - Systems Initiative.
"SystemC."
http://www.accellera.org/downloads/standards/systemc

[15] IEEE Standards Association.
"IEEE Standard for Standard SystemC R© Language Reference Manual."
9 January 2012, IEEE Std 1666TM - 2011 (Revision of IEEE Std 1666-2005)
http://standards.ieee.org/getieee/1666/download/1666-2011.pdf

[16] Peter Gorm Larsen, Kenneth Lausdahl, and Nick Battle.
"VDM-10 Language Manual."
kurser.iha.dk/eit/tivdm2/VDM10_lang_man.pdf

[17] The University of Edinburgh - School of Informatics
"SimJava - Website."
http://www.icsa.inf.ed.ac.uk/research/groups/hase/simjava/

[18] Mark Little.
"JavaSim simulation classes and examples."
The University of Newcastle upon Tyne, Department of Computing Science,
Computing Laboratory.
https://github.com/nmcl/JavaSim

[19] Mark Little.
"Discrete event simulation in C++."
The University of Newcastle upon Tyne, Department of Computing Science,
Computing Laboratory.
https://github.com/nmcl/C--SIM

[20] Univeristy of Georgia - Computer Science Department.
"JSIM: A Java-Based Simulation and Animation Environment."
http://cobweb.cs.uga.edu/~jam/jsim/

https://en.wikipedia.org/wiki/Smart_system
http://www.accellera.org/downloads/standards/systemc
http://standards.ieee.org/getieee/1666/download/1666-2011.pdf
kurser.iha.dk/eit/tivdm2/VDM10_lang_man.pdf
http://www.icsa.inf.ed.ac.uk/research/groups/hase/simjava/
https://github.com/nmcl/JavaSim
https://github.com/nmcl/C--SIM
http://cobweb.cs.uga.edu/~jam/jsim/

173

[21] The University of Edinburgh - School of Informatics.
"SimJava - Download - Version 2.0."
http://www.inf.ed.ac.uk/research/isdd/admin/package?download=62

[22] The University of Edinburgh - School of Informatics.
"SimJava v2.0 API Specification."
http://www.icsa.inf.ed.ac.uk/research/groups/hase/simjava/doc/
index.html

[23] The University of Edinburgh - School of Informatics.
"SimJava - Tutorial."
http://www.dcs.ed.ac.uk/home/simjava/tutorial/

[24] G. Brambilla, M. Picone, S. Cirani, M. Amoretti and F. Zanichelli.
"A simulation platform for large-scale internet of things scenarios in urban en-
vironments."
Proceedings of the First International Conference on IoT in Urban Space (pp.
50-55). ICST (Institute for Computer Sciences, Social-Informatics and Telecom-
munications Engineering), 2014.

[25] L. Zhang, X. Ma, J. Lu, T. Xie, N. Tillmann and P. De Halleux.
"Environmental modeling for automated cloud application testing."
IEEE software 29.2 (2012): 30-35.

[26] L. Zhang, T. Xie, N. Tillmann, P. De Halleux, X. Ma and J. Lv.
"Environment modeling for automated testing of cloud applications."
IEEE Software, Special Issue on Software Engineering for Cloud Computing 1
(2012).

[27] Markus Miche, K. Baumann, J. Golenzer and M. Brogle.
"A simulation model for evaluating distributed storage services for smart product
systems."
International Conference on Mobile and Ubiquitous Systems: Computing, Net-
working, and Services, (pp. 162-173). Springer Berlin Heidelberg, 2011.

[28] Frank Dabek, B. Zhao, P. Druschel, J. Kubiatowicz and I. Stoica.
"Towards a common API for structured peer-to-peer overlays."
International Workshop on Peer-To-Peer Systems (pp. 33-44). Springer Berlin
Heidelberg, 2003.

[29] Alberto Medina, A. Lakhina, I. Matta and J. Byers.
"BRITE: An approach to universal topology generation."
Modeling, Analysis and Simulation of Computer and Telecommunication Sys-
tems, 2001. Proceedings (pp. 346-353). Ninth International Symposium on.
IEEE, 2001.

http://www.inf.ed.ac.uk/research/isdd/admin/package?download=62
http://www.icsa.inf.ed.ac.uk/research/groups/hase/simjava/doc/index.html
http://www.icsa.inf.ed.ac.uk/research/groups/hase/simjava/doc/index.html
http://www.dcs.ed.ac.uk/home/simjava/tutorial/

174 Test-driven modeling of smart systems

[30] Hitesh Marwaha.
"A Comprehensive Review of Cloud Computing Simulators."
Journal of Information Sciences and Computing Technologies 4.1 (2015): 281-
286.

[31] Mr. Manjunatha s, Bhanu Prakasha and H. M. Balakrishna.
"A Detailed Survey on various Cloud computing Simulators"
International Journal of Engineering Research, Volume No.5 Issue: Special 4,
pp: 790-991, 20 May 2016.

[32] Pericherla S. Suryateja.
"A Comparative Analysis of Cloud Simulators."
International Journal of Modern Education and Computer Science (IJMECS)
8.4 (2016): 64.

[33] M. A. Kaleem and P. M. Khan.
"Commonly used simulation tools for cloud computing research."
Computing for Sustainable Global Development (INDIACom), 2015 2nd Inter-
national Conference on. IEEE, 2015.

[34] Utkal Sinha and Mayank Shekhar.
"Comparison of Various Cloud Simulation tools available in Cloud Computing."
International Journal of Advanced Research in Computer and Communication
Engineering 4.3 (2015).

[35] Kalpana Ettikyala and Y. Rama Devi.
"A Study on Cloud Simulation Tools."
International Journal of Computer Applications 115.14 (2015).

[36] Arif Ahmed and Abadhan Saumya Sabyasachi.
"Cloud computing simulators: A detailed survey and future direction." Advance
Computing Conference (IACC), 2014 IEEE International. IEEE, 2014.

[37] Azin Oujani and R. Jain.
"A Survey on Cloud Computing Simulations and Cloud Testing."
https://www.cs.wustl.edu/~jain/cse567-13/ftp/cloud.pdf.

[38] Rajkumar Buyya, Rajiv Ranjan and Rodrigo N. Calheiros.
"Modeling and simulation of scalable Cloud computing environments and the
CloudSim toolkit: Challenges and opportunities."
High Performance Computing & Simulation, 2009. HPCS’09. International Con-
ference on. IEEE, 2009.

[39] Rodrigo N. Calheiros et al.
"Cloudsim: A novel framework for modeling and simulation of cloud computing
infrastructures and services."
arXiv preprint arXiv:0903.2525 (2009).

https://www.cs.wustl.edu/~jain/cse567-13/ftp/cloud.pdf

175

[40] Rodrigo N. Calheiros et al.
"CloudSim: a toolkit for modeling and simulation of cloud computing environ-
ments and evaluation of resource provisioning algorithms."
Software: Practice and Experience 41.1 (2011): 23-50.

[41] Rodrigo N. Calheiros et al.
"EMUSIM: an integrated emulation and simulation environment for modeling,
evaluation, and validation of performance of cloud computing applications."
Software: Practice and Experience 43.5 (2013): 595-612.

[42] Antonio Navarro Perez and Bernhard Rumpe.
"Modeling cloud architectures as interactive systems."
arXiv preprint arXiv:1408.5705 (2014).

[43] Faruk Caglar et al.
"Transitioning to the cloud?: a model-driven analysis and automated deployment
capability for cloud services."
Proceedings of the 1st International Workshop on Model-Driven Engineering for
High Performance and CLoud computing. ACM, 2012.

[44] Alexander Bergmayr et al.
"UML-based Cloud Application Modeling with Libraries, Profiles, and Tem-
plates."
CloudMDE@ MoDELS. 2014. (pp. 56-65).

[45] Martin Fleck et al.
"Towards Pattern-Based Optimization of Cloud Applications."
CloudMDE@ MoDELS. 2014. (pp. 16-25).

[46] Vilen Looga et al.
"Mammoth: A massive-scale emulation platform for internet of things."
2012 IEEE 2nd International Conference on Cloud Computing and Intelligence
Systems. Vol. 3. IEEE, 2012.

[47] Vilen Looga.
"Energy-awareness in large-scale internet of things networks."
Proceedings of the 2014 workshop on PhD forum. ACM, 2014.

[48] Gabriele D’Angelo, Stefano Ferretti, and Vittorio Ghini.
"Simulation of the Internet of Things."
To appear in Proceedings of the IEEE 2016 International Conference on High
Performance Computing and Simulation (HPCS 2016).

[49] Pradeeban Kathiravelu and Luis Veiga.
"Concurrent and distributed cloudsim simulations."
2014 IEEE 22nd International Symposium on Modelling, Analysis & Simulation
of Computer and Telecommunication Systems. IEEE, 2014.

176 Test-driven modeling of smart systems

[50] Pradeeban Kathiravelu and Luis Veiga.
"An adaptive distributed simulator for cloud and mapreduce algorithms and ar-
chitectures."
Utility and Cloud Computing (UCC), 2014 IEEE/ACM 7th International Con-
ference on. IEEE, 2014.

[51] Cristyan Manta-Caro and Juan M. Fernández-Luna.
"A discrete-event simulator for the web of things from an information retrieval
perspective."
2014 IEEE Latin-America Conference on Communications (LATINCOM). IEEE,
2014.

[52] Bhathiya Wickremasinghe, Rodrigo N. Calheiros and Rajkumar Buyya.
"Cloudanalyst: A cloudsim-based visual modeller for analysing cloud computing
environments and applications."
2010 24th IEEE International Conference on Advanced Information Networking
and Applications. IEEE, 2010.

[53] Gerd Behrmann, Alexandre David and Kim G. Larsen.
"A Tutorial on Uppaal 4.0 - Updated November 28, 2006"
http://www.uppaal.com/admin/anvandarfiler/filer/uppaal-tutorial.
pdf.

http://www.uppaal.com/admin/anvandarfiler/filer/uppaal-tutorial.pdf
http://www.uppaal.com/admin/anvandarfiler/filer/uppaal-tutorial.pdf

Chapter 5

Discussion

The topics of the project and this thesis were introduced in chapter 1. The project
was executed in the context of hearing systems and it was conducted at the company
GN Hearing. Methods for selecting MBSE tools were discussed in chapter 2 and
modeling guides for MBSE are presented in section 2 in [1]. Methods for test-driven
modeling of embedded systems and smart systems were discussed in chapter 3 and 4,
respectively. Guidelines for using all proposed methods are presented in section 3
in [1].

This chapter discusses and summarizes the overall research. The overall results and
answers to the research questions are presented in section 5.1 and the evaluations of
the research hypotheses are presented in section 5.2. Section 5.3 presents observations
that were registered during the research. Problems and open issues are discussed
in section 5.4 and 5.5, respectively. Future work is discussed in section 5.6. The
potential impact of the research is discussed in section 5.7. Section 5.8 presents the
overall conclusion of the thesis. References are finally listed in section 5.9.

5.1 Results and research answers

This section summarizes the research answers (RA) concerning the research questions
(RQ) that were defined in section 1.5. The main research questions, RQ 1 and RQ

178 Discussion

2, are answered by answering the derived questions. The answers to the questions
derived from RQ1 are discussed in section 5.1.1. The answer to the questions derived
from RQ2 are discussed in section 5.1.2.

5.1.1 MBSE tool selection

The research questions concerning selection of MBSE tools were addressed in chap-
ter 2 and they can be answered accordingly:

RQ 1.1 Which methods have previously been applied to selecting, implementing
and using systems engineering tools?

RA 1.1 Literature search has revealed several existing methods for selection of
vendors, requirements management tools, modeling tools, simulation tools,
software packages, etc. Most selection methods only concern comparative
ratings of tools based on evaluations of relevant selection criteria. Some
practitioners use qualitative methods where features, functionality and
performance of tools are evaluated and compared without scoring the
alternatives. Other practitioners use quantitative methods where the re-
quirements are evaluated for each tool, such that a ranking of the tools
can be calculated by using WSM, AHP or similar methods. Some re-
searchers, e.g. Gotel and Mäder [14][15], also consider other aspects of
selecting, implementing and using tools to provide guides for obtaining a
wider solution that include tools, processes, people, etc.

RQ 1.2 Which limitations or disadvantages of existing methods for selecting and
implementing systems engineering tools necessitate modified or new meth-
ods?

RA 1.2 Previous methods for tool selection concern very specific domains such as
tools for requirements management, modeling and simulation. Compre-
hensive methods for general selection of systems engineering tools have
not been found during the research. No selection criteria exists for select-
ing general systems engineering tools. New methods for selecting of such
tools are therefore needed. The proposed method include steps to obtain
requirements and selection criteria for all types of systems engineering
tools.

Known methods only concerned single-tool scenarios with simple feature
evaluation or ranking of tools. No methods addressed the multi-tool sit-
uation where several tools are needed to meet all essential needs. New
methods to accommodate the multi-tool scenarios are therefore needed.
The proposed method includes steps for both single-tool and multi-tool

5.1 Results and research answers 179

scenarios.

No known methods used any form of verifying and validating the choice of
tools. However, it is essential to verify the tool solution and know exactly
which requirements the tools fulfill and which requirements are dissat-
isfied. Similarly, it is essential to validate the tool solution and identify
requirements that may otherwise be overlooked or ignored in the selection
process. New methods that include verification and validation of the se-
lected tool solution are therefore needed. The proposed method includes
such steps as described below.

RQ 1.3 How can tool solutions be verified and validated before they are imple-
mented and used on a daily basis?

RA 1.3 Tool solutions can be verified by analyzing the gaps between tool re-
quirements and tool capabilities. It is therefore possible to identify the
requirements that cannot be satisfied. No previous method includes such
gap analyses.

Literature review has shown that most selection methods rely on generic
selection criteria that have not be validated. More reliable selection cri-
teria are obtained by the methods that utilize surveys or interviews of
stakeholders to obtain requirements. However, there are risks of over-
looking important requirements and of stating superfluous requirements
(gold-plating). Combining interviews with observations of stakeholders
performing their tasks related to systems engineering provide the most
reliable method for obtaining requirements for a tool solution that can be
validated.

RQ 1.4 What can be achieved by using existing or newly proposed methods for
selecting and implementing tools?

RA 1.4 The author (me) has observed several cases where systems engineering
tools were selected after a brief unstructured evaluation of few tools that
had been recommended by persons that were trusted as reliable sources.
In such cases, the required functionality cannot be guaranteed, though.
The use of such unstructured methods may therefore cause limited scope
and reduced usefulness of the acquired tool setup.

By using a structured approach, the analyst can ensure that relevant re-
quirements are included in the analyses. Systematic searching for tools
reduces the likelihood of overlooking good candidates. Thoroughly eval-
uating tools and correlating the tool capabilities to the actual needs in-
crease the likelihood of obtaining the best possible candidates. Inclusion
of stakeholders in the selection process reduces the risk of deliberate or
unintended rejections of the chosen solutions.

180 Discussion

RQ 1.5 What are the advantages of the proposed method for selecting, implement-
ing and using tool solutions?

RA 1.5 The proposed method outlines four major steps for justifying and initiat-
ing the change project, developing tool specification and evaluation crite-
ria, investigating tools and selecting best candidates, and implementing,
maintaining and evolving the chosen solution. All relevant phases in the
process of changing from documents to models are therefore considered
in the proposed method.

Obtaining requirements for MBSE tools is particularly difficult due to the
differences of the various activities in systems engineering. The classifica-
tions of system characteristics and modeling disciplines allow the analyst
to ask specific questions to extract the relevant requirements from the
stakeholders. The proposed method includes further steps for analyzing
and specifying requirements to ensure that MBSE tools are evaluated on
relevant criteria.

In many cases, it will not be possible to identify a single tool that meets
all requirements. However, no prior method acknowledges or addresses
this problem. The proposed method supports both single-tool and multi-
tool scenarios. The use of set theory and simple mathematical operations
allow the analyst to determine feasible sets of tools that in combination
meets all essential requirements. The best set of tools can be chosen sub-
sequently by ranking the feasible sets and select the set with highest score.

The proposed method includes gap analyses not only to verify the cho-
sen solution but also to assist in the selection of promising candidates.
This analysis can be performed without implementing and using the tools
on daily basis. The gaps are analyzed for each category and priority-
level of requirements to facilitate easy overview of the results. Therefore,
non-conformance to e.g. required, desired and optional features can be
demonstrated easily.

The proposed method uses interviews to obtain requirements with the op-
tional possibility of using observational studies of stakeholders performing
work tasks that are relevant for the tool solution. This decreases the likeli-
hood of overlooking essential requirements and increases the likelihood of
avoiding superfluous requirements compared to methods that use generic
selection criteria. Having the correct requirements increases the likelihood
of selecting tool solutions that can be validated.

RQ 1.6 What are the disadvantages and limitations of the proposed method for
selecting, implementing and using tool solutions.

RA 1.6 Observing as a method for obtaining tool requirements is only optional
in the proposed method. Basing the analyses on interviews is more likely

5.1 Results and research answers 181

to cause over-specification because stakeholders have a tendency to ask
for more than they really need. Essential requirements may also be over-
looked by relying on interviews. However, the effects of using observa-
tions rather than interviews cannot be derived from this research, because
stakeholder observations have not been used in the case studies. Such re-
search is left for future work.

The proposed method is highly systematic and requires much dedication
and work to use. It therefore requires much time and consumes many
resources that may not always be available. Using a thorough method
in the selection process may also uncover other issues concerning work
methods and processes. This may lead to other costly change projects
that could otherwise be avoided, because premature solving of such is-
sues may be unnecessary. A comprehensive method may thus abstain
some organizations to undertake the work and use easier but less reliable
methods.

The research thus uncovered scenarios that have not been sufficiently considered in
previous work. A comprehensive method with novel elements was therefore developed
and subsequently tested on two case studies with good results. Potential improve-
ments and future work have been identified and proposed.

5.1.2 Test-driven modeling

The research concerning test-driven modeling of embedded and smart systems is
described in chapter 3 and 4. The research questions can be answered accordingly:

RQ 2.1 How have test-driven methods previously been applied to systems model-
ing?

RA 2.1 Literature search has revealed several existing methods for test-driven
modeling of systems or system parts. Zhang [2] described a method for
test-driven software modeling utilizing simulations of message sequence
charts (MSC). Hayashi et al. [3] described a method and developed a
simple tool for test-driven UML modeling of software systems that uti-
lize simulations of unit and scenario tests. Luna et al. [4][5] described
test-driven, model-based web engineering with a focus on usability of
web applications. Zhang and Patel [6] described an agile model-driven
development approach for software development utilizing UML sequence
diagrams for tests and UML state machines for system models. Zugal
et al. [7] presented a test-driven modeling suite to support test-driven

182 Discussion

modeling of declarative processes. Mou and Ratiu [8] proposed a method
for model-based, test-driven systems development with seemingly limited
scope. Dietrich, Dressler, Dulz, German, Djanatliev, Schneider, Yupa-
tova, and Deitsch developed a test-driven agile simulation method and
a complex tool chain called VeriTAS (later SimTAny) utilizing UML,
SysML, MARTE, UPT, and various tools and frameworks [9][10][11][12][13].
See section 3.3 and 4.4 for further details concerning test-driven modeling
and related methods.

RQ 2.2 Which limitations of existing methods for test-driven systems modeling
necessitate modified or new methods?

RA 2.2 Previous methods focus mainly on unit "testing" and simulating scenarios
to demonstrate expected results. Such methods are not likely to capture
unintended emergent behavior because only expected results are checked.
New methods that monitor selected variables in all states to expose errors
that emerge from combining all system parts are therefore needed.

Using simple simulation techniques to verify systems cannot guarantee
functionality or performance because erroneous states may not be exe-
cuted in the scenarios. New methods that utilize formal and statistical
model checking to exercise the entire state space are therefore needed.

Previous methods require specialized modeling languages and tool chains
that are difficult to learn, use, maintain and evolve. New methods are
therefore needed to facilitate test-driven modeling using only existing sim-
ple tool that can be applied independently without any need for compli-
cated integration.

A method for test-driven modeling of embedded systems has been pro-
posed in this thesis to overcome the limitations of previous methods. The
proposed method is based on formal and statistical model checking and
can be used to guarantee functionality and performance for embedded
and similar systems. The choice of modeling formalism and tools limits
the size and complexity of systems that can be modeled and verified.

A method for test-driven modeling of smart systems has been proposed
to overcome the limitations of previous methods (including the above-
mentioned proposed method for test-driven modeling of embedded sys-
tems). The method for smart systems can be used for modeling very large
and complex systems. This method utilizes several verification techniques
to ensure functionality and performance of basic interactions, to simulate
the overall systems with medium to large usage scenarios, and to predict
the performance of very large realistic scenarios.

Both proposed methods are limited to systems that can be modeled with
the discrete event formalism. Other possible forms of test-driven, model-
based systems engineering have been outlined for future work.

5.1 Results and research answers 183

RQ 2.3 What are the advantages, disadvantages and limitations of different veri-
fication techniques for test-driven systems modeling?

RA 2.3 The following techniques can be used for verifying the functionality and
performance of systems:

Simulating is used by all reviewed methods to predict system behavior.
Unit simulating is used for verifying sub-systems, parts and components.
Scenario simulating is used for verifying scenarios of the overall systems.
Simulating can scale to very large systems and is mainly limited by sim-
ulation time. Simulating does not necessarily exercise the entire state
space of the system, so functionality and performance can be estimated
but not guaranteed. Simulating is also used in the proposed methods. In
the method for TDM of embedded systems, simulating is used for inspec-
tion of system states and properties versus time. In the method for TDM
of smart systems, simulating is used as the main instrument of obtaining
verification data.

Formal model checking has not been used in previous test-driven methods,
but it is used in the proposed methods. In the TDM method for embed-
ded systems, FMC is used for verifying the behavior and performance of
the overall systems. Verification results can be guaranteed because all
reachable states can be analyzed. To avoid state space explosion, much
abstracting and simplifying must be done, which limits the fidelity of the
models. In the TDM method for smart systems, FMC is used for design-
ing and verifying patterns for guaranteed functionality and performance
of basic interactions. FMC cannot be used for verifying the overall system
in this case because the size and complexity of the system models would
cause state explosion and memory exhaustion during verification.

Statistical model checking has not been used in previous test-driven meth-
ods, but it is used in the proposed method for TDM of embedded systems.
Here, SMC is used for estimating probabilities and values of systems prop-
erties. System functionality and performance can only be guaranteed with
a certain (specifiable) probability. SMC was found to be more reliable
than simple simulating for finding peak values of properties with large
peak-to-average ratios. SMC can theoretically be used for verifying very
large and complex systems, but limitations of the UPPAAL-SMC verifier
prevent practical and efficient use of this techniques for large and complex
smart systems due to slow execution. Other statistical simulators may be
faster but have not been tested in this project.

Mathematical forecasting using data fitting and extrapolation techniques
allows predicting results for scenarios that are too large and complex to
be simulated. The technique requires simulating series of scenarios with

184 Discussion

fewer users, less complex data, etc., to obtain simulation results for the
data fitting and extrapolation. This technique has lower trustworthiness
than direct simulating or model checking, but it can be used in cases
where no other method can provide answers. Mathematical forecasting is
therefore included in the proposed TDM method for smart systems.

Constraint checking can be used for verifying the static structure of sys-
tem models. Such methods cannot verify the functionality or performance
of systems, but they can be used for validating fundamental models. Re-
search concerning such methods is left for future work.

RQ 2.4 What can be achieved and what are the experiences of using test-driven
modeling for design of embedded and smart systems?

RA 2.4 Different experiences have been reported for previous method. Zhang [2]
reported increased productivity and quality when their method was ap-
plied on large projects. Zhang and Patel [6] reported threefold productiv-
ity increase and less defects, despite several team members lacked prior
experience. Zugal et al. [7] reported reduced cognitive load during mod-
eling, increased perceived quality, and improved communication between
domain and modeling experts. They also found that the sequential nature
of test cases provides intuitive way of modeling. Dietrich et al. [9] applied
their method on existing cases and found error that had not been found
with previous methods.

The proposed method for TDM of embedded systems was applied to an
industrial case, where critical system parameters identified. Knowledge of
the system and its parts was also gained during the modeling activities.
Easy experimentation and exploration of the design space identified sev-
eral feasible design variants and excluded others. Further development of
hardware and software on doomed concepts was therefore avoided.

The proposed method for TDM of smart systems was applied to an indus-
trial case with 4·X million (confidential) expected acting entities (users,
devices, applications, and cloud services). Using the method was straight-
forward. Significant insight into the critical parameters of the system was
gained during modeling. The method allowed easy experimentation to
develop a solution that passed verification of all expressed requirements.

RQ 2.5 What are the advantages of the proposed methods for test-driven systems
modeling?

RA 2.5 The proposed methods use only existing tools that can be used without
modifications. There is no need for tool integration, model transforma-
tions, or similar activities that otherwise require creation and maintenance
of special tools, plugins, meta-models, etc.

5.1 Results and research answers 185

The proposed method for TDM of embedded systems utilize formal and
statistical model checking. Functionality and performance of system so-
lutions can be guaranteed because the entire state space can be explored
when subjected to formal model checking. Latent or hidden errors and
unintended emergent behavior can therefore be identified and removed at
early development stages. Statistical model checking can show character-
istics that are difficult to obtain with other methods, e.g. peak values
for properties with large peak-to-average values. The UPPAAL tool that
is used with the proposed method includes a strong set of features for
debugging models, which is utilized maximally in the proposed method
for creating and refactoring models.

The proposed method for TDM of smart systems utilize formal and statis-
tical model checking, simulating and mathematical forecasting. The use
of formal or statistical model checking for designing and verifying basic
interactions results in solid patterns (with guaranteed functionality and
performance) that can be included in the overall system model. Simulat-
ing scenarios and monitoring system states and data during simulation,
allow precise verification of very large systems with complex interactions.
The use of simulation frameworks based on generic programming lan-
guages allows modeling of very complex algorithms and data structures,
thus increasing the fidelity of the models. Mathematical forecasting based
on data fitting and extrapolation enables predicting system performance
for scenarios that are too large and complex to be simulated.

RQ 2.6 What are the disadvantages and limitations of the proposed methods for
test-driven systems modeling?

RA 2.6 The proposed methods is limited to systems that can be described with
the discrete event formalism, which excludes truly heterogeneous systems
that require continuous time or similar modes of computation.

The proposed method for TDM of embedded systems rely mainly on for-
mal model checking, which limits the method’s usefulness. The risk of
state explosion and memory exhaustion limits the size and complexity of
the models and forces much abstraction and simplification, which reduces
the fidelity of the models. Wrong conclusions may arise if the risk of fi-
delity is ignored.

The proposed method for TDM of smart systems rely mainly on scenario
simulating based on models that are created with software development
tools. The use of programming languages for modeling caused a tendency
to change mindset from systems thinking to solving programming prob-
lems. This may hamper creativity and productivity if the risk is ignored.

The use of the SimJava2 simulation framework in the proposed method

186 Discussion

for TDM of smart systems limits the number of acting entities to approx-
imately 200.000 (depending on the computer and Java version) because
the entities are allocated to separate threads. The penalty of switching
between threads increases simulation time significantly for large models.
An improved simulation framework is required for solving this problem.
The implementation of a better simulator is left for future work.

Mathematical forecasting used in the proposed method for TDM of smart
systems has low trustworthiness for several reasons. Some forecasts can
be shown to be rather imprecise even for scenarios that can simulated.
Other forecasts seem more precise but it is not possible to determine the
precision for scenarios that are too large and complex to be simulated.

The research has thus uncovered scenarios that have not been sufficiently considered
in previous work. Two method have therefore been proposed to fill this gap. A
method for TDM of embedded systems has been proposed that utilize formal model
checking, statistical model checking and simulations for test-driven modeling of em-
bedded. A method for TDM of smart systems has been proposed that utilize scenario
simulating, optional formal model checking, and mathematical forecasting. Potential
improvements and future work for the proposed methods have been identified and
suggested.

5.2 Evaluating research hypotheses

The research hypotheses (RH) were introduced in section 1.7. The hypothesis evalua-
tions (HE) are described in the following sub-sections based on the research described
in chapter 2, 3 and 4.

5.2.1 MBSE tool selection

The following HEs concerning selecting, implementing and using MBSE tools are
based on the research described in chapter 2 and they are mostly derived the research
answers RA 1.1 to RA 1.6 from section 5.1.1:

RH 1.1 Several methods for selecting tools that relate to some parts of systems
engineering exist but are inadequate for general selection of MBSE tools.

HE 1.1 Yes, previous methods are tailored towards specific domains. Generic
evaluation criteria for the particular domain are typically used. In the

5.2 Evaluating research hypotheses 187

general case of selecting systems engineering tools, it is difficult or impos-
sible to define generic evaluation criteria. Existing methods are therefore
inadequate for such cases.

RH 1.2 New methods are needed for systematic analyzing tool requirements to
develop relevant selection criteria for MBSE tool selection.

New methods are needed for evaluating, selecting, and implementing tool
solutions to accommodate situations not previously addressed.

HE 1.2 Yes, existing methods uses generic selection criteria for specific domains
that cannot be used for selecting various MBSE tools. New methods that
include steps for analyzing requirements and for developing tool specifi-
cations and evaluations criteria are need for the general case of selecting
MBSE tools.

Yes, existing methods can only be used for single-tool scenarios. New
methods are needed to accommodate multi-tool scenarios.

Further, existing methods do not include steps to verify or validate the
choice of tools. New methods are needed for including such steps.

RH 1.3 Correlating requirements and tool capabilities to identify non-conformance
to different groups of requirements can be used for avoiding tool solutions
that cannot be verified.

Tailoring the elicitation of tool requirements to the individual organization
increases the likelihood of obtaining solutions that can be validated.

HE 1.3 Yes, gap analysis was used in the case of selecting a traceability tool.
The analysis identified tools that were infeasible (due to lack of essential
features) despite the fact that they achieved a high overall rank based on
average weighted scores.

Tailoring the requirements elicitation process to the specific situation in-
tuitively increases the likelihood of successful validation. The learning
points from the case of selecting a traceability tool selection support this
claim. However, the conducted research do not provide further evidence of
the claim. More research is therefore needed to evaluate this hypothesis.

RH 1.4 Using systematic method for selecting and implementing tools increases
the likelihood of obtaining good solutions that are accepted by the stake-
holders.

HE 1.4 Experiences gained from the traceability tool selection case indicates that
the involvement of stakeholders in the requirements elicitation did lead
to the acceptance of the implemented solution. However, the conducted
research do not provide further evidence of the claim. More research is
therefore needed to evaluate this hypothesis.

188 Discussion

RH 1.5 The research will provide comprehensive methods that allow successful se-
lection, implementation and subsequent use of MBSE tool solutions.

HE 1.5 Yes, the research has provided a method that include four major steps for
justifying and initiating the change project, developing tool specifications
and evaluation criteria, investigating tools and selecting best candidates,
and implementing, maintaining and evolving the chosen solution.

The proposed can be used for single-tool scenarios, where the best possible
candidate is chosen based on ranking. The gap between the requirements
and tool capabilities are analyzed to avoid selection of infeasible tools.
The case of selecting a traceability tool used this method for successfully
selecting and implementing a tool that has been in continual operation
since it 2013.

The proposed method can also be used with multi-tool scenarios, where
several tools are selected such that they meet all essential requirements.
Set theory and simple mathematical operations are used for identifying
feasible sets of tools. The method includes classifications of systems and
modeling disciplines that are used for obtaining comprehensive sets of
requirements for MBSE tools. This selection method was used in the
case of selecting modeling tools for identifying a set of tools for systems
engineering in the company.

RH 1.6 The disadvantages of the proposed methods will not cause the organiza-
tions to select and implement infeasible tool solutions.

HE 1.6 The main disadvantage of the method is the amount of work it requires for
developing tool specifications and evaluation criteria and for investigating
tool candidates. This disadvantage may cause some organizations to use
less systematic methods. However, this problem was not experienced in
case studies. The conducted research do not provide further evidence of
the claim, though. More research is therefore needed for evaluating this
hypothesis properly.

5.2.2 Test-driven modeling

The following HEs concerning test-driven modeling are based on the research de-
scribed in chapter 3 and 4, and they are mostly derived the research answers RA 2.1
to RA 2.6 from section 5.1.2:

RH 2.1 Several test-driven modeling methods exist but they are inadequate for
modeling and verifying hearing systems.

5.2 Evaluating research hypotheses 189

HE 2.1 Yes, the research identified several attempts at test-driven modeling of
software and embedded systems. However, hearing systems have charac-
teristics of both embedded systems and of smart systems. For embedded
systems, functionality and performance must be guaranteed, which re-
quire formal or semi-formal methods. For smart systems, the tools used
for modeling and verifying must be able to handle very large and complex
systems. None of the reviewed methods supports all of these needs.

RH 2.2 New methods for test-driven modeling and verification are needed for al-
lowing system engineers to guarantee system functionality and perfor-
mance of embedded systems.

New methods are needed for modeling, simulating and predicting function-
ality and performance of large and complex smart systems.

HE 2.2 Yes, previous methods focus mainly on unit "testing" and scenario sim-
ulating to demonstrate expected results. Functionality and performance
cannot be guaranteed without using formal or semi-formal methods that
explores all reachable system states. Thus, new methods that include
such methods are needed.

For large and complex smart systems, new methods are needed for sev-
eral reasons. Smart systems are typically too large and complex to be
analyzed with formal methods, so verification typically rely on simula-
tion methods, which cannot explore all reachable systems states. New
methods that include formal verification of the basic interactions in the
system are therefore needed. Prior methods only check the output of
the system or its parts, because the methods rely on unit testing or sce-
nario simulating. New methods that also allow asserting internal states
are therefore needed. Prior methods typically use specialized modeling
languages and tool chains that are difficult to learn, use, maintain and
evolve. New methods based on existing modeling languages and tools are
therefore needed. All prior methods are limited by simulator capabilities.
The size and complexity of smart systems easily challenge the simulators
such that the capabilities of the tools are exceed or the simulation time
becomes infeasible. New methods are therefore needed to allow full analy-
sis of systems that can be simulated only in reduced or simplified versions.

RH 2.3 Formal and statistical model checking can be used in methods for test-
driven modeling and verification of functionality and performance of medi-
um complex embedded systems.

Simulating can be used in methods for test-driven modeling and verifica-
tion of functionality and performance of large complex smart systems.

190 Discussion

Some systems are too large and complex to be verified with model check-
ing or simulation. The functionality and performance of such systems
can be predicted by mathematical forecasting based on simulation results
for smaller and simpler versions of the system of interest.

HE 2.3 Yes, the proposed method for test-driven modeling of embedded system
includes both formal and statistical model checking to verify functional-
ity and performance. The methods were successfully used for test-driven
modeling and verifying parts of an embedded system for GN Hearing.

The proposed method for test-driven modeling of smart systems uses sim-
ulating to verify the overall system model. Assertions are used for evalu-
ating and verifying expressions relating to functionality and performance
requirements before, during and after the simulation. The method was
successfully applied to a case from GN Hearing, where a smart system was
designed and analyzed. Various system parameters were adjusted for best
performance and subsequently verified. SimJava2 was used as simulation
framework in the case study.

Mathematical forecasting based on data fitting and extrapolation tech-
niques was used in a case study to predict the performance for scenarios
that were too large to be simulated. Experience from the case study
showed that the precision of such forecasts vary considerably even for sce-
narios that can by verified by simulation. It is not currently possible to
evaluate the precision of the estimates for scenarios that are too large to
be simulated. In the case study, some stakeholders found moderately im-
precise forecasts acceptable if no other method for obtaining results exists.
However, highly imprecise forecasts may lead to wrong decisions. Further
research is therefore needed for evaluating the usefulness of mathematical
forecasting techniques or for obtaining alternatives.

RH 2.4 The use of test-driven modeling will increase productivity, improve quality
and reduce the cognitive load during modeling.

The modelers will gain deeper insight into the systems of interest and
they will be able to answer questions that otherwise cannot be answered
sufficiently.

The modelers will be able to explore the design space and evaluate different
versions of the intended systems before starting the actual development of
system parts.

HE 2.4 Yes, several researchers found increased productivity, improved quality
and reduced cognitive load from using test-driven methods during mod-
eling. The experiences from the case studies also supports these claims.
However, productivity, quality or cognitive load were not recorded during
the case studies. Furthermore, it was not possible to compare the results

5.2 Evaluating research hypotheses 191

of using the proposed methods to the results of using other methods.
More research is therefore needed to evaluate this part of the hypothesis
properly.

Deep insight into the systems of interest was gained in both case studies.
For the embedded system, critical timing parameters were identified and
limited into feasible ranges. For the smart system, critical features and
interaction schemes were identified and analyzed. Therefore, it was pos-
sible to answer engineering questions that could not otherwise have been
answered.

Test-driven design space exploration is an integral part of the proposed
method for embedded systems. The method was used on a case study
to successfully create and verify two alternative solutions to the design
problem.

RH 2.5 The research will produce test-driven methods that has several advantages
compared to previous development methods (including previous test-driven
methods).

Combining different verification methods will allow modeling of a wide
variety of systems and provide more trustworthy verification results.

HE 2.5 Yes, the research has produced two methods for test-driven modeling.
Both methods use only existing tools. There is no need for model trans-
formations or other forms of tool integrations, which eliminate the need
for creating and maintaining special tools, plugins, meta-models, etc. The
method for test-driven modeling of embedded systems uniquely uses for-
mal and statistical model checking to guarantee functionality and perfor-
mance.

The method for test-driven modeling of smart systems comprises several
techniques for verifying system functionality and performance. Formal
model checking of basic interactions produce models that are more trust-
worthy, without requiring this demanding verification technique for the
overall systems. Verifying systems by executing simulations can be used
for all types of systems. When the size and complexity of the system of
interest exceed the capabilities of simulations tools, mathematical fore-
casting can be used for predicting systems performance. Combining for-
mal model checking, simulating and mathematical forecasting therefore
allow trustworthy verification of various types of systems ranging from
small and simple to large and highly complex.

RH 2.6 The disadvantages of the proposed test-driven methods will not negatively
affect creativity, productivity, reliability, or trustworthiness of the veri-
fication results. Disadvantages will only concern verification time and
required computer resources.

192 Discussion

HE 2.6 The method for test-driven modeling of embedded systems is based on
the UPPAAL series of modeling tools. These tools have excellent features
for creating and debugging models. Formal and statistical model check-
ing offer highly reliable and trustworthy verification results. The size and
complexity of the system models are limited by the capabilities of the tool,
though. Much abstraction and simplification must therefore be applied,
which limits the fidelity of the models. For larger systems, the method
for test-driven development of smart systems is recommended.

The method for test-driven modeling of smart systems is based on simu-
lation of models expressed in a programming language (Java was used in
the case studies). A tendency to change the mindset from systems think-
ing to solving programming problems was observed during the case study.
The main disadvantage of the proposed method is the questionable trust-
worthiness of the mathematical forecasting that are used for predicting
performance for systems that cannot be simulated.

Psychological effects such as creativity, productivity, mental loading, etc.,
were not measured during case studies. More research is needed to eval-
uate these aspects.

5.3 Observations

The company GN Hearing has successfully developed numerous products for hearing
systems for several years. Document-based methods have been used for all types
of systems engineering. However, the company has acknowledged a need for model-
based methods due to increasing complexity of hearing systems.

Modeling is used in different forms in various departments at GN Hearing for design
of antennas, electronics, mechanical parts, electro-acoustical components, etc. Each
engineering discipline uses different modeling languages and tools that cannot be
integrated easily into system-level models. It is unlikely that this kind of integration
will be attempted. MBSE can therefore be introduced without considering restricting
dependencies from any modeling legacy.

However, several products for hearing systems are based on platforms that have
evolved over time by adding, removing and changing features, components, algo-
rithms and communication protocols. Unforeseen results and effects have occasionally
occurred due to the changes. Finding and correcting such problems have sometimes
been very difficult and caused much extra unanticipated work. The hope that systems
modeling can prevent similar problems in the future has been expressed by several
developers from the company.

5.3 Observations 193

The potential value of MBSE has been demonstrated to the company by course
providers, tool vendors, fellow system engineers in the INCOSE network, and the
case studies described in this thesis. Most reactions to these demonstrations were in
the following categories:

1. People that perceive the value of MBSE as highly overrated and therefore not
worth investing in.

2. People that find MBSE interesting but infeasible due to technological, organi-
zational, cultural or economic barriers.

3. People that are willing to overcome the obstacles of introducing MBSE because
they anticipate great value from it.

Some people in the first category argue that documents are much more versatile
than models for describing architecture and requirements and for communicating
with stakeholders. Prior successes seem to confirm this argument. However, hearing
systems are becoming more complex, which necessitates new development methods
that allow early identification and correction of potential problems. In this thesis, it is
argued that TD-MBSE is a promising candidate for such new development methods.

People in the second category are pointing to concerns that are credible and must
be addressed for successful introduction of MBSE. However, the problems seem sur-
mountable and feasible solutions seem possible. The real problem therefore appears
to be resistance to change, lack of knowledge, or missing recognition of possibilities.
This can be mitigated by providing evidence of the feasibility and by careful planning
of the introduction of the MBSE methods and technologies.

People in the third category believe or have witnessed that modeling, simulating and
other forms of analyzing and verifying systems can reveal information that otherwise
cannot be obtained. Therefore, they are possible supporters that can be utilized for
successful introduction of MBSE.

GN Hearing has initiated this PhD project and other activities to include MBSE in
future SE work, which indicate that supporters from the third category will promote
successful implementation of MBSE in the company. However, a clearly defined
strategy is still pending.

194 Discussion

5.4 Problems

The method for selecting MBSE tools (section 2.3) has the following disadvantages,
problems or limitations:

• The method is very detailed and may lead to decision paralysis or abandonment
of the method.

• Knowledge of modeling disciplines is needed.

• Testing of tools may require skills that have not been acquired in advance.

• Comparative evaluation of many tools is time consuming and resource demand-
ing.

The TDM method for embedded systems (section 3.5) has the following disadvan-
tages, problem or limitations:

• Much abstraction and simplification are required to avoid state explosion during
verification.

• The UPPAAL modeling language has limited expressiveness, which prevents
creating models of high fidelity.

• Verification of mixed-level models results in very long execution traces, which
cause memory exhaustion during model checking or simulating.

• The method is limited to systems that can be described in the discrete event
formalism.

The TDM method for smart systems (section 4.6) has the following disadvantages,
problems or limitations:

• Focus on solving programming issues hampers and interferes with undivided
focus on systems thinking, which may result in less elegant system solutions.

• The current implementation of the method uses the SimJava2 framework, which
wastes much time on switching between tasks in different threads. This leads to
significantly increased simulation times for systems with many entity instances.

• Mathematical forecasting can be very imprecise. The precision may be ac-
ceptable at conditions that are close to those that formed the basis for the
estimator functions. However, the precision may decrease when the conditions

5.5 Open issues 195

change considerably from the basis conditions. Extremely high simulation times
make it impossible to predict or verify the growing imprecision due to infeasible
simulation times.

5.5 Open issues

Three methods have been proposed in this thesis. The method for tool selection exists
in two variants. The variant used with single-tool scenarios has been verified in a
case study where a traceability tool was selected and implemented in GN Hearing.
The variant used with multi-tool scenarios has been demonstrated in a case study for
selecting MBSE tools for GN Hearing. However, this variant has not been thoroughly
verified, because the final steps of implementing the chosen tool setup in the company
have not been completed. Both variants should be subjected to further verification
and validation on more case studies in various organizations with different needs.
Such additional research should preferably be conducted by independent researchers.

In addition to tool selection, this thesis focuses on TDMmethods. Methods have been
proposed for TDM of the functionality and performance of embedded and smarts
systems. Each TDM methods has been verified in a single case study. Both methods
should be verified on more case studies by modeling and verifying different types of
systems. The additional research should also be done by independent researcher in
this case.

Test-driven approaches can probably be utilized for creating better models in more
general modeling contexts than used in this thesis. A few informal experiments
showed that constraint checking could be used for verifying SysML or UML models.
Combining model templates and test cases expressed in the object constraint language
(OCL) can therefore most likely be used as part of a TDM method for FM and EM.
However, it is still an open issue how to apply test-driven approaches to all types of
model elements in FM, EM and other modeling disciplines. Furthermore, the value
of such methods is uncertain and requires more research.

5.6 Future work

More case studies should be conducted for the proposed methods by independent
researchers to improve the verification and validation of the methods in a wide range
of situations. Setting up and conducting cases to study the proposed TDM methods
is relatively easy due to the large availability of cases for which the methods are

196 Discussion

relevant. However, setting up cases for studying the proposed method for tool selec-
tion is more complicated, because it requires significant resources and commitment
to complete such cases. Identifying organizations that are willing to conduct such
cases to support research may require much convincing. In all cases, much planning
and careful execution are required to avoid introducing bias in the results.

GN Hearing has initiated this PhD project to investigate MBSE for potential future
use in SE. However, the implementation of MBSE has not yet been commenced even
though licenses for a SysML tool have been purchased. There are still issues that
must be clarified as part of the future work:

• Is it better to centralize MBSE into the SE department, to use a more decen-
tralized approach, or to use hybrid approaches where modeling and domain
experts cooperate across departments?

• Can MBSE be closely integrated with other disciplines in the company to
achieve a high level of integrated engineering?

• How should modeling be incorporated into the development processes to im-
prove productivity and quality?

• What should be included and what should deliberately be avoided in the chosen
setup to maximize the benefits and to avoid the disadvantages?

• Is it better to hire new employees with modeling skills, to train existing em-
ployees, or to embrace both options, if it is decided to implement MBSE?

To implement MBSE after clarification of the above issues, the processes must be
defined, the tools must be setup, training (in methodologies, modeling languages and
tools) must be provided, projects must be identified, and modeling commenced. Dur-
ing and after completion of projects, the results should be evaluated for potentially
improving processes, methods, modeling languages and tools for future use.

An MBSE strategy that include TDM has not been defined yet. The SE depart-
ment is mainly working with requirements managements, architecture descriptions,
and systems testing. System design, which is the activity that most significantly can
benefit from TDM, is rarely performed by the SE department but by specialty en-
gineering disciplines, e.g. software developers. To benefit from TDM, the company
must therefore either:

• Centralize system design into the SE department, or

• Distribute TDM into the specialty engineering departments.

5.6 Future work 197

It is also possible to embrace both approaches, where expertise is first build in SE
and later distributed to specialty engineering disciplines.

Diagrams expressed in notations similar to SysML or UML are currently used in the
company for developing software sub-systems. Simple drawings tools have been used
for creating such diagrams. Without using proper modeling tools, there are no means
of checking for correct notation. Examples of diagrams with incorrect notations have
been observed repeatedly, which increases the risk of wrong interpretation and thus
wrong implementations. Proper modeling tools and training should therefore be
provided for software architects and developers. It should be investigated whether
the software departments can use the same tools as SE or if they might benefit
from using different tools. Using the tool selection method presented in chapter 2
may help identifying feasible solutions. To increase the quality of modeling within
software departments and other specialty engineering disciplines further, it should be
investigated if TDM can be adapted and used for improved productivity and quality
of sub-systems.

Creating or improving simulators, verifiers, model editors, and other tools for MBSE
and TDM should be part of the future work:

• Front-end for creating UPPAAL queries from requirements expressed in less
rigid (i.e "human") language. Alternatively, a tool that translates queries into
human language may help engineers to ensure that queries express the intended
requirements.

• Model transformation tools to convert between SysML models and UPPAAL
models for templates and global declarations. Using SysML as the primary
modeling language has several benefits such as allowing traceability to require-
ments of originating stakeholders, providing reporting features, providing a uni-
form interface for all MBSE activities, etc.

• Model transformation tools to convert between SysML models and SimJava2
models such that SysML can be used for providing an overview of interactions
and message exchanges between entities, which can otherwise be difficult to
maintain.

• Improving and adding new features to the UPPAAL tools. Pre-processor or
compiler directives for separating formal and statistical model elements may
ease modeling and verification. Simplified clock modeling may also have us-
ability benefits. Break-points for the interactive simulator will allow easier
debugging of scenarios with long and complex execution traces. Better mem-
ory management is needed for allowing simulation and verification of larger and
more complex systems.

198 Discussion

• Substituting SimJava2 with a more efficient and faster simulation framework
should be undertaken to allow simulation of scenarios with more users, devices
and other entities than currently possible. It should be investigated if existing
frameworks (e.g. the core of CloudSim) can be adapted and used with the
proposed TDM method for smart systems. The feasibility of distributed com-
puting, use of super computers, and other techniques to reduce simulation time
significantly should also be investigated and used if feasible.

The proposed TDM methods can only be used with systems that can be expressed in
the discrete event formalism. However, many embedded and smart systems contain
elements that can only be expressed in other formalisms such as continuous time. To
achieve truly holistic test-driven design of such systems, new methods are needed.
The future work should therefore investigate and propose methods for TDM of hetero-
geneous systems, where parts can be expressed in various formalisms, and where the
overall system can be verified by co-simulating models that require different modes
of computation.

The future work should finally investigate test-driven methods for other MBSE disci-
plines. Using model templates and constraint checking with existing modeling tools
may be feasible. The feasibility of such and other TD-MBSE methods should be
thoroughly investigated before they are adopted by industry.

5.7 Impact

The PhD project has provided the researcher (me) with a unique opportunity to
learn and explore the fields of test-driven and model-based methods in the systems
engineering domain. The new skills that I have required during the project have
enabled me to undertake assignments and job functions that I would otherwise not
have been qualified for.

GN Hearing has gained insight into the various MBSE disciplines. The company
has been provided with methods for selecting feasible modeling setups that support
their actual needs. TDM methods for design of embedded and smart systems have
also been provided. Using the acquired knowledge and methods has the potential
to foster creativity, improve productivity, and reduce risks and costs of developing
more complex and competitive system solutions. Substituting or augmenting prior
document-based development methods with test-driven modeling may enhance the
company’s reputation for professionalism.

Modeling, programming, simulating, verifying, and similar engineering activities are
probably more attractive to engineers and similar personalities than writing docu-

5.8 Conclusion 199

ments. Existing and future employees at GN Hearing are therefore likely to perceive
the content of their jobs with greater satisfaction. The acquisition of new skills and
competencies in a field of increasing importance makes employees more attractive
and improves their career prospects.

The embedded systems engineering (ESE) section at the Department of Applied
Mathematics and Computer Science (DTU-Compute) at the Technical University of
Denmark (DTU) has gained increased insight into the various MBSE disciplines and
TDM. The acquired knowledge and identification of future work can be leveraged for
launching new research, master project, and PhD positions.

The project has provided a thorough and comprehensive method for selecting MBSE
tools for the general industry. Using this method is likely to increase the success
rate of selecting the modeling tools and technologies that fit the actual needs of the
companies. Adopting of MBSE is therefore more likely to be successful.

The proposed methods for TDM of embedded and smart systems can be applied by
many industries and a large range of companies. The methods may even be adapted to
different domains than embedded and smart systems. All types of systems where sub-
systems, parts, components and individuals exchange messages or objects as discrete
events may be designed by using the proposed TDM methods. The companies and
their employees are expected to gain the same type of benefits as described above for
GN Hearing above.

Several tool providers are marketing modeling technologies that facilitate MBSE to
a broad range of users. Such modeling technologies are used either for low-level
modeling and simulation (e.g. Simulink) or for high-level system design with a focus
on communication with stakeholders (e.g. SysML tools). Test-driven methods are
used in neither domains. Adopting the proposed or similar test-driven methods may
increase the value of both low- and high-level modeling. Tool providers therefore
have the possibility of adding features that make their products more attractive for
potential customers.

The methods proposed in this thesis thus affect many different types of companies,
organizations and branches of society. The proposed methods therefore promote the
technological trends and enables the development of large complicated systems for
the benefit of all citizens.

5.8 Conclusion

This thesis has addressed two major questions:

200 Discussion

RQ 1 How can organizations select and implement tools for (model-based) sys-
tems engineering?

RQ 2 How and to what effect can test-driven methods be applied to model-based
systems engineering?

RQ 1 and its 6 sub-questions were addressed in the research that are presented in
chapter 2. RQ 2 and its 6 sub-questions were addressed in the research that are
presented in chapter 3 and 4. Detailed answers to the sub-questions were presented
in section 5.1.

For both RQ 1 and RQ 2, the research uncovered scenarios that had not been suffi-
ciently considered in prior work. Novel methods were therefore proposed to fill the
gaps.

For RQ 1, a method was proposed for selecting, implementing and using MBSE tools.
The proposed method include 4 major steps to justify and initiate the change project,
develop specification and evaluation criteria, investigate tools and select best candi-
dates, and implement, maintain and evolve the solution. In tool selection situations,
there are generally two cases: (1) Select the best tool and accept its shortcomings
(single-tool scenario). (2) Select a set of complementary tools that fulfills all essential
requirements (multi-tool scenario). Prior work only considers the single-tool scenario.
The proposed method accommodates both single-tool and multi-tool scenarios. For
single-tool solutions, it uses ordinary ranking to identify the best candidate. How-
ever, to avoid selecting infeasible tools, the method includes a novel step of analyzing
the gaps between requirements and tool capabilities. For multi-tool solutions, it uses
set theory and simple mathematical operations to identify feasible sets of tools that
meets all essential requirements. In cases where not all requirements can be met,
subsequent ranking and analyzing the gaps can be used for identifying the best set
of tools. Both variants of the method were tested on separate case studies with good
results.

For RQ 2, a method for test-driven modeling of embedded systems was proposed.
The method was developed from traditional TDD. TDD steps were transformed and
new unique steps were added. The method uses formal model checking for verifying
the system behavior. Statistical model checking is used for estimating probabilities
and values of system properties and quality attributes. Simulations are used for
inspecting system states and properties. The method includes steps for design space
exploration such that variants of basic design solutions can analyzed and compared.
The method was tested on a case study with good results.

For RQ 2, a method for test-driven modeling of large and complex smart systems was
also proposed. The method uses formal model checking for designing and verifying
the basic interactions in the system under analysis. However, the complete system

5.8 Conclusion 201

Table 5.1: Evaluations of research hypotheses.

Hypothesis: 1.1 1.2 1.3 1.4 1.5 1.6
Evaluation: Yes Yes Yes Likely Yes Maybe

Hypothesis: 2.1 2.2 2.3 2.4 2.5 2.6
Evaluation: Yes Yes Mostly Maybe Yes Maybe/No

is typically too large and complex for formal model checking. Simulation techniques
are therefore used for designing and verifying the overall system. Statistical model
checking was discarded because current simulators are too slow for realistic use. The
method include mathematical forecasting for predicting performance of systems are
too large or complex to be simulated. Smaller or simpler versions of the systems
are simulated in series with varying parameter values to obtain results that can
be subjected to data fitting and extrapolation. The mathematical forecasting is
occasionally imprecise, which is undesirable but acceptable when no other method
can be used for predicting functionality or performance. The method was tested on
a case study with good results.

Limitations, observations, learning points, advantages, disadvantages, and potential
improvements were identified and future work was suggested for all proposed methods,
see section 2.8, 3.7 and 4.9 for details. Observations, problems, open issues, and
future word were summarized and further discussed in section 5.3, 5.4, 5.5 and 5.6,
respectively.

The research hypotheses were evaluated in section 5.2. An overview of the evaluations
is shown in table 5.1. RH 1.4, RH 1.6, RH 2.3, and RH 2.4 could neither be fully
confirmed nor fully rejected without more research. RH 2.6 was partially rejected for
the method for test-driven modeling of smart systems, because the observed tendency
to shift focus from systems thinking to solving programming issues had a negative
effect on the creativity and productivity. More research is needed to determine the
seriousness of this problem. The method for test-driven modeling of embedded sys-
tems does not suffer this problem. Seven out of twelve hypotheses have been fully
confirmed. It is not unlikely that the remaining hypotheses (excluding RH 2.6) can
be confirmed by further research. However, the purpose and scope of the project did
not allow conducting this additional research, which is therefore allocated to future
work.

The project has provided methods and guidelines that allow GN Hearing to commence
the transition from documents to models for their systems engineering activities. The
proposed method for selecting, implementing and using MBSE tools can be leveraged
by GN Hearing and similar companies to analyze their MBSE needs and to select
feasible tool solutions. The propose method for test-driven modeling of embedded

202 Discussion

systems can be used by GN Hearing and similar companies for designing and verifying
systems of medium size and complexity. The propose method for test-driven modeling
of smart systems can be used by GN Hearing and similar companies for designing
and verifying very large and complex systems.

It is the author’s hope that GN Hearing and similar companies will embrace the
proposed methods and guidelines to commence the transition in systems engineering
from documents to models.

5.9 References

[1] Allan Munck
"Model-Based Systems Engineering Guidelines."
Technical report, Technical University of Denmark, Department of Applied
Mathematics and Computer Science.

[2] Yuefeng Zhang.
"Test-driven modeling for model-driven development."
Software, IEEE 21.5 (2004): 80-86.

[3] Susumu Hayashi et al:
"Test driven development of UML models with smart modeling system." In:
"«UML» 2004 - The Unified Modeling Language. Modeling Languages and Ap-
plications."
Springer Berlin Heidelberg, 2004. 395-409.

[4] Esteban Robles Luna, Julián Grigera and Gustavo Rossi.
"Bridging test and model-driven approaches in web engineering."
International Conference onWeb Engineering. Springer Berlin Heidelberg, 2009.

[5] E. R. Luna, J. I. Panach, J. Grigera, G. Rossi and O. Pastor.
"Incorporating Usability Requirements In a Test/Model-Driven Web Engineering
Approach."
J. Web Eng. 9.2 (2010): 132-156.

[6] Yuefeng Zhang and Shailesh Patel.
"Agile model-driven development in practice."
IEEE software 28.2 (2011): 84.

[7] Stefan Zugal, Jakob Pinggera and Barbara Weber.
"Creating declarative process models using test driven modeling suite."
Forum at the Conference on Advanced Information Systems Engineering
(CAiSE). Springer Berlin Heidelberg, 2011.

203

[8] Dongyue Mou and Daniel Ratiu.
"Binding requirements and component architecture by using model-based test-
driven development."
Twin Peaks of Requirements and Architecture (Twin Peaks), 2012 IEEE First
International Workshop on the. IEEE, 2012.

[9] Isabel Dietrich, F. Dressler, W. Dulz and R. German.
"Validating UML simulation models with model-level unit tests."
Proceedings of the 3rd International ICST Conference on Simulation Tools and
Techniques (p. 66). ICST (Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering), 2010.

[10] Anatoli Djanatliev, W. Dulz, R. Germana and V. Schneider.
"Veritas - A versatile modeling environment for test-driven agile simulation."
Proceedings of the 2011 Winter Simulation Conference (WSC), (pp. 3657-3666).
IEEE, 2011.

[11] Vitali Schneider and Reinhard German.
"Integration of test-driven agile simulation approach in service-oriented tool en-
vironment."
Proceedings of the 46th Annual Simulation Symposium. Society for Computer
Simulation International, 2013.

[12] Vitali Schneider, A. Yupatova, W. Dulz and R. German.
"How to avoid model interferences for test-driven agile simulation based on stan-
dardized UML profiles (work in progress)."
Proceedings of the Symposium on Theory of Modeling & Simulation-DEVS In-
tegrative (p. 35). Society for Computer Simulation International, 2014.

[13] Vitali Schneider, A. Deitsch, W. Dulz and R. German.
"Combined Simulation and Testing Based on Standard UML Models."
Principles of Performance and Reliability Modeling and Evaluation. Springer
International Publishing, 2016. 499-523.

[14] Orlena Gotel and Patrick Mäder.
"How to select a requirements management tool: Initial steps."
2009 17th IEEE International Requirements Engineering Conference. IEEE,
2009.

[15] Orlena Gotel and Patrick Mäder.
"Acquiring tool support for traceability."
Software and Systems Traceability. Springer London, 2012. 43-68.

	Summary (English)
	Summary (Danish)
	Preface
	Papers
	Acknowledgments
	Contents
	Contents
	List of Figures
	List of Tables
	Vocabulary
	1 Introduction
	1.1 GN Hearing
	1.2 Market situation
	1.3 SWOT analysis
	1.4 Hearing systems
	1.5 Research questions
	1.6 Research methods
	1.7 Hypotheses
	1.8 Stakeholders
	1.8.1 PhD student
	1.8.2 GN Hearing
	1.8.3 Employees
	1.8.4 Technical University of Denmark
	1.8.5 DI ITEK ITOS & Infinit
	1.8.6 Tool providers
	1.8.7 INCOSE
	1.8.8 Embedded systems industry
	1.8.9 Society

	1.9 Thesis
	1.9.1 Purpose and scope
	1.9.2 Style and conventions
	1.9.3 Abbreviations and terms
	1.9.4 Thesis outline

	1.10 References

	2 Modeling technologies
	2.1 Introduction
	2.2 Related work
	2.2.1 Vendor selection
	2.2.2 Requirements management tool selection
	2.2.3 Modeling tool selection
	2.2.4 Simulation tool selection
	2.2.5 General software selection
	2.2.6 Lists of available tools
	2.2.7 Evaluation of specific tools
	2.2.8 Heterogeneous systems modeling tools
	2.2.9 Evaluating and ranking tools
	2.2.10 Related work summary

	2.3 Proposed selection method
	2.3.1 Single-tool ranking method
	2.3.2 Multi-tool selection method
	2.3.3 Gap analysis
	2.3.4 Prerequisites

	2.4 System classification
	2.5 Modeling disciplines
	2.5.1 Fundamental modeling
	2.5.2 Behavioral simulation modeling
	2.5.3 Architectural analyses modeling
	2.5.4 Architecture/behavior co-modeling
	2.5.5 Coherent modeling
	2.5.6 Integrated engineering
	2.5.7 Enterprise modeling
	2.5.8 Other engineering activities
	2.5.9 Other activities beyond engineering

	2.6 Case study: Traceability tool (single-tool scenario)
	2.7 Case study: Modeling tools (multi-tool scenario)
	2.8 Discussion
	2.8.1 Results
	2.8.2 Observations
	2.8.3 Learning points
	2.8.4 Advantages
	2.8.5 Disadvantages
	2.8.6 Limitations
	2.8.7 Improvements
	2.8.8 Future work
	2.8.9 Conclusion

	2.9 References

	3 Test-driven modeling of Embedded Systems
	3.1 Introduction
	3.2 Systems characteristics
	3.3 Related work
	3.3.1 Model-driven development (MDD)
	3.3.2 Test-driven development (TDD)
	3.3.3 Test-driven modeling (TDM)
	3.3.4 Model-driven/-based testing (MDT, MBT)
	3.3.5 Tools
	3.3.6 Related work summary

	3.4 Case study
	3.4.1 Context
	3.4.2 Problem

	3.5 Proposed method
	3.5.1 Basic TDM method
	3.5.2 Design space exploration

	3.6 Applying method on case
	3.6.1 Models
	3.6.2 Model checking results
	3.6.3 Debugging

	3.7 Discussion
	3.7.1 Results
	3.7.2 Observations
	3.7.3 Learning points
	3.7.4 Advantages
	3.7.5 Disadvantages
	3.7.6 Limitations
	3.7.7 Improvements
	3.7.8 Future work
	3.7.9 Conclusion

	3.8 References

	4 Test-driven modeling of smart systems
	4.1 Introduction
	4.2 Characteristics
	4.3 Challenges
	4.4 Related work
	4.4.1 Test-driven, model-based development
	4.4.2 Internet of Things (IoT)
	4.4.3 Cloud modeling & simulating
	4.4.4 Large-scale simulators
	4.4.5 Technologies
	4.4.6 Simjava2
	4.4.7 Related work summary

	4.5 Case study
	4.5.1 System under consideration
	4.5.2 Main scenario
	4.5.3 Randomness
	4.5.4 Goals

	4.6 Proposed method
	4.7 Implementing the method
	4.7.1 Descriptive models
	4.7.2 Formal models
	4.7.3 Modified framework
	4.7.4 Traditional modeling
	4.7.5 Avoiding ports
	4.7.6 Usage example

	4.8 Applying method on case
	4.9 Discussion
	4.9.1 Results
	4.9.2 Observations
	4.9.3 Learning points
	4.9.4 Advantages
	4.9.5 Disadvantages
	4.9.6 Limitations
	4.9.7 Improvements
	4.9.8 Future work
	4.9.9 Conclusion

	4.10 References

	5 Discussion
	5.1 Results and research answers
	5.1.1 MBSE tool selection
	5.1.2 Test-driven modeling

	5.2 Evaluating research hypotheses
	5.2.1 MBSE tool selection
	5.2.2 Test-driven modeling

	5.3 Observations
	5.4 Problems
	5.5 Open issues
	5.6 Future work
	5.7 Impact
	5.8 Conclusion
	5.9 References

