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ABSTRACT 

Real-time Embedded Systems (RTESs) have an increasing role in controlling 

society infrastructures that we use on a day-to-day basis. RTES behaviour is not 

based solely on the interactions it might have with its surrounding environment, 

but also on the timing requirements it induces. As a result, ensuring that an RTES 

behaves correctly is non-trivial, especially after adding time as a new dimension 

to the complexity of the testing process. This research addresses the problem of 

testing RTESs from Timed Automata (TA) specification by the following. First, a 

new Priority-based Approach (PA) for testing RTES modelled formally as 

UPPAAL timed automata (TA variant) is introduced. Test cases generated 

according to a proposed timed adequacy criterion (clock region coverage) are 

divided into three sets of priorities, namely boundary, out-boundary and in-

boundary. The selection of which set is most appropriate for a System Under Test 

(SUT) can be decided by the tester according to the system type, time specified for 

the testing process and its budget.  

Second, PA is validated in comparison with four well-known timed testing 

approaches based on TA using Specification Mutation Analysis (SMA). To enable 

the validation, a set of timed and functional mutation operators based on TA is 

introduced. Three case studies are used to run SMA. The effectiveness of timed 

testing approaches are determined and contrasted according to the mutation score 

which shows that our PA achieves high mutation adequacy score compared with 

others.  

Third, to enhance the applicability of PA, a new testing tool (GeTeX) that deploys 

PA is introduced. In its current version, GeTeX supports Control Area Network 

(CAN) applications. GeTeX is validated by developing a prototype for that 

purpose. Using GeTeX, PA is also empirically validated in comparison with some 

TA testing approaches using a complete industrial-strength test bed. The 

assessment is based on fault coverage, structural coverage, the length of generated 

test cases and a proposed assessment factor. The assessment is based on fault 
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coverage, structural coverage, the length of generated test cases and a proposed 

assessment factor. The assessment results confirmed the superiority of PA over 

the other test approaches. The overall assessment factor showed that structural and 

fault coverage scores of PA with respect to the length of its tests were better than 

the others proving the applicability of PA. 

Finally, an Analytical Hierarchy Process (AHP) decision-making framework for 

our PA is developed. The framework can provide testers with a systematic 

approach by which they can prioritise the available PA test sets that best fulfils 

their testing requirements. The AHP framework developed is based on the data 

collected heuristically from the test bed and data collected by interviewing testing 

experts. The framework is then validated using two testing scenarios. The decision 

outcomes of the AHP framework were significantly correlated to those of testing 

experts which demonstrated the soundness and validity of the framework.   
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Chapter 1:  Introduction  

 

1.1 Topic Overview 

Real-Time Embedded Systems (RTESs) have a crucial role in controlling and 

monitoring modern society infrastructures. Most of them interact closely with 

their environments such as transportation, air traffic control systems, 

telecommunication networks and health care devices. Any failures encountered 

can range from a slight system aberration to financial loss and even loss of human 

life. As a result, it is necessary to thoroughly test systems to ensure that they are 

as fault-free as possible before release (En-Nouaary et al., 1998; En-Nouaary and 

Hamou-Lhadj, 2008; Hessel et al., 2008; Rollet, 2003). 

Software testing, a widespread validation method, is a systematic method which 

aims to increase confidence about software correctness. Different from other 

validation methods (e.g., verification), testing is based on running software under 

a controlled environment and analysing its outcomes (Rollet, 2003). In other 

words, the process of testing relies on providing solid test scenarios (i.e., test 

cases) that mimic the actual interactions between software and its environments to 

detect any deficiencies. Testing software with more test cases thus increases the 

confidence about its quality. However, testing software by all possible interaction 

scenarios is infeasible due to the infinite space of input data domain. Accordingly, 

test adequacy criteria are used to guide the selection of test cases by which certain 

properties of software can be examined.  

Testing is a complex and expensive validation activity that accounts for 

approximately 50% of development costs. Many testing approaches and strategies 

have been developed with the aim of minimising cost and achieving high fault 
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detection capabilities. One of the most promising approaches is Model-Based 

Testing (MBT). MBT can reduce test costs due to its ability to capture and 

validate system behaviour from an early stage of the software development cycle; 

it also promotes the use of tools to automate the process of test case generation, 

execution and evaluation (Grieskamp et al., 2011). The process of MBT relies on 

building models to represent system requirements. These models therefore form 

an efficient source for deriving test cases and a test oracle. A system’s‎validity‎can 

be thus shown by comparing actual system behaviour with the system 

specification models according to conformance relations (e.g., ‘ioco’)‎(Mitsching 

et al., 2009; Hessel et al., 2008; Tretmans, 1996). 

To be a valid source for deriving test cases and capturing software behaviour 

precisely, specification models have to be formal and rigorous (Beizer, 1990). To 

formally build specification models and to represent different system behaviour, 

properties, structures and domains, several formal languages have been proposed 

and can be categorised as following. First, finite state-based languages include 

those which are capable of presenting system behaviour in a finite set of 

constructs (e.g., states, transitions, actions etc.). Finite State Machines (FSMs) 

(Lee and Yannakakis, 1996), Extended Finite State Machines (EFSMs) (Ural and 

Yang, 1991), Specification and Description Languages (SDLs) (ITU-T., 1997) 

and Statecharts (Harel and Gery, 1997; Harel and Naamad, 1996) are some 

examples in this category. Second, Process algebra languages such as 

Communicating Sequential Process (CSP) (Hoare, 1985), Communication and 

Concurrency Systems CCS (Milner, 1989) and LOTOS (ISO., 1989) can be used 

to describe system behaviour as a set of concurrent processes. Third, Hybrid 

languages such as Timed Automata (TA) (Alur and Dill, 1994) are used if a 

System Under Test (SUT) shows hybrid behaviour: continuous behaviour over 

time and discrete behaviour (e.g., actions). As a result, TA can be safely used for 

modelling RTES behaviour that interacts with the environment using continuous 

and discrete signals. 

A Timed Automata (TA) (Alur and Dill, 1994) is one of the most widespread 

formalisms due to its ability to express real-time behaviour of an SUT. It provides 
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an easy and powerful means of extending finite-state machines with clock variables 

that track timing progress and incorporate timing constraints through the state-

transition graph. The TA comprises a finite set of locations, transitions, actions, 

clocks and clock conditions to represent system behaviour. Semantically, a TA 

state identifies the machine location and at which time.  

Testing RTESs from TA models can be a complex process due to the requirement 

of checking timing in addition to functional correctness. Determining correct SUT 

behaviour relies not only on its correct reactions to test cases, but also on their times 

(Merayo et al., 2008; Mitsching et al., 2009; Harel and Pnueli, 1985). The process 

of TA-based testing involves generating test cases according to selection criteria. 

Test cases are then executed on the SUT (i.e., sent to the SUT to observe its 

reactions). A suitable timed conformance relation according to which SUT observed 

behaviour can be compared with the TA specification model is used. If a match 

occurs, the SUT passes a test case. Otherwise, it fails (Blom et al., 2005; Hessel 

and Pettersson, 2007b). 

The aforementioned themes play an important role in the Thesis chapters and 

contents. The next section summarises the motivation for conducting this study 

which leads to the set of stated contributions (Section ‎1.4).  

1.2 Research Motivation 

Due to its positive properties, MBT is increasingly used in checking RTESs. 

Several TA-based testing algorithms have been proposed with the aim of generating 

few test cases, but with high fault detection capability. They differ from each other 

in the effort expended in their use, the number of test cases they produce and their 

effectiveness in detecting logical as well as timing faults (Clarke and Lee, 1997b; 

En-Nouaary and Hamou-Lhadj, 2008; En-Nouaary, 2008; En-Nouaary and Dssouli, 

2003). However, most of these approaches fail to explore the entire state space, are 

incapable of achieving full coverage, experience the state space explosion problem, 

come at a high cost in terms of expended efforts and have not been used 

significantly in tools (Mitsching et al., 2009).  
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Reviewing TA-based testing methods, a set of observations motivating the research 

in this Thesis can be made. First, most of the proposed testing approaches rely on 

generating tests using a random search of the state space or un-timed coverage 

criteria (e.g., state or transition coverage). In both cases, SUT timing behaviour will 

not be fully checked. The lack of a definition for a mature timed selection criterion 

that sets clear rules to select timed test cases is still an issue.    

Second, the power of any test suite can be determined by its fault coverage; the 

higher the fault coverage, the more powerful the test suite (En-Nouaary and 

Hamou-Lhadj, 2008; En-Nouaary et al., 1999). However, the capability of the 

proposed approaches to detect potential timing faults has not been fully 

investigated. In other words, the fault coverage of many approaches has not been 

measured despite the existence of timing fault models identifying the possible faults 

that might be encountered. The closest attempt to measure fault coverage discussed 

the possibility of a testing approach to cover timing faults without any actual 

measurements (En-Nouaary, 2008; En-Nouaary and Hamou-Lhadj, 2008; En-

Nouaary et al., 2002). One of the well-known methods of measuring fault coverage 

is the application of the Specification Mutation Analysis technique (SMA). To our 

knowledge, no study has addressed the application of SMA in a TA context. 

Proposing well-suited mutation operators for TA becomes thus a necessity. 

Third, the lack of automation is also noted in a review of relevant literature. Despite 

the wide number of proposed timed testing approaches, there are few tools to 

automate the timed test generation. No tools for automating the execution of tests in 

a real-time context can be found. The absence of automation reduces the possibility 

of applying the proposed testing approaches due to the difficulties in understanding 

their mechanism and manual efforts for generating and executing test cases. 

Fourth, the software community still lacks serious and detailed industrial 

applications for validating the proposed timed testing approaches especially for 

testing SUT timing properties. Although some industrial applications exist, the 

validated testing approaches are based on testing functional behaviour using an un-

timed coverage criterion or random search in generating and executing test cases. In 

other words, more industrial test beds are still necessary especially for validating the 
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application of timed testing approaches that focus on testing SUT timing behaviour. 

The execution of a testing approach in a real-time context induces many problems 

(e.g., the time synchronisation issue) that still need to be tackled. 

Fifth, due to the lack of automation and industrial application, to our knowledge, no 

study has compared the performance of similar timed testing approaches on real-

world applications based on well-identified assessment criteria.  

Sixth, the existence of several timed testing approaches leaves the tester with a big 

decision to make on which approach most suits a testing project. The selection of 

a candidate testing approach is totally dependent‎ on‎ a‎ tester’s‎ intention‎ and‎

experience. In other words, the decision may differ from one tester to another. The 

existence of factors that contribute to the testing process in different ways increases 

the complication of making the right decision. This implies a high risk especially 

for testing safety critical systems. A formal decision-making method by which the 

consistency in making decisions is guaranteed would be a contribution.   

As a result, it is still important to develop techniques that can handle large real-time 

specifications and generate relatively small test suites with high structural and fault 

coverage.  

1.3 Research Aim and Objectives 

Considering the research motivation discussed in Section ‎1.2, the aim of this 

research is thus:  

To develop, automate and validate a flexible TA-based testing approach based on a 

timed selection criterion for testing real-time embedded systems. 

To fulfil this aim, a number of objectives are necessary: 

Objective 1:  To introduce a timed adequacy criterion for selecting timed test 

cases. 
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Objective 2:  To develop a timed testing approach based on the TA formalism 

and the proposed timed selection criterion for generating test cases 

divided into different test sets. 

Objective 3:  To develop a tool for automating the generation and execution of 

timed test cases. 

Objective 4:  To evaluate the proposed timed testing approach at the 

specification and implementation level compared with a set of 

similar testing approaches based on proposed assessment criteria.  

Objective 5:  To develop and validate a decision-making framework for the 

proposed timed testing approach to formalise the selection of the 

best test set suiting a testing project.   

1.4 Summary of the Contributions 

The main contributions of the Thesis are:  

1- The proposal of Clock Region Coverage (CRC) as a timed adequacy 

criterion for covering timing behaviour of a TA specification. The 

proposal of the Priority-based Approach (PA) for generating timed test 

cases from UPPAAL TA (UTA) including its algorithms, according to 

CRC.  

2- The validation of PA in comparison with other four similar TA testing 

approaches based on SMA application. To enable the SMA application, 

this study proposes timed mutation operators based on the previously 

proposed timing fault models in the literature. 

3- The automation of the process of test case generation, execution and report 

based on PA and the‎‘tioco’‎conformance theory by the development of a 

new timed testing tool, called GeTeX. GeTeX is validated using a lamp 

controller prototype modelled as UTA and implemented as one of 

Controller Area Network (CAN) applications. 

4- A comparison between the performance of PA and two similar testing 

approaches using a complete industrial-strength test bed according to 

proposed assessment criteria. The use of a combined assessment factor that 
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considers fault coverage, structural coverage (i.e., clock region) and the 

length of test cases. Fault coverage is enhanced by the application of a 

Mutation Analysis Technique (MAT) at the implementation level to 

measure fault coverage of a testing approach.  

5-  The development of an Analytical Hierarchy Process (AHP) decision 

model for prioritising PA test sets for a particular testing project. The AHP 

framework is validated using two testing scenarios by examining the 

degree of match between the AHP decision outcomes and those of testing 

experts.    

1.5 Thesis Outline 

The rest of the Thesis is structured as follows.  

Chapter 2 emphasises the importance of testing RTESs behaviour. Testing is 

generally defined and test selection methods are discussed. The chapter also 

presents an overview of testing types according to the V model and three-

dimension model. Testing suffers from a high cost in terms of time, effort and 

resources. This suggests potential benefits of applying formal methods in a testing 

context. Formal methods can thus be used to build software specification to be 

explored and analysed to find any potential faults. The formal specification forms 

a sound reference according to which the source code can be analysed and 

validated either by the use of verification or testing (Model-Based Testing 

(MBT)). Formal languages used to build the software specification are discussed 

under three categories: Finite state-based languages, process algebra state-based 

languages and hybrid languages. Checking the match between the SUT and the 

specification model needs a conformance relation. The chapter thus reviews well-

known conformance relations from the literature.  

As an important selection and validation method for MBT approaches, the chapter 

discusses the application of Specification Mutation Analysis (SMA). Due to the 

continuous and discrete behaviour of RTESs, TA is usually used for building the 

specification model. As a result, TA has been discussed in terms of conformance 
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relations and methods used for test selection, generation and algorithms. A set of 

related work of testing from TA is presented and discussed to highlight the 

research motivation of this Thesis.   

Chapter 3 proposes a new component-based offline test case generation method 

for RTESs modelled as UPPAAL Timed Automata (UTA). The approach called 

the Priority-based Approach (PA) is based on a proposed Clock Region as a timed 

adequacy criterion for generating timed test cases. To enhance the use of clock 

regions, a set of mathematical equations are defined and proved to calculate the 

number of clock regions to be covered by test cases. The algorithms of PA are 

presented and discussed with examples. The chapter also proposes Specification 

Mutation Analysis (SMA) to validate the performance of PA in comparison with 

four other timed testing approaches based on TA. A set of timed and functional 

mutation operators is introduced. Three TA models are used to validate the testing 

approaches. The validation and comparison processes are based on the mutation 

score calculated for each chosen timed testing approach with respect to the 

proposed mutation operators.  

Chapter 4 develops and validates a tool for automating the generation and the 

execution of test cases based on PA. The tool, called GeTeX, can be considered a 

complete offline testing tool which focuses on checking the correctness of SUT 

timing properties according to a timed selection criterion. The chapter also runs 

PA tests on an industrial-strength test bed to validate the performance of PA in 

comparison with other TA-based testing approaches according to three assessment 

criteria (fault coverage, structural coverage and the length of test cases). As a 

result, the chapter presents a set of code-based timed and functional mutation 

operators to enable the use of the Mutation Analysis Technique (MAT) for 

estimating fault coverage as one assessment criterion. An assessment factor that 

combines how many faults are detected and how many clock regions are covered 

in terms of the length of test cases generated by a testing approach is proposed. A 

set of lessons learned showing the difficulties encountered especially for testing 

timing properties is then highlighted.  
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Chapter 5 develops an Analytical Hierarchy Process (AHP) as a decision-making 

framework for PA. The framework helps testers select available PA test sets that 

best fulfil their testing requirements. The AHP framework developed is based on 

data collected heuristically from the test bed and data collected by interviewing 

testing experts. The chapter also validates the AHP framework by applying it on 

two different testing scenarios and comparing the decision outcomes of the 

framework with those of the experts.  

Chapter 6 summarises the research contributions and findings. Finally, the 

chapter describes the limitations of this study and opportunities for future work. 
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Chapter 2:  Literature Review  

 

2.1 Overview 

Modern societies are hugely dependent on embedded systems to monitor or 

control different hardware infrastructures (En-Nouaary et al., 1998).‎ ‘Embedded‎

system’‎ is‎a‎generic‎ term that refers to computerised systems interacting closely 

with the real world through sensors, networks and actuators (Broekman and 

Notenboom, 2003; Hessel et al., 2008). Systems like mobile phones, 

transportation monitoring systems, air traffic control systems, patient monitoring 

systems and many others can be considered as examples of embedded systems 

(Rollet, 2003; Broekman and Notenboom, 2003). Close interactions with the 

environment induce timing requirements that need to be satisfied for accepted 

behaviour in the case of Real-Time Embedded Systems (RTESs) (En-Nouaary 

and Hamou-Lhadj, 2008). For instance, an air bag system should inflate no more 

than 0.1 second after an accident occurs. Real-time requirements increase the 

complexity of developing satisfactory RTESs (Hessel et al., 2008; Zheng et al., 

2008). 

Software is one of the core and most error-prone components of RTESs. Any 

failures encountered can range from a slight system aberration (e.g., coffee 

machine malfunction) to financial loss and even loss of human life (e.g., in safety-

critical systems) due to the time dependent behaviour. Thoroughly checking the 

correctness of RTES’s software before deployment using various validation 

activities (e.g., testing) therefore becomes necessary (En-Nouaary et al., 1998; 

Mandrioli et al., 1995). 



‎Chapter 2: Literature Review  

 

 11 

The rest of the chapter is organised as follows. Section ‎2.2 introduces the concept 

of software testing. Selecting test cases is the key role of any testing approach. An 

overview of the most well-known test selection principles is presented in 

Section ‎2.3. Different testing methods have been used in the literature. 

Highlighting some of testing categories according to the V model and three-

dimension model is introduced in Section ‎2.4. To overcome some testing 

problems such as the high cost, formal methods were used as a complement to 

software testing (Section ‎2.5). Formal methods are mainly used to build software 

specification. The formal specification forms a sound reference by which an SUT 

is verified or tested. The process of the formal verification is therefore 

summarised and compared with testing in Section ‎2.6 whereas Section ‎2.7 

presents the principles of Model-Based Testing (MBT). Different formal 

languages used to build software specifications, conformance relations and 

selection methods for MBT are discussed. Due to the continuous and discrete 

behaviour of RTESs, a Timed Automata (TA) formalism is usually used for 

building the specification model. As a result, Section ‎2.8 discusses testing from 

TA in terms of language properties, abstraction methods, selection criteria, 

conformance relations and test generation algorithms. A set of related work is also 

presented and discussed to highlight the research motivation. Section ‎2.9 

concludes the chapter.  

2.2 Software Testing 

The increasing need to develop high quality software satisfying the requirements 

of users suggests the need for, and application of, sound engineering disciplines 

throughout the software development cycle (Abran et al., 2003). The more 

software deals with aspects of everyday life, the larger and more complex 

software becomes. Issues related to faults after delivery and failing to satisfy end-

user needs are common. For years, it has been thought that delivering software 

with a minimum amount of faults relies on having a good design and competent 

programmers. However, experimentation has shown that it is necessary to have a 
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separate process responsible for checking software correctness, quality and 

reliability (Pressman, 2010; Briones, 2007).  

Testing is a systematic process of finding software errors by running the software 

in a controlled environment and analysing its outcomes before its deployment 

(Rollet, 2003). The more test experiments are performed, the more confidence in 

the SUT’s correctness (Dijkstra, 1970). The testing process is a complex and 

expensive validation activity that accounts for approximately 50% of development 

costs. One strategy which significantly reduces the test cost is to decrease human 

involvement and automate the test process through the use of verified testing tools 

(Hierons et al., 2009; Pinto Ferraz Fabbri et al., 1994; Sugeta et al., 2004; Boehm, 

1981).  

The process of software testing involves the generation and execution of test cases 

on software (En-Nouaary, 2008). The generated test cases need to be executed on 

the SUT to collect the produced outputs. The observed outputs are then analysed 

and compared with those expected according to a derived test oracle. A test oracle 

can be defined as the rules by which the expected and actual outputs are compared 

to decide whether the SUT is correct or not (Utting and Legeard, 2007).  

2.3 Test Selection Principles 

A test case represents a scenario where input data is applied to an SUT and the 

consequent outputs are observed. The generation of test cases is based on the 

software input domain (i.e., all possible input values). If test cases are capable of 

covering the entire input domain, the SUT is thoroughly tested and a level of 

confidence about the correctness of the SUT is increased. However, the input 

domain from where test cases are derived in many cases is significantly large. As 

a result, generating all possible test cases that cover the entire input domain is 

costly and infeasible (Utting and Legeard, 2007).‎ For‎ instance,‎ let’s‎ consider‎ a‎

program whose main task is to sum two natural numbers z= x + y. One of the 

possible test cases is to set x=1and y=2. Here, the input domain represents all sets 
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of natural numbers (i.e.,       ). The input domain in this example is clearly 

infinite which makes the generation of all possible test cases impossible.  

To obtain a finite number of test cases without badly affecting their fault detection 

capabilities, a set of test selection hypotheses have been proposed and followed in 

the literature. Some, called uniformity hypotheses (Gaudel, 1995), presume that an 

SUT shows uniform behaviour under a subset of the input domain. Uniformity 

hypotheses can be interpreted in different ways. One states that if an SUT 

correctly behaves for some values within a certain input subset, the SUT will 

behave similarly for the rest of its values. Another states that if an SUT correctly 

behaves under some of input values that trigger a certain path, the SUT will 

behave similarly for all input values that trigger that path. Another class of 

hypotheses, called regularity hypotheses (Gaudel, 1995), imply that an SUT 

shows regular behaviour when the input data size increases. In other words, if an 

SUT correctly behaves for data whose sizes are 1, 2 and 3, it will show the same 

correct behaviour for all data sizes. These hypotheses help in replacing the large 

number of test cases by few useful representatives to test the SUT. However, 

identifying those representatives is still an issue.  

2.3.1 Test Selection Strategies  

Based on the test selection hypotheses, several strategies have been proposed to 

help select representative test cases. Firstly, equivalence partitioning strategies 

(Beizer, 1990; Broekman and Notenboom, 2003) involve dividing the input 

domain into a set of equivalence subdomains forming the source of the test case 

derivation process. Each subdomain comprises a set of input data for which an 

SUT shows uniform behaviour. In other words, all input data belonging to a 

certain subdomain has an equal opportunity of detecting the same fault. As a 

result, selecting one or some representative values from each subdomain can be 

considered sufficient to derive efficient finite test cases.  
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Secondly, boundary value analysis strategies (Broekman and Notenboom, 2003) 

can be considered complementary to the equivalence partitioning strategies. The 

boundary values or their neighbours are selected for deriving test cases since 

boundary values are more likely to be a fault-prone.‎Let’s‎consider‎the‎predicate‎

1< x < 3 as an example. The possibility of replacing an operation type (e.g., ‘≤’‎

for‎‘<’) or changing a boundary value (e.g., 5 instead of 3) is a fault which is more 

likely to occur while coding than any other. 

Thirdly, adequacy criteria selection strategies guide the selection of test cases to 

satisfy an adequacy criterion (Rapps and Weyuker, 1985). The adequacy criteria 

proposed can be divided into two main categories, namely structural and fault.  

Structural adequacy criteria are used to select test cases that cover the structural 

properties of an SUT such as statements, conditions or branches. For instance, in 

statement coverage, test cases are generated based on selecting input data that 

executes each statement at least once. In the indicated example (i.e., that adds two 

natural numbers), a single test suffices to achieve statement coverage.  

Fault adequacy criteria are used to guide the selection process of test cases to 

detect a pre-defined set of faults injected into an SUT. The test strategy based on 

fault adequacy criteria is called Mutation Analysis Technique (MAT) (Lipton, 

1971; Jia and Harman, 2010).  

2.3.2 Mutation Analysis Technique (MAT) 

MAT was proposed to increase the confidence about SUT correctness. It is based 

on simulating real faults in an SUT to either validate or identify adequate test data 

capable of revealing such faults (Andrews et al., 2005). The process of mutation 

analysis is based on two hypotheses. First, the Competent Programmer Hypothesis 

(CPH) (DeMillo et al., 1978) which states that programmers are capable of 

‘almost’‎ producing‎ correct‎ programs. As a result, programs developed by 

competent programmers will suffer only from simple syntactical faults. Second, 

the Coupling‎ Effect‎ (CE)‎ states‎ that‎ ‘test data that distinguishes all programs 
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differing from a correct one by only simple errors is so sensitive that it would also 

implicitly distinguish‎more‎complex‎errors’ (DeMillo et al., 1978). In other words, 

the test suite that is capable of revealing a fault represented by a single syntactical 

change to the SUT can reveal more complex faults represented by any 

combination of such syntactical changes.  

The process of MAT comprises three main stages: mutant generation, mutant 

execution and mutation adequacy analysis. Mutants (i.e., faulty versions of an 

SUT) are produced by syntactically changing the SUT according to the rules 

given by mutation operators. Each mutation operator is thus linked with the fault 

that is to be revealed in the SUT. The generated mutants are called first-order 

mutants. In the second stage, the generated mutants are executed using a given test 

suite. If a mutant shows different behaviour from the correct version of the SUT, 

the mutant is killed and the fault identified. Otherwise, the mutant is said to be 

alive. In other words, the test suite is not capable of killing the mutant because the 

test suite is not able to detect the fault or the mutant is equivalent to the SUT. The 

equivalent relation implies that the SUT and the generated mutant should show 

same behaviour for the whole set of the input domain. A mutation analysis oracle 

seeks to achieve a high mutation adequacy score (DeMillo, 1980). The 

mathematical representation of the test suite adequacy score is given by Equation 

(‎2.1). 

                
                                    

                                                      
 ( 2.1) 

On the other hand, MAT encounters difficulties; large amount of human effort 

would be needed to generate and analyse large numbers of mutants. Moreover, the 

identification and elimination of equivalent mutants is an un-decidable problem. 

Literature suggests several solutions to reduce the cost of generating mutants and 

the identification of equivalent mutants. With regards to reducing MAT cost, 

several techniques have been used such as mutant sampling, mutant clustering and 

selective mutation. Mutation sampling (Acree, 1980) reduces MAT cost by 
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randomly choosing a small subset of generated mutants to be executed. Mutant 

clustering (Hussain, 2008) involves selecting mutants according to a clustering 

algorithm. Selective mutants (Mathur, 1991) can also be applied by reducing the 

number of mutation operators used. With respect to eliminating equivalent 

mutants, several techniques have been used such as avoiding operators that may 

generate them, using compiler optimization techniques (Baldwin and Sayward, 

1979), constraint solving (Offutt and Jie, 1996) and program slicing techniques 

(Harman et al., 2001). 

2.4 Testing Types 

Different types of testing can be categorised in terms of software development 

stages according to the V model (see Figure ‎2.1).  

 

Figure  2.1: The V model of software development cycle (Hierons et al., 2009) 

The V model highlights the source information available for each test activity. 

Unit testing relates directly to the code whereas integration testing depends on the 

design information that identifies the available connections between SUT units 

and components. In order to test the SUT as a whole, system testing is used 

according to an available specification. Being confident about SUT behaviour as a 

whole is not enough. Acceptance testing should be used to check whether the 

developed SUT satisfies user requirements. Contributing to finding faults early in 
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the software development cycle, the V model correlates various testing activities 

along with the development activities (Ammann and Offutt, 2008).     

Moreover, different test types can concentrate on various SUT aspects and can be 

performed at several levels to increase the overall confidence about its quality. 

Figure ‎2.2 depicts different types of testing categorised in three dimensions (i.e., 

testing level, testing accessibility and testing aspects). Note that different types of 

testing can be performed together (Briones, 2007).  

 

Figure  2.2: Testing types (Briones, 2007) 

With respect to which level of the SUT testing is applied, four types of testing can 

be identified: unit, component, integration and system-based testing. Unit testing 

checks the correctness of the smallest unit of the SUT alone (e.g., a procedure, 

function or method). Component testing concentrates on testing each subsystem 

individually. Integration testing checks the working order for a set of correct 

components interacting with each other. To check if the system works correctly as 

a whole, system testing is used (Briones, 2007; Utting and Legeard, 2007).  

In addition to identifying which abstract layer of the SUT needs to be tested, 

deciding which aspects of the SUT are to be fully checked is equally important. 

Several testing types have been proposed that cover different aspects of the SUT 
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such as stress, robustness, performance, reliability and conformance. Stress testing 

checks if the SUT has consistent behaviour under a heavy load. Robustness testing 

involves investigating the reaction of the SUT under unexpected circumstances 

such as inputs being out of range or hardware failure. Performance testing checks 

the execution time of tasks performed by the SUT. Reliability testing ensures that 

the SUT is almost fault-free before its deployment. Finally, conformance testing 

aims at testing the functionality of the SUT to determine whether its behaviour 

conforms to that specified (Briones, 2007; Utting and Legeard, 2007).   

The third axis in Figure ‎2.2 shows two types of testing (white box and black box) 

used according to the SUT visibility to the tester. White box testing is used to test 

the internal structure of the SUT whose algorithms and code are visible to the 

tester. Test cases are then designed using the information available about the SUT 

internal structure using different test selection methods (Section ‎2.3). White box 

testing is supported by a Control Flow Graph (CFG) which graphically represents 

the code through its notations. As a result, test selection criteria can be 

complemented through the use of CFG. The oracle problem of white box testing 

concentrates on checking the correctness of SUT implemented behaviour at 

various levels such as unit-based or system-based. However, white box testing 

fails to check SUT behaviour according to a reference specification (Ferrante et 

al., 1987; Briones, 2007; Utting and Legeard, 2007).  

On the other hand, black box testing involves testing the functionality of the SUT 

according to a reference specification. The SUT internal structure (e.g., code) in 

black box testing is not visible to the tester. The specification forms the source 

from which test cases are generated. Test cases are then sent to the SUT which 

emits output sequences. Several test selection strategies can be used in the case of 

black box testing such as adequacy criteria (e.g., state or transition coverage). In 

contrast to white box testing, black box testing is effective in testing SUT 

behaviour according to the specification but cannot guarantee whether SUT 

internal behaviour is correct (Briones, 2007; Utting and Legeard, 2007; En-

Nouaary et al., 2002). 
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2.5 Formal Methods in Software Testing   

Formal methods are based on mathematics and rigorous logic in building sound 

artefacts (Bowen et al., 2002). Software testing and formal methods can 

complement each other in several ways. Instead of using a natural language, 

building the software specification using formal methods helps to remove 

ambiguity and assert expected behaviour of the developed software. Faults 

inherited from the specification during the software development due to 

misunderstanding of expected properties and functionalities can be thus reduced. 

Building a software specification using formal methods might be costly and time 

consuming. However, the cost will be repaid by reducing need to redevelop the 

software if it does not match user requirements (Hierons et al., 2009). Moreover, a 

formal specification can be explored and analysed to find any potential faults that 

might be encountered during subsequent software development activities. 

Remedying faults at an early stage of the software development cycle usually has 

a significant effect in reducing overall development cost (Kemmerer, 1985).  

A formal specification forms a sound reference according to which source code 

can be analysed and validated either through the use of proofs or testing (DeMillo 

et al., 1979). Due to their capability of capturing SUT behaviour, well-defined 

formal models can be used to represent software specifications. Models can 

contribute to the generation process of test cases, form the basis of a test oracle 

and enhance test automation. This type of testing, called model-based testing, 

used to check whether SUT behaviour conforms to the specification can be cost 

effective (Hierons et al., 2009; Briones, 2007; Nicolescu and Mosterman, 2009). 

Although helping to express and understand abstract behaviour of software to be 

developed, a formal specification does not guarantee correctness. Issues related to 

a mismatch between user requirements and specification models or failing to 

satisfy certain modelling properties can negatively affect the creation of formal 

specifications. Formal verification can be thus used to detect such issues (Hierons 

et al., 2009; Briones, 2007). 
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2.6 Formal Verification  

Formal verification of the software specification is a static validation activity that 

performs a complete analysis on entire specification models using various 

mathematical logic. One of the most widely used approaches for software 

verification is Model checking (Clarke et al., 2000). 

2.6.1  Model Checking  

Model checking is a verification technique often used for concurrent systems. It is 

based on using various axioms such as temporal logic model checking by which 

properties are constructed and automatically checked over the specification 

models (Clarke et al., 1986; Queille and Sifakis, 1982). This approach is widely 

supported by automated tools known as model checkers such as SPIN (Holzmann, 

2003) and UPPAAL (Behrmann et al., 2004). The specification model and a 

verification property are fed to a model checker to detect whether the specification 

model satisfies that property. Temporal logics (Wolper, 1981; Bradfield and 

Strling, 2001; Emerson, 1990) are mathematical-based languages used to define 

verification properties the specification model has to satisfy. The most widespread 

temporal logics used are LTL (Pnueli, 1977) and CTL (Emerson and Clarke, 

1982). LTL is a linear-time temporal logic which defines properties to be checked 

over the entire execution paths of the specification model. CTL is a branching-

time temporal logic which allows properties to be expressed over the entire set of 

execution paths. Tool support allows these properties to be checked.  

The verification process thus aims to increase the correctness of the formal 

specification by asserting certain properties to be satisfied such as reachability, 

safety and liveness. Reachability is considered as the simplest property that any 

specification model has to satisfy. This property ensures that every state defined 

within the specification model is reachable. As a result, a deadlock where the 

system remains in one state for unlimited time should be detected. Safety 

properties assert that the system will never express a faulty scenario. For instance, 
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for a temperature controller system, a safety property checks the possibility of a 

temperature variable in the specification exceeding a specified limit according to 

the requirements. Liveness properties ensure that sets of correct behaviour will 

eventually happen (Behrmann et al., 2004; Bouyer, 2009).  

One of the main challenges facing model checkers is the increase in the 

complexity of developed systems. Increased complexity leads to more expressive 

specification models (i.e., to represent all expected behaviour). As a result, those 

models grow in size. Checking such models may suffer from the state explosion 

problem where insufficient memory to store all possible states is available 

(Hierons et al., 2009; Bouyer, 2009).  

Such issues can be avoided in several ways. Model checkers use different data 

structures which makes data retrieval easy and fast. For instance, a Binary 

Decision Diagrams (BDD) (McMillan, 1993) data structure is used in the NuSMV 

model checker (Cimatti et al., 1999) and a Difference Bound Matrix (DBM) 

(Bouyer, 2009) is used in UPPAAL (Behrmann et al., 2004). Partial order 

reduction (Godefroid, 1997) is another technique used to reduce the search space 

of model checkers by identifying the independence of executed events resulting in 

the same state. Several Model abstraction techniques can be also used to reduce 

computation complexity. One is based on reducing the number of variables used 

by resetting the variables when they are not in use or changing their types (e.g., 

integers to Booleans). Another technique is based on compressing the 

specification model by using symbolic representation and can be used when it is 

impossible to handle large systems comprising large numbers of properties (Burch 

et al., 1992).  

2.6.2 Formal Verification and Testing 

While formal verification is a static validation activity that checks a specification 

model exhaustively, software testing is a dynamic validation activity where the 

SUT is executed within a real environment. Automated verification can 

complement the process of software testing. The use of automated verification 
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tools such as model checkers has started to be used for automatic software testing 

(En-Nouaary et al., 1999; Mandrioli et al., 1995).  

Model checkers check whether a specification model of state-based systems 

satisfies certain temporal properties. If a property has been violated, a counter-

example is produced. A counter-example represents the correct path suggested by 

the model checker where the temporal logic holds. Counter-examples can thus 

represent test candidates. Model checkers can be forced to produce counter-

examples automatically using their search algorithms (e.g., reachability analysis). 

Accordingly, test cases are generated by feeding model checkers with ‘false’ 

temporal properties (Hierons et al., 2009; Clarke et al., 2000).  

Test case generation using model checkers has been supported by the use of 

several techniques. One is based on deriving temporal properties in a structural 

way according to proposed testing purposes (Clarke et al., 2000). Another can 

derive counter-examples (i.e., test cases) that satisfy coverage criteria such as state 

and transition coverage (Hong et al., 2001; Hong et al., 2002; Hong et al., 2003). 

In addition, mutating the specification model to derive counter-examples is 

another technique for testing based on model checkers (Ammann et al., 1998).  

Generating test cases using model checkers however suffers from several 

problems. Writing temporal properties for model checkers is still a manual 

process that consumes significant amounts of time. Moreover, the testing process 

suffers from the state explosion problem especially when the model size grows 

exponentially (Clarke et al., 2000; Hierons et al., 2009).    

2.7 Model-Based Testing (MBT) 

The use of models to formally represent a specification reduces ambiguity and 

helps for a better understanding of SUT behaviour. The process of building 

specification models has to be formal and rigorous to precisely capture SUT 

behaviour (Beizer, 1990). As a result, several formal languages are used such as Z 
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(Spivey, 1992) and B (ABRIAL, 1996) that define a set of constructs and 

operators to represent SUT properties.  

Formal specification models are the source for software development and testing. 

When test cases and a test oracle are derived from the specification model, the test 

process is termed as Model-Based Testing (MBT). The process of model-based 

testing can cover various testing activities at different dimensions as depicted in 

Figure ‎2.3.  

 

Figure  2.3: Model-based testing with relation to other testing types (Briones, 

2007) 

MBT is considered as a form of black-box testing since test cases are generated 

from the specification model without accessing the implementation. MBT can also 

be used at any software level (e.g., component, integration or system). However, 

testing at the system level can be considered the most common use for MBT. 

Moreover, using MBT for testing other software aspects such as robustness is 

possible. The rationale for adopting MBT, however, is to examine conformance 

between SUT functional behaviour and a reference specification model (Utting 

and Legeard, 2007; Briones, 2007).   



‎Chapter 2: Literature Review  

 

 24 

The use of MBT can be also clarified with connection to software development as 

shown in Figure ‎2.4.  

 

Figure  2.4: Early model-based testing (Hierons et al., 2009) 

The V model clarifying the main milestones of software development can identify 

the possible MBT processes that can be performed. When the specification model 

has been developed, it should be validated either by a proof of correctness or the 

application of verification rules. Test cases can then be derived from the validated 

specification by using one of the test selection methods such as test adequacy 

criteria. The generated tests are executed at the system level to detect any missing 

behaviour according to the test oracle derived from the specification. The test 

process can thus be managed at the specification level. The software design and 

the implementation code can be verified according to the specification by building 

an execution model of the code and suggesting coverage criteria. The execution 

models can be verified using model checkers (Hierons et al., 2009).   

MBT is deployed with the aim of achieving high fault detection capabilities and 

minimising cost through early capture of system behaviour and the automation of 

test case generation, execution and evaluation. Test cases are generated from the 

specification and executed on the SUT. A‎system’s‎validity‎can‎thus be checked by 

comparing actual system behaviour with the formal semantics representing the 
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system specification according to a conformance relation as shown in Figure ‎2.5 

(Grieskamp et al., 2011; Mitsching et al., 2009; Hessel et al., 2008). 

 

Figure  2.5: Formal model-based testing 

2.7.1 Specification Formal Languages  

Building specification models precisely is considered a key factor in MBT. The 

application of formal methods helps us to propose formal languages for accurately 

representing the specification. The syntax of such languages can be textual or 

graphical. Several languages are proposed to cover the variety of SUT behaviour, 

structure and domain; the most popular languages and their use in testing are 

introduced in the following subsections.  

2.7.1.1 Finite State-Based Languages       

Finite state-based languages were necessary for presenting SUT behaviour in a 

finite number of states. Languages such as Finite State Machines (FSMs) (Lee and 

Yannakakis, 1996), Extended Finite State Machines (EFSMs) (Ural and Yang, 

1991), Specification and Description Language (SDL) (ITU-T., 1997) and 

Statecharts (Harel and Gery, 1997; Harel and Naamad, 1996) can be represented 

graphically (e.g., direct graph (Aho et al., 1991)) and uses finite sets of constructs 

to model system behaviour. In this subsection, we will discuss two widely used 

languages in terms of testing: FSM and EFSM.  
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FSM is a formal modelling language widely used to capture control behaviour of 

an SUT. An FSM comprises a finite set of constructs such as states, transitions, 

input and output actions to represent system behaviour. The FSM specification 

model has an initial state from which all operations start. The existence of 

transitions connecting states is necessary to move the machine from one state to 

another. A transition is fired when an input action is applied to the machine. An 

output action is accordingly produced and the machine moves to another state. For 

instance,‎let’s‎consider‎the‎FSM‎specification‎model‎of‎a‎traffic‎controller‎system‎

presented in Figure ‎2.6.  

 

Figure  2.6: FSM model of a traffic system (Kalaji, 2010) 

The machine consists of four states, eight transitions, two input actions and two 

output actions. Note that each transition has a label representing a sequence of 

input/output. The machine moves from the state S1 to S2 by applying an input a. A 

transition t2 will‎accordingly‎be‎triggered‎and‎an‎output‎‘0’‎emitted.  

An FSM has several properties that need to be considered for the testing process. 

To begin with, an FSM is said to be deterministic if only one transition can be 

fired by an input action regardless of the state the machine is in. On the other 

hand, an FSM can be non-deterministic when more than one transition can be 

fired by the same input action at a state. In addition, for every state in an FSM, if a 

transition is fired due to the application of an input action, the FSM is said to be 
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completely specified. Otherwise, the FSM is described as partially specified when 

not every input action can fire a transition from every state. The FSM is said to be 

initially connected when any state can be reached from the initial state by the 

application of an input sequence. The FSM can also be strongly connected when 

any state can be reached from any other state in the machine. Moreover, the FSM 

is minimal when it is not possible to replace it with an equivalent machine with 

fewer states. Finally, two states of an FSM are said to be distinguishable if two 

different outputs sequences can be produced as a result of applying the same input 

sequence on both states. Otherwise, the two states are equivalent.  

The process of MBT based on FSM might concentrate on testing a specific 

transition by following three main steps. Firstly, an input sequence has to be 

applied to reach the source state of the transition that needs to be tested. Adequacy 

criteria can be used to guide the selection process of suitable input sequences. 

Secondly, the tested transition has to be triggered by the application of a suitable 

input to enable the tester to observe the resulting output. If the produced output 

does not match that expected, a fault is detected. Thirdly, the destination state has 

to be verified to check whether it is the correct one. A reset function that brings 

the machine back to the initial state is necessary to enable testing another 

transition (Kohavi, 1978; Rivest and Schapire, 1989; Hierons, 2004; Bouquet and 

Legeard, 2003). 

Detecting output faults is straightforward as it depends on the tester’s 

observations. However, a state fault (i.e., transfer fault) would be more difficult to 

detect. State identification techniques have been proposed to verify the machine 

states such as Distinguishing Sequences (DS), Characterisation Sequences (W-

method) and the Unique Input Output (UIO) method.     

DS (Gonenc, 1970) is an FSM-based testing method that looks for an input 

sequence for identifying each state of the machine. However, it is not guaranteed 

to find that sequence for some states. The W-method (Chow, 1978) is another 

method to find state identification sets. This method suffers from long test 

execution time due to firing the same transition several times for every input in 
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the set. UIO (Sarikaya and Bochmann, 1984) also comprises a set of input 

sequences for identifying each state of the FSM by producing different output 

sequences.  

The main purpose of testing from an FSM is to test control behaviour of an SUT. 

However, SUT behaviour cannot be merely restricted to an interaction between 

sets of inputs and outputs. When SUT behaviour requires data to be presented, an 

EFSM can be considered a better choice for formally modelling the specification. 

An EFSM thus extends FSM with the use of variables, conditions and operations 

defined on them. Two different types of variables are used in an EFSM. State 

variables store the logical state such as idle. Context variables store the actual 

data such as ID number.  

Triggering a transition in an EFSM requires both an input action to be supplied 

and conditions of context variables to be satisfied. As a result, the machine will 

move to another state, an output action will be emitted and an operation on 

variables will be executed. Four types of transitions can be identified: 

spontaneous, non-spontaneous, conditional and unconditional. Spontaneous 

transitions do not require an input action to be fired while non-spontaneous 

transitions do. Conditional transitions have guards that need to be satisfied for 

triggering, while unconditional ones do not. An EFSM is said to be deterministic 

if at any state there is no possibility for more than one transition to be triggered. 

Otherwise, an EFSM is said to be non-deterministic. 

Testing from an EFSM is commonly based on deriving test cases according to test 

adequacy criteria such as state coverage, transition coverage and path coverage 

(Tahat et al., 2001). In state coverage, selected test cases should cover each state 

of an EFSM at least once. Similarly, transition coverage ensures that generated 

test cases cover each transition of an EFSM at least once. Path coverage also 

generates test cases that cover all possible paths in an EFSM at least once and is 

restricted to the models that do not have self-loops. Otherwise, the number of 

paths will be infinite. 
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Several problems can be encountered while testing from an EFSM. A Feasibility 

issue is one problem. To achieve test adequacy criteria, a suitable set of inputs that 

satisfy transition predicates is required for triggering a set of transitions (i.e., 

Transition Paths (TP)). However, not all TPs are feasible for triggering. For 

instance, a transition in a TP can update a variable once it is triggered in a way 

makes it unable to satisfy its condition on the following transition in that TP. 

Finding a feasible TP can be considered un-decidable problem (Dssouli et al., 

1999). Another problem in testing from an EFSM is finding suitable test cases 

(i.e., input actions) that trigger the feasible TPs once identified (Ural and Yang, 

1991). One way to overcome this problem is to abstract the data by transforming 

an EFSM model to a corresponding FSM for generating test cases. Other issues 

associated with this solution can be identified. For instance, the large number of 

resulting FSM states may lead to a state explosion problem (Hierons and Harman, 

2004; Hierons et al., 2001). 

2.7.1.2 Process Algebra State-Based Languages 

Process algebra languages such as Communicating Sequential Process (CSP) 

(Hoare, 1985), Communicating and Concurrent Systems (CCS) (Milner, 1989) 

and LOTOS (ISO., 1989) have a rich theory to describe SUT behaviour as a set of 

concurrent processes.  

Testing concurrent systems may use a Labelled Transition System (LTS) language 

capable of describing SUT behaviour written in process algebra. An LTS supports 

concurrency in the sense that the specification model is defined by concurrent 

events. Events in an LTS can be observable or internal (i.e., not observable). 

Implementation relations (i.e., conformance) are supported by LTS notations that 

capture SUT interactions with the environment (i.e., traces of inputs and outputs).  

An LTS language defines testing as an interaction process between the SUT 

model and a test case model where both models are represented by LTSs. The test 

case model maps a state transition system to test verdicts. The set of test cases is 

called a test suite. As a result, different interactions will lead to different test 
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verdicts (e.g., pass or fail). A pass verdict can be assigned if the SUT shows 

expected behaviour during a test run. Otherwise, a fail verdict is assigned. Test 

cases that might require several runs on the SUT to ensure that the test verdict 

persists in the presence of internal actions aim to satisfy some desirable properties 

such as soundness and completeness. A test suite is sound if the correct SUT can 

pass test cases and a faulty SUT can fail some of them. A test suite is complete if 

passing all test cases can ensure that the SUT is correct (Tretmans, 1996; Hierons 

et al., 2009; Briones, 2007).  

2.7.1.3 Hybrid Languages   

Most control systems (i.e., embedded systems) deal and interact with various 

types of signals to control and monitor their environment via a set of actuators and 

sensors within a real-time context. Continuous behaviour (e.g., time) and discrete 

behaviour (e.g., actions) should be combined and represented by a single 

language. Hybrid languages such as Timed Automata (TA) (Alur and Dill, 1994) 

have been developed to capture such behaviour. More details about TA as a 

modelling language in general and a source of generating test cases in particular 

will be discussed in Section ‎2.8. 

2.7.2 Conformance Relations 

Determining the testing oracle is one of the most problematic issues that need to be 

tackled by software testing. MBT is based on conformance relations in deriving the 

test oracle from the specification. To enable the use of conformance relations 

assumes that the SUT can be modelled formally in a similar way to the 

specification. This test hypothesis is necessary to rectify communications between 

the specification model and the SUT by considering both as formal objects. SUT 

behaviour is tested by observing its reaction to test cases being applied (i.e., test 

execution). The sequence of observable actions is called a test trace. Several 

conformance relations to determine whether an SUT pass a test case and 

accordingly decide whether SUT behaviour conforms to the specification model 
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have been proposed such as trace preorder, testing preorder, conf and ioco (Hierons 

et al., 2009; Briones, 2007).  

To begin with, trace preorder can be considered the simplest conformance relation. 

It implies a conformance between an SUT‎ ‘i’ and‎ specification‎model‎ ‘s’ if the 

observations‎ as‎ a‎ result‎ of‎ applying‎ a‎ test‎ case‎ ‘t’ on‎ ‘i’ are a subset of those 

resulting‎from‎the‎application‎of‎‘t’ on‎‘s’.    

Considered as a more restricting conformance relation, a testing preorder is based 

on the observations made by test cases that eventually lead to deadlock. To clarify, 

let’s‎denote‎tr (t, s) as a set of traces that can lead to a deadlock in the specification 

model‎‘s’‎when‎applying‎the‎test‎‘t’.‎Let’s‎also‎denote‎obs(t, s) as a set of the traces 

that‎can‎be‎observed‎when‎applying‎the‎test‎‘t’‎on‎the‎specification‎model‎‘s’. An 

SUT‎‘i’ conforms‎to‎a‎specification‎model‎‘s’ iff for‎every‎generated‎test‎case‎‘t’,‎

  (   )      (   )        (   )      (   )  A testing preorder relation cannot 

be satisfied until all possible test traces are generated and executed, and is 

considered expensive.   

The proposal of the conf relation overcomes the disadvantage of the testing 

preorder. Test traces are generated from the specification model to check SUT 

behaviour. Let us denote traces(s) as a set of all possible action sequences which 

can be identified in the specification. An SUT‎‘i’ thus conforms to a specification 

model‎‘s’‎iff for every generated test case ‘t’,‎  (   )          ( )     (   ) and 

   (   )         ( )      (   )  The conf relation is concerned with detecting 

any deadlock in the SUT for traces in the specification. In other words, the SUT 

may have additional traces which add more functionality to the SUT but not 

controlled by the specification model. 

The conformance relations discussed so far have been proposed when 

communications between the SUT and specification model (i.e., tester model) are 

seen as synchronized actions. However, passing messages is another type of 

communications between the SUT and the tester. SUT behaviour will be thus 

dependent on output messages sent back to the tester. In such a case, the ioco 
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relation has been used to decide SUT correctness according to the specification 

model. Let     (         ) denote the set of outputs that occur due to the 

application of a test trace   on the SUT ‘i’.‎ The‎ SUT‎ ‘i’ thus conforms to a 

specification‎model‎ ‘s’ iff for every generated test trace           ( ) from the 

specification,    (         )     (         ). In other words, if the 

specification model states that an output can (not) be generated after the application 

of the test trace, the SUT should (not) produce that output (Tretmans, 1996).  

2.7.3 Specification Mutation Analysis 

The test selection criteria proposed for testing (some of which were mentioned in 

Section ‎2.3) can be adjusted and applied for MBT. In this subsection, the 

application of Mutation Analysis Technique (MAT) in an MBT context as a method 

for test selection and a method for validity is highlighted and discussed. MAT was 

first proposed to validate or identify a test suite at the implementation level (white 

box) with different programming languages such as Fortran (Offutt and King, 

1987; Budd et al., 1978), Ada (Bowser, 1988; Offutt and Xu, 1996), C (Untch et 

al., 1993), (Vilela et al., 2002) and Java (Ma et al., 2002; Ma et al., 2005).  

Moreover, MAT has been successfully applied to the design level (Gopal and 

Budd, 1983; Budd and Gopal, 1985). It has been referred to as Specification 

Mutation Analysis (SMA). Similar to the original MAT, SMA injects single faults 

into a specification model by syntactically changing the specification according to 

pre-defined operators. The generated first-order specification mutants are 

accordingly executed against a set of generated test traces. The specification 

mutants are killed if their outputs are different from those of the original 

specification. SMA is useful in validating MBT techniques by identifying their 

capabilities of finding faults related to SUT functional behaviour (Budd and 

Gopal, 1985; Vadim Okun 2004; Jia and Harman, 2010). Different formalisms 

were then incorporated with SMA such as FSM (Pinto Ferraz Fabbri et al., 1994; 

Hierons and Merayo, 2007), State Charts (Trakhtenbrot, 2007; Yoon et al., 1998), 

Petri Nets (Fabbri et al., 1996) and SDL (Sugeta et al., 2004). Since then, research 
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interest in applying SMA to different specification formalisms has increased to 

cover Hybrid languages (Aichernig et al., 2010).  

To begin with, SMA was used as a test selection criterion for testing embedded 

systems within a real-time environment (Aichernig et al., 2010). SUT hybrid 

behaviour was modelled using classical action systems (Aichernig et al., 2009). 

However, timing behaviour was abstracted away and replaced by temporal orders 

of discrete states - a drawback of that study. A fault model comprising a set of 

functional mutation operators was proposed to mutate the specification model; test 

cases that would kill the mutants were then generated using a conformance 

checker (Brandl et al., 2010). Pass/fail verdicts were assigned based on the ioco 

relation.       

Several research studies have investigated the application of SMA in the context 

of FSMs. FSM-based mutation operators were introduced to validate FSM-based 

specifications (Pinto Ferraz Fabbri et al., 1994). The effectiveness of W- and TT- 

test methods were compared using a Transport Protocol by calculating a mutation 

score. A later tool was proposed to support an automatic application of SMA 

using their proposed mutation operators (Fabbri et al., 1999a). SMA on FSM was 

extended to Probabilistic Finite State Machines (PFSMs) (Hierons and Merayo, 

2007; Hierons and Merayo, 2009). The authors used SMA to show how test 

sequences that killed mutants were generated. Other work on EFSMs has used 

SMA to support the test generation process using a model checker. The mutation 

operators were introduced to the temporal logic level to force the model checker 

to generate a counter-example (test case) (Ammann et al., 1998).  

Several mutation operators have also been produced to support SMA within the 

context of statecharts (Fabbri et al., 1999b). Other sets of statecharts-based 

mutation operators were also proposed to assess the quality of generated tests at 

the specification as well as the implementation level (Trakhtenbrot, 2007).  

The Estelle specification language is another formalism taking advantage of SMA. 

SMA was applied to the Estelle language by introducing a set of mutation 
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operators. The validation of tests generated from Estelle-based specifications was 

studied using an Alternating-bit protocol specification model (Souza et al., 1999). 

A testing technique was also proposed based on the application of SMA on an 

Estelle-directed Mutation based Protocol Testing (E-MPT). It first generated the 

mutants from the Estelle-based specification and converted them into C programs 

using the Estelle compiler. The programs were then executed and the acquired 

results were compared (Probert and Guo, 1991).   

Besides FSM, EFSM, Statecharts and Estelle, several applications of SMA on 

other specification formalisms exist. SMA was used to measure the effectiveness 

of the test suite generated from the formal Calculus language (Gopal and Budd, 

1983; Budd and Gopal, 1985). Similar work used a refinement class of the 

calculus language (Aichernig, 2003). An automatic testing approach based on an 

algebraic specification was also introduced (Woodward, 1992; Woodward, 1993; 

Woodward and Halewood, 1988). SMA was applied to Petri Net specifications by 

Petri Net-based mutation operators (Fabbri et al., 1996). A set of mutation 

operators was proposed for SDL specifications. SMA and its dependent testing 

approach were illustrated using the Alternating-Bit protocol (Sugeta et al., 2004). 

SMA was also used for generating test cases from SDL specification (Kov et al., 

2003) and validating Lotos-based specifications (Bousquet et al., 2000). 

2.8 Timed Automata Based Testing 

Testing RTESs is a complex process due to the requirement for checking timing 

correctness. The number of test cases could be infinite if they are generated and 

executed within different time intervals. As a rigorous approach, MBT has been 

used for testing RTESs. Test cases are generated from a reference specification and 

sent to the RTES SUT. Correct behaviour of the SUT is dependent on its correct 

reaction to test cases and on their times. In other words, MBT requires testing 

timing and functional behaviour of the SUT (Merayo et al., 2008; Mitsching et al., 

2009; Harel and Pnueli, 1985). The process of timed MBT includes several steps. 

Firstly, since a specification specifying SUT desired behaviour is responsible for 
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guiding the testing process, an appropriate formal language capable of capturing 

real-time behaviour should be used. Secondly, test cases should be generated 

according to selection criteria. Thirdly, suitable conformance relations according to 

which real-time behaviour of the SUT is considered correct should be selected and 

used. Finally, test generation algorithms that automate test cases are also proposed 

(Blom et al., 2005; Hessel and Pettersson, 2007b).  

2.8.1 Timed Automata Specification Language 

Timed Automata (TA) (i.e., timed safety automata) (Alur and Dill, 1994) is one of 

the most widespread formalisms due to its ability to express real-time behaviour of 

an SUT. It provides an easy and powerful means of extending finite-state machines 

with clock variables that track timing progress and incorporates timing constraints 

through the state-transition graph.  

A TA comprises a finite set of locations, transitions, actions, clocks and clock 

conditions to represent SUT behaviour. TA locations represent the position that a 

machine is currently in. A TA specification model has an initial location where 

the operations on the model start and its clocks restart. Semantically, a TA can use 

an LTS to represent TA states that identify the machine location and at what time. 

A TA thus has an infinite state space. Clock conditions constraining SUT 

behaviour are used over transitions (i.e., clock guards) or locations (i.e., 

invariants). Clock guards are used to constrain firing transitions. Location 

invariants are applied to assert progress by which the machine is not permitted to 

stay in a location for an unlimited time. The existence of transitions connecting 

locations is necessary to move the machine from one state to another. Triggering a 

transition will require both an action to be supplied and clock guards to be 

satisfied. As a result, the machine will move to another state and the clock value 

reset. SUT behaviour is thus shown as sequences of transition executions (i.e., 

traces) (Hessel et al., 2008; Alur and Dill, 1994; Bengtsson and Yi, 2004). 

Figure ‎2.7 presents the TA model of a train system. It consists of five locations, 

six transitions and one clock. A train informs the gate before approaching it. If the 
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gate is open, the train will be allowed to cross and leave. Otherwise, the train has 

to stop and wait for a gate signal. Once that is received, the train is allowed to 

cross and leave.  

 

Figure  2.7: TA model of a train system 

For instance, the train can move from the ‘Start’‎ location‎to‎ the ‘Cross’‎ location‎

by triggering‎ the‎ transition‎ connecting‎ them.‎ The‎ train‎ has‎ to‎ leave‎ the‎ ‘Start’‎

location up‎to‎‘15’‎time‎units‎and‎the‎transition‎can‎be‎triggered‎within‎‘7’‎time‎

units.  

Several classes of TA formalisms have been proposed with different properties 

representing a wide range of applications. When a TA can classify actions as 

inputs or outputs, a TA is called as a Timed Input Output Automata (TIOA) 

(Nicollin et al., 1992; Lynch and Attiya, 1992; Springintveld et al., 2001). Outputs 

are‎ usually‎ marked‎ with‎ ‘!’‎ while inputs are marked‎ with‎ ‘?’. TAs can also 

communicate with other TAs through a range of concurrent clocks and actions 

comprising a Network of Timed Automata (NTA). The TA model of the train 

system in Figure ‎2.7 is an‎ example‎ of‎ an‎NTA‎by‎ replacing‎ ‘id’‎with‎ a certain 

number (e.g., ‘6’).‎In‎other‎words,‎a‎vector‎of‎six‎trains‎interacting‎together‎is so 

formed. Such an example clarifies the importance of the network representation as 

it serves real applications such as the train monitoring system. To analyse the 

NTA, a parallel composition is used to combine all network models into one 
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single model. The resulting model would suffer from large number of states which 

increases its complexity and analysis (Hessel et al., 2008).  

Moreover, a TA can be extended with special data variables (e.g., integers or 

Boolean) and certain properties (e.g., urgent channels) as in an UPPAAL Timed 

Automata (UTA) (Behrmann et al., 2004) can increase TA expressiveness in 

modelling more applications. One of the main advantages of UTA is the 

possibility of modelling the SUT environment separately. Identifying the actual 

interactions between the SUT and its environment can thus reduce the number of 

test cases generated for a specific environment rather than for all possible 

environments (Hessel et al., 2008). An Event Recording Automata (ERA) is 

another class of TA (Alur et al., 1999). Similar to TA, an ERA consists of actions 

and a set of clocks used to constrain transitions. However, in the ERA model, each 

clock, called an event clock, monitors a unique action called an event. The event 

clock thus measures the elapsed time since the last execution of its event. Once 

the event has occurred, its clock is automatically reset.  

Similar to FSM, a TA specification can be deterministic if there is only one 

transition enabled, regardless of the location the system is in or at which time. 

Otherwise, the TA is declared as non-deterministic. For instance, Figure ‎2.7 

presents a non-deterministic‎ TA‎model.‎ At‎ ‘Appr’‎ location, two transitions are 

enabled‎at‎‘10’‎time‎units.‎Non-determinism allows flexibility in modelling SUT 

behaviour but negatively contributes to the test generation process; it is not known 

how the SUT responds to a test case.  

Another class of TA where outputs are isolated and urgent has been suggested. In 

this class, it is permitted for only one isolated output to be emitted at any given 

location. Moreover, urgent outputs, if they exist, can be emitted at no time (i.e., 

without allowing any time to pass). The expressivity of the TA can thus be 

affected; a case such as ‘if‎an SUT receives an input, an output a or output b can 

be emitted with certain time’ cannot be presented.  
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In terms of inputs, a TA can be input-complete by allowing any state to accept 

inputs. In addition, a non-blocking TA does not block time even if a TA doesn’t‎

receive any input. A TA can be also fully observable or partially observable. The 

former uses only actions that can be externally observed to trigger transitions. The 

latter permits the use of internal actions to increase TA expressiveness. For 

instance,‎the‎transition‎connecting‎‘Start’‎and‎‘Cross’‎in‎Figure ‎2.7 is triggered by 

an un-observable action (Krichen and Tripakis, 2005; Krichen and Tripakis, 

2004). 

The clock variables used in a TA formalism can also be represented by several 

models such as a discrete-time model, fictitious clock model and dense-time 

model. Clocks in a discrete-time model are represented by integer variables. 

Clocks defined for a TA run with the same speed. The use of this clock model can 

be useful in digital circuits where actions are taken just after the arrival of a clock 

signal. A discrete-time model which approximates the time to the nearest integer 

would limit the time accuracy especially for very sensitive time-dependent 

behaviour. A Fictitious clock model is similar to the discrete-time model where 

clocks are represented by a sequence of integer variables. Actions occur in a real-

time context but only the upper nearest integer values of clocks are recorded. 

More naturally, a dense-time model considers clocks as real values. Time 

increases without any bound. Using a TA with a dense-time model complicates 

the test generation process due to its infinite clock values (Alur and Dill, 1994). 

2.8.2 Timed Automata Abstraction Methods 

The more we increase the expressiveness of a TA, the more applicable the TA 

formalism and the more difficult to check its behaviour (especially for non-

deterministic ones). For instance, a non-deterministic TA supported with a 

continuous-time model can be chosen to model an SUT. This would enhance the 

modelling process but result in an infinite state space leading to the state 

explosion problem. Choosing the class of TA to model the specification thus has a 

great impact on verifying or testing SUT behaviour. To avoid the state explosion 
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problem, several model abstraction methods have been proposed that can reduce 

the SUT state space without greatly affecting its behaviour, such as regions and 

zones.  

To begin with, defining a proper equivalence relation (Alur and Dill, 1994; 

Larsen and Wang, 1997) enables the classification of equivalent states into groups 

or regions. The proposed relation depends on the fact that several states can be 

similar in terms of the actions applied and transitions enabled. Each region thus 

contains all states that make a TA respond with same behaviour. Having regions 

instead of states, the TA with infinite state space is replaced by Region Automata 

(RA) with a finite set of regions. The RA serves as a good replacement for the TA 

for the verification and testing process. However, the equivalence relation 

partitioning the state space is considered as fine-grained. In other words, the 

number of regions produced may be very large and lead to the state explosion 

problem. In fact, the number of regions grows fast with respect to both the number 

of clocks used in a TA and their upper bounds. For instance, the number of 

regions in the case‎ of‎ one‎ clock‎ with‎ ‘1’‎ as‎ an‎ upper‎ bound‎ is‎ ‘8’‎ regions.‎

However, the number of regions in the case‎of‎ two‎clocks‎with‎ ‘1’‎ as‎ an‎upper‎

bound‎for‎both‎is‎‘18’‎(Bengtsson and Yi, 2004). One of the solutions proposed to 

overcome this problem is to reduce the number of clocks used in a TA (Daws and 

Yovine, 1996).    

A coarser equivalence relation for partitioning the state space is proposed for an 

ERA. Similar states are accordingly categorized in equivalent classes from where 

test cases are generated. The partitioning relation depends on clock valuations of 

ERA states by which two states belong to one class if they enable the same 

transitions. The abstracted specification graph preserving all SUT behaviour 

consists of states representing a set of locations and equivalent classes (Nielsen 

and Skou, 2003; Briones and Röhl, 2005).  

Another abstraction method depends on much coarser partitioning of the state 

space by forming zones. A zone can contain all states satisfying a clock constraint. 

As a result, a zone which does not depend on the number of clocks and is 
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represented by DBMs can lead to a more compact model. Replacing the infinite 

state space with finite zones provides a Zone Graph (ZG) which identifies zones 

in a symbolic way. Each symbolic state in ZG will thus consist of a location and 

zone. Similar to the RA, a ZG may also be infinite if clock values are unbounded. 

To solve this problem, a maximum constant is assigned. All clock values below 

this constant will be used in zones but the larger values will be disregarded. In 

other words, further state abstraction is applied to reduce the number of zones 

(Bengtsson and Yi, 2004; Briones, 2007). 

2.8.3 TA Test Selection 

Real-time impacts all steps of the testing process. A TA formal specification used 

to present a real-time specification of an SUT forms the source of test cases. It is 

not possible to thoroughly test SUT real-time behaviour due to an infinite state 

space. The correct selection of which parts of the specification to be tested plays a 

key role in efficiently testing such systems. Several test selection methods are 

used in testing RTESs similar to those used in testing un-timed systems (e.g., test 

purposes, structural and fault adequacy criteria) (Hessel et al., 2008). 

2.8.3.1 Test Purpose 

A test purpose is considered as specific behaviour of the SUT that needs to be 

fully checked. A test purpose is modelled in several ways. One can be represented 

as a property to be checked in the specification using model checkers (Hessel et 

al., 2003). Another might involve representing test purposes as extra flags added 

to specification models (Hessel et al., 2008). Moreover, a special formal 

representation can initially be used such as Message Sequences (MSC-2000). The 

Message Sequences are then converted to suit the formal language used for 

modelling the specification (En-Nouaary and Liu, 2004). Test purposes can also 

be used as a test selection method for non-deterministic TA models (Bertrand et 

al., 2011a). However, a method such as a game approach may be required for 

transforming the non-deterministic model to a deterministic one (Bertrand et al., 
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2011b). Using test purposes as a test selection method reduces the number of 

generated tests because checking of the entire specification is not required. 

However, generated test cases cannot guarantee efficient fault detections.  

2.8.3.2 Structural Adequacy Criteria 

Adequacy criteria are often used in testing to assess the level of thoroughness of a 

test suite. The aim is to measure to what extent test cases cover a specification 

model. Different types of adequacy criteria are discussed and used for testing un-

timed systems. However, the research line concerning timed adequacy criteria in the 

literature still suffers from immaturity (Hessel et al., 2008). As a result, un-timed 

adequacy criteria were adopted in selecting test cases from a TA such as location, 

edge and definition-use coverage criteria (Hessel et al., 2008). 

Location coverage selects test cases visiting each location of a TA at least once. 

Edge coverage emphasises the selection of test cases that traverse all transitions in 

a TA model. Where location and edge coverage target the structural components 

of a specification model, definition-use coverage criterion focuses on the data 

level. This coverage criterion is suitable for an extension class of TA such as UTA 

but not for a regular TA model where no data is used. The idea of definition-use 

coverage is to select test cases that trigger a test path from where a data variable 

has been defined to where it has been used (Hessel et al., 2008).  

2.8.3.3 Fault Adequacy Criteria 

The effectiveness of test cases can be measured by their ability to detect major 

faults in an SUT (i.e., fault coverage). Fault coverage is used for measuring the 

power of derived test cases. As a result, test generation methods can be compared 

and validated according to fault coverage. However, if fault coverage is used as a 

basis for selecting test cases, the number of generated test cases will be 

dramatically reduced. To facilitate this concept, the potential faults an SUT might 

suffer from should be clearly defined in a fault model (En-Nouaary et al., 1999; 

Wang et al., 2009; Clarke and Lee, 1997b). The fault model is usually consistent 
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with the specification formal language. In other words, faults are defined using the 

same formal language as the specification. For instance, a fault model using a 

constraint graph is similar to the system specification (Clarke and Lee, 1997b). 

In a TA, two kinds of faults were defined according to a proposed fault model; 

namely functional and timing faults. Three types have been proposed in terms of 

timing faults. Firstly, a clock-reset fault occurs in an SUT whenever a clock is 

reset or not reset in an opposite way to that stated in the specification. Secondly, a 

time constraint restriction fault occurs in an SUT when it narrows down the 

timing bounds by which it rejects inputs satisfying timing constraints defined in 

the specification. As a result, the number of states in the faulty model decreases in 

comparison with those of the original specification. Thirdly, the SUT has a time 

constraint widening fault if it increases the timing bounds by which it accepts 

inputs not satisfying timing constraints defined in the specification. Accordingly, 

the number of states in the faulty model increases in comparison with those of the 

specification. Functional faults, on the other hand, occur when an SUT moves to a 

state which is different from that expected (i.e., transfer faults) or responds with 

missing or incorrect actions (i.e., action faults) (En-Nouaary et al., 1999). Some 

faults do not affect SUT correctness. One reason for this might be due to fault 

masking. In other words, the occurrence of multiple faults even if they can be 

detected alone, can hide faulty behaviour of an SUT (Batth et al., 2006; Uyar et 

al., 2005; Wang et al., 2009).  

2.8.4 TA Test Generation 

Different approaches have been followed in generating timed test cases; namely 

offline, online and model checking (Hessel et al., 2008). An Offline testing 

approach involves generating all possible test cases using one of the test selection 

methods prior to executing them on the SUT. In other words, the test generation 

and execution phases are separate. Adopting an offline test generation method has 

advantages and disadvantages. Test cases generated can cover several aspects of 

the specification according to the selection criteria used. As a result, test cases are 
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cheap, fast and easy to execute as they are selected a priori. On the other hand, 

analysing and covering the entire specification for generation test cases might 

suffer from the state explosion problem. In the other words, an offline method 

may not be able to handle a complex and large specification. Moreover, an offline 

method cannot deal with a non-deterministic specification. Generating test cases is 

based on searching for all possible paths through the specification model 

according to a selection criterion. In terms of non-determinism, test cases can be 

very large and the outputs cannot be predicted. In this case, use of a deterministic 

class of TA is advised.  

In an online testing approach, test case generation and execution processes are 

performed at the same time. A test case is generated from the specification and 

directly executed on the SUT; the generated output and its timing are then 

compared with those in the specification. Another test case is generated and so on 

until termination of the test is decided or a fault is discovered. In an online 

approach, the test generator selects test cases from the specification randomly 

way. Choosing an online approach has several advantages. The possibility of the 

state explosion problem is dramatically decreased because only one test case 

needs to be stored before execution. An online approach can also deal with non-

determinism as the generation and execution process are completed step-by-step. 

The test path followed by a test case can be known according to the observed 

outputs. On the other hand, a random selection of test cases does not guarantee 

coverage of the entire specification and detecting all faults. The test run in an 

online approach can continue for hours and even days. As a result, it is difficult to 

analyse test failure when it occurs and identify its location. An efficient test 

algorithm is required for dealing with RTESs where time should be accurately 

synchronised between the test generation and execution processes. 

Model checking is a verification method that checks the entire specification model 

according to some logical properties. Using a model checker tool (e.g., UPPAAL) 

can provide an easy and powerful technique for searching the state space and thus 

generate test cases. In addition to producing counter-examples (as discussed in 
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Section ‎2.6.2) model checkers can guide the test generation process in 

combination with other techniques. Observer, as an example, is a technique that 

monitors and guides the model checker in selecting test cases according to 

adequacy criteria. Each adequacy criterion is represented by an observer that 

monitors the generation of test cases and replies with an acceptance if adequacy 

criterion is satisfied (Blom et al., 2005).   

2.8.5 Timed Conformance Relations   

Several timed conformance relations have been proposed for RTESs to decide on 

the correctness of their timing behaviour such as Timed Trace Inclusion (TTI), 

Relativized Timed Input-Output Conformance relation (rtioco) and Timed Input-

Output Conformance relation (tioco). 

To start with, TTI (Hessel et al., 2003) is a simple conformance relation used for a 

restricted class of TA (i.e., deterministic with isolated and urgent outputs). The 

SUT conforms to the specification iff timed traces of the SUT are a subset of those 

of the specification. In other words, the SUT should not emit an output after an 

input sequence if the specification does not allow it to. In a similar way, the SUT 

has to emit an output or delay if the specification allows it to.  

For more generic TA models, rtioco (Larsen et al., 2005a) has been proposed. 

rtioco was initially derived from and applied the notion of the ioco relation. The 

SUT conforms to the specification if the SUT does not have behaviour not 

permitted by the specification when taking a given environment into account. In 

other words, to compare the SUT and the specification, a parallel composition 

with an environment model is required for both. The SUT should then produce an 

output at a time when one is required by the specification. No output should be 

expected from the SUT when it is not permitted by the specification. The notion 

of rtioco extends that of ioco by considering time. Moreover, rtioco is more 

generic than TTI since it deals with input-enabled non-blocking specifications 
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taking the environment into account. It was also used for an online testing 

approach.  

tioco (Krichen and Tripakis, 2009) can be considered as an another extension of 

ioco. The conformance between the SUT and the specification can thus occur if 

observed outputs of the SUT after any recorded behaviour must be part of all 

possible observable behaviour of the specification. The observable behaviour 

includes outputs and time delays. The proposal of a generic relation like tioco was 

to deal with a non-deterministic partially observable specification with normal 

outputs. tioco is not as strict as TTI; tioco allows the SUT to accept inputs not 

defined in the specification as long as they do not contradict it.    

2.8.6 Related Work  

Many algorithms and methods for testing real-time systems from TA have been 

proposed. However, the majority are based on un-timed selection criteria for 

generating timed test cases. In addition, only a few have been supported by tools 

and empirically studied (Hessel et al., 2008).  

Blom et al. (Blom et al., 2005) introduced‎a‎formalism‎called‎‘Observer‎Automata’‎

to monitor and generate test cases offline. Well known un-timed coverage criteria 

adopted were edge, location, definition-use pair, definition and affect-pair 

coverage. The formalism was supported by developing an offline model-based test 

generation tool called CO ER (Hessel and Pettersson, 2007a). CO ER developed 

at Uppsala University extended the UPPAAL model checker with coverage 

criteria expressed by the Observer Automata formalism. Hessel and Pettersson 

(2007b) took a step further by empirically validating the observer automata based 

on the UPPAAL model checker using an industrial real-time test bed based on 

WAP protocol modelled as a NTA. The test bed used CO ER to automate the 

generation of tests and existing tools from Ericsson for automating test execution. 

The study focused on showing the process of generating and executing test cases 

according to the proposed approach rather than validating its performance. 
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Although it reported some discrepancies, the testing approach was based on un-

timed coverage criteria for testing timed systems. Besides, CO ER is just a test 

generation tool which needs the assistance of other tools to execute test cases on 

the SUT.  

A UTA was an input language for another MBT approach (Cardell-Oliver, 2000). 

The generation of timed test cases involved three steps. Firstly, a UTA was 

transformed into a Testable Timed Transition System (TTTS) (i.e., a deterministic 

model using a discrete-time model) to capture its timing behaviour. Secondly, a 

concise choice of test cases was made by the use of test views (i.e., test purposes) 

to explore certain aspects of SUT behaviour. Using test views helped reduce the 

number of generated test cases. Thirdly, trace equivalence was used as a notion of 

conformance according to which the SUT can be declared faulty or correct. A 

fault model was used in the approach to prove its fault detection capability. The 

approach was also supported by a prototype of test generation tool (Glover and 

Cardell-Oliver, 1999) which automated the construction of TTTS under different 

test view scenarios. In spite of generating fewer test cases in comparison with 

others, the testing approach cannot explore most of or identify missed SUT 

behaviour. The use of test views reduces the number of tests and thus cost, but 

does not guarantee SUT correctness. The fault model used in this study considered 

several functional faults and omits timed ones.   

UPPAAL Tron (Larsen et al., 2005b) is another timed testing tool based on the 

UPPAAL model checker and UTA as an input language. In contrast to CO ER, 

UPPAAL Tron is an online testing tool where test case generation and execution 

take place at the same time. As a result, the choice of next inputs to be applied on 

the SUT is determined randomly rather than following selection criteria. 

UPPAAL Tron has been used in several industrial case studies such as the railway 

signalling case study (Mitsching et al., 2009), a protocol to help secure DNS (Rütz 

and Schmaltz, 2011) and the DANFOSS EKC-201 refrigeration controller (Larsen 

et al., 2005b). UPPAAL Tron consumes significant time to finish and cannot 
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guarantee to find all faults, especially timed ones due to its random state 

exploration.  

TorX (Fitzgerald et al., 2005) is another online MBT tool that has been extended 

with time. TorX is based on the timing extension of ioco conformance theory 

including quiescence (i.e., the case of output absence). The drawbacks of the 

UPPAAL Tron also apply. In addition, it is difficult to represent the idea of 

quiescence in real-time systems (Krichen and Tripakis, 2009).  

Nielsen and Skou (2001) introduced a class of TA (i.e., ERA) supported by a 

prototype tool called RTCAT. The authors (Nielsen and Skou, 1998) applied a 

coarse partitioning relation to reduce the state space. Symbolic reachability 

analysis was then applied on the abstracted model to generate test cases satisfying 

Hennessy test theory (De-Nicola and Hennessy, 1984). The application of the tool 

as a timed test case generator was applied to the Philips Audio Protocol. The main 

drawback of this approach was the complexity of the model used as an input 

language (especially when the model was large with a high number of clocks). 

Moreover, it did not guarantee the discovery of all timing faults since it followed a 

coarser state partitioning class. 

A more generic TA specification model permitting non-determinism and internal 

actions was used as a base for generating test cases based on proposed analogue 

and digital testing approaches (Krichen and Tripakis, 2005). For the analogue 

testing approach, a non-deterministic TA supported with a dense-time clock 

model was transformed online during the execution of test cases to a deterministic 

TA. Tests were selected randomly and the tester reaction time was reduced. A 

more realistic approach considered the use of digital clock models to reduce the 

state space. Offline test generation can thus be supported with several test 

selection criteria such as edge and state coverage. The process of test generation 

was automated by developing a prototype tool ‘TTG’ and validated using a 

Bounded Retransmission Protocol (Krichen and Tripakis, 2009). The authors 

claimed that the approach produced few tests. However, no solid validation to 

their claim was found. In addition, although the analogue approach deals with 
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non-determinism, online determinism implies risks especially with respect to 

guiding the test selection process and termination of the tests. The tool also does 

not support the test execution process.     

Other TA-based testing approaches have yet to be automated or empirically 

validated. In (Springintveld et al., 2001), a theoretical framework was proposed 

for generating test cases from a Timed Input Output Automata (TIOA) 

specification based on the W-method (Chow, 1978). The authors admitted that the 

approach was impractical due to the high number of generated test cases for a 

simple TA model.  

In (En-Nouaary et al., 2002; En-Nouaary et al., 1998; En-Nouaary and Liu, 2004; 

En-Nouaary et al., 1999), the authors adopted the Wp-method (Fujiwara et al., 

1991) for generating timed test cases from a TIOA model. The proposed method 

relied on sampling (Larsen and Yi, 1993) the specification according to a clock 

valuation equivalence rule to reduce the infinite state space. A testable automaton, 

called Grid Automaton (GA), was introduced as a result of the sampling process 

with the coarsest granularity related to the number of clocks. The timed 

specification was then transformed to an un-timed one to enable application of the 

Wp-method. The authors discussed that test cases generated could discover main 

(known) timing faults. However, the number of test cases generated for a small 

specification was still large, since the method aimed to cover all states of the 

produced GA model. 

Selecting the granularity for sampling the RA affects the size of the resulting GA 

and therefore the number of generated tests. As a result, a dynamic selection of 

the granularity would lead to a more compact GA. This idea was the base of a new 

testing approach (Bonifácio and Moura, 2011). Tests were generated from the GA 

using test purposes; a synchronous production of the specification with test 

purpose models was created. The study did not address the notion of correctness 

or how the specification model could be covered. Although it is a promising 

approach, a robust validation along with an automated tool is still needed.    
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A TIOA supported with a discrete-time model was used for generating timed test 

cases (Khoumsi et al., 2000). The test generation process involved abstracting 

time by transforming the TIOA model into an un-timed one to enable the 

application of the Wp-method for generating test cases. Notably, a large number 

of test cases are likely to be generated, some of which might be not executable. 

Another transformation from a TIOA to an FSM has been tried to ease the test 

generation process. The transformation process produced an equivalent non-

deterministic model which might lead to a state explosion problem (Khoumsi, 

2002). To avoid this, a TIOA was transformed to a special case of FSM called 

Set-Exp automata by creating special events for representing timing behaviour 

(i.e., clocks and their reset). The aim was to use the test generation approaches 

proposed for un-timed systems for testing real-time ones (Ouedraogo et al., 2010). 

Another study generated timed test cases from a TIOA (Fouchal et al., 2000). The 

proposed approach transformed a TIOA model to an un-timed LTS to generate 

test cases based on a set of test purposes. A pass, fail, inclusive (i.e., when the 

SUT passes and fails the same test) notions were defined. The approach failed to 

explore the state space of the specification model. Besides, no validation to the 

claims of this study was presented. 

En-Nouaary (2008) introduced a timed scalable testing approach based on a 

TIOA. To avoid generating a large number of test cases, the GA produced was 

traversed by covering each transition just twice at two time points (the earliest and 

latest) to generate test cases. The approach appeared to be scalable and produced 

few test cases. However, the traversal of GA to generate test cases was expensive 

time-wise. In (En-Nouaary and Hamou-Lhadj, 2008), a further method for testing 

real-time systems modelled as a TIOA was presented. This method generated test 

cases by covering every transition of the TIOA at three different times (soonest, 

latest‎ and‎ ‘between’ two executions). The authors claimed that the approach 

ensured good fault coverage of the system. However, they did not validate their 

claim.  
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A timed test case generation method based on the specification modelled as a 

temporal logic was introduced (Mandrioli et al., 1995). However, a discrete time 

model was used to represent timing behaviour. The UIOv-method for generating 

test cases from a TA was introduced in (Higashino et al., 1999). The authors 

presented an algorithm for selecting each executable transition. The main 

drawback of this method was the amount of time consumed by the method.  

Other formalisms have been used for timed test generation approaches. Similar to 

the TA, a Timed Transition System (TTS) was used to model SUT behaviour and 

generate timed test cases. The model used a discrete-time model to represent 

timing behaviour. The process of generating test cases involved abstracting timing 

behaviour by transforming a TTS to a LTS to use the W-method. This approach 

produced a large number of test cases due to the large state space resulting from 

the transformation (Cardell-Oliver and Glover, 1998). Clarke et al. (1997b) 

introduced a testing method based on a constraint graph. Generating test cases 

(Dasarathy, 1985; Taylor, 1980), the authors proved that their method achieved 

full fault coverage. However, the constraint graph from which those timed test 

cases were generated was not general and was restricted to the minimum and 

maximum delays between two consecutive events.  

It is clear that methods that provide higher coverage will tend to produce more test 

cases. Moreover, the lack of a clearly defined timed coverage criterion in 

generating the test cases means that the majority of timed state space is omitted. 

As a result, the capability of the generated test cases for detecting timing faults is 

still questionable. 

2.8.7 Motivation for Automatic Testing from a TA  

The application of MBT on RTESs is still considered relatively new and 

complicated compared with un-timed systems. Timing behaviour which increases 

the state space to be explored increases the cost by generating a large number of 

test cases.  
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Many TA-based test algorithms based on TA were proposed with the aim of 

generating few test cases but with high fault detection capability. They differ from 

each other in the effort expended in their use, the number of test cases they produce 

and their effectiveness in detecting logical as well as timing faults (Clarke and Lee, 

1997b; En-Nouaary and Hamou-Lhadj, 2008; En-Nouaary, 2008; En-Nouaary and 

Dssouli, 2003). However, most of these approaches fail to explore the entire state 

space and come at a high cost in terms of expended efforts (Mitsching et al., 

2009). The used test selection criteria (i.e., adequacy criteria) for generating timed 

test cases are un-timed. SUT timing behaviour which is not fully checked can hide 

many faults. Moreover, there are very few tools which automate the generation 

and execution of test cases despite the wide number of proposed testing 

approaches; to our knowledge no tools exist for automating the execution of tests 

in real-time contexts.  

As a result, developing techniques that can handle real-time specifications and 

generate relatively small test suites with high structural and fault coverage is still 

necessary. Adoption of an efficient timed adequacy criterion is thus an urgent need. 

Automating the process of generating and executing test cases is also a high priority 

for reducing time and cost.   

2.9 Summary 

Computer-based systems have an increasing role in controlling and monitoring 

modern society infrastructures. Time-dependent systems (i.e., RTESs) which 

interact closely with their environment and satisfy its real-time requirements are 

built. The effects of violating such time requirements may range from slight system 

misbehaviour to loss of human life. As a result, the most important development 

task is to ensure that an RTES implementation is as fault-free as possible before its 

use. 

Using formal methods, verification and model-based testing can ensure that the 

system is correctly implemented. While verification validates the specification 
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against functional and timing requirements, testing targets the correctness of the 

implementation. In general, testing strategies can be achieved by submitting a set of 

test cases to the SUT and observing its outputs. SUT behaviour can be declared 

correct or faulty after comparing observed outputs with a formal specification 

according to pre-defined conformance relations. Suitable formal languages are used 

to build the system specification from which test cases are then extracted.  

Compared with un-timed systems, testing RTESs is far more difficult since it 

requires checking of timing correctness as a new dimension. Many testing 

approaches have been developed. However, most of them either suffer from high 

cost due to a large number of test cases or generate few tests without achieving high 

fault coverage. Moreover, research in real-time adequacy criteria is still immature 

and all existing coverage criteria are un-timed (i.e., do not take timing properties 

into account). As a result, there is a need for a new approach that it is both efficient 

in handling real-time specification, practical in use and derives a small number of 

test cases that achieve timed adequacy criteria and high fault coverage.  
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Chapter 3:  A Priority-Based Approach for 

Testing Real-Time Embedded Systems  

  

3.1 Overview 

The problem of testing RTESs from a TA is tackled in this chapter by proposing 

the Priority-based Approach (PA) as a new component-based offline test case 

generation method for an RTES modelled as a UTA (Aboutrab and Counsell, 

2010). Test cases are selected according to Clock Region Coverage (CRC) as a 

proposed timed adequacy criterion supported by mathematical representations 

(Aboutrab et al., 2012b). CRC considers covering timing as well as functional 

behaviour of the RTES under test by executing each transition within the UTA at 

specified time points. Considering clock guards, PA divides the generated test 

cases into three sets (namely boundary, out-boundary and in-boundary). The 

existence of three different test sets adds greater flexibility to the proposed PA in 

choosing suitable sets for a particular SUT. 

To validate the performance of PA in comparison with four other similar TA-

based testing approaches, the chapter proposes the application of Specification 

Mutation Analysis (SMA) in a TA context. A set of timed and functional mutation 

operators representing a set of incorrect behaviour is introduced. Three TA 

specification models are then used as case studies from which mutants are 

generated according to proposed mutation operators. The validation and 

comparison process is based on the mutation score calculated for each chosen 

timed testing approach with respect to a particular mutation operator (Aboutrab et 

al., 2012c).  
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The remainder of this chapter is organised as follows. The problem area this 

chapter tackles is highlighted in Section ‎3.2. Section ‎3.3 introduces preliminaries 

that explain TA and TA-based testing. The proposal of a timed adequacy criterion 

is presented in Section ‎3.4. The proposed PA is then explained in detail in 

Section ‎3.5 including its testing algorithms. Validating and comparing the 

performance of PA and other four TA-based testing approaches according to SMA 

is also presented in Section ‎3.6. Section ‎3.7 concludes the chapter. 

3.2 Problem Area 

Real-Time Embedded Systems (RTESs) have an increasing importance in modern 

society due to the close interaction with their environment. Testing an RTES 

implementation to ensure that it is fault-free before its deployment is necessary 

(En-Nouaary et al., 1998; En-Nouaary and Hamou-Lhadj, 2008; Hessel et al., 

2008; Rollet, 2003). Model-Based Testing (MBT) is one of the testing approaches 

developed with the aim of achieving high fault detection capabilities and 

minimising cost through early capture of system behaviour and the automation of 

test‎case‎generation,‎execution‎and‎evaluation.‎A‎system’s‎validity‎can‎be‎shown‎

by comparing actual system behaviour with the formal model representing the 

system specification according to a conformance testing theory (Mitsching et al., 

2009; Hessel et al., 2008; Tretmans, 1996). MBT can test timing behaviour of an 

SUT in addition to testing its functional behaviour if specification formalisms 

capable of capturing the required timing properties exist. A TA formalism is one 

of the most widespread due to its ability to express real-time behaviour of an 

SUT. It provides an easy and powerful means of extending finite-state machines 

with clock variables which track timing progress and incorporate timing 

constraints through the state-transition graph.  

Testing from TA is problematic due to the need for discrete as well as continuous 

behaviour to be tested. Continuous behaviour of an SUT such as time has an 

infinite nature. As a result, generating test cases that entirely cover such behaviour 

is not possible. To tackle this problem, several TA-based testing algorithms have 

been proposed and differ from each other in the TA variant formalism they adopt, 
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the effort expended in their use, the number of test cases they produce and their 

effectiveness in detecting logical as well as timing faults (Clarke and Lee, 1997b; 

En-Nouaary and Hamou-Lhadj, 2008; En-Nouaary, 2008; En-Nouaary and 

Dssouli, 2003). Regardless of the TA variant used, its testing algorithms can be 

categorised based on how they handle infinite continuous behaviour as follows: 

1. Time can be abstracted by using different equivalence relations that reduce 

the infinite state space of the specification model to be finite. Continuous 

behaviour is thus converted to discrete to enhance the application of un-

timed test algorithms (Khoumsi et al., 2000; En-Nouaary et al., 1998). 

However, time abstraction may lead to the state explosion problem due to 

the large number of resulting states. 

2. A discrete-time model is used to model clocks in TA to reduce the number 

of timed states (Krichen and Tripakis, 2009). However, the use of a 

discrete-time model contradicts the continuous behaviour of clocks.  

3. Un-timed test selection criteria (e.g., transition coverage) or random search 

can be used for selecting test cases (Blom et al., 2005; Hessel et al., 2008). 

In other words, one or more random time points that satisfy clock guards are 

selected to trigger transitions. In spite of generating a relatively small test 

suite, timing behaviour is barely tested.  

Adopting an appropriate test selection criterion can be considered as a key factor to 

handle testing RTESs. Literature has addressed two types of test selection criteria: 

structural and fault coverage. The aim of structural coverage (e.g., transition 

coverage) is to measure to what extent test cases cover the specification model. 

Coverage criteria proposed for un-timed systems were used for testing timed ones 

due to the lack of research studying formal timed coverage criteria for real-time 

systems. As a result, timing behaviour of an SUT will not be tested. It is thus 

essential to consider a timed coverage criterion for testing real-time systems. 

On the other hand, fault coverage seeks tests capable of detecting potential faults in 

an SUT. Fault coverage needs to be facilitated by a fault model identifying the 

possible faults that might be encountered (Hessel et al., 2008; En-Nouaary et al., 

1999). The power of any test suite can thus be determined by its fault coverage; the 
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higher the fault coverage, the more powerful the test suite (En-Nouaary and 

Hamou-Lhadj, 2008; En-Nouaary et al., 1999). The use of fault coverage as an 

assessment or selection criterion can be more effective if it is used in a controlled 

way by application of Specification Mutation Analysis (SMA). In the literature, to 

our knowledge no study has addressed the application of SMA on TA. Proposing 

well-suited TA-based mutation operators becomes a necessity for facilitating the 

application of SMA in a TA context. 

The problem tackled by this chapter is to develop a timed testing approach that 

can handle real-time specifications based on a TA variant (UTA) and generate 

relatively small test suites with high structural and fault coverage. The primary 

contributions of this chapter are: 

1- The proposal of Clock Region Coverage (CRC) as a timed adequacy 

criterion for covering timing behaviour of a TA specification.  

2- The proposal of the Priority-based Approach (PA) including its algorithms 

for generating timed test cases from TA variant (UTA).  

3- The proposal of timed mutation operators based on previously proposed 

timing fault models in the literature to facilitate the application of SMA in 

a TA context. 

4- The validation of PA in comparison with four other similar TA testing 

approaches based on SMA application.    

3.3 Preliminaries 

This section introduces the mathematical definitions of the TA model and its 

variants, Timed Input Output Automata (TIOA) and UPPAAL TA (UTA). The 

model is then illustrated with an example to clarify its properties. We also 

highlight some definitions related to testing from a TA.   

3.3.1 Timed Automata (TA) 

TA (Alur and Dill, 1994) has been used by many researchers (Alur and Dill, 1994; 

En-Nouaary et al., 1999; Springintveld and Vaandrager, 1996; Springintveld et 
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al., 2001) for modelling real-time specifications. The popularity of the TA 

formalism comes from its ability to express most of RTESs behaviour. A TA 

provides an easy and powerful means of extending finite-state machines with real-

valued clocks to model real-time processes over continuous time. More than one 

clock can be used to express time. However, the more clocks added, the more 

complex the model analysis. 

Definition 3.1 Timed Automaton (TA): Let     be a set of non-negative reals. 

Let   be a set of     valued variables called clocks; |C| = n (the number of 

clocks). Let  ( ) denote the set of guards on clocks as conjunctions of constraints 

of the form     , where             and                . Let 

 ( ) denote the clock valuation function:                as a dense time 

model. A timed Automaton TA is a tuple (            ), where: 

   : A set of locations that represent the system status after executing a 

transition. 

       : The initial location. 

   : A set of clocks. All clocks are initialized to zero at    and may be reset 

after executing a transition. 

   : A set of actions. 

         ( ) : An invariant which assigns guards to locations. 

             ( )         : A set of transitions with an action, a 

guard, a set of clocks. 

A transition in a TA is denoted by  
           
→         where: 

   : The source location.  

   : The destination location. 

  : The action that fires the transition. 

  : The clock guard that should hold to execute the transition. 

  : The subset of clocks to be reset when the transition is fired. 

Definition 3.2 Semantics of TA: Let    (            ) be a timed 

automaton. Its semantics are defined as a labelled transition system 〈      〉, 

where: 
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          : The set of states. 

      (     ): The initial state where   ( )    for all (    ). 

      (     )    : The transition relation such that: 

- (   )
 
 (       ) if                        ( ). That allows 

the time delay by  .  

- (   ) 
 
  (     ) if there exists   (          )   ,                

and       ( ), where: 

             

       maps each clock x in C to the value  ( )       

          denotes the clock valuation which maps clocks in r to 0 

after firing a transition.  

An action   is received or sent at a clock valuation    ( ). If u satisfies the 

clock guard   denoted by    , a transition  
           
→        will be fired in which the 

automaton changes its location and subsequently its state.  

Definition 3.3 Timed Input Output Automata (TIOA): A TIOA extends a TA 

by partitioning‎the‎set‎of‎actions‎into‎sets‎of‎inputs‎and‎outputs.‎A‎TIOA‎‘A’‎is‎a‎

tuple (           
       ), where: 

   : A finite set of inputs received. Marked‎with‎‘?’. 

   : A finite set of outputs sent. Marked‎with‎‘!’. 

   : A set of locations that represent the system status after executing a 

transition. 

   
    : The initial location. 

   : A set of clocks. All clocks are initialized to zero at   
  and may be reset 

after executing a transition. 

    : A set of transitions. 

Definition 3.4 UPPAAL Timed Automata (UTA): UTA formalism is based on 

the theory of TA. It uses its pre-defined properties and offers additional features 

such as modelling the environment explicitly. The environmental model can then 

communicate with the system model by sending inputs (marked‎ with’?’) and 

receiving outputs (marked‎with‎‘!’)‎through synchronized channels. Modelling the 
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environment allows the production of test scenarios compatible with a given 

environment and thus reduces the number of required tests. Moreover, a UTA 

facilitates the construction of large models by building parallel synchronized 

networks of UTAs. A UTA uses notations such as initial, committed and urgent 

locations. The initial location is represented by double circles and is the location 

from which the model starts. When reached,‎the‎committed‎location‎‘C’ is used to 

indicate that its un-constrained transition should be triggered directly. Finally, the 

use‎of‎an‎urgent‎location‎‘U’ indicates that the model cannot stay at this location 

for any length of time (Behrmann et al., 2004). A UTA consists of a network of 

timed automata over a common set of clocks and actions, consisting of   timed 

automata       (     
            )            .  

Definition 3.5 Semantics of a Network of Timed Automata: Let      

 (     
            ) be the i

th
 branch of a network of n timed automata. Let   ̅  

(  
        

 ) be the initial location vector. Its semantics is defined as a transition 

system 〈      〉, where: 

      (               )      : The set of states. 

       (  ̅   ): The initial state where   ( )    for all (    ). 

         : The transition relation defined by:  

- (  ̅  )   (  ̅      )                               ( )̅  

- (  ̅  )   (  ̅  
       

 ) if there exists   
     
→     

 .             and 

      ( )̅  

- (  ̅  )  (  ̅  
         

       
 ) if there exist   

        
→       

  and   
        
→       

   

    (      )         and       ( )̅   

Definition 3.6 TA Test Suite: Let TA =(            ) be a timed automaton 

specification. Let     be a set of non-negative reals. Given           as a 

finite set of input and output actions.                           (      )  

represents a test suite comprising n test traces (i.e., test cases) represented by 

sequences of timed actions. 
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Figure ‎3.1.a shows a UTA model of a simple lamp controller. The user controls 

the brightness of the light by interacting with a touchpad within certain time 

intervals. The light brightness shows three levels: OFF, LOW and BRIGHT. The 

first press by the user turns the lamp on with low brightness. If the user presses 

the‎button‎again‎within‎‘4’ time units, the light becomes brighter. Otherwise, the 

lamp turns off. The environment model representing the user in our example is 

shown in Figure ‎3.1.b. As an example of the semantics, the lamp may have the 

following sequence of transitions: 

(OFF, x = 0) 
 
  (OFF, x = 2)  

      
→     (low, x = 0)  

    
→    (LOW, x = 0)  

    
→   (LOW, x 

= 4.23)  
      
→    (off2, x = 0) 

    
→  (       )   

We can form an observable trace in the UTA representing those semantics as a 

sequence of inputs, outputs and delays: 

                               

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure  3.1: Simple lamp controller 

3.3.2 Clock Region Abstraction 

Since clock values are non-negative real numbers, the set of possible values of a 

clock is infinite. Covering entire clock values during the test case generation is 

impossible. As a result, the equivalence relation defined in (Alur and Dill, 1994) 

addressed this issue. The rationale behind defining such a relation was to divide 

(a) Lamp (b) User 
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the TA clock valuation domain into equivalent regions. The clock values 

belonging to a certain region forces the TA to respond with same behaviour. 

Definition 3.7 Equivalence Relation between Clock Valuations: Let     

 (            ). Two clock valuations          ( ) are said to be equivalent 

(     ) iff         : 

 ⌊ ( )⌋  ⌊  ( )⌋  

 (( ( )   )  ( ( )   )),(fract( ( ))   fract( ( ))  

 fract(  ( ))   fract(  ( ))). 

  ( )   , (fract( ( ))      fract(  ( ))    ).  

Here, ⌊ ⌋ and fract( ) denote the integral and fractional parts, respectively of the 

real number  . The   relation between two clock values is met if the integral 

parts and the ordering of the fractional parts of two clock values are equal. 

Integral parts are required to determine if a timing constraint has been met or not, 

while the ordering of fractional parts is required to know which clock changes its 

integral part first. The groups of equivalent clock values are called clock regions. 

The clock region of a clock valuation   is denoted by [ ]. The set of all clock 

regions of a TA is denoted by the Region Automata RA(  ). 

Definition 3.8 Region Automata (RA): Let      (            ). The finite 

region automaton   (  )    〈      〉 where: 

    The set of tuples (     ) in which each state comprises a location   and a 

clock region     of a TA. 

    (       ): is the initial state of the region automaton where   ( )  

  for all (    ). 

        : The transition from    (     ) to     (       ) where: 

-   
       
→       is an action transition  

           
→        with       and    

        exist.  
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-   
       
→       is a delay transition in a RA(TA). According to Definition 

3.7, the least time delay   that moves the region automation from one 

state to another should fall between ]0, 1[.  

The importance of region automata comes from its compact nature in which we 

obtain a finite number of regions instead of an infinite number of clock valuations.   

3.4 Timed Adequacy criterion: Clock Region 

Coverage (CRC) 

Many structural coverage criteria have been proposed and studied for un-timed 

systems such as transition, state and definition-use coverage criteria. Due to the 

lack of research studying formal timed coverage criteria for real-time systems, the 

coverage criteria proposed for un-timed systems were mostly used for testing 

timed ones (Blom et al., 2005; Hessel et al., 2008). As a result, timing behaviour 

of an SUT will not be tested. Proposing a timed coverage criterion for testing real-

time systems is essential. Timing behaviour of an SUT is represented by a set of 

timers or clocks whose values (i.e., non-negative real numbers) are infinite. As a 

result, generating test cases that cover each clock value is impossible. The 

equivalence relation in Definition 3.7 divides the clock valuation domain into a set 

of regions. Each region comprises equivalent clock valuations that cause the SUT 

to respond with the same behaviour. One clock valuation can thus safely represent 

the whole region to which it belongs. Figure ‎3.2 presents the clock valuation 

space where the x and y axes correspond to the values of clock x and y, 

respectively. For the sake of clarification, the regions are divided into three 

categories: corner point regions, open line segment regions and open area regions. 

For instance, (                           ) is an open area region in 

which the clock valuations      (        ) and      (         ), as an 

example, are equivalent according to Definition 3.7. This means that if the 

state (    ) accepts a trace, then the state (    ) also accepts that trace. 

This concept was initially proposed by Alur and Dill (Alur and Dill, 1994) to 

significantly reduce the infinite timed state space by replacing a TA specification 
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with a finite region automaton. The region automaton is constructed using the 

equivalence relation by considering the number of clocks used in the specification 

model and the maximum length of each clock. Figure ‎3.2 shows that the total 

number of regions is ‘82’ considering two clocks with ‘3’ as a maximum length of 

both. ‘82’ regions should be then constructed for every transition to create the 

region automaton.  

Several studies (Springintveld et al., 2001; En-Nouaary et al., 2002) have the RA 

being used as an initial step for generating timed test cases. A Grid Automaton 

(GA) was then produced by sampling the RA (i.e., choosing representative points 

from each region of RA). However, the number of generated test cases from the 

GA was still large for two reasons. First, the RA is a very fine-grained abstraction 

technique; the number of clock regions increases significantly when the number of 

clocks or their upper bounds increase. Second, choosing a fixed granularity (i.e., 

sampling rate) for producing the GA leads to the selection of several 

representative values (i.e., time delay) from each region.  

 

Figure  3.2: Clock regions  

3.4.1 CRC Considerations 

The idea of clock regions constitutes a timed adequacy criterion. A clock region is 

a fine-grained abstraction method that does not miss any clock value that might 

change system behaviour. CRC can thus be used to select and measure whether 
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the test suite covers all clock regions identified for each transition in the 

specification model. To facilitate using the concept of clock regions as a timed 

adequacy criterion, we propose a set of considerations to be taken into account to 

tackle its negative issues (i.e., the fast growth of clock regions by increasing the 

number of clocks and their upper bounds).  

First, the clock regions need to be calculated at the transition level rather than at 

the model level, as proposed. The calculation of clock regions should thus 

consider (1) the number of clocks with their upper and lower bounds for a 

particular transition and (2) whether the transition is input (i.e., triggered by an 

input) or output (i.e., triggered by an output). In the case of an input transition, the 

test suite should consider all clock regions calculated for that transition, since 

inputs can be controlled by the tester. In other words, the tester can provide a set 

of inputs at certain times to cover the considered regions. However, clock regions 

calculated for output transitions need to be combined into one region since outputs 

are driven by an SUT and are not controlled by the tester. Any emitted output at a 

certain time triggering its transition is enough to confirm that the combined region 

defined for that transition is covered.  

Second, proposing an appropriate process for determining the clock regions to be 

covered for each transition is essential for deploying the concept of CRC. 

Definition 3.7, as depicted in Figure ‎3.2, shows how to form regions. However, 

constructing the clock regions manually is a time consuming process especially if 

there is more than one clock controlling SUT timing behaviour. Calculating the 

number of clock regions to be covered can thus ease the process. Alur and Dill 

(Alur and Dill, 1994) proposed a mathematical Equation (‎3.1) for calculating the 

upper bound of clock regions.  

 NCR = | |   | |  ∏ (     )    ( 3.1) 

Where:  

 NCR: The number of clock regions.  

 | |: The number of clocks.  
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    : The length of a timing constraint (i.e., the upper bound - the lower 

bound).   

Applying Equation (‎3.1) to calculate the number of regions of Figure ‎3.2 gives:  

| |                     

NCR= (   )      ((     )  (     ))      

Counting the regions as per Figure ‎3.2, we find that the actual number of regions 

is 82. There is a large difference between the upper bound of the regions 

calculated according to Equation (‎3.1) and the actual number. Filling this gap, we 

propose a mathematical equation with the same notation as Equation (‎3.1) to 

calculate the number of regions accurately for up to three clocks used in the TA 

model (Section ‎3.4.2). 

Third, we notice that not every clock region can be feasibly covered when more 

than one clock is used within the specification model. Identifying and calculating 

the number of feasible regions can also help to reduce the number of required 

regions and thus the generated test cases (Section ‎3.4.3).  

3.4.2 Number of Clock Regions (NCR) 

The proposed equations are proved according to the graphical representation of 

the clock regions for one clock, two clocks and three clocks leaving the 

generalised form for future work. 

a. | |  = 1: 

Figure ‎3.3 shows the least number of clock regions when there is one clock 

and     . The number of clock regions‎is‎‘4’‎(‘2’‎corner‎regions‎+‎‘2’‎open‎line‎

segment regions). Minimum increase of    by‎‘1’‎adds‎‘1’‎corner‎region‎and‎‘1’‎

open line segment region. In other words, each increase in    adds‎ ‘2’‎ regions.‎
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This can be represented mathematically by       (  (    )) which 

leads to Equation (‎3.2). 

       (    ) ( 3.2) 

 

 

Figure  3.3: Regions with one clock 

b. | |  = 2:  

Similarly, when two clocks are controlling SUT behaviour, their values can be 

represented by a two-dimensional graph comprising sets of connected squares 

where each axis represents one of the clocks. Figure ‎3.4 shows the least number of 

clock regions when        . The number of clock regions‎is‎‘18’‎(‘4’‎corners‎

+‎ ‘9’‎ open‎ line‎ segments‎ +‎ ‘5’open‎ areas).‎ The equation which calculates the 

number of clock regions can be derived in the following way. First, we consider 

the case where    = 1 and     . The following clock regions are then obtained:  

R1 = (2(  +1) corners + 4(  + 1) open line segments+    diagonal edges + 

(3  +2) open areas) =        . 

Second, we consider the case for each increase in    by 1 (from some k to k+1). 

The following additional clock regions are obtained:  

R2 = ((  +1) corners + 2(  + 1) open line segments+    diagonal edges + (2  +1) 

open areas) =       .  

Thus, the general equation for      1 and      is formed by taking R1 when 

     plus (    ) times R2 as    increases by 1. This gives: 
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N      (    )     (       )  (    )  (      ) 

By adjusting the equation, we obtain:   

    (       )     (       )           ( 3.3) 

 

Figure  3.4: Regions with two clocks 

Equation (‎3.3) represents the number of clock regions for two clocks with respect 

to          . By applying Equation (‎3.3) on Figure ‎3.2:  

NCR= (  (   )    (     )   82. 

As seen, the result from our equation matches to the count from Figure ‎3.2. 

c. | |   :  

The more clocks, the more dimensions in the graphical representation. When the 

automaton uses three clocks, the clock valuation space consists of sets of 

connected cubes. Figure ‎3.5 shows the least number of clock regions when    

       . The number of clock regions‎ is‎ ‘84’‎ (‘8’‎ corners‎+‎ ‘37’‎open‎ line 

segments‎+‎ ‘26’open‎areas‎+‎ ‘13’open‎volumes).‎The equation which calculates 

the number of regions can be derived in the following way.  

First, we consider the case where     =    = 1 and     . The following clock 

regions are obtained:  
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R1 = (4(  +1) corners + 12(  + 1) open line segments+ (     ) diagonal edges 

+ (19  +13) open areas+(9  +4) open volumes) =         . 

Second, we consider the case for each increase in    or    by 1 (from some k to 

k+1). The following additional clock regions are obtained:  

R2 = (2(  +1) corners + 6(  + 1) open line segments+ (     ) diagonal edges + 

(12  +7) open areas+(7  +2) open volumes) =         . 

Third, we consider the case for each increase in    and    by 1. The following 

additional regions are obtained:  

R3 = ((  +1) corners + 3(  + 1) open line segments+ (     ) diagonal edges + 

(8  +4) open areas+(6  +1) open volumes) =         . 

Thus, the general equation which calculates the number of clock regions for      

1,      and      1 is formed by taking R1 when    =    = 1 plus (    ) times 

R2 as    increases by 1 plus (    ) times R2 as    increases by 1 plus (    ) 

(    ) times R3 as    and    increase by 1. This gives:  

       (    )     (    )     (    )  (    )     

(        )  (    )  (       )  (    )  (       )  (   

 )  (    )  (       )  

By adjusting the equation, we obtain Equation (‎3.4):   

 

     (           )     (            

     )    (          ) 
( 3.4) 
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Figure  3.5: Regions with three clocks 

3.4.3 Feasibility Issue of CRC  

Covering all clock regions in a transition constrained by more than one clock is 

infeasible. The purpose of using several clocks in a specification model is to 

measure the elapsed time from different points in the model. The clocks need to 

be reset in different locations - no means exists for using several clocks resetting 

at same locations as they act as one clock. Time elapses in all clocks at the same 

speed. It is thus impossible for one clock at a certain transition, constrained by 

several clocks, to have values greater and, at the same time, less than the values of 

other clocks. 

To clarify, consider Figure ‎3.6 that depicts a TA model controlled by two clocks. 

The use of two clocks     over the transition: (   
             (   )
→                          ) 

is to ensure that the automaton reaches    with no more than 2 time units from    

and no more than 3 time units from     Note that the clocks   and   reset together 

once the transition (   
         (   )
→                     ) is fired where only the clock   

Y 

X 

Z 
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resets once the transition (   
       ( )
→               ) is fired. The values of clock   in 

the transition (   
                  (   )
→                               ) should be always greater 

than or equal to those of clock   since it starts earlier than clock  . As a result, 

half of the space representing the values of     (as in Figure ‎3.7) can be omitted 

without losing the clock regions in the middle line where the values of   are equal 

to the values of  .  

 

Figure  3.6: Two-clock automaton 

The number of clock regions to be covered can be thus calculated according to 

Equation (‎3.5) in the case of two clocks.  

         [(         
            )   ]         ( 3.5) 

Where:  

     : The total number of clock regions calculated for two clocks 

according to Equation (‎3.3).  

          
 : The number of clock regions calculated according to Equation 

(‎3.3) by making the length of all clock guards over a transition equal to the 

minimum length among them.  

           : The number of clock regions of the middle line which is 

calculated using Equation (‎3.2) by just considering the clock with the 

minimum length.  
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From Figure ‎3.7,     = 82 regions according to Equation (‎3.3). Since         

 ,          
=    = 82.           = 8 according to Equation (‎3.2). Applying 

Equation (‎3.5), the number of effective regions to be covered:  

         (    )       

 

Figure  3.7: Feasible clock regions 

The aim is thus to generate timed test cases that are able to cover all feasible clock 

regions for the whole specification model.   

3.5 Priority-based Approach (PA) 

This section presents the priority-based approach for generating timed test cases 

for an RTES modelled as UTA. A set of test hypotheses is first introduced to 

ensure that our approach is accurately used. We then explain the structure of our 

approach as well as presenting the accompanying algorithms that generate the 

timed test cases.  
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3.5.1 Test Hypotheses 

The rationale for using test hypotheses is to specify the properties of the SUT and 

its tests since the implementation of and testing any system can be achieved in an 

infinite number of ways. 

1. The testing process is applicable at the component level of an SUT.  

2. The SUT and the specification are formally modelled by UTA in order to 

create the conformance relation between them.  

3. The SUT is deterministic and fully observable. In other words, there are no 

transitions fired at the same time and no internal actions exist. 

4. Minimal number of clocks should be used to express SUT timing 

behaviour to reduce the complexity of the model.  

5. At the end of each test case, there is an implicit reset transition that brings 

the SUT to the initial state.  

6. The SUT and the specification always accept inputs from test cases. 

7. To highlight the test selection criterion that covers SUT timing behaviour 

of the SUT, no data variables are allowed in the specification model.  

3.5.2 Test Selection 

The test selection in PA is based on the proposed CRC. The CRC in TA-based 

testing relies on providing timed inputs capable of firing each transition (at least 

once) at different time points equal to the feasible NCR calculated for that 

transition. In other words, it is enough to choose an input with a time delay (i.e., 

clock value) to represent the region it belongs to. The selected timed inputs thus 

form test cases. In special cases, test cases are selected as follows: 

 If the guard is always true (i.e., no guard over a transition exists to 

constrain timing behaviour), the time delays accompanied by a suitable 

input are incrementally chosen for each firing of the transition. In other 

words, starting‎from‎‘0’,‎clock values should be chosen from consecutive 

clock regions. This way of selection might help uncover more timing 

faults without increasing the number of test cases.  
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 If a transition starts from a committed or urgent location or represents an 

urgent channel, no time delays are permitted when applying the input to 

trigger that transition.  

The core concept of the PA is based on dividing the generated test cases into three 

sets.‎Test‎sets‎are‎called‎‘priorities’ as the priority of choosing a particular test set 

is different from one test set to another according to the testing environment 

specified by the criticality of an SUT, the allowable time and budget specified for 

the testing process (Aboutrab et al., 2010). Each test set (priority) is named and 

constructed according to the structure of clock guards.  

a.  Boundary Set (B)  

B contains test cases that achieve transition coverage by considering the boundary 

values of clock guards defined for each transition they cover. The boundary values 

represent the clock values chosen from the boundary regions of a clock guard of the 

model     , where                               . In the case of 

             this set contains the exact boundary values of a clock guard. For 

instance, the boundary values of the clock guard (1<=x<=4)‎ are‎ ‘1’‎ and‎ ‘4’. 

Otherwise (         ), this set contains clock values from the direct 

neighbouring interior region by  , where      . For instance, the boundary 

values of the clock guard (x<‎2)‎are‎‘0’‎and‎‘1.5’ by having    
 

 
 . 

b. Out-Boundary Set (OB)  

OB contains test cases that achieve transition coverage by considering the out-

boundary values of clock guards defined for each transition they cover. The out-

boundary values represent the clock values chosen from the neighbouring region 

located out of clock guard boundaries by   where      . For instance, the out-

boundary values of the clock‎guard‎(1<=x<=4)‎are‎‘0.5’‎and‎‘4.5’ by having    
 

 
. 
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c. In-Boundary Set (IB) 

IB contains test cases that achieve transition coverage by considering the in-

boundary values of clock guards defined for each transition they cover. The in-

boundary values represent all clock values covering the remaining clock regions 

that have not been covered by the ‘boundary’‎and‎‘out-boundary’‎sets.‎For‎instance,‎

the in-boundary values of the clock guard (1<=x<=4) are‎ ‘1.5’,‎ ‘2’,‎ ‘2.5’,‎ ‘3’‎and‎

‘3.5’.  

Note that test cases achieving full CRC are: {B   OB   IB}.   

3.5.3 Test Generation Algorithms 

This section introduces the algorithms responsible for generating timed test cases 

for an SUT modelled as UTA according to CRC. Algorithm 1 (Figure ‎3.8) 

generates test cases responsible for achieving CRC in co-operation with algorithm 2 

by which the priority sets are chosen. Algorithm 1 starts by placing the initial 

location    in‎ the‎ set‎ ‘    ’‎ acting‎ as‎ a‎ stack‎ to‎ store‎ all‎ destination‎ locations‎

reached by the transitions covered.‎The‎set‎‘    ’‎directs the algorithm in choosing 

the following transitions to be covered and guarantees that no transition has been 

missed. Starting from   , the algorithm creates a test trace comprising all transitions 

commencing from    and ending at    if it is possible. A depth-first search algorithm 

is used to cover as many transitions as possible in each test trace. If any branches 

are encountered,‎ all‎ their‎ destination‎ locations‎ are‎ added‎ to‎ the‎ set‎ ‘    ’.‎ One 

branch is then chosen by the search algorithm. Once this branch has been covered, 

the other branches are then consecutively retrieved from the‎ set‎ ‘    ’. Each 

transition covered is represented by a pair (starting location, destination location) 

stored in the set (    ). The main role of      is to ensure that the self-loop 

transition is not covered more than once. The pair (   ) represented each transition 

covered within a test trace is then added to an array     . Each row of this array 

thus comprises a complete test trace whose components are a set of duals ( ,  ) 

representing the transitions covered by this trace. The algorithm then picks the 

following‎ location‎ in‎ ‘    ’ to form another test trace until all transitions are 
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covered. Once the whole automaton is covered, the complete test traces stored in 

     are ready. The guards in      are then traversed by the set of clock values 

according to the chosen priority (Algorithm 2) to produce      ; each row of       

is thus a test case candidate. 

ALGORITHM 1. TEST CASE GENERATION 

1 Generate(Input:    ,Output:        : traces count) 

                                  
      
 While (one transition at least not yet processed)              

do: 

      
 While(      ) 

 pick   from     ; 

 select (             
     

→            )not 

yet processed 

 if ((   =  )&& ( ,    ) in     )or(      )   

 continue  

 else  

 add (   ) to        
         
 add( ,    ) to      ; 

 add      to     ; 

If      is already in   

 delete     ; 
          

For each row in    

Generate   values according to chosen 

priority:    ; 

add the (   ) to   ; 

if   does not exist 

 apply the next priority; 

 return   ,   = rowSize   ; 

2 
 

3 
 

4 
5 
6 
7 
 

8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

 
20 
21 
22 

23 

Figure  3.8: Algorithm 1 

Algorithm 2 (Figure ‎3.9) assigns clock values to the resulted test traces stored in 

     to compose and store timed test traces in       as follows. Each row (i.e., test 

trace) of      is repeated in       until covering all clock regions of its transitions 

according to a chosen priority. The repeat of a test trace should be based on the 

largest set of clock regions to be covered by a transition within the test trace. The 

transition regions of a chosen priority can be covered before the last repeat of the 

test trace. In such a case, a set of clock regions of the next priority are selected to be 

covered until the last repeat of the test trace. This would help in decreasing the 

number of test cases required for covering the entire clock regions. In the case of 
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two clocks, the clock values of a transition constrained by two clocks should rely on 

the clock values of previous transitions when no clock reset exists. 

ALGORITHM 2. Three-Set Priorities 

 Generate test point (input:           , output:  ) 

 

 In the case of Priority 1: (Boundary Points) 

 •‎  is a one-clock guard :  =(x   cx) 

  

  ( )    

{
 
 

 
  (    )                                

 (  )                                    

 (    )                              

 (    )                              }
 
 

 
 

 Where       

  

 

 •‎  is a two-clock guard:  =(x      )&&(y        ):  

 

   (   )      (  ( )   ( ))|   ( )    ( )} 

  

 In the case of Priority 2: (Out-Boundary Points) 

 •‎  a is one-clock guard:  =(x     ) 

  

   ( )    {

 (  )                                     

 (    )                           

   (    )                            

} Where       

 

•‎  a is two-clock guard:  =(x      )&&(y        ): 

 

    (   )      (   ( )    ( ))|    ( )     ( )} 

  

 In the case of Priority 3: (In-Boundary Points) 

 •‎  is a one-clock guard:  =(x     ) 

  

    ( )    {
{( 

 

 
  )}                           

{(    
  

 
)}                      

 

 

Where:   ‎  𝒩: Natural varies from 1 to       , 

                  𝒩: Natural varies from 1 to a chosen natural. 

 

•‎  is a two-clock guard:  =(x      )&&(y        ) 
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Where: 

    𝒩: Natural varies from 0 to      if          , from 0 to        if       
    

     𝒩: Natural varies from 1 to       . 

    𝒩: Natural varies from 1 to      if          , from 1 to        if       
    
    𝒩: Natural varies from 1 to       . 

            

  
 ,   

   : Naturals vary from 0 to a chosen natural if          , from 1 to a chosen 

natural if           
  

 ,   
 ,   

  ,  
  : Naturals vary from 1 to a chosen natural. 

  
    

 ,    
    

 .  
  

 
   

  

 
  

  
 

 
   

  
 

 
    natural 

        
    

            natural not equal 0 

    
  

  

 
 

  

 
,     

  
  

 
 

  

 
 . 
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)  (       ) (    

  
  

 
     

  
 

 
)  (       )   
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)  (       ), (    

  
  

 
 
  

 
)  (       ). 

Figure  3.9: Algorithm 2 

As an instance of how the algorithms work, consider Figure ‎3.1.a. Two test traces 

will be generated (OFF-low-LOW-off2-OFF, OFF-low-LOW-bright-BRIGHT-

off1-OFF). After composing the test traces, Algorithm 1 extracts the actions and 

guards from the transitions which the test traces cover to be stored in      in the 

following way.      = (           ) (      ) (           ) (      ). 

     = (           ) (      ) (           ) (         ) (      ). The 

clock values that cover certain clock regions are then selected according to a chosen 

priority set. The algorithms will ask the tester to specify the upper bound of x when 

    {≥,>} (e.g., x ≥‎4).‎ 

Choosing the clock upper bound as 6 and    
 

 
 for the model in Figure ‎3.1.a, PA 

generates 15 test cases as depicted in Figure ‎3.10. The tests were verified manually. 

The outputs in this example are urgent (i.e., the outputs are generated with no 

delays). Note that the clock values of unconstrained transitions are incrementally 

chosen as we mentioned before in Section ‎3.5.2.  
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Figure  3.10: Generated test cases 

3.6 Empirical Validation 

This section aims to validate the proposed PA by assessing its capability of 

detecting popular timing faults in comparison with four of its counterparts. To 

control the assessment process, Specification Mutation Analysis (SMA) is used. 

Similar to the original mutation analysis, SMA injects single faults into a formal 

specification model by syntactically changing the specification according to pre-

defined SMA operators. The generated first-order specification mutants are 

accordingly executed against a set of generated test cases. Specification mutants 

are killed if their outputs are different from those of the original specification. 

SMA is useful in validating model-based testing techniques by anticipating their 

capabilities for finding faults within the SUT (Budd and Gopal, 1985; Jia and 

Harman, 2010).   

SMA was mainly based on simulating functional faults according to a set of 

proposed mutation operators. It is also essential to ensure that the timed test suite 

is valid and effective in terms of finding all possible timing as well as functional 

faults. Proposing the use of SMA in the timed specification context forms the key 

𝑝𝑟𝑒𝑠𝑠  𝑙𝑜𝑤      𝑝𝑟𝑒𝑠𝑠  𝑜𝑓𝑓  
    𝑝𝑟𝑒𝑠𝑠  𝑙𝑜𝑤  𝑝𝑟𝑒𝑠𝑠  b  gh          𝑜𝑓𝑓  
  𝑝𝑟𝑒𝑠𝑠  𝑙𝑜𝑤    𝑝𝑟𝑒𝑠𝑠  b  gh              𝑜𝑓𝑓  

𝑝𝑟𝑒𝑠𝑠  𝑙𝑜𝑤    𝑝𝑟𝑒𝑠𝑠  𝑜𝑓𝑓  
𝑝𝑟𝑒𝑠𝑠  𝑙𝑜𝑤      𝑝𝑟𝑒𝑠𝑠  b  gh          𝑜𝑓𝑓  

  𝑝𝑟𝑒𝑠𝑠  𝑙𝑜𝑤      𝑝𝑟𝑒𝑠𝑠  b  gh            𝑜𝑓𝑓  
    𝑝𝑟𝑒𝑠𝑠  𝑙𝑜𝑤    𝑝𝑟𝑒𝑠𝑠  b  gh              𝑜𝑓𝑓  
  𝑝𝑟𝑒𝑠𝑠  𝑙𝑜𝑤      𝑝𝑟𝑒𝑠𝑠  b  gh            𝑜𝑓𝑓  
    𝑝𝑟𝑒𝑠𝑠  𝑙𝑜𝑤    𝑝𝑟𝑒𝑠𝑠  b  gh              𝑜𝑓𝑓  
  𝑝𝑟𝑒𝑠𝑠  𝑙𝑜𝑤      𝑝𝑟𝑒𝑠𝑠  b  gh            𝑜𝑓𝑓  
    𝑝𝑟𝑒𝑠𝑠  𝑙𝑜𝑤    𝑝𝑟𝑒𝑠𝑠  b  gh              𝑜𝑓𝑓  
  𝑝𝑟𝑒𝑠𝑠  𝑙𝑜𝑤      𝑝𝑟𝑒𝑠𝑠  b  gh            𝑜𝑓𝑓  

Boundary priority set:    

 

Out-boundary priority set:  

 

In-boundary priority set:    

    𝑝𝑟𝑒𝑠𝑠  𝑙𝑜𝑤    𝑝𝑟𝑒𝑠𝑠  𝑜𝑓𝑓  
  𝑝𝑟𝑒𝑠𝑠  𝑙𝑜𝑤      𝑝𝑟𝑒𝑠𝑠  𝑜𝑓𝑓  
    𝑝𝑟𝑒𝑠𝑠  𝑙𝑜𝑤    𝑝𝑟𝑒𝑠𝑠  𝑜𝑓𝑓   
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factor in achieving the validation objective. To facilitate the use of SMA in 

validating PA based on the TA formalism, a set of timed and functional mutation 

operators is proposed and their execution and adequacy score are highlighted. 

Three TA-based specification models are used as case studies from which mutants 

are generated according to proposed mutation operators. The validation and 

comparison processes are based on the mutation score and the number of 

generated test cases. 

3.6.1 Mutation Operators for TA 

In the literature, to our knowledge no study has addressed the application of SMA 

on TA. To propose well-suited mutation operators for TA, all known faults 

defined in previously proposed timing fault models should be included and 

represented. As a result, our proposed TA mutation operators include the 

previously formalised fault models in the literature such as that proposed for 

TIOA by En-Nouaary (En-Nouaary et al., 1999; En-Nouaary et al., 2002) and for 

a constraint graph by Clark and Lee (Clarke and Lee, 1997a). TA mutation 

operators include two main classes: timed and functional mutation operators. A 

complete list of timed operators can be found in Appendix A.     

 Restricting Timing Constraints (RTC): These timed operators focus on the 

timing constraints (i.e., clock guards) defined for each transition within a 

TA. RTCs narrow down the timing bounds by which they rejects inputs 

satisfying the clock guards of a transition in the specification. As a result, 

the number of mutated model states decreases compared with those of the 

specification. The functionality of these operators is dependent on the 

conjunction type of a timing constraint (i.e., boundary type: open or 

closed). Formally, let TA =(            ) be a timed automaton 

specification. RTC can be defined as a transformation function that takes a 

clock guard of the form     for             and                 

and returns a mutated version of the guard. 
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    (    )           

 

    (   )  {

(       )  (      )           

(     )  (        )           

(   )                                             
 

Where:  

            ,         ,      ,          ,           . 

 

 Widening Timing Constraints (WTC): These timed operators rely on 

increasing the timing bounds by which they accepts inputs which fail to 

satisfy the clock guards of a transition in the specification. Accordingly, 

the number of mutated model states increases compared with those of the 

specification. Formally, let TA =(            ) be a timed automaton 

specification. WTC can be defined as a transformation function that takes 

a guard of the form     for             and                 and 

returns a mutated version of the guard. 

 

    (   )  {
(       )             

(        )             
 

Where:  

         ,                           . 

 

 Shifting Timing constraints (STC): These timed operators shift the timing 

bounds either by increasing or decreasing their values. Formally, let TA 

=(            ) be a timed automaton specification. STC can be defined 

as a transformation function that takes a guard of the form     for 

            and                 and returns a mutated version of 

the guard. 

 

    (   )  {
(       )  (      )             

(     )  (        )             
 

Where: 

          ,                                   . 
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 Resetting a Clock (RC): This timed operator adds a clock reset to a 

transition to force that clock to reset once the transition is fired. This 

operator affects clock order and the number of states. Formally, let TA 

=(            ) be a timed automaton specification. RC can be defined 

as a transformation function that adds a reset function      for a clock 

      to a transition linking two locations          and fired by the 

application of an input action    . 

 

   (    
             
→           )          

                
→                  |             

 

 Not-Resetting a Clock (NRC): This timed operator involves removing an 

existing clock reset from a transition. This operator affects clock order and 

the number of states. Formally, let TA =(            ) be a timed 

automaton specification. NRC can be defined as a transformation function 

that deletes a reset function      for a clock       from a transition that 

links two locations        . 

 

    (    
             
→           )          

                
→                |             

 

 Exchanging Input Actions (EIA): This functional operator exchanges a 

pre-defined input action over a transition with another existing input 

action. Formally, let TA =(            ) be a timed automaton 

specification. EIA can be defined as a transformation function that 

replaces an input action      firing a transition that links two locations 

         by another        

 

 I (    
           
→         )        

          
→         |        . 

 

 Exchanging Output Action (EOA): This functional operator is similar to 

the EIA operator but it exchanges outputs instead of inputs. Formally, let 



‎Chapter 3: A Priority-Based Approach for Testing Real-Time Embedded Systems 

 82 

TA =(            ) be a timed automaton specification. EOA can be 

defined as a transformation function that replaces an output action b  

  firing a transition that links two locations         by another        

 

   (    
           
→         )         

          
→         |       . 

 

 Transferring Destination Locations (TDL): This functional operator 

involves changing the destination location of a transition. The mutated 

transition will reach a location different from the location that the original 

transition reaches. Formally, let TA =(            ) be a timed 

automaton specification. TDL can be defined as a transformation function 

of the following form in which             are defined locations and   

  is an input or output action: 

 

    (    
         
→       )          

        
→      |       . 

3.6.2 Mutation Execution  

Let TA =(            ) be a timed automaton specification. Let     be the set 

of non-negative reals. Given           as a finite set of input and output 

actions, let                 h         (      )  be a test suite comprising 

n test traces represented by sequences of timed actions. We define     (    ) to 

be the set of timed output sequences    (       )  that can result from the 

application of a test trace    on the specification model  . The process of 

mutation execution can be represented by     ( ′   ) where  ′ is the mutated 

specification of  . The computation of      (    ) and     ( ′   ) are 

manually achieved. Comparing the output sequences resulting from executing the 

test suite on a particular mutant with those expected according to the original 

specification, we can state the following to calculate the adequacy score for the 

test suite according to Equation (‎3.6).  
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 ( 3.6) 

 Killed: It is said that a mutant  ′ is killed by a test trace    

if      (    )       ( ′   )    . In other words, there is no common 

allowed behaviour between the mutant  ′ and the original specification  . 

 Potentially Killed: It is said that a mutant  ′ is potentially killed by a test 

trace    if       ( ′   )      (    ). There is some behaviour of   ′ 

that is not allowed by  . Here, we may need many runs of the same test 

trace to actually observe a failure, since the outputs are not controllable by 

the tester. 

 Alive: It is said that a mutant  ′ is alive if         :     ( ′   )  

    (    ).  ′b h       is a subset of   b h        . 

3.6.3 Mutation Analysis 

In SMA for TA, Equation (‎3.6) is followed for calculating the adequacy score for 

the test suite. The score thus indicates the percentage of how many faults are 

detected by a test suite. Identifying acceptable scores is largely dependent on the 

application itself. Since we are conducting a comparison study, the most 

important information we are revealing is which approach scores better.  

On the other hand, identifying the equivalent mutants remains the major problem 

we face. We identify three types of equivalent mutants in the TA-based case 

studies. First, an equivalent mutant might be produced by the application of the 

RTC operator on a clock guard defined for an output transition. The generated 

mutant will show equal behaviour to the specification since it must emit the 

outputs within the allowed time defined in the specification. For instance, the 

mutant‎generated‎by‎reducing‎the‎time‎interval‎‘x<5’‎defined‎in‎the‎specification‎

to‎ ‘x<3’‎will‎ force‎ the‎mutant‎ to‎emit‎ the‎outputs‎within‎‘3’‎ time units which is 

still‎ within‎ ‘5’‎ time units defined in the specification. Second, an equivalent 
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mutant might be produced by the application of the RC operator on an output 

transition followed by an unconstrained transition containing that clock reset. 

Third, an equivalent mutant might be produced when the application of the TDL 

operator leads to the same consecutive output transitions.   

3.6.4 TA-based Testing Approaches 

Many TA-based algorithms and methods for testing real-time systems have been 

proposed. They differ from each other in the specification variant models they 

adopt, the number of test cases they produce and their effectiveness in discovering 

logical as well as timing faults. However, to our knowledge no comparison study 

has been performed to validate their performance. 

In this study, four well-known TA-based approaches were selected to be 

compared with our PA: Timed Testing approach based on a State Characterization 

Technique (SCT) (En-Nouaary et al., 2002; En-Nouaary et al., 1998), Scalable 

Method (SM) (En-Nouaary, 2008), Boundary Checking Technique (BCT) (En-

Nouaary and Hamou-Lhadj, 2008) and timed testing approach based on UPPAAL 

Model Checker (COVER) (Hessel et al., 2008). 

Selecting those methods was based on several criteria for a more fair comparison 

process. The specification formalisms followed are similar to ours. PA and 

COVER rely on a UTA as an input language where SCT, SM and BCT use TIOA. 

Although the formalisms appear different, they all are variants of TA and share its 

properties. Moreover, all testing approaches being compared depend on the 

deterministic completely observable class of TA. Similar to PA, SCT and SM use 

the concept of region automata to abstract the TA. COVER, on the other hand, is 

based on coverage criteria for selecting test cases similar to ours. The following 

present a concise summary of the testing approaches chosen for the comparison 

study.  

 Timed Testing approach based on a State Characterization Technique 

(SCT): This timed testing approach is based on TIOA. The proposed 

approach relies on reducing the TIOA state space according to a clock 
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valuation equivalence rule and creating the region graph. A testable 

automaton, called Grid Automaton (GA) was introduced by sampling the 

region graph with (1/(n+2)) maximum granularity, where‎ ‘n’‎ represents 

the number of clocks. GA is then transformed to a Nondeterministic Finite 

State Machine (NTFSM) to enable the authors to adopt the Wp-method 

(Fujiwara et al., 1991) for generating test cases. They evaluated the testing 

approach according to the adopted timing fault model and argued that the 

generated test cases could discover the main (known) timing faults. 

 Scalable Method (SM): This method is a timed testing approach based on 

TIOA. The proposed method relies on sampling the TIOA specification 

according to a clock valuation equivalence rule to reduce the infinite state 

space. A GA was obtained with the coarsest possible granularity (1/(n+1)) 

as a result of the sampling process. It chooses each transition once or twice 

at two time points (earliest and latest possible occurrences). The GA is 

then traversed using a depth-first algorithm to derive test cases. The 

approach appeared to be scalable and produced a small number of test 

cases. 

 Boundary Checking Technique (BCT): Another timed testing method is 

proposed for testing real-time systems modelled as TIOA. This method 

allows testing every transition of the TIOA at three different times 

(soonest, latest and between two executions). To move the TIOA to the 

transition under test, a preamble and postamble should be used. The 

preamble is a set of timed inputs capable of moving the TIOA up to a 

particular transition under test as soon as possible. On the other hand, the 

postamble is a set of timed inputs capable of moving the TIOA back to the 

initial location as soon as possible. The approach generates very small 

number of test cases. However, the fault detection capability is 

questionable.  

 Timed Testing Approach based on UPPAAL Model Checker (COVER): 

Hessel and Pettersson proposed a timed testing method that extends the 

UPPAAL model checker with coverage criteria expressed by the Observer 

Automata formalism (Blom et al., 2005) such as edge, location, definition-
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use pair, definition and affect-pair coverage. The testing approach is 

automated by an offline testing tool called CO ER. CO ER uses the 

UPPAAL model checking engine with a query language to generate test 

cases (Hessel et al., 2008). 

3.6.5 Case Studies 

Three different case studies that match the requirements of the selected testing 

approaches are chosen from the literature to enhance our validation study. They 

are all deterministic TA models from which TIOA and UTA based testing 

approaches can generate test cases (as TA properties are shared in TIOA and 

UTA). The case studies differ from each other in their size and the number of 

clocks used. Our selection of these case studies considers the manual generation 

of test cases and manual application and analysis of SMA. We believe that any 

shortcomings detected in a certain testing approach by relatively small case 

studies will persist for larger ones.  

 Lamp Controller: Figure ‎3.11 shows a single-clock specification model 

(Hessel et al., 2008). It comprises nine locations including five committed 

ones, twelve transitions, one input, three outputs and one clock. The user 

controls the brightness of the light by interacting with a touchpad within 

certain time intervals. The light shows three levels: OFF, DIM and 

BRIGHT. The automaton enables the user to change between any two 

brightness levels by pressing the touch pad at a certain time. For instance, 

if the first press is within ‘2’‎ time units the lamp will be turned on with 

dim brightness. Otherwise, the lamp will be turned on with high 

brightness. 

 Multimedia System: Figure ‎3.12 shows the specification model of a simple 

multimedia system (En-Nouaary, 2008). It comprises four locations, four 

transitions, three inputs, one output and two clocks. The point of using this 

automaton is to show how the testing approaches used in this study deal 

with more than one clock. This automaton sends an acknowledgment 

signal if it successfully receives the image and sound signals, respectively 
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within their allowed timing constraints. The output signal should be 

produced no more than three time units after receiving the image signal 

and no more than two time units after receiving the sound signal. If the 

system satisfies the input/output timing constraints, it resets in order to 

wait for another image from the initial location. 

 Phone System: Figure ‎3.13 shows the specification model of a simple 

phone system (Clarke and Lee, 1997a; En-Nouaary and Dssouli, 2003). It 

comprises eight locations, thirteen transitions, six inputs, two outputs and 

one clock. This automaton produces the dial tone and establishes 

connection if it receives all five digits at the correct times. The system will 

return to its initial state whenever the user ends the call. Moreover, each 

number‎ should‎be‎dialled‎within‎ ‘5’‎ time units or an error signal will be 

produced.  

 

Figure  3.11: Lamp controller automaton 

 

Figure  3.12: Multimedia automaton 
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Figure  3.13: Phone automaton 

3.6.6 Results and Discussion  

Test cases were generated according to the chosen testing approaches for each 

case model. The test generation process was manually performed for PA, SCT, 

SM and BCT as they were not supported by tools. With respect to COVER, the 

CO ER tool was used for generating test cases based on transition coverage as a 

test selection property (Hessel and Pettersson, 2007a). Transition coverage is 

considered more general than location coverage. Definition-use coverage criterion 

was not used as there was no data in the specification model.  

Table ‎3.1 gives the number of test cases generated by each of the testing 

approaches used for each case study. We noticed that SCT suffered from a large 

number of tests and an enormous effort to manually generate those tests (2 days 

for each model). The number of tests rapidly increased when the size of 

specification models grew especially the number of locations, transitions and 

clocks. SM and BCT generated fewer tests due to the selection of fewer clock 

values to cover. Although SM shared SCT in their dependence on region 

automata, they did not cover all clock regions since they focused only on 

boundary clock regions. Moreover, the number of the generated tests from three 

case models was significantly affected by the size of specification models. PA and 

COVER showed a higher degree of stability with regard to the number of tests. 

Achieving as much coverage as possible in one single test case enabled PA to 
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generate relatively small number of tests. On the other hand, COVER generated 

few tests due to the un-timed coverage criterion being used. In other words, tests 

for checking SUT functional behaviour were only generated.   

Approaches Lamp Controller Multimedia System Phone System 

PA 20 8 20 

SCT 45 1295 3188 

SM 37 4 63 

BCT 10 7 29 

COVER 4 1 1 

Table  3.1: The count of generated test cases 

The specification models were mutated according to the proposed operators. For 

each operator, all possible mutants were generated. Table ‎3.2, Table ‎3.3 and 

Table ‎3.4 depict the application of SMA for each of the testing methods on the 

‘lamp controller’, ‘multimedia system’ and ‘phone system’, respectively. The 

number of mutants generated, equivalent, killed and potentially killed mutants, 

and mutation score were identified. The mutation score should consider the sum 

of‎ ‘killed’ and‎ ‘potentially‎ killed’‎mutant numbers. The following discusses the 

results of the application of SMA on each case study. 

Applying the SMA, we noticed that some mutation operators (e.g., RC, EIA and 

EOA) were not applicable on some specification models due to the absence of the 

construct the mutation operator targets. To clarify, the application of RC involves 

adding a clock reset function to un-reset transitions. As a result, the application of 

RC‎ on‎ the‎ ‘lamp‎ controller’‎ was‎ not‎ possible‎ since‎ all‎ clocks‎ constraining‎ the‎

application of inputs had a reset function. The application of EIA was also not 

possible since there was just one input action defined in the model. With respect 

to‎ the‎ ‘multimedia‎ system’,‎ EOA‎ was‎ not‎ applicable‎ since‎ there‎ was just one 

output action.  

Comparing the mutation scores the testing approaches achieved for each operator, 

we noticed the following.  

COVER failed to achieve a high mutation score with respect to the timed 

operators for all case studies due to the usage of un-timed coverage criterion. 
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Table  3.2: SMA application on the lamp controller 

PA achieved a‎ full‎ score‎ with‎ respect‎ to‎ RTC‎ in‎ the‎ ‘multimedia‎ system’.‎

However, PA did not achieve a full‎score‎(but‎high‎score)‎in‎the‎‘lamp‎controller’‎

and‎ ‘phone‎ system’‎ despite‎ checking‎ all‎ boundary‎ values‎ of‎ clock guards. 

Mutating unconstrained transitions by adding clock guards is the reason. Different 

from other testing approaches, PA is capable of checking the unconstrained 

transitions to some extent according to the total number of generated test cases. If 

Approaches Operators Mutants Equivalent Killed P-Killed Score 

PA 

RTC 54 0 48 0 0.89 

WTC 29 0 0 29 1 

STC 31 0 19 12 1 

RC N/A - - - - 

NRC 6 0 2 0 0.33 

EIA N/A - - - - 

EOA  12 0 12 0 1 

TDL  42 6 24 0 0.67 

SCT 

RTC 54 0 48 0 0.89 

WTC 29 0 0 29 1 

STC 31 0 19 12 1 

RC N/A - - - - 

NRC 6 0 3 0 0.5 

EIA N/A - - - - 

EOA  12 0 12 0 1 

TDL  42 6 36 0 1 

SM 

RTC 54 0 47 0 0.87 

WTC 29 0 0 0 0 

STC 31 0 19 0 0.61 

RC N/A - - - - 

NRC 6 0 4 0 0.67 

EIA N/A - - - - 

EOA  12 0 12 0 1 

TDL  42 6 24 0 0.67 

BCM 

RTC 54 0 47 0 0.87 

WTC 29 0 0 0 0 

STC 31 0 19 0 0.61 

RC N/A - - - - 

NRC 6 0 1 0 0.17 

EIA N/A - - - - 

EOA  12 0 12 0 1 

TDL  42 6 24 0 0.67 

COVER 

RTC 54 0 16 0 0.3 

WTC 29 0 0 0 0 

STC 31 0 13 0 0.42 

RC N/A - - - - 

NRC 6 0 1 0 0.17 

EIA N/A - - - - 

EOA  12 0 6 0 0.5 

TDL  42 6 6 0 0.14 
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the added guard is far from the points PA checks, the fault is undetected. The 

other approaches (SCT, SM and BCT) provided with boundary checking facilities 

scored less than PA since they did not check unconstrained transitions. 

 

Table  3.3: SMA application on the multimedia system 

 

Approaches Operators Mutants Equivalent Killed P-Killed Score 

PA 

RTC 33 18 15 0 1 

WTC 13 0 7 6 1 

STC 18 0 14 4 1 

RC 4 3 0 1 1 

NRC 5 1 3 1 1 

 EIA 4 0 4 0 1 

EOA  N/A - - - - 

TDL  3 0 0 0 0 

SCT 

RTC 33 18 15 0 1 

WTC 13 0 7 6 1 

STC 18 0 14 4 1 

RC 4 3 0 1 1 

NRC 5 1 2 1 0.6 

 EIA 4 0 4 0 1 

EOA  N/A - - - - 

TDL  3 0 0 0 0 

SM 

RTC 33 18 15 0 1 

WTC 13 0 0 0 0 

STC 18 0 14 2 0.89 

RC 4 3 0 0 0 

NRC 5 1 3 1 1 

 EIA 4 0 4 0 1 

EOA  N/A - - - - 

TDL  3 0 0 0 0 

BCM 

RTC 33 18 15 0 1 

WTC 13 0 0 0 0 

STC 18 0 14 4 1 

RC 4 3 0 0 0 

NRC 5 1 3 1 1 

 EIA 4 0 4 0 1 

EOA  N/A - - - - 

TDL  3 0 0 0 0 

COVER 

RTC 33 18 10 0 0.67 

WTC 13 0 0 0 0 

STC 18 0 14 4 1 

RC 4 3 0 0 0 

NRC 5 1 0 0 0 

 EIA 4 0 4 0 1 

EOA  N/A - - - - 

TDL  3 0 0 0 0 
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Table  3.4: SMA application on the phone system 

In all case studies, PA achieved a full score with respect to WTC that involves 

expanding the clock guards in which unaccepted clock values become acceptable. 

PA‎considers‎ checking‎ the‎guards’‎out-boundary points. As a result, such faults 

can be detected. SCT showed the same ability to detect all WTC faults due to the 

large range of clock values that have been covered. However, the detection of 

such a fault was not‎consistent‎as‎SCT‎scores‎ ‘0.58’‎ in‎ the‎ ‘phone‎system’‎case‎

Approaches Operators Mutants Equivalent Killed P-Killed Score 

PA 

RTC 119 66 52 0 0.98 

WTC 38 0 20 18 1 

STC 54 0 30 24 1 

RC 1 1 0 0 - 

NRC 12 6 6 0 1 

 EIA 36 0 36 0 1 

EOA  6 0 6 0 1 

TDL  42 0 0 0 0 

SCT 

RTC 119 66 44 0 0.83 

WTC 38 0 4 18 0.58 

STC 54 0 30 24 1 

RC 1 1 0 0 - 

NRC 12 6 0 0 0 

 EIA 36 0 36 0 1 

EOA  6 0 6 0 1 

TDL  42 0 0 0 0 

SM 

RTC 119 66 51 0 0.96 

WTC 38 0 0 0 0 

STC 54 0 30 0 0.56 

RC 1 1 0 0 - 

NRC 12 6 5 0 0.83 

 EIA 36 0 36 0 1 

EOA  6 0 6 0 1 

TDL  42 0 0 0 0 

BCM 

RTC 119 66 51 0 0.96 

WTC 38 0 0 0 0 

STC 54 0 30 0 0.56 

RC 1 1 0 0 - 

NRC 12 6 0 0 0 

 EIA 36 0 36 0 1 

EOA  6 0 6 0 1 

TDL  42 0 0 0 0 

COVER 

RTC 119 66 40 0 0.75 

WTC 38 0 0 0 0 

STC 54 0 30 0 0.56 

RC 1 1 0 0 - 

NRC 12 6 0 0 0 

 EIA 36 0 36 0 1 

EOA  6 0 1 0 0.17 

TDL  42 0 0 0 0 
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study. SM and BCM, however, failed to detect any WTC faults. SM and BCM 

rely only on checking the boundary values of clock guards. 

Moreover, PA capability of checking the boundary points as well as the out-

boundary ones enables the detection of all possible shifting faults (i.e., STC). 

Again, SCT showed full detection capability of the STC faults. SM and BCM 

detected some but failed to detect others. The boundary checking that SM and 

BCT are based on increases the possibility of detecting such a fault, but does not 

guarantee full detection.   

In the case of RC and NRC operators, PA showed more capability than the others 

in killing and potentially killing the generated‎ mutants‎ by‎ scoring‎ ‘1’‎ in‎ most‎

cases. However, in the case of the‎‘lamp‎controller’,‎SM‎scored the‎most‎‘0.67’‎as‎

it is the only method that considers all possible transition combinations when 

generating test cases. 

With respect to the functional operators (EIA and EOA), all testing methods 

except COVER scored ‘1’‎ as‎ they‎ covered all transitions while generating test 

cases. The COVER score was surprising as the generated test cases failed to cover 

any output transition. That might be due to failure in covering all transitions.  

As expected with respect to the TDL operator, all testing methods failed to 

achieve a high score and sometimes achieved a ‘0’‎score.‎To‎kill‎such‎mutants,‎a‎

testing approach should be equipped with a state identification capability; three 

testing approaches (PA, SM and BCT) do not have it. SCT, designed to detect 

state transfer faults, surprisingly‎ failed‎ to‎ do‎ so‎ especially‎ for‎ the‎ ‘multimedia‎

system’‎and‎‘phone‎system’‎models.‎In‎those‎case‎studies,‎we‎had‎a‎sequence‎of‎

inputs with one or two outputs. Any mutant generated by altering a transition 

destination without leading to a different output or a different timing of an output 

failed to‎be‎killed.‎However,‎in‎the‎‘lamp‎controller’‎each‎input‎was‎followed‎by‎

an output. As a result, all testing approaches had a score greater than 0 and SCT 

was able to score 1. 
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By applying the TA-based SMA, we increased our confidence about the 

performance of PA compared with the other approaches. Combining the mutation 

scores achieved by the testing approaches, PA achieved an almost full mutation 

score with respect to all timed and most functional mutation operators with 

relatively few tests (Figure ‎3.14). PA also showed a comparable result with 

respect to the TDL operator. When compared with SCT, equipped with state 

identification, PA cost and scored less but produced a smaller test suite. Further 

studies with larger models are still needed to confirm these outcomes. 

 

 

Figure  3.14: Fault detection ratio of the timed testing approaches with 

respect to mutation operators 

 

In summary, Figure ‎3.15 depicts the overall fault detection capability of PA 

compared with other testing approaches. PA showed superiority in detecting 

timed as well as functional faults when compared with other approaches 

especially SCT that covered less with more cost.   
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Figure  3.15: Overall fault coverage of the timed testing approaches 

3.7 Summary 

This chapter proposed the concept of clock region coverage CRC as a test selection 

criterion. CRC is based on the right selection of clock values that cover feasible 

clock regions (without losing or adding extra un-needed values that would increase 

the number of test cases). A set of mathematical equations that can help in 

efficiently calculating the number of regions was introduced. This chapter also 

presented an approach for generating timed test cases from a system specification 

modelled as UTA. This approach is based on CRC for generating test cases. The 

generated test cases are then divided into three sets of priorities (boundary, out-

boundary, in-boundary). This enhances the flexibility of our approach by allowing 

the tester to choose the appropriate test set according to testing time and the 

criticality degree of the SUT. Complete algorithms that extract desired test cases 

according to our approach were then introduced.  

In terms of validating the proposed PA, a TA-based Specification Mutation 

Analysis was introduced to compare our PA performance with some well-known 

testing approaches using three timed specification models. A set of timed and 

functional mutation operators was presented and discussed. We showed that our 
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PA out-performed other approaches if we combined the mutation score it obtained 

with the relatively few tests it generated. The validation revealed some interesting 

results such as the failure of SCT to detect all state transfer faults in spite of the 

state identification technique it is equipped with. Besides, COVER also failed in 

detecting all output or input faults in spite of the coverage criterion it follows.  
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Chapter 4:  Automatic Test Case Generation 

and Execution using the Priority-Based 

Approach 

 

4.1 Overview 

In the previous chapter, we proposed a new component-based‎ ‘priority-based’‎

approach (PA) for testing real-time systems modelled as UPPAAL Timed Automata 

(UTA). Test cases generated according to transition and clock region coverage 

criteria were divided into three sets of priorities, namely boundary, out-boundary 

and in-boundary, to reduce the number of required tests for a particular SUT. The 

selection of which test set is most appropriate for an SUT can be decided by the 

tester according to several factors such as the system type, testing time and testing 

budget.  

This chapter extends the study by automating the generation and execution of test 

cases by developing a new timed testing tool, called GeTeX, and validating it 

using a TA-based prototype (specification model and code) (Aboutrab et al., 

2011). GeTeX deploys the PA testing approach and tioco conformance theory and 

reduces the time and the cost required for the testing process. GeTeX can be 

considered as a complete offline testing tool that focuses on checking the 

correctness of SUT according to a timed selection criterion. In its current version, 

GeTeX supports Controller Area Network (CAN) applications.  

The chapter also presents a set of code-based (timed and functional) mutation 

operators extracted from those proposed for TA-based SMA (see Section ‎3.6.1). 
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This enables the use of the Mutation Analysis Technique (MAT) for estimating 

fault coverage of a testing approach at the implementation level. Furthermore, the 

performance of our PA is assessed in comparison with some TA-based 

approaches, used in Chapter 3, but now at the implementation level, using a 

complete industrial-strength test bed (production-cell system). An assessment 

factor based on how many faults are detected and how many clock regions are 

covered in terms of the length of test cases generated by a testing approach is 

proposed. A set of lessons learned and the difficulties encountered, especially for 

testing the timing properties is highlighted (Aboutrab et al., 2012b).  

The remainder of this chapter is organised as follows. The problem area this 

chapter tackles is highlighted in Section ‎4.2. Section ‎4.3 introduces preliminaries 

of tioco conformance theory and CAN principles. The proposal of GeTeX tool 

and its validation are presented in Section ‎4.4. Section ‎4.5 presents the assessment 

criteria, recalling the idea of clock regions as a timed testing coverage criterion, 

fault coverage supported by the use of mutation operators introduced for MAT, the 

mathematical representation of test case length and the assessment factor. 

Section ‎4.6 presents the production-cell test bed and the assessment results pointing 

to a set of lessons learned. Finally, Section ‎4.7 concludes the chapter.  

4.2 Problem Area 

Testing Real-Time Embedded Systems (RTESs) has become a popular research 

topic with significant recent attention given to model-based testing techniques. As 

a result, several TA-based testing algorithms have been proposed and differ from 

each other in the TA variant formalism they adopt, the effort expended in their 

use, the number of test cases they produce and their effectiveness in detecting 

logical as well as timing faults (Clarke and Lee, 1997b; En-Nouaary and Hamou-

Lhadj, 2008; En-Nouaary, 2008; En-Nouaary and Dssouli, 2003). However, they 

suffer from the following problems which question their actual validity and 

complicate their actual use in real projects:  
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1. Most of the proposed approaches such as those in (Cardell-Oliver, 2000; 

En-Nouaary, 2008; En-Nouaary and Dssouli, 2003; En-Nouaary and 

Hamou-Lhadj, 2008; Springintveld et al., 2001) are theoretical frameworks 

for generating test cases. No automation support is provided. The 

application of such approaches requires a deep understanding of their 

mechanism and significant manual effort for generating and executing test 

cases. 

2. Few proposed approaches are partially automated. Their tools are 

responsible for only automating the generation of test cases such as 

CO ER (Hessel and Pettersson, 2007a), prototype RTCAT (Nielsen and 

Skou, 2001) and prototype tool TTG (Krichen and Tripakis, 2009). The 

execution of test cases generated by such approaches requires other sets of 

tools.  

3. The software community still lacks serious and detailed industrial 

application of the proposed timed approaches. As an exception, CO ER 

was applied using an industrial real-time test bed based on the WAP 

protocol (Hessel and Pettersson, 2007b). UPPAAL Tron has also been 

used in several industrial case studies such as the railway signalling case-

study (Mitsching et al., 2009). However, CO ER uses un-timed coverage 

criterion which does not guarantee coverage of timing behaviour of an 

SUT. UPPAAL Tron is an online testing tool where test case generation 

and execution take place at the same time. Timing behaviour of an SUT is 

not guaranteed to be covered as the choice of the next inputs to apply on 

an SUT is determined randomly, rather than following any selection 

criteria. The execution of a testing approach in a real-time context induces 

many problems (e.g., a time synchronisation issue) that need to be 

highlighted and tackled. More industrial test beds are thus necessary 

especially for validating the application of testing approaches concerning 

timing behaviour of an SUT.  
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4. To our knowledge, no detailed study that compares the performance of 

similar timed testing approaches on real applications based on well-

identified assessment criteria exist. Such a study is essential to highlight 

the pros and cons of each approach to enrich the process of timed testing.      

The problem tackled by this chapter is to address the above points by automating 

the generation and the execution of the proposed PA. The primary contributions of 

this chapter are: 

1- The development of a new timed testing tool, called GeTeX. GeTeX 

automates the process of test case generation, execution and report based 

on PA and tioco conformance theory. In its current version, GeTeX is 

designed to support CAN applications as an example of RTESs. 

2- The validation of GeTeX using a lamp controller prototype modelled as 

UTA and implemented as a CAN application.   

3- The proposal of an assessment factor that combines fault coverage, 

structural coverage (i.e., clock region) and the length of test cases.   

4- The application of Mutation Analysis Technique (MAT) at the 

implementation level as a means of measuring fault coverage of a testing 

approach. A set of mutation operators proposed in Chapter 3 have been 

mapped from the specification to the implementation level (C code) to 

enable the MAT application.  

5- The application of PA on the implementation level using a complete 

industrial-strength test bed.  

6- A comparison between the performance of PA and two similar testing 

approaches according to the proposed assessment criterion.  

4.3 Preliminaries 

This section introduces the mathematical definitions and properties of tioco 

conformance theory. A concise summary of CAN advantages is also presented.   
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4.3.1 Timed Input Output Conformance Theory (tioco) 

tioco is a formal timed conformance relation inspired by un-timed ioco theory 

(Tretmans, 1996). Assuming that both the specification and SUT are modelled by 

the same formal language, both indicate that the SUT should behave according to 

the reference specification. SUT behaviour can be recorded by stimulating the 

SUT with a sequence of inputs and then observing its reactions. In the case of 

timed systems, SUT observed behaviour should not be limited to its observable 

outputs, but should also include their times since they are considered to be 

observable events. A pass or fail verdict will be given accordingly.  

Definition 4.1 Conformance Relation tioco: Formally, tioco is defined as 

(Krichen and Tripakis, 2004): 

UTAS tioco UTAI iff  

 σ   ObsTTraces(UTAS): out(UTAI after σ)   out(UTAS after σ) 

Where: 

 UTAS and UTAI represent the UTA specification and implementation 

models, respectively. 

 ObsTTraces is a set that contains all possible sequences of observable 

timed actions.    

 σ represents a sequence of observable timed actions. 

 out(UTAS after σ) is‎a‎set‎of‎timed‎outputs‎after‎any‎behaviour‎σ. 

tioco relation implies that for any observable behaviour of the specification, an 

implementation UTAI conforms to the specification UTAS if the set of SUT 

observable timed outputs is a subset of those of the specification at a certain 

matching point. If the implementation generally accepts inputs not included in the 

specification, a non-conformance or fail verdict will not arise since tioco is only 

related to the timed outputs. The main correctness properties that tioco pose are 

test suite soundness and completeness.  
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 A test suite TR is sound with respect to a UTAS iff: 

  UTAI: UTAI tioco UTAS  UTAI passes TR 

 A test suite TR is complete with respect to a UTAS iff: 

  UTAI: UTAI passes TR  UTAI tioco UTAS 

Soundness is a minimal correctness requirement. It is rather weak, since many 

tests can be sound (by always announcing pass). Completeness on the other hand, 

can be satisfied if, for every incorrect implementation, a test case can be generated 

that detects a non-conformance.  

The rationale behind choosing tioco as a conformance relation to be adopted by 

our approach is its generality. tioco supports different types of specifications 

which range from non-deterministic partially observable with normal outputs to 

deterministic observable. Moreover, tioco allows the SUT to accept inputs un-

defined in the specification as long as they do not contradict with it. tioco also 

covers other timed relations such as Timed Trace Inclusion (TTI) and relativized 

tioco (rtioco). In other words, tioco can allow the comparison with other 

approaches that use different conformance relations. 

4.3.2 Controller Area Network (CAN) 

To initialize a strong serial communication, the CAN protocol was established by 

German Automotive systems in the mid-1980s. CAN is used in automobile 

industries because of its reliability, safety and efficiency. The popularity of CAN 

has widened to other markets of real-time embedded systems such as industrial 

automation, mobile devices and medical equipment (Tindell et al., 1995). As a 

result, it is chosen for the application of the PA approach in this Thesis. Since this 

chapter topic is not concentrated on CAN itself, the most important properties of 

the CAN protocol are only mentioned leaving the interested reader to follow 

(Pazul., 1999) for more details. 

 Carrier-sense multiple access with collision detection. 
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 Message-based communication. 

 Fast and robust communication including error detection capabilities.  

4.4 GeTeX Tool Development  

This section introduces the development process of a test Generating and Test 

eXecuting tool (GeTeX). The main components of GeTeX are presented. The 

outcomes of GeTeX are then validated using a lamp controller prototype.  

4.4.1 GeTeX Design 

GeTeX is developed to be a real-time test generation as well as a test execution 

tool. The requirements of GeTeX are based on PA algorithms for building its test 

generation engine and on a tioco conformance relation and the case study 

requirements for building its execution engine. This section gives an overview of 

GeTeX structure, as shown in Figure ‎4.1, to highlight its main features. GeTeX 

accepts a UTA specification model as an input. Using the UPPAAL model 

checker is thus necessary for creating UTA specification models and verifying 

them using temporal logic queries. The UTA models are compiled by UPPAAL 

into a file in an XML format recognizable by GeTeX. As UPPAAL supports the 

use of the network of timed automata, the produced XML file contains all the 

models of the UTA network.  

The test generation engine of GeTeX applies PA algorithms to generate timed test 

cases from the XML file representing UTA specification models. Since PA is a 

component-based testing approach, the test generation engine allows the tester to 

choose a single UTA model to be the main source of generating timed test cases. 

For each single UTA model, GeTeX produces three sets of tests (boundary, out-

boundary and in-boundary) according to PA. These sets thus add flexibility to the 

testing process by providing the tester with different choices. It is essential for any 

testing process to take a tester’s opinion into account. Each testing process may 
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vary according to the testing environment, SUT type, testing time or testing 

budget, for an example. As a result, producing a single set of tests according to 

any chosen testing algorithms whatever the situation can be considered 

impractical especially for industrial applications. 

 

Figure  4.1: GeTeX chain structure 

The test suite generated by GeTeX comprises a sequence of timed synchronised 

actions which need to be transformed to suit the SUT input domain. As a result, 

an XML data structure is chosen as a standard to represent the generated timed 

test suite to simplify the transformation process, whatever the SUT. In order to 

design the XML file of a test suite, the Document Object Model (DOM) defining 

a standard for accessing the XML file is built as shown in Figure ‎4.2. The test 

‘priority’‎ sets‎ form‎ the‎ basis‎of‎ the‎ test‎ suite‎ tree.‎Each‎ ‘priority’‎has‎ an‎ ‘id’,‎ a‎

‘name’‎and‎the‎‘timed‎test‎traces’.‎Each‎timed‎test‎trace,‎recognizable‎by‎its‎‘id’‎

comprises a sequence of‎timed‎actions‎(‘action’‎at‎a‎certain‎‘time’).‎ 
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Figure  4.2: XML DOM tree of PA test suite 

In UTA, actions can be inputs, outputs or internals according to the specification 

model. Action names are represented by a text and action types are represented by 

an attribute ‘kind’. The time at which an action takes place is represented as an 

attribute‎ to‎ store‎ a‎ ‘time_value’‎ in‎ the‎ case‎ of‎ input‎ actions‎ and‎ as‎ an‎ interval‎

equation (e.g., 3<x<9) in the case of output actions. In other words, the time at 

which inputs are sent to the SUT should be recorded whereas the time at which 

outputs are emitted from an SUT should be checked against specification timing 

intervals (i.e., timing constraints). 

The adapter component of the GeTeX chain structure (Figure ‎4.1) is responsible 

for transforming the abstract XML test suite to real input data accepted by the 
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SUT. The adapter is a unique component that supports particular types of SUT. 

As a result, the adapter could be considered the most expensive part of the tool 

since different adapters need to be developed for different types of an SUT. In the 

current version of GeTeX, the adapter transforms the timed test suite to several 

sequences of CAN messages and stores them in the test suite log file. The log file 

is designed to enable the test execution engine to read inputs and write outputs 

easily into its predefined locations.  

The test execution engine establishes the connection with an SUT using hardware 

adapters like Grid Connect USB/CAN adapter kit (Connect, 2010). It also 

monitors a CAN network from a personal computer using a USB port. The engine 

injects stored CAN messages into the CAN bus at specified time delays. The CAN 

bus is also being continuously monitored by the test execution engine to collect 

any messages transmitted from other CAN nodes. The received messages and 

their times are then stored into the log file. Time can be measured in different time 

units (e.g., seconds or micro-seconds) according to the chosen CAN bus baud rate. 

The test execution engine also establishes a tioco conformance relation by which 

timed output messages are compared with those expected; a pass/fail verdict is 

accordingly assigned to each timed test case. Finally, a test report is generated for 

the whole test suite. 

4.4.2 GeTeX Implementation  

GeTeX is a Java-based tool implemented using the NetBeans IDE 6.9.1 

environment (NetBeans, 2010). It is a free environment which enables the user to 

easily debug, test and build a project. GeTeX is built under several packages 

presented in Figure ‎4.3. The test generation engine of GeTeX is implemented 

based on the PA test algorithms (Section ‎3.5.3).  

The algorithms are implemented within two Java packages: 

‘Test_Generation.Algorithm1’ and ‘Test_Generation.Algorithm2’. UTA 
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constructs‎and‎operations‎are‎created‎within‎ the‎ ‘Test_Generation.EntityClasses’‎

package; its classes and inheritance and association relationships are depicted in 

the class diagram. Three packages are dedicated for buffers. The 

‘Buffer_Control.Specification_Level’ package is responsible for handling 

communication with the specification XML file. The‎‘Buffer_Control’‎package is 

responsible for converting generated timed test cases into XML format. The 

‘Buffer_Control.Implementation_Level’‎ package is responsible for handling the 

communication with the SUT (i.e., adapter). The drivers of the USB/CAN adapter 

have been installed in the ‘peak.Can’‎packages.‎The‎GeTeX‎execution‎engine‎and‎

GUI are implemented in the ‘GeTeX’‎package. 

 

 

Figure  4.3: GeTeX packages 

 

Figure ‎4.4 depicts the GUI of GeTeX based on the CAN adapter of Grid Connect. 

It comprises six panels. First, the ‘Test‎Generation/‎CAN‎Configuration’ panel is 

responsible for configuring the generation of a timed test suite by choosing the 

specification model, test set, test suite XML file and test execution log file. 

Moreover, it configures CAN‎connection‎features‎such‎as‎‘bus‎listen‎only’‎mode.‎

Second,‎ the‎ ‘New‎ Connection’ panel is responsible for establishing a new 
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connection to the CAN bus by choosing the adapter channel type and the baud 

rate. Third, transmitting the CAN messages to‎the‎bus‎can‎be‎done‎via‎the‎‘Write‎

Messages’ panel. It gives the user two options - either to write and send a single 

CAN message from the GUI or to send a list of pre-defined CAN messages stored 

in a log file to the bus altogether. 

 

Figure  4.4: GeTeX GUI 
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Fourth,‎the‎‘Message‎Filter’ panel is responsible for filtering received messages to 

view a group of them. Fifth,‎the‎‘Read‎Messages’ panel views all received CAN 

messages from other nodes into the accompanied table. It gives the user two 

options - either to receive the messages on a certain time period or when they 

exist. CAN messages are identified according to their type, ID, length, data and 

receiving time. The CAN message type can be a standard frame format with 11 

identifier bits or extended frame format with 29 identifier bits. The data carried in 

the message can range from 0 to 8 bytes in length and is represented by 

hexadecimal numbering system. The message count shows how many times a 

certain message has been received during a monitoring session. The time stamp of 

received message has been left as optional and can be added into the table by 

ticking‎ the‎ ‘show time‎ stamp’ option.‎ Finally,‎ the‎ ‘Information’ panel is for 

updating the user with the CAN bus status and the conditions of sending/receiving 

messages. 

GeTeX was tested using JUnit test package. Test cases were designed to guarantee 

that all GeTeX methods run at least once. After executing test cases individually, 

an integrated test suite was performed to examine the tool performance.  

4.4.3 GeTeX Trail 

To demonstrate that GeTeX works correctly, we developed a lamp controller 

prototype based on the UTA model mentioned in Chapter 3 (Figure ‎3.1). An 

assumption that the controller is connected with the lamp via a CAN bus to form a 

two-node CAN network was made. The prototype was built using MCP2515DM-

BM CAN Bus Monitor Demo Board (MicroshipDirect, 2010). The board kit 

contains two identical boards which can be connected together to create a simple 

two node CAN bus (i.e., one is implemented as the light and the other is 

implemented as the controller). Importing the XML file representing the UTA 

model of the lamp controller to GeTeX, the test generation engine produced the 

three-set timed test suite.  
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Figure ‎4.5 shows the three sets of generated test cases by setting the clock upper 

bound to 7. The empty brackets mean that the SUT was allowed to emit an action 

at any time. The total number of generated tests is manageable; 15 test cases in 

total.‎Note‎that‎the‎‘out-boundary’‎test set examines not allowed behaviour of the 

SUT. For trace1 in‎‘out-boundary’‎priority‎as‎an‎instance,‎the‎correct‎SUT‎should‎

not react with the output (bright!) after receiving the input action press? at ‘4.5’ 

time unit. In other words, the transition (LOW 
            
→               b  gh ) cannot 

be fired at a time point not satisfying its constraint (   ).  

 

Figure  4.5: GeTeX test generation engine outcomes 

Once timed test cases are generated, UTA abstract actions are transformed to a 

sequence of CAN messages according to the conversion table (see Figure ‎4.6). 

The conversion table is essential for GeTeX to configure CAN messages that need 

to be sent and received according to their counterpart actions. At the first step, 
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GeTeX sets all actions defined in the UTA specification model in the conversion 

table. The tester then needs to fill CAN message details according to the SUT 

design requirements. In our example, one input action (press?) and three output 

actions (off!, low!, bright!) were identified. CAN message details were assigned 

according to the lamp controller design where CAN messages ID and data were 

known.‎A‎ ‘standard’‎ type‎ (i.e., 11 bit) was chosen to represent the ID of CAN 

messages since the prototype consists of just two nodes. Their IDs and data were 

chosen to enable the‎ controller‎ and‎ lamp‎ nodes‎ to‎ understand‎ each‎ other’s‎

messages. Once this table is ready, the abstract timed test suite was converted and 

stored in the log file allowing the test execution process to start. 

 

Figure  4.6: Actions/CAN messages convertor 

The test log file shown in Figure ‎4.7 is an Excel format consisting of 17 columns 

to store the sent/received CAN messages to/from the SUT. The ‘SetID’‎ column 

represents the corresponding ID of the testing sets: ‘1’‎ for‎boundary‎ set,‎ ‘2’‎ for‎

out-boundary set‎and‎ ‘3’‎ for‎ in-boundary‎set.‎The‎‘traceID’ column corresponds 

to the test trace identification within a test set. Since each test trace comprises a 

sequence of timed actions that have been converted to CAN messages, the 

‘MsgType’,‎ ‘MsgIDtype’,‎ ‘MsgLength’‎ and‎ ‘MsgData’‎ columns represent CAN 

message details. The‎ ‘MsgX-time’‎ column‎ stores‎ time delays that determine at 

which time an action (i.e., a CAN message) should be sent to the bus or stores the 

timing interval at which an action can be received. When the UTA specification 

model uses more than one clock to represent its timing behaviour, each clock 

valuation is represented by separate columns named: ‘MsgX-time’,’MsgY-

time’,’MsgZ-time’…etc.  
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The‎ ‘status’‎column‎ identifies the communication status with the SUT. An ‘OK’‎

statement is used if a CAN message has successfully been sent or received. 

Otherwise, an ‘ERROR’‎statement‎is‎used to identify that there was an error during 

the communication process with the CAN bus.  

 

Figure  4.7: A part of the test suite log file 

Injecting the messages stored in the log file into the CAN bus, GeTeX monitors the 

bus in the case of any received messages which need to be stored in the 

‘MsgRcvIDtype’,‎ ‘MsgRcvLength’,‎ ‘MsgRcvData’‎and‎ ‘RcvTime’‎columns.‎The‎

communication with the SUT may suffer from time delays due to (1) the time 

required for processing CAN messages by the CAN controller, (2) messages 

travelling time within the CAN bus and (3) the execution time of GeTeX code. 

Identifying this problem, GeTeX compensates for the time delay to a certain 

precision by measuring code execution time and calculating the propagation delay 

of the CAN controller and bus.  
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Having all input messages sent to and all output messages received, the test 

execution engine of GeTeX prepares the test report. According to tioco 

conformance relation, the test execution engine compares the received output 

messages and their times with those of the specification model. Pass/fail verdicts 

are accordingly assigned and stored in the following columns. The ‘TimeVerdict’‎

column assigns the pass/fail verdicts as a result of checking the time at which an 

output message is received with its timing guards. The ‘ActionVerdict’‎ column‎

assigns the pass/fail verdicts as a result of checking the received output message 

with that expected according to the specification model. In the case of input 

messages, pass/fail verdicts are assigned according to the communication status 

with the SUT (i.e., whether the input message is successfully sent to the CAN bus). 

Finally, the ‘TestVerdict’‎ column‎ determines‎ the‎ eventual‎ verdict‎ of‎ a‎ certain‎

message by combining its verdicts stored in the ‘TimeVerdict’‎and‎‘ActionVerdict’ 

columns.  

The first run of the experiment showed no faults. Every test set was correctly 

executed as the status column shows. Choosing a small application for the trial run 

enabled us to validate the tool. First, the test generation engine was validated by 

comparing the tests generated by the tool with those produced manually. Second, 

the test execution engine was validated by several runs of the experiment with 

different faults injected into the controller in different locations. For instance, the 

clock guard constraining the transition (LOW 
                     
→                          ) was 

transformed to       by which inputs satisfied the original guard should be 

rejected. Running Trace 1 of‎ the‎ ‘boundary’ or ‘in-boundary’‎ test‎ sets, the tool 

detected the injected fault by reporting this with a test trace fail.  

GeTeX was capable of identifying the location of detected faults by referring to the 

action type, trace number and priority number. The grey box within Figure ‎4.7 

shows examples. GeTeX was also capable of generating and executing timed test 

cases in short time. The validation process showed that the tool accurately 

represented PA.  
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4.5 Testing Assessment Criteria 

This section introduces a set of assessment criteria; structural (clock region) 

coverage, timing fault coverage and test trace length. The assessment criteria by 

which the performance of TA-based testing approaches can be measured and 

compared is necessary.  

Coverage criteria are often used in testing to assess the level of thoroughness of a 

test suite. Different types of coverage criteria are discussed and used in the 

literature such as structural and fault coverage. Fault coverage seeks tests capable 

of detecting potential faults in the SUT. Measuring fault coverage needs to be 

facilitated by:  

1- A fault model identifying the possible faults that might be encountered. 

2- The application of Mutation Analysis Technique (MAT) to control the 

process of fault coverage measurement. 

The aim of structural coverage (e.g., transition coverage) is to measure to what 

extent test cases cover the specification model. Since any proposed fault model 

cannot guarantee specifying all faults, the use of structural coverage should not be 

ignored (Hessel et al., 2008; En-Nouaary et al., 1999).  

On the other hand, achieving coverage criteria with a large number of test cases is 

not desirable. Measuring the length of the test suite generated by a testing approach 

is considered of paramount importance. The aim is thus for a testing approach 

which achieves high fault and structural coverage with fewer test cases.  

4.5.1 Structural Coverage Assessment Criterion (CRC) 

Recalling the idea and the equations of CRC discussed in Chapter 3, the clock 

regions coverage CRC achieved by a testing approach for the whole specification 

model can be calculated according to Equation (‎4.1).  
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 CRC =  
∑   

    
      

  

 
   

 
 ( 4.1) 

Where: 

 Q: The total number of input transitions in a specification model. Output 

transitions are excluded since the testing approaches used in this study 

equally cover the combined region of each output transition once it is 

fired. 

     
 : The total number of feasible clock regions calculated for a 

transition k according to Equation (‎3.5).  

     : The actual number of clock regions that have been covered by all 

occurrences of transition k in the generated test cases.  

In other words, CRC represents the average value of clock regions coverage 

calculated for all input transitions. If all timing constraints over transitions are 

similar in length, the average method in calculating the overall CRC for each 

model is reasonable. In the case of timing constraints with a large difference in 

length (e.g., x<50, x<5), weighted averages where different weights are assigned 

to CRC for each transition would be a preferable technique to use.   

4.5.2 Fault Coverage Assessment Criterion (MAT) 

Identifying how many faults can be detected by a test suite is known as fault 

coverage. Fault coverage should be supported with well identified faults that are 

defined in a fault model and which might be encountered in an implementation. 

The power of any test suite can be determined by its fault coverage; the higher the 

fault coverage, the more powerful the test suite (En-Nouaary and Hamou-Lhadj, 

2008; En-Nouaary et al., 1999). The use of fault coverage as an assessment 

criterion can be more effective if it is used in a controlled way by the application 

of the Mutation Analysis Technique (MAT).      
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MAT was proposed to increase the confidence about SUT correctness. It is based 

on simulating real faults in an SUT to validate or identify adequate test data 

capable of revealing such faults. Mutants (i.e., faulty versions of an SUT) are 

produced by syntactically changing an SUT according to rules given by mutation 

operators. Each mutation operator is thus linked with the fault we need to reveal in 

an SUT. In the second stage, the generated mutants are executed using a given test 

suite. If a mutant shows different behaviour from the correct version of an SUT, 

the mutant is killed and the fault is identified. Otherwise, it is said that the mutant 

is alive. In other words, the test suite is not capable of killing the mutant due to 

the inadequacy of the test suite or the mutant being equivalent to the SUT. The 

equivalence relation implies that the SUT and the generated mutant should show 

same behaviour for the entire input domain. A mutation analysis oracle seeks to 

achieve a high mutation adequacy score (DeMillo et al., 1978).  

To facilitate the application of fault coverage assessment using MAT, a set of 

mutation operators representing timed and functional faults that might be 

encountered in an SUT is introduced. Considering the similarity in structure 

between timing constraints defined in the specification model and clock 

conditions defined in the SUT C code, leads us to adopt a modified version of the 

TA-based mutation operators proposed in Chapter 3 (Section ‎3.6.1) to obtain C-

based mutation operators. The mutation operators are divided into two main 

classes; timed and functional mutation operators. First, timed mutation operators 

include all operators relating to timing faults and comprises five types of 

operators.  

 Narrowing Clock Conditions (NCC): This class of timed operators targets 

the conditions on clocks or timers defined within the SUT C code. They 

narrow down a condition bounds or change its relational operators 

(         ) by which it rejects inputs originally accepted. For instance, 

this operator can be applied on the condition       by changing either 

of its bounds (             ) or its relational operator (  

     ); where       is a clock,         are the bounds of the 
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condition and   ,          represent the syntactical changes applied to the 

condition.  

 Expanding Clock Conditions (ECC): This class of timed operators 

broadens the bounds of a clock condition or changes its relational 

operators by which it accepts inputs originally rejected. For instance, this 

operator can be applied on the condition       by changing either of 

its bounds (             ) or its relational operator (      

 ).  

 Shifting Clock Conditions (SCC): This class of timed operators depends on 

increasing/decreasing both bounds of a clock condition. For instance, this 

operator can be applied on the condition       by increasing both of 

its bounds (           ) or decreasing them (          

  ).  

 Adding a new Starting Point of a clock (ASP): This timed operator 

involves adding a new starting position of the clock or timer controlling 

SUT timing behaviour.  

 Removing an existing Starting Point of a clock (RSP): This operator 

involves removing a starting position of an existing clock or timer 

controlling SUT timing behaviour.  

Second, functional mutation operators include all operators related to functional 

faults and comprise two types of operators. 

 Exchanging Input Parameters of a method (EIP): This operator involves 

exchanging a predefined input parameter in a function or procedure with 

another one from the input set in the SUT.   

 Exchanging Output Parameters of a method (EOP): This operator involves 

exchanging a predefined output parameter in a function or procedure with 

another one from the output set in the SUT. 

After obtaining the adequacy score for each operator, we can calculate fault 

coverage FC for a testing approach using Equation (‎4.2). 
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∑     

 
   

 
 ( 4.2) 

Where: 

    : The adequacy score calculated according to Equation (‎3.6) for each 

mutation operator k.  

 w: The total number of mutation operators used. In our study w =7.  

In other words, Equation (‎4.2) gives the average number for all adequacy scores 

calculated for the mutation operators. Again, weighted averages can be used if the 

number of mutants differs largely from one mutation operator to another.  

4.5.3 Test Traces Length Assessment Criterion (TTL) 

Testing in general suffers from a high cost of test generation and execution. One 

of the most salient factors affecting the testing cost is the number of test cases 

(i.e., test traces). To clarify, more tests need more time to be generated and 

executed. Moreover, timed testing requires the generation and executing of test 

cases with different time delays. As a result, more tests require more time delays 

and, accordingly, cost more.  

It is therefore desirable to find a small test suite that detects the most number of 

faults. In timed MBT, each test trace is generated as a sequence of timed actions 

covering a set of transitions at certain times. The same transition might then be a 

part of different test traces but with different clock delays. Different test traces 

might have different lengths. As a result, the total length of the generated test 

traces is calculated according to Equation (‎4.3). The lower the length of generated 

test traces, the more effective the testing approach is with respect to the cost: 
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     ∑  |          | 

 

   

 ( 4.3) 

Where: 

 n: The total number of test traces  

 |          | : The count of (   ) occurrence in the kth test trace.  

 d      : A time delay.  

     A: An action.  

4.5.4 Combined Assessment Factor (AF) 

Any testing approach can be assessed according to each of the aforementioned 

assessment criteria. However, one testing approach can be effective according to 

one assessment criterion and not effective according to others. We thus introduce 

the Assessment Factor (AF) to combine all previous assessment criteria; CRC, FC 

and TTL. We are interested in identifying a testing approach that achieves the 

highest score with respect to all assessment criteria; high fault coverage, high 

clock region coverage and minimum length of generated test traces. AF can be 

represented mathematically according to Equation (‎4.4).  

Since the CRC and FC range between (0, 1), AF will give a very small number. 

The AF result is thus scaled up 1000 times to be more recognisable. The 

experimental evaluation will be based on each individual assessment criterion 

(CRC, FC and TTL) as well as the combined criterion (AF).   

         
        

   
 ( 4.4) 
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4.6 Empirical Assessment based on a Complete 

Test Bed 

This section introduces the empirical validation of three TA-based testing 

approaches (including PA) based on the introduced assessment criteria using a 

complete test bed. Two out of the four introduced in Chapter 3 (Section ‎3.6.4) 

were chosen for this study (SM and BCT). The rationale for excluding the other 

two (SCT and COVER) is as follows. First, SCT generate a relatively large 

number of test cases compared with the others. Most importantly, SCT is not 

supported with an automation tool. The time needed for executing the large 

number of SCT test cases on the test bed manually is significant. The time needed 

to input the generated test cases into the GeTeX execution engine for automating 

the execution is also significant. Second, the results from the previous chapter 

suggest that COVER is not as good as other approaches due to the un-timed 

coverage criteria it uses for generating test cases. The test bed used for validating 

PA in comparison with SM and BCT, the specification models and the assessment 

results are presented and analysed in the following subsections.  

4.6.1 Production-Cell Test Bed 

We were given access to an industrial-strength production-cell lab in order to 

execute test cases generated by the testing approaches used in this study. All 

documents including the production-cell design and software design models were 

given. Different visits were also arranged to discuss the production-cell structures 

with the design engineers in the case of any missing piece of information.  

A production-cell is a RTES consisting of two robots (robot-in and robot-out), a 

conveyor and a control panel. Figure ‎4.8 shows the physical layout of the cell.  
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Figure  4.8: Production-cell physical layout 

At its simplest level, the robot-in is responsible for picking up a Work Piece (WP) 

from the load platform (in-pad) and placing it on the conveyor. The item passes 

along the conveyor until it reaches the exit point to be ready to be picked off. The 

robot-out picks the item from the conveyer exit point and places it on an out-pad. 

The control panel allows an operator to supervise the system. There are a number 

of sensors positioned to detect items as they pass through the cell. The sensors are 

associated with the various components to form subsystems; each subsystem is 

managed by a micro-controller. The micro-controllers are connected by a CAN 

communication network to coordinate actions of the components and move items 

through the production-cell. Figure ‎4.9 gives a schematic overview of the system 

(Robson and Henderson, 2010). 
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Figure  4.9: Production-cell schematic 

4.6.2 Specification Models 

A production-cell is a real-time distributed system consisting of four components 

communicating via a CAN bus. Figure ‎4.10, Figure ‎4.11, Figure ‎4.12 and 

Figure ‎4.13 represent the specification models of load, unload, conveyor load and 

conveyor unload sensors, respectively for identifying the position of a WP within 

the cell.  

 

Figure  4.10: Load sensor automaton 

 

Figure  4.11: Unload sensor automaton 
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Figure  4.12: Conveyor load sensor automaton 

 

Figure  4.13: Conveyor unload sensor automaton 

Load and unload sensors identify whether the WP is picked up from the in-pad (a 

place where a WP enters the cell) or deposited in the out-pad (a place where a WP 

leaves the cell). Conveyor load and conveyor unload sensors identify the location 

of the WP in the conveyor.  

Figure ‎4.14 represents the specification model of the control panel. Receiving the 

signal from the load sensor, the control panel knows that the WP is loaded. It then 

informs the robot-in to pick up the WP from the in-pad. When receiving a signal 

from robot-in within 1-5 seconds querying whether it succeeds in picking up the 

WP, the control panel waits for a signal to be received from the sensor to be able 

to send the confirmation to the robot-in. Before depositing the WP into the out-

pad, the robot-out should ask the control panel within 36-63 seconds to know if 

the out-pad is free. In turn, the control panel sends the confirmation to the robot-

out once it receives a signal from the unload sensor stating that the out-pad is free. 

Another confirmation will be sent to the robot-out when it succeeds in depositing 

the WP in the out-pad within 12-15 seconds. 
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Figure  4.14: Control panel automaton 

Figure ‎4.15 depicts the specification model of the conveyor. The conveyor allows 

the robot-in to deposit the WP if the robot-in asks to and the sensor does not 

detect another WP occupying its place.  

 

Figure  4.15: Conveyor automaton 

The conveyor will send a confirmation signal if a signal is received from the 

robot-in within 1-6 seconds to indicate whether the WP has been deposited. The 

WP will move through the conveyor until reaching the end point when triggering 

a signal by the sensor to robot-out. The conveyor will broadcast a confirmation if 

the robot-out picks up the WP within 4 seconds. 

Figure ‎4.16 represents the specification model of the robot-in component. Picking 

up the WP from the in-pad, the robot-in asks the control panel for a confirmation 

within 1-10 seconds. Once it obtains the pickup confirmation within 7 seconds, 

the robot-in will ask within 1-3 seconds if the conveyor is free to collect the WP. 
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A free-to-deposit confirmation should be received within 4 seconds for the robot-

in to be able to ask the conveyor within 1-6 seconds if the WP is successfully 

deposited. The confirmation is then broadcasted.  

 

Figure  4.16: Robot-in automaton 

Figure ‎4.17 depicts the specification model of the robot-out. Picking up the WP 

from the conveyor, the robot-out asks the conveyor for a confirmation within 15 

seconds.  

 

Figure  4.17: Robot-out automaton 

Once getting pickup confirmation within 10 seconds, the robot-out should ask 

within 34 seconds if the out-pad is free to get the WP. A free-to-deposit 

confirmation should be received within 4 seconds for the robot-out to be able to 

ask the control panel within 12-15 seconds if the WP has been successfully 

deposited. The confirmation is then broadcasted. 
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4.6.3 Test Generation and Execution 

Using the specification models, test cases according to PA, SM and BCT were 

generated for each component of the production-cell. The process of test 

generation according to PA was automated using the GeTeX tool. However, test 

cases according to SM and BCT were manually generated from the specification 

models; the restricted UTA models used without data are similar to those of 

TIOA. The length of test cases generated by each approach calculated according 

to Equation (‎4.3) is given in Table ‎4.5 in the TTL row. The CRC for each testing 

approach calculated using Equation (‎4.1) is presented in Table ‎4.5 in the CRC 

row. A detailed calculation of CRC for each approach is presented in Appendix B.  

To run the generated test cases on production-cell components, a set of 

preparatory procedures were undertaken. First, using GeTeX, the generated test 

cases from three approaches were transformed into executable inputs interacting 

with SUT components. Second, production-cell components were disconnected 

since the intention was to perform component-based testing. Considering that 

production-cell components communicate via the CAN bus, the PC hosting 

GeTeX was connected to the CAN bus using a USB/CAN adapter to interface 

GeTeX with the production-cell. GeTeX replaced the communications required 

for each component to perform its jobs by injecting a suitable sequence of CAN 

messages according to a testing approach. Third, for calculating the FC 

assessment criterion, test cases from each testing approach were executed on each 

component of the production-cell; control panel, conveyor, robot-in and robot-out. 

GeTeX recorded the responses from each component to compare them with those 

of the specification. Pass/fail verdicts were then assigned‎ if‎ the‎ components’‎

response did or did not conform to the specification according to tioco, 

respectively.    

The C code controlling each component was manually mutated according to the 

proposed operators for calculating fault coverage (FC) for each testing approach. 

For each operator, all possible mutants were generated. Studying‎the‎mutants’‎C 
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code of each operator, equivalent mutants were identified for NCC in the robot-in 

and robot-out components and for ASP and RSP in all production-cell 

components. Once a mutant was loaded into the micro-controller, all test cases 

were re-executed on the component under test. Table ‎4.1, Table ‎4.2, Table ‎4.3 and 

Table ‎4.4 depict, for each operator, the number of generated, equivalent, killed 

mutants and mutation score for control panel, conveyor, robot-in and robot-out, 

respectively.  

Table  4.1: MAT Application on the control panel  

 

 

 

 

 

Approaches Operators Mutants Equivalent Killed Score 

PA 

NCC 73 0 64 0.88 

ECC 27 0 27 1 

SCC 36 0 36 1 

ASP N/A - - - 

RSP 6 3 3 1 

EIP  42 0 42 1 

EOP  12 0 12 1 

SM 

NCC 73 0 56 0.77 

ECC 27 0 0 0 

SCC 36 0 24 0.67 

ASP N/A - - - 

RSP 6 3 3 1 

EIP  42 0 42 1 

EOP  12 0 12 1 

BCT 

NCC 73 0 56 0.77 

ECC 27 0 0 0 

SCC 36 0 24 0.67 

ASP N/A - - - 

RSP 6 3 3 1 

EIP  42 0 42 1 

EOP  12 0 12 1 
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Approaches Operators Mutants Equivalent Killed Score 

PA 

NCC 65 0 59 0.91 

ECC 12 0 12 1 

SCC 16 0 16 1 

ASP N/A - - - 

RSP 4 2 2 1 

EIP  42 0 42 1 

EOP  12 0 12 1 

SM 

NCC 65 0 49 0.75 

ECC 12 0 0 0 

SCC 16 0 12 0.75 

ASP N/A - - - 

RSP 4 2 2 1 

EIP  42 0 42 1 

EOP  12 0 12 1 

BCT 

NCC 65 0 49 0.75 

ECC 12 0 0 0 

SCC 16 0 12 0.75 

ASP N/A - - - 

RSP 4 2 2 1 

EIP  42 0 42 1 

EOP  12 0 12 1 

Table  4.2: MAT Application on the conveyor  

Approaches Operators Mutants Equivalent Killed Score 

PA 

NCC 69 33 27 0.75 

ECC 33 0 33 1 

SCC 44   0 44 1 

ASP N/A - - - 

RSP 6 1 5 1 

EIP  12 0 12 1 

EOP  6 0 6 1 

SM 

NCC 69 33 25 0.69 

ECC 33 0 27 0.81 

SCC 44 0 44 1 

ASP N/A - - - 

RSP 6 1 3 0.6 

EIP  12 0 12 1 

EOP  6 0 6 1 

BCT 

NCC 69 33 25 0.69 

ECC 33 0 27 0.81 

SCC 44 0 44 1 

ASP N/A - - - 

RSP 6 1 3 0.6 

EIP  12 0 12 1 

EOP  6 0 6 1 

Table  4.3: MAT Application on the robot-in  
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Approaches Operators Mutants Equivalent Killed Score 

PA 

NCC 69 33 27 0.75 

ECC 21 0 21 1 

SCC 28 0 28 1 

ASP N/A - - - 

RSP 6 1 4 0.8 

EIP  12 0 12 1 

EOP  6 0 6 1 

SM 

NCC 69 33 25 0.69 

ECC 21 0 15 0.71 

SCC 28 0 28 1 

ASP N/A - - - 

RSP 6 1 3 0.6 

EIP  12 0 12 1 

EOP  6 0 6 1 

BCT 

NCC 69 33 25 0.69 

ECC 21 0 15 0.71 

SCC 28 0 28 1 

ASP N/A - - - 

RSP 6 1 3 0.6 

EIP  12 0 12 1 

EOP  6 0 6 1 

Table  4.4: MAT Application on the robot-out  

To calculate the FC for each component, the average mutation scores obtained for 

all operators per production-cell component was calculated according to Equation 

(‎4.2). Table ‎4.5 clarifies the fault coverage outcomes for each testing approach per 

component in the FC row. According to CRC and FC results, the assessment 

factor (AF) was calculated using Equation (‎4.4); AF is presented in Table ‎4.5. 

Assessment 

Criteria 

Testing 

Approaches 

Control 

Panel 
Conveyor Robot-in Robot-out 

TTL 

PA 732 168 136 184 

SM 96 48 32 32 

BCT 84 60 40 40 

FC 

PA 0.95 0.96 0.93 0.9 

SM 0.71 0.79 0.86 0.82 

BCT 0.71 0.79 0.86 0.82 

CRC 

PA 1 1 1 1 

SM 0.07 0.12 0.11 0.1 

BCT 0.1 0.14 0.16 0.13 

AF 

PA 1.3 5.71 6.84 4.89 

SM 0.52 1.98 2.96 2.56 

BCT 0.85 1.84 3.44 2.67 

Table  4.5: Assessment results 
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4.6.4 Assessment Discussion 

Comparing PA with SM and BCT according to fault coverage criterion (FC), we 

found that PA showed superiority and stability in detecting most faults injected 

into the production-cell components. FC of PA ranged from 90% in the robot-out 

to 96% in the conveyor. On the other hand, FC score of SM and BCT was less 

than that of PA; their FC ranged from 71% to 82% across all production-cell 

components.   

To understand the high FC score achieved by PA in comparison with SM and 

BCT, the individual mutation score for each operator is discussed. Contrary to SM 

and BCT, PA maintained the‎full‎mutation‎score‎‘1’‎for‎ECC‎and‎SCC,‎because‎of‎

the selection of time points that can detect such faults. However, FC of PA was 

negatively affected by the mutation score of NCC. Selecting the boundary points 

of clock conditions was insufficient to detect the entire injected faults for several 

reasons. First, the TA model might end with an input transition such as the 

transition (s6, s0) in the robot-out automaton (Figure ‎4.17). All test cases generated 

by the approaches under study finished at the initial location. In other words, the 

input transition will be the last transition in a test trace. Since any injected faults 

require outputs to be detected, there is no possibility of detecting any faults 

injected into code representing such a transition. Second, the TA model might 

contain an unconstrained transition. The fault as a result of mutating the code with 

a new clock condition might be undetectable by the time points chosen by PA. For 

instance, the fault resulting from adding a time condition (x< 50) to the code 

representing the transition (s0, s1) in the robot-in automaton (Figure ‎4.16) is 

undetectable by PA. Third, detecting some faults under the NCC category requires 

sending the SUT an input at an exact time point (e.g., replacing x≤4‎with‎x<4). 

However, the accuracy of the clock used in testing process and the uncontrolled 

delay through the communication with the SUT does not guarantee that the SUT 

will receive an input at the same time point as intended by the tester. 
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Detecting faults under the RSP category depends on the position of a clock reset, 

the consecutive transitions and the length of timing guards constraining them. PA 

empirically showed higher capabilities in detecting such faults than SM and BCT. 

The ASP operator was not considered as it only produced equivalent mutants.  

With respect to the functional mutation operators, PA shared a full mutation score 

with SM and BCT; the full transition coverage achieved by all is considered to be 

sufficient to detect all functional faults injected into the implementation C code.  

The high CRC of PA compared with SM and BCT relied on the full clock regions 

achieved by PA. The low CRC score of SM and BCT arise from restricting the 

selection of time points to cover only two regions in the case of SM and three 

regions in the case of BCT. Their target was to dramatically reduce the cost by 

minimising the number of generated test cases. That is clear from the low TTL in 

both cases. The few test cases generated by SM or BCT were capable of detecting 

82% of the faults injected as a best result. However, selecting them for testing 

hard, real-time or safety critical systems is still questionable due to the shortage in 

structurally covering SUT behaviour.  

The importance of timed structural coverage comes from the possibility of faults 

existing in the SUT un-categorised by the fault model. However, the high score in 

structural coverage usually correlates with a higher cost in terms of the number of 

generated test cases or TTL. As a result, any testing approach that can combine a 

high FC score and CRC score with a relatively small number of test cases 

(achieve high AF) is preferable. Figure ‎4.18 shows that PA performed much better 

than SM and BCT, in terms of AF, for all production-cell components although it 

produces relatively larger test cases than the other testing approaches. However, 

PA did not maintain the same AF score ranging from ‘1.3’ for control panel to 

‘6.84’ for robot-in due to the differences in TTL generated for each of the 

components. 
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Figure  4.18: AF factor of each testing approach according to production-cell 

components 

4.6.5 Lessons Learned and Problems Encountered   

While running the production-cell test bed, several issues affecting real-time 

testing were noted. In this section, a summary of those issues is presented as a 

step towards facilitating more empirical, real-time model-based test beds.   

To begin with, the specification models do not always represent the code. In this 

study, we had the opportunity to study the SUT code in order to mutate them. The 

code based on the real-time operating system kernel (Micro C) contains more 

functions than those represented in the specification models. The MBT 

approaches used did not guarantee testing all functions in the code. To avoid this 

problem, we assumed that the SUT was fully represented by the specification 

model. However, in reality, this problem is still an issue. 

Moreover, synchronising clocks between GeTeX and the SUT was another issue. 

To clarify, transitions in TA models are instantaneous (i.e., the time of triggering a 

transition is 0). However, triggering transitions consumes time in actuality. The 

time delay that needs to be considered occurs at the implementation level (code 
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execution time of the GeTeX) and at the physical layer (CAN bus). The more 

accurate the time delay calculated, the more synchronised the clocks are in GeTeX 

and the SUT. In this study, theoretical and empirical methods were followed to 

estimate time delay. First, the CAN bus delay was calculated using the 

propagation delay equation (suggested by the controller data sheet) taking into 

account the bus length, the CAN controller, transceiver ports and its baud rate. 

Second, the CAN bus delay was measured by developing echo software between 

two nodes. The first node broadcasts a message at a specific time point. The 

second node replicates the message once it is received. When the first node 

receives the replicated messages, it records its time. The bus delay is calculated as 

half the time required for a message to be sent and received at the first node. The 

theoretical and empirical results were similar (10 ms). Moreover, the code 

execution time of GeTeX was measured using some Java libraries (i.e., Nano-time 

and calendar). The soft and physical time delays were compensated by GeTeX 

when sending inputs to the SUT at specific times. In spite of this compensation, it 

was not guaranteed that an input was received by the SUT at an exact testing time 

point. This would diminish the testing approaches capability of detecting the 

boundary faults as indicated by the relatively low NCC score of the testing 

approaches. 

Lastly, the use of clocks either by the testing tool or SUT was another problem 

encountered in testing real-time systems. This issue is related to clock accuracy. 

In this study, the time units used were in seconds. The accuracy of timers to track 

time progress was found to be dependent on the hardware specification as well as 

the software. For instance, the Micro C operating system used in the micro-

controllers cannot measure to less than 1 ms. The clock accuracy within the 

experiment was found to be ± 3 ms. When a timing constraint (x ≤ 3 for instance) 

is tested at its boundary value by sending the SUT an input message at 3 seconds, 

the SUT could receive the input at 3.003 seconds which does not satisfy the clock 

condition. The transition is thus not triggered and an incorrect failure will be 

emitted. Another example of a clock accuracy issue was found when mutating a 
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timing constraint by changing its boundary type (x ≤ 3 for instance becomes x < 

3). This fault cannot be detected unless an input message is sent to the SUT at 3 

seconds exactly. To remedy such problems, GeTeX was instructed to accept 3 ms 

allowance for each message sent or received. Although (3 ms) is very little 

amount compared with seconds, the testing approaches will be unable to detect 

timing faults occurring in this allowance interval. To minimize the clock accuracy 

issue, a more accurate hardware timer could be employed.   

4.7 Summary 

This chapter introduced GeTeX as a new timed testing tool for CAN applications. 

GeTeX can be considered as a complete tool that tests timing properties of an 

RTES in particular. GeTeX depends on PA for generating timed test cases from a 

system specification modelled as UTA. GeTeX also depends on tioco theory in 

executing the timed test cases and assigning pass/fail verdicts to them. The 

practicality of using GeTeX was shown by experimenting with a light controller 

prototype. The tool generated and executed the test cases in a short time without 

any compilation errors.  

This chapter also introduced an empirical test bed using production-cell case study 

and assessment criteria to validate the PA testing approach in comparison with 

two TA-based testing approaches (SM and BCT). The first assessment criterion 

includes formulating timed structural coverage represented by clock region 

coverage (CRC). A set of timed and functional mutation operators was presented 

to facilitate the second assessment criterion (FC). An assessment factor (AF) that 

considered fault coverage and clock coverage with respect the length of generated 

test cases was also presented. The experiments confirm the results collected for 

Chapter 3. PA performed better than the others in terms of FC or CRC even 

though it produced relatively larger test cases than the other testing approaches; 

salient problems encountered during conducting the empirical study were 

highlighted. 
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Chapter 5:  A Multi-Criteria Decision Making 

Approach for Prioritising the Test Sets of 

the Priority-Based Approach 

 

5.1 Overview 

In the previous chapters, the Priority-based Approach (PA) which tested logical 

and timing behaviour of an RTES modelled formally as UPPAAL Timed 

Automata (UTA) was introduced and automated by the GeTeX tool. PA generated 

three separate sets of test cases (i.e., boundary, out-boundary and in-boundary) to 

enable the tester to choose between the proposed test sets (or any combination 

thereof). However,‎selecting‎the‎‘best-suited’‎test‎set‎to‎be‎deployed‎for‎a‎certain‎

application in a particular organisation lacks the rigour that a systematic decision-

making framework might offer.  

This chapter fills this gap by developing a novel Analytical Hierarchy Process 

(AHP) as decision-making framework for PA. The framework provides testers 

with a systematic approach by which they can prioritise the available test sets that 

best fulfil testing requirements. The AHP framework developed is based on the 

data collected heuristically from the production-cell test bed and those collected 

by interviewing testing experts. The framework is then applied on two different 

testing scenarios to prove its validity by comparing the decision prioritising 

outcomes with those of the testing experts (Aboutrab et al., 2012a). 

The remainder of this chapter is organised as follows. The problem area this 

chapter tackles is highlighted in Section ‎5.2. Section ‎5.3 gives an overview of 



‎Chapter 5: A Multi-Criteria Decision Making Approach for Prioritising the Test 

Sets of the Priority-Based Approach 

 

 136 

decision-making methods including that of AHP. In Section ‎5.4, the proposed 

AHP decision model is presented and explained. The process of prioritising the 

PA test sets using the AHP framework is also discussed. The framework is then 

validated using two testing scenarios in Section ‎5.5. Finally, Section ‎5.6 

concludes the chapter. 

5.2 Problem Area 

Research in MBT methods has gained increasing attention especially for testing 

RTESs. This is due to MBT’s ability to reduce testing cost by capturing and 

validating system behaviour from an early stage of the development cycle and 

using tools to automate the process of test case generation, execution and 

evaluation (Grieskamp et al., 2011). Many MBT algorithms and methods for 

testing real-time systems have been proposed over the last two decades (Cardell-

Oliver, 2000; Clarke and Lee, 1997a; En-Nouaary, 2008; En-Nouaary and 

Hamou-Lhadj, 2008; Hessel et al., 2008; Larsen et al., 2005a; Merayo et al., 2008; 

Nielsen and Skou, 2003; Krichen and Tripakis, 2009; Hierons et al., 2009). Most 

testing approaches that achieve high fault coverage suffer from high cost in terms 

of expended effort and the large number of generated test cases (Mitsching et al., 

2009). Choosing which approach most suits a testing project can therefore be 

considered as a problem for the following reasons.  

1. The selection of a candidate testing approach is totally dependent on a 

tester’s‎intention‎and‎experience.  

2. Each‎ testing‎ approach‎ provides‎ a‎ single‎ test‎ solution‎ in‎ which‎ a‎ tester’s‎

preferences or environmental factors affecting the testing process (e.g., 

available test time or budget) cannot be considered. In other words, a tester 

cannot guarantee whether choosing a particular subset of a test suite due to 

the shortage of test time (for instance) will provide the best testing 

outcome.  
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3. The existence of many factors that contribute to the testing process in 

different ways increases the complication of making the right decision such 

as choosing a testing approach with the aim of achieving high fault 

coverage with low cost. 

To address such problems, the proposed PA automated by the GeTeX tool divides 

the generated test cases into three separate sets (i.e., boundary, out-boundary and 

in-boundary). PA thus enables the tester to choose between the proposed test sets 

(or any combination thereof). According to that choice, PA establishes a trade-off 

between increasing confidence in SUT correctness and limited testing resources 

such‎ as‎ time,‎ effort‎ and‎ cost.‎However,‎ selecting‎ the‎ ‘best-suited’‎ test‎ set‎ to‎ be‎

deployed for a certain application in a particular organisation by relying only on a 

tester’s intension is risky due to different environmental factors influencing the 

decision process. A formal decision framework in which all testing requirements 

and factors (decision criteria) affecting the testing process are independently 

categorised, weighted and analysed becomes viable. 

An Analytical Hierarchy Process (AHP) (Saaty, 1977; Saaty, 1980) is a multi-

criteria decision-making approach based on dividing the decision criteria into 

several levels to enable their pair-wise ranking subject to field experts or 

empirical data. AHP potentially reduces the complexity of the decision problem 

and allows consistent outcomes to be generated.  

The problem tackled by this chapter is to prioritise the PA test sets for a particular 

testing project using the AHP multi-criteria decision-making method. The primary 

contributions of this chapter are: 

1- The development of the AHP decision model considering criteria that 

might‎ affect‎ a‎ tester’s‎ decision‎ in‎ prioritising the PA test set for a 

particular testing project.  

2- The development of the AHP framework with its process using the test 

data set obtained from the production-cell test bed and a group of testing 

experts. 
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3- The validation of the AHP framework using two different testing scenarios 

by checking the degree of similarity between the AHP decision outcomes 

with those of testing experts.    

5.3 Preliminaries 

A formal decision-making procedure is an essential tool for modern organisations. 

Dealing with complex environments with technological cutting-edge requirements 

increases the risk implications of any decision yet to be made on the future of any 

organisation (Saaty, 2001). Formal decision-making methods provide a structural 

process by which decisions are clear, justified, consistent and repeatable. The 

process of decision-making involves choosing a solution from a set of available 

solutions according to some decision criteria. It is based on ranking the solutions 

according to each criterion to obtain a decision by combining all rankings. The 

ranking process might include a group of expert opinions. This section presents an 

overview of well-known decision-making methods including the AHP.   

5.3.1 Decision Making Methods 

Several approaches have been developed to standardise the process of making 

decisions. Choosing an appropriate decision-making method is dependent on the 

type of the decision problem, the attributes of the decision-making method and the 

objectives of decision makers. The use of optimisation techniques can also lead to 

a greater deployment of decision-making methods (Bhushan and Rai, 2004) and 

the chosen method should thus be justified and evaluated (Baker et al., 2001). In 

general, the ease of use and applicability remain an issue for some approaches due 

to the heavy dependence on theoretical underpinnings or the inability to solve 

complicated decision problems. For instance, the Ranking Approach (Buss, 1983), 

a non-linear programming model (Badria and Davisb, 2001; Santhanam and 

Kyparisis, 1996), the 0-1 goal programming model and the Analytical Network 

Process (ANP) (Lee and Kim, 2000) are reliant on complicated mathematical 
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models and are difficult to understand and use. On the other hand, some decision-

making methods support small decision problems where only a few decision 

criteria and solutions exist such as Pros and Cons analysis (Baker et al., 2001). 

For partially complex applications, Kepner-Tregoe (K-T) decision analysis 

(Kepner and Tregoe, 1981) can be used. 

Numerous‎ multivariate‎ methods‎ ignore‎ decision‎ makers’‎ preferences‎ in‎ the‎

process of decision-making (e.g., the Simple Multi-Attribute Rating technique 

(SMAR) (Salmeron and Herrero, 2005; Dutta and Burgess, 2003) and Decision-

making Units (DMU) (Salmeron and Herrero, 2005)). DMU involves assessing 

the performance of different units that might be different in nature such as a 

computer or a school. Performance is measured considering the amount of inputs 

involved and outputs generated. The measures of unit performances are then 

compared in the sense that one unit is more efficient that another if it gives more 

outputs for same quantity of inputs or the same amount of outputs for smaller set 

of inputs. This comparison can be represented mathematically by ratio of the sum 

of outputs over the sum of inputs. The Data Envelopment Analysis (DEA) 

approach (Salmeron and Herrero, 2005) extends DMU by assigning different 

weights to outputs and inputs. The weights are different values assigned to reflect 

the fact that one unit is more important than others. DMU and DEA are preferable 

when there is no need to consider the preferences of decision makers as the main 

intention is to compare unit performances.  

On‎ the‎other‎hand,‎ there‎are‎ several‎methods‎ that‎consider‎ the‎decision‎makers’‎

preferences such as the Multi-Attribute Utility Theory (MAUT) (Edwards and 

Barron, 1994; Goodwin and Wright, 1999) and the Analytical Hierarchy Process 

(AHP) (Saaty, 2001; Saaty, 1990a; Saaty, 1990b; Saaty and Kearns, 1985; Saaty, 

2008; Saaty and Vargas, 2000; Saaty and Vargas, 1984; Saaty and Vargas, 1991). 

Firstly, MAUT is a quantitative decision-making method that depends on 

optimising measures of costs, benefits and risks for decision alternatives. The 

measures are then combined along with the preferences of the decision makers in 
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a cumulative format. Secondly, the AHP depends upon making decisions on pair-

wise ranking of decision alternatives according to decision criteria; this is done on 

the basis that humans are more skilled at making relative decisions than complete 

ones. Some researchers might not support the use of the AHP due to the way it 

numerates and processes the ranking values (Dutta and Burgess, 2003; Goodwin 

and Wright, 2000). However, comparing the AHP with some of its counterparts, 

Table ‎5.1 demonstrates its advantageous features. 

Table  5.1: Comparisons of decision-making approaches (Kamal, 2008) 

Comparison Factors 
Decision Making Techniques 

AHP SMAR DEA RA ANP 
Incorporation of preference structure  – – – – 
Synthesised analysis of diverse judgements  – – – – 
Is an intuitive technique – – –  – 
Optimises resource allocation for interaction of 

factors 
 –  –  

Limited attributes to carry out real world 

decisions 
–     

Captures individual knowledge and experience   – – – 
Gives easy understanding of the problem 

situation 
 – – –  

Time-consuming process – – – – – 
Non-linear representation – – –  – 
Managing large amount of 

qualitative/quantitative data 
 – – – – 

Applicability weakened by complex 

mathematical models 
– – –   

Easy understanding of the prioritisation process   –  – 
Quick insight into structure of information   – – – 
Requires less skill and training      
Measures the performance efficiency of decision 

makers 
–   – – 

Structures through symbolic and numeric 

representation 
  – – – 

Supports different viewpoints through rich 

pictures 
 – – – – 

Techniques inappropriate for all situations      
Too much focus on quantifiable calculations –     
Provides a step-wise guideline for prioritising the 

factors 
 – – –  

Accessible data format  –  – – 
Graphical representation  – – – – 
Resolves complex problems of choice and 

prioritisation 
 –  –  
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5.3.2 Analytical Hierarchy Process (AHP)   

Using rigorous mathematical rules, the AHP analyses the decision problem and 

structures the experience, preference, intuition and heuristics of the decision 

makers (Huang et al., 2004). Due to its simplicity and organised structure, the 

AHP is suitable for a wide range of applications including alternative selection 

(Zeng et al., 2007), resource allocation (Ramanathan, 1995), forecasting (Ülengin, 

1994; Jensen, 1982; Jensen and Spencer, 1986; Saaty, 1987), business process re-

engineering (Ashayeri et al., 1998; Wei et al., 2005), quality function deployment 

(Karsak et al., 2003), balanced scorecard (Ravi et al., 2005), benchmarking (Lu et 

al., 1994), public policy decisions (Saaty, 2001), healthcare (Dolan, 1989), 

multimedia communication (Ghinea et al., 2005), software testing (McCaffrey, 

2005) and many more. AHP results are always compatible with expectations 

regardless of the type of applications. As a result, the AHP is an accepted method 

(Saaty, 2008).   

The AHP has several features and characteristics making it more preferable than 

other decision-making approaches.  Firstly, the AHP qualitatively decomposes the 

decision problems to a set of sub-problems and unrelated factors organised in a 

hierarchical structure in which every set of factors is classified under a certain 

decision sub-problem. As a result, the assessment bias can be significantly 

reduced (Chin et al., 1999; Cheng and Li, 2002). The multi-criteria format enables 

the AHP to use a pair-wise comparison mechanism in ranking the decision factors 

quantitatively. The ranking process thus becomes more informative and accurate 

and represents the importance of decision factors with respect to others (Salmeron 

and Herrero, 2005; Saaty, 1980; Jackson, 2001). Secondly, the AHP is equipped 

with consistency assessments to minimise any inconsistency within the rating of 

decision makers (Salmeron and Herrero, 2005; Saaty, 1980; Jackson, 2001). 

Thirdly, the AHP uses an appropriate measurement scale making the judgements 

logical and comprehensive (Lai et al., 1999). Fourthly, the AHP outcomes are 
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determined by prioritising a set of decision alternatives according to the relative 

ranking of the decision criteria (Wei et al., 2005; Saaty, 1990b).  

The AHP process comprises several steps (Saaty and Vargas, 2000): 

Step 1 - Constructing the Hierarchy Model: In this step, the decision problem is 

defined and the decision factors are categorised into a hierarchical model 

comprising goal, criteria, sub-criteria and alternatives. The decision goal forms the 

root of the model where the decision alternatives form the leaf nodes. The root 

and the leaves are connected by various levels (criteria and sub-criteria) where the 

relationship between elements of one level with those of other levels are indicated 

and classified. 

Step 2 - Ranking Decision Factors through Pair-Wise Comparisons: The 

importance of each decision factor is determined relative to all other factors. This 

is considered an easy and efficient way of obtaining actual priorities. The 

comparison process needs to be made for elements at a certain level within their 

own criterion. The ranks can be collected from heuristics, decision makers or field 

experts and then converted to numbers according to a nine-point scale introduced 

by Saaty (Saaty, 1977). Table ‎5.2 illustrates the scale and its meanings. The 

numerical rating is not dependent on a standard scale but represents the preference 

relationship established between the factors being compared.  

Pair-wise comparisons can be done in different ways. Interviewing a group of 

field experts can be considered one of the most popular means of obtaining 

numerical rates. We denote WAB as the preference of the factor A with respect to 

the factor B and (1/ WAB) as the preference of the factor B with respect to the 

factor A where A and B belong to the same decision criterion. This procedure 

helps to decrease the number of ratings to n(n-1)/2 where n represents the number 

of factors under a decision criterion (Salmeron and Herrero, 2005). Use of 

heuristics is another way for obtaining the rating. The absolute data collected for 

each factor needs to be mathematically normalised to a nine-point scale. 
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Numerical Rating Verbal Judgments of Preferences 

1 A is equally preferable to B 

2 A is equally to moderately preferable to B 

3 A is moderately preferable to B 

4 A is moderately to strongly preferable to B 

5 A is strongly preferable to B 

6 A is strongly to very strongly preferable to B 

7 A is very strongly preferable to B 

8 A is very strongly to exceptionally preferable to B 

9 A is exceptionally preferable to B 

Table  5.2: Pairwise comparison scale for AHP preferences (Saaty, 1977) 

Step 3 - Creating Comparison Matrices: The pair-wise rates for different 

decision criteria at a certain level in the hierarchical model are arranged in a 

square‎matrix‎ ‘A’‎as‎depicted‎ in‎Equation (‎5.1). Each element     in the matrix 

represents the preference of the factor in a row i to the factor in a column j. All 

diagonal elements are thus equal to 1. Moreover, all elements in the upper triangle 

of the square matrix represent the reciprocal of the elements in its lower triangle.  

 A= [

     

   
       

] ( 5.1) 

Step 4 - Calculating Eigenvectors: This step involves decomposing the 

comparison matrix containing the relative ranking values into a non-zero vector 

representing the absolute weights of decision criteria, sub-criteria or alternatives. 

The transformation of relative ranks (i.e., in pair-wise comparison matrices) to an 

absolute weights can be considered as an eigenvalue problem. As a result, 

calculating the largest positive eigenvalue for pair-wise matrices with associated 

eigenvector leads to a vector of weights. Since the point of using the AHP is to 
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prioritise a set of solutions, Saaty (2008) found that the calculation of eigenvectors 

can be approximated without largely affecting the results of that prioritization. 

The process of calculating the approximate eigenvectors involves normalising the 

comparison matrix by dividing each element by the sum of its column. The sum 

of each row of the normalised matrix is then divided by the number of its elements 

to obtain the approximate eigenvector.    

Step 5 - Calculating a Consistency Ratio: Ranking the decision factors using a 

group of experts being interviewed raises a consistency issue (i.e., whether all 

ranks are consistent with each other). The use of comparison matrices eliminates 

symmetric inconsistencies due to reciprocal elements with respect to the matrix 

diagonal. However, the transitive consistency property may not be satisfied. In 

other words, if A is more important than C and C is more important than B, it is 

not known if A is more important than B. As a result, the consistency ratio of the 

comparison matrix of order n needs to be calculated and evaluated. The closer the 

consistency ratio is to zero, the more consistent the matrix. The AHP tolerates 

inconsistency to a certain degree due to the amount of redundancy in the 

framework. To accept the pair-wise ranking, the value of consistency ratio should 

not exceed 10%. If it is found that the consistency ratio exceeds the 10% level, the 

judgments made are ineffective as they become too similar to random judgments. 

As a result, the rating process may need to be re-done since the decision makers 

are inconsistent in their ratings (Saaty, 2008). The consistency ratio CR can be 

calculated according to Equation (‎5.2). 

 CR = CI / RI ( 5.2) 

 Where: 

 CI represents the consistency index calculated according to Equation (‎5.3).  
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 RI represents the random matrix depicted in Table ‎5.3. The chosen value 

of RI should correspond to the order of a comparison matrix (e.g., RI = 

0.58 for three-dimensional comparison matrix). 

 

 CI = (max-n) / (n-1) ( 5.3) 

Where: 

 max represents the maximum eigenvalue of the pairwise matrix. 

 n represents the order of a comparison matrix.   

 

Order of the matrix n 1 2 3 4 5 6 7 8 9 10 

Random Consistency 

Index – RI 
0 0 0.58 0.89 1.11 1.25 1.35 1.40 1.45 1.49 

Table  5.3: Random consistency indices (Saaty, 1990a) 

Step 6 - Determining Normalised Weights: This step involves prioritising the 

decision alternatives according to the calculated weights. The global weight of a 

sub-criterion is calculated by multiplying the weight of the decision criteria it 

belongs to by its local weight. The weights of alternatives are calculated with 

respect to a sub-criterion by multiplying the weight of each alternative by the 

global weight of that sub-criterion. The alternative weights are then aggregated to 

obtain the final rating by which they are prioritised. 

Step 7-Integrating Group Judgments: If the ranking process includes several 

experts to be interviewed or several experiments to be run, the results are 

integrated using the geometric mean approach since the ranks are represented by a 

geometric scale (Saaty, 2008).  
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5.4 The AHP Framework 

Figure ‎5.1 depicts the hierarchical AHP model introduced to solve the decision 

problem under study. The root of the hierarchy is the definition of the decision 

problem (decision goal). The leaf nodes represent the decision alternatives (i.e., 

solutions) to be prioritised according to decision criteria and sub-criteria. In the 

following, the proposed AHP model is defined and explained.  

 

Figure  5.1: AHP hierarchal model 

5.4.1 Decision Problem 

The Priority-based Approach (PA) was proposed for testing logical and timing 

behaviour of an RTES modelled formally as UTA. The core concept of the PA is 

based on dividing the generated test cases into three sets (i.e., priorities) as the 

priority of choosing a particular test set differs according to several factors such as 

the testing environment specified by the criticality of SUT, the allowable time and 

the budget specified for the testing process (Aboutrab et al., 2010). Prioritising PA 

test sets to be deployed for a certain application in a particular organisation is thus 

a complex decision-making task facing a tester. 
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5.4.2 Decision Alternatives 

The outcome of the decision framework is to prioritise the available test sets 

generated by PA. Each set is named and constructed according to the structure of 

timing constraints. Chapter 3 (Section ‎3.5.2) gives details about the PA test sets. 

To summarise, the Boundary set (B) contains test cases that achieve transition 

coverage by considering the boundary values of timing constraints defined for 

each transition it covers. The Out-Boundary set (OB) contains test cases that 

achieve transition coverage by considering the out-boundary values of timing 

constraints defined for each transition it covers. The In-Boundary set (IB) contains 

test cases that achieve transition coverage by considering the in-boundary values 

of timing constraints defined for each transition it covers. The B+OB set 

combines the Boundary set (B) and Out-Boundary set (OB). The B+IB set 

combines the Boundary set (B) and In-Boundary set (IB). the OB+IB set 

combines the Out-Boundary set (OB) and In-Boundary set (IB). Finally, the 

B+OB+IB set combines the Boundary set (B), Out-Boundary set (OB) and In-

Boundary set (IB). 

5.4.3 Decision Criteria 

The factors and requirements affecting the decision process are classified into 

three criteria: the test adequacy, test cost and application domain. Each criterion is 

sub-categorised according to different sub-criteria.  

5.4.3.1 Test Adequacy 

Adequacy criteria are often used to rank the quality of a proposed test suite. 

Different types of adequacy criteria are discussed and used in the literature such as 

structural or fault coverage. The test adequacy considered in our decision model 

includes both fault and structural coverage (i.e., CRC), which have been discussed 

in previous chapters. The following present a concise summary of their concepts.   
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1. Fault Coverage (FC): Identifying how many faults can be detected by a test 

suite is known as fault coverage. It is always desirable to seek tests capable 

of detecting most potential faults in an SUT. Accordingly, fault coverage is 

one of the parameters essential in determining the power of produced test 

cases in detecting faults in an implementation and hence plays an important 

role in the decision-making process. The measurement of fault coverage is 

calculated by the application of Mutation Analysis Technique (MAT) 

(Lipton, 1971). MAT involves injecting well-defined faults into the SUT to 

identify the fault detection capability of a test suite. A set of timed as well 

as functional mutation operators were proposed in Chapter 4 (Section ‎4.5.2) 

to represent the possible faults that might be encountered. PA test sets can 

be thus prioritised according to their FC scores calculated by Equation 

(‎5.4). 

FC = 
                                      

                                                              
 ( 5.4) 

2. Clock Region Coverage (CRC): The aim of structural coverage is to 

measure to what extent test cases cover the specification model. Since any 

proposed fault model cannot guarantee to specify all faults, the use of 

structural coverage cannot be ignored. Chapter 3 (Section ‎3.4) introduced 

CRC as timed coverage criterion to select tests that are able to cover timing 

behaviour of an SUT. The CRC as a transition-based term is calculated for 

each test set with respect to each transition in the specification model 

according to Equation (‎5.5). To calculate the CRC for a test set with respect 

to the entire specification model, the transition-based CRC values 

calculated for all transitions within the model are averaged. 

CRC = 
                                                                            

                                                                       
 ( 5.5) 
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5.4.3.2 Test Cost 

Testing in general suffers from a high cost of test generation and executing 

process. Usually, the test cost can be determined by two factors, namely test 

length and test execution time.   

1. Test Traces Length (TTL): One of the most relevant factors affecting the 

test cost is the number or the length of test cases. It is desirable to find 

small test suites that detect many faults. As a result, the TTL is an essential 

factor in the decision-making framework. The length of test cases in each 

test set used for our AHP model is calculated according to Equation (‎4.3) 

mentioned in Chapter 4. 

2. Test Execution Time (TET): Test execution time determines how fast an 

SUT performs under a particular test set. Since the tester will always prefer 

a test set that needs the least time to execute and therefore least cost, 

calculating each set execution time for a particular SUT is important for 

making the right decision. PA was automated by the GeTeX tool providing 

a complete automation process for generating and executing real-time test-

cases on the SUT. As a result, the execution time for each test set is 

measured by GeTeX.  

5.4.3.3 Application Domain 

The testing prioritisation process should take the application domain into account. 

In our decision model, we consider three different sub-criteria. 

1. Importance: The more important the application, the more thorough testing 

it needs. For instance, a user might be slightly irritated if a coffee cup is 

delivered from a coffee machine in a longer time frame than expected. 

However, a user life could be under threat if a safety critical system shows 

faulty behaviour. It is thus essential to compare the test sets to find a more 

suitable one for more important applications.  
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2. Complexity: Some projects are simple, such as a light controller whereas 

some are more complex like air traffic control. Complexity is related to the 

technologies used, the number of lines of code or coupling between the 

classes or routines. As a result, it is essential to consider the application 

complexity in determining the most appropriate test set for more complex 

applications.  

3. Development Stage: A project could be at different stages when a testing 

project starts. An early stage can be when only a general idea and a 

specification model exist, whereas a mature stage can be when the 

application is almost ready. The project development stage should affect 

the‎tester’s‎choice as to which test set can be generated and implemented 

that mostly suit early-stage applications.  

5.4.4 Data Collection  

In order to rank the decision alternatives according to the criteria and sub-criteria 

and thus form the pair-wise comparison matrices, two methods were followed: a) 

heuristics by running the production-cell test bed and b) interviews. 

5.4.4.1 Production-Cell Test Bed 

Some decision sub-criteria (FC, CRC, TTL and TET) are quantifiable factors 

which cannot be ranked subjectively by humans without real data. As a result, 

executing the PA test sets on real-time systems is essential to enable collection of 

the data required for pair-wise comparing the PA test sets in terms of CRC, FC, 

TTL and TET. As a result, the production-cell test bed was used to collect the 

required data. To construct the pair-wise comparison matrices that rank the 

preference of the PA test sets according to FC, CRC , TTL and TET, PA test sets 

were generated and executed for each component of the production-cell (i.e., 

robot-in, robot-out, control panel and conveyor) using GeTeX.  
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Firstly, to pair-wise compare the PA test sets with respect to the FC sub-criterion, 

we produced all possible mutants by manually mutating the C code of each 

component of the production-cell according to the proposed mutation operators 

(Section ‎4.5.2). The test sets of PA were then executed against each mutant. A 

mutant is considered killed if the injected fault is detected by a test set. For each 

test set, we calculated the number of generated and killed mutants to obtain fault 

coverage (FC) for the control panel, conveyor, robot-in and robot-out, respectively 

according to Equation (‎5.4). The number of equivalent mutants has no effect on 

the data since they are the same for all test sets.  

To calculate the final value of the FC for each test set, we averaged the FC values 

obtained for all production-cell components. The pair-wise comparison matrix of 

the PA test sets with respect to the FC was then constructed by transforming the 

obtained FC values of each test set according to the nine-point scale as depicted in 

Table ‎5.4. The‎comparison‎matrix‎implies‎that‎‘B+OB+IB’‎and‎‘OB+IB’‎sets‎are‎

the most preferable sets in terms of fault detection capability.  

Test Sets B OB IB B+OB B+IB OB+IB B+OB+IB 

B 1 3.04 0.71 0.39 0.71 0.34 0.34 

OB 0.33 1 0.23 0.13 0.23 0.11 0.11 

IB 1.41 4.3 1 0.55 1 0.48 0.48 

B+OB 2.55 7.76 1.8 1 1.8 0.86 0.86 

B+IB 1.41 4.3 1 0.55 1 0.48 0.48 

OB+IB 2.96 9 2.09 1.16 2.09 1 1 

B+OB+IB 2.96 9 2.09 1.16 2.09 1 1 

Table  5.4: Pair-wise comparison matrix of alternatives with respect to FC 

Secondly, to pair-wise compare the test sets with respect to the CRC sub-criterion, 

we averaged the CRC values calculated for each test set according to the robot-in, 

robot-out, control panel and conveyor using Equation (‎5.5). The pair-wise 

comparison matrix of the PA test sets with respect to the CRC was then 

constructed by transforming the obtained CRC values of each test set according to 

the nine-point scale as depicted in Table ‎5.5.  
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Test Sets B OB IB B+OB B+IB OB+IB B+OB+IB 

B 1 1.73 0.23 0.82 0.2 0.22 0.19 

OB 0.58 1 0.13 0.47 0.12 0.13 0.11 

IB 4.34 7.52 1 3.56 0.87 0.95 0.84 

B+OB 1.22 2.11 0.28 1 0.24 0.27 0.23 

B+IB 4.98 8.63 1.15 4.09 1 1.09 0.96 

OB+IB 4.55 7.89 1.05 3.73 0.91 1 0.88 

B+OB+IB 5.2 9 1.2 4.26 1.04 1.14 1 

Table  5.5: Pair-wise comparison matrix of alternatives with respect to CRC 

The‎comparison‎matrix‎implies‎ that‎‘B+OB+IB’‎set‎ is‎ the‎most‎preferable‎set‎ in‎

terms of covering most of the clock regions. 

Thirdly, to pair-wise compare the test sets with respect to the TTL sub-criterion, 

TTL of each test set according to the robot-in, robot-out, control panel and 

conveyor was calculated using Equation (‎4.3). The TTL values for all production-

cell components were averaged and transformed to nine-point scale to construct 

the pair-wise comparison of the PA test sets with respect to the TTL sub-criteria 

as depicted in Table ‎5.6.‎The‎comparison‎matrix‎ shows‎ that‎ ‘B’‎ set‎ is‎ the‎most‎

preferable set in terms of the TTL as it generates the least number of test cases 

and hence the least length. 

Table  5.6: Pair-wise comparison matrix of alternatives with respect to TTL 

Lastly, to pair-wise compare the test sets with respect to the TET sub-criterion, the 

test cases of each test set were executed on a particular production-cell component 

and its execution times measured in seconds. The final TET of each test set was 

calculated by averaging the TET values calculated for all production-cell 

components. The TET values were then transformed to match the nine-point scale 

Test Sets B OB IB B+OB B+IB OB+IB B+OB+IB 

B 1 1.03 3.02 1.15 4.2 4.89 9 

OB 0.97 1 2.92 1.11 4.06 4.73 8.7 

IB 0.33 0.34 1 0.38 1.39 1.62 2.98 

B+OB 0.87 0.9 2.63 1 3.67 4.27 7.86 

B+IB 0.24 0.25 0.72 0.27 1 1.16 2.14 

OB+IB 0.2 0.21 0.62 0.23 0.86 1 1.84 

B+OB+IB 0.11 0.11 0.34 0.13 0.47 0.54 1 
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to construct the corresponding pair-wise comparison matrix as depicted in 

Table ‎5.7. The comparison matrix shows‎that‎‘B’‎set‎is‎the‎most‎preferable‎set‎in‎

terms of the TET as it has the shortest execution time compared with other sets.  

Test Sets B OB IB B+OB B+IB OB+IB B+OB+IB 

B 1 1.07 3.37 1.15 4.19 5.9 9 

OB 0.93 1 3.13 1.07 3.9 5.49 8.38 

IB 0.3 0.32 1 0.34 1.24 1.75 2.67 

B+OB 0.87 0.94 2.94 1 3.65 5.15 7.85 

B+IB 0.24 0.26 0.8 0.27 1 1.41 2.15 

OB+IB 0.17 0.18 0.57 0.19 0.71 1 1.52 

B+OB+IB 0.11 0.12 0.37 0.13 0.47 0.66 1 

Table  5.7: Pair-wise comparison matrix of alternatives with respect to TET 

5.4.4.2 Testing expert Interviews 

Other decision sub-criteria‎(‘complexity’,‎‘importance’‎and ‘development‎stage’) 

are‎qualitative‎factors‎that‎can‎be‎subject‎to‎testers’‎preferences‎and‎experiences.‎

Interviews are considered the most valuable method in collecting data 

qualitatively (Denzin and Lincoln, 1998; Yin, 1994). Interviews can collect and 

interpret‎ participants’‎ views,‎ thoughts,‎ ambitions‎ and‎ preferences‎ about‎ certain‎

actions or events (Walsham, 1995). As a result, interviews were used in this study 

to pair-wise compare the preferences of the PA test sets with respect to the 

decision sub-criteria (‘complexity’, ‘importance’ and ‘development‎ stage’). A 

panel of five testing experts (E1...E5) from the Department of Information 

Systems and Computing in Brunel University was chosen for the interviews. The 

selected experts had experience in managing industrial testing projects and/or an 

academic testing background. The interviewees were first given sufficient 

information including examples about how PA works. Three comparisons 

matrices for ranking the preference of the seven test sets with respect to 

‘complexity’, ‘importance’ and ‘development‎ stage’ were then structured and 

given to each expert. The verbal preferences were interpreted by those experts into 

numbers according to the nine-point scale. The interview sheet can be found in 

Appendix C. 
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Five‎comparison‎matrices‎for‎each‎‘importance’,‎ ‘complexity’‎and‎‘development‎

stage’‎ sub-criteria were ranked by five experts. The expert ratings were similar 

and acceptable as the Consistency Ratio (CR) calculated for each produced 

comparison matrix was less than 10%. Due to space limitations and to avoid 

repetitions, several representative matrices only are shown. Please refer to 

Appendix D for a complete set of tables. Table ‎5.8 depicts the pair-wise 

comparison matrix of alternatives with respect to the ‘importance’‎sub-criterion as 

a result of interviewing the testing expert E1. E1 believed that a complete test set 

(B+OB+IB) was the most preferable choice for testing more important 

applications as it is (9, 9, 9, 7, 7, 7) times preferable than the test sets (B, OB, IB, 

B+OB, B+IB, OB+IB), respectively. The CR calculated for this matrix according 

to Equation (‎5.2) was 5.8%. In other words, the ranks of interviewee E1 were 

acceptable since the CR was less than 10%.  

Test Sets B OB IB B+OB B+IB OB+IB B+OB+IB 

B 1 1 1 0.5 0.25 0.2 0.11 

OB 1 1 1 0.5 0.25 0.2 0.11 

IB 1 1 1 0.5 0.25 0.2 0.11 

B+OB 2 2 2 1 0.33 0.25 0.14 

B+IB 4 4 4 3 1 0.25 0.14 

OB+IB 5 5 5 4 4 1 0.14 

B+OB+IB 9 9 9 7 7 7 1 

Table  5.8: Pair-wise comparison matrix of alternatives with respect to the 

‘importance’ (E1) 

Table ‎5.9 depicts the pair-wise comparison matrix of alternatives with respect to 

the ‘complexity’‎ sub-criterion as a result of interviewing testing expert E4. 

Choosing‎the‎‘B+IB’‎set‎is‎seven‎times‎preferable‎than‎‘OB’‎set‎for‎testing‎more‎

complex applications according to E4. The CR calculated for this matrix was 

3.68%, which implies that the E4 ranking was acceptable according to Saaty. 

 

 



‎Chapter 5: A Multi-Criteria Decision Making Approach for Prioritising the Test 

Sets of the Priority-Based Approach 

 

 155 

 Test 

Sets 
B OB IB B+OB B+IB OB+IB B+OB+IB 

B 1 4 2 0.33 0.25 0.5 0.17 

OB 0.25 1 0.33 0.17 0.14 0.2 0.11 

IB 0.5 3 1 0.25 0.2 0.33 0.14 

B+OB 3 6 4 1 0.5 2 0.25 

B+IB 4 7 5 2 1 3 0.33 

OB+IB 2 5 3 0.5 0.33 1 0.2 

B+OB+IB 6 9 7 4 3 5 1 

Table  5.9: Pair-wise comparison matrix of alternatives with respect to the 

‘complexity’ (E4) 

5.4.5 Raised Power Matrices 

Obtaining all matrices that pair-wise compare the PA test sets according to all 

decision sub-criteria either by the test bed or the interviews, all obtained matrices 

were raised to a larger power to improve its accuracy according to (Saaty, 2008). 

Table ‎5.10 shows a matrix derived from the comparison matrix in Table ‎5.8 by 

squaring it twice. 

 Test Sets B OB IB B+OB B+IB OB+IB B+OB+IB 

B 411.06 411.06 411.06 254.2 149.31 87.49 31.89 

OB 411.06 411.06 411.06 254.2 149.31 87.49 31.89 

IB 411.06 411.06 411.06 254.2 149.31 87.49 31.89 

B+OB 677.63 677.63 677.63 419.97 248.12 144.9 52.44 

B+IB 1299.12 1299.12 1299.12 806.42 481.18 281.68 100.73 

OB+IB 2301.51 2301.51 2301.51 1420.86 846.77 504.47 180.95 

B+OB+IB 6362.09 6362.09 6362.09 3905.71 2286.46 1369.36 502.04 

Table  5.10: Squared matrix of alternatives with respect to the ‘importance’ 

(E1) 

5.4.6 Normalised Matrix and Eigenvector 

All obtained raised power comparison matrices were then normalised to calculate 

their eigenvectors. A representative normalised matrix of the matrix in Table ‎5.10 

and its eigenvector are depicted in Table ‎5.11. To normalise a matrix, each of its 
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elements was divided by the sum of its columns. For instance, the normalised 

value (0.03) in the cell (row: B, column: B) in Table ‎5.11 was obtained by 

dividing the value of the same cell (411.06) in the squared matrix (Table ‎5.10) by 

the sum of values of its column (11873.53). The eigenvector of the test sets can 

then be calculated by dividing the sum of each row of the normalised matrix by 

the number of its elements (i.e., calculating the average of each row values). 

Test Sets B OB IB B+OB B+IB OB+IB B+OB+IB Eigenvector 

B 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 

OB 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 

IB 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 

B+OB 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 

B+IB 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 

OB+IB 0.19 0.19 0.19 0.19 0.2 0.2 0.19 0.195 

B+OB+IB 0.54 0.54 0.54 0.53 0.53 0.53 0.54 0.535 

Table  5.11: Normalised matrix and eigenvector of alternatives with respect to 

the ‘importance’ (E1) 

According to each expert, the eigenvector of alternatives (i.e., test sets) was 

calculated in order to transform a) the relative weights of alternatives with respect 

to each decision sub-criterion to b) absolute weights. As a result, we obtained five 

alternative eigenvectors (i.e., ranks) from five interviewees. The eigenvectors of 

the test sets with respect to the sub-criteria (FC, CRC, TTL and TET) were the 

same since their comparison matrices were constructed once using the test bed. 

On the other hand, the eigenvectors of the test sets with respect to sub-criteria 

(‘importance’, ‘complexity’ and ‘development‎ stage’) were different since their 

comparison matrices were constructed five times according to the five experts. 

Using the geometric mean approach, the five ranking tables were integrated into 

one final table showing the weight of each test set according to each decision sub-

criterion (Table ‎5.12).  
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Criteria 
Sub 

Criteria 

Test Sets 

B OB IB B+OB B+IB OB+IB 
B+OB

+IB 

Test 

Adeq. 

FC 0.0793 0.0260 0.1119 0.202 0.1119 0.2344 0.2344 

CRC 0.0457 0.0264 0.1985 0.056 0.2279 0.2082 0.2376 

Test 

Cost 

TTL 0.2685 0.2595 0.0890 0.234 0.0639 0.0549 0.0298 

TET 0.2763 0.2571 0.0821 0.241 0.066 0.0468 0.0307 

App. 

Domain 

Imp. 0.0365 0.0588 0.0996 0.0819 0.2079 0.1781 0.3372 

Comp. 0.0365 0.0588 0.0996 0.0819 0.2079 0.1781 0.3372 

D.Stage 0.0365 0.0588 0.0996 0.0819 0.2079 0.1781 0.3372 

Table  5.12: Integrated ranking of alternatives with respect to all sub-criteria 

(geometric mean) 

The calculated weights of each test set as shown in Table ‎5.12 are independent 

from a testing project. In other words, these weights are the same for all testing 

projects and necessary for the next stage of the decision-making process for a 

particular testing project. 

5.5 Testing scenarios 

In this section, the use of the proposed AHP framework in two common real-time 

testing scenarios for validating the approach is described. Applying the proposed 

AHP framework on a particular testing project can assist the tester in choosing the 

best suited PA test set for it. Having the absolute weights (i.e., ranks) of the test 

sets with respect to all decision sub-criteria, the tester (decision-maker) has to 

pair-wise compare the preference of one decision criterion to another. Within each 

criterion, the sub-criteria also need to be pair-compared; this is to obtain the 

absolute weights (i.e., eigenvectors) for each decision criterion and sub-criterion 

with respect to the particular scenario using the same steps as previously 

mentioned. Calculating the weights of decision criteria and sub-criteria is 

dependent on the testing scenario. As a result, the tester should repeat the 

calculation of the decision criteria and sub-criteria weights for each testing project 

or scenario. To reduce the time the AHP calculations might take, the AHP process 

was automated using a tool (Alrouh, 2011). Obtaining the weights for decision 

alternatives, criteria and sub-criteria, we are able to obtain the decision outcomes. 
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5.5.1 Scenario 1: Control System 

This section gives an overview of a control system that was used as a testing 

scenario. The application of the proposed AHP framework in prioritising the PA 

test sets to suit the testing scenario is presented next.  

5.5.1.1 Scenario 1 Description 

A software company is assigned to develop a real-time system to control and 

monitor the temperature of freezer rooms in an industrial plant. The controller 

deals with several inputs such as room air temperature and a defrost temperature. 

It delivers outputs controlling several relays, a display unit showing room air 

temperature and LEDs indicating for any alarm or error. The compressor must 

remain on for minimum time duration and can restart after certain time as well. 

An alarm sounds if the temperature increases above a specified limit. Timing 

constraints within the specification are in the range of minutes.  

The testing activities start at a late stage of the system development. The budget is 

limited and it is required to deliver the system without any latency. The system at 

delivery should match all the requirements without any major deficiencies. 

5.5.1.2 AHP Application on Scenario 1 

To obtain the weights of decision criteria and sub-criteria, their comparison 

matrices were constructed and given to the experts. In a real application, the 

comparison matrices should be constructed by a tester (who tests the application). 

We chose the experts to construct the comparison matrices to assess the validity of 

the AHP framework. Due to space limitations, we randomly picked a 

representative matrix for a decision criterion and sub-criterion; the entire set of 

matrices can be found in Appendix D. For instance, Table ‎5.13 presents the pair-

wise comparison matrix of the main criteria with respect to the decision goal 

according‎to‎E2.‎E2‎assumed‎that‎ the‎‘test‎cost’‎should‎have‎the‎highest‎priority‎
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(i.e., 4‎ and‎ 6‎ times‎ preferable‎ than‎ ‘test‎ adequacy’‎ and‎ ‘application‎ domain’‎

respectively)‎ since‎ the‎ budget‎ is‎ limited.‎ ‘Test‎ adequacy’‎ is‎ marginally‎ more‎

important‎(3‎times‎preferable)‎than‎‘application‎domain’‎since‎the‎company‎has‎to‎

deliver the system without any major deficiencies. The CR calculated for this 

matrix was 4.76%, implying that the expert ranking is acceptable (less than 10%). 

The matrix was then raised to a higher power and normalised to calculate the 

eigenvector (weights). 

 
Test Adequacy Test Cost 

Application 

Domain 
Weights 

Test Adequacy 1 0.25 3 0.2176 

Test Cost 4 1 6 0.6909 

Application Domain 0.33 0.17 1 0.0915 

Table  5.13: Pair-wise comparison matrix and eigenvector of the main criteria 

with respect to the decision goal (E2, Scenario 1) 

Three pair-wise comparison metrics for comparing the decision sub-criteria with 

respect to the criteria they belong to were constructed according to each expert. 

First, FC and CRC sub-criteria were compared with respect to the ‘test‎adequacy’‎

criterion. Table ‎5.14 depicts the pair-wise comparison matrix of the sub-criteria 

with respect to the ‘test‎adequacy’‎criterion‎according‎to‎E2.‎Since‎the‎company‎

intends to deliver the application without any major deficiencies, E2 assumed that 

CRC was 5 times important than FC as CRC covers most of the application 

system. The consistency ratio for this matrix was 0 since it has only two 

dimensions. The matrix was then raised to a higher power and normalised to 

calculate the eigenvector (local weights).  

 FC CRC Local Weights 

FC 1 0.2 0.1667 

CRC 5 1 0.8333 

Table  5.14: Pair-wise comparison matrix and eigenvector of the sub-criteria 

with respect to the ‘test adequacy’ (E2, Scenario 1) 
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The‎term‎‘local‎weights’‎is‎used‎to‎refer‎to‎the weight of each sub-criterion with 

respect to its decision criterion, but without taking into account the criteria 

weights themselves. 

Second, TTL and TET sub-criteria were pair-wise compared with respect to the 

‘test‎ cost’‎ criterion.‎ Table ‎5.15 depicts the pair-wise comparison matrix of the 

sub-criteria with respect to the ‘test‎ cost’‎ criterion‎ according‎ to‎ E2.‎ Since‎ the‎

company intends to deliver the system very soon without any latency, E2 assumed 

that TET is three times more important than TTL. The consistency ratio for this 

matrix was 0 since it has only two dimensions. The matrix was then raised to a 

higher power and normalised to calculate the eigenvector (local weights).  

 TTL TET Local Weights 

TTL 1 0.333 0.2499 

TET 3 1 0.7501 

Table  5.15: Pair-wise comparison matrix and eigenvector of the sub-criteria 

with respect to the ‘test cost’ (E2, Scenario 1) 

Third,‎‘importance’,‎‘complexity’‎and‎‘development‎stage’‎sub-criteria were pair-

wise compared according to the ‘application‎domain’‎criterion.‎Table ‎5.16 depicts 

the pair-wise comparison matrix of the sub-criteria‎with‎respect‎to‎the‎‘application‎

domain’‎criterion‎according‎to‎E2.‎ 

 Importance Complexity 
Development 

Stage 

Local 

Weights 

Importance 1 1 4 0.4231 

Complexity 1 1 6 0.4844 

Development Stage 0.25 0.17 1 0.0925 

Table  5.16: Pair-wise comparison matrix and eigenvector of the sub-criteria 

with respect to the ‘application domain’ (E2, Scenario 1) 

Since the SUT is a control system with many parameters and connections 

involved in, E2 assumed that the tester should pay particular attention to the SUT 

‘complexity’ (i.e., 6 times more preferable‎than‎‘development‎stage’). Application 

‘importance’ is also more preferable than ‘development‎stage’. The CR calculated 
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for this matrix was 1.63% implying that the expert ranking is acceptable (less than 

10%). The matrix was then raised to a higher power and normalised to calculate 

the eigenvector (local weights).   

To obtain the global weight of each sub-criterion, the local weight of a sub-

criterion was multiplied by the weight of its criterion (Section ‎5.3.2, step 6). The 

calculation of sub-criteria local and global weights was repeated for each expert 

and then integrated using the geometric mean approach (Table ‎5.17).  

Criteria Weight Sub-Criteria 
Local 

Weight 

Global 

Weight 

Test 

Adequacy 
0.271090 

FC 0.4637 0.1257 

CRC 0.3309 0.0897 

Test Cost 0.398287 
TTL 0.2264 0.0902 

TET 0.7195 0.2866 

Application 

Domain 
0.154559 

Importance 0.2918 0.0451 

Complexity 0.2353 0.0364 

Development Stage 0.2652 0.0410 

Table  5.17: Integrated local and global weights for Scenario 1 (geometric 

mean) 

After having the generic alternative weights (Table ‎5.12) and scenario-based sub-

criteria global weights (Table ‎5.17), the final ranking results were synthesized by 

multiplying each alternative weight by the global weight of its sub-criterion. For 

instance,‎ the‎ weight‎ of‎ the‎ test‎ set‎ ‘B’‎ according‎ to‎ the‎ FC‎ sub-criterion is 

‘0.0793’‎as‎in‎Table ‎5.12.‎The‎global‎weight‎of‎the‎FC‎is‎‘0.1257’.‎As‎a‎result,‎the‎

final weight of the set B with respect to the FC considering Scenario 1 is 

(0.0793×0.1257=0.01). The resulting weights were added for each alternative to 

obtain its final priority as in shown in Table ‎5.18.  
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Criteria 
Sub 

Criteria 

Test Sets 

B OB IB B+OB B+IB 
OB+I

B 

B+OB

+IB 

Test 

Adeq. 

FC 0.0100 0.0033 0.0141 0.0254 0.0141 0.0295 0.0295 

CRC 0.0041 0.0024 0.0178 0.0050 0.0204 0.0187 0.0213 

Test 

Cost 

TTL 0.0242 0.0234 0.0080 0.0211 0.0058 0.0050 0.0027 

TET 0.0792 0.0737 0.0235 0.0691 0.0189 0.0134 0.0088 

App. 

Domain 

Import. 0.0020 0.0017 0.0018 0.0057 0.0080 0.0072 0.0164 

Comp. 0.0019 0.0018 0.0024 0.0032 0.0053 0.0051 0.0091 

D. 

Stage 
0.0020 0.0018 0.0026 0.0042 0.0065 0.0060 0.0138 

Total Priority 0.1234 0.1080 0.0702 0.1336 0.0790 0.0847 0.1015 

Ranking 2 3 7 1 6 5 4 

Table  5.18: Final ranking results (Scenario 1) 

The use of the AHP framework (Table ‎5.18)‎suggests‎that‎the‎‘B+OB’‎set‎is‎ the 

most preferable test set to use in testing the application defined in Scenario 1. 

Choosing this test set would cover the majority of test project requirements. For 

instance,‎this‎test‎set‎combines‎the‎fault‎detectability‎power‎of‎‘B’‎and‎‘OB’‎sets‎

where it can be executed in small time as it is a relatively small set. In addition, 

the AHP framework prioritises the possible test sets for a particular testing 

scenario.‎In‎this‎scenario,‎‘B+OB’,‎‘B’‎and‎‘OB’‎are‎at‎the‎top‎of‎the‎rankings‎and‎

add flexibility‎to‎the‎tester’s‎choice.  

Each expert was asked to rank the test sets (1 to 7) according to Scenario 1 where 

‘1’‎represents‎the‎most‎appropriate‎and‎‘7’‎the‎least‎appropriate.‎The‎expert ranks 

were then integrated into a final rank taking into account the most frequent rank 

for each test set. Average was not used to combine the rank values since the ranks 

are categorical. If two ranks had the same frequency values with respect to a 

particular test set, the frequency value that was closest to other ranks was chosen. 

For instance, with respect to the‎‘OB’‎test‎set,‎the‎frequency‎value‎of‎rank‎‘3’‎and‎

rank‎‘2’‎was ‘2’.‎Since‎the‎remaining‎rank‎‘6’‎is‎much‎closer‎to‎rank‎‘3’‎than‎rank‎

‘2’,‎ the rank‎ ‘3’‎ to‎ represent‎ the‎‘OB’‎set‎was‎chosen.‎Table ‎5.19 illustrates the 

expert ranks, the integrated ranks as well as the AHP ranks with respect to 

Scenario 1.  
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Test Sets B OB IB B+OB B+IB OB+IB B+OB+IB 

E1 2 3 6 1 5 7 4 

E2 5 2 3 1 7 6 4 

E3 5 6 7 1 3 4 2 

E4 1 2 6 3 5 7 4 

E5 2 3 6 1 5 7 4 

Integrated 

Ranks 
2 3 6 1 5 7 4 

AHP Ranks 2 3 7 1 6 5 4 

Table  5.19: AHP ranking VS experts’ ranking outcomes (Scenario 1) 

Comparing the experts’ integrated ranks with those of the AHP framework, we 

found that they achieved a high degree of similarity. Table ‎5.20 shows that 

Kendall’s‎and‎Spearman’s‎correlation‎coefficients‎were significant at the 1% level 

which would demonstrate the validity of the AHP framework. 

Type Variables 
Expert 

Ranks 

AHP 

Ranks 

Kendall's tau_b 
Expert Ranks 1.000 .810

**
 

AHP Ranks .810
**

 1.000 

Spearman's rho 
Expert Ranks 1.000 .893

**
 

AHP Rank .893
**

 1.000 

** Correlation is significant at the 0.01 level. 

Table  5.20: Kendall’s and Spearman’s correlation coefficients between the 

experts’ integrated ranks and AHP ranks (Scenario 1) 

5.5.2 Scenario 2: Medical System 

This section gives an overview of a medical system that was used as a testing 

scenario. The application of proposed AHP framework in prioritising the PA test 

sets to suit the testing scenario is presented next.  

5.5.2.1 Scenario 2 Description 

A software company is assigned to develop a medical system that provides real-

time monitor to the heart rate, blood pressure and blood oxygen. The system 
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accepts symptoms and makes diagnosis of infections. The project design and 

development consumed the majority of the time assigned to the project which 

caused the testing activities to start late. The deadline is approaching, but with a 

possibility of an extension. 

5.5.2.2 AHP Application on Scenario 2 

The proposed AHP framework was applied on Scenario 2. Similar to that for 

Scenario 1, several matrices were constructed and given to the experts to pair-wise 

compare the preferences of the criteria and sub-criteria. We randomly picked a 

representative matrix for a decision criterion and sub-criterion to be shown; the 

remaining matrices can be found in Appendix D. For instance, Table ‎5.21 presents 

the pair-wise comparison matrix of the main criteria with respect to the decision 

goal according to E3. E3 assumed that‎the‎‘test‎adequacy’‎should‎have‎the‎highest‎

priority since the application is safety-critical and should be thoroughly tested. In 

addition,‎‘application‎domain’‎is‎marginally‎more‎important‎than‎‘test‎cost’ (i.e., 2 

times‎ preferable‎ than‎ ‘test‎ cost’).‎The‎CR‎calculated‎ for‎ this‎matrix‎was‎ 2.12% 

implying that the expert ranking is acceptable (less than 10%). The matrix was 

then raised to a higher power and normalised to calculate the eigenvector 

(weights). 

 
Test Adequacy Test Cost 

Application 

Domain 
Weights 

Test Adequacy 1 5 3 0.6833 

Test Cost 0.2 1 6 0.1169 

Application Domain 0.25 2 1 0.1998 

Table  5.21: Pair-wise comparison matrix and eigenvector of the main criteria 

with respect to the decision goal (E3, Scenario 2) 

Three pair-wise comparison metrics for comparing the decision sub-criteria with 

respect to the criteria they belong to were constructed according to each expert. 

First, FC and CRC sub-criteria were compared with respect to the ‘test‎adequacy’‎

criterion. Table ‎5.22 depicts the pair-wise comparison matrix of the sub-criteria 
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with respect to the ‘test‎ adequacy’‎ criterion according to E3. E3 assumed that 

CRC was equally important to FC, since detecting faults and thoroughly testing 

the application were both necessary. The consistency ratio for this matrix was 0 

since it has only two dimensions. The matrix was then raised to a higher power 

and normalised to calculate the eigenvector (local weights).  

 FC CRC Local Weights 

FC 1 1 0.5 

CRC 1 1 0.5 

Table  5.22: Pair-wise comparison matrix and eigenvector of the sub-criteria 

with respect to the ‘test adequacy’ (E3, Scenario 2) 

Second, Table ‎5.23 depicts the pair-wise comparison matrix of the sub-criteria 

with respect to the ‘test‎cost’‎criterion‎according‎to‎E3.‎E3 assumed that TTL and 

TET have almost similar effect on the decision process but TTL is slightly more 

preferable. The consistency ratio for this matrix was ‘0’‎ since‎ it‎ has‎ only two 

dimensions. The matrix was then raised and normalised to calculate the local 

weights.  

 TTL TET Local Weights 

TTL 1 2 0.6667 

TET 0.5 1 0.3333 

Table  5.23: Pair-wise comparison matrix and eigenvector of the sub-criteria 

with respect to the ‘test cost’ (E3, Scenario 2) 

Third, Table ‎5.24 depicts the pair-wise comparison matrix of the sub-criteria with 

respect to the‎‘application‎domain’‎criterion‎according‎to‎E3.‎E3 assumed that the 

tester should pay a particular attention to the‎ ‘importance’‎ criterion‎ since‎ it‎ is‎ a‎

safety-critical application.‎ The‎ application‎ ‘importance’ is thus more preferable 

than the‎ ‘development‎ stage’. The CR calculated for this matrix was 1.55% 

implying that the expert ranking is acceptable (less than 10%). The matrix was 

then raised to a higher power and normalised to calculate the eigenvector (local 

weights).   
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 Importance Complexity 
Development 

Stage 

Local 

Weights 

Importance 1 4 3 0.6251 

Complexity 0.25 1 0.5 0.1365 

Development Stage 0.33 2 1 0.2384 

Table  5.24: Pair-wise comparison matrix and eigenvector of the sub-criteria 

with respect to the ‘application domain’ (E3, Scenario 2) 

The global weight of each sub-criterion was obtained by multiplying the local 

weight of a sub-criterion by the weight of its criterion. The calculation of sub-

criteria local and global weights was repeated for each expert and then integrated 

using the geometric mean approach (Table ‎5.25).  

Criteria Weight Sub-Criteria 
Local 

Weight 

Global 

Weight 

Test 

Adequacy 
0.423431 

FC 0.4637 0.1257 

CRC 0.3309 0.0897 

Test Cost 0.160584 
TTL 0.2264 0.0902 

TET 0.7195 0.2866 

Application 

Domain 
0.240414 

Importance 0.2918 0.0451 

Complexity 0.2353 0.0364 

Development Stage 0.2652 0.0410 

Table  5.25: Integrated local and global weights for Scenario 2 (geometric 

mean) 

After generating the generic alternative weights (Table ‎5.12) and scenario-based 

sub-criteria global weights (Table ‎5.25), the final ranking results were synthesized 

by multiplying each alternative weight by the global weight of its sub-criterion. 

The resulting weights were added for each alternative to obtain its final priority as 

shown in Table ‎5.26.   

The‎ use‎ of‎ AHP‎ framework‎ suggests‎ that‎ the‎ ‘B+OB+IB’‎ set‎ is‎ the most 

preferable test set to use in testing the application defined in Scenario 2 since the 

system under test is safety-critical. Any fault or missed behaviour can have a 

disastrous effect on the patient life. The cost can be ignored with respect to the 

safety in such applications. 
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Criteria 
Sub 

Criteria 

Test Sets 

B OB IB B+OB B+IB 
OB+I

B 

B+OB

+IB 

Test 

Adeq. 

FC 0.0183 0.0060 0.0259 0.0467 0.0259 0.0542 0.0542 

CRC 0.0072 0.0041 0.0311 0.0088 0.0357 0.0326 0.0372 

Test 

Cost 

TTL 0.0138 0.0134 0.0046 0.0121 0.0033 0.0028 0.0015 

TET 0.0254 0.0236 0.0075 0.0221 0.0061 0.0043 0.0028 

App. 

Domain 

Import. 0.0033 0.0028 0.0030 0.0095 0.0133 0.0119 0.0273 

Comp. 0.0032 0.0029 0.0040 0.0053 0.0086 0.0083 0.0149 

D. 

Stage 
0.0024 0.0022 0.0032 0.0051 0.0080 0.0073 0.0169 

Total Priority 0.0736 0.0550 0.0792 0.1095 0.1009 0.1216 0.1549 

Ranking 6 7 5 3 4 2 1 

Table  5.26: Final ranking results (Scenario 2) 

Similar to Scenario 1, each expert was asked to rank the test sets (1 to 7) for 

Scenario 2. The expert ranks were then integrated into a final rank taking into 

account the most frequent rank occurring for each test set. Table ‎5.27 illustrates 

the expert ranks, the integrated ranks as well as the AHP ranks with respect to 

Scenario 2.  

Test Sets B OB IB B+OB B+IB OB+IB B+OB+IB 

E1 7 6 5 4 3 2 1 

E2 5 7 6 4 3 2 1 

E3 5 6 7 2 3 4 1 

E4 5 7 6 3 2 4 1 

E5 5 7 6 4 3 2 1 

Integrated 

Ranks 
5 7 6 4 3 2 1 

AHP Ranks 6 7 5 3 4 2 1 

Table  5.27: AHP ranking VS experts’ ranking outcomes (Scenario 2) 

Comparing the experts’ integrated ranks with those of the AHP framework, we 

found that they again achieved a high degree of match. Table ‎5.28 shows that 

Kendall’s‎and‎Spearman’s‎correlation coefficients were significant at the 1% level 

which would again demonstrate the applicability of the AHP framework with 

different testing scenarios.  
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Type Variables 
Expert 

Ranks 

AHP 

Ranks 

Kendall's tau_b 
Expert Ranks 1.000 .810

**
 

AHP Ranks .810
**

 1.000 

Spearman's rho 
Expert Ranks 1.000 .929

**
 

AHP Rank .929
**

 1.000 

** Correlation is significant at the 0.01 level. 

Table  5.28: Kendall’s and Spearman’s correlation coefficients between the 

experts’ integrated ranks and AHP ranks (Scenario 2) 

5.6 Summary 

PA is a real-time test generation method that generates three different test sets. A 

systematic decision-making framework might help an organisation to choose the 

best suited test set to be deployed for a certain application. This chapter presented 

a novel Analytical Hierarchy Process (AHP) as decision-making framework 

which provides testers with a systematic and manageable approach through which 

they can prioritise the available testing sets that best fulfil their testing 

requirements. The development of the AHP framework was based on the data 

collected by the production-cell test bed and interviews with a group of testing 

experts. Since this study can be considered the first which applies AHP in TA-

based testing, the results cannot be validated through a comparison study. As a 

result, the AHP framework was validated using two different scenarios 

highlighting different real-time systems under test with different testing 

requirements. The framework decision outcomes match to a high degree with the 

expert panel ranking outcomes demonstrating that the AHP framework is sound 

and valid. The framework is also supported by a tool to automate all the 

calculations required. As a result, the tester needs only the pair-wise comparison 

matrices for decision criteria and sub-criteria and the tool will give the final 

ranking immediately.  
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Chapter 6:  Conclusions 

 

6.1 Topic Overview 

Real-time Embedded Systems (RTESs) have an increasing role in controlling the IT 

that we use on a day-to-day basis. RTES behaviour is not based solely on the 

interactions it might have with its surrounding environment, but also on timing 

requirements it induces. As a result, ensuring that an RTES behaves correctly is 

non-trivial, especially after adding time as a new dimension to the complexity of the 

testing process. Testing an RTES implementation to ensure that it is as fault-free as 

possible before its deployment is therefore important. Model-Based Testing (MBT), 

based on comparing SUT behaviour with a reference specification model aims to 

minimise cost through early capture of system behaviour and the automation of test 

case generation, execution and evaluation. A Timed Automata (TA) formalism is 

one of the most frequently used language to model RTESs due to its ability to 

express its real-time behaviour. Testing from TA has received increased attention in 

recent research where several TA-based testing algorithms have been proposed. 

However, the effort expended, the number of test cases generated and the test 

adequacy criteria that the testing approaches are based on are still questionable, 

especially in the absence of empirical validation based on defined assessment 

criteria. As a result, it is important to develop a valid and flexible approach that can 

handle these issues.  

In this chapter, Section ‎6.2 summarises the research findings of each chapter. 

Section ‎6.3 explains how the research objectives are achieved. A summary of the 

Thesis contributions is then presented in Section ‎6.4. Finally, Section ‎6.5 identifies 

the research limitations and points to future research ideas.  
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6.2 Research Summary 

The aim of the research presented in this Thesis was to develop, validate and 

automate a flexible TA-based testing approach based on a timed selection criterion 

for testing real-time embedded systems. 

Chapter 1 gave an overview of the area under research and highlighted the 

motivation of this research. That emphasised the need for developing a valid TA 

testing approach capable of testing RTESs based on a timed adequacy criterion. A 

set of research objectives were identified to fulfil the research aim.  

Chapter 2 reviewed the related literature that addressed testing RTESs. The 

concept of testing was defined and explained by addressing some topics related to 

the selection criteria, testing types and the combination of formal methods. To test 

RTESs, the formal language to be used for building the specification models 

should be capable of capturing continuous as well as discrete behaviour of the 

SUT. As a result, TA has been adopted for testing RTESs. Several studies were 

reviewed in this chapter. The majority were based on un-timed selection criteria 

for generating timed test cases. In addition, only a few have been supported by 

tools and empirically studied.  

Chapter 3 set the rules and mathematical equations of adopting the clock region 

concept as a timed adequacy criterion for selecting test cases. Clock region 

coverage was the basis for proposing PA as a new component-based offline test 

case generation method for RTESs modelled as UTA. PA was based on dividing 

the generated test cases into three sets of priorities (boundary, out-boundary, in-

boundary) to enhance the flexibility of the approach by allowing the tester to 

choose the appropriate set according to the testing environment. To validate PA, 

the chapter proposed a set of timed and functional mutation operators to enable 

the use of SMA in TA context. The validation was based on comparing the 

mutation score achieved by PA on three TA case studies with four other timed 

testing approaches based on TA. Combining the mutation scores achieved by PA 

through the used case studies, we showed that our PA out-performed other 
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approaches by achieving a higher score with relatively few generated tests. The 

validation also revealed some interesting results especially for validating other 

approaches. For instance, the SCT failed to detect all state transfer faults in spite 

of the state identification technique equipped used. COVER failed to detect all 

output or input faults in spite of the coverage criterion it follows.  

Chapter 4 automated the generation and the execution of test cases according to 

PA and tioco theory by developing the GeTeX tool. GeTeX is an offline tool that 

targets testing timing behaviour of RTESs according to a timed selection criterion. 

The validity of GeTeX was empirically demonstrated by a light controller 

prototype. The tool generated and executed the test cases in a short time without 

any compilation errors. To execute the PA tests, this chapter introduced an 

empirical test bed using a production-cell case study and assessment criteria to 

validate the PA testing approach compared with two TA-based testing approaches 

(SM and BCT). The testing approaches were assessed and compared based on the 

timed structural adequacy, fault adequacy, test length and a factor that combined 

them all. Structural coverage was based on CRC calculated using a proposed 

equation. FC was measured by calculating the mutation score of each approach 

according to MAT. To enable this, a set of timed and functional mutation 

operators on the implementation level was presented. An assessment factor (AF) 

which considered fault coverage and clock coverage with respect the length of 

generated test cases was also presented. The experiments confirmed the 

superiority of PA over the other tested approaches. The overall assessment factor 

showed that structural and fault coverage scores of PA with respect to the length 

of its tests were better than those of SM and BCT. Finally, problems encountered 

during conducting the empirical study were highlighted to direct future 

experiments.  

Chapter 5 highlighted the necessity of a formal decision-making approach for 

prioritising the PA test sets to be deployed for a certain application. The chapter 

then developed a multi-criteria decision-making framework based on the 

Analytical Hierarchy Process (AHP). The development of the AHP framework 
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was based on the data collected by the production-cell test bed and interviews 

with a group of testing experts. The AHP framework was validated using two 

different testing scenarios addressing different real-time systems with different 

testing requirements. The framework decision outcomes supported with an 

automation tool showed promising results. The decision outcomes of the AHP 

framework were significantly correlated to those of testing experts which 

demonstrated the soundness and validity of the framework. Tool support increased 

the applicability of the AHP framework in which a tester needs only the pair-wise 

comparison matrices for decision criteria and sub-criteria. The decision outcomes 

could be then obtained directly.  

6.3 Meeting the Research Objectives 

The main aim of the Thesis was to provide software engineering community with 

a sound, valid and flexible testing approach for testing RTESs considering its 

environment. This section shows how this research successfully achieved its 

objectives.  

Objective 1: ‘To introduce a timed adequacy criterion for selecting timed test 

cases’. The first objective was achieved in Chapter 3 by adopting CRC as a timed 

adequacy criterion. The proposal of CRC was supported by all necessary 

equations and rules.  

Objective 2: ‘To develop a timed testing approach based on the TA formalism 

and the proposed timed selection criterion for generating test cases divided into 

different test sets’. This objective was achieved in Chapter 3 by developing PA as 

a TA-based testing approach. PA was based on dividing the generated test cases 

into three sets of priorities (boundary, out-boundary, in-boundary) to enhance the 

flexibility of the approach by allowing the tester to choose the appropriate set 

according to the testing environment. 

Objective 3: ‘To develop a tool for automating the generation and execution of 

timed test cases’. This objective was achieved in Chapter 4 by developing and 
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validating the GeTeX tool that deploys PA and the tioco conformance relation. 

GeTeX is an offline tool that targets testing timing behaviour of RTESs. The 

validity of GeTeX was empirically shown by a light controller prototype. 

Objective 4: ‘To evaluate the proposed timed testing approach at the 

specification and implementation level compared with a set of similar testing 

approaches based on proposed assessment criteria’. This objective was achieved 

in Chapter 3 by validating PA in comparison with four TA-based approaches in 

terms of fault coverage. To enable this, TA-based mutation operators were 

proposed. This objective was also met in Chapter 4 by executing the generated 

tests from three TA-based testing approaches including ours on an industrial-

strength test bed. Test assessment criteria were introduced to be able to compare 

the performance of the testing approaches under study. 

Objective 5: ‘To develop and validate a decision-making framework for the 

proposed timed testing approach to formalise the selection of the best test set 

suiting a testing project’. This objective was achieved in Chapter 5 by developing 

and validating the AHP framework to enable the tester prioritising the available 

PA test sets. The AHP framework was validated using two different testing 

scenarios addressing different real-time systems with different testing 

requirements.  

6.4 Summary of Research Contributions 

The main research contributions are summarised in the following subsections.   

6.4.1 Timed Adequacy Criterion (CRC)  

Several testing approaches have been proposed for testing real-time systems from 

TA specifications. However, the tests were generated based on either a random 

selection or un-timed coverage criterion to avoid covering the entire infinite 

continuous SUT behaviour. Other research abstracted the continuous behaviour 

(time) by converting the timed specification to an un-timed one. Timing behaviour 
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of an SUT will not be accordingly covered. It is thus essential to consider a timed 

coverage criterion for testing real-time systems. The lack of a mature timed 

adequacy criterion directed our research to adopt one. 

The concept of clock region was proposed to replace the infinite timed state space 

by a finite region automaton. As a result, we adopted the clock region as a timed 

adequacy criterion by setting rules and mathematical equations. Feasible clock 

regions were generated for each transition within the specification model 

considering its clock guards, invariants and type (i.e., input or output). The 

generated test suite should cover all clock regions. 

The proposal of clock region as a timed adequacy criterion differs from other 

works that used the clock region concept as timed abstraction technique in several 

ways. First, the Region Automaton (RA) in the literature was created at the model 

level where infeasible regions were not identified. The number of clock regions 

calculated was enormous for a small model. Second, GA, the source of generating 

test cases, was formed by sampling the RA at a fixed rate. This leads to the 

selection of more than one clock value (i.e., time delay) to represent each clock 

region. As a result, the number of generated test cases was very large. In this 

study, a set of rules was proposed to create the smallest set of feasible clock 

regions and to enhance the use of clock regions as a timed adequacy criterion by 

which test cases can be selected. 

6.4.2 Priority-based TA-based Testing Approach (PA) 

PA was proposed for generating timed test cases and differs from other proposed 

TA-based testing approaches in several ways. First, PA is based on a timed 

selection criterion (CRC). Second, the compact nature of the PA search algorithm 

enables covering as many transitions as possible in one single test trace. Second, PA 

takes the testing environment and a tester’s opinion into account by dividing the 

generated test cases into three sets. The‎ test‎ sets‎ are‎ called‎ ‘priorities’ as the 

priority of choosing a particular test set or a combination of them is likely to be 
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different according to the testing environment specified by the criticality of an 

SUT, the allowable time and the budget specified for the testing process. Each test 

set (priority) is named and constructed according to the structure of timing 

constraints.  

6.4.3 Specification Mutation Analysis  

Any proposed testing approach has to be validated. Assessing a testing approach by 

measuring its fault coverage is considered one of the widely used methods. Fault 

coverage needs to be facilitated by a fault model identifying the possible faults that 

might be encountered. The use of fault coverage as an assessment criterion can be 

more effective if it is used in a controlled way by the application of Specification 

Mutation Analysis technique (SMA). Since no study has addressed the application 

of SMA on TA to our knowledge, we proposed well-suited mutation operators for 

TA. The proposed TA mutation operators include previously formalised fault 

models in the literature. 

PA was validated in terms of SMA in comparison with four other well-known 

TA-based testing approaches. This study could be considered the first (to our 

knowledge) that compared the performance of different approaches. Due to the 

absence of tool support, test cases of each approach were manually generated 

from three TA specifications. Comparing fault coverage, PA performed better 

than others. The study was also able to focus on each approach and point to its 

pros and cons.  

6.4.4 The application of TA-based Approaches on an 

industrial-strength Test Bed     

Some proposed approaches in the literature lack automation tool support. Using 

such approaches requires a deep understanding of their mechanism and significant 

manual effort in generating and executing test cases. Others were partially 

automated. Their tools were responsible for only automating the generation of test 
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cases. In other words, the execution of test cases generated by such approaches 

requires other sets of tools.  

This research attempted to consider such problems by developing an automating 

tool for PA called GeTeX. GeTeX automates the process of test cases generation 

and‎ execution‎ based‎ on‎ the‎ ‘tioco’‎ conformance‎ theory.‎ In‎ its‎ current‎ version,‎

GeTeX was designed to support CAN applications.  

To our knowledge, there has yet to be a study which compares the performance of 

similar approaches on real applications. This research used a production-cell as an 

industrial-strength test bed. Well-identified assessment criteria by which the 

performance of testing approaches can be compared were also presented. In 

summary, our aim was to identify a testing approach capable of detecting as many 

faults as possible and covering as many clock regions as possible with minimum 

length of test cases. The study at the implementation level confirmed results 

obtained at the specification level. PA outperformed other approaches.    

6.4.5 A multi-Criteria Decision Making Framework 

PA is a flexible testing approach that enables the tester to choose any set of 

generated test cases according to the testing environment. According to that 

choice, PA establishes a trade-off between increasing confidence in SUT 

correctness and limited testing resources such as time, effort and cost. However, 

the decision that the tester has to make depends on their intention. Different 

testers will make different decisions for the same testing environment. A formal 

decision framework in which all testing requirements and factors (i.e., decision 

criteria) affecting the testing process are independently categorised, weighted and 

analysed then becomes viable. 

This research developed a decision framework based on AHP. The AHP decision 

model‎considered‎criteria‎that‎might‎affect‎a‎tester’s‎decision‎in‎selecting‎the‎best‎

PA test set for a particular testing project. The applicability of the framework was 

viable for two reasons. First, the framework was provided with an automation tool 
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to speed up the decision-making process and ensure the tester avoided time-

consuming calculations. Second, the AHP framework was validated using two 

testing scenarios. The decision outcomes were compared with those of testing 

experts. The results showed a significant correlation between the framework 

outcomes and those of the experts. 

6.5 Research Limitations and Future Work 

This section identifies a set of research limitations encountered and suggests a set 

of complementary future work to address them.  

6.5.1 The Class of TA Specification Model 

One limitation of this study is the use of a restricted class of TA (i.e., 

deterministic observable model without data) for generating timed test cases. Such 

a class limits expressiveness and complicates the modelling process. The choice 

of such a restricted class in this study was so as to prove the applicability of timed 

selection criterion by isolating other factors that might be encountered. Non-

determinism includes internal actions which raise a problem when applying 

adequacy criteria. It is not known how a non-deterministic SUT would react to an 

input or which transition is selected by such a reaction. Such a problem has been 

addressed in the literature by either using online testing or to try and make the 

specification model deterministic. Moreover, using data in any specification 

model complicates the process of generating test cases. Combining data with time 

makes it even more difficult.  

Future research trends would be necessary to address this limitation by answering 

the following question. Can CRC be used with a more general class of TA (i.e., 

non-deterministic, partially observable with data)? This question could be 

addressed taking into account the following points. To solve non-determinism, we 

aim to use other research findings such as those by (Krichen and Tripakis, 2009) 

in dealing with the problem and then applying CRC. Moreover, to solve the data 
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problem, we aim to divide the specification model into two - control and data 

parts. In the control part, we apply our approach proposed here to cover timing 

behaviour. Other approaches would be used to generate test cases that cover the 

data aspect. A strategy that can combine test cases form two parts should be 

accordingly proposed.   

6.5.2 Timed Adequacy Criterion 

The proposed timed adequacy criterion in this research is based on the concept of 

clock regions. Using clock regions as a timed adequacy criterion could be 

criticised due to its relation with the number of clocks and their upper bounds. In 

other words, in the case of any model using many clocks or clocks with high 

upper bounds, the number of regions rapidly increases. The research addressed a 

set of rules to control the rapid growth of the number of regions and avoided using 

many clocks.  

Other partitioning criteria exist in the literature such as zones. The creation of 

zones is still affected by the number of clocks but only to a certain limit. For 

future work, it is thus advantageous to study the possibility of using a coarser 

partitioning relation as a source of timed adequacy criterion. The results should 

then be compared with those of CRC to determine if the fault detection capability 

is affected.  

6.5.3 Case Studies  

This research succeeded in comparing the performance of PA with other testing 

approaches based on specification case studies and an industrial-strength test bed. 

However, the relatively small size of case studies used can be considered a 

limitation. Choosing small specification models for the SMA application was 

justified due to the manual generation of test cases.  

In future work, we aim to use more industrial case studies by which more timing 

faults can be found and categorised. Moreover, comparing the results of SMA 
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with those of MAT on the implementation level might guide development of a 

prediction model that estimates fault coverage of a testing approach at the 

implementation level by measuring it at the specification level. We plan to 

consider more recent testing approaches in our future comparison studies.  

6.5.4 More insights for the Multi-Criteria Decision 

Making Approach 

The AHP framework is subject to several improvements. We intend to study the 

possibility of making the AHP model more general by including other decision 

criteria or sub-criteria. In addition, we plan to increase the accuracy of the AHP 

framework by increasing the volume of the experimental data as well as the 

number of experts. Finally, the application of the AHP framework is not restricted 

to the PA approach. As a result, we intend to apply the AHP framework on 

various timed model-based testing approaches to choose that most suited one for a 

testing project.     

Testing real-time embedded systems is a promising research topic and much still 

needs to be done. This study allowed me to learn from both academic and 

industrial worlds. Meeting academics has influenced my experience and helped 

me to organise and synthesise my ideas. Moreover, the most interesting part of 

any research is finding suitable solutions to upcoming problems which are not 

necessarily related to the research topic. Lastly, but not least, I would actively 

continue to research in this area, since it is both interesting and important. 
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Appendix A 

Timed Specification Mutation Operators 

This Appendix presents detailed timed mutation operators (RTC, WTC and STC) 

that have been used for SMA application on TA specification models.  

Restricting Timing Constraint (RTC) 

Clock Guard Mutated Clock Guards 

x < a 

x < a – ε 

x‎≤‎a‎– ε 

ε‎<‎x‎<‎a 

ε‎≤‎x‎<‎a 

ε1‎<‎x‎<‎a‎- ε2 

ε1‎≤‎x‎<‎a‎- ε2 

ε1‎<‎x‎≤‎a‎- ε2 

ε1‎≤‎x‎≤‎a‎- ε2 

x‎≤‎a 

x < a 

x‎≤‎a‎- ε 

x < a - ε 

ε‎≤‎x‎≤‎a 

ε‎<‎x‎≤‎a 

ε‎≤‎x‎<‎a 

ε‎<‎x‎<‎a 

ε1‎≤‎x‎≤‎a‎- ε2 

ε1‎<‎x‎≤‎a‎- ε2 

ε1‎≤‎x‎<‎a‎- ε2 

ε1‎<‎x‎<‎a‎- ε2 

x > a 

x‎>‎a‎+‎ε 

x‎≥‎a‎+‎ε 

a‎<‎x‎<‎ε 

a‎<‎x‎≤‎ε 

a‎+‎ε1‎<‎x‎<‎ε2 

a‎+‎ε1‎<‎x‎≤‎ε2 

 

a‎+‎ε1‎≤‎x‎<‎ε2 

 

a‎+‎ε1‎≤‎x‎≤‎ε2 
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Restricting Timing Constraint (RTC) 

Clock Guard Mutated Clock Guards 

x‎≥‎a 

x > a 

x‎≥‎a‎+‎ε 

x‎>‎a‎+‎ε 

a‎≤‎x‎<‎ε 

a‎≤‎x‎≤‎ε 

a‎<‎x‎<‎ε 

a‎<‎x‎≤‎ε 

a‎+‎ε1‎≤‎x‎≤‎ε2 

a‎+‎ε1‎<‎x‎≤‎ε2 

a‎+‎ε1‎≤‎x‎<‎ε2 

a‎+‎ε1‎<‎x‎<‎ε2 

a < x < b  

a‎+‎ε‎<‎x‎<‎b 

a‎+‎ε‎‎≤‎x‎<‎b 

a < x < b - ε 

a‎<‎x‎≤‎b‎- ε 

a‎+‎ε‎<‎x‎<‎b‎- ε 

a‎+‎ε‎≤‎x‎<‎b‎- ε 

a‎+‎ε‎<‎x‎≤‎b‎- ε 

a‎+‎ε‎≤‎x‎≤‎b‎- ε 

a‎≤‎x‎<‎b 

a < x < b 

a‎+‎ε‎<‎x‎<‎b 

a‎+‎ε‎‎≤‎x‎<‎b 

a‎≤‎x‎<‎b‎- ε 

a‎≤‎x‎≤ b - ε 

a < x < b - ε 

a‎<‎x‎≤‎b‎- ε 

a‎+‎ε‎<‎x‎<‎b‎- ε 

a‎+‎ε‎≤‎x‎<‎b‎- ε 

a‎+‎ε‎<‎x‎≤‎b‎- ε 

a‎+‎ε‎≤‎x‎≤‎b‎- ε 

a‎<‎x‎≤‎b 

a < x < b 

a‎+‎ε‎<‎x‎<‎b 

a +‎ε ≤‎x‎<‎b 

a < x < b - ε 

 

a‎<‎x‎≤‎b‎- ε 

a‎+‎ε‎<‎x‎<‎b‎- ε 

 

a‎+‎ε‎≤‎x‎<‎b‎- ε 

a‎+‎ε‎<‎x‎≤‎b‎- ε 

a‎+‎ε‎≤‎x‎≤‎b‎- ε 
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Restricting Timing Constraint (RTC) 

Clock Guard Mutated Clock Guards 

a‎≤‎x‎≤‎b 

a‎<‎x‎≤‎b 

a‎≤‎x‎<‎b 

a < x < b 

a‎+‎ε‎<‎x‎≤‎b 

a‎+‎ε ≤‎x‎≤‎b 

a‎+‎ε‎<‎x‎<‎b 

a‎+‎ε ≤‎x‎<‎b 

a‎≤‎x‎<‎b‎- ε 

a‎≤‎x‎≤‎b‎- ε 

a < x < b - ε 

a‎<‎x‎≤‎b‎- ε 

a‎+‎ε‎<‎x‎<‎b‎- ε 

a‎+‎ε‎≤‎x‎<‎b‎- ε 

a‎+‎ε‎<‎x‎≤‎b‎- ε 

a‎+‎ε‎≤‎x‎≤‎b‎- ε 

True 

x‎>‎ε 

x‎≥‎ε 

x‎<‎ε 

x‎≤‎ε 

ε1‎<‎x‎<‎ε2 

ε1‎≤‎x‎< ε2 

ε1‎<‎x‎≤‎ε2 

ε1‎≤‎x‎≤‎ε2 
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Widening Timing Constraint (WTC) 

Clock Guard Mutated Clock Guards 

x < a 

x‎≤‎a 

x‎<‎a‎+‎ε 

x‎≤‎a‎+‎ε 

True 

x‎≤‎a 

x‎≤‎a‎+‎ε 

x‎<‎a‎+‎ε 

True 

x > a 

x ≥‎a 

x > a - ε 

x‎≥‎a‎- ε 

True 

x‎≥‎a 

x‎≥‎a‎– ε 

x > a - ε 

True 

a < x < b 

a‎≤‎x‎<‎b‎ 

a‎<‎x‎≤‎b 

a‎≤‎x‎≤‎b 

a - ε‎<‎x‎<‎b 

a - ε ≤‎x‎<‎b 

a - ε‎<‎x‎≤‎b 

a - ε ≤‎x‎≤‎b 

a‎<‎x‎<‎b‎+‎ε 

a‎<‎x‎≤‎b‎+‎ε 

a‎≤ x‎<‎b‎+‎ε 

a‎≤ x‎≤‎b‎+‎ε 

a - ε‎<‎x‎<‎b‎+‎ε 

a - ε‎≤‎x‎<‎b‎+‎ε 

a - ε‎<‎x‎≤‎b‎+‎ε 

a - ε‎≤‎x‎≤‎b +‎ε 

True 

a‎≤‎x‎<‎b 

a‎≤‎x‎≤‎b 

a - ε‎<‎x‎<‎b 

a - ε ≤‎x‎<‎b 

a - ε‎<‎x‎≤‎b 

a - ε ≤‎x‎≤‎b 

a‎≤‎x‎<‎b‎+‎ε 

a‎≤‎x‎≤‎b‎+‎ε 

a - ε‎<‎x‎<‎b‎+‎ε 

a - ε‎≤‎x‎<‎b‎+‎ε 

a - ε‎<‎x‎≤‎b‎+‎ε 

a - ε‎≤‎x‎≤‎b‎+‎ε 

True 
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Widening Timing Constraint (WTC) 

Clock Guard Mutated Clock Guards 

a‎<‎x‎≤‎b 

a‎≤‎x‎≤‎b 

a - ε‎<‎x‎≤‎b 

a - ε ≤‎x‎≤‎b 

a‎<‎x‎<‎b‎+‎ε 

a‎<‎x‎≤‎b‎+‎ε 

a‎≤ x‎<‎b‎+‎ε 

a‎≤ x‎≤‎b‎+‎ε 

a - ε‎<‎x‎<‎b‎+‎ε 

 

a - ε‎≤‎x‎<‎b‎+‎ε 

 

a - ε‎<‎x‎≤‎b‎+‎ε 

 

a - ε‎≤‎x‎≤‎b‎+‎ε 

 

True 

 

a‎≤‎x‎≤‎b 

a - ε‎<‎x‎≤‎b 

a - ε ≤‎x‎≤‎b 

a‎≤‎x‎<‎b‎+‎ε 

a‎≤‎x‎≤‎b‎+‎ε 

a - ε‎<‎x‎<‎b‎+‎ε 

a - ε‎≤‎x‎<‎b‎+‎ε 

a - ε‎<‎x‎≤‎b‎+‎ε 

a - ε‎≤‎x‎≤‎b‎+‎ε 

True 
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Shifting Timing Constraint (STC) 

Clock Guard Mutated Clock Guards 

x < a 

ε‎≤‎x‎≤‎a 

ε‎<‎x‎≤‎a 

ε‎≤‎x‎<‎a‎+‎ε 

ε‎<‎x‎<‎a‎+‎ε 

ε‎≤‎x‎≤‎a‎+‎ε 

ε‎<‎x‎≤‎a‎+‎ε 

x‎≤‎a 

ε‎≤‎x‎≤‎a‎+‎ε 

ε‎<‎x‎≤‎a‎+‎ε 

ε‎≤‎x‎<‎a‎+‎ε 

ε‎<‎x‎<‎a‎+‎ε 

x > a 

a‎≤‎x‎<‎ε 

a‎≤‎x‎≤‎ε 

a - ε1‎<‎x‎<‎ε2 

a - ε1‎<‎x‎≤‎ε2 

a - ε1‎≤‎x‎<‎ε2 

a - ε1‎≤‎x‎≤‎ε2 

x‎≥‎a 

a - ε1‎≤‎x‎<‎ε2 

a - ε1‎≤‎x‎≤ ε2 

a - ε1‎<‎x‎<‎ε2 

a - ε1‎<‎x‎≤‎ε2 

a < x < b 

a‎+‎ε‎<‎x‎≤‎b 

a‎+‎ε‎≤‎x‎≤‎b 

a‎+‎ε‎<‎x‎<‎b‎+‎ε 

a‎+‎ε‎≤‎x‎<‎b‎+‎ε 

a‎+‎ε‎<‎x‎≤‎b‎+‎ε 

a‎+‎ε‎≤‎x‎≤‎b‎+‎ε 

a ≤‎x‎<‎b‎- ε 

a ≤‎x‎≤‎b‎- ε 

a - ε‎<‎x‎<‎b‎- ε 

a - ε‎≤‎x‎<‎b‎- ε 

a - ε‎<‎x‎≤‎b‎- ε 

a - ε‎≤‎x‎≤‎b‎- ε 

a‎≤‎x‎<‎b 

a‎<‎x‎≤‎b 

a‎+‎ε‎<‎x‎<‎b‎+‎ε 

a‎+‎ε‎≤‎x‎<‎b‎+‎ε 

a‎+‎ε‎<‎x‎≤‎b‎+‎ε 

a‎+‎ε‎≤‎x‎≤‎b‎+‎ε 

a - ε‎<‎x‎<‎b‎– ε 

a - ε‎≤‎x‎<‎b‎– ε 

a - ε‎<‎x‎≤‎b‎– ε 

 

a - ε‎≤‎x‎≤‎b‎– ε 
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Shifting Timing Constraint (STC) 

Clock Guard Mutated Clock Guards 

a‎<‎x‎≤‎b 

a‎+‎ε‎<‎x‎<‎b‎+‎ε 

a‎+‎ε‎≤‎x‎<‎b‎+‎ε 

a‎+‎ε‎<‎x‎≤‎b‎+‎ε 

a‎+‎ε‎≤‎x‎≤‎b‎+‎ε 

a‎≤‎x‎<‎b 

a - ε‎<‎x‎<‎b‎- ε 

a - ε‎≤‎x‎<‎b‎- ε 

a - ε‎<‎x‎≤‎b‎- ε 

a - ε‎≤‎x‎≤‎b‎- ε 

a‎≤‎x‎≤‎b 

a‎<‎x‎≤‎b‎+‎ε 

a ≤‎x‎<‎b‎+‎ε 

a‎+‎ε‎<‎x‎<‎b‎+‎ε 

a‎+‎ε‎≤‎x‎<‎b‎+‎ε 

a‎+‎ε‎<‎x‎≤‎b‎+‎ε 

a‎+‎ε‎≤‎x‎≤‎b‎+‎ε 

a - ε‎≤‎x‎<‎b‎ 

a - ε‎<‎x‎<‎b‎ 

a - ε‎<‎x‎<‎b‎- ε 

a - ε‎≤‎x‎<‎b‎- ε 

a - ε‎<‎x‎≤‎b‎- ε 

a - ε‎≤‎x‎≤‎b‎- ε 
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Appendix B 

CRC Calculation  

This appendix presents clock region coverage achieved by each testing approach 

(SM, BCT and PA) that generate timed test cases from specification models of the 

‘production-cell’‎ test‎ bed‎ (Control‎ Panel,‎ Conveyor,‎ Robot-In and Robot-Out). 

The number of effective clock regions was calculated for each input transition 

using Equation (‎3.5). The number of clock regions covered by each testing 

approach was then observed to calculate the CRC ratio for each input transition. 

The Final CRC was calculated for the whole specification model using Equation 

(‎4.1). 

CRC Ratio for input transitions in the Control Panel  

Transitions NCR SM BCT PA 

S0-S1 

Total No. 55 

Covered 1 1 55 

Ratio 0.018 0.018 1 

S2-S3 

Total No. 11 

Covered 2 3 11 

Ratio 0.181 0.272 1 

S3-S4 

Total No. 55 

Covered 1 1 55 

Ratio 0.018 0.018 1 

S5-S6 

Total No. 57 

Covered 2 3 57 

Ratio 0.035 0.055 1 

S6-S7 

Total No. 55 

Covered 1 1 55 

Ratio 00.18 0.018 1 

S8-S9 

Total No. 9 

Covered 2 3 9 

Ratio 0.222 0.333 1 

S9-S10 

Total No. 55 

Covered 1 1 55 

Ratio 0.018 0.018 1 
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CRC Ratio for input transitions in the Conveyor  

Transitions NCR SM BCT PA 

S0-S1 

Total No. 11  

Covered 1 1 11 

Ratio 0.091 0.091 1 

S1-S2 

Total No. 11  

Covered 1 1 11 

Ratio 0.091 0.091 1 

S3-S4 

Total No. 13  

Covered 2 3 13 

Ratio 0.154 0.231 1 

S4-S5 

Total No. 11  

Covered 1 1 11 

Ratio 0.091 0.091 1 

S6-S7 

Total No. 11  

Covered 1 1 11 

Ratio 0.091 0.091 1 

S8-S9 

Total No. 10  

Covered 2 3 10 

Ratio 0.2 0.3 1 

S9-S10 

Total No. 11  

Covered 1 1 11 

Ratio 0.091 0.091 1 

 

CRC Ratio for input transitions in the Robot IN  

Transitions 
Number of 

Regions 
SM BCT PA 

S0-S1 

Total No. 15 

Covered 1 1 15 

Ratio 0.067 0.067 1 

S2-S3 

Total No. 16 

Covered 2 3 16 

Ratio 0.125 0.188 1 

S4-S5 

Total No. 10 

Covered 2 3 10 

Ratio 0.2 0.3 1 

S6-S0 

Total No. 15 

Covered 1 1 15 

Ratio 0.067 0.067 1 
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CRC Ratio for input transitions in the Robot Out  

Transitions NCR SM BCT PA 

S0-S1 

Total No. 21 

Covered 1 1 21 

Ratio 0.048 0.048 1 

S2-S3 

Total No. 22 

Covered 2 3 22 

Ratio 0.091 0.136 1 

S4-S5 

Total No. 10 

Covered 2 3 10 

Ratio 0.2 0.3 1 

S6-S0 

Total No. 21 

Covered 1 1 21 

Ratio 0.048 0.048 1 
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Appendix C 

Interview Sheet  

Having that all required information was given to the interviewee, the interview 

questions are structured as follows: 

Q1- Can you please rank the pair-wise comparison preference of the seven testing 

sets with respect to application importance, complexity and development stage 

using the following scale of ranking? 

Pairwise Comparison scale for AHP Preferences 

Numerical Rating Verbal Judgements of Preferences 

1 C is equally preferable to D 

2 C is equally to moderately preferable to D 

3 C is moderately preferable to D 

4 C is moderately to strongly preferable to D 

5 C is strongly preferable to D 

6 C is strongly to very strongly preferable to D 

7 C is very strongly preferable to D 

8 C is very strongly to exceptionally preferable to D 

9 C is exceptionally preferable to D 

 

Importance B OB IB B+OB B+IB OB+IB B+OB+IB 

B 1       

OB  1      

IB   1     

B+OB    1    

B+IB     1   

OB+IB      1  

B+OB+IB       1 
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Complexity B OB IB B+OB B+IB OB+IB B+OB+IB 

B 1       

OB  1      

IB   1     

B+OB    1    

B+IB     1   

OB+IB      1  

B+OB+IB       1 

 

Development 

Stage 
B OB IB B+OB B+IB OB+IB B+OB+IB 

B 1       

OB  1      

IB   1     

B+OB    1    

B+IB     1   

OB+IB      1  

B+OB+IB       1 

 

Q2- Can you please have a look at testing Scenario One and Two, and rank the 

pair-wise comparison preference of the criteria and sub-criteria using the same 

scale of ranking? The criteria dentitions are provided.  

  Test 

Adequacy 

Test 

Cost 

Application 

Domain 

Test Adequacy 1   

Test Cost  1  

Application Domain   1 

 

 Fault Coverage Clock Region Coverage 

Fault Coverage 1  

Clock region Coverage  1 
 

 Test Traces Length Test Execution Time 

Test Traces Length 1  

Test Execution Time  1 
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 Importance Complexity Development Stage 

Importance 1   

Complexity  1  

Development stage   1 
 

Q3- Can you please order (1-7) the test sets according to the best suitability to the 

Scenario One? 

  B    OB    IB     B+OB     B+IB       OB+IB     B+OB+IB     
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Appendix D 

AHP Matrices 

The complete set of AHP pair-wise comparison matrices that have been filled by 

five testing experts (E1…E5)‎is presented in this Appendix with their normalised 

form and consistency ratio.  

Pair-wise Comparison Matrix of alternatives with respect to Importance (E1) 

Importance B OB IB B+OB B+IB OB+IB B+OB+IB 

B 1 1 1 0.5 0.25 0.2 0.11 

OB 1 1 1 0.5 0.25 0.2 0.11 

IB 1 1 1 0.5 0.25 0.2 0.11 

B+OB 2 2 2 1 0.33 0.25 0.14 

B+IB 4 4 4 3 1 0.25 0.14 

OB+IB 5 5 5 4 4 1 0.14 

B+OB+IB 9 9 9 7 7 7 1 

Consistency Ratio =0.0582 

Normalized Matrix of alternatives with respect to Importance (E1) 

 
B OB IB B+OB B+IB OB+IB B+OB+IB 

Eigen- 

Vector 

B 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.034515 

OB 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.034515 

IB 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.034515 

B+OB 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.056999 

B+IB 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.109731 

OB+IB 0.19 0.19 0.19 0.19 0.2 0.2 0.19 0.194743 

B+OB+IB 0.54 0.54 0.54 0.53 0.53 0.53 0.54 0.534981 

 

Pair-wise Comparison Matrix of alternatives with respect to Complexity (E1) 

Complexity B OB IB B+OB B+IB OB+IB B+OB+IB 

B 1 1 1 0.5 0.25 0.2 0.11 

OB 1 1 1 0.5 0.25 0.2 0.11 

IB 1 1 1 0.5 0.25 0.2 0.11 

B+OB 2 2 2 1 0.33 0.25 0.14 

B+IB 4 4 4 3 1 0.25 0.14 

OB+IB 5 5 5 4 4 1 0.14 

B+OB+IB 9 9 9 7 7 7 1 

Consistency Ratio =0.0582 
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Normalized Matrix of alternatives with respect to Complexity (E1) 

 
B OB IB B+OB B+IB OB+IB B+OB+IB 

Eigen- 

Vector 

B 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.034515 

OB 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.034515 

IB 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.034515 

B+OB 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.056999 

B+IB 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.109731 

OB+IB 0.19 0.19 0.19 0.19 0.2 0.2 0.19 0.194743 

B+OB+IB 0.54 0.54 0.54 0.53 0.53 0.53 0.54 0.534981 

 

Pair-wise Comparison Matrix of alternatives with respect to Development Stage 

(E1) 

Stage B OB IB B+OB B+IB OB+IB B+OB+IB 

B 1 1 1 0.5 0.25 0.2 0.11 

OB 1 1 1 0.5 0.25 0.2 0.11 

IB 1 1 1 0.5 0.25 0.2 0.11 

B+OB 2 2 2 1 0.33 0.25 0.14 

B+IB 4 4 4 3 1 0.25 0.14 

OB+IB 5 5 5 4 4 1 0.14 

B+OB+IB 9 9 9 7 7 7 1 

Consistency Ratio =0.0582 

Normalized Matrix of alternatives with respect to Development Stage 

Stage 
B OB IB B+OB B+IB OB+IB B+OB+IB 

Eigen- 

Vector 

B 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.034515 

OB 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.034515 

IB 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.034515 

B+OB 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.056999 

B+IB 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.109731 

OB+IB 0.19 0.19 0.19 0.19 0.2 0.2 0.19 0.194743 

B+OB+IB 0.54 0.54 0.54 0.53 0.53 0.53 0.54 0.534981 

 

 

Pair-wise Comparison Matrix of the main criteria with respect to Goal (E1, 

Scenario 1) 

 Test Adequacy Test Cost Application Domain 

Test Adequacy 1 0.33 5 

Test Cost 3 1 9 

Development Stage 0.2 0.11 1 

Consistency Ratio =0.0245 
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Normalized Matrix of the main criteria with respect to Goal (E1, Scenario 1) 

 

Test Adequacy 
Test 

Cost 

Application 

Domain 
Eigenvector 

Test Adequacy 0.27 0.27 0.27 0.265381 

Test Cost 0.67 0.67 0.67 0.671695 

Application Domain 0.06 0.06 0.06 0.062924 

 

 

 

Pair-wise Comparison Matrix of the sub-criteria with respect to Test 

Adequacy (E1, Scenario1) 

 Fault Coverage Clock Region Coverage 

Fault Coverage 1 9 

Clock Region Coverage 0.11 1 

Consistency Ratio =0.00 

 

Normalized Matrix of the sub-criteria with respect to Test adequacy Scenario1 

 Fault Coverage Clock Region Coverage Eigenvector 

Fault Coverage 0.9 0.9 0.900045 

Clock Region 

Coverage 
0.1 0.1 0.099955 

 

 

 

Pair-wise Comparison Matrix of the sub-criteria with respect to Test 

Cost (E1, Scenario1) 

 Test Traces Length Test Execution time 

Test Traces Length 1 0.11 

Test Execution time 9 1 

Consistency Ratio =0.00 

 
 

Normalized Matrix of the sub-criteria with respect to Test Cost Scenario1 

 Test Traces Length Test Execution time Eigenvector 

Test Traces 

Length 
0.1 0.1 0.099955 

Test Execution 

time 
0.9 0.9 0.900045 

 

 

Pair-wise Comparison Matrix of the sub-criteria with respect to Application 

domain (E1, Scenario 1) 

 Importance Complexity Development Stage 

Importance 1 0.33 0.11 

Complexity 3 1 0.17 

Development Stage 9 6 1 

Consistency Ratio =0.0461 
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Normalized Matrix of the sub-criteria with respect to Application domain (E1, 

Scenario 1) 

 Importance Complexity Development Stage Eigenvector 

Importance 0.07 0.07 0.07 0.067879 

Complexity 0.16 0.16 0.16 0.161814 

Development Stage 0.77 0.77 0.77 0.770307 

 

 

 

Pair-wise Comparison Matrix of the main criteria with respect to Goal (E1, 

Scenario 2) 

 Test Adequacy Test Cost Application Domain 

Test Adequacy 1 8 9 

Test Cost 0.12 1 1 

Development Stage 0.11 1 1 

Consistency Ratio =0.0011 

 

Normalized Matrix of the main criteria with respect to Goal (Scenario 2) 

 

Test Adequacy 
Test 

Cost 

Application 

Domain 
Eigenvector 

Test Adequacy 0.81 0.81 0.81 0.80925 

Test Cost 0.1 0.1 0.1 0.097263 

Application Domain 0.09 0.09 0.09 0.093488 

 

 

 

Pair-wise Comparison Matrix of the sub-criteria with respect to Test 

Adequacy (E1, Scenario2) 

 Fault Coverage Clock Region Coverage 

Fault Coverage 1 7 

Clock Region Coverage 0.14 1 

Consistency Ratio =0.00 

 
 

Normalized Matrix of the sub-criteria with respect to Test adequacy Scenario2 

 Fault Coverage Clock Region Coverage Eigenvector 

Fault Coverage 0.87 0.87 0.874945 

Clock Region 

Coverage 
0.13 0.13 0.125055 

 

 

 

Pair-wise Comparison Matrix of the sub-criteria with respect to Test 

Cost (E1, Scenario2) 

 Test Traces Length Test Execution time 

Test Traces Length 1 1 

Test Execution time 1 1 

Consistency Ratio =0.00 
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Normalized Matrix of the sub-criteria with respect to Test Cost (E1, Scenario2) 

 Test Traces Length Test Execution time Eigenvector 

Test Traces Length 0.5 0.5 0.5 

Test Execution time 0.5 0.5 0.5 

 

 

 

Pair-wise Comparison Matrix of the sub-criteria with respect to Application 

domain (E1, Scenario 2) 

 Importance Complexity Development Stage 

Importance 1 9 1 

Complexity 0.11 1 0.14 

Development Stage 1 7 1 

Consistency Ratio =0.0061 
 

 

Normalized Matrix of the sub-criteria with respect to Application domain (E1, 

Scenario 2) 

 Importance Complexity Development Stage Eigenvector 

Importance 0.49 0.49 0.49 0.490084 

Complexity 0.06 0.06 0.06 0.059215 

Development Stage 0.45 0.45 0.45 0.4507 

 

 

 

Pair-wise Comparison Matrix of alternatives with respect to Importance (E2) 

Importance B OB IB B+OB B+IB OB+IB B+OB+IB 

B 1 0.25 1 0.17 0.17 0.17 0.11 

OB 4 1 1 0.11 0.11 0.11 0.11 

IB 1 1 1 0.11 0.11 0.11 0.11 

B+OB 6 9 9 1 1 1 1 

B+IB 6 9 9 1 1 1 1 

OB+IB 6 9 9 1 1 1 1 

B+OB+IB 9 9 9 1 1 1 1 

Consistency Ratio =0.0413 
 

 

Normalized Matrix of alternatives with respect to Importance (E2) 

 
B OB IB B+OB B+IB OB+IB B+OB+IB 

Eigen- 

Vector 

B 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.027478 

OB 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.037394 

IB 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.02617 

B+OB 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.224433 

B+IB 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.224433 

OB+IB 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.224433 

B+OB+IB 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.235657 
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Pair-wise Comparison Matrix of alternatives with respect to Complexity (E2) 

Complexity B OB IB B+OB B+IB OB+IB B+OB+IB 

B 1 1 1 0.17 0.14 0.12 0.11 

OB 1 1 1 0.17 0.14 0.12 0.11 

IB 1 1 1 0.17 0.14 0.12 0.11 

B+OB 6 6 6 1 0.5 1 0.2 

B+IB 7 7 7 2 1 1 0.2 

OB+IB 8 8 8 1 1 1 0.2 

B+OB+IB 9 9 9 5 5 5 1 

Consistency Ratio =0.0494 
 

 

Normalized Matrix of alternatives with respect to Complexity (E2) 

 
B OB IB B+OB B+IB OB+IB B+OB+IB 

Eigen- 

Vector 

B 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.026559 

OB 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.026559 

IB 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.026559 

B+OB 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.127301 

B+IB 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.166505 

OB+IB 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.160092 

B+OB+IB 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.466425 

 

 

 

Pair-wise Comparison Matrix of alternatives with respect to Development Stage 

(E2) 

Stage B OB IB B+OB B+IB OB+IB B+OB+IB 

B 1 1 1 0.17 0.14 0.12 0.11 

OB 1 1 1 0.17 0.14 0.12 0.11 

IB 1 1 1 0.17 0.14 0.12 0.11 

B+OB 6 6 6 1 0.5 1 0.2 

B+IB 7 7 7 2 1 1 0.2 

OB+IB 8 8 8 1 1 1 0.2 

B+OB+IB 9 9 9 5 5 5 1 

Consistency Ratio =0.0494 
 

 

Normalized Matrix of alternatives with respect to Development Stage (E2) 

Stage 
B OB IB B+OB B+IB OB+IB B+OB+IB 

Eigen- 

Vector 

B 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.026559 

OB 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.026559 

IB 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.026559 

B+OB 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.127301 

B+IB 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.166505 

OB+IB 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.160092 

B+OB+IB 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.466425 
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Pair-wise Comparison Matrix of the main criteria with respect to Goal (E2, 

Scenario1) 

 Test Adequacy Test Cost Application Domain 

Test Adequacy 1 0.25 3 

Test Cost 4 1 6 

Development Stage 0.33 0.17 1 

Consistency Ratio =0.0467 
 

 

Normalized Matrix of the main criteria with respect to Goal (E2, Scenario1) 

 

Test Adequacy 
Test 

Cost 

Application 

Domain 
Eigenvector 

Test Adequacy 0.22 0.22 0.22 0.217641 

Test Cost 0.69 0.69 0.69 0.690909 

Application Domain 0.09 0.09 0.09 0.09145 

 

 

 

Pair-wise Comparison Matrix of the sub-criteria with respect to Test 

adequacy (E2, Scenario1) 

 Fault Coverage Clock Region Coverage 

Fault Coverage 1 0.2 

Clock Region Coverage 5 1 

Consistency Ratio =0.00 

 

Normalized Matrix of the sub-criteria with respect to Test adequacy Scenario1 

 Fault Coverage Clock Region Coverage Eigenvector 

Fault Coverage 0.17 0.17 0.166667 

Clock Region 

Coverage 
0.83 0.83 0.833333 

 

 

 

Pair-wise Comparison Matrix of the sub-criteria with respect to Test 

Cost (E2, Scenario1) 

 Test Traces Length Test Execution time 

Test Traces Length 1 0.333 

Test Execution time 3 1 

Consistency Ratio =0.00 
 

 

Normalized Matrix of the sub-criteria with respect to Test Cost Scenario1 

 Test Traces Length Test Execution time Eigenvector 

Test Traces Length 0.25 0.25 0.249906 

Test Execution time 0.75 0.75 0.750094 

 

 

 

 

 



Appendix D 

 

 221 

Pair-wise Comparison Matrix of the sub-criteria with respect to Application 

domain (E2, Scenario 1) 

 Importance Complexity Development Stage 

Importance 1 1 4 

Complexity 1 1 6 

Development Stage 0.25 0.17 1 

Consistency Ratio =0.0163 
 

 

Normalized Matrix of the sub-criteria with respect to Application domain (E2, 

Scenario 1) 

 Importance Complexity Development Stage Eigenvector 

Importance 0.42 0.42 0.42 0.423137 

Complexity 0.48 0.48 0.48 0.484396 

Development Stage 0.09 0.09 0.09 0.092467 

 

 

 

Pair-wise Comparison Matrix of the main criteria with respect to Goal (E2, 

Scenario 2) 

 Test Adequacy Test Cost Application Domain 

Test Adequacy 1 1 0.25 

Test Cost 1 1 0.33 

Development Stage 4 3 1 

Consistency Ratio =0.0076 
 

 

Normalized Matrix of the main criteria with respect to Goal (E2, Scenario 2) 

 

Test Adequacy 
Test 

Cost 

Application 

Domain 
Eigenvector 

Test Adequacy 0.17 0.17 0.17 0.174381 

Test Cost 0.19 0.19 0.19 0.191863 

Application Domain 0.63 0.63 0.63 0.633756 

 

 

 

Pair-wise Comparison Matrix of the sub-criteria with respect to Test 

adequacy (E2, Scenario2) 

 Fault Coverage Clock Region Coverage 

Fault Coverage 1 0.5 

Clock Region Coverage 2 1 

Consistency Ratio =0.00 
 

 

Normalized Matrix of the sub-criteria with respect to Test adequacy (E2, Scenario2) 

 Fault Coverage Clock Region Coverage Eigenvector 

Fault Coverage 0.33 0.33 0.333333 

Clock Region 

Coverage 
0.67 0.67 0.666667 
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Pair-wise Comparison Matrix of the sub-criteria with respect to Test 

Cost (E2, Scenario2) 

 Test Traces Length Test Execution time 

Test Traces Length 1 0.17 

Test Execution time 6 1 

Consistency Ratio =0.00 
 

 

Normalized Matrix of the sub-criteria with respect to Test Cost (E2, Scenario2) 

 Test Traces Length Test Execution time Eigenvector 

Test Traces Length 0.14 0.14 0.14298 

Test Execution time 0.86 0.86 0.85702 

 

 

 

Pair-wise Comparison Matrix of the sub-criteria with respect to Application 

domain (E2, Scenario 2) 

 Importance Complexity Development Stage 

Importance 1 0.11 0.5 

Complexity 9 1 7 

Development Stage 2 0.14 1 

Consistency Ratio =0.0186 

 

Normalized Matrix of the sub-criteria with respect to Application domain (E2, 

Scenario 2) 

 Importance Complexity Development Stage Eigenvector 

Importance 0.08 0.08 0.08 0.075989 

Complexity 0.79 0.79 0.79 0.792759 

Development Stage 0.13 0.13 0.13 0.131252 

 

 

 

Pair-wise Comparison Matrix of alternatives with respect to Importance (E3) 

Importance B OB IB B+OB B+IB OB+IB B+OB+IB 

B 1 3 4 0.33 0.33 0.33 0.2 

OB 0.33 1 2 0.25 0.25 0.25 0.17 

IB 0.25 0.5 1 0.14 0.14 0.14 0.11 

B+OB 3 4 7 1 2 2 0.5 

B+IB 3 4 7 0.5 1 2 0.25 

OB+IB 3 4 7 0.5 0.5 1 0.33 

B+OB+IB 5 6 9 2 4 3 1 

Consistency Ratio =0.0395 
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Normalized Matrix of alternatives with respect to Importance (E3) 

 
B OB IB B+OB B+IB OB+IB B+OB+IB 

Eigen- 

Vector 

B 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.072293 

OB 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.040749 

IB 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02379 

B+OB 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.208153 

B+IB 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.159781 

OB+IB 0.13 0.13 0.13 0.13 0.13 0.14 0.13 0.134572 

B+OB+IB 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.360663 

 

 

Pair-wise Comparison Matrix of alternatives with respect to Complexity (E3) 

Complexity B OB IB B+OB B+IB OB+IB B+OB+IB 

B 1 1 0.5 3 3 3 7 

OB 1 1 0.5 3 3 3 7 

IB 2 2 1 4 4 4 8 

B+OB 0.33 0.33 0.25 1 0.5 0.5 3 

B+IB 0.33 0.33 0.25 2 1 0.5 3 

OB+IB 0.33 0.33 0.25 2 2 1 4 

B+OB+IB 0.14 0.14 0.12 0.33 0.33 0.25 1 

Consistency Ratio =0.0226 
 

 

Normalized Matrix of alternatives with respect to Complexity (E3) 

 
B OB IB B+OB B+IB OB+IB B+OB+IB 

Eigen- 

Vector 

B 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.20597 

OB 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.20597 

IB 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.322725 

B+OB 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.062752 

B+IB 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.076837 

OB+IB 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.098205 

B+OB+IB 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.027541 

 

 

 

Pair-wise Comparison Matrix of alternatives with respect to Development Stage 

(E3) 

Stage B OB IB B+OB B+IB OB+IB B+OB+IB 

B 1 1 0.5 1 1 1 1 

OB 1 1 0.5 1 1 1 1 

IB 2 2 1 2 2 2 2 

B+OB 1 1 0.5 1 1 1 1 

B+IB 1 1 0.5 1 1 1 1 

OB+IB 1 1 0.5 1 1 1 1 

B+OB+IB 1 1 0.5 1 1 1 1 

Consistency Ratio =0.00 
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Normalized Matrix of alternatives with respect to Development Stage (E3) 

Stage 
B OB IB B+OB B+IB OB+IB B+OB+IB 

Eigen- 

Vector 

B 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.125 

OB 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.125 

IB 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 

B+OB 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.125 

B+IB 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.125 

OB+IB 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.125 

B+OB+IB 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.125 

 

 

Pair-wise Comparison Matrix of the main criteria with respect to Goal (E3, 

Scenario1) 

 Test Adequacy Test Cost Application Domain 

Test Adequacy 1 0.33 0.5 

Test Cost 3 1 2 

Development Stage 2 0.5 1 

Consistency Ratio =0.0076 

 
Normalized Matrix of the main criteria with respect to Goal (E3, Scenario 1) 

 

Test Adequacy 
Test 

Cost 

Application 

Domain 
Eigenvector 

Test Adequacy 0.16 0.16 0.16 0.163374 

Test Cost 0.54 0.54 0.54 0.539651 

Application Domain 0.3 0.3 0.3 0.296975 

 

 

Pair-wise Comparison Matrix of the sub-criteria with respect to Test 

adequacy (E3, Scenario1) 

 Fault Coverage Clock Region Coverage 

Fault Coverage 1 0.5 

Clock Region Coverage 2 1 

Consistency Ratio =0.00 

 
Normalized Matrix of the sub-criteria with respect to Test adequacy (E3, Scenario1) 

 Fault Coverage Clock Region Coverage Eigenvector 

Fault Coverage 0.33 0.33 0.333333 

Clock Region Coverage 0.67 0.67 0.666667 

 

 

Pair-wise Comparison Matrix of the sub-criteria with respect to Test 

Cost (E3, Scenario1) 

 Test Traces Length Test Execution time 

Test Traces Length 1 0.5 

Test Execution time 2 1 

Consistency Ratio =0.00 
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Normalized Matrix of the sub-criteria with respect to Test Cost (E3, Scenario1) 

 Test Traces Length Test Execution time Eigenvector 

Test Traces Length 0.33 0.33 0.333333 

Test Execution time 0.67 0.67 0.666667 

 

 

Pair-wise Comparison Matrix of the sub-criteria with respect to Application 

Domain (E3, Scenario 1) 

 Importance Complexity Development Stage 

Importance 1 4 2 

Complexity 0.25 1 0.5 

Development Stage 0.5 2 1 

Consistency Ratio =0.00 

 

Normalized Matrix of the sub-criteria with respect to Application domain (E3, 

Scenario 1) 

 Importance Complexity Development Stage Eigenvector 

Importance 0.57 0.57 0.57 0.571429 

Complexity 0.14 0.14 0.14 0.142857 

Development Stage 0.29 0.29 0.29 0.285714 

 

 

Pair-wise Comparison Matrix of the main criteria with respect to Goal (E3, 

Scenario 2) 

 Test Adequacy Test Cost Application Domain 

Test Adequacy 1 5 4 

Test Cost 0.2 1 0.5 

Development Stage 0.25 2 1 

Consistency Ratio =0.0212 

 
Normalized Matrix of the main criteria with respect to Goal (E3, Scenario 2) 

 

Test Adequacy 
Test 

Cost 

Application 

Domain 
Eigenvector 

Test Adequacy 0.68 0.68 0.68 0.68334 

Test Cost 0.12 0.12 0.12 0.11685 

Application Domain 0.2 0.2 0.2 0.19981 

 

 

Pair-wise Comparison Matrix of the sub-criteria with respect to Test 

adequacy (E3, Scenario2) 

 Fault Coverage Clock Region Coverage 

Fault Coverage 1 1 

Clock Region Coverage 1 1 

Consistency Ratio =0.00 

 

 

 

 



Appendix D 

 

 226 

Normalized Matrix of the sub-criteria with respect to Test adequacy (E3, 

Scenario2) 

 Fault Coverage Clock Region Coverage Eigenvector 

Fault Coverage 0.5 0.5 0.5 

Clock Region 

Coverage 
0.5 0.5 0.5 

 

 

Pair-wise Comparison Matrix of the sub-criteria with respect to Test 

Cost (E3, Scenario2) 

 Test Traces Length Test Execution time 

Test Traces Length 1 2 

Test Execution time 0.5 1 

Consistency Ratio =0.00 

 
Normalized Matrix of the sub-criteria with respect to Test Cost (E3, Scenario2) 

 Test Traces Length Test Execution time Eigenvector 

Test Traces Length 0.67 0.67 0.66667 

Test Execution time 0.33 0.33 0.33333 

 

 

Pair-wise Comparison Matrix of the sub-criteria with respect to Application 

domain (E3, Scenario 2) 

 Importance Complexity Development Stage 

Importance 1 4 3 

Complexity 0.25 1 0.5 

Development Stage 0.33 2 1 

Consistency Ratio =0.0155 
 

Normalized Matrix of the sub-criteria with respect to Application domain (E3, 

Scenario 2) 

 Importance Complexity Development Stage Eigenvector 

Importance 0.63 0.63 0.63 0.625052 

Complexity 0.14 0.14 0.14 0.136512 

Development Stage 0.24 0.24 0.24 0.238437 

 

 

 

Pair-wise Comparison Matrix of alternatives with respect to Importance (E4) 

Importance B OB IB B+OB B+IB OB+IB B+OB+IB 

B 1 4 2 0.33 0.25 0.5 0.17 

OB 0.25 1 0.33 0.17 0.14 0.2 0.11 

IB 0.5 3 1 0.25 0.2 0.33 0.14 

B+OB 3 6 4 1 0.5 2 0.25 

B+IB 4 7 5 2 1 3 0.33 

OB+IB 2 5 3 0.5 0.33 1 0.2 

B+OB+IB 6 9 7 4 3 5 1 

Consistency Ratio =0.0368 
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Normalized Matrix of alternatives with respect to Importance (E4) 

 
B OB IB B+OB B+IB OB+IB B+OB+IB 

Eigen- 

Vector 

B 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.063724 

OB 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.023876 

IB 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.043459 

B+OB 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.144631 

B+IB 0.21 0.21 0.21 0.22 0.22 0.22 0.22 0.214967 

OB+IB 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.095876 

B+OB+IB 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.413467 

 

 

Pair-wise Comparison Matrix of alternatives with respect to Complexity (E4) 

Complexity B OB IB B+OB B+IB OB+IB B+OB+IB 

B 1 4 2 0.33 0.25 0.5 0.17 

OB 0.25 1 0.33 0.17 0.14 0.2 0.11 

IB 0.5 3 1 0.25 0.2 0.33 0.14 

B+OB 3 6 4 1 0.5 2 0.25 

B+IB 4 7 5 2 1 3 0.33 

OB+IB 2 5 3 0.5 0.33 1 0.2 

B+OB+IB 6 9 7 4 3 5 1 

Consistency Ratio =0.0368 

 

Normalized Matrix of alternatives with respect to Complexity (E4) 

 
B OB IB B+OB B+IB OB+IB B+OB+IB 

Eigen- 

Vector 

B 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.063724 

OB 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.023876 

IB 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.043459 

B+OB 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.144631 

B+IB 0.21 0.21 0.21 0.22 0.22 0.22 0.22 0.214967 

OB+IB 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.095876 

B+OB+IB 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.413467 

 

 

Pair-wise Comparison Matrix of alternatives with respect to Development Stage 

(E4) 

Stage B OB IB B+OB B+IB OB+IB B+OB+IB 

B 1 4 2 0.33 0.25 0.5 0.17 

OB 0.25 1 0.33 0.17 0.14 0.2 0.11 

IB 0.5 3 1 0.25 0.2 0.33 0.14 

B+OB 3 6 4 1 0.5 2 0.25 

B+IB 4 7 5 2 1 3 0.33 

OB+IB 2 5 3 0.5 0.33 1 0.2 

B+OB+IB 6 9 7 4 3 5 1 

Consistency Ratio =0.0368 
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Normalized Matrix of alternatives with respect to Development Stage (E4) 

Stage 
B OB IB B+OB B+IB OB+IB B+OB+IB 

Eigen- 

Vector 

B 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.063724 

OB 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.023876 

IB 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.043459 

B+OB 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.144631 

B+IB 0.21 0.21 0.21 0.22 0.22 0.22 0.22 0.214967 

OB+IB 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.095876 

B+OB+IB 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.413467 

 

 

Pair-wise Comparison Matrix of the main criteria with respect to Goal (E4, 

Scenario 1) 

 Test Adequacy Test Cost Application Domain 

Test Adequacy 1 1 0.33 

Test Cost 1 1 0.5 

Development Stage 3 2 1 

Consistency Ratio =0.0155 
 

Normalized Matrix of the main criteria with respect to Goal (E4, Scenario 1) 

 

Test Adequacy 
Test 

Cost 

Application 

Domain 
Eigenvector 

Test Adequacy 0.21 0.21 0.21 0.209797 

Test Cost 0.24 0.24 0.24 0.240229 

Application Domain 0.55 0.55 0.55 0.549974 

 

 

Pair-wise Comparison Matrix of the sub-criteria with respect to Test 

adequacy (E4, Scenario1) 

 Fault Coverage Clock Region Coverage 

Fault Coverage 1 1 

Clock Region Coverage 1 1 

Consistency Ratio =0.00 

 
Normalized Matrix of the sub-criteria with respect to Test adequacy (E4, Scenario1) 

 Fault Coverage Clock Region Coverage Eigenvector 

Fault Coverage 0.5 0.5 0.5 

Clock Region Coverage 0.5 0.5 0.5 

 

 

Pair-wise Comparison Matrix of the sub-criteria with respect to Test 

Cost (E4, Scenario1) 

 Test Traces Length Test Execution time 

Test Traces Length 1 1 

Test Execution time 1 1 

Consistency Ratio =0.00 
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Normalized Matrix of the sub-criteria with respect to Test Cost (E4, Scenario1) 

 Test Traces Length Test Execution time Eigenvector 

Test Traces Length 0.5 0.5 0.5 

Test Execution time 0.5 0.5 0.5 

 

 

Pair-wise Comparison Matrix of the sub-criteria with respect to Application 

domain (E4, Scenario 1) 

 Importance Complexity Development Stage 

Importance 1 1 0.33 

Complexity 1 1 0.5 

Development Stage 3 2 1 

Consistency Ratio =0.0155 

 
Normalized Matrix of the sub-criteria with respect to Application domain (E4, 

Scenario 1) 

 Importance Complexity Development Stage Eigenvector 

Importance 0.21 0.21 0.21 0.209797 

Complexity 0.24 0.24 0.24 0.240229 

Development Stage 0.55 0.55 0.55 0.549974 

 

 

Pair-wise Comparison Matrix of the main criteria with respect to Goal (E4, 

Scenario 2) 

 Test Adequacy Test Cost Application Domain 

Test Adequacy 1 0.5 1 

Test Cost 2 1 3 

Development Stage 1 0.33 1 

Consistency Ratio =0.0155 

 
Normalized Matrix of the main criteria with respect to Goal (E4, Scenario 2) 

 

Test Adequacy 
Test 

Cost 

Application 

Domain 
Eigenvector 

Test Adequacy 0.24 0.24 0.24 0.240229 

Test Cost 0.55 0.55 0.55 0.549974 

Application Domain 0.21 0.21 0.21 0.209797 

 

 

Pair-wise Comparison Matrix of the sub-criteria with respect to Test 

adequacy (E4, Scenario2) 

 Fault Coverage Clock Region Coverage 

Fault Coverage 1 1 

Clock Region Coverage 1 1 

Consistency Ratio =0.00 

 

 

 

 



Appendix D 

 

 230 

Normalized Matrix of the sub-criteria with respect to Test adequacy (E4, Scenario2) 

 Fault Coverage Clock Region Coverage Eigenvector 

Fault Coverage 0.5 0.5 0.5 

Clock Region 

Coverage 
0.5 0.5 0.5 

 

 

Pair-wise Comparison Matrix of the sub-criteria with respect to Test 

Cost (E4, Scenario2) 

 Test Traces Length Test Execution time 

Test Traces Length 1 1 

Test Execution time 1 1 

Consistency Ratio =0.00 

 
Normalized Matrix of the sub-criteria with respect to Test Cost (E4, Scenario2) 

 Test Traces Length Test Execution time Eigenvector 

Test Traces Length 0.5 0.5 0.5 

Test Execution time 0.5 0.5 0.5 

 

 

Pair-wise Comparison Matrix of the sub-criteria with respect to Application 

domain (E4, Scenario 2) 

 Importance Complexity Development Stage 

Importance 1 0.33 1 

Complexity 3 1 2 

Development Stage 1 0.5 1 

Consistency Ratio =0.0155 
 

Normalized Matrix of the sub-criteria with respect to Application domain (E4, 

Scenario 2) 

 Importance Complexity Development Stage Eigenvector 

Importance 0.21 0.21 0.21 0.209797 

Complexity 0.55 0.55 0.55 0.549974 

Development Stage 0.24 0.24 0.24 0.240229 

 

 

Pair-wise Comparison Matrix of alternatives with respect to Importance (E5) 

Importance B OB IB B+OB B+IB OB+IB B+OB+IB 

B 1 0.5 0.33 0.33 0.25 0.2 0.17 

OB 2 1 0.5 0.5 0.33 0.33 0.25 

IB 3 2 1 2 0.5 0.33 0.25 

B+OB 3 2 0.5 1 0.5 0.33 0.25 

B+IB 4 3 2 2 1 3 0.33 

OB+IB 5 3 3 3 0.33 1 0.5 

B+OB+IB 6 4 4 4 3 2 1 

Consistency Ratio =0.0501 
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Normalized Matrix of alternatives with respect to Importance (E5) 

 
B OB IB B+OB B+IB OB+IB B+OB+IB 

Eigen- 

Vector 

B 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.036491 

OB 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.058787 

IB 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.099639 

B+OB 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.081867 

B+IB 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.207896 

OB+IB 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.178103 

B+OB+IB 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.337216 

 

 
Pair-wise Comparison Matrix of alternatives with respect to Complexity (E5) 

Complexity B OB IB B+OB B+IB OB+IB B+OB+IB 

B 1 0.5 0.33 0.33 0.25 0.2 0.17 

OB 2 1 0.5 0.5 0.33 0.33 0.25 

IB 3 2 1 2 0.5 0.33 0.25 

B+OB 3 2 0.5 1 0.5 0.33 0.25 

B+IB 4 3 2 2 1 3 0.33 

OB+IB 5 3 3 3 0.33 1 0.5 

B+OB+IB 6 4 4 4 3 2 1 

Consistency Ratio =0.0501 

 
Normalized Matrix of alternatives with respect to Complexity (E5) 

 
B OB IB B+OB B+IB OB+IB B+OB+IB 

Eigen- 

Vector 

B 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.036491 

OB 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.058787 

IB 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.099639 

B+OB 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.081867 

B+IB 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.207896 

OB+IB 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.178103 

B+OB+IB 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.337216 

 

 

Pair-wise Comparison Matrix of alternatives with respect to Development Stage 

(E5) 

Stage B OB IB B+OB B+IB OB+IB B+OB+IB 

B 1 0.5 0.33 0.33 0.25 0.2 0.17 

OB 2 1 0.5 0.5 0.33 0.33 0.25 

IB 3 2 1 2 0.5 0.33 0.25 

B+OB 3 2 0.5 1 0.5 0.33 0.25 

B+IB 4 3 2 2 1 3 0.33 

OB+IB 5 3 3 3 0.33 1 0.5 

B+OB+IB 6 4 4 4 3 2 1 

Consistency Ratio =0.0501 
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Normalized Matrix of alternatives with respect to Development Stage (E5) 

Stage 
B OB IB B+OB B+IB OB+IB B+OB+IB 

Eigen- 

Vector 

B 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.036491 

OB 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.058787 

IB 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.099639 

B+OB 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.081867 

B+IB 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.207896 

OB+IB 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.178103 

B+OB+IB 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.337216 

 

 

Pair-wise Comparison Matrix of the main criteria with respect to Goal (E5, 

Scenario 1) 

 Test Adequacy Test Cost Application Domain 

Test Adequacy 1 5 7 

Test Cost 0.2 1 2 

Development Stage 0.14 0.5 1 

Consistency Ratio =0.0125 
 

Normalized Matrix of the main criteria with respect to Goal (E5, Scenario 1) 

 

Test Adequacy 
Test 

Cost 

Application 

Domain 
Eigenvector 

Test Adequacy 0.74 0.74 0.74 0.739564 

Test Cost 0.17 0.17 0.17 0.166591 

Application Domain 0.09 0.09 0.09 0.093845 

 

 

Pair-wise Comparison Matrix of the sub-criteria with respect to Test 

adequacy (E5, Scenario1) 

 Fault Coverage Clock Region Coverage 

Fault Coverage 1 6 

Clock Region Coverage 0.17 1 

Consistency Ratio =0.00 

 
Normalized Matrix of the sub-criteria with respect to Test adequacy (E5, Scenario1) 

 Fault Coverage Clock Region Coverage Eigenvector 

Fault Coverage 0.86 0.86 0.85702 

Clock Region Coverage 0.14 0.14 0.14298 

 

 

Pair-wise Comparison Matrix of the sub-criteria with respect to Test 

Cost (E5, Scenario1) 

 Test Traces Length Test Execution time 

Test Traces Length 1 0.17 

Test Execution time 6 1 

Consistency Ratio =0.00 
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Normalized Matrix of the sub-criteria with respect to Test Cost (E5, Scenario1) 

 Test Traces Length Test Execution time Eigenvector 

Test Traces Length 0.14 0.14 0.14298 

Test Execution time 0.86 0.86 0.85702 

 

 

Pair-wise Comparison Matrix of the sub-criteria with respect to Application 

domain (E5, Scenario 1) 

 Importance Complexity Development Stage 

Importance 1 3 4 

Complexity 0.33 1 3 

Development Stage 0.25 0.33 1 

Consistency Ratio =0.0629 

 

Normalized Matrix of the sub-criteria with respect to Application domain (E5, 

Scenario 1) 

 Importance Complexity Development Stage Eigenvector 

Importance 0.61 0.61 0.61 0.614469 

Complexity 0.27 0.27 0.27 0.268324 

Development Stage 0.12 0.12 0.12 0.117206 

 

 

Pair-wise Comparison Matrix of the main criteria with respect to Goal (E5, 

Scenario 2) 

 Test Adequacy Test Cost Application Domain 

Test Adequacy 1 6 2 

Test Cost 0.17 1 0.25 

Development Stage 0.5 4 1 

Consistency Ratio =0.0086 

 
Normalized Matrix of the main criteria with respect to Goal (E5, Scenario 2) 

 

Test Adequacy 
Test 

Cost 

Application 

Domain 
Eigenvector 

Test Adequacy 0.59 0.59 0.59 0.587583 

Test Cost 0.09 0.09 0.09 0.089043 

Application Domain 0.32 0.32 0.32 0.323374 

 

 

Pair-wise Comparison Matrix of the sub-criteria with respect to Test 

adequacy (E5, Scenario2) 

 Fault Coverage Clock Region Coverage 

Fault Coverage 1 2 

Clock Region Coverage 0.5 1 

Consistency Ratio =0.00 
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Normalized Matrix of the sub-criteria with respect to Test adequacy (E5, Scenario2) 

 Fault Coverage Clock Region Coverage Eigenvector 

Fault Coverage 0.67 0.67 0.666667 

Clock Region 

Coverage 
0.33 0.33 0.333333 

 

 

Pair-wise Comparison Matrix of the sub-criteria with respect to Test 

Cost (E5, Scenario2) 

 Test Traces Length Test Execution time 

Test Traces Length 1 0.17 

Test Execution time 6 1 

Consistency Ratio =0.00 
 

Normalized Matrix of the sub-criteria with respect to Test Cost (E5, Scenario2) 

 Test Traces Length Test Execution time Eigenvector 

Test Traces Length 0.14 0.14 0.14298 

Test Execution time 0.86 0.86 0.85702 

 

 

Pair-wise Comparison Matrix of the sub-criteria with respect to Application 

domain (E5, Scenario 2) 

 Importance Complexity Development Stage 

Importance 1 3 4 

Complexity 0.33 1 3 

Development Stage 0.25 0.33 1 

Consistency Ratio =0.0629 

 

Normalized Matrix of the sub-criteria with respect to Application domain (E5, 

Scenario 2) 

 Importance Complexity Development Stage Eigenvector 

Importance 0.61 0.61 0.61 0.614469 

Complexity 0.27 0.27 0.27 0.268324 

Development Stage 0.12 0.12 0.12 0.117206 

 

 

 


