

Software Engineering: Testing Real-Time

Embedded Systems Using Timed Automata

Based Approaches

A Thesis submitted for the degree of Doctor of Philosophy

By

Mohammad Saeed Abou Trab

Department of Information Systems and Computing,

Brunel University

May 2012

i

ABSTRACT

Real-time Embedded Systems (RTESs) have an increasing role in controlling

society infrastructures that we use on a day-to-day basis. RTES behaviour is not

based solely on the interactions it might have with its surrounding environment,

but also on the timing requirements it induces. As a result, ensuring that an RTES

behaves correctly is non-trivial, especially after adding time as a new dimension

to the complexity of the testing process. This research addresses the problem of

testing RTESs from Timed Automata (TA) specification by the following. First, a

new Priority-based Approach (PA) for testing RTES modelled formally as

UPPAAL timed automata (TA variant) is introduced. Test cases generated

according to a proposed timed adequacy criterion (clock region coverage) are

divided into three sets of priorities, namely boundary, out-boundary and in-

boundary. The selection of which set is most appropriate for a System Under Test

(SUT) can be decided by the tester according to the system type, time specified for

the testing process and its budget.

Second, PA is validated in comparison with four well-known timed testing

approaches based on TA using Specification Mutation Analysis (SMA). To enable

the validation, a set of timed and functional mutation operators based on TA is

introduced. Three case studies are used to run SMA. The effectiveness of timed

testing approaches are determined and contrasted according to the mutation score

which shows that our PA achieves high mutation adequacy score compared with

others.

Third, to enhance the applicability of PA, a new testing tool (GeTeX) that deploys

PA is introduced. In its current version, GeTeX supports Control Area Network

(CAN) applications. GeTeX is validated by developing a prototype for that

purpose. Using GeTeX, PA is also empirically validated in comparison with some

TA testing approaches using a complete industrial-strength test bed. The

assessment is based on fault coverage, structural coverage, the length of generated

test cases and a proposed assessment factor. The assessment is based on fault

ii

coverage, structural coverage, the length of generated test cases and a proposed

assessment factor. The assessment results confirmed the superiority of PA over

the other test approaches. The overall assessment factor showed that structural and

fault coverage scores of PA with respect to the length of its tests were better than

the others proving the applicability of PA.

Finally, an Analytical Hierarchy Process (AHP) decision-making framework for

our PA is developed. The framework can provide testers with a systematic

approach by which they can prioritise the available PA test sets that best fulfils

their testing requirements. The AHP framework developed is based on the data

collected heuristically from the test bed and data collected by interviewing testing

experts. The framework is then validated using two testing scenarios. The decision

outcomes of the AHP framework were significantly correlated to those of testing

experts which demonstrated the soundness and validity of the framework.

iii

ACKNOWLEDGEMENTS

Foremost, I would like to express my sincere gratitude to my supervisor Dr Steve

Counsell for the continuous support, patience, motivation and advice. His

guidance helped me conducting this study, communicating with academics and

writing of the Thesis. I could not have imagined having a better or friendlier

supervisor.

It is also an honour for me to express my deep thanks to Professor Robert Hierons.

His valuable and immense comments and advices gave me more insight through

the research area.

I am also grateful to the academic staff in Northumbria University especially Dr

Michael Brockway, Dr David Kendall, Dr William Henderson and my sincere

PhD colleague Ali Mohammad. Their help in offering me a Lab access and

providing me with all needed documents and advice is much counted and

appreciated.

I wish to extend my warmest thanks to all academic staff and colleagues

especially those who have helped me with my study in the Department of

Information Systems and Computing in Brunel University.

I owe my loving thanks to my wife Nesreen and my kids Sameer and Seema. It

would have been impossible for me to finish this study without their continuous

support, encouragement and understanding. My special gratitude is due to my

brother, my sister and their families for their loving support.

Last but not least, the financial support of Damascus University in Syria, my

beloved Country, is gratefully acknowledged.

iv

DEDICATION

This Thesis is dedicated to my parents Sameer and Amal for

all these years they spent taking care of me. There are no

words that can sufficiently describe their constant source of

support, emotions and efforts during my postgraduate years.

My achievements would certainly not have existed without

them.

v

ABBREVIATIONS

AF Assessment Factor

AHP Analytical Hierarchy Process

ANP Analytical Network Process

ASP Adding a new Starting Point of a clock

B Boundary set

BCT Boundary Checking Technique

BDD Binary Decision Diagram

CAN Controller Area Network

CE Coupling Effect

CFG Control Flow Graph

CI Consistency Index

CPH Competent Programmer Hypothesis

CR Consistency Ratio

CRC Clock Region Coverage

CSP Communicating Sequential Process

CSS Communication and Concurrency Systems

DBM Difference Bound Matrix

DEA Data Envelopment Analysis

DMU Decision Making Units

DOM Document Object Model

DS Distinguishing Sequences

ECC Extending Clock Conditions

EFSM Extended Finite State Machine

EIA Exchanging Input Actions

EIP Exchanging Input Parameters

EOA Exchanging Output Actions

EOP Exchanging Output Parameters

ERA Event Recording Automata

vi

FC Fault Coverage

FSM Finite State Machine

GA Grid Automata

IB In-Boundary set

ioco Input-Output Conformance

K-T Decision

Analysis

Kepner-Tregoe Decision Analysis

LTL Linear-time Temporal Logic

LTS Labelled Transition System

MAT Mutation Analysis Technique

MAUT Multi-Attribute Utility Theory

MBT Model-Based Testing

MSC Message Sequences

NCC Narrowing Clock Conditions

NCR Number of Clock Regions

NRC Not-Resetting a Clock

OB Out-Boundary set

PA Priority-based Approach

PFSM Probabilistic Finite State Machine

RA Region Automata

RC Resetting a Clock

RSP Removing an existing Starting Point of a clock

RTC Restricting Timing Constraints

RTES Real-Time Embedded System

rtioco Relativized Timed Input Output Conformance

SCC Shifting Clock Conditions

SCT State Characterization Technique

SDL Specification and Description Language

SM Scalable Method

vii

SMA Specification Mutation Analysis

SMAR Simple Multi-Attribute Ratio technique

STC Shifting Timing Constraints

SUT System Under Test

TA Timed Automata

TDL Transferring Destination Locations

TET Test Execution Time

TIOA Timed Input Output Automata

tioco Timed Input-Output Conformance

TP Transition Path

TTI Timed Trace Inclusion

TTL Test Traces Length

TTS Timed Transition System

TTTS Testable Timed Transition System

UIO Unique Input Output

UTA UPPAAL Timed Automata

WP Working Piece

WTC Widening Timing Constraints

XML eXtensible Mark-up Language

ZG Zone Graph

i

LIST OF PUBLICATIONS

Aboutrab, M. S. and Counsell, S. (2010) Fault Coverage Measurement of a Timed Test

Case Generation Approach. 17th IEEE International Conference on the

Engineering of Computer-Based Systems, Oxford, UK, pp. 141-149.

Aboutrab, M. S., Alrouh, B., Counsell, S., Hierons, R. and Ghinea, G. (2010) A Multi-

criteria Decision Making Framework for Real Time Model-Based Testing.

Testing – Practice and Research Techniques, London, UK: Springer Berlin /

Heidelberg, pp. 194-197.

Aboutrab, M. S., Counsell, S. and Hierons, R. M. (2011) GeTeX: A Tool for Testing

Real-Time Embedded Systems Using CAN Applications. 18th IEEE

International Conference on the Engineering of Computer-Based Systems, Las

Vega, USA, pp. 61-70

Aboutrab, M. S., Counsell, S. and Hierons, R. M. (2012) Specification Mutation Analysis

for Validating Timed Testing Approaches Based on Timed Automata. IEEE

Signature Conference on Computers, Software, and Applications (COMPSAC

2012), Izmir, Turkey (accepted).

Aboutrab, M. S., Brockway, M., Counsell, S. and Hierons, R. M. (2012) Testing Real-

time Embedded Systems using Timed Automata Based Approaches. Journal of

Systems and Software (under second review).

Aboutrab, M. S., Alrouh, B., Counsell, S., Hierons, R. and Ghinea, G. (2012) Prioritising

Timed Automata Based Test Sets: A Multi-Criteria Decision Making Approach.

Journal of Systems and Software (submitted).

ii

TABLE OF CONTENTS

Chapter 1: Introduction ... 1

1.1 TOPIC OVERVIEW ... 1

1.2 RESEARCH MOTIVATION .. 3

1.3 RESEARCH AIM AND OBJECTIVES ... 5

1.4 SUMMARY OF THE CONTRIBUTIONS ... 6

1.5 THESIS OUTLINE ... 7

Chapter 2: Literature Review .. 10

2.1 OVERVIEW ... 10

2.2 SOFTWARE TESTING ... 11

2.3 TEST SELECTION PRINCIPLES ... 12

2.3.1 Test Selection Strategies .. 13

2.3.2 Mutation Analysis Technique (MAT) ... 14

2.4 TESTING TYPES .. 16

2.5 FORMAL METHODS IN SOFTWARE TESTING ... 19

2.6 FORMAL VERIFICATION .. 20

2.6.1 Model Checking ... 20

2.6.2 Formal Verification and Testing .. 21

2.7 MODEL-BASED TESTING (MBT) .. 22

2.7.1 Specification Formal Languages ... 25

2.7.2 Conformance Relations .. 30

2.7.3 Specification Mutation Analysis ... 32

2.8 TIMED AUTOMATA BASED TESTING ... 34

2.8.1 Timed Automata Specification Language .. 35

2.8.2 Timed Automata Abstraction Methods ... 38

iii

2.8.3 TA Test Selection .. 40

2.8.4 TA Test Generation .. 42

2.8.5 Timed Conformance Relations ... 44

2.8.6 Related Work .. 45

2.8.7 Motivation for Automatic Testing from a TA 50

2.9 SUMMARY .. 51

Chapter 3: A Priority-Based Approach for Testing Real-Time Embedded

Systems ... 53

3.1 OVERVIEW ... 53

3.2 PROBLEM AREA ... 54

3.3 PRELIMINARIES .. 56

3.3.1 Timed Automata (TA) ... 56

3.3.2 Clock Region Abstraction .. 60

3.4 TIMED ADEQUACY CRITERION: CLOCK REGION COVERAGE (CRC) 62

3.4.1 CRC Considerations .. 63

3.4.2 Number of Clock Regions (NCR) ... 65

3.4.3 Feasibility Issue of CRC... 69

3.5 PRIORITY-BASED APPROACH (PA) ... 71

3.5.1 Test Hypotheses .. 72

3.5.2 Test Selection ... 72

3.5.3 Test Generation Algorithms ... 74

3.6 EMPIRICAL VALIDATION .. 78

3.6.1 Mutation Operators for TA .. 79

3.6.2 Mutation Execution .. 82

3.6.3 Mutation Analysis .. 83

iv

3.6.4 TA-based Testing Approaches ... 84

3.6.5 Case Studies ... 86

3.6.6 Results and Discussion ... 88

3.7 SUMMARY .. 95

Chapter 4: Automatic Test Case Generation and Execution using the

Priority-Based Approach ... 97

4.1 OVERVIEW ... 97

4.2 PROBLEM AREA ... 98

4.3 PRELIMINARIES .. 100

4.3.1 Timed Input Output Conformance Theory (tioco) 101

4.3.2 Controller Area Network (CAN) .. 102

4.4 GETEX TOOL DEVELOPMENT .. 103

4.4.1 GeTeX Design .. 103

4.4.2 GeTeX Implementation .. 106

4.4.3 GeTeX Trail .. 109

4.5 TESTING ASSESSMENT CRITERIA .. 114

4.5.1 Structural Coverage Assessment Criterion (CRC) 114

4.5.2 Fault Coverage Assessment Criterion (MAT) 115

4.5.3 Test Traces Length Assessment Criterion (TTL) 118

4.5.4 Combined Assessment Factor (AF) .. 119

4.6 EMPIRICAL ASSESSMENT BASED ON A COMPLETE TEST BED 120

4.6.1 Production-Cell Test Bed ... 120

4.6.2 Specification Models .. 122

4.6.3 Test Generation and Execution .. 126

4.6.4 Assessment Discussion ... 130

v

4.6.5 Lessons Learned and Problems Encountered 132

4.7 SUMMARY .. 134

Chapter 5: A Multi-Criteria Decision Making Approach for Prioritising the

Test Sets of the Priority-Based Approach ... 135

5.1 OVERVIEW ... 135

5.2 PROBLEM AREA ... 136

5.3 PRELIMINARIES .. 138

5.3.1 Decision Making Methods.. 138

5.3.2 Analytical Hierarchy Process (AHP) ... 141

5.4 THE AHP FRAMEWORK .. 146

5.4.1 Decision Problem ... 146

5.4.2 Decision Alternatives ... 147

5.4.3 Decision Criteria .. 147

5.4.4 Data Collection .. 150

5.4.5 Raised Power Matrices .. 155

5.4.6 Normalised Matrix and Eigenvector .. 155

5.5 TESTING SCENARIOS ... 157

5.5.1 Scenario 1: Control System .. 158

5.5.2 Scenario 2: Medical System ... 163

5.6 SUMMARY .. 168

Chapter 6: Conclusions .. 169

6.1 TOPIC OVERVIEW ... 169

6.2 RESEARCH SUMMARY .. 170

6.3 MEETING THE RESEARCH OBJECTIVES ... 172

6.4 SUMMARY OF RESEARCH CONTRIBUTIONS .. 173

vi

6.4.1 Timed Adequacy Criterion (CRC) .. 173

6.4.2 Priority-based TA-based Testing Approach (PA) 174

6.4.3 Specification Mutation Analysis ... 175

6.4.4 The application of TA-based Approaches on an industrial-strength Test

Bed... 175

6.4.5 A multi-Criteria Decision Making Framework 176

6.5 RESEARCH LIMITATIONS AND FUTURE WORK .. 177

6.5.1 The Class of TA Specification Model ... 177

6.5.2 Timed Adequacy Criterion ... 178

6.5.3 Case Studies ... 178

6.5.4 More insights for the Multi-Criteria Decision Making Approach 179

References .. 180

Appendix A .. 201

Appendix B .. 208

Appendix C .. 211

Appendix D .. 214

vii

LIST OF TABLES

Table ‎3.1: The count of generated test cases... 89

Table ‎3.2: SMA application on the lamp controller .. 90

Table ‎3.3: SMA application on the multimedia system .. 91

Table ‎3.4: SMA application on the phone system .. 92

Table ‎4.1: MAT Application on the control panel .. 127

Table ‎4.2: MAT Application on the conveyor .. 128

Table ‎4.3: MAT Application on the robot-in .. 128

Table ‎4.4: MAT Application on the robot-out .. 129

Table ‎4.5: Assessment results ... 129

Table ‎5.1: Comparisons of decision-making approaches 140

Table ‎5.2: Pairwise comparison scale for AHP preferences 143

Table ‎5.3: Random consistency indices .. 145

Table ‎5.4: Pair-wise comparison matrix of alternatives with respect to FC 151

Table ‎5.5: Pair-wise comparison matrix of alternatives with respect to CRC 152

Table ‎5.6: Pair-wise comparison matrix of alternatives with respect to TTL 152

Table ‎5.7: Pair-wise comparison matrix of alternatives with respect to TET 153

Table ‎5.8: Pair-wise comparison matrix of alternatives with respect to the

‘importance’‎(E1) .. 154

Table ‎5.9: Pair-wise comparison matrix of alternatives with respect to the

viii

‘complexity’‎(E4) .. 155

Table ‎5.10:‎Squared‎matrix‎of‎alternatives‎with‎ respect‎ to‎ the‎‘importance’‎(E1)

 ... 155

Table ‎5.11: Normalised matrix and eigenvector of alternatives with respect to the

‘importance’‎(E1) .. 156

Table ‎5.12: Integrated ranking of alternatives with respect to all sub-criteria

(geometric mean) .. 157

Table ‎5.13: Pair-wise comparison matrix and eigenvector of the main criteria with

respect to the decision goal (E2, Scenario 1) .. 159

Table ‎5.14: Pair-wise comparison matrix and eigenvector of the sub-criteria with

respect‎to‎the‎‘test‎adequacy’‎(E2,‎Scenario‎1) ... 159

Table ‎5.15: Pair-wise comparison matrix and eigenvector of the sub-criteria with

respect‎to‎the‎‘test‎cost’‎(E2,‎Scenario‎1) .. 160

Table ‎5.16: Pair-wise comparison matrix and eigenvector of the sub-criteria with

respect‎to‎the‎‘application‎domain’‎(E2,‎Scenario‎1) .. 160

Table ‎5.17: Integrated local and global weights for Scenario 1 (geometric mean)

 ... 161

Table ‎5.18: Final ranking results (Scenario 1) .. 162

Table ‎5.19:‎AHP‎ranking‎VS‎experts’‎ranking‎outcomes‎(Scenario‎1) 163

Table ‎5.20:‎ Kendall’s‎ and‎ Spearman’s‎ correlation‎ coefficients‎ between‎ the‎

experts’‎integrated‎ranks‎and‎AHP‎ranks‎(Scenario‎1) 163

Table ‎5.21: Pair-wise comparison matrix and eigenvector of the main criteria with

respect to the decision goal (E3, Scenario 2) .. 164

Table ‎5.22: Pair-wise comparison matrix and eigenvector of the sub-criteria with

ix

respect‎to‎the‎‘test‎adequacy’‎(E3,‎Scenario‎2) ... 165

Table ‎5.23: Pair-wise comparison matrix and eigenvector of the sub-criteria with

respect‎to‎the‎‘test‎cost’‎(E3,‎Scenario‎2) .. 165

Table ‎5.24: Pair-wise comparison matrix and eigenvector of the sub-criteria with

respect‎to‎the‎‘application‎domain’‎(E3,‎Scenario‎2) .. 166

Table ‎5.25: Integrated local and global weights for Scenario 2 (geometric mean)

 ... 166

Table ‎5.26: Final ranking results (Scenario 2) .. 167

Table ‎5.27:‎AHP‎ranking‎VS‎experts’‎ranking‎outcomes‎(Scenario‎2) 167

Table ‎5.28:‎ Kendall’s‎ and‎ Spearman’s‎ correlation‎ coefficients‎ between‎ the‎

experts’‎integrated‎ranks‎and‎AHP‎ranks‎(Scenario‎2) 168

x

LIST OF FIGURES

Figure ‎2.1: The V model of software development cycle 16

Figure ‎2.2: Testing types ... 17

Figure ‎2.3: Model-based testing with relation to other testing types 23

Figure ‎2.4: Early model-based testing .. 24

Figure ‎2.5: Formal model-based testing.. 25

Figure ‎2.6: FSM model of a traffic system ... 26

Figure ‎2.7: TA model of a train system .. 36

Figure ‎3.1: Simple lamp controller ... 60

Figure ‎3.2: Clock regions .. 63

Figure ‎3.3: Regions with one clock .. 66

Figure ‎3.4: Regions with two clocks ... 67

Figure ‎3.5: Regions with three clocks ... 69

Figure ‎3.6: Two-clock automaton ... 70

Figure ‎3.7: Feasible clock regions .. 71

Figure ‎3.8: Algorithm 1 .. 75

Figure ‎3.9: Algorithm 2 .. 77

Figure ‎3.10: Generated test cases .. 78

Figure ‎3.11: Lamp controller automaton .. 87

xi

Figure ‎3.12: Multimedia automaton .. 87

Figure ‎3.13: Phone automaton .. 88

Figure ‎3.14: Fault detection ratio of the timed testing approaches with respect to

mutation operators ... 94

Figure ‎3.15: Overall fault coverage of the timed testing approaches 95

Figure ‎4.1: GeTeX chain structure .. 104

Figure ‎4.2: XML DOM tree of PA test suite .. 105

Figure ‎4.3: GeTeX packages ... 107

Figure ‎4.4: GeTeX GUI .. 108

Figure ‎4.5: GeTeX test generation engine outcomes .. 110

Figure ‎4.6: Actions/CAN messages convertor .. 111

Figure ‎4.7: A part of the test suite log file .. 112

Figure ‎4.8: Production-cell physical layout .. 121

Figure ‎4.9: Production-cell schematic... 122

Figure ‎4.10: Load sensor automaton ... 122

Figure ‎4.11: Unload sensor automaton ... 122

Figure ‎4.12: Conveyor load sensor automaton ... 123

Figure ‎4.13: Conveyor unload sensor automaton ... 123

Figure ‎4.14: Control panel automaton .. 124

Figure ‎4.15: Conveyor automaton .. 124

xii

Figure ‎4.16: Robot-in automaton .. 125

Figure ‎4.17: Robot-out automaton .. 125

Figure ‎4.18: AF factor of each testing approach according to production-cell

components ... 132

Figure ‎5.1: AHP hierarchal model .. 146

‎Chapter 1: Introduction

 1

Chapter 1: Introduction

1.1 Topic Overview

Real-Time Embedded Systems (RTESs) have a crucial role in controlling and

monitoring modern society infrastructures. Most of them interact closely with

their environments such as transportation, air traffic control systems,

telecommunication networks and health care devices. Any failures encountered

can range from a slight system aberration to financial loss and even loss of human

life. As a result, it is necessary to thoroughly test systems to ensure that they are

as fault-free as possible before release (En-Nouaary et al., 1998; En-Nouaary and

Hamou-Lhadj, 2008; Hessel et al., 2008; Rollet, 2003).

Software testing, a widespread validation method, is a systematic method which

aims to increase confidence about software correctness. Different from other

validation methods (e.g., verification), testing is based on running software under

a controlled environment and analysing its outcomes (Rollet, 2003). In other

words, the process of testing relies on providing solid test scenarios (i.e., test

cases) that mimic the actual interactions between software and its environments to

detect any deficiencies. Testing software with more test cases thus increases the

confidence about its quality. However, testing software by all possible interaction

scenarios is infeasible due to the infinite space of input data domain. Accordingly,

test adequacy criteria are used to guide the selection of test cases by which certain

properties of software can be examined.

Testing is a complex and expensive validation activity that accounts for

approximately 50% of development costs. Many testing approaches and strategies

have been developed with the aim of minimising cost and achieving high fault

‎Chapter 1: Introduction

 2

detection capabilities. One of the most promising approaches is Model-Based

Testing (MBT). MBT can reduce test costs due to its ability to capture and

validate system behaviour from an early stage of the software development cycle;

it also promotes the use of tools to automate the process of test case generation,

execution and evaluation (Grieskamp et al., 2011). The process of MBT relies on

building models to represent system requirements. These models therefore form

an efficient source for deriving test cases and a test oracle. A system’s‎validity‎can

be thus shown by comparing actual system behaviour with the system

specification models according to conformance relations (e.g., ‘ioco’)‎(Mitsching

et al., 2009; Hessel et al., 2008; Tretmans, 1996).

To be a valid source for deriving test cases and capturing software behaviour

precisely, specification models have to be formal and rigorous (Beizer, 1990). To

formally build specification models and to represent different system behaviour,

properties, structures and domains, several formal languages have been proposed

and can be categorised as following. First, finite state-based languages include

those which are capable of presenting system behaviour in a finite set of

constructs (e.g., states, transitions, actions etc.). Finite State Machines (FSMs)

(Lee and Yannakakis, 1996), Extended Finite State Machines (EFSMs) (Ural and

Yang, 1991), Specification and Description Languages (SDLs) (ITU-T., 1997)

and Statecharts (Harel and Gery, 1997; Harel and Naamad, 1996) are some

examples in this category. Second, Process algebra languages such as

Communicating Sequential Process (CSP) (Hoare, 1985), Communication and

Concurrency Systems CCS (Milner, 1989) and LOTOS (ISO., 1989) can be used

to describe system behaviour as a set of concurrent processes. Third, Hybrid

languages such as Timed Automata (TA) (Alur and Dill, 1994) are used if a

System Under Test (SUT) shows hybrid behaviour: continuous behaviour over

time and discrete behaviour (e.g., actions). As a result, TA can be safely used for

modelling RTES behaviour that interacts with the environment using continuous

and discrete signals.

A Timed Automata (TA) (Alur and Dill, 1994) is one of the most widespread

formalisms due to its ability to express real-time behaviour of an SUT. It provides

‎Chapter 1: Introduction

 3

an easy and powerful means of extending finite-state machines with clock variables

that track timing progress and incorporate timing constraints through the state-

transition graph. The TA comprises a finite set of locations, transitions, actions,

clocks and clock conditions to represent system behaviour. Semantically, a TA

state identifies the machine location and at which time.

Testing RTESs from TA models can be a complex process due to the requirement

of checking timing in addition to functional correctness. Determining correct SUT

behaviour relies not only on its correct reactions to test cases, but also on their times

(Merayo et al., 2008; Mitsching et al., 2009; Harel and Pnueli, 1985). The process

of TA-based testing involves generating test cases according to selection criteria.

Test cases are then executed on the SUT (i.e., sent to the SUT to observe its

reactions). A suitable timed conformance relation according to which SUT observed

behaviour can be compared with the TA specification model is used. If a match

occurs, the SUT passes a test case. Otherwise, it fails (Blom et al., 2005; Hessel

and Pettersson, 2007b).

The aforementioned themes play an important role in the Thesis chapters and

contents. The next section summarises the motivation for conducting this study

which leads to the set of stated contributions (Section ‎1.4).

1.2 Research Motivation

Due to its positive properties, MBT is increasingly used in checking RTESs.

Several TA-based testing algorithms have been proposed with the aim of generating

few test cases, but with high fault detection capability. They differ from each other

in the effort expended in their use, the number of test cases they produce and their

effectiveness in detecting logical as well as timing faults (Clarke and Lee, 1997b;

En-Nouaary and Hamou-Lhadj, 2008; En-Nouaary, 2008; En-Nouaary and Dssouli,

2003). However, most of these approaches fail to explore the entire state space, are

incapable of achieving full coverage, experience the state space explosion problem,

come at a high cost in terms of expended efforts and have not been used

significantly in tools (Mitsching et al., 2009).

‎Chapter 1: Introduction

 4

Reviewing TA-based testing methods, a set of observations motivating the research

in this Thesis can be made. First, most of the proposed testing approaches rely on

generating tests using a random search of the state space or un-timed coverage

criteria (e.g., state or transition coverage). In both cases, SUT timing behaviour will

not be fully checked. The lack of a definition for a mature timed selection criterion

that sets clear rules to select timed test cases is still an issue.

Second, the power of any test suite can be determined by its fault coverage; the

higher the fault coverage, the more powerful the test suite (En-Nouaary and

Hamou-Lhadj, 2008; En-Nouaary et al., 1999). However, the capability of the

proposed approaches to detect potential timing faults has not been fully

investigated. In other words, the fault coverage of many approaches has not been

measured despite the existence of timing fault models identifying the possible faults

that might be encountered. The closest attempt to measure fault coverage discussed

the possibility of a testing approach to cover timing faults without any actual

measurements (En-Nouaary, 2008; En-Nouaary and Hamou-Lhadj, 2008; En-

Nouaary et al., 2002). One of the well-known methods of measuring fault coverage

is the application of the Specification Mutation Analysis technique (SMA). To our

knowledge, no study has addressed the application of SMA in a TA context.

Proposing well-suited mutation operators for TA becomes thus a necessity.

Third, the lack of automation is also noted in a review of relevant literature. Despite

the wide number of proposed timed testing approaches, there are few tools to

automate the timed test generation. No tools for automating the execution of tests in

a real-time context can be found. The absence of automation reduces the possibility

of applying the proposed testing approaches due to the difficulties in understanding

their mechanism and manual efforts for generating and executing test cases.

Fourth, the software community still lacks serious and detailed industrial

applications for validating the proposed timed testing approaches especially for

testing SUT timing properties. Although some industrial applications exist, the

validated testing approaches are based on testing functional behaviour using an un-

timed coverage criterion or random search in generating and executing test cases. In

other words, more industrial test beds are still necessary especially for validating the

‎Chapter 1: Introduction

 5

application of timed testing approaches that focus on testing SUT timing behaviour.

The execution of a testing approach in a real-time context induces many problems

(e.g., the time synchronisation issue) that still need to be tackled.

Fifth, due to the lack of automation and industrial application, to our knowledge, no

study has compared the performance of similar timed testing approaches on real-

world applications based on well-identified assessment criteria.

Sixth, the existence of several timed testing approaches leaves the tester with a big

decision to make on which approach most suits a testing project. The selection of

a candidate testing approach is totally dependent‎ on‎ a‎ tester’s‎ intention‎ and‎

experience. In other words, the decision may differ from one tester to another. The

existence of factors that contribute to the testing process in different ways increases

the complication of making the right decision. This implies a high risk especially

for testing safety critical systems. A formal decision-making method by which the

consistency in making decisions is guaranteed would be a contribution.

As a result, it is still important to develop techniques that can handle large real-time

specifications and generate relatively small test suites with high structural and fault

coverage.

1.3 Research Aim and Objectives

Considering the research motivation discussed in Section ‎1.2, the aim of this

research is thus:

To develop, automate and validate a flexible TA-based testing approach based on a

timed selection criterion for testing real-time embedded systems.

To fulfil this aim, a number of objectives are necessary:

Objective 1: To introduce a timed adequacy criterion for selecting timed test

cases.

‎Chapter 1: Introduction

 6

Objective 2: To develop a timed testing approach based on the TA formalism

and the proposed timed selection criterion for generating test cases

divided into different test sets.

Objective 3: To develop a tool for automating the generation and execution of

timed test cases.

Objective 4: To evaluate the proposed timed testing approach at the

specification and implementation level compared with a set of

similar testing approaches based on proposed assessment criteria.

Objective 5: To develop and validate a decision-making framework for the

proposed timed testing approach to formalise the selection of the

best test set suiting a testing project.

1.4 Summary of the Contributions

The main contributions of the Thesis are:

1- The proposal of Clock Region Coverage (CRC) as a timed adequacy

criterion for covering timing behaviour of a TA specification. The

proposal of the Priority-based Approach (PA) for generating timed test

cases from UPPAAL TA (UTA) including its algorithms, according to

CRC.

2- The validation of PA in comparison with other four similar TA testing

approaches based on SMA application. To enable the SMA application,

this study proposes timed mutation operators based on the previously

proposed timing fault models in the literature.

3- The automation of the process of test case generation, execution and report

based on PA and the‎‘tioco’‎conformance theory by the development of a

new timed testing tool, called GeTeX. GeTeX is validated using a lamp

controller prototype modelled as UTA and implemented as one of

Controller Area Network (CAN) applications.

4- A comparison between the performance of PA and two similar testing

approaches using a complete industrial-strength test bed according to

proposed assessment criteria. The use of a combined assessment factor that

‎Chapter 1: Introduction

 7

considers fault coverage, structural coverage (i.e., clock region) and the

length of test cases. Fault coverage is enhanced by the application of a

Mutation Analysis Technique (MAT) at the implementation level to

measure fault coverage of a testing approach.

5- The development of an Analytical Hierarchy Process (AHP) decision

model for prioritising PA test sets for a particular testing project. The AHP

framework is validated using two testing scenarios by examining the

degree of match between the AHP decision outcomes and those of testing

experts.

1.5 Thesis Outline

The rest of the Thesis is structured as follows.

Chapter 2 emphasises the importance of testing RTESs behaviour. Testing is

generally defined and test selection methods are discussed. The chapter also

presents an overview of testing types according to the V model and three-

dimension model. Testing suffers from a high cost in terms of time, effort and

resources. This suggests potential benefits of applying formal methods in a testing

context. Formal methods can thus be used to build software specification to be

explored and analysed to find any potential faults. The formal specification forms

a sound reference according to which the source code can be analysed and

validated either by the use of verification or testing (Model-Based Testing

(MBT)). Formal languages used to build the software specification are discussed

under three categories: Finite state-based languages, process algebra state-based

languages and hybrid languages. Checking the match between the SUT and the

specification model needs a conformance relation. The chapter thus reviews well-

known conformance relations from the literature.

As an important selection and validation method for MBT approaches, the chapter

discusses the application of Specification Mutation Analysis (SMA). Due to the

continuous and discrete behaviour of RTESs, TA is usually used for building the

specification model. As a result, TA has been discussed in terms of conformance

‎Chapter 1: Introduction

 8

relations and methods used for test selection, generation and algorithms. A set of

related work of testing from TA is presented and discussed to highlight the

research motivation of this Thesis.

Chapter 3 proposes a new component-based offline test case generation method

for RTESs modelled as UPPAAL Timed Automata (UTA). The approach called

the Priority-based Approach (PA) is based on a proposed Clock Region as a timed

adequacy criterion for generating timed test cases. To enhance the use of clock

regions, a set of mathematical equations are defined and proved to calculate the

number of clock regions to be covered by test cases. The algorithms of PA are

presented and discussed with examples. The chapter also proposes Specification

Mutation Analysis (SMA) to validate the performance of PA in comparison with

four other timed testing approaches based on TA. A set of timed and functional

mutation operators is introduced. Three TA models are used to validate the testing

approaches. The validation and comparison processes are based on the mutation

score calculated for each chosen timed testing approach with respect to the

proposed mutation operators.

Chapter 4 develops and validates a tool for automating the generation and the

execution of test cases based on PA. The tool, called GeTeX, can be considered a

complete offline testing tool which focuses on checking the correctness of SUT

timing properties according to a timed selection criterion. The chapter also runs

PA tests on an industrial-strength test bed to validate the performance of PA in

comparison with other TA-based testing approaches according to three assessment

criteria (fault coverage, structural coverage and the length of test cases). As a

result, the chapter presents a set of code-based timed and functional mutation

operators to enable the use of the Mutation Analysis Technique (MAT) for

estimating fault coverage as one assessment criterion. An assessment factor that

combines how many faults are detected and how many clock regions are covered

in terms of the length of test cases generated by a testing approach is proposed. A

set of lessons learned showing the difficulties encountered especially for testing

timing properties is then highlighted.

‎Chapter 1: Introduction

 9

Chapter 5 develops an Analytical Hierarchy Process (AHP) as a decision-making

framework for PA. The framework helps testers select available PA test sets that

best fulfil their testing requirements. The AHP framework developed is based on

data collected heuristically from the test bed and data collected by interviewing

testing experts. The chapter also validates the AHP framework by applying it on

two different testing scenarios and comparing the decision outcomes of the

framework with those of the experts.

Chapter 6 summarises the research contributions and findings. Finally, the

chapter describes the limitations of this study and opportunities for future work.

‎Chapter 2: Literature Review

 10

Chapter 2: Literature Review

2.1 Overview

Modern societies are hugely dependent on embedded systems to monitor or

control different hardware infrastructures (En-Nouaary et al., 1998).‎ ‘Embedded‎

system’‎ is‎a‎generic‎ term that refers to computerised systems interacting closely

with the real world through sensors, networks and actuators (Broekman and

Notenboom, 2003; Hessel et al., 2008). Systems like mobile phones,

transportation monitoring systems, air traffic control systems, patient monitoring

systems and many others can be considered as examples of embedded systems

(Rollet, 2003; Broekman and Notenboom, 2003). Close interactions with the

environment induce timing requirements that need to be satisfied for accepted

behaviour in the case of Real-Time Embedded Systems (RTESs) (En-Nouaary

and Hamou-Lhadj, 2008). For instance, an air bag system should inflate no more

than 0.1 second after an accident occurs. Real-time requirements increase the

complexity of developing satisfactory RTESs (Hessel et al., 2008; Zheng et al.,

2008).

Software is one of the core and most error-prone components of RTESs. Any

failures encountered can range from a slight system aberration (e.g., coffee

machine malfunction) to financial loss and even loss of human life (e.g., in safety-

critical systems) due to the time dependent behaviour. Thoroughly checking the

correctness of RTES’s software before deployment using various validation

activities (e.g., testing) therefore becomes necessary (En-Nouaary et al., 1998;

Mandrioli et al., 1995).

‎Chapter 2: Literature Review

 11

The rest of the chapter is organised as follows. Section ‎2.2 introduces the concept

of software testing. Selecting test cases is the key role of any testing approach. An

overview of the most well-known test selection principles is presented in

Section ‎2.3. Different testing methods have been used in the literature.

Highlighting some of testing categories according to the V model and three-

dimension model is introduced in Section ‎2.4. To overcome some testing

problems such as the high cost, formal methods were used as a complement to

software testing (Section ‎2.5). Formal methods are mainly used to build software

specification. The formal specification forms a sound reference by which an SUT

is verified or tested. The process of the formal verification is therefore

summarised and compared with testing in Section ‎2.6 whereas Section ‎2.7

presents the principles of Model-Based Testing (MBT). Different formal

languages used to build software specifications, conformance relations and

selection methods for MBT are discussed. Due to the continuous and discrete

behaviour of RTESs, a Timed Automata (TA) formalism is usually used for

building the specification model. As a result, Section ‎2.8 discusses testing from

TA in terms of language properties, abstraction methods, selection criteria,

conformance relations and test generation algorithms. A set of related work is also

presented and discussed to highlight the research motivation. Section ‎2.9

concludes the chapter.

2.2 Software Testing

The increasing need to develop high quality software satisfying the requirements

of users suggests the need for, and application of, sound engineering disciplines

throughout the software development cycle (Abran et al., 2003). The more

software deals with aspects of everyday life, the larger and more complex

software becomes. Issues related to faults after delivery and failing to satisfy end-

user needs are common. For years, it has been thought that delivering software

with a minimum amount of faults relies on having a good design and competent

programmers. However, experimentation has shown that it is necessary to have a

‎Chapter 2: Literature Review

 12

separate process responsible for checking software correctness, quality and

reliability (Pressman, 2010; Briones, 2007).

Testing is a systematic process of finding software errors by running the software

in a controlled environment and analysing its outcomes before its deployment

(Rollet, 2003). The more test experiments are performed, the more confidence in

the SUT’s correctness (Dijkstra, 1970). The testing process is a complex and

expensive validation activity that accounts for approximately 50% of development

costs. One strategy which significantly reduces the test cost is to decrease human

involvement and automate the test process through the use of verified testing tools

(Hierons et al., 2009; Pinto Ferraz Fabbri et al., 1994; Sugeta et al., 2004; Boehm,

1981).

The process of software testing involves the generation and execution of test cases

on software (En-Nouaary, 2008). The generated test cases need to be executed on

the SUT to collect the produced outputs. The observed outputs are then analysed

and compared with those expected according to a derived test oracle. A test oracle

can be defined as the rules by which the expected and actual outputs are compared

to decide whether the SUT is correct or not (Utting and Legeard, 2007).

2.3 Test Selection Principles

A test case represents a scenario where input data is applied to an SUT and the

consequent outputs are observed. The generation of test cases is based on the

software input domain (i.e., all possible input values). If test cases are capable of

covering the entire input domain, the SUT is thoroughly tested and a level of

confidence about the correctness of the SUT is increased. However, the input

domain from where test cases are derived in many cases is significantly large. As

a result, generating all possible test cases that cover the entire input domain is

costly and infeasible (Utting and Legeard, 2007).‎ For‎ instance,‎ let’s‎ consider‎ a‎

program whose main task is to sum two natural numbers z= x + y. One of the

possible test cases is to set x=1and y=2. Here, the input domain represents all sets

‎Chapter 2: Literature Review

 13

of natural numbers (i.e.,). The input domain in this example is clearly

infinite which makes the generation of all possible test cases impossible.

To obtain a finite number of test cases without badly affecting their fault detection

capabilities, a set of test selection hypotheses have been proposed and followed in

the literature. Some, called uniformity hypotheses (Gaudel, 1995), presume that an

SUT shows uniform behaviour under a subset of the input domain. Uniformity

hypotheses can be interpreted in different ways. One states that if an SUT

correctly behaves for some values within a certain input subset, the SUT will

behave similarly for the rest of its values. Another states that if an SUT correctly

behaves under some of input values that trigger a certain path, the SUT will

behave similarly for all input values that trigger that path. Another class of

hypotheses, called regularity hypotheses (Gaudel, 1995), imply that an SUT

shows regular behaviour when the input data size increases. In other words, if an

SUT correctly behaves for data whose sizes are 1, 2 and 3, it will show the same

correct behaviour for all data sizes. These hypotheses help in replacing the large

number of test cases by few useful representatives to test the SUT. However,

identifying those representatives is still an issue.

2.3.1 Test Selection Strategies

Based on the test selection hypotheses, several strategies have been proposed to

help select representative test cases. Firstly, equivalence partitioning strategies

(Beizer, 1990; Broekman and Notenboom, 2003) involve dividing the input

domain into a set of equivalence subdomains forming the source of the test case

derivation process. Each subdomain comprises a set of input data for which an

SUT shows uniform behaviour. In other words, all input data belonging to a

certain subdomain has an equal opportunity of detecting the same fault. As a

result, selecting one or some representative values from each subdomain can be

considered sufficient to derive efficient finite test cases.

‎Chapter 2: Literature Review

 14

Secondly, boundary value analysis strategies (Broekman and Notenboom, 2003)

can be considered complementary to the equivalence partitioning strategies. The

boundary values or their neighbours are selected for deriving test cases since

boundary values are more likely to be a fault-prone.‎Let’s‎consider‎the‎predicate‎

1< x < 3 as an example. The possibility of replacing an operation type (e.g., ‘≤’‎

for‎‘<’) or changing a boundary value (e.g., 5 instead of 3) is a fault which is more

likely to occur while coding than any other.

Thirdly, adequacy criteria selection strategies guide the selection of test cases to

satisfy an adequacy criterion (Rapps and Weyuker, 1985). The adequacy criteria

proposed can be divided into two main categories, namely structural and fault.

Structural adequacy criteria are used to select test cases that cover the structural

properties of an SUT such as statements, conditions or branches. For instance, in

statement coverage, test cases are generated based on selecting input data that

executes each statement at least once. In the indicated example (i.e., that adds two

natural numbers), a single test suffices to achieve statement coverage.

Fault adequacy criteria are used to guide the selection process of test cases to

detect a pre-defined set of faults injected into an SUT. The test strategy based on

fault adequacy criteria is called Mutation Analysis Technique (MAT) (Lipton,

1971; Jia and Harman, 2010).

2.3.2 Mutation Analysis Technique (MAT)

MAT was proposed to increase the confidence about SUT correctness. It is based

on simulating real faults in an SUT to either validate or identify adequate test data

capable of revealing such faults (Andrews et al., 2005). The process of mutation

analysis is based on two hypotheses. First, the Competent Programmer Hypothesis

(CPH) (DeMillo et al., 1978) which states that programmers are capable of

‘almost’‎ producing‎ correct‎ programs. As a result, programs developed by

competent programmers will suffer only from simple syntactical faults. Second,

the Coupling‎ Effect‎ (CE)‎ states‎ that‎ ‘test data that distinguishes all programs

‎Chapter 2: Literature Review

 15

differing from a correct one by only simple errors is so sensitive that it would also

implicitly distinguish‎more‎complex‎errors’ (DeMillo et al., 1978). In other words,

the test suite that is capable of revealing a fault represented by a single syntactical

change to the SUT can reveal more complex faults represented by any

combination of such syntactical changes.

The process of MAT comprises three main stages: mutant generation, mutant

execution and mutation adequacy analysis. Mutants (i.e., faulty versions of an

SUT) are produced by syntactically changing the SUT according to the rules

given by mutation operators. Each mutation operator is thus linked with the fault

that is to be revealed in the SUT. The generated mutants are called first-order

mutants. In the second stage, the generated mutants are executed using a given test

suite. If a mutant shows different behaviour from the correct version of the SUT,

the mutant is killed and the fault identified. Otherwise, the mutant is said to be

alive. In other words, the test suite is not capable of killing the mutant because the

test suite is not able to detect the fault or the mutant is equivalent to the SUT. The

equivalent relation implies that the SUT and the generated mutant should show

same behaviour for the whole set of the input domain. A mutation analysis oracle

seeks to achieve a high mutation adequacy score (DeMillo, 1980). The

mathematical representation of the test suite adequacy score is given by Equation

(‎2.1).

 (2.1)

On the other hand, MAT encounters difficulties; large amount of human effort

would be needed to generate and analyse large numbers of mutants. Moreover, the

identification and elimination of equivalent mutants is an un-decidable problem.

Literature suggests several solutions to reduce the cost of generating mutants and

the identification of equivalent mutants. With regards to reducing MAT cost,

several techniques have been used such as mutant sampling, mutant clustering and

selective mutation. Mutation sampling (Acree, 1980) reduces MAT cost by

‎Chapter 2: Literature Review

 16

randomly choosing a small subset of generated mutants to be executed. Mutant

clustering (Hussain, 2008) involves selecting mutants according to a clustering

algorithm. Selective mutants (Mathur, 1991) can also be applied by reducing the

number of mutation operators used. With respect to eliminating equivalent

mutants, several techniques have been used such as avoiding operators that may

generate them, using compiler optimization techniques (Baldwin and Sayward,

1979), constraint solving (Offutt and Jie, 1996) and program slicing techniques

(Harman et al., 2001).

2.4 Testing Types

Different types of testing can be categorised in terms of software development

stages according to the V model (see Figure ‎2.1).

Figure 2.1: The V model of software development cycle (Hierons et al., 2009)

The V model highlights the source information available for each test activity.

Unit testing relates directly to the code whereas integration testing depends on the

design information that identifies the available connections between SUT units

and components. In order to test the SUT as a whole, system testing is used

according to an available specification. Being confident about SUT behaviour as a

whole is not enough. Acceptance testing should be used to check whether the

developed SUT satisfies user requirements. Contributing to finding faults early in

‎Chapter 2: Literature Review

 17

the software development cycle, the V model correlates various testing activities

along with the development activities (Ammann and Offutt, 2008).

Moreover, different test types can concentrate on various SUT aspects and can be

performed at several levels to increase the overall confidence about its quality.

Figure ‎2.2 depicts different types of testing categorised in three dimensions (i.e.,

testing level, testing accessibility and testing aspects). Note that different types of

testing can be performed together (Briones, 2007).

Figure 2.2: Testing types (Briones, 2007)

With respect to which level of the SUT testing is applied, four types of testing can

be identified: unit, component, integration and system-based testing. Unit testing

checks the correctness of the smallest unit of the SUT alone (e.g., a procedure,

function or method). Component testing concentrates on testing each subsystem

individually. Integration testing checks the working order for a set of correct

components interacting with each other. To check if the system works correctly as

a whole, system testing is used (Briones, 2007; Utting and Legeard, 2007).

In addition to identifying which abstract layer of the SUT needs to be tested,

deciding which aspects of the SUT are to be fully checked is equally important.

Several testing types have been proposed that cover different aspects of the SUT

‎Chapter 2: Literature Review

 18

such as stress, robustness, performance, reliability and conformance. Stress testing

checks if the SUT has consistent behaviour under a heavy load. Robustness testing

involves investigating the reaction of the SUT under unexpected circumstances

such as inputs being out of range or hardware failure. Performance testing checks

the execution time of tasks performed by the SUT. Reliability testing ensures that

the SUT is almost fault-free before its deployment. Finally, conformance testing

aims at testing the functionality of the SUT to determine whether its behaviour

conforms to that specified (Briones, 2007; Utting and Legeard, 2007).

The third axis in Figure ‎2.2 shows two types of testing (white box and black box)

used according to the SUT visibility to the tester. White box testing is used to test

the internal structure of the SUT whose algorithms and code are visible to the

tester. Test cases are then designed using the information available about the SUT

internal structure using different test selection methods (Section ‎2.3). White box

testing is supported by a Control Flow Graph (CFG) which graphically represents

the code through its notations. As a result, test selection criteria can be

complemented through the use of CFG. The oracle problem of white box testing

concentrates on checking the correctness of SUT implemented behaviour at

various levels such as unit-based or system-based. However, white box testing

fails to check SUT behaviour according to a reference specification (Ferrante et

al., 1987; Briones, 2007; Utting and Legeard, 2007).

On the other hand, black box testing involves testing the functionality of the SUT

according to a reference specification. The SUT internal structure (e.g., code) in

black box testing is not visible to the tester. The specification forms the source

from which test cases are generated. Test cases are then sent to the SUT which

emits output sequences. Several test selection strategies can be used in the case of

black box testing such as adequacy criteria (e.g., state or transition coverage). In

contrast to white box testing, black box testing is effective in testing SUT

behaviour according to the specification but cannot guarantee whether SUT

internal behaviour is correct (Briones, 2007; Utting and Legeard, 2007; En-

Nouaary et al., 2002).

‎Chapter 2: Literature Review

 19

2.5 Formal Methods in Software Testing

Formal methods are based on mathematics and rigorous logic in building sound

artefacts (Bowen et al., 2002). Software testing and formal methods can

complement each other in several ways. Instead of using a natural language,

building the software specification using formal methods helps to remove

ambiguity and assert expected behaviour of the developed software. Faults

inherited from the specification during the software development due to

misunderstanding of expected properties and functionalities can be thus reduced.

Building a software specification using formal methods might be costly and time

consuming. However, the cost will be repaid by reducing need to redevelop the

software if it does not match user requirements (Hierons et al., 2009). Moreover, a

formal specification can be explored and analysed to find any potential faults that

might be encountered during subsequent software development activities.

Remedying faults at an early stage of the software development cycle usually has

a significant effect in reducing overall development cost (Kemmerer, 1985).

A formal specification forms a sound reference according to which source code

can be analysed and validated either through the use of proofs or testing (DeMillo

et al., 1979). Due to their capability of capturing SUT behaviour, well-defined

formal models can be used to represent software specifications. Models can

contribute to the generation process of test cases, form the basis of a test oracle

and enhance test automation. This type of testing, called model-based testing,

used to check whether SUT behaviour conforms to the specification can be cost

effective (Hierons et al., 2009; Briones, 2007; Nicolescu and Mosterman, 2009).

Although helping to express and understand abstract behaviour of software to be

developed, a formal specification does not guarantee correctness. Issues related to

a mismatch between user requirements and specification models or failing to

satisfy certain modelling properties can negatively affect the creation of formal

specifications. Formal verification can be thus used to detect such issues (Hierons

et al., 2009; Briones, 2007).

‎Chapter 2: Literature Review

 20

2.6 Formal Verification

Formal verification of the software specification is a static validation activity that

performs a complete analysis on entire specification models using various

mathematical logic. One of the most widely used approaches for software

verification is Model checking (Clarke et al., 2000).

2.6.1 Model Checking

Model checking is a verification technique often used for concurrent systems. It is

based on using various axioms such as temporal logic model checking by which

properties are constructed and automatically checked over the specification

models (Clarke et al., 1986; Queille and Sifakis, 1982). This approach is widely

supported by automated tools known as model checkers such as SPIN (Holzmann,

2003) and UPPAAL (Behrmann et al., 2004). The specification model and a

verification property are fed to a model checker to detect whether the specification

model satisfies that property. Temporal logics (Wolper, 1981; Bradfield and

Strling, 2001; Emerson, 1990) are mathematical-based languages used to define

verification properties the specification model has to satisfy. The most widespread

temporal logics used are LTL (Pnueli, 1977) and CTL (Emerson and Clarke,

1982). LTL is a linear-time temporal logic which defines properties to be checked

over the entire execution paths of the specification model. CTL is a branching-

time temporal logic which allows properties to be expressed over the entire set of

execution paths. Tool support allows these properties to be checked.

The verification process thus aims to increase the correctness of the formal

specification by asserting certain properties to be satisfied such as reachability,

safety and liveness. Reachability is considered as the simplest property that any

specification model has to satisfy. This property ensures that every state defined

within the specification model is reachable. As a result, a deadlock where the

system remains in one state for unlimited time should be detected. Safety

properties assert that the system will never express a faulty scenario. For instance,

‎Chapter 2: Literature Review

 21

for a temperature controller system, a safety property checks the possibility of a

temperature variable in the specification exceeding a specified limit according to

the requirements. Liveness properties ensure that sets of correct behaviour will

eventually happen (Behrmann et al., 2004; Bouyer, 2009).

One of the main challenges facing model checkers is the increase in the

complexity of developed systems. Increased complexity leads to more expressive

specification models (i.e., to represent all expected behaviour). As a result, those

models grow in size. Checking such models may suffer from the state explosion

problem where insufficient memory to store all possible states is available

(Hierons et al., 2009; Bouyer, 2009).

Such issues can be avoided in several ways. Model checkers use different data

structures which makes data retrieval easy and fast. For instance, a Binary

Decision Diagrams (BDD) (McMillan, 1993) data structure is used in the NuSMV

model checker (Cimatti et al., 1999) and a Difference Bound Matrix (DBM)

(Bouyer, 2009) is used in UPPAAL (Behrmann et al., 2004). Partial order

reduction (Godefroid, 1997) is another technique used to reduce the search space

of model checkers by identifying the independence of executed events resulting in

the same state. Several Model abstraction techniques can be also used to reduce

computation complexity. One is based on reducing the number of variables used

by resetting the variables when they are not in use or changing their types (e.g.,

integers to Booleans). Another technique is based on compressing the

specification model by using symbolic representation and can be used when it is

impossible to handle large systems comprising large numbers of properties (Burch

et al., 1992).

2.6.2 Formal Verification and Testing

While formal verification is a static validation activity that checks a specification

model exhaustively, software testing is a dynamic validation activity where the

SUT is executed within a real environment. Automated verification can

complement the process of software testing. The use of automated verification

‎Chapter 2: Literature Review

 22

tools such as model checkers has started to be used for automatic software testing

(En-Nouaary et al., 1999; Mandrioli et al., 1995).

Model checkers check whether a specification model of state-based systems

satisfies certain temporal properties. If a property has been violated, a counter-

example is produced. A counter-example represents the correct path suggested by

the model checker where the temporal logic holds. Counter-examples can thus

represent test candidates. Model checkers can be forced to produce counter-

examples automatically using their search algorithms (e.g., reachability analysis).

Accordingly, test cases are generated by feeding model checkers with ‘false’

temporal properties (Hierons et al., 2009; Clarke et al., 2000).

Test case generation using model checkers has been supported by the use of

several techniques. One is based on deriving temporal properties in a structural

way according to proposed testing purposes (Clarke et al., 2000). Another can

derive counter-examples (i.e., test cases) that satisfy coverage criteria such as state

and transition coverage (Hong et al., 2001; Hong et al., 2002; Hong et al., 2003).

In addition, mutating the specification model to derive counter-examples is

another technique for testing based on model checkers (Ammann et al., 1998).

Generating test cases using model checkers however suffers from several

problems. Writing temporal properties for model checkers is still a manual

process that consumes significant amounts of time. Moreover, the testing process

suffers from the state explosion problem especially when the model size grows

exponentially (Clarke et al., 2000; Hierons et al., 2009).

2.7 Model-Based Testing (MBT)

The use of models to formally represent a specification reduces ambiguity and

helps for a better understanding of SUT behaviour. The process of building

specification models has to be formal and rigorous to precisely capture SUT

behaviour (Beizer, 1990). As a result, several formal languages are used such as Z

‎Chapter 2: Literature Review

 23

(Spivey, 1992) and B (ABRIAL, 1996) that define a set of constructs and

operators to represent SUT properties.

Formal specification models are the source for software development and testing.

When test cases and a test oracle are derived from the specification model, the test

process is termed as Model-Based Testing (MBT). The process of model-based

testing can cover various testing activities at different dimensions as depicted in

Figure ‎2.3.

Figure 2.3: Model-based testing with relation to other testing types (Briones,

2007)

MBT is considered as a form of black-box testing since test cases are generated

from the specification model without accessing the implementation. MBT can also

be used at any software level (e.g., component, integration or system). However,

testing at the system level can be considered the most common use for MBT.

Moreover, using MBT for testing other software aspects such as robustness is

possible. The rationale for adopting MBT, however, is to examine conformance

between SUT functional behaviour and a reference specification model (Utting

and Legeard, 2007; Briones, 2007).

‎Chapter 2: Literature Review

 24

The use of MBT can be also clarified with connection to software development as

shown in Figure ‎2.4.

Figure 2.4: Early model-based testing (Hierons et al., 2009)

The V model clarifying the main milestones of software development can identify

the possible MBT processes that can be performed. When the specification model

has been developed, it should be validated either by a proof of correctness or the

application of verification rules. Test cases can then be derived from the validated

specification by using one of the test selection methods such as test adequacy

criteria. The generated tests are executed at the system level to detect any missing

behaviour according to the test oracle derived from the specification. The test

process can thus be managed at the specification level. The software design and

the implementation code can be verified according to the specification by building

an execution model of the code and suggesting coverage criteria. The execution

models can be verified using model checkers (Hierons et al., 2009).

MBT is deployed with the aim of achieving high fault detection capabilities and

minimising cost through early capture of system behaviour and the automation of

test case generation, execution and evaluation. Test cases are generated from the

specification and executed on the SUT. A‎system’s‎validity‎can‎thus be checked by

comparing actual system behaviour with the formal semantics representing the

‎Chapter 2: Literature Review

 25

system specification according to a conformance relation as shown in Figure ‎2.5

(Grieskamp et al., 2011; Mitsching et al., 2009; Hessel et al., 2008).

Figure 2.5: Formal model-based testing

2.7.1 Specification Formal Languages

Building specification models precisely is considered a key factor in MBT. The

application of formal methods helps us to propose formal languages for accurately

representing the specification. The syntax of such languages can be textual or

graphical. Several languages are proposed to cover the variety of SUT behaviour,

structure and domain; the most popular languages and their use in testing are

introduced in the following subsections.

2.7.1.1 Finite State-Based Languages

Finite state-based languages were necessary for presenting SUT behaviour in a

finite number of states. Languages such as Finite State Machines (FSMs) (Lee and

Yannakakis, 1996), Extended Finite State Machines (EFSMs) (Ural and Yang,

1991), Specification and Description Language (SDL) (ITU-T., 1997) and

Statecharts (Harel and Gery, 1997; Harel and Naamad, 1996) can be represented

graphically (e.g., direct graph (Aho et al., 1991)) and uses finite sets of constructs

to model system behaviour. In this subsection, we will discuss two widely used

languages in terms of testing: FSM and EFSM.

‎Chapter 2: Literature Review

 26

FSM is a formal modelling language widely used to capture control behaviour of

an SUT. An FSM comprises a finite set of constructs such as states, transitions,

input and output actions to represent system behaviour. The FSM specification

model has an initial state from which all operations start. The existence of

transitions connecting states is necessary to move the machine from one state to

another. A transition is fired when an input action is applied to the machine. An

output action is accordingly produced and the machine moves to another state. For

instance,‎let’s‎consider‎the‎FSM‎specification‎model‎of‎a‎traffic‎controller‎system‎

presented in Figure ‎2.6.

Figure 2.6: FSM model of a traffic system (Kalaji, 2010)

The machine consists of four states, eight transitions, two input actions and two

output actions. Note that each transition has a label representing a sequence of

input/output. The machine moves from the state S1 to S2 by applying an input a. A

transition t2 will‎accordingly‎be‎triggered‎and‎an‎output‎‘0’‎emitted.

An FSM has several properties that need to be considered for the testing process.

To begin with, an FSM is said to be deterministic if only one transition can be

fired by an input action regardless of the state the machine is in. On the other

hand, an FSM can be non-deterministic when more than one transition can be

fired by the same input action at a state. In addition, for every state in an FSM, if a

transition is fired due to the application of an input action, the FSM is said to be

‎Chapter 2: Literature Review

 27

completely specified. Otherwise, the FSM is described as partially specified when

not every input action can fire a transition from every state. The FSM is said to be

initially connected when any state can be reached from the initial state by the

application of an input sequence. The FSM can also be strongly connected when

any state can be reached from any other state in the machine. Moreover, the FSM

is minimal when it is not possible to replace it with an equivalent machine with

fewer states. Finally, two states of an FSM are said to be distinguishable if two

different outputs sequences can be produced as a result of applying the same input

sequence on both states. Otherwise, the two states are equivalent.

The process of MBT based on FSM might concentrate on testing a specific

transition by following three main steps. Firstly, an input sequence has to be

applied to reach the source state of the transition that needs to be tested. Adequacy

criteria can be used to guide the selection process of suitable input sequences.

Secondly, the tested transition has to be triggered by the application of a suitable

input to enable the tester to observe the resulting output. If the produced output

does not match that expected, a fault is detected. Thirdly, the destination state has

to be verified to check whether it is the correct one. A reset function that brings

the machine back to the initial state is necessary to enable testing another

transition (Kohavi, 1978; Rivest and Schapire, 1989; Hierons, 2004; Bouquet and

Legeard, 2003).

Detecting output faults is straightforward as it depends on the tester’s

observations. However, a state fault (i.e., transfer fault) would be more difficult to

detect. State identification techniques have been proposed to verify the machine

states such as Distinguishing Sequences (DS), Characterisation Sequences (W-

method) and the Unique Input Output (UIO) method.

DS (Gonenc, 1970) is an FSM-based testing method that looks for an input

sequence for identifying each state of the machine. However, it is not guaranteed

to find that sequence for some states. The W-method (Chow, 1978) is another

method to find state identification sets. This method suffers from long test

execution time due to firing the same transition several times for every input in

‎Chapter 2: Literature Review

 28

the set. UIO (Sarikaya and Bochmann, 1984) also comprises a set of input

sequences for identifying each state of the FSM by producing different output

sequences.

The main purpose of testing from an FSM is to test control behaviour of an SUT.

However, SUT behaviour cannot be merely restricted to an interaction between

sets of inputs and outputs. When SUT behaviour requires data to be presented, an

EFSM can be considered a better choice for formally modelling the specification.

An EFSM thus extends FSM with the use of variables, conditions and operations

defined on them. Two different types of variables are used in an EFSM. State

variables store the logical state such as idle. Context variables store the actual

data such as ID number.

Triggering a transition in an EFSM requires both an input action to be supplied

and conditions of context variables to be satisfied. As a result, the machine will

move to another state, an output action will be emitted and an operation on

variables will be executed. Four types of transitions can be identified:

spontaneous, non-spontaneous, conditional and unconditional. Spontaneous

transitions do not require an input action to be fired while non-spontaneous

transitions do. Conditional transitions have guards that need to be satisfied for

triggering, while unconditional ones do not. An EFSM is said to be deterministic

if at any state there is no possibility for more than one transition to be triggered.

Otherwise, an EFSM is said to be non-deterministic.

Testing from an EFSM is commonly based on deriving test cases according to test

adequacy criteria such as state coverage, transition coverage and path coverage

(Tahat et al., 2001). In state coverage, selected test cases should cover each state

of an EFSM at least once. Similarly, transition coverage ensures that generated

test cases cover each transition of an EFSM at least once. Path coverage also

generates test cases that cover all possible paths in an EFSM at least once and is

restricted to the models that do not have self-loops. Otherwise, the number of

paths will be infinite.

‎Chapter 2: Literature Review

 29

Several problems can be encountered while testing from an EFSM. A Feasibility

issue is one problem. To achieve test adequacy criteria, a suitable set of inputs that

satisfy transition predicates is required for triggering a set of transitions (i.e.,

Transition Paths (TP)). However, not all TPs are feasible for triggering. For

instance, a transition in a TP can update a variable once it is triggered in a way

makes it unable to satisfy its condition on the following transition in that TP.

Finding a feasible TP can be considered un-decidable problem (Dssouli et al.,

1999). Another problem in testing from an EFSM is finding suitable test cases

(i.e., input actions) that trigger the feasible TPs once identified (Ural and Yang,

1991). One way to overcome this problem is to abstract the data by transforming

an EFSM model to a corresponding FSM for generating test cases. Other issues

associated with this solution can be identified. For instance, the large number of

resulting FSM states may lead to a state explosion problem (Hierons and Harman,

2004; Hierons et al., 2001).

2.7.1.2 Process Algebra State-Based Languages

Process algebra languages such as Communicating Sequential Process (CSP)

(Hoare, 1985), Communicating and Concurrent Systems (CCS) (Milner, 1989)

and LOTOS (ISO., 1989) have a rich theory to describe SUT behaviour as a set of

concurrent processes.

Testing concurrent systems may use a Labelled Transition System (LTS) language

capable of describing SUT behaviour written in process algebra. An LTS supports

concurrency in the sense that the specification model is defined by concurrent

events. Events in an LTS can be observable or internal (i.e., not observable).

Implementation relations (i.e., conformance) are supported by LTS notations that

capture SUT interactions with the environment (i.e., traces of inputs and outputs).

An LTS language defines testing as an interaction process between the SUT

model and a test case model where both models are represented by LTSs. The test

case model maps a state transition system to test verdicts. The set of test cases is

called a test suite. As a result, different interactions will lead to different test

‎Chapter 2: Literature Review

 30

verdicts (e.g., pass or fail). A pass verdict can be assigned if the SUT shows

expected behaviour during a test run. Otherwise, a fail verdict is assigned. Test

cases that might require several runs on the SUT to ensure that the test verdict

persists in the presence of internal actions aim to satisfy some desirable properties

such as soundness and completeness. A test suite is sound if the correct SUT can

pass test cases and a faulty SUT can fail some of them. A test suite is complete if

passing all test cases can ensure that the SUT is correct (Tretmans, 1996; Hierons

et al., 2009; Briones, 2007).

2.7.1.3 Hybrid Languages

Most control systems (i.e., embedded systems) deal and interact with various

types of signals to control and monitor their environment via a set of actuators and

sensors within a real-time context. Continuous behaviour (e.g., time) and discrete

behaviour (e.g., actions) should be combined and represented by a single

language. Hybrid languages such as Timed Automata (TA) (Alur and Dill, 1994)

have been developed to capture such behaviour. More details about TA as a

modelling language in general and a source of generating test cases in particular

will be discussed in Section ‎2.8.

2.7.2 Conformance Relations

Determining the testing oracle is one of the most problematic issues that need to be

tackled by software testing. MBT is based on conformance relations in deriving the

test oracle from the specification. To enable the use of conformance relations

assumes that the SUT can be modelled formally in a similar way to the

specification. This test hypothesis is necessary to rectify communications between

the specification model and the SUT by considering both as formal objects. SUT

behaviour is tested by observing its reaction to test cases being applied (i.e., test

execution). The sequence of observable actions is called a test trace. Several

conformance relations to determine whether an SUT pass a test case and

accordingly decide whether SUT behaviour conforms to the specification model

‎Chapter 2: Literature Review

 31

have been proposed such as trace preorder, testing preorder, conf and ioco (Hierons

et al., 2009; Briones, 2007).

To begin with, trace preorder can be considered the simplest conformance relation.

It implies a conformance between an SUT‎ ‘i’ and‎ specification‎model‎ ‘s’ if the

observations‎ as‎ a‎ result‎ of‎ applying‎ a‎ test‎ case‎ ‘t’ on‎ ‘i’ are a subset of those

resulting‎from‎the‎application‎of‎‘t’ on‎‘s’.

Considered as a more restricting conformance relation, a testing preorder is based

on the observations made by test cases that eventually lead to deadlock. To clarify,

let’s‎denote‎tr (t, s) as a set of traces that can lead to a deadlock in the specification

model‎‘s’‎when‎applying‎the‎test‎‘t’.‎Let’s‎also‎denote‎obs(t, s) as a set of the traces

that‎can‎be‎observed‎when‎applying‎the‎test‎‘t’‎on‎the‎specification‎model‎‘s’. An

SUT‎‘i’ conforms‎to‎a‎specification‎model‎‘s’ iff for‎every‎generated‎test‎case‎‘t’,‎

 () () () () A testing preorder relation cannot

be satisfied until all possible test traces are generated and executed, and is

considered expensive.

The proposal of the conf relation overcomes the disadvantage of the testing

preorder. Test traces are generated from the specification model to check SUT

behaviour. Let us denote traces(s) as a set of all possible action sequences which

can be identified in the specification. An SUT‎‘i’ thus conforms to a specification

model‎‘s’‎iff for every generated test case ‘t’,‎ () () () and

 () () () The conf relation is concerned with detecting

any deadlock in the SUT for traces in the specification. In other words, the SUT

may have additional traces which add more functionality to the SUT but not

controlled by the specification model.

The conformance relations discussed so far have been proposed when

communications between the SUT and specification model (i.e., tester model) are

seen as synchronized actions. However, passing messages is another type of

communications between the SUT and the tester. SUT behaviour will be thus

dependent on output messages sent back to the tester. In such a case, the ioco

‎Chapter 2: Literature Review

 32

relation has been used to decide SUT correctness according to the specification

model. Let () denote the set of outputs that occur due to the

application of a test trace on the SUT ‘i’.‎ The‎ SUT‎ ‘i’ thus conforms to a

specification‎model‎ ‘s’ iff for every generated test trace () from the

specification, () (). In other words, if the

specification model states that an output can (not) be generated after the application

of the test trace, the SUT should (not) produce that output (Tretmans, 1996).

2.7.3 Specification Mutation Analysis

The test selection criteria proposed for testing (some of which were mentioned in

Section ‎2.3) can be adjusted and applied for MBT. In this subsection, the

application of Mutation Analysis Technique (MAT) in an MBT context as a method

for test selection and a method for validity is highlighted and discussed. MAT was

first proposed to validate or identify a test suite at the implementation level (white

box) with different programming languages such as Fortran (Offutt and King,

1987; Budd et al., 1978), Ada (Bowser, 1988; Offutt and Xu, 1996), C (Untch et

al., 1993), (Vilela et al., 2002) and Java (Ma et al., 2002; Ma et al., 2005).

Moreover, MAT has been successfully applied to the design level (Gopal and

Budd, 1983; Budd and Gopal, 1985). It has been referred to as Specification

Mutation Analysis (SMA). Similar to the original MAT, SMA injects single faults

into a specification model by syntactically changing the specification according to

pre-defined operators. The generated first-order specification mutants are

accordingly executed against a set of generated test traces. The specification

mutants are killed if their outputs are different from those of the original

specification. SMA is useful in validating MBT techniques by identifying their

capabilities of finding faults related to SUT functional behaviour (Budd and

Gopal, 1985; Vadim Okun 2004; Jia and Harman, 2010). Different formalisms

were then incorporated with SMA such as FSM (Pinto Ferraz Fabbri et al., 1994;

Hierons and Merayo, 2007), State Charts (Trakhtenbrot, 2007; Yoon et al., 1998),

Petri Nets (Fabbri et al., 1996) and SDL (Sugeta et al., 2004). Since then, research

‎Chapter 2: Literature Review

 33

interest in applying SMA to different specification formalisms has increased to

cover Hybrid languages (Aichernig et al., 2010).

To begin with, SMA was used as a test selection criterion for testing embedded

systems within a real-time environment (Aichernig et al., 2010). SUT hybrid

behaviour was modelled using classical action systems (Aichernig et al., 2009).

However, timing behaviour was abstracted away and replaced by temporal orders

of discrete states - a drawback of that study. A fault model comprising a set of

functional mutation operators was proposed to mutate the specification model; test

cases that would kill the mutants were then generated using a conformance

checker (Brandl et al., 2010). Pass/fail verdicts were assigned based on the ioco

relation.

Several research studies have investigated the application of SMA in the context

of FSMs. FSM-based mutation operators were introduced to validate FSM-based

specifications (Pinto Ferraz Fabbri et al., 1994). The effectiveness of W- and TT-

test methods were compared using a Transport Protocol by calculating a mutation

score. A later tool was proposed to support an automatic application of SMA

using their proposed mutation operators (Fabbri et al., 1999a). SMA on FSM was

extended to Probabilistic Finite State Machines (PFSMs) (Hierons and Merayo,

2007; Hierons and Merayo, 2009). The authors used SMA to show how test

sequences that killed mutants were generated. Other work on EFSMs has used

SMA to support the test generation process using a model checker. The mutation

operators were introduced to the temporal logic level to force the model checker

to generate a counter-example (test case) (Ammann et al., 1998).

Several mutation operators have also been produced to support SMA within the

context of statecharts (Fabbri et al., 1999b). Other sets of statecharts-based

mutation operators were also proposed to assess the quality of generated tests at

the specification as well as the implementation level (Trakhtenbrot, 2007).

The Estelle specification language is another formalism taking advantage of SMA.

SMA was applied to the Estelle language by introducing a set of mutation

‎Chapter 2: Literature Review

 34

operators. The validation of tests generated from Estelle-based specifications was

studied using an Alternating-bit protocol specification model (Souza et al., 1999).

A testing technique was also proposed based on the application of SMA on an

Estelle-directed Mutation based Protocol Testing (E-MPT). It first generated the

mutants from the Estelle-based specification and converted them into C programs

using the Estelle compiler. The programs were then executed and the acquired

results were compared (Probert and Guo, 1991).

Besides FSM, EFSM, Statecharts and Estelle, several applications of SMA on

other specification formalisms exist. SMA was used to measure the effectiveness

of the test suite generated from the formal Calculus language (Gopal and Budd,

1983; Budd and Gopal, 1985). Similar work used a refinement class of the

calculus language (Aichernig, 2003). An automatic testing approach based on an

algebraic specification was also introduced (Woodward, 1992; Woodward, 1993;

Woodward and Halewood, 1988). SMA was applied to Petri Net specifications by

Petri Net-based mutation operators (Fabbri et al., 1996). A set of mutation

operators was proposed for SDL specifications. SMA and its dependent testing

approach were illustrated using the Alternating-Bit protocol (Sugeta et al., 2004).

SMA was also used for generating test cases from SDL specification (Kov et al.,

2003) and validating Lotos-based specifications (Bousquet et al., 2000).

2.8 Timed Automata Based Testing

Testing RTESs is a complex process due to the requirement for checking timing

correctness. The number of test cases could be infinite if they are generated and

executed within different time intervals. As a rigorous approach, MBT has been

used for testing RTESs. Test cases are generated from a reference specification and

sent to the RTES SUT. Correct behaviour of the SUT is dependent on its correct

reaction to test cases and on their times. In other words, MBT requires testing

timing and functional behaviour of the SUT (Merayo et al., 2008; Mitsching et al.,

2009; Harel and Pnueli, 1985). The process of timed MBT includes several steps.

Firstly, since a specification specifying SUT desired behaviour is responsible for

‎Chapter 2: Literature Review

 35

guiding the testing process, an appropriate formal language capable of capturing

real-time behaviour should be used. Secondly, test cases should be generated

according to selection criteria. Thirdly, suitable conformance relations according to

which real-time behaviour of the SUT is considered correct should be selected and

used. Finally, test generation algorithms that automate test cases are also proposed

(Blom et al., 2005; Hessel and Pettersson, 2007b).

2.8.1 Timed Automata Specification Language

Timed Automata (TA) (i.e., timed safety automata) (Alur and Dill, 1994) is one of

the most widespread formalisms due to its ability to express real-time behaviour of

an SUT. It provides an easy and powerful means of extending finite-state machines

with clock variables that track timing progress and incorporates timing constraints

through the state-transition graph.

A TA comprises a finite set of locations, transitions, actions, clocks and clock

conditions to represent SUT behaviour. TA locations represent the position that a

machine is currently in. A TA specification model has an initial location where

the operations on the model start and its clocks restart. Semantically, a TA can use

an LTS to represent TA states that identify the machine location and at what time.

A TA thus has an infinite state space. Clock conditions constraining SUT

behaviour are used over transitions (i.e., clock guards) or locations (i.e.,

invariants). Clock guards are used to constrain firing transitions. Location

invariants are applied to assert progress by which the machine is not permitted to

stay in a location for an unlimited time. The existence of transitions connecting

locations is necessary to move the machine from one state to another. Triggering a

transition will require both an action to be supplied and clock guards to be

satisfied. As a result, the machine will move to another state and the clock value

reset. SUT behaviour is thus shown as sequences of transition executions (i.e.,

traces) (Hessel et al., 2008; Alur and Dill, 1994; Bengtsson and Yi, 2004).

Figure ‎2.7 presents the TA model of a train system. It consists of five locations,

six transitions and one clock. A train informs the gate before approaching it. If the

‎Chapter 2: Literature Review

 36

gate is open, the train will be allowed to cross and leave. Otherwise, the train has

to stop and wait for a gate signal. Once that is received, the train is allowed to

cross and leave.

Figure 2.7: TA model of a train system

For instance, the train can move from the ‘Start’‎ location‎to‎ the ‘Cross’‎ location‎

by triggering‎ the‎ transition‎ connecting‎ them.‎ The‎ train‎ has‎ to‎ leave‎ the‎ ‘Start’‎

location up‎to‎‘15’‎time‎units‎and‎the‎transition‎can‎be‎triggered‎within‎‘7’‎time‎

units.

Several classes of TA formalisms have been proposed with different properties

representing a wide range of applications. When a TA can classify actions as

inputs or outputs, a TA is called as a Timed Input Output Automata (TIOA)

(Nicollin et al., 1992; Lynch and Attiya, 1992; Springintveld et al., 2001). Outputs

are‎ usually‎ marked‎ with‎ ‘!’‎ while inputs are marked‎ with‎ ‘?’. TAs can also

communicate with other TAs through a range of concurrent clocks and actions

comprising a Network of Timed Automata (NTA). The TA model of the train

system in Figure ‎2.7 is an‎ example‎ of‎ an‎NTA‎by‎ replacing‎ ‘id’‎with‎ a certain

number (e.g., ‘6’).‎In‎other‎words,‎a‎vector‎of‎six‎trains‎interacting‎together‎is so

formed. Such an example clarifies the importance of the network representation as

it serves real applications such as the train monitoring system. To analyse the

NTA, a parallel composition is used to combine all network models into one

‎Chapter 2: Literature Review

 37

single model. The resulting model would suffer from large number of states which

increases its complexity and analysis (Hessel et al., 2008).

Moreover, a TA can be extended with special data variables (e.g., integers or

Boolean) and certain properties (e.g., urgent channels) as in an UPPAAL Timed

Automata (UTA) (Behrmann et al., 2004) can increase TA expressiveness in

modelling more applications. One of the main advantages of UTA is the

possibility of modelling the SUT environment separately. Identifying the actual

interactions between the SUT and its environment can thus reduce the number of

test cases generated for a specific environment rather than for all possible

environments (Hessel et al., 2008). An Event Recording Automata (ERA) is

another class of TA (Alur et al., 1999). Similar to TA, an ERA consists of actions

and a set of clocks used to constrain transitions. However, in the ERA model, each

clock, called an event clock, monitors a unique action called an event. The event

clock thus measures the elapsed time since the last execution of its event. Once

the event has occurred, its clock is automatically reset.

Similar to FSM, a TA specification can be deterministic if there is only one

transition enabled, regardless of the location the system is in or at which time.

Otherwise, the TA is declared as non-deterministic. For instance, Figure ‎2.7

presents a non-deterministic‎ TA‎model.‎ At‎ ‘Appr’‎ location, two transitions are

enabled‎at‎‘10’‎time‎units.‎Non-determinism allows flexibility in modelling SUT

behaviour but negatively contributes to the test generation process; it is not known

how the SUT responds to a test case.

Another class of TA where outputs are isolated and urgent has been suggested. In

this class, it is permitted for only one isolated output to be emitted at any given

location. Moreover, urgent outputs, if they exist, can be emitted at no time (i.e.,

without allowing any time to pass). The expressivity of the TA can thus be

affected; a case such as ‘if‎an SUT receives an input, an output a or output b can

be emitted with certain time’ cannot be presented.

‎Chapter 2: Literature Review

 38

In terms of inputs, a TA can be input-complete by allowing any state to accept

inputs. In addition, a non-blocking TA does not block time even if a TA doesn’t‎

receive any input. A TA can be also fully observable or partially observable. The

former uses only actions that can be externally observed to trigger transitions. The

latter permits the use of internal actions to increase TA expressiveness. For

instance,‎the‎transition‎connecting‎‘Start’‎and‎‘Cross’‎in‎Figure ‎2.7 is triggered by

an un-observable action (Krichen and Tripakis, 2005; Krichen and Tripakis,

2004).

The clock variables used in a TA formalism can also be represented by several

models such as a discrete-time model, fictitious clock model and dense-time

model. Clocks in a discrete-time model are represented by integer variables.

Clocks defined for a TA run with the same speed. The use of this clock model can

be useful in digital circuits where actions are taken just after the arrival of a clock

signal. A discrete-time model which approximates the time to the nearest integer

would limit the time accuracy especially for very sensitive time-dependent

behaviour. A Fictitious clock model is similar to the discrete-time model where

clocks are represented by a sequence of integer variables. Actions occur in a real-

time context but only the upper nearest integer values of clocks are recorded.

More naturally, a dense-time model considers clocks as real values. Time

increases without any bound. Using a TA with a dense-time model complicates

the test generation process due to its infinite clock values (Alur and Dill, 1994).

2.8.2 Timed Automata Abstraction Methods

The more we increase the expressiveness of a TA, the more applicable the TA

formalism and the more difficult to check its behaviour (especially for non-

deterministic ones). For instance, a non-deterministic TA supported with a

continuous-time model can be chosen to model an SUT. This would enhance the

modelling process but result in an infinite state space leading to the state

explosion problem. Choosing the class of TA to model the specification thus has a

great impact on verifying or testing SUT behaviour. To avoid the state explosion

‎Chapter 2: Literature Review

 39

problem, several model abstraction methods have been proposed that can reduce

the SUT state space without greatly affecting its behaviour, such as regions and

zones.

To begin with, defining a proper equivalence relation (Alur and Dill, 1994;

Larsen and Wang, 1997) enables the classification of equivalent states into groups

or regions. The proposed relation depends on the fact that several states can be

similar in terms of the actions applied and transitions enabled. Each region thus

contains all states that make a TA respond with same behaviour. Having regions

instead of states, the TA with infinite state space is replaced by Region Automata

(RA) with a finite set of regions. The RA serves as a good replacement for the TA

for the verification and testing process. However, the equivalence relation

partitioning the state space is considered as fine-grained. In other words, the

number of regions produced may be very large and lead to the state explosion

problem. In fact, the number of regions grows fast with respect to both the number

of clocks used in a TA and their upper bounds. For instance, the number of

regions in the case‎ of‎ one‎ clock‎ with‎ ‘1’‎ as‎ an‎ upper‎ bound‎ is‎ ‘8’‎ regions.‎

However, the number of regions in the case‎of‎ two‎clocks‎with‎ ‘1’‎ as‎ an‎upper‎

bound‎for‎both‎is‎‘18’‎(Bengtsson and Yi, 2004). One of the solutions proposed to

overcome this problem is to reduce the number of clocks used in a TA (Daws and

Yovine, 1996).

A coarser equivalence relation for partitioning the state space is proposed for an

ERA. Similar states are accordingly categorized in equivalent classes from where

test cases are generated. The partitioning relation depends on clock valuations of

ERA states by which two states belong to one class if they enable the same

transitions. The abstracted specification graph preserving all SUT behaviour

consists of states representing a set of locations and equivalent classes (Nielsen

and Skou, 2003; Briones and Röhl, 2005).

Another abstraction method depends on much coarser partitioning of the state

space by forming zones. A zone can contain all states satisfying a clock constraint.

As a result, a zone which does not depend on the number of clocks and is

‎Chapter 2: Literature Review

 40

represented by DBMs can lead to a more compact model. Replacing the infinite

state space with finite zones provides a Zone Graph (ZG) which identifies zones

in a symbolic way. Each symbolic state in ZG will thus consist of a location and

zone. Similar to the RA, a ZG may also be infinite if clock values are unbounded.

To solve this problem, a maximum constant is assigned. All clock values below

this constant will be used in zones but the larger values will be disregarded. In

other words, further state abstraction is applied to reduce the number of zones

(Bengtsson and Yi, 2004; Briones, 2007).

2.8.3 TA Test Selection

Real-time impacts all steps of the testing process. A TA formal specification used

to present a real-time specification of an SUT forms the source of test cases. It is

not possible to thoroughly test SUT real-time behaviour due to an infinite state

space. The correct selection of which parts of the specification to be tested plays a

key role in efficiently testing such systems. Several test selection methods are

used in testing RTESs similar to those used in testing un-timed systems (e.g., test

purposes, structural and fault adequacy criteria) (Hessel et al., 2008).

2.8.3.1 Test Purpose

A test purpose is considered as specific behaviour of the SUT that needs to be

fully checked. A test purpose is modelled in several ways. One can be represented

as a property to be checked in the specification using model checkers (Hessel et

al., 2003). Another might involve representing test purposes as extra flags added

to specification models (Hessel et al., 2008). Moreover, a special formal

representation can initially be used such as Message Sequences (MSC-2000). The

Message Sequences are then converted to suit the formal language used for

modelling the specification (En-Nouaary and Liu, 2004). Test purposes can also

be used as a test selection method for non-deterministic TA models (Bertrand et

al., 2011a). However, a method such as a game approach may be required for

transforming the non-deterministic model to a deterministic one (Bertrand et al.,

‎Chapter 2: Literature Review

 41

2011b). Using test purposes as a test selection method reduces the number of

generated tests because checking of the entire specification is not required.

However, generated test cases cannot guarantee efficient fault detections.

2.8.3.2 Structural Adequacy Criteria

Adequacy criteria are often used in testing to assess the level of thoroughness of a

test suite. The aim is to measure to what extent test cases cover a specification

model. Different types of adequacy criteria are discussed and used for testing un-

timed systems. However, the research line concerning timed adequacy criteria in the

literature still suffers from immaturity (Hessel et al., 2008). As a result, un-timed

adequacy criteria were adopted in selecting test cases from a TA such as location,

edge and definition-use coverage criteria (Hessel et al., 2008).

Location coverage selects test cases visiting each location of a TA at least once.

Edge coverage emphasises the selection of test cases that traverse all transitions in

a TA model. Where location and edge coverage target the structural components

of a specification model, definition-use coverage criterion focuses on the data

level. This coverage criterion is suitable for an extension class of TA such as UTA

but not for a regular TA model where no data is used. The idea of definition-use

coverage is to select test cases that trigger a test path from where a data variable

has been defined to where it has been used (Hessel et al., 2008).

2.8.3.3 Fault Adequacy Criteria

The effectiveness of test cases can be measured by their ability to detect major

faults in an SUT (i.e., fault coverage). Fault coverage is used for measuring the

power of derived test cases. As a result, test generation methods can be compared

and validated according to fault coverage. However, if fault coverage is used as a

basis for selecting test cases, the number of generated test cases will be

dramatically reduced. To facilitate this concept, the potential faults an SUT might

suffer from should be clearly defined in a fault model (En-Nouaary et al., 1999;

Wang et al., 2009; Clarke and Lee, 1997b). The fault model is usually consistent

‎Chapter 2: Literature Review

 42

with the specification formal language. In other words, faults are defined using the

same formal language as the specification. For instance, a fault model using a

constraint graph is similar to the system specification (Clarke and Lee, 1997b).

In a TA, two kinds of faults were defined according to a proposed fault model;

namely functional and timing faults. Three types have been proposed in terms of

timing faults. Firstly, a clock-reset fault occurs in an SUT whenever a clock is

reset or not reset in an opposite way to that stated in the specification. Secondly, a

time constraint restriction fault occurs in an SUT when it narrows down the

timing bounds by which it rejects inputs satisfying timing constraints defined in

the specification. As a result, the number of states in the faulty model decreases in

comparison with those of the original specification. Thirdly, the SUT has a time

constraint widening fault if it increases the timing bounds by which it accepts

inputs not satisfying timing constraints defined in the specification. Accordingly,

the number of states in the faulty model increases in comparison with those of the

specification. Functional faults, on the other hand, occur when an SUT moves to a

state which is different from that expected (i.e., transfer faults) or responds with

missing or incorrect actions (i.e., action faults) (En-Nouaary et al., 1999). Some

faults do not affect SUT correctness. One reason for this might be due to fault

masking. In other words, the occurrence of multiple faults even if they can be

detected alone, can hide faulty behaviour of an SUT (Batth et al., 2006; Uyar et

al., 2005; Wang et al., 2009).

2.8.4 TA Test Generation

Different approaches have been followed in generating timed test cases; namely

offline, online and model checking (Hessel et al., 2008). An Offline testing

approach involves generating all possible test cases using one of the test selection

methods prior to executing them on the SUT. In other words, the test generation

and execution phases are separate. Adopting an offline test generation method has

advantages and disadvantages. Test cases generated can cover several aspects of

the specification according to the selection criteria used. As a result, test cases are

‎Chapter 2: Literature Review

 43

cheap, fast and easy to execute as they are selected a priori. On the other hand,

analysing and covering the entire specification for generation test cases might

suffer from the state explosion problem. In the other words, an offline method

may not be able to handle a complex and large specification. Moreover, an offline

method cannot deal with a non-deterministic specification. Generating test cases is

based on searching for all possible paths through the specification model

according to a selection criterion. In terms of non-determinism, test cases can be

very large and the outputs cannot be predicted. In this case, use of a deterministic

class of TA is advised.

In an online testing approach, test case generation and execution processes are

performed at the same time. A test case is generated from the specification and

directly executed on the SUT; the generated output and its timing are then

compared with those in the specification. Another test case is generated and so on

until termination of the test is decided or a fault is discovered. In an online

approach, the test generator selects test cases from the specification randomly

way. Choosing an online approach has several advantages. The possibility of the

state explosion problem is dramatically decreased because only one test case

needs to be stored before execution. An online approach can also deal with non-

determinism as the generation and execution process are completed step-by-step.

The test path followed by a test case can be known according to the observed

outputs. On the other hand, a random selection of test cases does not guarantee

coverage of the entire specification and detecting all faults. The test run in an

online approach can continue for hours and even days. As a result, it is difficult to

analyse test failure when it occurs and identify its location. An efficient test

algorithm is required for dealing with RTESs where time should be accurately

synchronised between the test generation and execution processes.

Model checking is a verification method that checks the entire specification model

according to some logical properties. Using a model checker tool (e.g., UPPAAL)

can provide an easy and powerful technique for searching the state space and thus

generate test cases. In addition to producing counter-examples (as discussed in

‎Chapter 2: Literature Review

 44

Section ‎2.6.2) model checkers can guide the test generation process in

combination with other techniques. Observer, as an example, is a technique that

monitors and guides the model checker in selecting test cases according to

adequacy criteria. Each adequacy criterion is represented by an observer that

monitors the generation of test cases and replies with an acceptance if adequacy

criterion is satisfied (Blom et al., 2005).

2.8.5 Timed Conformance Relations

Several timed conformance relations have been proposed for RTESs to decide on

the correctness of their timing behaviour such as Timed Trace Inclusion (TTI),

Relativized Timed Input-Output Conformance relation (rtioco) and Timed Input-

Output Conformance relation (tioco).

To start with, TTI (Hessel et al., 2003) is a simple conformance relation used for a

restricted class of TA (i.e., deterministic with isolated and urgent outputs). The

SUT conforms to the specification iff timed traces of the SUT are a subset of those

of the specification. In other words, the SUT should not emit an output after an

input sequence if the specification does not allow it to. In a similar way, the SUT

has to emit an output or delay if the specification allows it to.

For more generic TA models, rtioco (Larsen et al., 2005a) has been proposed.

rtioco was initially derived from and applied the notion of the ioco relation. The

SUT conforms to the specification if the SUT does not have behaviour not

permitted by the specification when taking a given environment into account. In

other words, to compare the SUT and the specification, a parallel composition

with an environment model is required for both. The SUT should then produce an

output at a time when one is required by the specification. No output should be

expected from the SUT when it is not permitted by the specification. The notion

of rtioco extends that of ioco by considering time. Moreover, rtioco is more

generic than TTI since it deals with input-enabled non-blocking specifications

‎Chapter 2: Literature Review

 45

taking the environment into account. It was also used for an online testing

approach.

tioco (Krichen and Tripakis, 2009) can be considered as an another extension of

ioco. The conformance between the SUT and the specification can thus occur if

observed outputs of the SUT after any recorded behaviour must be part of all

possible observable behaviour of the specification. The observable behaviour

includes outputs and time delays. The proposal of a generic relation like tioco was

to deal with a non-deterministic partially observable specification with normal

outputs. tioco is not as strict as TTI; tioco allows the SUT to accept inputs not

defined in the specification as long as they do not contradict it.

2.8.6 Related Work

Many algorithms and methods for testing real-time systems from TA have been

proposed. However, the majority are based on un-timed selection criteria for

generating timed test cases. In addition, only a few have been supported by tools

and empirically studied (Hessel et al., 2008).

Blom et al. (Blom et al., 2005) introduced‎a‎formalism‎called‎‘Observer‎Automata’‎

to monitor and generate test cases offline. Well known un-timed coverage criteria

adopted were edge, location, definition-use pair, definition and affect-pair

coverage. The formalism was supported by developing an offline model-based test

generation tool called CO ER (Hessel and Pettersson, 2007a). CO ER developed

at Uppsala University extended the UPPAAL model checker with coverage

criteria expressed by the Observer Automata formalism. Hessel and Pettersson

(2007b) took a step further by empirically validating the observer automata based

on the UPPAAL model checker using an industrial real-time test bed based on

WAP protocol modelled as a NTA. The test bed used CO ER to automate the

generation of tests and existing tools from Ericsson for automating test execution.

The study focused on showing the process of generating and executing test cases

according to the proposed approach rather than validating its performance.

‎Chapter 2: Literature Review

 46

Although it reported some discrepancies, the testing approach was based on un-

timed coverage criteria for testing timed systems. Besides, CO ER is just a test

generation tool which needs the assistance of other tools to execute test cases on

the SUT.

A UTA was an input language for another MBT approach (Cardell-Oliver, 2000).

The generation of timed test cases involved three steps. Firstly, a UTA was

transformed into a Testable Timed Transition System (TTTS) (i.e., a deterministic

model using a discrete-time model) to capture its timing behaviour. Secondly, a

concise choice of test cases was made by the use of test views (i.e., test purposes)

to explore certain aspects of SUT behaviour. Using test views helped reduce the

number of generated test cases. Thirdly, trace equivalence was used as a notion of

conformance according to which the SUT can be declared faulty or correct. A

fault model was used in the approach to prove its fault detection capability. The

approach was also supported by a prototype of test generation tool (Glover and

Cardell-Oliver, 1999) which automated the construction of TTTS under different

test view scenarios. In spite of generating fewer test cases in comparison with

others, the testing approach cannot explore most of or identify missed SUT

behaviour. The use of test views reduces the number of tests and thus cost, but

does not guarantee SUT correctness. The fault model used in this study considered

several functional faults and omits timed ones.

UPPAAL Tron (Larsen et al., 2005b) is another timed testing tool based on the

UPPAAL model checker and UTA as an input language. In contrast to CO ER,

UPPAAL Tron is an online testing tool where test case generation and execution

take place at the same time. As a result, the choice of next inputs to be applied on

the SUT is determined randomly rather than following selection criteria.

UPPAAL Tron has been used in several industrial case studies such as the railway

signalling case study (Mitsching et al., 2009), a protocol to help secure DNS (Rütz

and Schmaltz, 2011) and the DANFOSS EKC-201 refrigeration controller (Larsen

et al., 2005b). UPPAAL Tron consumes significant time to finish and cannot

‎Chapter 2: Literature Review

 47

guarantee to find all faults, especially timed ones due to its random state

exploration.

TorX (Fitzgerald et al., 2005) is another online MBT tool that has been extended

with time. TorX is based on the timing extension of ioco conformance theory

including quiescence (i.e., the case of output absence). The drawbacks of the

UPPAAL Tron also apply. In addition, it is difficult to represent the idea of

quiescence in real-time systems (Krichen and Tripakis, 2009).

Nielsen and Skou (2001) introduced a class of TA (i.e., ERA) supported by a

prototype tool called RTCAT. The authors (Nielsen and Skou, 1998) applied a

coarse partitioning relation to reduce the state space. Symbolic reachability

analysis was then applied on the abstracted model to generate test cases satisfying

Hennessy test theory (De-Nicola and Hennessy, 1984). The application of the tool

as a timed test case generator was applied to the Philips Audio Protocol. The main

drawback of this approach was the complexity of the model used as an input

language (especially when the model was large with a high number of clocks).

Moreover, it did not guarantee the discovery of all timing faults since it followed a

coarser state partitioning class.

A more generic TA specification model permitting non-determinism and internal

actions was used as a base for generating test cases based on proposed analogue

and digital testing approaches (Krichen and Tripakis, 2005). For the analogue

testing approach, a non-deterministic TA supported with a dense-time clock

model was transformed online during the execution of test cases to a deterministic

TA. Tests were selected randomly and the tester reaction time was reduced. A

more realistic approach considered the use of digital clock models to reduce the

state space. Offline test generation can thus be supported with several test

selection criteria such as edge and state coverage. The process of test generation

was automated by developing a prototype tool ‘TTG’ and validated using a

Bounded Retransmission Protocol (Krichen and Tripakis, 2009). The authors

claimed that the approach produced few tests. However, no solid validation to

their claim was found. In addition, although the analogue approach deals with

‎Chapter 2: Literature Review

 48

non-determinism, online determinism implies risks especially with respect to

guiding the test selection process and termination of the tests. The tool also does

not support the test execution process.

Other TA-based testing approaches have yet to be automated or empirically

validated. In (Springintveld et al., 2001), a theoretical framework was proposed

for generating test cases from a Timed Input Output Automata (TIOA)

specification based on the W-method (Chow, 1978). The authors admitted that the

approach was impractical due to the high number of generated test cases for a

simple TA model.

In (En-Nouaary et al., 2002; En-Nouaary et al., 1998; En-Nouaary and Liu, 2004;

En-Nouaary et al., 1999), the authors adopted the Wp-method (Fujiwara et al.,

1991) for generating timed test cases from a TIOA model. The proposed method

relied on sampling (Larsen and Yi, 1993) the specification according to a clock

valuation equivalence rule to reduce the infinite state space. A testable automaton,

called Grid Automaton (GA), was introduced as a result of the sampling process

with the coarsest granularity related to the number of clocks. The timed

specification was then transformed to an un-timed one to enable application of the

Wp-method. The authors discussed that test cases generated could discover main

(known) timing faults. However, the number of test cases generated for a small

specification was still large, since the method aimed to cover all states of the

produced GA model.

Selecting the granularity for sampling the RA affects the size of the resulting GA

and therefore the number of generated tests. As a result, a dynamic selection of

the granularity would lead to a more compact GA. This idea was the base of a new

testing approach (Bonifácio and Moura, 2011). Tests were generated from the GA

using test purposes; a synchronous production of the specification with test

purpose models was created. The study did not address the notion of correctness

or how the specification model could be covered. Although it is a promising

approach, a robust validation along with an automated tool is still needed.

‎Chapter 2: Literature Review

 49

A TIOA supported with a discrete-time model was used for generating timed test

cases (Khoumsi et al., 2000). The test generation process involved abstracting

time by transforming the TIOA model into an un-timed one to enable the

application of the Wp-method for generating test cases. Notably, a large number

of test cases are likely to be generated, some of which might be not executable.

Another transformation from a TIOA to an FSM has been tried to ease the test

generation process. The transformation process produced an equivalent non-

deterministic model which might lead to a state explosion problem (Khoumsi,

2002). To avoid this, a TIOA was transformed to a special case of FSM called

Set-Exp automata by creating special events for representing timing behaviour

(i.e., clocks and their reset). The aim was to use the test generation approaches

proposed for un-timed systems for testing real-time ones (Ouedraogo et al., 2010).

Another study generated timed test cases from a TIOA (Fouchal et al., 2000). The

proposed approach transformed a TIOA model to an un-timed LTS to generate

test cases based on a set of test purposes. A pass, fail, inclusive (i.e., when the

SUT passes and fails the same test) notions were defined. The approach failed to

explore the state space of the specification model. Besides, no validation to the

claims of this study was presented.

En-Nouaary (2008) introduced a timed scalable testing approach based on a

TIOA. To avoid generating a large number of test cases, the GA produced was

traversed by covering each transition just twice at two time points (the earliest and

latest) to generate test cases. The approach appeared to be scalable and produced

few test cases. However, the traversal of GA to generate test cases was expensive

time-wise. In (En-Nouaary and Hamou-Lhadj, 2008), a further method for testing

real-time systems modelled as a TIOA was presented. This method generated test

cases by covering every transition of the TIOA at three different times (soonest,

latest‎ and‎ ‘between’ two executions). The authors claimed that the approach

ensured good fault coverage of the system. However, they did not validate their

claim.

‎Chapter 2: Literature Review

 50

A timed test case generation method based on the specification modelled as a

temporal logic was introduced (Mandrioli et al., 1995). However, a discrete time

model was used to represent timing behaviour. The UIOv-method for generating

test cases from a TA was introduced in (Higashino et al., 1999). The authors

presented an algorithm for selecting each executable transition. The main

drawback of this method was the amount of time consumed by the method.

Other formalisms have been used for timed test generation approaches. Similar to

the TA, a Timed Transition System (TTS) was used to model SUT behaviour and

generate timed test cases. The model used a discrete-time model to represent

timing behaviour. The process of generating test cases involved abstracting timing

behaviour by transforming a TTS to a LTS to use the W-method. This approach

produced a large number of test cases due to the large state space resulting from

the transformation (Cardell-Oliver and Glover, 1998). Clarke et al. (1997b)

introduced a testing method based on a constraint graph. Generating test cases

(Dasarathy, 1985; Taylor, 1980), the authors proved that their method achieved

full fault coverage. However, the constraint graph from which those timed test

cases were generated was not general and was restricted to the minimum and

maximum delays between two consecutive events.

It is clear that methods that provide higher coverage will tend to produce more test

cases. Moreover, the lack of a clearly defined timed coverage criterion in

generating the test cases means that the majority of timed state space is omitted.

As a result, the capability of the generated test cases for detecting timing faults is

still questionable.

2.8.7 Motivation for Automatic Testing from a TA

The application of MBT on RTESs is still considered relatively new and

complicated compared with un-timed systems. Timing behaviour which increases

the state space to be explored increases the cost by generating a large number of

test cases.

‎Chapter 2: Literature Review

 51

Many TA-based test algorithms based on TA were proposed with the aim of

generating few test cases but with high fault detection capability. They differ from

each other in the effort expended in their use, the number of test cases they produce

and their effectiveness in detecting logical as well as timing faults (Clarke and Lee,

1997b; En-Nouaary and Hamou-Lhadj, 2008; En-Nouaary, 2008; En-Nouaary and

Dssouli, 2003). However, most of these approaches fail to explore the entire state

space and come at a high cost in terms of expended efforts (Mitsching et al.,

2009). The used test selection criteria (i.e., adequacy criteria) for generating timed

test cases are un-timed. SUT timing behaviour which is not fully checked can hide

many faults. Moreover, there are very few tools which automate the generation

and execution of test cases despite the wide number of proposed testing

approaches; to our knowledge no tools exist for automating the execution of tests

in real-time contexts.

As a result, developing techniques that can handle real-time specifications and

generate relatively small test suites with high structural and fault coverage is still

necessary. Adoption of an efficient timed adequacy criterion is thus an urgent need.

Automating the process of generating and executing test cases is also a high priority

for reducing time and cost.

2.9 Summary

Computer-based systems have an increasing role in controlling and monitoring

modern society infrastructures. Time-dependent systems (i.e., RTESs) which

interact closely with their environment and satisfy its real-time requirements are

built. The effects of violating such time requirements may range from slight system

misbehaviour to loss of human life. As a result, the most important development

task is to ensure that an RTES implementation is as fault-free as possible before its

use.

Using formal methods, verification and model-based testing can ensure that the

system is correctly implemented. While verification validates the specification

‎Chapter 2: Literature Review

 52

against functional and timing requirements, testing targets the correctness of the

implementation. In general, testing strategies can be achieved by submitting a set of

test cases to the SUT and observing its outputs. SUT behaviour can be declared

correct or faulty after comparing observed outputs with a formal specification

according to pre-defined conformance relations. Suitable formal languages are used

to build the system specification from which test cases are then extracted.

Compared with un-timed systems, testing RTESs is far more difficult since it

requires checking of timing correctness as a new dimension. Many testing

approaches have been developed. However, most of them either suffer from high

cost due to a large number of test cases or generate few tests without achieving high

fault coverage. Moreover, research in real-time adequacy criteria is still immature

and all existing coverage criteria are un-timed (i.e., do not take timing properties

into account). As a result, there is a need for a new approach that it is both efficient

in handling real-time specification, practical in use and derives a small number of

test cases that achieve timed adequacy criteria and high fault coverage.

‎Chapter 3: A Priority-Based Approach for Testing Real-Time Embedded Systems

 53

Chapter 3: A Priority-Based Approach for

Testing Real-Time Embedded Systems

3.1 Overview

The problem of testing RTESs from a TA is tackled in this chapter by proposing

the Priority-based Approach (PA) as a new component-based offline test case

generation method for an RTES modelled as a UTA (Aboutrab and Counsell,

2010). Test cases are selected according to Clock Region Coverage (CRC) as a

proposed timed adequacy criterion supported by mathematical representations

(Aboutrab et al., 2012b). CRC considers covering timing as well as functional

behaviour of the RTES under test by executing each transition within the UTA at

specified time points. Considering clock guards, PA divides the generated test

cases into three sets (namely boundary, out-boundary and in-boundary). The

existence of three different test sets adds greater flexibility to the proposed PA in

choosing suitable sets for a particular SUT.

To validate the performance of PA in comparison with four other similar TA-

based testing approaches, the chapter proposes the application of Specification

Mutation Analysis (SMA) in a TA context. A set of timed and functional mutation

operators representing a set of incorrect behaviour is introduced. Three TA

specification models are then used as case studies from which mutants are

generated according to proposed mutation operators. The validation and

comparison process is based on the mutation score calculated for each chosen

timed testing approach with respect to a particular mutation operator (Aboutrab et

al., 2012c).

‎Chapter 3: A Priority-Based Approach for Testing Real-Time Embedded Systems

 54

The remainder of this chapter is organised as follows. The problem area this

chapter tackles is highlighted in Section ‎3.2. Section ‎3.3 introduces preliminaries

that explain TA and TA-based testing. The proposal of a timed adequacy criterion

is presented in Section ‎3.4. The proposed PA is then explained in detail in

Section ‎3.5 including its testing algorithms. Validating and comparing the

performance of PA and other four TA-based testing approaches according to SMA

is also presented in Section ‎3.6. Section ‎3.7 concludes the chapter.

3.2 Problem Area

Real-Time Embedded Systems (RTESs) have an increasing importance in modern

society due to the close interaction with their environment. Testing an RTES

implementation to ensure that it is fault-free before its deployment is necessary

(En-Nouaary et al., 1998; En-Nouaary and Hamou-Lhadj, 2008; Hessel et al.,

2008; Rollet, 2003). Model-Based Testing (MBT) is one of the testing approaches

developed with the aim of achieving high fault detection capabilities and

minimising cost through early capture of system behaviour and the automation of

test‎case‎generation,‎execution‎and‎evaluation.‎A‎system’s‎validity‎can‎be‎shown‎

by comparing actual system behaviour with the formal model representing the

system specification according to a conformance testing theory (Mitsching et al.,

2009; Hessel et al., 2008; Tretmans, 1996). MBT can test timing behaviour of an

SUT in addition to testing its functional behaviour if specification formalisms

capable of capturing the required timing properties exist. A TA formalism is one

of the most widespread due to its ability to express real-time behaviour of an

SUT. It provides an easy and powerful means of extending finite-state machines

with clock variables which track timing progress and incorporate timing

constraints through the state-transition graph.

Testing from TA is problematic due to the need for discrete as well as continuous

behaviour to be tested. Continuous behaviour of an SUT such as time has an

infinite nature. As a result, generating test cases that entirely cover such behaviour

is not possible. To tackle this problem, several TA-based testing algorithms have

been proposed and differ from each other in the TA variant formalism they adopt,

‎Chapter 3: A Priority-Based Approach for Testing Real-Time Embedded Systems

 55

the effort expended in their use, the number of test cases they produce and their

effectiveness in detecting logical as well as timing faults (Clarke and Lee, 1997b;

En-Nouaary and Hamou-Lhadj, 2008; En-Nouaary, 2008; En-Nouaary and

Dssouli, 2003). Regardless of the TA variant used, its testing algorithms can be

categorised based on how they handle infinite continuous behaviour as follows:

1. Time can be abstracted by using different equivalence relations that reduce

the infinite state space of the specification model to be finite. Continuous

behaviour is thus converted to discrete to enhance the application of un-

timed test algorithms (Khoumsi et al., 2000; En-Nouaary et al., 1998).

However, time abstraction may lead to the state explosion problem due to

the large number of resulting states.

2. A discrete-time model is used to model clocks in TA to reduce the number

of timed states (Krichen and Tripakis, 2009). However, the use of a

discrete-time model contradicts the continuous behaviour of clocks.

3. Un-timed test selection criteria (e.g., transition coverage) or random search

can be used for selecting test cases (Blom et al., 2005; Hessel et al., 2008).

In other words, one or more random time points that satisfy clock guards are

selected to trigger transitions. In spite of generating a relatively small test

suite, timing behaviour is barely tested.

Adopting an appropriate test selection criterion can be considered as a key factor to

handle testing RTESs. Literature has addressed two types of test selection criteria:

structural and fault coverage. The aim of structural coverage (e.g., transition

coverage) is to measure to what extent test cases cover the specification model.

Coverage criteria proposed for un-timed systems were used for testing timed ones

due to the lack of research studying formal timed coverage criteria for real-time

systems. As a result, timing behaviour of an SUT will not be tested. It is thus

essential to consider a timed coverage criterion for testing real-time systems.

On the other hand, fault coverage seeks tests capable of detecting potential faults in

an SUT. Fault coverage needs to be facilitated by a fault model identifying the

possible faults that might be encountered (Hessel et al., 2008; En-Nouaary et al.,

1999). The power of any test suite can thus be determined by its fault coverage; the

‎Chapter 3: A Priority-Based Approach for Testing Real-Time Embedded Systems

 56

higher the fault coverage, the more powerful the test suite (En-Nouaary and

Hamou-Lhadj, 2008; En-Nouaary et al., 1999). The use of fault coverage as an

assessment or selection criterion can be more effective if it is used in a controlled

way by application of Specification Mutation Analysis (SMA). In the literature, to

our knowledge no study has addressed the application of SMA on TA. Proposing

well-suited TA-based mutation operators becomes a necessity for facilitating the

application of SMA in a TA context.

The problem tackled by this chapter is to develop a timed testing approach that

can handle real-time specifications based on a TA variant (UTA) and generate

relatively small test suites with high structural and fault coverage. The primary

contributions of this chapter are:

1- The proposal of Clock Region Coverage (CRC) as a timed adequacy

criterion for covering timing behaviour of a TA specification.

2- The proposal of the Priority-based Approach (PA) including its algorithms

for generating timed test cases from TA variant (UTA).

3- The proposal of timed mutation operators based on previously proposed

timing fault models in the literature to facilitate the application of SMA in

a TA context.

4- The validation of PA in comparison with four other similar TA testing

approaches based on SMA application.

3.3 Preliminaries

This section introduces the mathematical definitions of the TA model and its

variants, Timed Input Output Automata (TIOA) and UPPAAL TA (UTA). The

model is then illustrated with an example to clarify its properties. We also

highlight some definitions related to testing from a TA.

3.3.1 Timed Automata (TA)

TA (Alur and Dill, 1994) has been used by many researchers (Alur and Dill, 1994;

En-Nouaary et al., 1999; Springintveld and Vaandrager, 1996; Springintveld et

‎Chapter 3: A Priority-Based Approach for Testing Real-Time Embedded Systems

 57

al., 2001) for modelling real-time specifications. The popularity of the TA

formalism comes from its ability to express most of RTESs behaviour. A TA

provides an easy and powerful means of extending finite-state machines with real-

valued clocks to model real-time processes over continuous time. More than one

clock can be used to express time. However, the more clocks added, the more

complex the model analysis.

Definition 3.1 Timed Automaton (TA): Let be a set of non-negative reals.

Let be a set of valued variables called clocks; |C| = n (the number of

clocks). Let () denote the set of guards on clocks as conjunctions of constraints

of the form , where and . Let

 () denote the clock valuation function: as a dense time

model. A timed Automaton TA is a tuple (), where:

 : A set of locations that represent the system status after executing a

transition.

 : The initial location.

 : A set of clocks. All clocks are initialized to zero at and may be reset

after executing a transition.

 : A set of actions.

 () : An invariant which assigns guards to locations.

 () : A set of transitions with an action, a

guard, a set of clocks.

A transition in a TA is denoted by

→ where:

 : The source location.

 : The destination location.

 : The action that fires the transition.

 : The clock guard that should hold to execute the transition.

 : The subset of clocks to be reset when the transition is fired.

Definition 3.2 Semantics of TA: Let () be a timed

automaton. Its semantics are defined as a labelled transition system 〈 〉,

where:

‎Chapter 3: A Priority-Based Approach for Testing Real-Time Embedded Systems

 58

 : The set of states.

 (): The initial state where () for all ().

 () : The transition relation such that:

- ()

 () if (). That allows

the time delay by .

- ()

 () if there exists () ,

and (), where:



 maps each clock x in C to the value ()

 denotes the clock valuation which maps clocks in r to 0

after firing a transition.

An action is received or sent at a clock valuation (). If u satisfies the

clock guard denoted by , a transition

→ will be fired in which the

automaton changes its location and subsequently its state.

Definition 3.3 Timed Input Output Automata (TIOA): A TIOA extends a TA

by partitioning‎the‎set‎of‎actions‎into‎sets‎of‎inputs‎and‎outputs.‎A‎TIOA‎‘A’‎is‎a‎

tuple (
), where:

 : A finite set of inputs received. Marked‎with‎‘?’.

 : A finite set of outputs sent. Marked‎with‎‘!’.

 : A set of locations that represent the system status after executing a

transition.


 : The initial location.

 : A set of clocks. All clocks are initialized to zero at
 and may be reset

after executing a transition.

 : A set of transitions.

Definition 3.4 UPPAAL Timed Automata (UTA): UTA formalism is based on

the theory of TA. It uses its pre-defined properties and offers additional features

such as modelling the environment explicitly. The environmental model can then

communicate with the system model by sending inputs (marked‎ with’?’) and

receiving outputs (marked‎with‎‘!’)‎through synchronized channels. Modelling the

‎Chapter 3: A Priority-Based Approach for Testing Real-Time Embedded Systems

 59

environment allows the production of test scenarios compatible with a given

environment and thus reduces the number of required tests. Moreover, a UTA

facilitates the construction of large models by building parallel synchronized

networks of UTAs. A UTA uses notations such as initial, committed and urgent

locations. The initial location is represented by double circles and is the location

from which the model starts. When reached,‎the‎committed‎location‎‘C’ is used to

indicate that its un-constrained transition should be triggered directly. Finally, the

use‎of‎an‎urgent‎location‎‘U’ indicates that the model cannot stay at this location

for any length of time (Behrmann et al., 2004). A UTA consists of a network of

timed automata over a common set of clocks and actions, consisting of timed

automata (
) .

Definition 3.5 Semantics of a Network of Timed Automata: Let

 (
) be the i

th
 branch of a network of n timed automata. Let ̅

(

) be the initial location vector. Its semantics is defined as a transition

system 〈 〉, where:

 () : The set of states.

 (̅): The initial state where () for all ().

 : The transition relation defined by:

- (̅) (̅) ()̅

- (̅) (̅

) if there exists

→

 . and

 ()̅

- (̅) (̅

) if there exist

→

 and

→

 () and ()̅

Definition 3.6 TA Test Suite: Let TA =() be a timed automaton

specification. Let be a set of non-negative reals. Given as a

finite set of input and output actions. ()

represents a test suite comprising n test traces (i.e., test cases) represented by

sequences of timed actions.

‎Chapter 3: A Priority-Based Approach for Testing Real-Time Embedded Systems

 60

Figure ‎3.1.a shows a UTA model of a simple lamp controller. The user controls

the brightness of the light by interacting with a touchpad within certain time

intervals. The light brightness shows three levels: OFF, LOW and BRIGHT. The

first press by the user turns the lamp on with low brightness. If the user presses

the‎button‎again‎within‎‘4’ time units, the light becomes brighter. Otherwise, the

lamp turns off. The environment model representing the user in our example is

shown in Figure ‎3.1.b. As an example of the semantics, the lamp may have the

following sequence of transitions:

(OFF, x = 0)

 (OFF, x = 2)

→ (low, x = 0)

→ (LOW, x = 0)

→ (LOW, x

= 4.23)

→ (off2, x = 0)

→ ()

We can form an observable trace in the UTA representing those semantics as a

sequence of inputs, outputs and delays:

Figure 3.1: Simple lamp controller

3.3.2 Clock Region Abstraction

Since clock values are non-negative real numbers, the set of possible values of a

clock is infinite. Covering entire clock values during the test case generation is

impossible. As a result, the equivalence relation defined in (Alur and Dill, 1994)

addressed this issue. The rationale behind defining such a relation was to divide

(a) Lamp (b) User

‎Chapter 3: A Priority-Based Approach for Testing Real-Time Embedded Systems

 61

the TA clock valuation domain into equivalent regions. The clock values

belonging to a certain region forces the TA to respond with same behaviour.

Definition 3.7 Equivalence Relation between Clock Valuations: Let

 (). Two clock valuations () are said to be equivalent

() iff :

 ⌊ ()⌋ ⌊ ()⌋

 ((()) (())),(fract(()) fract(())

 fract(()) fract(())).

 () , (fract(()) fract(())).

Here, ⌊ ⌋ and fract() denote the integral and fractional parts, respectively of the

real number . The relation between two clock values is met if the integral

parts and the ordering of the fractional parts of two clock values are equal.

Integral parts are required to determine if a timing constraint has been met or not,

while the ordering of fractional parts is required to know which clock changes its

integral part first. The groups of equivalent clock values are called clock regions.

The clock region of a clock valuation is denoted by []. The set of all clock

regions of a TA is denoted by the Region Automata RA().

Definition 3.8 Region Automata (RA): Let (). The finite

region automaton () 〈 〉 where:

 The set of tuples () in which each state comprises a location and a

clock region of a TA.

 (): is the initial state of the region automaton where ()

 for all ().

 : The transition from () to () where:

-

→ is an action transition

→ with and

 exist.

‎Chapter 3: A Priority-Based Approach for Testing Real-Time Embedded Systems

 62

-

→ is a delay transition in a RA(TA). According to Definition

3.7, the least time delay that moves the region automation from one

state to another should fall between]0, 1[.

The importance of region automata comes from its compact nature in which we

obtain a finite number of regions instead of an infinite number of clock valuations.

3.4 Timed Adequacy criterion: Clock Region

Coverage (CRC)

Many structural coverage criteria have been proposed and studied for un-timed

systems such as transition, state and definition-use coverage criteria. Due to the

lack of research studying formal timed coverage criteria for real-time systems, the

coverage criteria proposed for un-timed systems were mostly used for testing

timed ones (Blom et al., 2005; Hessel et al., 2008). As a result, timing behaviour

of an SUT will not be tested. Proposing a timed coverage criterion for testing real-

time systems is essential. Timing behaviour of an SUT is represented by a set of

timers or clocks whose values (i.e., non-negative real numbers) are infinite. As a

result, generating test cases that cover each clock value is impossible. The

equivalence relation in Definition 3.7 divides the clock valuation domain into a set

of regions. Each region comprises equivalent clock valuations that cause the SUT

to respond with the same behaviour. One clock valuation can thus safely represent

the whole region to which it belongs. Figure ‎3.2 presents the clock valuation

space where the x and y axes correspond to the values of clock x and y,

respectively. For the sake of clarification, the regions are divided into three

categories: corner point regions, open line segment regions and open area regions.

For instance, () is an open area region in

which the clock valuations () and (), as an

example, are equivalent according to Definition 3.7. This means that if the

state () accepts a trace, then the state () also accepts that trace.

This concept was initially proposed by Alur and Dill (Alur and Dill, 1994) to

significantly reduce the infinite timed state space by replacing a TA specification

‎Chapter 3: A Priority-Based Approach for Testing Real-Time Embedded Systems

 63

with a finite region automaton. The region automaton is constructed using the

equivalence relation by considering the number of clocks used in the specification

model and the maximum length of each clock. Figure ‎3.2 shows that the total

number of regions is ‘82’ considering two clocks with ‘3’ as a maximum length of

both. ‘82’ regions should be then constructed for every transition to create the

region automaton.

Several studies (Springintveld et al., 2001; En-Nouaary et al., 2002) have the RA

being used as an initial step for generating timed test cases. A Grid Automaton

(GA) was then produced by sampling the RA (i.e., choosing representative points

from each region of RA). However, the number of generated test cases from the

GA was still large for two reasons. First, the RA is a very fine-grained abstraction

technique; the number of clock regions increases significantly when the number of

clocks or their upper bounds increase. Second, choosing a fixed granularity (i.e.,

sampling rate) for producing the GA leads to the selection of several

representative values (i.e., time delay) from each region.

Figure 3.2: Clock regions

3.4.1 CRC Considerations

The idea of clock regions constitutes a timed adequacy criterion. A clock region is

a fine-grained abstraction method that does not miss any clock value that might

change system behaviour. CRC can thus be used to select and measure whether

‎Chapter 3: A Priority-Based Approach for Testing Real-Time Embedded Systems

 64

the test suite covers all clock regions identified for each transition in the

specification model. To facilitate using the concept of clock regions as a timed

adequacy criterion, we propose a set of considerations to be taken into account to

tackle its negative issues (i.e., the fast growth of clock regions by increasing the

number of clocks and their upper bounds).

First, the clock regions need to be calculated at the transition level rather than at

the model level, as proposed. The calculation of clock regions should thus

consider (1) the number of clocks with their upper and lower bounds for a

particular transition and (2) whether the transition is input (i.e., triggered by an

input) or output (i.e., triggered by an output). In the case of an input transition, the

test suite should consider all clock regions calculated for that transition, since

inputs can be controlled by the tester. In other words, the tester can provide a set

of inputs at certain times to cover the considered regions. However, clock regions

calculated for output transitions need to be combined into one region since outputs

are driven by an SUT and are not controlled by the tester. Any emitted output at a

certain time triggering its transition is enough to confirm that the combined region

defined for that transition is covered.

Second, proposing an appropriate process for determining the clock regions to be

covered for each transition is essential for deploying the concept of CRC.

Definition 3.7, as depicted in Figure ‎3.2, shows how to form regions. However,

constructing the clock regions manually is a time consuming process especially if

there is more than one clock controlling SUT timing behaviour. Calculating the

number of clock regions to be covered can thus ease the process. Alur and Dill

(Alur and Dill, 1994) proposed a mathematical Equation (‎3.1) for calculating the

upper bound of clock regions.

 NCR = | | | | ∏ () (3.1)

Where:

 NCR: The number of clock regions.

 | |: The number of clocks.

‎Chapter 3: A Priority-Based Approach for Testing Real-Time Embedded Systems

 65

 : The length of a timing constraint (i.e., the upper bound - the lower

bound).

Applying Equation (‎3.1) to calculate the number of regions of Figure ‎3.2 gives:

| |

NCR= () (() ())

Counting the regions as per Figure ‎3.2, we find that the actual number of regions

is 82. There is a large difference between the upper bound of the regions

calculated according to Equation (‎3.1) and the actual number. Filling this gap, we

propose a mathematical equation with the same notation as Equation (‎3.1) to

calculate the number of regions accurately for up to three clocks used in the TA

model (Section ‎3.4.2).

Third, we notice that not every clock region can be feasibly covered when more

than one clock is used within the specification model. Identifying and calculating

the number of feasible regions can also help to reduce the number of required

regions and thus the generated test cases (Section ‎3.4.3).

3.4.2 Number of Clock Regions (NCR)

The proposed equations are proved according to the graphical representation of

the clock regions for one clock, two clocks and three clocks leaving the

generalised form for future work.

a. | | = 1:

Figure ‎3.3 shows the least number of clock regions when there is one clock

and . The number of clock regions‎is‎‘4’‎(‘2’‎corner‎regions‎+‎‘2’‎open‎line‎

segment regions). Minimum increase of by‎‘1’‎adds‎‘1’‎corner‎region‎and‎‘1’‎

open line segment region. In other words, each increase in adds‎ ‘2’‎ regions.‎

‎Chapter 3: A Priority-Based Approach for Testing Real-Time Embedded Systems

 66

This can be represented mathematically by (()) which

leads to Equation (‎3.2).

 () (3.2)

Figure 3.3: Regions with one clock

b. | | = 2:

Similarly, when two clocks are controlling SUT behaviour, their values can be

represented by a two-dimensional graph comprising sets of connected squares

where each axis represents one of the clocks. Figure ‎3.4 shows the least number of

clock regions when . The number of clock regions‎is‎‘18’‎(‘4’‎corners‎

+‎ ‘9’‎ open‎ line‎ segments‎ +‎ ‘5’open‎ areas).‎ The equation which calculates the

number of clock regions can be derived in the following way. First, we consider

the case where = 1 and . The following clock regions are then obtained:

R1 = (2(+1) corners + 4(+ 1) open line segments+ diagonal edges +

(3 +2) open areas) = .

Second, we consider the case for each increase in by 1 (from some k to k+1).

The following additional clock regions are obtained:

R2 = ((+1) corners + 2(+ 1) open line segments+ diagonal edges + (2 +1)

open areas) = .

Thus, the general equation for 1 and is formed by taking R1 when

 plus () times R2 as increases by 1. This gives:

‎Chapter 3: A Priority-Based Approach for Testing Real-Time Embedded Systems

 67

N () () () ()

By adjusting the equation, we obtain:

 () () (3.3)

Figure 3.4: Regions with two clocks

Equation (‎3.3) represents the number of clock regions for two clocks with respect

to . By applying Equation (‎3.3) on Figure ‎3.2:

NCR= (() () 82.

As seen, the result from our equation matches to the count from Figure ‎3.2.

c. | | :

The more clocks, the more dimensions in the graphical representation. When the

automaton uses three clocks, the clock valuation space consists of sets of

connected cubes. Figure ‎3.5 shows the least number of clock regions when

 . The number of clock regions‎ is‎ ‘84’‎ (‘8’‎ corners‎+‎ ‘37’‎open‎ line

segments‎+‎ ‘26’open‎areas‎+‎ ‘13’open‎volumes).‎The equation which calculates

the number of regions can be derived in the following way.

First, we consider the case where = = 1 and . The following clock

regions are obtained:

‎Chapter 3: A Priority-Based Approach for Testing Real-Time Embedded Systems

 68

R1 = (4(+1) corners + 12(+ 1) open line segments+ () diagonal edges

+ (19 +13) open areas+(9 +4) open volumes) = .

Second, we consider the case for each increase in or by 1 (from some k to

k+1). The following additional clock regions are obtained:

R2 = (2(+1) corners + 6(+ 1) open line segments+ () diagonal edges +

(12 +7) open areas+(7 +2) open volumes) = .

Third, we consider the case for each increase in and by 1. The following

additional regions are obtained:

R3 = ((+1) corners + 3(+ 1) open line segments+ () diagonal edges +

(8 +4) open areas+(6 +1) open volumes) = .

Thus, the general equation which calculates the number of clock regions for

1, and 1 is formed by taking R1 when = = 1 plus () times

R2 as increases by 1 plus () times R2 as increases by 1 plus ()

() times R3 as and increase by 1. This gives:

 () () () ()

() () () () () (

) () ()

By adjusting the equation, we obtain Equation (‎3.4):

 () (

) ()
(3.4)

‎Chapter 3: A Priority-Based Approach for Testing Real-Time Embedded Systems

 69

Figure 3.5: Regions with three clocks

3.4.3 Feasibility Issue of CRC

Covering all clock regions in a transition constrained by more than one clock is

infeasible. The purpose of using several clocks in a specification model is to

measure the elapsed time from different points in the model. The clocks need to

be reset in different locations - no means exists for using several clocks resetting

at same locations as they act as one clock. Time elapses in all clocks at the same

speed. It is thus impossible for one clock at a certain transition, constrained by

several clocks, to have values greater and, at the same time, less than the values of

other clocks.

To clarify, consider Figure ‎3.6 that depicts a TA model controlled by two clocks.

The use of two clocks over the transition: (
 ()
→)

is to ensure that the automaton reaches with no more than 2 time units from

and no more than 3 time units from Note that the clocks and reset together

once the transition (
 ()
→) is fired where only the clock

Y

X

Z

‎Chapter 3: A Priority-Based Approach for Testing Real-Time Embedded Systems

 70

resets once the transition (
 ()
→) is fired. The values of clock in

the transition (
 ()
→) should be always greater

than or equal to those of clock since it starts earlier than clock . As a result,

half of the space representing the values of (as in Figure ‎3.7) can be omitted

without losing the clock regions in the middle line where the values of are equal

to the values of .

Figure 3.6: Two-clock automaton

The number of clock regions to be covered can be thus calculated according to

Equation (‎3.5) in the case of two clocks.

 [(
)] (3.5)

Where:

 : The total number of clock regions calculated for two clocks

according to Equation (‎3.3).


 : The number of clock regions calculated according to Equation

(‎3.3) by making the length of all clock guards over a transition equal to the

minimum length among them.

 : The number of clock regions of the middle line which is

calculated using Equation (‎3.2) by just considering the clock with the

minimum length.

‎Chapter 3: A Priority-Based Approach for Testing Real-Time Embedded Systems

 71

From Figure ‎3.7, = 82 regions according to Equation (‎3.3). Since

 ,
= = 82. = 8 according to Equation (‎3.2). Applying

Equation (‎3.5), the number of effective regions to be covered:

 ()

Figure 3.7: Feasible clock regions

The aim is thus to generate timed test cases that are able to cover all feasible clock

regions for the whole specification model.

3.5 Priority-based Approach (PA)

This section presents the priority-based approach for generating timed test cases

for an RTES modelled as UTA. A set of test hypotheses is first introduced to

ensure that our approach is accurately used. We then explain the structure of our

approach as well as presenting the accompanying algorithms that generate the

timed test cases.

‎Chapter 3: A Priority-Based Approach for Testing Real-Time Embedded Systems

 72

3.5.1 Test Hypotheses

The rationale for using test hypotheses is to specify the properties of the SUT and

its tests since the implementation of and testing any system can be achieved in an

infinite number of ways.

1. The testing process is applicable at the component level of an SUT.

2. The SUT and the specification are formally modelled by UTA in order to

create the conformance relation between them.

3. The SUT is deterministic and fully observable. In other words, there are no

transitions fired at the same time and no internal actions exist.

4. Minimal number of clocks should be used to express SUT timing

behaviour to reduce the complexity of the model.

5. At the end of each test case, there is an implicit reset transition that brings

the SUT to the initial state.

6. The SUT and the specification always accept inputs from test cases.

7. To highlight the test selection criterion that covers SUT timing behaviour

of the SUT, no data variables are allowed in the specification model.

3.5.2 Test Selection

The test selection in PA is based on the proposed CRC. The CRC in TA-based

testing relies on providing timed inputs capable of firing each transition (at least

once) at different time points equal to the feasible NCR calculated for that

transition. In other words, it is enough to choose an input with a time delay (i.e.,

clock value) to represent the region it belongs to. The selected timed inputs thus

form test cases. In special cases, test cases are selected as follows:

 If the guard is always true (i.e., no guard over a transition exists to

constrain timing behaviour), the time delays accompanied by a suitable

input are incrementally chosen for each firing of the transition. In other

words, starting‎from‎‘0’,‎clock values should be chosen from consecutive

clock regions. This way of selection might help uncover more timing

faults without increasing the number of test cases.

‎Chapter 3: A Priority-Based Approach for Testing Real-Time Embedded Systems

 73

 If a transition starts from a committed or urgent location or represents an

urgent channel, no time delays are permitted when applying the input to

trigger that transition.

The core concept of the PA is based on dividing the generated test cases into three

sets.‎Test‎sets‎are‎called‎‘priorities’ as the priority of choosing a particular test set

is different from one test set to another according to the testing environment

specified by the criticality of an SUT, the allowable time and budget specified for

the testing process (Aboutrab et al., 2010). Each test set (priority) is named and

constructed according to the structure of clock guards.

a. Boundary Set (B)

B contains test cases that achieve transition coverage by considering the boundary

values of clock guards defined for each transition they cover. The boundary values

represent the clock values chosen from the boundary regions of a clock guard of the

model , where . In the case of

 this set contains the exact boundary values of a clock guard. For

instance, the boundary values of the clock guard (1<=x<=4)‎ are‎ ‘1’‎ and‎ ‘4’.

Otherwise (), this set contains clock values from the direct

neighbouring interior region by , where . For instance, the boundary

values of the clock guard (x<‎2)‎are‎‘0’‎and‎‘1.5’ by having

 .

b. Out-Boundary Set (OB)

OB contains test cases that achieve transition coverage by considering the out-

boundary values of clock guards defined for each transition they cover. The out-

boundary values represent the clock values chosen from the neighbouring region

located out of clock guard boundaries by where . For instance, the out-

boundary values of the clock‎guard‎(1<=x<=4)‎are‎‘0.5’‎and‎‘4.5’ by having

.

‎Chapter 3: A Priority-Based Approach for Testing Real-Time Embedded Systems

 74

c. In-Boundary Set (IB)

IB contains test cases that achieve transition coverage by considering the in-

boundary values of clock guards defined for each transition they cover. The in-

boundary values represent all clock values covering the remaining clock regions

that have not been covered by the ‘boundary’‎and‎‘out-boundary’‎sets.‎For‎instance,‎

the in-boundary values of the clock guard (1<=x<=4) are‎ ‘1.5’,‎ ‘2’,‎ ‘2.5’,‎ ‘3’‎and‎

‘3.5’.

Note that test cases achieving full CRC are: {B OB IB}.

3.5.3 Test Generation Algorithms

This section introduces the algorithms responsible for generating timed test cases

for an SUT modelled as UTA according to CRC. Algorithm 1 (Figure ‎3.8)

generates test cases responsible for achieving CRC in co-operation with algorithm 2

by which the priority sets are chosen. Algorithm 1 starts by placing the initial

location in‎ the‎ set‎ ‘ ’‎ acting‎ as‎ a‎ stack‎ to‎ store‎ all‎ destination‎ locations‎

reached by the transitions covered.‎The‎set‎‘ ’‎directs the algorithm in choosing

the following transitions to be covered and guarantees that no transition has been

missed. Starting from , the algorithm creates a test trace comprising all transitions

commencing from and ending at if it is possible. A depth-first search algorithm

is used to cover as many transitions as possible in each test trace. If any branches

are encountered,‎ all‎ their‎ destination‎ locations‎ are‎ added‎ to‎ the‎ set‎ ‘ ’.‎ One

branch is then chosen by the search algorithm. Once this branch has been covered,

the other branches are then consecutively retrieved from the‎ set‎ ‘ ’. Each

transition covered is represented by a pair (starting location, destination location)

stored in the set (). The main role of is to ensure that the self-loop

transition is not covered more than once. The pair () represented each transition

covered within a test trace is then added to an array . Each row of this array

thus comprises a complete test trace whose components are a set of duals (,)

representing the transitions covered by this trace. The algorithm then picks the

following‎ location‎ in‎ ‘ ’ to form another test trace until all transitions are

‎Chapter 3: A Priority-Based Approach for Testing Real-Time Embedded Systems

 75

covered. Once the whole automaton is covered, the complete test traces stored in

 are ready. The guards in are then traversed by the set of clock values

according to the chosen priority (Algorithm 2) to produce ; each row of

is thus a test case candidate.

ALGORITHM 1. TEST CASE GENERATION

1 Generate(Input: ,Output: : traces count)

 While (one transition at least not yet processed)

do:

 While()

 pick from ;

 select (

→)not

yet processed

 if ((=)&& (,) in)or()

 continue

 else

 add () to

 add(,) to ;

 add to ;

If is already in

 delete ;

For each row in

Generate values according to chosen

priority: ;

add the () to ;

if does not exist

 apply the next priority;

 return , = rowSize ;

2

3

4
5
6
7

8
9

10
11
12
13
14
15
16
17
18
19

20
21
22

23

Figure 3.8: Algorithm 1

Algorithm 2 (Figure ‎3.9) assigns clock values to the resulted test traces stored in

 to compose and store timed test traces in as follows. Each row (i.e., test

trace) of is repeated in until covering all clock regions of its transitions

according to a chosen priority. The repeat of a test trace should be based on the

largest set of clock regions to be covered by a transition within the test trace. The

transition regions of a chosen priority can be covered before the last repeat of the

test trace. In such a case, a set of clock regions of the next priority are selected to be

covered until the last repeat of the test trace. This would help in decreasing the

number of test cases required for covering the entire clock regions. In the case of

‎Chapter 3: A Priority-Based Approach for Testing Real-Time Embedded Systems

 76

two clocks, the clock values of a transition constrained by two clocks should rely on

the clock values of previous transitions when no clock reset exists.

ALGORITHM 2. Three-Set Priorities

 Generate test point (input: , output:)

 In the case of Priority 1: (Boundary Points)

 •‎ is a one-clock guard : =(x cx)

 ()

{

 ()

 ()

 ()

 () }

 Where

 •‎ is a two-clock guard: =(x)&&(y):

 () (() ())| () ()}

 In the case of Priority 2: (Out-Boundary Points)

 •‎ a is one-clock guard: =(x)

 () {

 ()

 ()

 ()

} Where

•‎ a is two-clock guard: =(x)&&(y):

 () (() ())| () ()}

 In the case of Priority 3: (In-Boundary Points)

 •‎ is a one-clock guard: =(x)

 () {
{(

)}

{(

)}

Where: ‎ 𝒩: Natural varies from 1 to ,

 𝒩: Natural varies from 1 to a chosen natural.

•‎ is a two-clock guard: =(x)&&(y)

{

 {(

) (

)}

{(

) (

) }

 {(

) (

)}

 {(

) (

)}

‎Chapter 3: A Priority-Based Approach for Testing Real-Time Embedded Systems

 77

Where:

 𝒩: Natural varies from 0 to if , from 0 to if

 𝒩: Natural varies from 1 to .

 𝒩: Natural varies from 1 to if , from 1 to if

 𝒩: Natural varies from 1 to .

 ,

 : Naturals vary from 0 to a chosen natural if , from 1 to a chosen

natural if

 ,
 ,

 ,
 : Naturals vary from 1 to a chosen natural.

 ,

 .

 natural

 natural not equal 0

,

 .

(

) () (

) ()

(

) (), (

) ().

Figure 3.9: Algorithm 2

As an instance of how the algorithms work, consider Figure ‎3.1.a. Two test traces

will be generated (OFF-low-LOW-off2-OFF, OFF-low-LOW-bright-BRIGHT-

off1-OFF). After composing the test traces, Algorithm 1 extracts the actions and

guards from the transitions which the test traces cover to be stored in in the

following way. = () () () ().

 = () () () () (). The

clock values that cover certain clock regions are then selected according to a chosen

priority set. The algorithms will ask the tester to specify the upper bound of x when

 {≥,>} (e.g., x ≥‎4).‎

Choosing the clock upper bound as 6 and

 for the model in Figure ‎3.1.a, PA

generates 15 test cases as depicted in Figure ‎3.10. The tests were verified manually.

The outputs in this example are urgent (i.e., the outputs are generated with no

delays). Note that the clock values of unconstrained transitions are incrementally

chosen as we mentioned before in Section ‎3.5.2.

‎Chapter 3: A Priority-Based Approach for Testing Real-Time Embedded Systems

 78

Figure 3.10: Generated test cases

3.6 Empirical Validation

This section aims to validate the proposed PA by assessing its capability of

detecting popular timing faults in comparison with four of its counterparts. To

control the assessment process, Specification Mutation Analysis (SMA) is used.

Similar to the original mutation analysis, SMA injects single faults into a formal

specification model by syntactically changing the specification according to pre-

defined SMA operators. The generated first-order specification mutants are

accordingly executed against a set of generated test cases. Specification mutants

are killed if their outputs are different from those of the original specification.

SMA is useful in validating model-based testing techniques by anticipating their

capabilities for finding faults within the SUT (Budd and Gopal, 1985; Jia and

Harman, 2010).

SMA was mainly based on simulating functional faults according to a set of

proposed mutation operators. It is also essential to ensure that the timed test suite

is valid and effective in terms of finding all possible timing as well as functional

faults. Proposing the use of SMA in the timed specification context forms the key

𝑝𝑟𝑒𝑠𝑠 𝑙𝑜𝑤 𝑝𝑟𝑒𝑠𝑠 𝑜𝑓𝑓
 𝑝𝑟𝑒𝑠𝑠 𝑙𝑜𝑤 𝑝𝑟𝑒𝑠𝑠 b gh 𝑜𝑓𝑓
 𝑝𝑟𝑒𝑠𝑠 𝑙𝑜𝑤 𝑝𝑟𝑒𝑠𝑠 b gh 𝑜𝑓𝑓

𝑝𝑟𝑒𝑠𝑠 𝑙𝑜𝑤 𝑝𝑟𝑒𝑠𝑠 𝑜𝑓𝑓
𝑝𝑟𝑒𝑠𝑠 𝑙𝑜𝑤 𝑝𝑟𝑒𝑠𝑠 b gh 𝑜𝑓𝑓

 𝑝𝑟𝑒𝑠𝑠 𝑙𝑜𝑤 𝑝𝑟𝑒𝑠𝑠 b gh 𝑜𝑓𝑓
 𝑝𝑟𝑒𝑠𝑠 𝑙𝑜𝑤 𝑝𝑟𝑒𝑠𝑠 b gh 𝑜𝑓𝑓
 𝑝𝑟𝑒𝑠𝑠 𝑙𝑜𝑤 𝑝𝑟𝑒𝑠𝑠 b gh 𝑜𝑓𝑓
 𝑝𝑟𝑒𝑠𝑠 𝑙𝑜𝑤 𝑝𝑟𝑒𝑠𝑠 b gh 𝑜𝑓𝑓
 𝑝𝑟𝑒𝑠𝑠 𝑙𝑜𝑤 𝑝𝑟𝑒𝑠𝑠 b gh 𝑜𝑓𝑓
 𝑝𝑟𝑒𝑠𝑠 𝑙𝑜𝑤 𝑝𝑟𝑒𝑠𝑠 b gh 𝑜𝑓𝑓
 𝑝𝑟𝑒𝑠𝑠 𝑙𝑜𝑤 𝑝𝑟𝑒𝑠𝑠 b gh 𝑜𝑓𝑓

Boundary priority set:

Out-boundary priority set:

In-boundary priority set:

 𝑝𝑟𝑒𝑠𝑠 𝑙𝑜𝑤 𝑝𝑟𝑒𝑠𝑠 𝑜𝑓𝑓
 𝑝𝑟𝑒𝑠𝑠 𝑙𝑜𝑤 𝑝𝑟𝑒𝑠𝑠 𝑜𝑓𝑓
 𝑝𝑟𝑒𝑠𝑠 𝑙𝑜𝑤 𝑝𝑟𝑒𝑠𝑠 𝑜𝑓𝑓

‎Chapter 3: A Priority-Based Approach for Testing Real-Time Embedded Systems

 79

factor in achieving the validation objective. To facilitate the use of SMA in

validating PA based on the TA formalism, a set of timed and functional mutation

operators is proposed and their execution and adequacy score are highlighted.

Three TA-based specification models are used as case studies from which mutants

are generated according to proposed mutation operators. The validation and

comparison processes are based on the mutation score and the number of

generated test cases.

3.6.1 Mutation Operators for TA

In the literature, to our knowledge no study has addressed the application of SMA

on TA. To propose well-suited mutation operators for TA, all known faults

defined in previously proposed timing fault models should be included and

represented. As a result, our proposed TA mutation operators include the

previously formalised fault models in the literature such as that proposed for

TIOA by En-Nouaary (En-Nouaary et al., 1999; En-Nouaary et al., 2002) and for

a constraint graph by Clark and Lee (Clarke and Lee, 1997a). TA mutation

operators include two main classes: timed and functional mutation operators. A

complete list of timed operators can be found in Appendix A.

 Restricting Timing Constraints (RTC): These timed operators focus on the

timing constraints (i.e., clock guards) defined for each transition within a

TA. RTCs narrow down the timing bounds by which they rejects inputs

satisfying the clock guards of a transition in the specification. As a result,

the number of mutated model states decreases compared with those of the

specification. The functionality of these operators is dependent on the

conjunction type of a timing constraint (i.e., boundary type: open or

closed). Formally, let TA =() be a timed automaton

specification. RTC can be defined as a transformation function that takes a

clock guard of the form for and

and returns a mutated version of the guard.

‎Chapter 3: A Priority-Based Approach for Testing Real-Time Embedded Systems

 80

 ()

 () {

() ()

() ()

()

Where:

 , , , , .

 Widening Timing Constraints (WTC): These timed operators rely on

increasing the timing bounds by which they accepts inputs which fail to

satisfy the clock guards of a transition in the specification. Accordingly,

the number of mutated model states increases compared with those of the

specification. Formally, let TA =() be a timed automaton

specification. WTC can be defined as a transformation function that takes

a guard of the form for and and

returns a mutated version of the guard.

 () {
()

()

Where:

 , .

 Shifting Timing constraints (STC): These timed operators shift the timing

bounds either by increasing or decreasing their values. Formally, let TA

=() be a timed automaton specification. STC can be defined

as a transformation function that takes a guard of the form for

 and and returns a mutated version of

the guard.

 () {
() ()

() ()

Where:

 , .

‎Chapter 3: A Priority-Based Approach for Testing Real-Time Embedded Systems

 81

 Resetting a Clock (RC): This timed operator adds a clock reset to a

transition to force that clock to reset once the transition is fired. This

operator affects clock order and the number of states. Formally, let TA

=() be a timed automaton specification. RC can be defined

as a transformation function that adds a reset function for a clock

 to a transition linking two locations and fired by the

application of an input action .

 (

→)

→ |

 Not-Resetting a Clock (NRC): This timed operator involves removing an

existing clock reset from a transition. This operator affects clock order and

the number of states. Formally, let TA =() be a timed

automaton specification. NRC can be defined as a transformation function

that deletes a reset function for a clock from a transition that

links two locations .

 (

→)

→ |

 Exchanging Input Actions (EIA): This functional operator exchanges a

pre-defined input action over a transition with another existing input

action. Formally, let TA =() be a timed automaton

specification. EIA can be defined as a transformation function that

replaces an input action firing a transition that links two locations

 by another

 I (

→)

→ | .

 Exchanging Output Action (EOA): This functional operator is similar to

the EIA operator but it exchanges outputs instead of inputs. Formally, let

‎Chapter 3: A Priority-Based Approach for Testing Real-Time Embedded Systems

 82

TA =() be a timed automaton specification. EOA can be

defined as a transformation function that replaces an output action b

 firing a transition that links two locations by another

 (

→)

→ | .

 Transferring Destination Locations (TDL): This functional operator

involves changing the destination location of a transition. The mutated

transition will reach a location different from the location that the original

transition reaches. Formally, let TA =() be a timed

automaton specification. TDL can be defined as a transformation function

of the following form in which are defined locations and

 is an input or output action:

 (

→)

→ | .

3.6.2 Mutation Execution

Let TA =() be a timed automaton specification. Let be the set

of non-negative reals. Given as a finite set of input and output

actions, let h () be a test suite comprising

n test traces represented by sequences of timed actions. We define () to

be the set of timed output sequences () that can result from the

application of a test trace on the specification model . The process of

mutation execution can be represented by (′) where ′ is the mutated

specification of . The computation of () and (′) are

manually achieved. Comparing the output sequences resulting from executing the

test suite on a particular mutant with those expected according to the original

specification, we can state the following to calculate the adequacy score for the

test suite according to Equation (‎3.6).

‎Chapter 3: A Priority-Based Approach for Testing Real-Time Embedded Systems

 83

 (3.6)

 Killed: It is said that a mutant ′ is killed by a test trace

if () (′) . In other words, there is no common

allowed behaviour between the mutant ′ and the original specification .

 Potentially Killed: It is said that a mutant ′ is potentially killed by a test

trace if (′) (). There is some behaviour of ′

that is not allowed by . Here, we may need many runs of the same test

trace to actually observe a failure, since the outputs are not controllable by

the tester.

 Alive: It is said that a mutant ′ is alive if : (′)

 (). ′b h is a subset of b h .

3.6.3 Mutation Analysis

In SMA for TA, Equation (‎3.6) is followed for calculating the adequacy score for

the test suite. The score thus indicates the percentage of how many faults are

detected by a test suite. Identifying acceptable scores is largely dependent on the

application itself. Since we are conducting a comparison study, the most

important information we are revealing is which approach scores better.

On the other hand, identifying the equivalent mutants remains the major problem

we face. We identify three types of equivalent mutants in the TA-based case

studies. First, an equivalent mutant might be produced by the application of the

RTC operator on a clock guard defined for an output transition. The generated

mutant will show equal behaviour to the specification since it must emit the

outputs within the allowed time defined in the specification. For instance, the

mutant‎generated‎by‎reducing‎the‎time‎interval‎‘x<5’‎defined‎in‎the‎specification‎

to‎ ‘x<3’‎will‎ force‎ the‎mutant‎ to‎emit‎ the‎outputs‎within‎‘3’‎ time units which is

still‎ within‎ ‘5’‎ time units defined in the specification. Second, an equivalent

‎Chapter 3: A Priority-Based Approach for Testing Real-Time Embedded Systems

 84

mutant might be produced by the application of the RC operator on an output

transition followed by an unconstrained transition containing that clock reset.

Third, an equivalent mutant might be produced when the application of the TDL

operator leads to the same consecutive output transitions.

3.6.4 TA-based Testing Approaches

Many TA-based algorithms and methods for testing real-time systems have been

proposed. They differ from each other in the specification variant models they

adopt, the number of test cases they produce and their effectiveness in discovering

logical as well as timing faults. However, to our knowledge no comparison study

has been performed to validate their performance.

In this study, four well-known TA-based approaches were selected to be

compared with our PA: Timed Testing approach based on a State Characterization

Technique (SCT) (En-Nouaary et al., 2002; En-Nouaary et al., 1998), Scalable

Method (SM) (En-Nouaary, 2008), Boundary Checking Technique (BCT) (En-

Nouaary and Hamou-Lhadj, 2008) and timed testing approach based on UPPAAL

Model Checker (COVER) (Hessel et al., 2008).

Selecting those methods was based on several criteria for a more fair comparison

process. The specification formalisms followed are similar to ours. PA and

COVER rely on a UTA as an input language where SCT, SM and BCT use TIOA.

Although the formalisms appear different, they all are variants of TA and share its

properties. Moreover, all testing approaches being compared depend on the

deterministic completely observable class of TA. Similar to PA, SCT and SM use

the concept of region automata to abstract the TA. COVER, on the other hand, is

based on coverage criteria for selecting test cases similar to ours. The following

present a concise summary of the testing approaches chosen for the comparison

study.

 Timed Testing approach based on a State Characterization Technique

(SCT): This timed testing approach is based on TIOA. The proposed

approach relies on reducing the TIOA state space according to a clock

‎Chapter 3: A Priority-Based Approach for Testing Real-Time Embedded Systems

 85

valuation equivalence rule and creating the region graph. A testable

automaton, called Grid Automaton (GA) was introduced by sampling the

region graph with (1/(n+2)) maximum granularity, where‎ ‘n’‎ represents

the number of clocks. GA is then transformed to a Nondeterministic Finite

State Machine (NTFSM) to enable the authors to adopt the Wp-method

(Fujiwara et al., 1991) for generating test cases. They evaluated the testing

approach according to the adopted timing fault model and argued that the

generated test cases could discover the main (known) timing faults.

 Scalable Method (SM): This method is a timed testing approach based on

TIOA. The proposed method relies on sampling the TIOA specification

according to a clock valuation equivalence rule to reduce the infinite state

space. A GA was obtained with the coarsest possible granularity (1/(n+1))

as a result of the sampling process. It chooses each transition once or twice

at two time points (earliest and latest possible occurrences). The GA is

then traversed using a depth-first algorithm to derive test cases. The

approach appeared to be scalable and produced a small number of test

cases.

 Boundary Checking Technique (BCT): Another timed testing method is

proposed for testing real-time systems modelled as TIOA. This method

allows testing every transition of the TIOA at three different times

(soonest, latest and between two executions). To move the TIOA to the

transition under test, a preamble and postamble should be used. The

preamble is a set of timed inputs capable of moving the TIOA up to a

particular transition under test as soon as possible. On the other hand, the

postamble is a set of timed inputs capable of moving the TIOA back to the

initial location as soon as possible. The approach generates very small

number of test cases. However, the fault detection capability is

questionable.

 Timed Testing Approach based on UPPAAL Model Checker (COVER):

Hessel and Pettersson proposed a timed testing method that extends the

UPPAAL model checker with coverage criteria expressed by the Observer

Automata formalism (Blom et al., 2005) such as edge, location, definition-

‎Chapter 3: A Priority-Based Approach for Testing Real-Time Embedded Systems

 86

use pair, definition and affect-pair coverage. The testing approach is

automated by an offline testing tool called CO ER. CO ER uses the

UPPAAL model checking engine with a query language to generate test

cases (Hessel et al., 2008).

3.6.5 Case Studies

Three different case studies that match the requirements of the selected testing

approaches are chosen from the literature to enhance our validation study. They

are all deterministic TA models from which TIOA and UTA based testing

approaches can generate test cases (as TA properties are shared in TIOA and

UTA). The case studies differ from each other in their size and the number of

clocks used. Our selection of these case studies considers the manual generation

of test cases and manual application and analysis of SMA. We believe that any

shortcomings detected in a certain testing approach by relatively small case

studies will persist for larger ones.

 Lamp Controller: Figure ‎3.11 shows a single-clock specification model

(Hessel et al., 2008). It comprises nine locations including five committed

ones, twelve transitions, one input, three outputs and one clock. The user

controls the brightness of the light by interacting with a touchpad within

certain time intervals. The light shows three levels: OFF, DIM and

BRIGHT. The automaton enables the user to change between any two

brightness levels by pressing the touch pad at a certain time. For instance,

if the first press is within ‘2’‎ time units the lamp will be turned on with

dim brightness. Otherwise, the lamp will be turned on with high

brightness.

 Multimedia System: Figure ‎3.12 shows the specification model of a simple

multimedia system (En-Nouaary, 2008). It comprises four locations, four

transitions, three inputs, one output and two clocks. The point of using this

automaton is to show how the testing approaches used in this study deal

with more than one clock. This automaton sends an acknowledgment

signal if it successfully receives the image and sound signals, respectively

‎Chapter 3: A Priority-Based Approach for Testing Real-Time Embedded Systems

 87

within their allowed timing constraints. The output signal should be

produced no more than three time units after receiving the image signal

and no more than two time units after receiving the sound signal. If the

system satisfies the input/output timing constraints, it resets in order to

wait for another image from the initial location.

 Phone System: Figure ‎3.13 shows the specification model of a simple

phone system (Clarke and Lee, 1997a; En-Nouaary and Dssouli, 2003). It

comprises eight locations, thirteen transitions, six inputs, two outputs and

one clock. This automaton produces the dial tone and establishes

connection if it receives all five digits at the correct times. The system will

return to its initial state whenever the user ends the call. Moreover, each

number‎ should‎be‎dialled‎within‎ ‘5’‎ time units or an error signal will be

produced.

Figure 3.11: Lamp controller automaton

Figure 3.12: Multimedia automaton

‎Chapter 3: A Priority-Based Approach for Testing Real-Time Embedded Systems

 88

Figure 3.13: Phone automaton

3.6.6 Results and Discussion

Test cases were generated according to the chosen testing approaches for each

case model. The test generation process was manually performed for PA, SCT,

SM and BCT as they were not supported by tools. With respect to COVER, the

CO ER tool was used for generating test cases based on transition coverage as a

test selection property (Hessel and Pettersson, 2007a). Transition coverage is

considered more general than location coverage. Definition-use coverage criterion

was not used as there was no data in the specification model.

Table ‎3.1 gives the number of test cases generated by each of the testing

approaches used for each case study. We noticed that SCT suffered from a large

number of tests and an enormous effort to manually generate those tests (2 days

for each model). The number of tests rapidly increased when the size of

specification models grew especially the number of locations, transitions and

clocks. SM and BCT generated fewer tests due to the selection of fewer clock

values to cover. Although SM shared SCT in their dependence on region

automata, they did not cover all clock regions since they focused only on

boundary clock regions. Moreover, the number of the generated tests from three

case models was significantly affected by the size of specification models. PA and

COVER showed a higher degree of stability with regard to the number of tests.

Achieving as much coverage as possible in one single test case enabled PA to

‎Chapter 3: A Priority-Based Approach for Testing Real-Time Embedded Systems

 89

generate relatively small number of tests. On the other hand, COVER generated

few tests due to the un-timed coverage criterion being used. In other words, tests

for checking SUT functional behaviour were only generated.

Approaches Lamp Controller Multimedia System Phone System

PA 20 8 20

SCT 45 1295 3188

SM 37 4 63

BCT 10 7 29

COVER 4 1 1

Table 3.1: The count of generated test cases

The specification models were mutated according to the proposed operators. For

each operator, all possible mutants were generated. Table ‎3.2, Table ‎3.3 and

Table ‎3.4 depict the application of SMA for each of the testing methods on the

‘lamp controller’, ‘multimedia system’ and ‘phone system’, respectively. The

number of mutants generated, equivalent, killed and potentially killed mutants,

and mutation score were identified. The mutation score should consider the sum

of‎ ‘killed’ and‎ ‘potentially‎ killed’‎mutant numbers. The following discusses the

results of the application of SMA on each case study.

Applying the SMA, we noticed that some mutation operators (e.g., RC, EIA and

EOA) were not applicable on some specification models due to the absence of the

construct the mutation operator targets. To clarify, the application of RC involves

adding a clock reset function to un-reset transitions. As a result, the application of

RC‎ on‎ the‎ ‘lamp‎ controller’‎ was‎ not‎ possible‎ since‎ all‎ clocks‎ constraining‎ the‎

application of inputs had a reset function. The application of EIA was also not

possible since there was just one input action defined in the model. With respect

to‎ the‎ ‘multimedia‎ system’,‎ EOA‎ was‎ not‎ applicable‎ since‎ there‎ was just one

output action.

Comparing the mutation scores the testing approaches achieved for each operator,

we noticed the following.

COVER failed to achieve a high mutation score with respect to the timed

operators for all case studies due to the usage of un-timed coverage criterion.

‎Chapter 3: A Priority-Based Approach for Testing Real-Time Embedded Systems

 90

Table 3.2: SMA application on the lamp controller

PA achieved a‎ full‎ score‎ with‎ respect‎ to‎ RTC‎ in‎ the‎ ‘multimedia‎ system’.‎

However, PA did not achieve a full‎score‎(but‎high‎score)‎in‎the‎‘lamp‎controller’‎

and‎ ‘phone‎ system’‎ despite‎ checking‎ all‎ boundary‎ values‎ of‎ clock guards.

Mutating unconstrained transitions by adding clock guards is the reason. Different

from other testing approaches, PA is capable of checking the unconstrained

transitions to some extent according to the total number of generated test cases. If

Approaches Operators Mutants Equivalent Killed P-Killed Score

PA

RTC 54 0 48 0 0.89

WTC 29 0 0 29 1

STC 31 0 19 12 1

RC N/A - - - -

NRC 6 0 2 0 0.33

EIA N/A - - - -

EOA 12 0 12 0 1

TDL 42 6 24 0 0.67

SCT

RTC 54 0 48 0 0.89

WTC 29 0 0 29 1

STC 31 0 19 12 1

RC N/A - - - -

NRC 6 0 3 0 0.5

EIA N/A - - - -

EOA 12 0 12 0 1

TDL 42 6 36 0 1

SM

RTC 54 0 47 0 0.87

WTC 29 0 0 0 0

STC 31 0 19 0 0.61

RC N/A - - - -

NRC 6 0 4 0 0.67

EIA N/A - - - -

EOA 12 0 12 0 1

TDL 42 6 24 0 0.67

BCM

RTC 54 0 47 0 0.87

WTC 29 0 0 0 0

STC 31 0 19 0 0.61

RC N/A - - - -

NRC 6 0 1 0 0.17

EIA N/A - - - -

EOA 12 0 12 0 1

TDL 42 6 24 0 0.67

COVER

RTC 54 0 16 0 0.3

WTC 29 0 0 0 0

STC 31 0 13 0 0.42

RC N/A - - - -

NRC 6 0 1 0 0.17

EIA N/A - - - -

EOA 12 0 6 0 0.5

TDL 42 6 6 0 0.14

‎Chapter 3: A Priority-Based Approach for Testing Real-Time Embedded Systems

 91

the added guard is far from the points PA checks, the fault is undetected. The

other approaches (SCT, SM and BCT) provided with boundary checking facilities

scored less than PA since they did not check unconstrained transitions.

Table 3.3: SMA application on the multimedia system

Approaches Operators Mutants Equivalent Killed P-Killed Score

PA

RTC 33 18 15 0 1

WTC 13 0 7 6 1

STC 18 0 14 4 1

RC 4 3 0 1 1

NRC 5 1 3 1 1

 EIA 4 0 4 0 1

EOA N/A - - - -

TDL 3 0 0 0 0

SCT

RTC 33 18 15 0 1

WTC 13 0 7 6 1

STC 18 0 14 4 1

RC 4 3 0 1 1

NRC 5 1 2 1 0.6

 EIA 4 0 4 0 1

EOA N/A - - - -

TDL 3 0 0 0 0

SM

RTC 33 18 15 0 1

WTC 13 0 0 0 0

STC 18 0 14 2 0.89

RC 4 3 0 0 0

NRC 5 1 3 1 1

 EIA 4 0 4 0 1

EOA N/A - - - -

TDL 3 0 0 0 0

BCM

RTC 33 18 15 0 1

WTC 13 0 0 0 0

STC 18 0 14 4 1

RC 4 3 0 0 0

NRC 5 1 3 1 1

 EIA 4 0 4 0 1

EOA N/A - - - -

TDL 3 0 0 0 0

COVER

RTC 33 18 10 0 0.67

WTC 13 0 0 0 0

STC 18 0 14 4 1

RC 4 3 0 0 0

NRC 5 1 0 0 0

 EIA 4 0 4 0 1

EOA N/A - - - -

TDL 3 0 0 0 0

‎Chapter 3: A Priority-Based Approach for Testing Real-Time Embedded Systems

 92

Table 3.4: SMA application on the phone system

In all case studies, PA achieved a full score with respect to WTC that involves

expanding the clock guards in which unaccepted clock values become acceptable.

PA‎considers‎ checking‎ the‎guards’‎out-boundary points. As a result, such faults

can be detected. SCT showed the same ability to detect all WTC faults due to the

large range of clock values that have been covered. However, the detection of

such a fault was not‎consistent‎as‎SCT‎scores‎ ‘0.58’‎ in‎ the‎ ‘phone‎system’‎case‎

Approaches Operators Mutants Equivalent Killed P-Killed Score

PA

RTC 119 66 52 0 0.98

WTC 38 0 20 18 1

STC 54 0 30 24 1

RC 1 1 0 0 -

NRC 12 6 6 0 1

 EIA 36 0 36 0 1

EOA 6 0 6 0 1

TDL 42 0 0 0 0

SCT

RTC 119 66 44 0 0.83

WTC 38 0 4 18 0.58

STC 54 0 30 24 1

RC 1 1 0 0 -

NRC 12 6 0 0 0

 EIA 36 0 36 0 1

EOA 6 0 6 0 1

TDL 42 0 0 0 0

SM

RTC 119 66 51 0 0.96

WTC 38 0 0 0 0

STC 54 0 30 0 0.56

RC 1 1 0 0 -

NRC 12 6 5 0 0.83

 EIA 36 0 36 0 1

EOA 6 0 6 0 1

TDL 42 0 0 0 0

BCM

RTC 119 66 51 0 0.96

WTC 38 0 0 0 0

STC 54 0 30 0 0.56

RC 1 1 0 0 -

NRC 12 6 0 0 0

 EIA 36 0 36 0 1

EOA 6 0 6 0 1

TDL 42 0 0 0 0

COVER

RTC 119 66 40 0 0.75

WTC 38 0 0 0 0

STC 54 0 30 0 0.56

RC 1 1 0 0 -

NRC 12 6 0 0 0

 EIA 36 0 36 0 1

EOA 6 0 1 0 0.17

TDL 42 0 0 0 0

‎Chapter 3: A Priority-Based Approach for Testing Real-Time Embedded Systems

 93

study. SM and BCM, however, failed to detect any WTC faults. SM and BCM

rely only on checking the boundary values of clock guards.

Moreover, PA capability of checking the boundary points as well as the out-

boundary ones enables the detection of all possible shifting faults (i.e., STC).

Again, SCT showed full detection capability of the STC faults. SM and BCM

detected some but failed to detect others. The boundary checking that SM and

BCT are based on increases the possibility of detecting such a fault, but does not

guarantee full detection.

In the case of RC and NRC operators, PA showed more capability than the others

in killing and potentially killing the generated‎ mutants‎ by‎ scoring‎ ‘1’‎ in‎ most‎

cases. However, in the case of the‎‘lamp‎controller’,‎SM‎scored the‎most‎‘0.67’‎as‎

it is the only method that considers all possible transition combinations when

generating test cases.

With respect to the functional operators (EIA and EOA), all testing methods

except COVER scored ‘1’‎ as‎ they‎ covered all transitions while generating test

cases. The COVER score was surprising as the generated test cases failed to cover

any output transition. That might be due to failure in covering all transitions.

As expected with respect to the TDL operator, all testing methods failed to

achieve a high score and sometimes achieved a ‘0’‎score.‎To‎kill‎such‎mutants,‎a‎

testing approach should be equipped with a state identification capability; three

testing approaches (PA, SM and BCT) do not have it. SCT, designed to detect

state transfer faults, surprisingly‎ failed‎ to‎ do‎ so‎ especially‎ for‎ the‎ ‘multimedia‎

system’‎and‎‘phone‎system’‎models.‎In‎those‎case‎studies,‎we‎had‎a‎sequence‎of‎

inputs with one or two outputs. Any mutant generated by altering a transition

destination without leading to a different output or a different timing of an output

failed to‎be‎killed.‎However,‎in‎the‎‘lamp‎controller’‎each‎input‎was‎followed‎by‎

an output. As a result, all testing approaches had a score greater than 0 and SCT

was able to score 1.

‎Chapter 3: A Priority-Based Approach for Testing Real-Time Embedded Systems

 94

By applying the TA-based SMA, we increased our confidence about the

performance of PA compared with the other approaches. Combining the mutation

scores achieved by the testing approaches, PA achieved an almost full mutation

score with respect to all timed and most functional mutation operators with

relatively few tests (Figure ‎3.14). PA also showed a comparable result with

respect to the TDL operator. When compared with SCT, equipped with state

identification, PA cost and scored less but produced a smaller test suite. Further

studies with larger models are still needed to confirm these outcomes.

Figure 3.14: Fault detection ratio of the timed testing approaches with

respect to mutation operators

In summary, Figure ‎3.15 depicts the overall fault detection capability of PA

compared with other testing approaches. PA showed superiority in detecting

timed as well as functional faults when compared with other approaches

especially SCT that covered less with more cost.

0%

20%

40%

60%

80%

100%

120%

RTC WTC STC RC NRC EIA EOA TDL

Fa
u

lt
 C

o
ve

ra
ge

Mutation Operators

PA

SCT

SM

BCM

COVER

‎Chapter 3: A Priority-Based Approach for Testing Real-Time Embedded Systems

 95

Figure 3.15: Overall fault coverage of the timed testing approaches

3.7 Summary

This chapter proposed the concept of clock region coverage CRC as a test selection

criterion. CRC is based on the right selection of clock values that cover feasible

clock regions (without losing or adding extra un-needed values that would increase

the number of test cases). A set of mathematical equations that can help in

efficiently calculating the number of regions was introduced. This chapter also

presented an approach for generating timed test cases from a system specification

modelled as UTA. This approach is based on CRC for generating test cases. The

generated test cases are then divided into three sets of priorities (boundary, out-

boundary, in-boundary). This enhances the flexibility of our approach by allowing

the tester to choose the appropriate test set according to testing time and the

criticality degree of the SUT. Complete algorithms that extract desired test cases

according to our approach were then introduced.

In terms of validating the proposed PA, a TA-based Specification Mutation

Analysis was introduced to compare our PA performance with some well-known

testing approaches using three timed specification models. A set of timed and

functional mutation operators was presented and discussed. We showed that our

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

PA SCT SM BCM COVER

Fa
u

lt
 C

o
ve

rg
ae

Testing approaches

‎Chapter 3: A Priority-Based Approach for Testing Real-Time Embedded Systems

 96

PA out-performed other approaches if we combined the mutation score it obtained

with the relatively few tests it generated. The validation revealed some interesting

results such as the failure of SCT to detect all state transfer faults in spite of the

state identification technique it is equipped with. Besides, COVER also failed in

detecting all output or input faults in spite of the coverage criterion it follows.

‎Chapter 4: Automatic Test Case Generation and Execution using the Priority-

Based Approach

 97

Chapter 4: Automatic Test Case Generation

and Execution using the Priority-Based

Approach

4.1 Overview

In the previous chapter, we proposed a new component-based‎ ‘priority-based’‎

approach (PA) for testing real-time systems modelled as UPPAAL Timed Automata

(UTA). Test cases generated according to transition and clock region coverage

criteria were divided into three sets of priorities, namely boundary, out-boundary

and in-boundary, to reduce the number of required tests for a particular SUT. The

selection of which test set is most appropriate for an SUT can be decided by the

tester according to several factors such as the system type, testing time and testing

budget.

This chapter extends the study by automating the generation and execution of test

cases by developing a new timed testing tool, called GeTeX, and validating it

using a TA-based prototype (specification model and code) (Aboutrab et al.,

2011). GeTeX deploys the PA testing approach and tioco conformance theory and

reduces the time and the cost required for the testing process. GeTeX can be

considered as a complete offline testing tool that focuses on checking the

correctness of SUT according to a timed selection criterion. In its current version,

GeTeX supports Controller Area Network (CAN) applications.

The chapter also presents a set of code-based (timed and functional) mutation

operators extracted from those proposed for TA-based SMA (see Section ‎3.6.1).

‎Chapter 4: Automatic Test Case Generation and Execution using the Priority-

Based Approach

 98

This enables the use of the Mutation Analysis Technique (MAT) for estimating

fault coverage of a testing approach at the implementation level. Furthermore, the

performance of our PA is assessed in comparison with some TA-based

approaches, used in Chapter 3, but now at the implementation level, using a

complete industrial-strength test bed (production-cell system). An assessment

factor based on how many faults are detected and how many clock regions are

covered in terms of the length of test cases generated by a testing approach is

proposed. A set of lessons learned and the difficulties encountered, especially for

testing the timing properties is highlighted (Aboutrab et al., 2012b).

The remainder of this chapter is organised as follows. The problem area this

chapter tackles is highlighted in Section ‎4.2. Section ‎4.3 introduces preliminaries

of tioco conformance theory and CAN principles. The proposal of GeTeX tool

and its validation are presented in Section ‎4.4. Section ‎4.5 presents the assessment

criteria, recalling the idea of clock regions as a timed testing coverage criterion,

fault coverage supported by the use of mutation operators introduced for MAT, the

mathematical representation of test case length and the assessment factor.

Section ‎4.6 presents the production-cell test bed and the assessment results pointing

to a set of lessons learned. Finally, Section ‎4.7 concludes the chapter.

4.2 Problem Area

Testing Real-Time Embedded Systems (RTESs) has become a popular research

topic with significant recent attention given to model-based testing techniques. As

a result, several TA-based testing algorithms have been proposed and differ from

each other in the TA variant formalism they adopt, the effort expended in their

use, the number of test cases they produce and their effectiveness in detecting

logical as well as timing faults (Clarke and Lee, 1997b; En-Nouaary and Hamou-

Lhadj, 2008; En-Nouaary, 2008; En-Nouaary and Dssouli, 2003). However, they

suffer from the following problems which question their actual validity and

complicate their actual use in real projects:

‎Chapter 4: Automatic Test Case Generation and Execution using the Priority-

Based Approach

 99

1. Most of the proposed approaches such as those in (Cardell-Oliver, 2000;

En-Nouaary, 2008; En-Nouaary and Dssouli, 2003; En-Nouaary and

Hamou-Lhadj, 2008; Springintveld et al., 2001) are theoretical frameworks

for generating test cases. No automation support is provided. The

application of such approaches requires a deep understanding of their

mechanism and significant manual effort for generating and executing test

cases.

2. Few proposed approaches are partially automated. Their tools are

responsible for only automating the generation of test cases such as

CO ER (Hessel and Pettersson, 2007a), prototype RTCAT (Nielsen and

Skou, 2001) and prototype tool TTG (Krichen and Tripakis, 2009). The

execution of test cases generated by such approaches requires other sets of

tools.

3. The software community still lacks serious and detailed industrial

application of the proposed timed approaches. As an exception, CO ER

was applied using an industrial real-time test bed based on the WAP

protocol (Hessel and Pettersson, 2007b). UPPAAL Tron has also been

used in several industrial case studies such as the railway signalling case-

study (Mitsching et al., 2009). However, CO ER uses un-timed coverage

criterion which does not guarantee coverage of timing behaviour of an

SUT. UPPAAL Tron is an online testing tool where test case generation

and execution take place at the same time. Timing behaviour of an SUT is

not guaranteed to be covered as the choice of the next inputs to apply on

an SUT is determined randomly, rather than following any selection

criteria. The execution of a testing approach in a real-time context induces

many problems (e.g., a time synchronisation issue) that need to be

highlighted and tackled. More industrial test beds are thus necessary

especially for validating the application of testing approaches concerning

timing behaviour of an SUT.

‎Chapter 4: Automatic Test Case Generation and Execution using the Priority-

Based Approach

 100

4. To our knowledge, no detailed study that compares the performance of

similar timed testing approaches on real applications based on well-

identified assessment criteria exist. Such a study is essential to highlight

the pros and cons of each approach to enrich the process of timed testing.

The problem tackled by this chapter is to address the above points by automating

the generation and the execution of the proposed PA. The primary contributions of

this chapter are:

1- The development of a new timed testing tool, called GeTeX. GeTeX

automates the process of test case generation, execution and report based

on PA and tioco conformance theory. In its current version, GeTeX is

designed to support CAN applications as an example of RTESs.

2- The validation of GeTeX using a lamp controller prototype modelled as

UTA and implemented as a CAN application.

3- The proposal of an assessment factor that combines fault coverage,

structural coverage (i.e., clock region) and the length of test cases.

4- The application of Mutation Analysis Technique (MAT) at the

implementation level as a means of measuring fault coverage of a testing

approach. A set of mutation operators proposed in Chapter 3 have been

mapped from the specification to the implementation level (C code) to

enable the MAT application.

5- The application of PA on the implementation level using a complete

industrial-strength test bed.

6- A comparison between the performance of PA and two similar testing

approaches according to the proposed assessment criterion.

4.3 Preliminaries

This section introduces the mathematical definitions and properties of tioco

conformance theory. A concise summary of CAN advantages is also presented.

‎Chapter 4: Automatic Test Case Generation and Execution using the Priority-

Based Approach

 101

4.3.1 Timed Input Output Conformance Theory (tioco)

tioco is a formal timed conformance relation inspired by un-timed ioco theory

(Tretmans, 1996). Assuming that both the specification and SUT are modelled by

the same formal language, both indicate that the SUT should behave according to

the reference specification. SUT behaviour can be recorded by stimulating the

SUT with a sequence of inputs and then observing its reactions. In the case of

timed systems, SUT observed behaviour should not be limited to its observable

outputs, but should also include their times since they are considered to be

observable events. A pass or fail verdict will be given accordingly.

Definition 4.1 Conformance Relation tioco: Formally, tioco is defined as

(Krichen and Tripakis, 2004):

UTAS tioco UTAI iff

 σ ObsTTraces(UTAS): out(UTAI after σ) out(UTAS after σ)

Where:

 UTAS and UTAI represent the UTA specification and implementation

models, respectively.

 ObsTTraces is a set that contains all possible sequences of observable

timed actions.

 σ represents a sequence of observable timed actions.

 out(UTAS after σ) is‎a‎set‎of‎timed‎outputs‎after‎any‎behaviour‎σ.

tioco relation implies that for any observable behaviour of the specification, an

implementation UTAI conforms to the specification UTAS if the set of SUT

observable timed outputs is a subset of those of the specification at a certain

matching point. If the implementation generally accepts inputs not included in the

specification, a non-conformance or fail verdict will not arise since tioco is only

related to the timed outputs. The main correctness properties that tioco pose are

test suite soundness and completeness.

‎Chapter 4: Automatic Test Case Generation and Execution using the Priority-

Based Approach

 102

 A test suite TR is sound with respect to a UTAS iff:

 UTAI: UTAI tioco UTAS UTAI passes TR

 A test suite TR is complete with respect to a UTAS iff:

 UTAI: UTAI passes TR UTAI tioco UTAS

Soundness is a minimal correctness requirement. It is rather weak, since many

tests can be sound (by always announcing pass). Completeness on the other hand,

can be satisfied if, for every incorrect implementation, a test case can be generated

that detects a non-conformance.

The rationale behind choosing tioco as a conformance relation to be adopted by

our approach is its generality. tioco supports different types of specifications

which range from non-deterministic partially observable with normal outputs to

deterministic observable. Moreover, tioco allows the SUT to accept inputs un-

defined in the specification as long as they do not contradict with it. tioco also

covers other timed relations such as Timed Trace Inclusion (TTI) and relativized

tioco (rtioco). In other words, tioco can allow the comparison with other

approaches that use different conformance relations.

4.3.2 Controller Area Network (CAN)

To initialize a strong serial communication, the CAN protocol was established by

German Automotive systems in the mid-1980s. CAN is used in automobile

industries because of its reliability, safety and efficiency. The popularity of CAN

has widened to other markets of real-time embedded systems such as industrial

automation, mobile devices and medical equipment (Tindell et al., 1995). As a

result, it is chosen for the application of the PA approach in this Thesis. Since this

chapter topic is not concentrated on CAN itself, the most important properties of

the CAN protocol are only mentioned leaving the interested reader to follow

(Pazul., 1999) for more details.

 Carrier-sense multiple access with collision detection.

‎Chapter 4: Automatic Test Case Generation and Execution using the Priority-

Based Approach

 103

 Message-based communication.

 Fast and robust communication including error detection capabilities.

4.4 GeTeX Tool Development

This section introduces the development process of a test Generating and Test

eXecuting tool (GeTeX). The main components of GeTeX are presented. The

outcomes of GeTeX are then validated using a lamp controller prototype.

4.4.1 GeTeX Design

GeTeX is developed to be a real-time test generation as well as a test execution

tool. The requirements of GeTeX are based on PA algorithms for building its test

generation engine and on a tioco conformance relation and the case study

requirements for building its execution engine. This section gives an overview of

GeTeX structure, as shown in Figure ‎4.1, to highlight its main features. GeTeX

accepts a UTA specification model as an input. Using the UPPAAL model

checker is thus necessary for creating UTA specification models and verifying

them using temporal logic queries. The UTA models are compiled by UPPAAL

into a file in an XML format recognizable by GeTeX. As UPPAAL supports the

use of the network of timed automata, the produced XML file contains all the

models of the UTA network.

The test generation engine of GeTeX applies PA algorithms to generate timed test

cases from the XML file representing UTA specification models. Since PA is a

component-based testing approach, the test generation engine allows the tester to

choose a single UTA model to be the main source of generating timed test cases.

For each single UTA model, GeTeX produces three sets of tests (boundary, out-

boundary and in-boundary) according to PA. These sets thus add flexibility to the

testing process by providing the tester with different choices. It is essential for any

testing process to take a tester’s opinion into account. Each testing process may

‎Chapter 4: Automatic Test Case Generation and Execution using the Priority-

Based Approach

 104

vary according to the testing environment, SUT type, testing time or testing

budget, for an example. As a result, producing a single set of tests according to

any chosen testing algorithms whatever the situation can be considered

impractical especially for industrial applications.

Figure 4.1: GeTeX chain structure

The test suite generated by GeTeX comprises a sequence of timed synchronised

actions which need to be transformed to suit the SUT input domain. As a result,

an XML data structure is chosen as a standard to represent the generated timed

test suite to simplify the transformation process, whatever the SUT. In order to

design the XML file of a test suite, the Document Object Model (DOM) defining

a standard for accessing the XML file is built as shown in Figure ‎4.2. The test

‘priority’‎ sets‎ form‎ the‎ basis‎of‎ the‎ test‎ suite‎ tree.‎Each‎ ‘priority’‎has‎ an‎ ‘id’,‎ a‎

‘name’‎and‎the‎‘timed‎test‎traces’.‎Each‎timed‎test‎trace,‎recognizable‎by‎its‎‘id’‎

comprises a sequence of‎timed‎actions‎(‘action’‎at‎a‎certain‎‘time’).‎

‎Chapter 4: Automatic Test Case Generation and Execution using the Priority-

Based Approach

 105

Figure 4.2: XML DOM tree of PA test suite

In UTA, actions can be inputs, outputs or internals according to the specification

model. Action names are represented by a text and action types are represented by

an attribute ‘kind’. The time at which an action takes place is represented as an

attribute‎ to‎ store‎ a‎ ‘time_value’‎ in‎ the‎ case‎ of‎ input‎ actions‎ and‎ as‎ an‎ interval‎

equation (e.g., 3<x<9) in the case of output actions. In other words, the time at

which inputs are sent to the SUT should be recorded whereas the time at which

outputs are emitted from an SUT should be checked against specification timing

intervals (i.e., timing constraints).

The adapter component of the GeTeX chain structure (Figure ‎4.1) is responsible

for transforming the abstract XML test suite to real input data accepted by the

‎Chapter 4: Automatic Test Case Generation and Execution using the Priority-

Based Approach

 106

SUT. The adapter is a unique component that supports particular types of SUT.

As a result, the adapter could be considered the most expensive part of the tool

since different adapters need to be developed for different types of an SUT. In the

current version of GeTeX, the adapter transforms the timed test suite to several

sequences of CAN messages and stores them in the test suite log file. The log file

is designed to enable the test execution engine to read inputs and write outputs

easily into its predefined locations.

The test execution engine establishes the connection with an SUT using hardware

adapters like Grid Connect USB/CAN adapter kit (Connect, 2010). It also

monitors a CAN network from a personal computer using a USB port. The engine

injects stored CAN messages into the CAN bus at specified time delays. The CAN

bus is also being continuously monitored by the test execution engine to collect

any messages transmitted from other CAN nodes. The received messages and

their times are then stored into the log file. Time can be measured in different time

units (e.g., seconds or micro-seconds) according to the chosen CAN bus baud rate.

The test execution engine also establishes a tioco conformance relation by which

timed output messages are compared with those expected; a pass/fail verdict is

accordingly assigned to each timed test case. Finally, a test report is generated for

the whole test suite.

4.4.2 GeTeX Implementation

GeTeX is a Java-based tool implemented using the NetBeans IDE 6.9.1

environment (NetBeans, 2010). It is a free environment which enables the user to

easily debug, test and build a project. GeTeX is built under several packages

presented in Figure ‎4.3. The test generation engine of GeTeX is implemented

based on the PA test algorithms (Section ‎3.5.3).

The algorithms are implemented within two Java packages:

‘Test_Generation.Algorithm1’ and ‘Test_Generation.Algorithm2’. UTA

‎Chapter 4: Automatic Test Case Generation and Execution using the Priority-

Based Approach

 107

constructs‎and‎operations‎are‎created‎within‎ the‎ ‘Test_Generation.EntityClasses’‎

package; its classes and inheritance and association relationships are depicted in

the class diagram. Three packages are dedicated for buffers. The

‘Buffer_Control.Specification_Level’ package is responsible for handling

communication with the specification XML file. The‎‘Buffer_Control’‎package is

responsible for converting generated timed test cases into XML format. The

‘Buffer_Control.Implementation_Level’‎ package is responsible for handling the

communication with the SUT (i.e., adapter). The drivers of the USB/CAN adapter

have been installed in the ‘peak.Can’‎packages.‎The‎GeTeX‎execution‎engine‎and‎

GUI are implemented in the ‘GeTeX’‎package.

Figure 4.3: GeTeX packages

Figure ‎4.4 depicts the GUI of GeTeX based on the CAN adapter of Grid Connect.

It comprises six panels. First, the ‘Test‎Generation/‎CAN‎Configuration’ panel is

responsible for configuring the generation of a timed test suite by choosing the

specification model, test set, test suite XML file and test execution log file.

Moreover, it configures CAN‎connection‎features‎such‎as‎‘bus‎listen‎only’‎mode.‎

Second,‎ the‎ ‘New‎ Connection’ panel is responsible for establishing a new

‎Chapter 4: Automatic Test Case Generation and Execution using the Priority-

Based Approach

 108

connection to the CAN bus by choosing the adapter channel type and the baud

rate. Third, transmitting the CAN messages to‎the‎bus‎can‎be‎done‎via‎the‎‘Write‎

Messages’ panel. It gives the user two options - either to write and send a single

CAN message from the GUI or to send a list of pre-defined CAN messages stored

in a log file to the bus altogether.

Figure 4.4: GeTeX GUI

‎Chapter 4: Automatic Test Case Generation and Execution using the Priority-

Based Approach

 109

Fourth,‎the‎‘Message‎Filter’ panel is responsible for filtering received messages to

view a group of them. Fifth,‎the‎‘Read‎Messages’ panel views all received CAN

messages from other nodes into the accompanied table. It gives the user two

options - either to receive the messages on a certain time period or when they

exist. CAN messages are identified according to their type, ID, length, data and

receiving time. The CAN message type can be a standard frame format with 11

identifier bits or extended frame format with 29 identifier bits. The data carried in

the message can range from 0 to 8 bytes in length and is represented by

hexadecimal numbering system. The message count shows how many times a

certain message has been received during a monitoring session. The time stamp of

received message has been left as optional and can be added into the table by

ticking‎ the‎ ‘show time‎ stamp’ option.‎ Finally,‎ the‎ ‘Information’ panel is for

updating the user with the CAN bus status and the conditions of sending/receiving

messages.

GeTeX was tested using JUnit test package. Test cases were designed to guarantee

that all GeTeX methods run at least once. After executing test cases individually,

an integrated test suite was performed to examine the tool performance.

4.4.3 GeTeX Trail

To demonstrate that GeTeX works correctly, we developed a lamp controller

prototype based on the UTA model mentioned in Chapter 3 (Figure ‎3.1). An

assumption that the controller is connected with the lamp via a CAN bus to form a

two-node CAN network was made. The prototype was built using MCP2515DM-

BM CAN Bus Monitor Demo Board (MicroshipDirect, 2010). The board kit

contains two identical boards which can be connected together to create a simple

two node CAN bus (i.e., one is implemented as the light and the other is

implemented as the controller). Importing the XML file representing the UTA

model of the lamp controller to GeTeX, the test generation engine produced the

three-set timed test suite.

‎Chapter 4: Automatic Test Case Generation and Execution using the Priority-

Based Approach

 110

Figure ‎4.5 shows the three sets of generated test cases by setting the clock upper

bound to 7. The empty brackets mean that the SUT was allowed to emit an action

at any time. The total number of generated tests is manageable; 15 test cases in

total.‎Note‎that‎the‎‘out-boundary’‎test set examines not allowed behaviour of the

SUT. For trace1 in‎‘out-boundary’‎priority‎as‎an‎instance,‎the‎correct‎SUT‎should‎

not react with the output (bright!) after receiving the input action press? at ‘4.5’

time unit. In other words, the transition (LOW

→ b gh) cannot

be fired at a time point not satisfying its constraint ().

Figure 4.5: GeTeX test generation engine outcomes

Once timed test cases are generated, UTA abstract actions are transformed to a

sequence of CAN messages according to the conversion table (see Figure ‎4.6).

The conversion table is essential for GeTeX to configure CAN messages that need

to be sent and received according to their counterpart actions. At the first step,

‎Chapter 4: Automatic Test Case Generation and Execution using the Priority-

Based Approach

 111

GeTeX sets all actions defined in the UTA specification model in the conversion

table. The tester then needs to fill CAN message details according to the SUT

design requirements. In our example, one input action (press?) and three output

actions (off!, low!, bright!) were identified. CAN message details were assigned

according to the lamp controller design where CAN messages ID and data were

known.‎A‎ ‘standard’‎ type‎ (i.e., 11 bit) was chosen to represent the ID of CAN

messages since the prototype consists of just two nodes. Their IDs and data were

chosen to enable the‎ controller‎ and‎ lamp‎ nodes‎ to‎ understand‎ each‎ other’s‎

messages. Once this table is ready, the abstract timed test suite was converted and

stored in the log file allowing the test execution process to start.

Figure 4.6: Actions/CAN messages convertor

The test log file shown in Figure ‎4.7 is an Excel format consisting of 17 columns

to store the sent/received CAN messages to/from the SUT. The ‘SetID’‎ column

represents the corresponding ID of the testing sets: ‘1’‎ for‎boundary‎ set,‎ ‘2’‎ for‎

out-boundary set‎and‎ ‘3’‎ for‎ in-boundary‎set.‎The‎‘traceID’ column corresponds

to the test trace identification within a test set. Since each test trace comprises a

sequence of timed actions that have been converted to CAN messages, the

‘MsgType’,‎ ‘MsgIDtype’,‎ ‘MsgLength’‎ and‎ ‘MsgData’‎ columns represent CAN

message details. The‎ ‘MsgX-time’‎ column‎ stores‎ time delays that determine at

which time an action (i.e., a CAN message) should be sent to the bus or stores the

timing interval at which an action can be received. When the UTA specification

model uses more than one clock to represent its timing behaviour, each clock

valuation is represented by separate columns named: ‘MsgX-time’,’MsgY-

time’,’MsgZ-time’…etc.

‎Chapter 4: Automatic Test Case Generation and Execution using the Priority-

Based Approach

 112

The‎ ‘status’‎column‎ identifies the communication status with the SUT. An ‘OK’‎

statement is used if a CAN message has successfully been sent or received.

Otherwise, an ‘ERROR’‎statement‎is‎used to identify that there was an error during

the communication process with the CAN bus.

Figure 4.7: A part of the test suite log file

Injecting the messages stored in the log file into the CAN bus, GeTeX monitors the

bus in the case of any received messages which need to be stored in the

‘MsgRcvIDtype’,‎ ‘MsgRcvLength’,‎ ‘MsgRcvData’‎and‎ ‘RcvTime’‎columns.‎The‎

communication with the SUT may suffer from time delays due to (1) the time

required for processing CAN messages by the CAN controller, (2) messages

travelling time within the CAN bus and (3) the execution time of GeTeX code.

Identifying this problem, GeTeX compensates for the time delay to a certain

precision by measuring code execution time and calculating the propagation delay

of the CAN controller and bus.

‎Chapter 4: Automatic Test Case Generation and Execution using the Priority-

Based Approach

 113

Having all input messages sent to and all output messages received, the test

execution engine of GeTeX prepares the test report. According to tioco

conformance relation, the test execution engine compares the received output

messages and their times with those of the specification model. Pass/fail verdicts

are accordingly assigned and stored in the following columns. The ‘TimeVerdict’‎

column assigns the pass/fail verdicts as a result of checking the time at which an

output message is received with its timing guards. The ‘ActionVerdict’‎ column‎

assigns the pass/fail verdicts as a result of checking the received output message

with that expected according to the specification model. In the case of input

messages, pass/fail verdicts are assigned according to the communication status

with the SUT (i.e., whether the input message is successfully sent to the CAN bus).

Finally, the ‘TestVerdict’‎ column‎ determines‎ the‎ eventual‎ verdict‎ of‎ a‎ certain‎

message by combining its verdicts stored in the ‘TimeVerdict’‎and‎‘ActionVerdict’

columns.

The first run of the experiment showed no faults. Every test set was correctly

executed as the status column shows. Choosing a small application for the trial run

enabled us to validate the tool. First, the test generation engine was validated by

comparing the tests generated by the tool with those produced manually. Second,

the test execution engine was validated by several runs of the experiment with

different faults injected into the controller in different locations. For instance, the

clock guard constraining the transition (LOW

→) was

transformed to by which inputs satisfied the original guard should be

rejected. Running Trace 1 of‎ the‎ ‘boundary’ or ‘in-boundary’‎ test‎ sets, the tool

detected the injected fault by reporting this with a test trace fail.

GeTeX was capable of identifying the location of detected faults by referring to the

action type, trace number and priority number. The grey box within Figure ‎4.7

shows examples. GeTeX was also capable of generating and executing timed test

cases in short time. The validation process showed that the tool accurately

represented PA.

‎Chapter 4: Automatic Test Case Generation and Execution using the Priority-

Based Approach

 114

4.5 Testing Assessment Criteria

This section introduces a set of assessment criteria; structural (clock region)

coverage, timing fault coverage and test trace length. The assessment criteria by

which the performance of TA-based testing approaches can be measured and

compared is necessary.

Coverage criteria are often used in testing to assess the level of thoroughness of a

test suite. Different types of coverage criteria are discussed and used in the

literature such as structural and fault coverage. Fault coverage seeks tests capable

of detecting potential faults in the SUT. Measuring fault coverage needs to be

facilitated by:

1- A fault model identifying the possible faults that might be encountered.

2- The application of Mutation Analysis Technique (MAT) to control the

process of fault coverage measurement.

The aim of structural coverage (e.g., transition coverage) is to measure to what

extent test cases cover the specification model. Since any proposed fault model

cannot guarantee specifying all faults, the use of structural coverage should not be

ignored (Hessel et al., 2008; En-Nouaary et al., 1999).

On the other hand, achieving coverage criteria with a large number of test cases is

not desirable. Measuring the length of the test suite generated by a testing approach

is considered of paramount importance. The aim is thus for a testing approach

which achieves high fault and structural coverage with fewer test cases.

4.5.1 Structural Coverage Assessment Criterion (CRC)

Recalling the idea and the equations of CRC discussed in Chapter 3, the clock

regions coverage CRC achieved by a testing approach for the whole specification

model can be calculated according to Equation (‎4.1).

‎Chapter 4: Automatic Test Case Generation and Execution using the Priority-

Based Approach

 115

 CRC =
∑

 (4.1)

Where:

 Q: The total number of input transitions in a specification model. Output

transitions are excluded since the testing approaches used in this study

equally cover the combined region of each output transition once it is

fired.


 : The total number of feasible clock regions calculated for a

transition k according to Equation (‎3.5).

 : The actual number of clock regions that have been covered by all

occurrences of transition k in the generated test cases.

In other words, CRC represents the average value of clock regions coverage

calculated for all input transitions. If all timing constraints over transitions are

similar in length, the average method in calculating the overall CRC for each

model is reasonable. In the case of timing constraints with a large difference in

length (e.g., x<50, x<5), weighted averages where different weights are assigned

to CRC for each transition would be a preferable technique to use.

4.5.2 Fault Coverage Assessment Criterion (MAT)

Identifying how many faults can be detected by a test suite is known as fault

coverage. Fault coverage should be supported with well identified faults that are

defined in a fault model and which might be encountered in an implementation.

The power of any test suite can be determined by its fault coverage; the higher the

fault coverage, the more powerful the test suite (En-Nouaary and Hamou-Lhadj,

2008; En-Nouaary et al., 1999). The use of fault coverage as an assessment

criterion can be more effective if it is used in a controlled way by the application

of the Mutation Analysis Technique (MAT).

‎Chapter 4: Automatic Test Case Generation and Execution using the Priority-

Based Approach

 116

MAT was proposed to increase the confidence about SUT correctness. It is based

on simulating real faults in an SUT to validate or identify adequate test data

capable of revealing such faults. Mutants (i.e., faulty versions of an SUT) are

produced by syntactically changing an SUT according to rules given by mutation

operators. Each mutation operator is thus linked with the fault we need to reveal in

an SUT. In the second stage, the generated mutants are executed using a given test

suite. If a mutant shows different behaviour from the correct version of an SUT,

the mutant is killed and the fault is identified. Otherwise, it is said that the mutant

is alive. In other words, the test suite is not capable of killing the mutant due to

the inadequacy of the test suite or the mutant being equivalent to the SUT. The

equivalence relation implies that the SUT and the generated mutant should show

same behaviour for the entire input domain. A mutation analysis oracle seeks to

achieve a high mutation adequacy score (DeMillo et al., 1978).

To facilitate the application of fault coverage assessment using MAT, a set of

mutation operators representing timed and functional faults that might be

encountered in an SUT is introduced. Considering the similarity in structure

between timing constraints defined in the specification model and clock

conditions defined in the SUT C code, leads us to adopt a modified version of the

TA-based mutation operators proposed in Chapter 3 (Section ‎3.6.1) to obtain C-

based mutation operators. The mutation operators are divided into two main

classes; timed and functional mutation operators. First, timed mutation operators

include all operators relating to timing faults and comprises five types of

operators.

 Narrowing Clock Conditions (NCC): This class of timed operators targets

the conditions on clocks or timers defined within the SUT C code. They

narrow down a condition bounds or change its relational operators

() by which it rejects inputs originally accepted. For instance,

this operator can be applied on the condition by changing either

of its bounds () or its relational operator (

); where is a clock, are the bounds of the

‎Chapter 4: Automatic Test Case Generation and Execution using the Priority-

Based Approach

 117

condition and , represent the syntactical changes applied to the

condition.

 Expanding Clock Conditions (ECC): This class of timed operators

broadens the bounds of a clock condition or changes its relational

operators by which it accepts inputs originally rejected. For instance, this

operator can be applied on the condition by changing either of

its bounds () or its relational operator (

).

 Shifting Clock Conditions (SCC): This class of timed operators depends on

increasing/decreasing both bounds of a clock condition. For instance, this

operator can be applied on the condition by increasing both of

its bounds () or decreasing them (

).

 Adding a new Starting Point of a clock (ASP): This timed operator

involves adding a new starting position of the clock or timer controlling

SUT timing behaviour.

 Removing an existing Starting Point of a clock (RSP): This operator

involves removing a starting position of an existing clock or timer

controlling SUT timing behaviour.

Second, functional mutation operators include all operators related to functional

faults and comprise two types of operators.

 Exchanging Input Parameters of a method (EIP): This operator involves

exchanging a predefined input parameter in a function or procedure with

another one from the input set in the SUT.

 Exchanging Output Parameters of a method (EOP): This operator involves

exchanging a predefined output parameter in a function or procedure with

another one from the output set in the SUT.

After obtaining the adequacy score for each operator, we can calculate fault

coverage FC for a testing approach using Equation (‎4.2).

‎Chapter 4: Automatic Test Case Generation and Execution using the Priority-

Based Approach

 118

∑

 (4.2)

Where:

 : The adequacy score calculated according to Equation (‎3.6) for each

mutation operator k.

 w: The total number of mutation operators used. In our study w =7.

In other words, Equation (‎4.2) gives the average number for all adequacy scores

calculated for the mutation operators. Again, weighted averages can be used if the

number of mutants differs largely from one mutation operator to another.

4.5.3 Test Traces Length Assessment Criterion (TTL)

Testing in general suffers from a high cost of test generation and execution. One

of the most salient factors affecting the testing cost is the number of test cases

(i.e., test traces). To clarify, more tests need more time to be generated and

executed. Moreover, timed testing requires the generation and executing of test

cases with different time delays. As a result, more tests require more time delays

and, accordingly, cost more.

It is therefore desirable to find a small test suite that detects the most number of

faults. In timed MBT, each test trace is generated as a sequence of timed actions

covering a set of transitions at certain times. The same transition might then be a

part of different test traces but with different clock delays. Different test traces

might have different lengths. As a result, the total length of the generated test

traces is calculated according to Equation (‎4.3). The lower the length of generated

test traces, the more effective the testing approach is with respect to the cost:

‎Chapter 4: Automatic Test Case Generation and Execution using the Priority-

Based Approach

 119

 ∑ | |

 (4.3)

Where:

 n: The total number of test traces

 | | : The count of () occurrence in the kth test trace.

 d : A time delay.

 A: An action.

4.5.4 Combined Assessment Factor (AF)

Any testing approach can be assessed according to each of the aforementioned

assessment criteria. However, one testing approach can be effective according to

one assessment criterion and not effective according to others. We thus introduce

the Assessment Factor (AF) to combine all previous assessment criteria; CRC, FC

and TTL. We are interested in identifying a testing approach that achieves the

highest score with respect to all assessment criteria; high fault coverage, high

clock region coverage and minimum length of generated test traces. AF can be

represented mathematically according to Equation (‎4.4).

Since the CRC and FC range between (0, 1), AF will give a very small number.

The AF result is thus scaled up 1000 times to be more recognisable. The

experimental evaluation will be based on each individual assessment criterion

(CRC, FC and TTL) as well as the combined criterion (AF).

 (4.4)

‎Chapter 4: Automatic Test Case Generation and Execution using the Priority-

Based Approach

 120

4.6 Empirical Assessment based on a Complete

Test Bed

This section introduces the empirical validation of three TA-based testing

approaches (including PA) based on the introduced assessment criteria using a

complete test bed. Two out of the four introduced in Chapter 3 (Section ‎3.6.4)

were chosen for this study (SM and BCT). The rationale for excluding the other

two (SCT and COVER) is as follows. First, SCT generate a relatively large

number of test cases compared with the others. Most importantly, SCT is not

supported with an automation tool. The time needed for executing the large

number of SCT test cases on the test bed manually is significant. The time needed

to input the generated test cases into the GeTeX execution engine for automating

the execution is also significant. Second, the results from the previous chapter

suggest that COVER is not as good as other approaches due to the un-timed

coverage criteria it uses for generating test cases. The test bed used for validating

PA in comparison with SM and BCT, the specification models and the assessment

results are presented and analysed in the following subsections.

4.6.1 Production-Cell Test Bed

We were given access to an industrial-strength production-cell lab in order to

execute test cases generated by the testing approaches used in this study. All

documents including the production-cell design and software design models were

given. Different visits were also arranged to discuss the production-cell structures

with the design engineers in the case of any missing piece of information.

A production-cell is a RTES consisting of two robots (robot-in and robot-out), a

conveyor and a control panel. Figure ‎4.8 shows the physical layout of the cell.

‎Chapter 4: Automatic Test Case Generation and Execution using the Priority-

Based Approach

 121

Figure 4.8: Production-cell physical layout

At its simplest level, the robot-in is responsible for picking up a Work Piece (WP)

from the load platform (in-pad) and placing it on the conveyor. The item passes

along the conveyor until it reaches the exit point to be ready to be picked off. The

robot-out picks the item from the conveyer exit point and places it on an out-pad.

The control panel allows an operator to supervise the system. There are a number

of sensors positioned to detect items as they pass through the cell. The sensors are

associated with the various components to form subsystems; each subsystem is

managed by a micro-controller. The micro-controllers are connected by a CAN

communication network to coordinate actions of the components and move items

through the production-cell. Figure ‎4.9 gives a schematic overview of the system

(Robson and Henderson, 2010).

‎Chapter 4: Automatic Test Case Generation and Execution using the Priority-

Based Approach

 122

Figure 4.9: Production-cell schematic

4.6.2 Specification Models

A production-cell is a real-time distributed system consisting of four components

communicating via a CAN bus. Figure ‎4.10, Figure ‎4.11, Figure ‎4.12 and

Figure ‎4.13 represent the specification models of load, unload, conveyor load and

conveyor unload sensors, respectively for identifying the position of a WP within

the cell.

Figure 4.10: Load sensor automaton

Figure 4.11: Unload sensor automaton

‎Chapter 4: Automatic Test Case Generation and Execution using the Priority-

Based Approach

 123

Figure 4.12: Conveyor load sensor automaton

Figure 4.13: Conveyor unload sensor automaton

Load and unload sensors identify whether the WP is picked up from the in-pad (a

place where a WP enters the cell) or deposited in the out-pad (a place where a WP

leaves the cell). Conveyor load and conveyor unload sensors identify the location

of the WP in the conveyor.

Figure ‎4.14 represents the specification model of the control panel. Receiving the

signal from the load sensor, the control panel knows that the WP is loaded. It then

informs the robot-in to pick up the WP from the in-pad. When receiving a signal

from robot-in within 1-5 seconds querying whether it succeeds in picking up the

WP, the control panel waits for a signal to be received from the sensor to be able

to send the confirmation to the robot-in. Before depositing the WP into the out-

pad, the robot-out should ask the control panel within 36-63 seconds to know if

the out-pad is free. In turn, the control panel sends the confirmation to the robot-

out once it receives a signal from the unload sensor stating that the out-pad is free.

Another confirmation will be sent to the robot-out when it succeeds in depositing

the WP in the out-pad within 12-15 seconds.

‎Chapter 4: Automatic Test Case Generation and Execution using the Priority-

Based Approach

 124

Figure 4.14: Control panel automaton

Figure ‎4.15 depicts the specification model of the conveyor. The conveyor allows

the robot-in to deposit the WP if the robot-in asks to and the sensor does not

detect another WP occupying its place.

Figure 4.15: Conveyor automaton

The conveyor will send a confirmation signal if a signal is received from the

robot-in within 1-6 seconds to indicate whether the WP has been deposited. The

WP will move through the conveyor until reaching the end point when triggering

a signal by the sensor to robot-out. The conveyor will broadcast a confirmation if

the robot-out picks up the WP within 4 seconds.

Figure ‎4.16 represents the specification model of the robot-in component. Picking

up the WP from the in-pad, the robot-in asks the control panel for a confirmation

within 1-10 seconds. Once it obtains the pickup confirmation within 7 seconds,

the robot-in will ask within 1-3 seconds if the conveyor is free to collect the WP.

‎Chapter 4: Automatic Test Case Generation and Execution using the Priority-

Based Approach

 125

A free-to-deposit confirmation should be received within 4 seconds for the robot-

in to be able to ask the conveyor within 1-6 seconds if the WP is successfully

deposited. The confirmation is then broadcasted.

Figure 4.16: Robot-in automaton

Figure ‎4.17 depicts the specification model of the robot-out. Picking up the WP

from the conveyor, the robot-out asks the conveyor for a confirmation within 15

seconds.

Figure 4.17: Robot-out automaton

Once getting pickup confirmation within 10 seconds, the robot-out should ask

within 34 seconds if the out-pad is free to get the WP. A free-to-deposit

confirmation should be received within 4 seconds for the robot-out to be able to

ask the control panel within 12-15 seconds if the WP has been successfully

deposited. The confirmation is then broadcasted.

‎Chapter 4: Automatic Test Case Generation and Execution using the Priority-

Based Approach

 126

4.6.3 Test Generation and Execution

Using the specification models, test cases according to PA, SM and BCT were

generated for each component of the production-cell. The process of test

generation according to PA was automated using the GeTeX tool. However, test

cases according to SM and BCT were manually generated from the specification

models; the restricted UTA models used without data are similar to those of

TIOA. The length of test cases generated by each approach calculated according

to Equation (‎4.3) is given in Table ‎4.5 in the TTL row. The CRC for each testing

approach calculated using Equation (‎4.1) is presented in Table ‎4.5 in the CRC

row. A detailed calculation of CRC for each approach is presented in Appendix B.

To run the generated test cases on production-cell components, a set of

preparatory procedures were undertaken. First, using GeTeX, the generated test

cases from three approaches were transformed into executable inputs interacting

with SUT components. Second, production-cell components were disconnected

since the intention was to perform component-based testing. Considering that

production-cell components communicate via the CAN bus, the PC hosting

GeTeX was connected to the CAN bus using a USB/CAN adapter to interface

GeTeX with the production-cell. GeTeX replaced the communications required

for each component to perform its jobs by injecting a suitable sequence of CAN

messages according to a testing approach. Third, for calculating the FC

assessment criterion, test cases from each testing approach were executed on each

component of the production-cell; control panel, conveyor, robot-in and robot-out.

GeTeX recorded the responses from each component to compare them with those

of the specification. Pass/fail verdicts were then assigned‎ if‎ the‎ components’‎

response did or did not conform to the specification according to tioco,

respectively.

The C code controlling each component was manually mutated according to the

proposed operators for calculating fault coverage (FC) for each testing approach.

For each operator, all possible mutants were generated. Studying‎the‎mutants’‎C

‎Chapter 4: Automatic Test Case Generation and Execution using the Priority-

Based Approach

 127

code of each operator, equivalent mutants were identified for NCC in the robot-in

and robot-out components and for ASP and RSP in all production-cell

components. Once a mutant was loaded into the micro-controller, all test cases

were re-executed on the component under test. Table ‎4.1, Table ‎4.2, Table ‎4.3 and

Table ‎4.4 depict, for each operator, the number of generated, equivalent, killed

mutants and mutation score for control panel, conveyor, robot-in and robot-out,

respectively.

Table 4.1: MAT Application on the control panel

Approaches Operators Mutants Equivalent Killed Score

PA

NCC 73 0 64 0.88

ECC 27 0 27 1

SCC 36 0 36 1

ASP N/A - - -

RSP 6 3 3 1

EIP 42 0 42 1

EOP 12 0 12 1

SM

NCC 73 0 56 0.77

ECC 27 0 0 0

SCC 36 0 24 0.67

ASP N/A - - -

RSP 6 3 3 1

EIP 42 0 42 1

EOP 12 0 12 1

BCT

NCC 73 0 56 0.77

ECC 27 0 0 0

SCC 36 0 24 0.67

ASP N/A - - -

RSP 6 3 3 1

EIP 42 0 42 1

EOP 12 0 12 1

‎Chapter 4: Automatic Test Case Generation and Execution using the Priority-

Based Approach

 128

Approaches Operators Mutants Equivalent Killed Score

PA

NCC 65 0 59 0.91

ECC 12 0 12 1

SCC 16 0 16 1

ASP N/A - - -

RSP 4 2 2 1

EIP 42 0 42 1

EOP 12 0 12 1

SM

NCC 65 0 49 0.75

ECC 12 0 0 0

SCC 16 0 12 0.75

ASP N/A - - -

RSP 4 2 2 1

EIP 42 0 42 1

EOP 12 0 12 1

BCT

NCC 65 0 49 0.75

ECC 12 0 0 0

SCC 16 0 12 0.75

ASP N/A - - -

RSP 4 2 2 1

EIP 42 0 42 1

EOP 12 0 12 1

Table 4.2: MAT Application on the conveyor

Approaches Operators Mutants Equivalent Killed Score

PA

NCC 69 33 27 0.75

ECC 33 0 33 1

SCC 44 0 44 1

ASP N/A - - -

RSP 6 1 5 1

EIP 12 0 12 1

EOP 6 0 6 1

SM

NCC 69 33 25 0.69

ECC 33 0 27 0.81

SCC 44 0 44 1

ASP N/A - - -

RSP 6 1 3 0.6

EIP 12 0 12 1

EOP 6 0 6 1

BCT

NCC 69 33 25 0.69

ECC 33 0 27 0.81

SCC 44 0 44 1

ASP N/A - - -

RSP 6 1 3 0.6

EIP 12 0 12 1

EOP 6 0 6 1

Table 4.3: MAT Application on the robot-in

‎Chapter 4: Automatic Test Case Generation and Execution using the Priority-

Based Approach

 129

Approaches Operators Mutants Equivalent Killed Score

PA

NCC 69 33 27 0.75

ECC 21 0 21 1

SCC 28 0 28 1

ASP N/A - - -

RSP 6 1 4 0.8

EIP 12 0 12 1

EOP 6 0 6 1

SM

NCC 69 33 25 0.69

ECC 21 0 15 0.71

SCC 28 0 28 1

ASP N/A - - -

RSP 6 1 3 0.6

EIP 12 0 12 1

EOP 6 0 6 1

BCT

NCC 69 33 25 0.69

ECC 21 0 15 0.71

SCC 28 0 28 1

ASP N/A - - -

RSP 6 1 3 0.6

EIP 12 0 12 1

EOP 6 0 6 1

Table 4.4: MAT Application on the robot-out

To calculate the FC for each component, the average mutation scores obtained for

all operators per production-cell component was calculated according to Equation

(‎4.2). Table ‎4.5 clarifies the fault coverage outcomes for each testing approach per

component in the FC row. According to CRC and FC results, the assessment

factor (AF) was calculated using Equation (‎4.4); AF is presented in Table ‎4.5.

Assessment

Criteria

Testing

Approaches

Control

Panel
Conveyor Robot-in Robot-out

TTL

PA 732 168 136 184

SM 96 48 32 32

BCT 84 60 40 40

FC

PA 0.95 0.96 0.93 0.9

SM 0.71 0.79 0.86 0.82

BCT 0.71 0.79 0.86 0.82

CRC

PA 1 1 1 1

SM 0.07 0.12 0.11 0.1

BCT 0.1 0.14 0.16 0.13

AF

PA 1.3 5.71 6.84 4.89

SM 0.52 1.98 2.96 2.56

BCT 0.85 1.84 3.44 2.67

Table 4.5: Assessment results

‎Chapter 4: Automatic Test Case Generation and Execution using the Priority-

Based Approach

 130

4.6.4 Assessment Discussion

Comparing PA with SM and BCT according to fault coverage criterion (FC), we

found that PA showed superiority and stability in detecting most faults injected

into the production-cell components. FC of PA ranged from 90% in the robot-out

to 96% in the conveyor. On the other hand, FC score of SM and BCT was less

than that of PA; their FC ranged from 71% to 82% across all production-cell

components.

To understand the high FC score achieved by PA in comparison with SM and

BCT, the individual mutation score for each operator is discussed. Contrary to SM

and BCT, PA maintained the‎full‎mutation‎score‎‘1’‎for‎ECC‎and‎SCC,‎because‎of‎

the selection of time points that can detect such faults. However, FC of PA was

negatively affected by the mutation score of NCC. Selecting the boundary points

of clock conditions was insufficient to detect the entire injected faults for several

reasons. First, the TA model might end with an input transition such as the

transition (s6, s0) in the robot-out automaton (Figure ‎4.17). All test cases generated

by the approaches under study finished at the initial location. In other words, the

input transition will be the last transition in a test trace. Since any injected faults

require outputs to be detected, there is no possibility of detecting any faults

injected into code representing such a transition. Second, the TA model might

contain an unconstrained transition. The fault as a result of mutating the code with

a new clock condition might be undetectable by the time points chosen by PA. For

instance, the fault resulting from adding a time condition (x< 50) to the code

representing the transition (s0, s1) in the robot-in automaton (Figure ‎4.16) is

undetectable by PA. Third, detecting some faults under the NCC category requires

sending the SUT an input at an exact time point (e.g., replacing x≤4‎with‎x<4).

However, the accuracy of the clock used in testing process and the uncontrolled

delay through the communication with the SUT does not guarantee that the SUT

will receive an input at the same time point as intended by the tester.

‎Chapter 4: Automatic Test Case Generation and Execution using the Priority-

Based Approach

 131

Detecting faults under the RSP category depends on the position of a clock reset,

the consecutive transitions and the length of timing guards constraining them. PA

empirically showed higher capabilities in detecting such faults than SM and BCT.

The ASP operator was not considered as it only produced equivalent mutants.

With respect to the functional mutation operators, PA shared a full mutation score

with SM and BCT; the full transition coverage achieved by all is considered to be

sufficient to detect all functional faults injected into the implementation C code.

The high CRC of PA compared with SM and BCT relied on the full clock regions

achieved by PA. The low CRC score of SM and BCT arise from restricting the

selection of time points to cover only two regions in the case of SM and three

regions in the case of BCT. Their target was to dramatically reduce the cost by

minimising the number of generated test cases. That is clear from the low TTL in

both cases. The few test cases generated by SM or BCT were capable of detecting

82% of the faults injected as a best result. However, selecting them for testing

hard, real-time or safety critical systems is still questionable due to the shortage in

structurally covering SUT behaviour.

The importance of timed structural coverage comes from the possibility of faults

existing in the SUT un-categorised by the fault model. However, the high score in

structural coverage usually correlates with a higher cost in terms of the number of

generated test cases or TTL. As a result, any testing approach that can combine a

high FC score and CRC score with a relatively small number of test cases

(achieve high AF) is preferable. Figure ‎4.18 shows that PA performed much better

than SM and BCT, in terms of AF, for all production-cell components although it

produces relatively larger test cases than the other testing approaches. However,

PA did not maintain the same AF score ranging from ‘1.3’ for control panel to

‘6.84’ for robot-in due to the differences in TTL generated for each of the

components.

‎Chapter 4: Automatic Test Case Generation and Execution using the Priority-

Based Approach

 132

Figure 4.18: AF factor of each testing approach according to production-cell

components

4.6.5 Lessons Learned and Problems Encountered

While running the production-cell test bed, several issues affecting real-time

testing were noted. In this section, a summary of those issues is presented as a

step towards facilitating more empirical, real-time model-based test beds.

To begin with, the specification models do not always represent the code. In this

study, we had the opportunity to study the SUT code in order to mutate them. The

code based on the real-time operating system kernel (Micro C) contains more

functions than those represented in the specification models. The MBT

approaches used did not guarantee testing all functions in the code. To avoid this

problem, we assumed that the SUT was fully represented by the specification

model. However, in reality, this problem is still an issue.

Moreover, synchronising clocks between GeTeX and the SUT was another issue.

To clarify, transitions in TA models are instantaneous (i.e., the time of triggering a

transition is 0). However, triggering transitions consumes time in actuality. The

time delay that needs to be considered occurs at the implementation level (code

0

1

2

3

4

5

6

7

8

Control Panel Conveyor Robot-In Robot-Out

A
F

PA

SM

BCT

‎Chapter 4: Automatic Test Case Generation and Execution using the Priority-

Based Approach

 133

execution time of the GeTeX) and at the physical layer (CAN bus). The more

accurate the time delay calculated, the more synchronised the clocks are in GeTeX

and the SUT. In this study, theoretical and empirical methods were followed to

estimate time delay. First, the CAN bus delay was calculated using the

propagation delay equation (suggested by the controller data sheet) taking into

account the bus length, the CAN controller, transceiver ports and its baud rate.

Second, the CAN bus delay was measured by developing echo software between

two nodes. The first node broadcasts a message at a specific time point. The

second node replicates the message once it is received. When the first node

receives the replicated messages, it records its time. The bus delay is calculated as

half the time required for a message to be sent and received at the first node. The

theoretical and empirical results were similar (10 ms). Moreover, the code

execution time of GeTeX was measured using some Java libraries (i.e., Nano-time

and calendar). The soft and physical time delays were compensated by GeTeX

when sending inputs to the SUT at specific times. In spite of this compensation, it

was not guaranteed that an input was received by the SUT at an exact testing time

point. This would diminish the testing approaches capability of detecting the

boundary faults as indicated by the relatively low NCC score of the testing

approaches.

Lastly, the use of clocks either by the testing tool or SUT was another problem

encountered in testing real-time systems. This issue is related to clock accuracy.

In this study, the time units used were in seconds. The accuracy of timers to track

time progress was found to be dependent on the hardware specification as well as

the software. For instance, the Micro C operating system used in the micro-

controllers cannot measure to less than 1 ms. The clock accuracy within the

experiment was found to be ± 3 ms. When a timing constraint (x ≤ 3 for instance)

is tested at its boundary value by sending the SUT an input message at 3 seconds,

the SUT could receive the input at 3.003 seconds which does not satisfy the clock

condition. The transition is thus not triggered and an incorrect failure will be

emitted. Another example of a clock accuracy issue was found when mutating a

‎Chapter 4: Automatic Test Case Generation and Execution using the Priority-

Based Approach

 134

timing constraint by changing its boundary type (x ≤ 3 for instance becomes x <

3). This fault cannot be detected unless an input message is sent to the SUT at 3

seconds exactly. To remedy such problems, GeTeX was instructed to accept 3 ms

allowance for each message sent or received. Although (3 ms) is very little

amount compared with seconds, the testing approaches will be unable to detect

timing faults occurring in this allowance interval. To minimize the clock accuracy

issue, a more accurate hardware timer could be employed.

4.7 Summary

This chapter introduced GeTeX as a new timed testing tool for CAN applications.

GeTeX can be considered as a complete tool that tests timing properties of an

RTES in particular. GeTeX depends on PA for generating timed test cases from a

system specification modelled as UTA. GeTeX also depends on tioco theory in

executing the timed test cases and assigning pass/fail verdicts to them. The

practicality of using GeTeX was shown by experimenting with a light controller

prototype. The tool generated and executed the test cases in a short time without

any compilation errors.

This chapter also introduced an empirical test bed using production-cell case study

and assessment criteria to validate the PA testing approach in comparison with

two TA-based testing approaches (SM and BCT). The first assessment criterion

includes formulating timed structural coverage represented by clock region

coverage (CRC). A set of timed and functional mutation operators was presented

to facilitate the second assessment criterion (FC). An assessment factor (AF) that

considered fault coverage and clock coverage with respect the length of generated

test cases was also presented. The experiments confirm the results collected for

Chapter 3. PA performed better than the others in terms of FC or CRC even

though it produced relatively larger test cases than the other testing approaches;

salient problems encountered during conducting the empirical study were

highlighted.

‎Chapter 5: A Multi-Criteria Decision Making Approach for Prioritising the Test

Sets of the Priority-Based Approach

 135

Chapter 5: A Multi-Criteria Decision Making

Approach for Prioritising the Test Sets of

the Priority-Based Approach

5.1 Overview

In the previous chapters, the Priority-based Approach (PA) which tested logical

and timing behaviour of an RTES modelled formally as UPPAAL Timed

Automata (UTA) was introduced and automated by the GeTeX tool. PA generated

three separate sets of test cases (i.e., boundary, out-boundary and in-boundary) to

enable the tester to choose between the proposed test sets (or any combination

thereof). However,‎selecting‎the‎‘best-suited’‎test‎set‎to‎be‎deployed‎for‎a‎certain‎

application in a particular organisation lacks the rigour that a systematic decision-

making framework might offer.

This chapter fills this gap by developing a novel Analytical Hierarchy Process

(AHP) as decision-making framework for PA. The framework provides testers

with a systematic approach by which they can prioritise the available test sets that

best fulfil testing requirements. The AHP framework developed is based on the

data collected heuristically from the production-cell test bed and those collected

by interviewing testing experts. The framework is then applied on two different

testing scenarios to prove its validity by comparing the decision prioritising

outcomes with those of the testing experts (Aboutrab et al., 2012a).

The remainder of this chapter is organised as follows. The problem area this

chapter tackles is highlighted in Section ‎5.2. Section ‎5.3 gives an overview of

‎Chapter 5: A Multi-Criteria Decision Making Approach for Prioritising the Test

Sets of the Priority-Based Approach

 136

decision-making methods including that of AHP. In Section ‎5.4, the proposed

AHP decision model is presented and explained. The process of prioritising the

PA test sets using the AHP framework is also discussed. The framework is then

validated using two testing scenarios in Section ‎5.5. Finally, Section ‎5.6

concludes the chapter.

5.2 Problem Area

Research in MBT methods has gained increasing attention especially for testing

RTESs. This is due to MBT’s ability to reduce testing cost by capturing and

validating system behaviour from an early stage of the development cycle and

using tools to automate the process of test case generation, execution and

evaluation (Grieskamp et al., 2011). Many MBT algorithms and methods for

testing real-time systems have been proposed over the last two decades (Cardell-

Oliver, 2000; Clarke and Lee, 1997a; En-Nouaary, 2008; En-Nouaary and

Hamou-Lhadj, 2008; Hessel et al., 2008; Larsen et al., 2005a; Merayo et al., 2008;

Nielsen and Skou, 2003; Krichen and Tripakis, 2009; Hierons et al., 2009). Most

testing approaches that achieve high fault coverage suffer from high cost in terms

of expended effort and the large number of generated test cases (Mitsching et al.,

2009). Choosing which approach most suits a testing project can therefore be

considered as a problem for the following reasons.

1. The selection of a candidate testing approach is totally dependent on a

tester’s‎intention‎and‎experience.

2. Each‎ testing‎ approach‎ provides‎ a‎ single‎ test‎ solution‎ in‎ which‎ a‎ tester’s‎

preferences or environmental factors affecting the testing process (e.g.,

available test time or budget) cannot be considered. In other words, a tester

cannot guarantee whether choosing a particular subset of a test suite due to

the shortage of test time (for instance) will provide the best testing

outcome.

‎Chapter 5: A Multi-Criteria Decision Making Approach for Prioritising the Test

Sets of the Priority-Based Approach

 137

3. The existence of many factors that contribute to the testing process in

different ways increases the complication of making the right decision such

as choosing a testing approach with the aim of achieving high fault

coverage with low cost.

To address such problems, the proposed PA automated by the GeTeX tool divides

the generated test cases into three separate sets (i.e., boundary, out-boundary and

in-boundary). PA thus enables the tester to choose between the proposed test sets

(or any combination thereof). According to that choice, PA establishes a trade-off

between increasing confidence in SUT correctness and limited testing resources

such‎ as‎ time,‎ effort‎ and‎ cost.‎However,‎ selecting‎ the‎ ‘best-suited’‎ test‎ set‎ to‎ be‎

deployed for a certain application in a particular organisation by relying only on a

tester’s intension is risky due to different environmental factors influencing the

decision process. A formal decision framework in which all testing requirements

and factors (decision criteria) affecting the testing process are independently

categorised, weighted and analysed becomes viable.

An Analytical Hierarchy Process (AHP) (Saaty, 1977; Saaty, 1980) is a multi-

criteria decision-making approach based on dividing the decision criteria into

several levels to enable their pair-wise ranking subject to field experts or

empirical data. AHP potentially reduces the complexity of the decision problem

and allows consistent outcomes to be generated.

The problem tackled by this chapter is to prioritise the PA test sets for a particular

testing project using the AHP multi-criteria decision-making method. The primary

contributions of this chapter are:

1- The development of the AHP decision model considering criteria that

might‎ affect‎ a‎ tester’s‎ decision‎ in‎ prioritising the PA test set for a

particular testing project.

2- The development of the AHP framework with its process using the test

data set obtained from the production-cell test bed and a group of testing

experts.

‎Chapter 5: A Multi-Criteria Decision Making Approach for Prioritising the Test

Sets of the Priority-Based Approach

 138

3- The validation of the AHP framework using two different testing scenarios

by checking the degree of similarity between the AHP decision outcomes

with those of testing experts.

5.3 Preliminaries

A formal decision-making procedure is an essential tool for modern organisations.

Dealing with complex environments with technological cutting-edge requirements

increases the risk implications of any decision yet to be made on the future of any

organisation (Saaty, 2001). Formal decision-making methods provide a structural

process by which decisions are clear, justified, consistent and repeatable. The

process of decision-making involves choosing a solution from a set of available

solutions according to some decision criteria. It is based on ranking the solutions

according to each criterion to obtain a decision by combining all rankings. The

ranking process might include a group of expert opinions. This section presents an

overview of well-known decision-making methods including the AHP.

5.3.1 Decision Making Methods

Several approaches have been developed to standardise the process of making

decisions. Choosing an appropriate decision-making method is dependent on the

type of the decision problem, the attributes of the decision-making method and the

objectives of decision makers. The use of optimisation techniques can also lead to

a greater deployment of decision-making methods (Bhushan and Rai, 2004) and

the chosen method should thus be justified and evaluated (Baker et al., 2001). In

general, the ease of use and applicability remain an issue for some approaches due

to the heavy dependence on theoretical underpinnings or the inability to solve

complicated decision problems. For instance, the Ranking Approach (Buss, 1983),

a non-linear programming model (Badria and Davisb, 2001; Santhanam and

Kyparisis, 1996), the 0-1 goal programming model and the Analytical Network

Process (ANP) (Lee and Kim, 2000) are reliant on complicated mathematical

‎Chapter 5: A Multi-Criteria Decision Making Approach for Prioritising the Test

Sets of the Priority-Based Approach

 139

models and are difficult to understand and use. On the other hand, some decision-

making methods support small decision problems where only a few decision

criteria and solutions exist such as Pros and Cons analysis (Baker et al., 2001).

For partially complex applications, Kepner-Tregoe (K-T) decision analysis

(Kepner and Tregoe, 1981) can be used.

Numerous‎ multivariate‎ methods‎ ignore‎ decision‎ makers’‎ preferences‎ in‎ the‎

process of decision-making (e.g., the Simple Multi-Attribute Rating technique

(SMAR) (Salmeron and Herrero, 2005; Dutta and Burgess, 2003) and Decision-

making Units (DMU) (Salmeron and Herrero, 2005)). DMU involves assessing

the performance of different units that might be different in nature such as a

computer or a school. Performance is measured considering the amount of inputs

involved and outputs generated. The measures of unit performances are then

compared in the sense that one unit is more efficient that another if it gives more

outputs for same quantity of inputs or the same amount of outputs for smaller set

of inputs. This comparison can be represented mathematically by ratio of the sum

of outputs over the sum of inputs. The Data Envelopment Analysis (DEA)

approach (Salmeron and Herrero, 2005) extends DMU by assigning different

weights to outputs and inputs. The weights are different values assigned to reflect

the fact that one unit is more important than others. DMU and DEA are preferable

when there is no need to consider the preferences of decision makers as the main

intention is to compare unit performances.

On‎ the‎other‎hand,‎ there‎are‎ several‎methods‎ that‎consider‎ the‎decision‎makers’‎

preferences such as the Multi-Attribute Utility Theory (MAUT) (Edwards and

Barron, 1994; Goodwin and Wright, 1999) and the Analytical Hierarchy Process

(AHP) (Saaty, 2001; Saaty, 1990a; Saaty, 1990b; Saaty and Kearns, 1985; Saaty,

2008; Saaty and Vargas, 2000; Saaty and Vargas, 1984; Saaty and Vargas, 1991).

Firstly, MAUT is a quantitative decision-making method that depends on

optimising measures of costs, benefits and risks for decision alternatives. The

measures are then combined along with the preferences of the decision makers in

‎Chapter 5: A Multi-Criteria Decision Making Approach for Prioritising the Test

Sets of the Priority-Based Approach

 140

a cumulative format. Secondly, the AHP depends upon making decisions on pair-

wise ranking of decision alternatives according to decision criteria; this is done on

the basis that humans are more skilled at making relative decisions than complete

ones. Some researchers might not support the use of the AHP due to the way it

numerates and processes the ranking values (Dutta and Burgess, 2003; Goodwin

and Wright, 2000). However, comparing the AHP with some of its counterparts,

Table ‎5.1 demonstrates its advantageous features.

Table 5.1: Comparisons of decision-making approaches (Kamal, 2008)

Comparison Factors
Decision Making Techniques

AHP SMAR DEA RA ANP
Incorporation of preference structure  – – – –
Synthesised analysis of diverse judgements  – – – –
Is an intuitive technique – – –  –
Optimises resource allocation for interaction of

factors
 –  – 

Limited attributes to carry out real world

decisions
–    

Captures individual knowledge and experience   – – –
Gives easy understanding of the problem

situation
 – – – 

Time-consuming process – – – – –
Non-linear representation – – –  –
Managing large amount of

qualitative/quantitative data
 – – – –

Applicability weakened by complex

mathematical models
– – –  

Easy understanding of the prioritisation process   –  –
Quick insight into structure of information   – – –
Requires less skill and training     
Measures the performance efficiency of decision

makers
–   – –

Structures through symbolic and numeric

representation
  – – –

Supports different viewpoints through rich

pictures
 – – – –

Techniques inappropriate for all situations     
Too much focus on quantifiable calculations –    
Provides a step-wise guideline for prioritising the

factors
 – – – 

Accessible data format  –  – –
Graphical representation  – – – –
Resolves complex problems of choice and

prioritisation
 –  – 

‎Chapter 5: A Multi-Criteria Decision Making Approach for Prioritising the Test

Sets of the Priority-Based Approach

 141

5.3.2 Analytical Hierarchy Process (AHP)

Using rigorous mathematical rules, the AHP analyses the decision problem and

structures the experience, preference, intuition and heuristics of the decision

makers (Huang et al., 2004). Due to its simplicity and organised structure, the

AHP is suitable for a wide range of applications including alternative selection

(Zeng et al., 2007), resource allocation (Ramanathan, 1995), forecasting (Ülengin,

1994; Jensen, 1982; Jensen and Spencer, 1986; Saaty, 1987), business process re-

engineering (Ashayeri et al., 1998; Wei et al., 2005), quality function deployment

(Karsak et al., 2003), balanced scorecard (Ravi et al., 2005), benchmarking (Lu et

al., 1994), public policy decisions (Saaty, 2001), healthcare (Dolan, 1989),

multimedia communication (Ghinea et al., 2005), software testing (McCaffrey,

2005) and many more. AHP results are always compatible with expectations

regardless of the type of applications. As a result, the AHP is an accepted method

(Saaty, 2008).

The AHP has several features and characteristics making it more preferable than

other decision-making approaches. Firstly, the AHP qualitatively decomposes the

decision problems to a set of sub-problems and unrelated factors organised in a

hierarchical structure in which every set of factors is classified under a certain

decision sub-problem. As a result, the assessment bias can be significantly

reduced (Chin et al., 1999; Cheng and Li, 2002). The multi-criteria format enables

the AHP to use a pair-wise comparison mechanism in ranking the decision factors

quantitatively. The ranking process thus becomes more informative and accurate

and represents the importance of decision factors with respect to others (Salmeron

and Herrero, 2005; Saaty, 1980; Jackson, 2001). Secondly, the AHP is equipped

with consistency assessments to minimise any inconsistency within the rating of

decision makers (Salmeron and Herrero, 2005; Saaty, 1980; Jackson, 2001).

Thirdly, the AHP uses an appropriate measurement scale making the judgements

logical and comprehensive (Lai et al., 1999). Fourthly, the AHP outcomes are

‎Chapter 5: A Multi-Criteria Decision Making Approach for Prioritising the Test

Sets of the Priority-Based Approach

 142

determined by prioritising a set of decision alternatives according to the relative

ranking of the decision criteria (Wei et al., 2005; Saaty, 1990b).

The AHP process comprises several steps (Saaty and Vargas, 2000):

Step 1 - Constructing the Hierarchy Model: In this step, the decision problem is

defined and the decision factors are categorised into a hierarchical model

comprising goal, criteria, sub-criteria and alternatives. The decision goal forms the

root of the model where the decision alternatives form the leaf nodes. The root

and the leaves are connected by various levels (criteria and sub-criteria) where the

relationship between elements of one level with those of other levels are indicated

and classified.

Step 2 - Ranking Decision Factors through Pair-Wise Comparisons: The

importance of each decision factor is determined relative to all other factors. This

is considered an easy and efficient way of obtaining actual priorities. The

comparison process needs to be made for elements at a certain level within their

own criterion. The ranks can be collected from heuristics, decision makers or field

experts and then converted to numbers according to a nine-point scale introduced

by Saaty (Saaty, 1977). Table ‎5.2 illustrates the scale and its meanings. The

numerical rating is not dependent on a standard scale but represents the preference

relationship established between the factors being compared.

Pair-wise comparisons can be done in different ways. Interviewing a group of

field experts can be considered one of the most popular means of obtaining

numerical rates. We denote WAB as the preference of the factor A with respect to

the factor B and (1/ WAB) as the preference of the factor B with respect to the

factor A where A and B belong to the same decision criterion. This procedure

helps to decrease the number of ratings to n(n-1)/2 where n represents the number

of factors under a decision criterion (Salmeron and Herrero, 2005). Use of

heuristics is another way for obtaining the rating. The absolute data collected for

each factor needs to be mathematically normalised to a nine-point scale.

‎Chapter 5: A Multi-Criteria Decision Making Approach for Prioritising the Test

Sets of the Priority-Based Approach

 143

Numerical Rating Verbal Judgments of Preferences

1 A is equally preferable to B

2 A is equally to moderately preferable to B

3 A is moderately preferable to B

4 A is moderately to strongly preferable to B

5 A is strongly preferable to B

6 A is strongly to very strongly preferable to B

7 A is very strongly preferable to B

8 A is very strongly to exceptionally preferable to B

9 A is exceptionally preferable to B

Table 5.2: Pairwise comparison scale for AHP preferences (Saaty, 1977)

Step 3 - Creating Comparison Matrices: The pair-wise rates for different

decision criteria at a certain level in the hierarchical model are arranged in a

square‎matrix‎ ‘A’‎as‎depicted‎ in‎Equation (‎5.1). Each element in the matrix

represents the preference of the factor in a row i to the factor in a column j. All

diagonal elements are thus equal to 1. Moreover, all elements in the upper triangle

of the square matrix represent the reciprocal of the elements in its lower triangle.

 A= [

] (5.1)

Step 4 - Calculating Eigenvectors: This step involves decomposing the

comparison matrix containing the relative ranking values into a non-zero vector

representing the absolute weights of decision criteria, sub-criteria or alternatives.

The transformation of relative ranks (i.e., in pair-wise comparison matrices) to an

absolute weights can be considered as an eigenvalue problem. As a result,

calculating the largest positive eigenvalue for pair-wise matrices with associated

eigenvector leads to a vector of weights. Since the point of using the AHP is to

‎Chapter 5: A Multi-Criteria Decision Making Approach for Prioritising the Test

Sets of the Priority-Based Approach

 144

prioritise a set of solutions, Saaty (2008) found that the calculation of eigenvectors

can be approximated without largely affecting the results of that prioritization.

The process of calculating the approximate eigenvectors involves normalising the

comparison matrix by dividing each element by the sum of its column. The sum

of each row of the normalised matrix is then divided by the number of its elements

to obtain the approximate eigenvector.

Step 5 - Calculating a Consistency Ratio: Ranking the decision factors using a

group of experts being interviewed raises a consistency issue (i.e., whether all

ranks are consistent with each other). The use of comparison matrices eliminates

symmetric inconsistencies due to reciprocal elements with respect to the matrix

diagonal. However, the transitive consistency property may not be satisfied. In

other words, if A is more important than C and C is more important than B, it is

not known if A is more important than B. As a result, the consistency ratio of the

comparison matrix of order n needs to be calculated and evaluated. The closer the

consistency ratio is to zero, the more consistent the matrix. The AHP tolerates

inconsistency to a certain degree due to the amount of redundancy in the

framework. To accept the pair-wise ranking, the value of consistency ratio should

not exceed 10%. If it is found that the consistency ratio exceeds the 10% level, the

judgments made are ineffective as they become too similar to random judgments.

As a result, the rating process may need to be re-done since the decision makers

are inconsistent in their ratings (Saaty, 2008). The consistency ratio CR can be

calculated according to Equation (‎5.2).

 CR = CI / RI (5.2)

 Where:

 CI represents the consistency index calculated according to Equation (‎5.3).

‎Chapter 5: A Multi-Criteria Decision Making Approach for Prioritising the Test

Sets of the Priority-Based Approach

 145

 RI represents the random matrix depicted in Table ‎5.3. The chosen value

of RI should correspond to the order of a comparison matrix (e.g., RI =

0.58 for three-dimensional comparison matrix).

 CI = (max-n) / (n-1) (5.3)

Where:

 max represents the maximum eigenvalue of the pairwise matrix.

 n represents the order of a comparison matrix.

Order of the matrix n 1 2 3 4 5 6 7 8 9 10

Random Consistency

Index – RI
0 0 0.58 0.89 1.11 1.25 1.35 1.40 1.45 1.49

Table 5.3: Random consistency indices (Saaty, 1990a)

Step 6 - Determining Normalised Weights: This step involves prioritising the

decision alternatives according to the calculated weights. The global weight of a

sub-criterion is calculated by multiplying the weight of the decision criteria it

belongs to by its local weight. The weights of alternatives are calculated with

respect to a sub-criterion by multiplying the weight of each alternative by the

global weight of that sub-criterion. The alternative weights are then aggregated to

obtain the final rating by which they are prioritised.

Step 7-Integrating Group Judgments: If the ranking process includes several

experts to be interviewed or several experiments to be run, the results are

integrated using the geometric mean approach since the ranks are represented by a

geometric scale (Saaty, 2008).

‎Chapter 5: A Multi-Criteria Decision Making Approach for Prioritising the Test

Sets of the Priority-Based Approach

 146

5.4 The AHP Framework

Figure ‎5.1 depicts the hierarchical AHP model introduced to solve the decision

problem under study. The root of the hierarchy is the definition of the decision

problem (decision goal). The leaf nodes represent the decision alternatives (i.e.,

solutions) to be prioritised according to decision criteria and sub-criteria. In the

following, the proposed AHP model is defined and explained.

Figure 5.1: AHP hierarchal model

5.4.1 Decision Problem

The Priority-based Approach (PA) was proposed for testing logical and timing

behaviour of an RTES modelled formally as UTA. The core concept of the PA is

based on dividing the generated test cases into three sets (i.e., priorities) as the

priority of choosing a particular test set differs according to several factors such as

the testing environment specified by the criticality of SUT, the allowable time and

the budget specified for the testing process (Aboutrab et al., 2010). Prioritising PA

test sets to be deployed for a certain application in a particular organisation is thus

a complex decision-making task facing a tester.

A
lt

er
n

at
iv

es

Prioritise PA test sets to be deployed for a particular SUT

Test Adequacy Test Cost Application Domain

Faults Coverage

Clock Regions Coverage

Test Traces Length

Test Execution Time

Importance

Complexity

Development Stage

B OB IB B+OB B+IB OB+IB B+OB+IB

G
O

A
L

C

ri
te

ri
a

S
u

b
-c

ri
te

ri
a

‎Chapter 5: A Multi-Criteria Decision Making Approach for Prioritising the Test

Sets of the Priority-Based Approach

 147

5.4.2 Decision Alternatives

The outcome of the decision framework is to prioritise the available test sets

generated by PA. Each set is named and constructed according to the structure of

timing constraints. Chapter 3 (Section ‎3.5.2) gives details about the PA test sets.

To summarise, the Boundary set (B) contains test cases that achieve transition

coverage by considering the boundary values of timing constraints defined for

each transition it covers. The Out-Boundary set (OB) contains test cases that

achieve transition coverage by considering the out-boundary values of timing

constraints defined for each transition it covers. The In-Boundary set (IB) contains

test cases that achieve transition coverage by considering the in-boundary values

of timing constraints defined for each transition it covers. The B+OB set

combines the Boundary set (B) and Out-Boundary set (OB). The B+IB set

combines the Boundary set (B) and In-Boundary set (IB). the OB+IB set

combines the Out-Boundary set (OB) and In-Boundary set (IB). Finally, the

B+OB+IB set combines the Boundary set (B), Out-Boundary set (OB) and In-

Boundary set (IB).

5.4.3 Decision Criteria

The factors and requirements affecting the decision process are classified into

three criteria: the test adequacy, test cost and application domain. Each criterion is

sub-categorised according to different sub-criteria.

5.4.3.1 Test Adequacy

Adequacy criteria are often used to rank the quality of a proposed test suite.

Different types of adequacy criteria are discussed and used in the literature such as

structural or fault coverage. The test adequacy considered in our decision model

includes both fault and structural coverage (i.e., CRC), which have been discussed

in previous chapters. The following present a concise summary of their concepts.

‎Chapter 5: A Multi-Criteria Decision Making Approach for Prioritising the Test

Sets of the Priority-Based Approach

 148

1. Fault Coverage (FC): Identifying how many faults can be detected by a test

suite is known as fault coverage. It is always desirable to seek tests capable

of detecting most potential faults in an SUT. Accordingly, fault coverage is

one of the parameters essential in determining the power of produced test

cases in detecting faults in an implementation and hence plays an important

role in the decision-making process. The measurement of fault coverage is

calculated by the application of Mutation Analysis Technique (MAT)

(Lipton, 1971). MAT involves injecting well-defined faults into the SUT to

identify the fault detection capability of a test suite. A set of timed as well

as functional mutation operators were proposed in Chapter 4 (Section ‎4.5.2)

to represent the possible faults that might be encountered. PA test sets can

be thus prioritised according to their FC scores calculated by Equation

(‎5.4).

FC =

 (5.4)

2. Clock Region Coverage (CRC): The aim of structural coverage is to

measure to what extent test cases cover the specification model. Since any

proposed fault model cannot guarantee to specify all faults, the use of

structural coverage cannot be ignored. Chapter 3 (Section ‎3.4) introduced

CRC as timed coverage criterion to select tests that are able to cover timing

behaviour of an SUT. The CRC as a transition-based term is calculated for

each test set with respect to each transition in the specification model

according to Equation (‎5.5). To calculate the CRC for a test set with respect

to the entire specification model, the transition-based CRC values

calculated for all transitions within the model are averaged.

CRC =

 (5.5)

‎Chapter 5: A Multi-Criteria Decision Making Approach for Prioritising the Test

Sets of the Priority-Based Approach

 149

5.4.3.2 Test Cost

Testing in general suffers from a high cost of test generation and executing

process. Usually, the test cost can be determined by two factors, namely test

length and test execution time.

1. Test Traces Length (TTL): One of the most relevant factors affecting the

test cost is the number or the length of test cases. It is desirable to find

small test suites that detect many faults. As a result, the TTL is an essential

factor in the decision-making framework. The length of test cases in each

test set used for our AHP model is calculated according to Equation (‎4.3)

mentioned in Chapter 4.

2. Test Execution Time (TET): Test execution time determines how fast an

SUT performs under a particular test set. Since the tester will always prefer

a test set that needs the least time to execute and therefore least cost,

calculating each set execution time for a particular SUT is important for

making the right decision. PA was automated by the GeTeX tool providing

a complete automation process for generating and executing real-time test-

cases on the SUT. As a result, the execution time for each test set is

measured by GeTeX.

5.4.3.3 Application Domain

The testing prioritisation process should take the application domain into account.

In our decision model, we consider three different sub-criteria.

1. Importance: The more important the application, the more thorough testing

it needs. For instance, a user might be slightly irritated if a coffee cup is

delivered from a coffee machine in a longer time frame than expected.

However, a user life could be under threat if a safety critical system shows

faulty behaviour. It is thus essential to compare the test sets to find a more

suitable one for more important applications.

‎Chapter 5: A Multi-Criteria Decision Making Approach for Prioritising the Test

Sets of the Priority-Based Approach

 150

2. Complexity: Some projects are simple, such as a light controller whereas

some are more complex like air traffic control. Complexity is related to the

technologies used, the number of lines of code or coupling between the

classes or routines. As a result, it is essential to consider the application

complexity in determining the most appropriate test set for more complex

applications.

3. Development Stage: A project could be at different stages when a testing

project starts. An early stage can be when only a general idea and a

specification model exist, whereas a mature stage can be when the

application is almost ready. The project development stage should affect

the‎tester’s‎choice as to which test set can be generated and implemented

that mostly suit early-stage applications.

5.4.4 Data Collection

In order to rank the decision alternatives according to the criteria and sub-criteria

and thus form the pair-wise comparison matrices, two methods were followed: a)

heuristics by running the production-cell test bed and b) interviews.

5.4.4.1 Production-Cell Test Bed

Some decision sub-criteria (FC, CRC, TTL and TET) are quantifiable factors

which cannot be ranked subjectively by humans without real data. As a result,

executing the PA test sets on real-time systems is essential to enable collection of

the data required for pair-wise comparing the PA test sets in terms of CRC, FC,

TTL and TET. As a result, the production-cell test bed was used to collect the

required data. To construct the pair-wise comparison matrices that rank the

preference of the PA test sets according to FC, CRC , TTL and TET, PA test sets

were generated and executed for each component of the production-cell (i.e.,

robot-in, robot-out, control panel and conveyor) using GeTeX.

‎Chapter 5: A Multi-Criteria Decision Making Approach for Prioritising the Test

Sets of the Priority-Based Approach

 151

Firstly, to pair-wise compare the PA test sets with respect to the FC sub-criterion,

we produced all possible mutants by manually mutating the C code of each

component of the production-cell according to the proposed mutation operators

(Section ‎4.5.2). The test sets of PA were then executed against each mutant. A

mutant is considered killed if the injected fault is detected by a test set. For each

test set, we calculated the number of generated and killed mutants to obtain fault

coverage (FC) for the control panel, conveyor, robot-in and robot-out, respectively

according to Equation (‎5.4). The number of equivalent mutants has no effect on

the data since they are the same for all test sets.

To calculate the final value of the FC for each test set, we averaged the FC values

obtained for all production-cell components. The pair-wise comparison matrix of

the PA test sets with respect to the FC was then constructed by transforming the

obtained FC values of each test set according to the nine-point scale as depicted in

Table ‎5.4. The‎comparison‎matrix‎implies‎that‎‘B+OB+IB’‎and‎‘OB+IB’‎sets‎are‎

the most preferable sets in terms of fault detection capability.

Test Sets B OB IB B+OB B+IB OB+IB B+OB+IB

B 1 3.04 0.71 0.39 0.71 0.34 0.34

OB 0.33 1 0.23 0.13 0.23 0.11 0.11

IB 1.41 4.3 1 0.55 1 0.48 0.48

B+OB 2.55 7.76 1.8 1 1.8 0.86 0.86

B+IB 1.41 4.3 1 0.55 1 0.48 0.48

OB+IB 2.96 9 2.09 1.16 2.09 1 1

B+OB+IB 2.96 9 2.09 1.16 2.09 1 1

Table 5.4: Pair-wise comparison matrix of alternatives with respect to FC

Secondly, to pair-wise compare the test sets with respect to the CRC sub-criterion,

we averaged the CRC values calculated for each test set according to the robot-in,

robot-out, control panel and conveyor using Equation (‎5.5). The pair-wise

comparison matrix of the PA test sets with respect to the CRC was then

constructed by transforming the obtained CRC values of each test set according to

the nine-point scale as depicted in Table ‎5.5.

‎Chapter 5: A Multi-Criteria Decision Making Approach for Prioritising the Test

Sets of the Priority-Based Approach

 152

Test Sets B OB IB B+OB B+IB OB+IB B+OB+IB

B 1 1.73 0.23 0.82 0.2 0.22 0.19

OB 0.58 1 0.13 0.47 0.12 0.13 0.11

IB 4.34 7.52 1 3.56 0.87 0.95 0.84

B+OB 1.22 2.11 0.28 1 0.24 0.27 0.23

B+IB 4.98 8.63 1.15 4.09 1 1.09 0.96

OB+IB 4.55 7.89 1.05 3.73 0.91 1 0.88

B+OB+IB 5.2 9 1.2 4.26 1.04 1.14 1

Table 5.5: Pair-wise comparison matrix of alternatives with respect to CRC

The‎comparison‎matrix‎implies‎ that‎‘B+OB+IB’‎set‎ is‎ the‎most‎preferable‎set‎ in‎

terms of covering most of the clock regions.

Thirdly, to pair-wise compare the test sets with respect to the TTL sub-criterion,

TTL of each test set according to the robot-in, robot-out, control panel and

conveyor was calculated using Equation (‎4.3). The TTL values for all production-

cell components were averaged and transformed to nine-point scale to construct

the pair-wise comparison of the PA test sets with respect to the TTL sub-criteria

as depicted in Table ‎5.6.‎The‎comparison‎matrix‎ shows‎ that‎ ‘B’‎ set‎ is‎ the‎most‎

preferable set in terms of the TTL as it generates the least number of test cases

and hence the least length.

Table 5.6: Pair-wise comparison matrix of alternatives with respect to TTL

Lastly, to pair-wise compare the test sets with respect to the TET sub-criterion, the

test cases of each test set were executed on a particular production-cell component

and its execution times measured in seconds. The final TET of each test set was

calculated by averaging the TET values calculated for all production-cell

components. The TET values were then transformed to match the nine-point scale

Test Sets B OB IB B+OB B+IB OB+IB B+OB+IB

B 1 1.03 3.02 1.15 4.2 4.89 9

OB 0.97 1 2.92 1.11 4.06 4.73 8.7

IB 0.33 0.34 1 0.38 1.39 1.62 2.98

B+OB 0.87 0.9 2.63 1 3.67 4.27 7.86

B+IB 0.24 0.25 0.72 0.27 1 1.16 2.14

OB+IB 0.2 0.21 0.62 0.23 0.86 1 1.84

B+OB+IB 0.11 0.11 0.34 0.13 0.47 0.54 1

‎Chapter 5: A Multi-Criteria Decision Making Approach for Prioritising the Test

Sets of the Priority-Based Approach

 153

to construct the corresponding pair-wise comparison matrix as depicted in

Table ‎5.7. The comparison matrix shows‎that‎‘B’‎set‎is‎the‎most‎preferable‎set‎in‎

terms of the TET as it has the shortest execution time compared with other sets.

Test Sets B OB IB B+OB B+IB OB+IB B+OB+IB

B 1 1.07 3.37 1.15 4.19 5.9 9

OB 0.93 1 3.13 1.07 3.9 5.49 8.38

IB 0.3 0.32 1 0.34 1.24 1.75 2.67

B+OB 0.87 0.94 2.94 1 3.65 5.15 7.85

B+IB 0.24 0.26 0.8 0.27 1 1.41 2.15

OB+IB 0.17 0.18 0.57 0.19 0.71 1 1.52

B+OB+IB 0.11 0.12 0.37 0.13 0.47 0.66 1

Table 5.7: Pair-wise comparison matrix of alternatives with respect to TET

5.4.4.2 Testing expert Interviews

Other decision sub-criteria‎(‘complexity’,‎‘importance’‎and ‘development‎stage’)

are‎qualitative‎factors‎that‎can‎be‎subject‎to‎testers’‎preferences‎and‎experiences.‎

Interviews are considered the most valuable method in collecting data

qualitatively (Denzin and Lincoln, 1998; Yin, 1994). Interviews can collect and

interpret‎ participants’‎ views,‎ thoughts,‎ ambitions‎ and‎ preferences‎ about‎ certain‎

actions or events (Walsham, 1995). As a result, interviews were used in this study

to pair-wise compare the preferences of the PA test sets with respect to the

decision sub-criteria (‘complexity’, ‘importance’ and ‘development‎ stage’). A

panel of five testing experts (E1...E5) from the Department of Information

Systems and Computing in Brunel University was chosen for the interviews. The

selected experts had experience in managing industrial testing projects and/or an

academic testing background. The interviewees were first given sufficient

information including examples about how PA works. Three comparisons

matrices for ranking the preference of the seven test sets with respect to

‘complexity’, ‘importance’ and ‘development‎ stage’ were then structured and

given to each expert. The verbal preferences were interpreted by those experts into

numbers according to the nine-point scale. The interview sheet can be found in

Appendix C.

‎Chapter 5: A Multi-Criteria Decision Making Approach for Prioritising the Test

Sets of the Priority-Based Approach

 154

Five‎comparison‎matrices‎for‎each‎‘importance’,‎ ‘complexity’‎and‎‘development‎

stage’‎ sub-criteria were ranked by five experts. The expert ratings were similar

and acceptable as the Consistency Ratio (CR) calculated for each produced

comparison matrix was less than 10%. Due to space limitations and to avoid

repetitions, several representative matrices only are shown. Please refer to

Appendix D for a complete set of tables. Table ‎5.8 depicts the pair-wise

comparison matrix of alternatives with respect to the ‘importance’‎sub-criterion as

a result of interviewing the testing expert E1. E1 believed that a complete test set

(B+OB+IB) was the most preferable choice for testing more important

applications as it is (9, 9, 9, 7, 7, 7) times preferable than the test sets (B, OB, IB,

B+OB, B+IB, OB+IB), respectively. The CR calculated for this matrix according

to Equation (‎5.2) was 5.8%. In other words, the ranks of interviewee E1 were

acceptable since the CR was less than 10%.

Test Sets B OB IB B+OB B+IB OB+IB B+OB+IB

B 1 1 1 0.5 0.25 0.2 0.11

OB 1 1 1 0.5 0.25 0.2 0.11

IB 1 1 1 0.5 0.25 0.2 0.11

B+OB 2 2 2 1 0.33 0.25 0.14

B+IB 4 4 4 3 1 0.25 0.14

OB+IB 5 5 5 4 4 1 0.14

B+OB+IB 9 9 9 7 7 7 1

Table 5.8: Pair-wise comparison matrix of alternatives with respect to the

‘importance’ (E1)

Table ‎5.9 depicts the pair-wise comparison matrix of alternatives with respect to

the ‘complexity’‎ sub-criterion as a result of interviewing testing expert E4.

Choosing‎the‎‘B+IB’‎set‎is‎seven‎times‎preferable‎than‎‘OB’‎set‎for‎testing‎more‎

complex applications according to E4. The CR calculated for this matrix was

3.68%, which implies that the E4 ranking was acceptable according to Saaty.

‎Chapter 5: A Multi-Criteria Decision Making Approach for Prioritising the Test

Sets of the Priority-Based Approach

 155

 Test

Sets
B OB IB B+OB B+IB OB+IB B+OB+IB

B 1 4 2 0.33 0.25 0.5 0.17

OB 0.25 1 0.33 0.17 0.14 0.2 0.11

IB 0.5 3 1 0.25 0.2 0.33 0.14

B+OB 3 6 4 1 0.5 2 0.25

B+IB 4 7 5 2 1 3 0.33

OB+IB 2 5 3 0.5 0.33 1 0.2

B+OB+IB 6 9 7 4 3 5 1

Table 5.9: Pair-wise comparison matrix of alternatives with respect to the

‘complexity’ (E4)

5.4.5 Raised Power Matrices

Obtaining all matrices that pair-wise compare the PA test sets according to all

decision sub-criteria either by the test bed or the interviews, all obtained matrices

were raised to a larger power to improve its accuracy according to (Saaty, 2008).

Table ‎5.10 shows a matrix derived from the comparison matrix in Table ‎5.8 by

squaring it twice.

 Test Sets B OB IB B+OB B+IB OB+IB B+OB+IB

B 411.06 411.06 411.06 254.2 149.31 87.49 31.89

OB 411.06 411.06 411.06 254.2 149.31 87.49 31.89

IB 411.06 411.06 411.06 254.2 149.31 87.49 31.89

B+OB 677.63 677.63 677.63 419.97 248.12 144.9 52.44

B+IB 1299.12 1299.12 1299.12 806.42 481.18 281.68 100.73

OB+IB 2301.51 2301.51 2301.51 1420.86 846.77 504.47 180.95

B+OB+IB 6362.09 6362.09 6362.09 3905.71 2286.46 1369.36 502.04

Table 5.10: Squared matrix of alternatives with respect to the ‘importance’

(E1)

5.4.6 Normalised Matrix and Eigenvector

All obtained raised power comparison matrices were then normalised to calculate

their eigenvectors. A representative normalised matrix of the matrix in Table ‎5.10

and its eigenvector are depicted in Table ‎5.11. To normalise a matrix, each of its

‎Chapter 5: A Multi-Criteria Decision Making Approach for Prioritising the Test

Sets of the Priority-Based Approach

 156

elements was divided by the sum of its columns. For instance, the normalised

value (0.03) in the cell (row: B, column: B) in Table ‎5.11 was obtained by

dividing the value of the same cell (411.06) in the squared matrix (Table ‎5.10) by

the sum of values of its column (11873.53). The eigenvector of the test sets can

then be calculated by dividing the sum of each row of the normalised matrix by

the number of its elements (i.e., calculating the average of each row values).

Test Sets B OB IB B+OB B+IB OB+IB B+OB+IB Eigenvector

B 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03

OB 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03

IB 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03

B+OB 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06

B+IB 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11

OB+IB 0.19 0.19 0.19 0.19 0.2 0.2 0.19 0.195

B+OB+IB 0.54 0.54 0.54 0.53 0.53 0.53 0.54 0.535

Table 5.11: Normalised matrix and eigenvector of alternatives with respect to

the ‘importance’ (E1)

According to each expert, the eigenvector of alternatives (i.e., test sets) was

calculated in order to transform a) the relative weights of alternatives with respect

to each decision sub-criterion to b) absolute weights. As a result, we obtained five

alternative eigenvectors (i.e., ranks) from five interviewees. The eigenvectors of

the test sets with respect to the sub-criteria (FC, CRC, TTL and TET) were the

same since their comparison matrices were constructed once using the test bed.

On the other hand, the eigenvectors of the test sets with respect to sub-criteria

(‘importance’, ‘complexity’ and ‘development‎ stage’) were different since their

comparison matrices were constructed five times according to the five experts.

Using the geometric mean approach, the five ranking tables were integrated into

one final table showing the weight of each test set according to each decision sub-

criterion (Table ‎5.12).

‎Chapter 5: A Multi-Criteria Decision Making Approach for Prioritising the Test

Sets of the Priority-Based Approach

 157

Criteria
Sub

Criteria

Test Sets

B OB IB B+OB B+IB OB+IB
B+OB

+IB

Test

Adeq.

FC 0.0793 0.0260 0.1119 0.202 0.1119 0.2344 0.2344

CRC 0.0457 0.0264 0.1985 0.056 0.2279 0.2082 0.2376

Test

Cost

TTL 0.2685 0.2595 0.0890 0.234 0.0639 0.0549 0.0298

TET 0.2763 0.2571 0.0821 0.241 0.066 0.0468 0.0307

App.

Domain

Imp. 0.0365 0.0588 0.0996 0.0819 0.2079 0.1781 0.3372

Comp. 0.0365 0.0588 0.0996 0.0819 0.2079 0.1781 0.3372

D.Stage 0.0365 0.0588 0.0996 0.0819 0.2079 0.1781 0.3372

Table 5.12: Integrated ranking of alternatives with respect to all sub-criteria

(geometric mean)

The calculated weights of each test set as shown in Table ‎5.12 are independent

from a testing project. In other words, these weights are the same for all testing

projects and necessary for the next stage of the decision-making process for a

particular testing project.

5.5 Testing scenarios

In this section, the use of the proposed AHP framework in two common real-time

testing scenarios for validating the approach is described. Applying the proposed

AHP framework on a particular testing project can assist the tester in choosing the

best suited PA test set for it. Having the absolute weights (i.e., ranks) of the test

sets with respect to all decision sub-criteria, the tester (decision-maker) has to

pair-wise compare the preference of one decision criterion to another. Within each

criterion, the sub-criteria also need to be pair-compared; this is to obtain the

absolute weights (i.e., eigenvectors) for each decision criterion and sub-criterion

with respect to the particular scenario using the same steps as previously

mentioned. Calculating the weights of decision criteria and sub-criteria is

dependent on the testing scenario. As a result, the tester should repeat the

calculation of the decision criteria and sub-criteria weights for each testing project

or scenario. To reduce the time the AHP calculations might take, the AHP process

was automated using a tool (Alrouh, 2011). Obtaining the weights for decision

alternatives, criteria and sub-criteria, we are able to obtain the decision outcomes.

‎Chapter 5: A Multi-Criteria Decision Making Approach for Prioritising the Test

Sets of the Priority-Based Approach

 158

5.5.1 Scenario 1: Control System

This section gives an overview of a control system that was used as a testing

scenario. The application of the proposed AHP framework in prioritising the PA

test sets to suit the testing scenario is presented next.

5.5.1.1 Scenario 1 Description

A software company is assigned to develop a real-time system to control and

monitor the temperature of freezer rooms in an industrial plant. The controller

deals with several inputs such as room air temperature and a defrost temperature.

It delivers outputs controlling several relays, a display unit showing room air

temperature and LEDs indicating for any alarm or error. The compressor must

remain on for minimum time duration and can restart after certain time as well.

An alarm sounds if the temperature increases above a specified limit. Timing

constraints within the specification are in the range of minutes.

The testing activities start at a late stage of the system development. The budget is

limited and it is required to deliver the system without any latency. The system at

delivery should match all the requirements without any major deficiencies.

5.5.1.2 AHP Application on Scenario 1

To obtain the weights of decision criteria and sub-criteria, their comparison

matrices were constructed and given to the experts. In a real application, the

comparison matrices should be constructed by a tester (who tests the application).

We chose the experts to construct the comparison matrices to assess the validity of

the AHP framework. Due to space limitations, we randomly picked a

representative matrix for a decision criterion and sub-criterion; the entire set of

matrices can be found in Appendix D. For instance, Table ‎5.13 presents the pair-

wise comparison matrix of the main criteria with respect to the decision goal

according‎to‎E2.‎E2‎assumed‎that‎ the‎‘test‎cost’‎should‎have‎the‎highest‎priority‎

‎Chapter 5: A Multi-Criteria Decision Making Approach for Prioritising the Test

Sets of the Priority-Based Approach

 159

(i.e., 4‎ and‎ 6‎ times‎ preferable‎ than‎ ‘test‎ adequacy’‎ and‎ ‘application‎ domain’‎

respectively)‎ since‎ the‎ budget‎ is‎ limited.‎ ‘Test‎ adequacy’‎ is‎ marginally‎ more‎

important‎(3‎times‎preferable)‎than‎‘application‎domain’‎since‎the‎company‎has‎to‎

deliver the system without any major deficiencies. The CR calculated for this

matrix was 4.76%, implying that the expert ranking is acceptable (less than 10%).

The matrix was then raised to a higher power and normalised to calculate the

eigenvector (weights).

Test Adequacy Test Cost

Application

Domain
Weights

Test Adequacy 1 0.25 3 0.2176

Test Cost 4 1 6 0.6909

Application Domain 0.33 0.17 1 0.0915

Table 5.13: Pair-wise comparison matrix and eigenvector of the main criteria

with respect to the decision goal (E2, Scenario 1)

Three pair-wise comparison metrics for comparing the decision sub-criteria with

respect to the criteria they belong to were constructed according to each expert.

First, FC and CRC sub-criteria were compared with respect to the ‘test‎adequacy’‎

criterion. Table ‎5.14 depicts the pair-wise comparison matrix of the sub-criteria

with respect to the ‘test‎adequacy’‎criterion‎according‎to‎E2.‎Since‎the‎company‎

intends to deliver the application without any major deficiencies, E2 assumed that

CRC was 5 times important than FC as CRC covers most of the application

system. The consistency ratio for this matrix was 0 since it has only two

dimensions. The matrix was then raised to a higher power and normalised to

calculate the eigenvector (local weights).

 FC CRC Local Weights

FC 1 0.2 0.1667

CRC 5 1 0.8333

Table 5.14: Pair-wise comparison matrix and eigenvector of the sub-criteria

with respect to the ‘test adequacy’ (E2, Scenario 1)

‎Chapter 5: A Multi-Criteria Decision Making Approach for Prioritising the Test

Sets of the Priority-Based Approach

 160

The‎term‎‘local‎weights’‎is‎used‎to‎refer‎to‎the weight of each sub-criterion with

respect to its decision criterion, but without taking into account the criteria

weights themselves.

Second, TTL and TET sub-criteria were pair-wise compared with respect to the

‘test‎ cost’‎ criterion.‎ Table ‎5.15 depicts the pair-wise comparison matrix of the

sub-criteria with respect to the ‘test‎ cost’‎ criterion‎ according‎ to‎ E2.‎ Since‎ the‎

company intends to deliver the system very soon without any latency, E2 assumed

that TET is three times more important than TTL. The consistency ratio for this

matrix was 0 since it has only two dimensions. The matrix was then raised to a

higher power and normalised to calculate the eigenvector (local weights).

 TTL TET Local Weights

TTL 1 0.333 0.2499

TET 3 1 0.7501

Table 5.15: Pair-wise comparison matrix and eigenvector of the sub-criteria

with respect to the ‘test cost’ (E2, Scenario 1)

Third,‎‘importance’,‎‘complexity’‎and‎‘development‎stage’‎sub-criteria were pair-

wise compared according to the ‘application‎domain’‎criterion.‎Table ‎5.16 depicts

the pair-wise comparison matrix of the sub-criteria‎with‎respect‎to‎the‎‘application‎

domain’‎criterion‎according‎to‎E2.‎

 Importance Complexity
Development

Stage

Local

Weights

Importance 1 1 4 0.4231

Complexity 1 1 6 0.4844

Development Stage 0.25 0.17 1 0.0925

Table 5.16: Pair-wise comparison matrix and eigenvector of the sub-criteria

with respect to the ‘application domain’ (E2, Scenario 1)

Since the SUT is a control system with many parameters and connections

involved in, E2 assumed that the tester should pay particular attention to the SUT

‘complexity’ (i.e., 6 times more preferable‎than‎‘development‎stage’). Application

‘importance’ is also more preferable than ‘development‎stage’. The CR calculated

‎Chapter 5: A Multi-Criteria Decision Making Approach for Prioritising the Test

Sets of the Priority-Based Approach

 161

for this matrix was 1.63% implying that the expert ranking is acceptable (less than

10%). The matrix was then raised to a higher power and normalised to calculate

the eigenvector (local weights).

To obtain the global weight of each sub-criterion, the local weight of a sub-

criterion was multiplied by the weight of its criterion (Section ‎5.3.2, step 6). The

calculation of sub-criteria local and global weights was repeated for each expert

and then integrated using the geometric mean approach (Table ‎5.17).

Criteria Weight Sub-Criteria
Local

Weight

Global

Weight

Test

Adequacy
0.271090

FC 0.4637 0.1257

CRC 0.3309 0.0897

Test Cost 0.398287
TTL 0.2264 0.0902

TET 0.7195 0.2866

Application

Domain
0.154559

Importance 0.2918 0.0451

Complexity 0.2353 0.0364

Development Stage 0.2652 0.0410

Table 5.17: Integrated local and global weights for Scenario 1 (geometric

mean)

After having the generic alternative weights (Table ‎5.12) and scenario-based sub-

criteria global weights (Table ‎5.17), the final ranking results were synthesized by

multiplying each alternative weight by the global weight of its sub-criterion. For

instance,‎ the‎ weight‎ of‎ the‎ test‎ set‎ ‘B’‎ according‎ to‎ the‎ FC‎ sub-criterion is

‘0.0793’‎as‎in‎Table ‎5.12.‎The‎global‎weight‎of‎the‎FC‎is‎‘0.1257’.‎As‎a‎result,‎the‎

final weight of the set B with respect to the FC considering Scenario 1 is

(0.0793×0.1257=0.01). The resulting weights were added for each alternative to

obtain its final priority as in shown in Table ‎5.18.

‎Chapter 5: A Multi-Criteria Decision Making Approach for Prioritising the Test

Sets of the Priority-Based Approach

 162

Criteria
Sub

Criteria

Test Sets

B OB IB B+OB B+IB
OB+I

B

B+OB

+IB

Test

Adeq.

FC 0.0100 0.0033 0.0141 0.0254 0.0141 0.0295 0.0295

CRC 0.0041 0.0024 0.0178 0.0050 0.0204 0.0187 0.0213

Test

Cost

TTL 0.0242 0.0234 0.0080 0.0211 0.0058 0.0050 0.0027

TET 0.0792 0.0737 0.0235 0.0691 0.0189 0.0134 0.0088

App.

Domain

Import. 0.0020 0.0017 0.0018 0.0057 0.0080 0.0072 0.0164

Comp. 0.0019 0.0018 0.0024 0.0032 0.0053 0.0051 0.0091

D.

Stage
0.0020 0.0018 0.0026 0.0042 0.0065 0.0060 0.0138

Total Priority 0.1234 0.1080 0.0702 0.1336 0.0790 0.0847 0.1015

Ranking 2 3 7 1 6 5 4

Table 5.18: Final ranking results (Scenario 1)

The use of the AHP framework (Table ‎5.18)‎suggests‎that‎the‎‘B+OB’‎set‎is‎ the

most preferable test set to use in testing the application defined in Scenario 1.

Choosing this test set would cover the majority of test project requirements. For

instance,‎this‎test‎set‎combines‎the‎fault‎detectability‎power‎of‎‘B’‎and‎‘OB’‎sets‎

where it can be executed in small time as it is a relatively small set. In addition,

the AHP framework prioritises the possible test sets for a particular testing

scenario.‎In‎this‎scenario,‎‘B+OB’,‎‘B’‎and‎‘OB’‎are‎at‎the‎top‎of‎the‎rankings‎and‎

add flexibility‎to‎the‎tester’s‎choice.

Each expert was asked to rank the test sets (1 to 7) according to Scenario 1 where

‘1’‎represents‎the‎most‎appropriate‎and‎‘7’‎the‎least‎appropriate.‎The‎expert ranks

were then integrated into a final rank taking into account the most frequent rank

for each test set. Average was not used to combine the rank values since the ranks

are categorical. If two ranks had the same frequency values with respect to a

particular test set, the frequency value that was closest to other ranks was chosen.

For instance, with respect to the‎‘OB’‎test‎set,‎the‎frequency‎value‎of‎rank‎‘3’‎and‎

rank‎‘2’‎was ‘2’.‎Since‎the‎remaining‎rank‎‘6’‎is‎much‎closer‎to‎rank‎‘3’‎than‎rank‎

‘2’,‎ the rank‎ ‘3’‎ to‎ represent‎ the‎‘OB’‎set‎was‎chosen.‎Table ‎5.19 illustrates the

expert ranks, the integrated ranks as well as the AHP ranks with respect to

Scenario 1.

‎Chapter 5: A Multi-Criteria Decision Making Approach for Prioritising the Test

Sets of the Priority-Based Approach

 163

Test Sets B OB IB B+OB B+IB OB+IB B+OB+IB

E1 2 3 6 1 5 7 4

E2 5 2 3 1 7 6 4

E3 5 6 7 1 3 4 2

E4 1 2 6 3 5 7 4

E5 2 3 6 1 5 7 4

Integrated

Ranks
2 3 6 1 5 7 4

AHP Ranks 2 3 7 1 6 5 4

Table 5.19: AHP ranking VS experts’ ranking outcomes (Scenario 1)

Comparing the experts’ integrated ranks with those of the AHP framework, we

found that they achieved a high degree of similarity. Table ‎5.20 shows that

Kendall’s‎and‎Spearman’s‎correlation‎coefficients‎were significant at the 1% level

which would demonstrate the validity of the AHP framework.

Type Variables
Expert

Ranks

AHP

Ranks

Kendall's tau_b
Expert Ranks 1.000 .810

**

AHP Ranks .810
**

 1.000

Spearman's rho
Expert Ranks 1.000 .893

**

AHP Rank .893
**

 1.000

** Correlation is significant at the 0.01 level.

Table 5.20: Kendall’s and Spearman’s correlation coefficients between the

experts’ integrated ranks and AHP ranks (Scenario 1)

5.5.2 Scenario 2: Medical System

This section gives an overview of a medical system that was used as a testing

scenario. The application of proposed AHP framework in prioritising the PA test

sets to suit the testing scenario is presented next.

5.5.2.1 Scenario 2 Description

A software company is assigned to develop a medical system that provides real-

time monitor to the heart rate, blood pressure and blood oxygen. The system

‎Chapter 5: A Multi-Criteria Decision Making Approach for Prioritising the Test

Sets of the Priority-Based Approach

 164

accepts symptoms and makes diagnosis of infections. The project design and

development consumed the majority of the time assigned to the project which

caused the testing activities to start late. The deadline is approaching, but with a

possibility of an extension.

5.5.2.2 AHP Application on Scenario 2

The proposed AHP framework was applied on Scenario 2. Similar to that for

Scenario 1, several matrices were constructed and given to the experts to pair-wise

compare the preferences of the criteria and sub-criteria. We randomly picked a

representative matrix for a decision criterion and sub-criterion to be shown; the

remaining matrices can be found in Appendix D. For instance, Table ‎5.21 presents

the pair-wise comparison matrix of the main criteria with respect to the decision

goal according to E3. E3 assumed that‎the‎‘test‎adequacy’‎should‎have‎the‎highest‎

priority since the application is safety-critical and should be thoroughly tested. In

addition,‎‘application‎domain’‎is‎marginally‎more‎important‎than‎‘test‎cost’ (i.e., 2

times‎ preferable‎ than‎ ‘test‎ cost’).‎The‎CR‎calculated‎ for‎ this‎matrix‎was‎ 2.12%

implying that the expert ranking is acceptable (less than 10%). The matrix was

then raised to a higher power and normalised to calculate the eigenvector

(weights).

Test Adequacy Test Cost

Application

Domain
Weights

Test Adequacy 1 5 3 0.6833

Test Cost 0.2 1 6 0.1169

Application Domain 0.25 2 1 0.1998

Table 5.21: Pair-wise comparison matrix and eigenvector of the main criteria

with respect to the decision goal (E3, Scenario 2)

Three pair-wise comparison metrics for comparing the decision sub-criteria with

respect to the criteria they belong to were constructed according to each expert.

First, FC and CRC sub-criteria were compared with respect to the ‘test‎adequacy’‎

criterion. Table ‎5.22 depicts the pair-wise comparison matrix of the sub-criteria

‎Chapter 5: A Multi-Criteria Decision Making Approach for Prioritising the Test

Sets of the Priority-Based Approach

 165

with respect to the ‘test‎ adequacy’‎ criterion according to E3. E3 assumed that

CRC was equally important to FC, since detecting faults and thoroughly testing

the application were both necessary. The consistency ratio for this matrix was 0

since it has only two dimensions. The matrix was then raised to a higher power

and normalised to calculate the eigenvector (local weights).

 FC CRC Local Weights

FC 1 1 0.5

CRC 1 1 0.5

Table 5.22: Pair-wise comparison matrix and eigenvector of the sub-criteria

with respect to the ‘test adequacy’ (E3, Scenario 2)

Second, Table ‎5.23 depicts the pair-wise comparison matrix of the sub-criteria

with respect to the ‘test‎cost’‎criterion‎according‎to‎E3.‎E3 assumed that TTL and

TET have almost similar effect on the decision process but TTL is slightly more

preferable. The consistency ratio for this matrix was ‘0’‎ since‎ it‎ has‎ only two

dimensions. The matrix was then raised and normalised to calculate the local

weights.

 TTL TET Local Weights

TTL 1 2 0.6667

TET 0.5 1 0.3333

Table 5.23: Pair-wise comparison matrix and eigenvector of the sub-criteria

with respect to the ‘test cost’ (E3, Scenario 2)

Third, Table ‎5.24 depicts the pair-wise comparison matrix of the sub-criteria with

respect to the‎‘application‎domain’‎criterion‎according‎to‎E3.‎E3 assumed that the

tester should pay a particular attention to the‎ ‘importance’‎ criterion‎ since‎ it‎ is‎ a‎

safety-critical application.‎ The‎ application‎ ‘importance’ is thus more preferable

than the‎ ‘development‎ stage’. The CR calculated for this matrix was 1.55%

implying that the expert ranking is acceptable (less than 10%). The matrix was

then raised to a higher power and normalised to calculate the eigenvector (local

weights).

‎Chapter 5: A Multi-Criteria Decision Making Approach for Prioritising the Test

Sets of the Priority-Based Approach

 166

 Importance Complexity
Development

Stage

Local

Weights

Importance 1 4 3 0.6251

Complexity 0.25 1 0.5 0.1365

Development Stage 0.33 2 1 0.2384

Table 5.24: Pair-wise comparison matrix and eigenvector of the sub-criteria

with respect to the ‘application domain’ (E3, Scenario 2)

The global weight of each sub-criterion was obtained by multiplying the local

weight of a sub-criterion by the weight of its criterion. The calculation of sub-

criteria local and global weights was repeated for each expert and then integrated

using the geometric mean approach (Table ‎5.25).

Criteria Weight Sub-Criteria
Local

Weight

Global

Weight

Test

Adequacy
0.423431

FC 0.4637 0.1257

CRC 0.3309 0.0897

Test Cost 0.160584
TTL 0.2264 0.0902

TET 0.7195 0.2866

Application

Domain
0.240414

Importance 0.2918 0.0451

Complexity 0.2353 0.0364

Development Stage 0.2652 0.0410

Table 5.25: Integrated local and global weights for Scenario 2 (geometric

mean)

After generating the generic alternative weights (Table ‎5.12) and scenario-based

sub-criteria global weights (Table ‎5.25), the final ranking results were synthesized

by multiplying each alternative weight by the global weight of its sub-criterion.

The resulting weights were added for each alternative to obtain its final priority as

shown in Table ‎5.26.

The‎ use‎ of‎ AHP‎ framework‎ suggests‎ that‎ the‎ ‘B+OB+IB’‎ set‎ is‎ the most

preferable test set to use in testing the application defined in Scenario 2 since the

system under test is safety-critical. Any fault or missed behaviour can have a

disastrous effect on the patient life. The cost can be ignored with respect to the

safety in such applications.

‎Chapter 5: A Multi-Criteria Decision Making Approach for Prioritising the Test

Sets of the Priority-Based Approach

 167

Criteria
Sub

Criteria

Test Sets

B OB IB B+OB B+IB
OB+I

B

B+OB

+IB

Test

Adeq.

FC 0.0183 0.0060 0.0259 0.0467 0.0259 0.0542 0.0542

CRC 0.0072 0.0041 0.0311 0.0088 0.0357 0.0326 0.0372

Test

Cost

TTL 0.0138 0.0134 0.0046 0.0121 0.0033 0.0028 0.0015

TET 0.0254 0.0236 0.0075 0.0221 0.0061 0.0043 0.0028

App.

Domain

Import. 0.0033 0.0028 0.0030 0.0095 0.0133 0.0119 0.0273

Comp. 0.0032 0.0029 0.0040 0.0053 0.0086 0.0083 0.0149

D.

Stage
0.0024 0.0022 0.0032 0.0051 0.0080 0.0073 0.0169

Total Priority 0.0736 0.0550 0.0792 0.1095 0.1009 0.1216 0.1549

Ranking 6 7 5 3 4 2 1

Table 5.26: Final ranking results (Scenario 2)

Similar to Scenario 1, each expert was asked to rank the test sets (1 to 7) for

Scenario 2. The expert ranks were then integrated into a final rank taking into

account the most frequent rank occurring for each test set. Table ‎5.27 illustrates

the expert ranks, the integrated ranks as well as the AHP ranks with respect to

Scenario 2.

Test Sets B OB IB B+OB B+IB OB+IB B+OB+IB

E1 7 6 5 4 3 2 1

E2 5 7 6 4 3 2 1

E3 5 6 7 2 3 4 1

E4 5 7 6 3 2 4 1

E5 5 7 6 4 3 2 1

Integrated

Ranks
5 7 6 4 3 2 1

AHP Ranks 6 7 5 3 4 2 1

Table 5.27: AHP ranking VS experts’ ranking outcomes (Scenario 2)

Comparing the experts’ integrated ranks with those of the AHP framework, we

found that they again achieved a high degree of match. Table ‎5.28 shows that

Kendall’s‎and‎Spearman’s‎correlation coefficients were significant at the 1% level

which would again demonstrate the applicability of the AHP framework with

different testing scenarios.

‎Chapter 5: A Multi-Criteria Decision Making Approach for Prioritising the Test

Sets of the Priority-Based Approach

 168

Type Variables
Expert

Ranks

AHP

Ranks

Kendall's tau_b
Expert Ranks 1.000 .810

**

AHP Ranks .810
**

 1.000

Spearman's rho
Expert Ranks 1.000 .929

**

AHP Rank .929
**

 1.000

** Correlation is significant at the 0.01 level.

Table 5.28: Kendall’s and Spearman’s correlation coefficients between the

experts’ integrated ranks and AHP ranks (Scenario 2)

5.6 Summary

PA is a real-time test generation method that generates three different test sets. A

systematic decision-making framework might help an organisation to choose the

best suited test set to be deployed for a certain application. This chapter presented

a novel Analytical Hierarchy Process (AHP) as decision-making framework

which provides testers with a systematic and manageable approach through which

they can prioritise the available testing sets that best fulfil their testing

requirements. The development of the AHP framework was based on the data

collected by the production-cell test bed and interviews with a group of testing

experts. Since this study can be considered the first which applies AHP in TA-

based testing, the results cannot be validated through a comparison study. As a

result, the AHP framework was validated using two different scenarios

highlighting different real-time systems under test with different testing

requirements. The framework decision outcomes match to a high degree with the

expert panel ranking outcomes demonstrating that the AHP framework is sound

and valid. The framework is also supported by a tool to automate all the

calculations required. As a result, the tester needs only the pair-wise comparison

matrices for decision criteria and sub-criteria and the tool will give the final

ranking immediately.

‎Chapter 6: Conclusions

 169

Chapter 6: Conclusions

6.1 Topic Overview

Real-time Embedded Systems (RTESs) have an increasing role in controlling the IT

that we use on a day-to-day basis. RTES behaviour is not based solely on the

interactions it might have with its surrounding environment, but also on timing

requirements it induces. As a result, ensuring that an RTES behaves correctly is

non-trivial, especially after adding time as a new dimension to the complexity of the

testing process. Testing an RTES implementation to ensure that it is as fault-free as

possible before its deployment is therefore important. Model-Based Testing (MBT),

based on comparing SUT behaviour with a reference specification model aims to

minimise cost through early capture of system behaviour and the automation of test

case generation, execution and evaluation. A Timed Automata (TA) formalism is

one of the most frequently used language to model RTESs due to its ability to

express its real-time behaviour. Testing from TA has received increased attention in

recent research where several TA-based testing algorithms have been proposed.

However, the effort expended, the number of test cases generated and the test

adequacy criteria that the testing approaches are based on are still questionable,

especially in the absence of empirical validation based on defined assessment

criteria. As a result, it is important to develop a valid and flexible approach that can

handle these issues.

In this chapter, Section ‎6.2 summarises the research findings of each chapter.

Section ‎6.3 explains how the research objectives are achieved. A summary of the

Thesis contributions is then presented in Section ‎6.4. Finally, Section ‎6.5 identifies

the research limitations and points to future research ideas.

‎Chapter 6: Conclusions

 170

6.2 Research Summary

The aim of the research presented in this Thesis was to develop, validate and

automate a flexible TA-based testing approach based on a timed selection criterion

for testing real-time embedded systems.

Chapter 1 gave an overview of the area under research and highlighted the

motivation of this research. That emphasised the need for developing a valid TA

testing approach capable of testing RTESs based on a timed adequacy criterion. A

set of research objectives were identified to fulfil the research aim.

Chapter 2 reviewed the related literature that addressed testing RTESs. The

concept of testing was defined and explained by addressing some topics related to

the selection criteria, testing types and the combination of formal methods. To test

RTESs, the formal language to be used for building the specification models

should be capable of capturing continuous as well as discrete behaviour of the

SUT. As a result, TA has been adopted for testing RTESs. Several studies were

reviewed in this chapter. The majority were based on un-timed selection criteria

for generating timed test cases. In addition, only a few have been supported by

tools and empirically studied.

Chapter 3 set the rules and mathematical equations of adopting the clock region

concept as a timed adequacy criterion for selecting test cases. Clock region

coverage was the basis for proposing PA as a new component-based offline test

case generation method for RTESs modelled as UTA. PA was based on dividing

the generated test cases into three sets of priorities (boundary, out-boundary, in-

boundary) to enhance the flexibility of the approach by allowing the tester to

choose the appropriate set according to the testing environment. To validate PA,

the chapter proposed a set of timed and functional mutation operators to enable

the use of SMA in TA context. The validation was based on comparing the

mutation score achieved by PA on three TA case studies with four other timed

testing approaches based on TA. Combining the mutation scores achieved by PA

through the used case studies, we showed that our PA out-performed other

‎Chapter 6: Conclusions

 171

approaches by achieving a higher score with relatively few generated tests. The

validation also revealed some interesting results especially for validating other

approaches. For instance, the SCT failed to detect all state transfer faults in spite

of the state identification technique equipped used. COVER failed to detect all

output or input faults in spite of the coverage criterion it follows.

Chapter 4 automated the generation and the execution of test cases according to

PA and tioco theory by developing the GeTeX tool. GeTeX is an offline tool that

targets testing timing behaviour of RTESs according to a timed selection criterion.

The validity of GeTeX was empirically demonstrated by a light controller

prototype. The tool generated and executed the test cases in a short time without

any compilation errors. To execute the PA tests, this chapter introduced an

empirical test bed using a production-cell case study and assessment criteria to

validate the PA testing approach compared with two TA-based testing approaches

(SM and BCT). The testing approaches were assessed and compared based on the

timed structural adequacy, fault adequacy, test length and a factor that combined

them all. Structural coverage was based on CRC calculated using a proposed

equation. FC was measured by calculating the mutation score of each approach

according to MAT. To enable this, a set of timed and functional mutation

operators on the implementation level was presented. An assessment factor (AF)

which considered fault coverage and clock coverage with respect the length of

generated test cases was also presented. The experiments confirmed the

superiority of PA over the other tested approaches. The overall assessment factor

showed that structural and fault coverage scores of PA with respect to the length

of its tests were better than those of SM and BCT. Finally, problems encountered

during conducting the empirical study were highlighted to direct future

experiments.

Chapter 5 highlighted the necessity of a formal decision-making approach for

prioritising the PA test sets to be deployed for a certain application. The chapter

then developed a multi-criteria decision-making framework based on the

Analytical Hierarchy Process (AHP). The development of the AHP framework

‎Chapter 6: Conclusions

 172

was based on the data collected by the production-cell test bed and interviews

with a group of testing experts. The AHP framework was validated using two

different testing scenarios addressing different real-time systems with different

testing requirements. The framework decision outcomes supported with an

automation tool showed promising results. The decision outcomes of the AHP

framework were significantly correlated to those of testing experts which

demonstrated the soundness and validity of the framework. Tool support increased

the applicability of the AHP framework in which a tester needs only the pair-wise

comparison matrices for decision criteria and sub-criteria. The decision outcomes

could be then obtained directly.

6.3 Meeting the Research Objectives

The main aim of the Thesis was to provide software engineering community with

a sound, valid and flexible testing approach for testing RTESs considering its

environment. This section shows how this research successfully achieved its

objectives.

Objective 1: ‘To introduce a timed adequacy criterion for selecting timed test

cases’. The first objective was achieved in Chapter 3 by adopting CRC as a timed

adequacy criterion. The proposal of CRC was supported by all necessary

equations and rules.

Objective 2: ‘To develop a timed testing approach based on the TA formalism

and the proposed timed selection criterion for generating test cases divided into

different test sets’. This objective was achieved in Chapter 3 by developing PA as

a TA-based testing approach. PA was based on dividing the generated test cases

into three sets of priorities (boundary, out-boundary, in-boundary) to enhance the

flexibility of the approach by allowing the tester to choose the appropriate set

according to the testing environment.

Objective 3: ‘To develop a tool for automating the generation and execution of

timed test cases’. This objective was achieved in Chapter 4 by developing and

‎Chapter 6: Conclusions

 173

validating the GeTeX tool that deploys PA and the tioco conformance relation.

GeTeX is an offline tool that targets testing timing behaviour of RTESs. The

validity of GeTeX was empirically shown by a light controller prototype.

Objective 4: ‘To evaluate the proposed timed testing approach at the

specification and implementation level compared with a set of similar testing

approaches based on proposed assessment criteria’. This objective was achieved

in Chapter 3 by validating PA in comparison with four TA-based approaches in

terms of fault coverage. To enable this, TA-based mutation operators were

proposed. This objective was also met in Chapter 4 by executing the generated

tests from three TA-based testing approaches including ours on an industrial-

strength test bed. Test assessment criteria were introduced to be able to compare

the performance of the testing approaches under study.

Objective 5: ‘To develop and validate a decision-making framework for the

proposed timed testing approach to formalise the selection of the best test set

suiting a testing project’. This objective was achieved in Chapter 5 by developing

and validating the AHP framework to enable the tester prioritising the available

PA test sets. The AHP framework was validated using two different testing

scenarios addressing different real-time systems with different testing

requirements.

6.4 Summary of Research Contributions

The main research contributions are summarised in the following subsections.

6.4.1 Timed Adequacy Criterion (CRC)

Several testing approaches have been proposed for testing real-time systems from

TA specifications. However, the tests were generated based on either a random

selection or un-timed coverage criterion to avoid covering the entire infinite

continuous SUT behaviour. Other research abstracted the continuous behaviour

(time) by converting the timed specification to an un-timed one. Timing behaviour

‎Chapter 6: Conclusions

 174

of an SUT will not be accordingly covered. It is thus essential to consider a timed

coverage criterion for testing real-time systems. The lack of a mature timed

adequacy criterion directed our research to adopt one.

The concept of clock region was proposed to replace the infinite timed state space

by a finite region automaton. As a result, we adopted the clock region as a timed

adequacy criterion by setting rules and mathematical equations. Feasible clock

regions were generated for each transition within the specification model

considering its clock guards, invariants and type (i.e., input or output). The

generated test suite should cover all clock regions.

The proposal of clock region as a timed adequacy criterion differs from other

works that used the clock region concept as timed abstraction technique in several

ways. First, the Region Automaton (RA) in the literature was created at the model

level where infeasible regions were not identified. The number of clock regions

calculated was enormous for a small model. Second, GA, the source of generating

test cases, was formed by sampling the RA at a fixed rate. This leads to the

selection of more than one clock value (i.e., time delay) to represent each clock

region. As a result, the number of generated test cases was very large. In this

study, a set of rules was proposed to create the smallest set of feasible clock

regions and to enhance the use of clock regions as a timed adequacy criterion by

which test cases can be selected.

6.4.2 Priority-based TA-based Testing Approach (PA)

PA was proposed for generating timed test cases and differs from other proposed

TA-based testing approaches in several ways. First, PA is based on a timed

selection criterion (CRC). Second, the compact nature of the PA search algorithm

enables covering as many transitions as possible in one single test trace. Second, PA

takes the testing environment and a tester’s opinion into account by dividing the

generated test cases into three sets. The‎ test‎ sets‎ are‎ called‎ ‘priorities’ as the

priority of choosing a particular test set or a combination of them is likely to be

‎Chapter 6: Conclusions

 175

different according to the testing environment specified by the criticality of an

SUT, the allowable time and the budget specified for the testing process. Each test

set (priority) is named and constructed according to the structure of timing

constraints.

6.4.3 Specification Mutation Analysis

Any proposed testing approach has to be validated. Assessing a testing approach by

measuring its fault coverage is considered one of the widely used methods. Fault

coverage needs to be facilitated by a fault model identifying the possible faults that

might be encountered. The use of fault coverage as an assessment criterion can be

more effective if it is used in a controlled way by the application of Specification

Mutation Analysis technique (SMA). Since no study has addressed the application

of SMA on TA to our knowledge, we proposed well-suited mutation operators for

TA. The proposed TA mutation operators include previously formalised fault

models in the literature.

PA was validated in terms of SMA in comparison with four other well-known

TA-based testing approaches. This study could be considered the first (to our

knowledge) that compared the performance of different approaches. Due to the

absence of tool support, test cases of each approach were manually generated

from three TA specifications. Comparing fault coverage, PA performed better

than others. The study was also able to focus on each approach and point to its

pros and cons.

6.4.4 The application of TA-based Approaches on an

industrial-strength Test Bed

Some proposed approaches in the literature lack automation tool support. Using

such approaches requires a deep understanding of their mechanism and significant

manual effort in generating and executing test cases. Others were partially

automated. Their tools were responsible for only automating the generation of test

‎Chapter 6: Conclusions

 176

cases. In other words, the execution of test cases generated by such approaches

requires other sets of tools.

This research attempted to consider such problems by developing an automating

tool for PA called GeTeX. GeTeX automates the process of test cases generation

and‎ execution‎ based‎ on‎ the‎ ‘tioco’‎ conformance‎ theory.‎ In‎ its‎ current‎ version,‎

GeTeX was designed to support CAN applications.

To our knowledge, there has yet to be a study which compares the performance of

similar approaches on real applications. This research used a production-cell as an

industrial-strength test bed. Well-identified assessment criteria by which the

performance of testing approaches can be compared were also presented. In

summary, our aim was to identify a testing approach capable of detecting as many

faults as possible and covering as many clock regions as possible with minimum

length of test cases. The study at the implementation level confirmed results

obtained at the specification level. PA outperformed other approaches.

6.4.5 A multi-Criteria Decision Making Framework

PA is a flexible testing approach that enables the tester to choose any set of

generated test cases according to the testing environment. According to that

choice, PA establishes a trade-off between increasing confidence in SUT

correctness and limited testing resources such as time, effort and cost. However,

the decision that the tester has to make depends on their intention. Different

testers will make different decisions for the same testing environment. A formal

decision framework in which all testing requirements and factors (i.e., decision

criteria) affecting the testing process are independently categorised, weighted and

analysed then becomes viable.

This research developed a decision framework based on AHP. The AHP decision

model‎considered‎criteria‎that‎might‎affect‎a‎tester’s‎decision‎in‎selecting‎the‎best‎

PA test set for a particular testing project. The applicability of the framework was

viable for two reasons. First, the framework was provided with an automation tool

‎Chapter 6: Conclusions

 177

to speed up the decision-making process and ensure the tester avoided time-

consuming calculations. Second, the AHP framework was validated using two

testing scenarios. The decision outcomes were compared with those of testing

experts. The results showed a significant correlation between the framework

outcomes and those of the experts.

6.5 Research Limitations and Future Work

This section identifies a set of research limitations encountered and suggests a set

of complementary future work to address them.

6.5.1 The Class of TA Specification Model

One limitation of this study is the use of a restricted class of TA (i.e.,

deterministic observable model without data) for generating timed test cases. Such

a class limits expressiveness and complicates the modelling process. The choice

of such a restricted class in this study was so as to prove the applicability of timed

selection criterion by isolating other factors that might be encountered. Non-

determinism includes internal actions which raise a problem when applying

adequacy criteria. It is not known how a non-deterministic SUT would react to an

input or which transition is selected by such a reaction. Such a problem has been

addressed in the literature by either using online testing or to try and make the

specification model deterministic. Moreover, using data in any specification

model complicates the process of generating test cases. Combining data with time

makes it even more difficult.

Future research trends would be necessary to address this limitation by answering

the following question. Can CRC be used with a more general class of TA (i.e.,

non-deterministic, partially observable with data)? This question could be

addressed taking into account the following points. To solve non-determinism, we

aim to use other research findings such as those by (Krichen and Tripakis, 2009)

in dealing with the problem and then applying CRC. Moreover, to solve the data

‎Chapter 6: Conclusions

 178

problem, we aim to divide the specification model into two - control and data

parts. In the control part, we apply our approach proposed here to cover timing

behaviour. Other approaches would be used to generate test cases that cover the

data aspect. A strategy that can combine test cases form two parts should be

accordingly proposed.

6.5.2 Timed Adequacy Criterion

The proposed timed adequacy criterion in this research is based on the concept of

clock regions. Using clock regions as a timed adequacy criterion could be

criticised due to its relation with the number of clocks and their upper bounds. In

other words, in the case of any model using many clocks or clocks with high

upper bounds, the number of regions rapidly increases. The research addressed a

set of rules to control the rapid growth of the number of regions and avoided using

many clocks.

Other partitioning criteria exist in the literature such as zones. The creation of

zones is still affected by the number of clocks but only to a certain limit. For

future work, it is thus advantageous to study the possibility of using a coarser

partitioning relation as a source of timed adequacy criterion. The results should

then be compared with those of CRC to determine if the fault detection capability

is affected.

6.5.3 Case Studies

This research succeeded in comparing the performance of PA with other testing

approaches based on specification case studies and an industrial-strength test bed.

However, the relatively small size of case studies used can be considered a

limitation. Choosing small specification models for the SMA application was

justified due to the manual generation of test cases.

In future work, we aim to use more industrial case studies by which more timing

faults can be found and categorised. Moreover, comparing the results of SMA

‎Chapter 6: Conclusions

 179

with those of MAT on the implementation level might guide development of a

prediction model that estimates fault coverage of a testing approach at the

implementation level by measuring it at the specification level. We plan to

consider more recent testing approaches in our future comparison studies.

6.5.4 More insights for the Multi-Criteria Decision

Making Approach

The AHP framework is subject to several improvements. We intend to study the

possibility of making the AHP model more general by including other decision

criteria or sub-criteria. In addition, we plan to increase the accuracy of the AHP

framework by increasing the volume of the experimental data as well as the

number of experts. Finally, the application of the AHP framework is not restricted

to the PA approach. As a result, we intend to apply the AHP framework on

various timed model-based testing approaches to choose that most suited one for a

testing project.

Testing real-time embedded systems is a promising research topic and much still

needs to be done. This study allowed me to learn from both academic and

industrial worlds. Meeting academics has influenced my experience and helped

me to organise and synthesise my ideas. Moreover, the most interesting part of

any research is finding suitable solutions to upcoming problems which are not

necessarily related to the research topic. Lastly, but not least, I would actively

continue to research in this area, since it is both interesting and important.

References

 180

References

Aboutrab, M. S., Alrouh, B., Counsell, S., Hierons, R. and Ghinea, G. (2010) A Multi-

criteria Decision Making Framework for Real Time Model-Based Testing.

Testing – Practice and Research Techniques, London, UK: Springer Berlin /

Heidelberg, pp. 194-197.

Aboutrab, M. S., Alrouh, B., Counsell, S., Hierons, R. and Ghinea, G. (2012a) Prioritising

Timed Automata Based Test Sets: A Multi-Criteria Decision Making Approach.

Submitted to Journal of Systems and Software.

Aboutrab, M. S., Brockway, M., Counsell, S. and Hierons, R. M. (2012b) Testing Real-

time Embedded Systems using Timed Automata Based Approaches. Journal of

Systems and Software (under second review).

Aboutrab, M. S. and Counsell, S. (2010) Fault Coverage Measurement of a Timed Test

Case Generation Approach. 17th IEEE International Conference on the

Engineering of Computer-Based Systems, Oxford, UK, pp. 141-149.

Aboutrab, M. S., Counsell, S. and Hierons, R. M. (2011) GeTeX: A Tool for Testing

Real-Time Embedded Systems Using CAN Applications 18th IEEE International

Conference on the Engineering of Computer-Based Systems, Las Vega, USA, pp.

61-70.

Aboutrab, M. S., Counsell, S. and Hierons, R. M. (2012c) Specification Mutation

Analysis for Validating Timed Testing Approaches Based on Timed Automata.

IEEE Signature Conference on Computers, Software, and Applications

(COMPSAC 2012), Izmir, Turkey (to appear),

Abran, A., Sellami, A. and Suryn, W. Metrology, measurement and metrics in software

engineering. Ninth International Software Metrics Symposium, Ecole de

Technologie Superieure, Canada pp. 2-11.

ABRIAL, J.-R. (1996) The B-Book: Assigning Programs to Meanings. Cambridge, U.K.:

Cambridge University Press.

Acree, A. T. (1980) On Mutation. PhD Thesis, Georgia Institute of Technology.

Aho, A. V., Dahbura, A. T., Lee, D. and Uyar, M. U. (1991) An optimization technique

for protocol conformance test generation based on UIO sequences and rural

References

 181

Chinese postman tours. IEEE Transactions on Communications, 39 (11), pp.

1604-1615.

Aichernig, B. K. (2003) Mutation Testing in the Refinement Calculus. Formal Aspects of

Computing, 15 (2), pp. 280-295.

Aichernig, B. K., Brandl, H., Jöbstl, E. and Krenn, W. (2010) Model-based mutation

testing of hybrid systems. Proceedings of the 8th international conference on

Formal methods for components and objects, Eindhoven, The Netherlands:

Springer-Verlag, pp. 228-249.

Aichernig, B. K., Brandl, H. and Krenn, W. (2009) Qualitative Action Systems.

Proceedings of the 11th International Conference on Formal Engineering

Methods: Formal Methods and Software Engineering, Rio de Janeiro, Brazil:

Springer-Verlag, pp. 206-225.

Alrouh, B. (2011) Towards Secure Web Services: Performance Analysis, Decision

Making and Steganography Approaches. PhD thesis, Department of Information

Systems and Computing, Brunel University.

Alur, R. and Dill, D. L. (1994) A theory of timed automata. Theoretical Computer

Science, 126 (2), pp. 183-235.

Alur, R., Fix, L. and Henzinger, T. A. (1999) Event-clock automata: a determinizable

class of timed automata. Theoretical Computer Science 211 (1-2), pp. 253-273.

Ammann, P. and Offutt, J. (2008) Introduction to Software Testing. 1est ed. Cambridge:

Cambridge University Press.

Ammann, P. E., Black, P. E. and Majurski, W. (1998) Using Model Checking to Generate

Tests from Specifications. Proceedings of the Second IEEE International

Conference on Formal Engineering Methods, Brisbane, Australia: IEEE

Computer Society, pp. 46-54.

Andrews, J. H., Briand, L. C. and Labiche, Y. (2005) Is mutation an appropriate tool for

testing experiments? Proceedings of the 27th international conference on

Software engineering, St. Louis, MO, USA: ACM, pp. 402-411.

Ashayeri, J., Keij, R. and Bröker, A. (1998) Global business process re-engineering: a

system dynamics-based approach. International Journal of Operations and

Production Management, 18 (9/10), pp. 817-831.

References

 182

Badria, M. A. and Davisb, D. (2001) A comprehensive 0-1 goal programming model for

project selection. International Journal of Project Management, 19 (4), pp. 243-

252.

Baker, D., Bridges, D., Hunter, R., Johnson, G., Krupa, J., Murphy, J. and Sorenson, K.

(2001) Guidebook to Decision-Making Methods. Washington DC, USA:

Department of Energy.

Baldwin, D. and Sayward, F. G. (1979) Heuristics for Determining Equivalence of

Program Mutations. 276, New Haven: Yale University,

Batth, S. S., Uyar, M. U., Yu, W. and Fecko, M. A. Multiple Fault Models for Timed

FSMs. Proceedings of the IEEE Instrumentation and Measurement Technology

Conference. IMTC 2006. pp. 936-941.

Behrmann, G., David, A. and Larsen, K. G. (2004) A tutorial on uppaal. Bernardo M,

Corradini F (eds) Formal Methods for the Design of Real-Time Systems (SFM-

RT 2004), volume 3185 of Lecture Notes in Computer Science, pp. 200-236

Beizer, B. (1990) Software Testing Techniques. 2ed ed. London: International Thomson

Computer Press

Bengtsson, J. and Yi, W. (2004) Timed Automata: Semantics, Algorithms and Tools.

Springer Berlin / Heidelberg.

Bertrand, N., Jéron, T., Stainer, A. and Krichen, M. (2011a) Off-line test selection with

test purposes for non-deterministic timed automata. Proceedings of the 17th

international conference on Tools and algorithms for the construction and

analysis of systems: part of the joint European conferences on theory and

practice of software, Germany: Springer-Verlag, pp. 96-111.

Bertrand, N., Stainer, A., Jéron, T. and Krichen, M. (2011b) A game approach to

determinize timed automata. Proceedings of the 14th international conference on

Foundations of software science and computational structures: part of the joint

European conferences on theory and practice of software, Germany: Springer-

Verlag, pp. 245-259.

Bhushan, N. and Rai, K. (2004) Strategic Decision Making. Springer.

References

 183

Blom, J., Hessel, A., Jonsson, B. and Pettersson, P. (2005) Specifying and generating test

cases using observer automata. 4th International Workshop on Formal

Approaches to Testing of Software 2004 (FATES’04), volume 3395 of Lecture

Notes in Computer Science, Linz, Austria, pp. 125-139.

Boehm, B. W. (1981) Software Engineering Economics. NJ: Prentice Hall PTR.

Bonifácio, A. L. and Moura, A. V. (2011) A new method for testing timed systems.

Software Testing, Verification and Reliability, pp. n/a-n/a.

Bouquet, F. and Legeard, B. (2003) Reification of executable test scripts in formal

specification-based test generation: The java card transaction echanism case

study. FME 2003, volume 2805 of Lecture Notes in Computer Science: Springer

Verlag, pp. 778–795.

Bousquet, L. d., Ramangalahy, S., Simon, S., Viho, C., Belinfante, A. and Vries, R. G. d.

(2000) Formal Test Automation: The Conference Protocol with TGV/TORX.

Proceedings of the IFIP TC6/WG6.1 13th International Conference on Testing

Communicating Systems: Tools and Techniques, Deventer, The Netherlands:

Kluwer, B.V., pp. 221-228.

Bouyer, P. (2009) From Qualitative to Quantitative Analysis of Timed Systems. Mémoire

d’habilitation‎ Université‎ Paris‎ Computer‎ and‎ Information‎ Science,‎ Université

Paris

Bowen, J. P., Bogdanov, K., Clark, J., Harman, M., Hierons, R. M. and Krause, P.

FORTEST: Formal methods and testing. Proceedings of the 26th IEEE Computer

Software and Applications, California. pp. 91-101.

Bowser, J. H. (1988) Reference Manual for Ada Mutant Operators. Georiga Institute of

Technology, Atlanta, Georgia Technique Report,

Bradfield, J. and Strling, C. Modal logics and mu-calculi: An introduction. Handbook of

Process Algebra, Amsterdam, The Netherlands. Elsevier Science, pp. 293-330.

Brandl, H., Weiglhofer, M. and Aichernig, B. K. Automated Conformance Verification of

Hybrid Systems. 10th International Conference on Quality Software (QSIC),

Zhangjiajie pp. 3-12.

Briones, L. B. (2007) Theories for model-based testing: real-time and coverage. Thesis,

Centre for Telematics and Information Technology.

References

 184

Briones, L. B. and Röhl, M. (2005) Test Derivation from Timed Automata. Model-Based

Testing of Reactive Systems, volume 3472 of Lecture Notes in Computer Science,

Berlin Heidelberg: Springer,

Broekman, B. and Notenboom, E. (2003) Testing Embedded Software. London, UK:

Addison-Wesley.

Budd, T. A., DeMillo, R. A., Lipton, R. J. and Sayward, F. G. (1978) The Design of a

Prototype Mutation System for Program Testing. Proceedings the AFIPS

National Computer Conference, Anaheim, New Jersy: ACM, pp. 623-627.

Budd, T. A. and Gopal, A. S. (1985) Program testing by specification mutation.

Computer Languages, 10 (1), pp. 63-73.

Burch, J. R., Clarke, E. M., McMillan, K. L., Dill, D. L. and Hwang, L. J. (1992)

Symbolic model checking: 1020 States and beyond. Information and

Computation, 98 (2), pp. 142-170.

Buss, M. D. J. (1983) How to rank computer projects. Harvard Business Review, 61 (1),

pp. 118-125.

Cardell-Oliver, R. (2000) Conformance Tests for Real-Time Systems with Timed

Automata Specifications. Formal Aspects of Computing, 12 (5), pp. 350-371.

Cardell-Oliver, R. and Glover, T. (1998) A Practical and Complete Algorithm for Testing

Real-Time Systems. Proceedings of the 5th International Symposium on Formal

Techniques in Real-Time and Fault-Tolerant Systems, Lyngby, Denmark, pp.

251-261.

Cheng, E. L. and Li, H. (2002) Construction partnering process and associated critical

success factors: Quantitative investigation. ournal of Management in

Engineering, 18 (4), pp. 194-202.

Chin, K. S., Chiu, S. and Tummala, V. M. R. (1999) An evaluation of success factors

using AHP to implement ISO 14001 based EMS. International Journal of

Quality & Reliability Management, 16 (4), pp. 341-361.

Chow, T. S. (1978) Testing Software Design Modeled by Finite-State Machines. IEEE

Transactions on Software Engineering, 4 (3), pp. 178-187.

References

 185

Cimatti, A., Clarke, E. M., Giunchiglia, F. and Roveri, M. (1999) NUSMV: A New

Symbolic Model Verifier. Proceedings of the 11th International Conference on

Computer Aided Verification, London, UK Springer-Verlag, pp. 495-499.

Clarke, D. and Lee, I. (1997a) Automatic generation of tests for timing constraints from

requirements. Proceedings of the third International Workshop on Object-

Oriented Real-Time Dependable Systems, Newport Beach, CA, USA, pp. 199-

206.

Clarke, D. and Lee, I. (1997b) Automatic test generation for the analysis of a real-time

system: Case study. Proceeding of Third IEEE Real-Time Technology and

Applications Symposium, Montreal, Que., Canada, pp. 112-124.

Clarke, E. M., Emerson, E. A. and Sistla, A. P. (1986) Automatic verification of finite-

state concurrent systems using temporal logic specifications. ACM Transactions

on Programming Languages and Systems 8(2), pp. 244-263.

Clarke, E. M., Grumberg, O. and Peled, D. A. (2000) Model Checking. Cambridge, USA:

The MIT Press.

Connect, G. (2010) USB/CAN adapter [Online]. Available: http://www.gridconnect.com/

2010].

Dasarathy, B. (1985) Timing Constraints of Real-Time Systems: Constructs for

Expressing Them, Methods of Validating Them. IEEE Transactions on Software

Engineering, 11 (1), pp. 80-86.

Daws, C. and Yovine, S. (1996) Reducing the number of clock variables of timed

automata. Proceedings of the 17th IEEE Real-Time Systems Symposium, Los

Alamitos, CA, USA, pp. 73-81.

De-Nicola, R. and Hennessy, M. (1984) Testing Equivalence for Processes. Theoretical

Computer Science, (34), pp. 83–133.

DeMillo, R. A. (1980) Mutation analysis as a tool for software quality assurance. .

Proceeding of the 4th Annual International Computer Software and Applications

Conference (COMPSAC), Chicago, USA,

DeMillo, R. A., Lipton, R. J. and Perlis, A. J. (1979) Social processes and proofs of

theorems and programs. Communications of the ACM 22 (5), pp. 271-280.

http://www.gridconnect.com/

References

 186

DeMillo, R. A., Lipton, R. J. and Sayward, F. G. (1978) Hints on Test Data Selection:

Help for the Practicing Programmer. Computer, 11 (4), pp. 34-41.

Denzin, N. Y. K. and Lincoln, Y. S. (1998) Collecting and Interpreting Qualitative

Materials. Thousand Oaks, California, USA: SAGE Publications.

Dijkstra, E. W. (1970) Notes on Strcutred Programming. 70- WSK03, Eindhoven:

Technological University,

Dolan, J. G. (1989) Medical Decision Making Using the Analytic Hierarchy Process:

Choice of Initial Antimicrobial Therapy for Acute Pyelonephritis. Medical

Decision Making, 9 (1), pp. 51-56.

Dssouli, R., Saleh, K., Aboulhamid, E., En-Nouaary, A. and Bourhfir, C. (1999) Test

development for communication protocols: towards automation. Computer

Networks: The International Journal of Computer and Telecommunications

Networking, 31 (17), pp. 1835-1872.

Dutta, R. and Burgess, T. F. (2003) Prioritising information system projects in higher

education. Campus-Wide information system, 20 (4), pp. 152-158.

Edwards, W. and Barron, F. H. (1994) Smarts and smarter: Improved simple methods for

multiattribute utility measurement. Organizational Behavior and Human

Decision Processes, 60 (3), pp. 306-325.

Emerson, E. A. Temporal and modal logic. Handbook of Theoretical Computer Science,

Amsterdam, The Netherlands. Elsevier Science, pp. 995-1072.

Emerson, E. A. and Clarke, E. M. (1982) Using branching time temporal logic to

synthesize synchronization skeletons. Science of Computer Programming, 2 (3),

pp. 241-266.

En-Nouaary, A. (2008) A scalable method for testing real-time systems. Software Quality

Control, 16 (1), pp. 3-22.

En-Nouaary, A. and Dssouli, R. (2003) A Guided Method for Testing Timed Input

Output Automata. TestCom2003, France, pp. 211-225.

References

 187

En-Nouaary, A., Dssouli, R. and Khendek, F. (2002) Timed Wp-method: testing real-time

systems. IEEE Transactions on Software Engineering, 28 (11), pp. 1023-1038.

En-Nouaary, A., Dssouli, R., Khendek, F. and Elqortobi, A. (1998) Timed test cases

generation based on state characterization technique. Proceedings of the 19th

IEEEReal-Time Systems Symposium, Madrid, pp. 220-229.

En-Nouaary, A. and Hamou-Lhadj, A. (2008) A Boundary Checking Technique for

Testing Real-Time Systems Modeled as Timed Input Output Automata. The

Eighth International Conference on Quality Software, QSIC '08., pp. 209-215.

En-Nouaary, A., Khendek, F. and Dssouli, R. (1999) Fault coverage in testing real-time

systems. Sixth International Conference on Real-Time Computing Systems and

Applications, RTCSA '99 Hong Kong, China, pp. 150-157.

En-Nouaary, A. and Liu, G. (2004) Timed Test Cases Generation Based on MSC-2000

Test Purposes. in Workshop on Integrated-reliability with Telecommunications

and UML Languages (WITUL'04), part of the 15th IEEE International

Symposium on Software Reliability Engineering (ISSRE), Rennes, France,

Fabbri, S. C. P. F., Maldonado, J. C. and Delamaro, M. E. (1999a) Proteum/FSM: a tool

to support finite state machine validation based on mutation testing. XIX

Proceedings of International Conference of the Chilean Computer Science

Society, pp. 96-104.

Fabbri, S. C. P. F., Maldonado, J. C., Masiero, P. C., Delamaro, M. E. and Wong, E.

(1996) Mutation Testing Applied to Validate Specifications Based on Petri Nets.

Proceedings of the IFIP TC6 Eighth International Conference on Formal

Description Techniques VIII, London, UK, pp. 329-337.

Fabbri, S. C. P. F., Maldonado, J. C., Sugeta, T. and Masiero, P. C. (1999b) Mutation

Testing Applied to Validate Specifications Based on Statecharts. Proceedings of

10th International Symposium on Software Reliability Engineering, Boca Raton,

Florida, pp. 210-219.

Ferrante, J., Ottenstein, K. J. and Warren, J. D. (1987) The program dependence graph

and its use in optimization. ACM Transactions on Programming Languages and

Systems, 9 (3), pp. 319-349.

Fitzgerald, J., Hayes, I. J., Tarlecki, A., Bohnenkamp, H. and Belinfante, A. (2005) Timed

Testing with TorX. Springer Berlin / Heidelberg.

References

 188

Fouchal, H., Petitjean, E. and Salva, S. (2000) An user-oriented testing of real time

systems. Proceedings of the International Workshop on Real-Time Embedded

Systems, RTES’01, London, UK: IEEE Computer Society Press

Fujiwara, S., v. Bochmann, G., Khendek, F., Amalou, M. and Ghedamsi, A. (1991) Test

selection based on finite state models. IEEE Transactions on Software

Engineering, 17 (6), pp. 591-603.

Gaudel, M.-c. Testing can be formal too. TAPSOFT'95: Theory and Practice of Software

Development, Aarhus, Denmark. Springer-Verlag, pp. 82-96.

Ghinea, G., Magoulas, G. D. and Siamitros, C. (2005) Multicriteria decision making for

enhanced perception-based multimedia communication. IEEE Transactions on

Systems, Man and Cybernetics, Part A: Systems and Humans, 35 (6), pp. 855-

866.

Glover, T. and Cardell-Oliver, R. (1999) A modular tool for test generation for real-time

systems. IEE Seminar Digests, 1999 (6), pp. 3.

Godefroid, P. (1997) Model checking for programming languages using VeriSoft.

Proceedings of the 24th ACM SIGPLAN-SIGACT symposium on Principles of

programming languages, Paris, France: ACM, pp. 174-186.

Gonenc, G. (1970) A Method for the Design of Fault Detection Experiments. IEEE

Transactions on Computers, C-19 (6), pp. 551-558.

Goodwin, P. and Wright, G. (1999) Decision Analysis for Management Judgment. Wiley.

Goodwin, P. and Wright, G. (2000) Decision Analysis or Management Judgement. John

Wiley and Sons.

Gopal, A. S. and Budd, T. A. (1983) Program Testing by Specification Mutation. Tucson,

Arizona, Technical Report, TR 83-17: University of Arizona,

Grieskamp, W., Kicillof, N., Stobie, K. and Braberman, V. (2011) Model-based quality

assurance of protocol documentation: tools and methodology. Software Testing,

Verification and Reliability, 21 (1), pp. 55-71.

References

 189

Harel, D. and Gery, E. (1997) Executable Object Modeling with Statecharts. IEEE

Computer, 30 (7), pp. 31-42.

Harel, D. and Naamad, A. (1996) The STATEMATE semantics of statecharts. ACM

Transactions on Software Engineering and Methodology 5(4), pp. 293-333.

Harel, D. and Pnueli, A. (1985) On the development of reactive systems. New York:

Springer-Verlag.

Harman, M., Hierons, R. and Danicic, S. (2001) The Relationship Between Program

Dependence and Mutation Analysis. Proceedings of the 1st Workshop on

Mutation Analysis, San Jose, California: published in book form, as Mutation

Testing for the New Century, pp. 5-13.

Hessel, A., Larsen, K. G., Mikucionis, M., Nielsen, B., Pettersson, P. and Skou, A. (2008)

Testing Real-Time Systems Using UPPAAL. Hierons, R.M., Bowen, J.P.,

Harman, M. (eds.) FORTEST. LNCS, Berlin Heidelberg, pp. 77–117.

Hessel, A., Larsen, K. G., Nielsen, B., Pettersson, P. and Skou, A. Time-optimal Real-

Time Test Case Generation using UPPAAL. 3rd International Workshop on

Formal Approaches to Testing of Software (FATES) Montreal, Canada.

Springer–Verlag, pp. 114-130.

Hessel, A. and Pettersson, P. (2007a) Cover - A Real-Time Test Case Generation Tool.

19th IFIP International Conference on Testing of Communicating Systems and

7th International Workshop on Formal Approaches to Testing of Software,

Hessel, A. and Pettersson, P. (2007b) Model-Based Testing of a WAP Gateway: an

Industrial Study. Proceedings of the 11th International Workshop on Formal

Methods for Industrial Critical Systems (FMICS 2006) vol. 4346, Springer,

Heidelberg pp. 116–131.

Hierons, R. M. (2004) Testing from a nondeterministic finite state machine using

adaptive state counting. IEEE Transactions on Computers, 53 (10), pp. 1330-

1342.

Hierons, R. M., Bogdanov, K., Bowen, J. P., Cleaveland, R., Derrick, J., Dick, J.,

Gheorghe, M., Harman, M., Kapoor, K., Krause, P., Luttgen, G., Simons, A. J.

H., Vilkomir, S., Woodward, M. R. and Zedan, H. (2009) Using formal

specifications to support testing. ACM Computing Surveys, 41 (2), pp. 1-76.

References

 190

Hierons, R. M. and Harman, M. (2004) Testing conformance of a deterministic

implementation against a non-deterministic stream X-machine. Theoretical

Computer Science, 323 (1-3), pp. 191-233.

Hierons, R. M. and Merayo, M. G. (2007) Mutation Testing from Probabilistic Finite

State Machines. Proceedings of the Testing: Academic and Industrial Conference

Practice and Research Techniques - MUTATION, Winsdor, UK: IEEE Computer

Society, pp. 141-150.

Hierons, R. M. and Merayo, M. G. (2009) Mutation testing from probabilistic and

stochastic finite state machines. Journal of Systems and Software 82 (11), pp.

1804-1818.

Hierons, R. M., Sadeghipour, S. and Singh, H. (2001) Testing a system specified using

Statecharts and Z. Information and Software Technology, 43 (2), pp. 137-149.

Higashino, T., Nakata, A., Taniguchi, K. and Cavalli, A. R. (1999) Generating Test Cases

for a Timed I/O Automaton Model. Proceedings of 12th International Workshop

on Testing Communicating Systems: Method and Applications, Budapest,

Hungary: Kluwer, B.V., pp. 197 - 214

Hoare, C. A. R. (1985) Communicating Sequential Processes. Englewood Cliffs, NJ:

Prentice Hall International Series in Computer Science.

Holzmann, G. J. (2003) The Spin Model Checker: Primer and Reference Manual. 1est

ed.: Addison Wesley.

Hong, H. S., Cha, S. D., Lee, I., Sokolsky, O. and Ural, H. (2003) Data flow testing as

model checking. Proceedings of the 25th International Conference on Software

Engineering, Portland, Oregon: IEEE Computer Society, pp. 232-242.

Hong, H. S., Lee, I., Sokolsky, O. and Ural, H. (2002) A Temporal Logic Based Theory

of Test Coverage and Generation. Proceedings of the 8th International

Conference on Tools and Algorithms for the Construction and Analysis of

Systems: Springer-Verlag, pp. 327-341.

Hong, H. S., Lee, I., Sokolsy, O. and Cha, S. D. Automatic test generation from

Statecharts using model checking. Formal Approaches To Testing Of Software,

Aarhus, Denmark. pp. 15-30.

References

 191

Huang, S. M., Chang, I.-C., Li, S. H. and Lin, M. T. (2004) Assessing risk in ERP

projects: identify and prioritise the factors. Industrial Management and Data

Systems, 104 (8), pp. 681-688.

Hussain, S. (2008) Mutation Clustering. Masters‎Thesis,‎King’s‎College‎London.

ISO. (1989) ISO 8807:1989 Information Processing Systems, Open Systems

Interconnection—LOTOS—A Formal Description Technique Based on the

Temporal Ordering of Observational Behaviour. Geneva, Switzerland: ISO.,

ITU-T. (1997) Recommendation Z.500 Framework on Formal Methods in Conformance

Testing. Geneva, Switzerland: International Telecommunications Union,

Jackson, J. (2001) Prioritising customers and other stakeholders using AHP.

European Journal of Marketing, 35 (7/8), pp. 858-871.

Jensen, R. E. (1982) Reporting of management forecasts: An eigenvector model for

elicitation and review of forecasts. Decision Sciences, 13 (1), pp. 15-37.

Jensen, R. E. and Spencer, R. W. (1986) Matrix scaling of subjective probabilities of

economic forecasts. Economics Letters, 20 (3), pp. 221-225.

Jia, Y. and Harman, M. (2010) An Analysis and Survey of the Development of Mutation

Testing. IEEE Transactions on Software Engineering, PP (99), pp. 1-31.

Kalaji, A. (2010) Search-Based Software Engineering: A Search- Based Approach for

Testing from Extended Finite State Machine (EFSM) Models. PhD Thesis,

Information Systems and Computing, Brunel University.

Kamal, M. M. (2008) Investigation Enterprise Applications Integration (EAI) Adoption in

the Local Goverment Authorities (LGAs). PhD Thesis, Information Systems and

Computing, Brunel University.

Karsak, E. E., Sozer, S. and Alptekin, S. E. (2003) Product planning in quality function

deployment using a combined analytic network process and goal programming

approach. Computers and Industrial Engineering, 44 (1), pp. 171-190.

Kemmerer, R. A. (1985) Testing Formal Specifications to Detect Design Errors. IEEE

Transactions on Software Engineering, 11 (1), pp. 32-43.

References

 192

Kepner, H. and Tregoe, B. B. (1981) The New Rational Manager. Princeton Research

Press.

Khoumsi, A. (2002) A Method for Testing the Conformance of Real Time Systems.

Proceedings of the 7th International Symposium on Formal Techniques in Real-

Time and Fault-Tolerant Systems: Springer-Verlag, pp. 331 - 354

Khoumsi, A., En-Nouaary, A., Dssouli, R. and Akalay, M. (2000) A new method for

testing real time systems. Proceedings of Seventh International Conference on

Real-Time Computing Systems and Applications, pp. 441-450.

Kohavi, Z. (1978) Switching and finite automata theory. New York: McGraw- Hill.

Kov, G., Pap, Z., Viet, D. L., Wu-Hen-Chang, A. and Csopaki, G. (2003) Applying

mutation analysis to SDL specifications. Proceedings of the 11th international

conference on System design, Stuttgart, Germany: Springer-Verlag, pp. 269-284.

Krichen, M. and Tripakis, S. (2004) Real-Time Testing with Timed Automata Testers and

Coverage Criteria. Springer Berlin / Heidelberg.

Krichen, M. and Tripakis, S. (2005) An Expressive and Implementable Formal

Framework for Testing Real-Time Systems. 17th International Conference on

Testing of Communicating Systems, TestCom’05, Montreal, Canada, pp. 209-225.

Krichen, M. and Tripakis, S. (2009) Conformance testing for real-time systems. Formal

Methods in System Design, 34 (3), pp. 238-304.

Lai, V. S., Trueblood, R. P. and Wong, B. K. (1999) Software selection: A case study of

the application of the analytical hierarchy process to the selection of a

multimedia authoring system. Information and Management, 36 pp. 221-232.

Larsen, K. G., Mikucionis, M. and Nielsen, B. (2005a) Online Testing of Real-time

Systems Using Uppaal. Formal Approaches to Software Testing: Springer Berlin

/ Heidelberg, pp. 79-94.

Larsen, K. G., Mikucionis, M., Nielsen, B. and Skou, A. (2005b) Testing real-time

embedded software using UPPAAL-TRON: an industrial case study. Proceedings

of the 5th ACM international conference on Embedded software, Jersey City, NJ,

USA: ACM, pp. 299 - 306.

References

 193

Larsen, K. G. and Wang, Y. (1997) Time-abstracted bisimulation: implicit specifications

and decidability. Information and Computation, 134 (2), pp. 75-101.

Larsen, K. G. and Yi, W. (1993) Time abstracted bisimulation: implicit specification and

decidability. In Proceedings mathematical foundations of programming

semantics (MFPS 9), New Orleans, USA, pp. 160–176.

Lee, D. and Yannakakis, M. (1996) Principles and methods of testing finite state

machines-a survey. Proceedings of the IEEE, 84 (8), pp. 1090-1123.

Lee, J. W. and Kim, S. H. (2000) Using analytic network process and goal programming

for interdependent information system project selection. Computers and

Operations Research, 27 pp. 367-382.

Lipton, R. (1971) Fault Diagnosis of Computer Programs. Student Report, Carnegie

Mellon University,

Lu, M. H., Madu, C. N., Kuei, C. and Winokur, D. (1994) Integrating QFD, AHP and

Benchmarking in Strategic Marketing. Journal of Business and Industrial

Marketing, 82 (2), pp. 250-259.

Lynch, N. A. and Attiya, H. (1992) Using mappings to prove timing properties.

Distributed Computing 6(2), pp. 121-139.

Ma, Y.-S., Kwon, Y.-R. and Offutt, J. (2002) Inter-Class Mutation Operators for Java.

Proceedings of the 13th International Symposium on Software Reliability

Engineering, Annapolis, Maryland: IEEE Computer Society, pp. 352.

Ma, Y.-S., Offutt, J. and Kwon, Y. R. (2005) MuJava: an automated class mutation

system: Research Articles. Software Testing, Verification and Reliability, 15 (2),

pp. 97-133.

Mandrioli, D., Morasca, S. and Morzenti, A. (1995) Generating test cases for real-time

systems from logic specifications. ACM Transactions on Computer Systems, 13

(4), pp. 365-398.

Mathur, A. P. Performance, effectiveness, and reliability issues in software testing.

Proceedings of the Fifteenth Annual InternationalComputer Software and

Applications Conference, Tokyo , Japan pp. 604-605.

References

 194

McCaffrey, J. (2005) Test Run: The Analytic Hierarchy Process. MSDN Magazine, June:

Microsoft Corporation,

McMillan, K. L. (1993) Symbolic Model Checking. Dordrecht, The Netherlands: Kluwer

Academic Publishers.

Merayo, M. G., Nunez, M. and Rodriguez, I. (2008) Formal testing from timed finite state

machines. Computer Networks: The International Journal of Computer and

Telecommunications Networking 52 (2), pp. 432-460.

MicroshipDirect (2010) MCP2515DM-BM CAN Bus Monitor Demo Board [Online].

Available:

http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId

=1406&dDocName=en537141.

Milner, R. (1989) Communication and Concurrency. Englewood Cliffs, NJ: Prentice Hall

International Series in Computer Science.

Mitsching, R., Weise, C., Kolbe, A., Bohnenkamp, H. and Berzen, N. (2009) Towards an

Industrial Strength Process for Timed Testing. International Conference on

Software Testing, Verification and Validation Workshops, Denver, Colorado, pp.

29-38.

NetBeans (2010). Available: http://www.netbeans.org.

Nicolescu, G. and Mosterman, P. J. (2009) Modeling, Verification, and Testing Using

Timed and Hybrid Automata. CRC Press

Nicollin, X., Sifakis, J. and Yovine, S. (1992) Compiling Real-Time Specifications into

Extended Automata. IEEE transactions on Software Engineering, 18 (9), pp.

794-804.

Nielsen, B. and Skou, A. (1998) Automated Test Generation from Timed Automata. In

5th international symposium on formal techniques in real-time and fault tolerant

systems FTRTFT’98, Lyngby, Denmark, pp. 59–77.

Nielsen, B. and Skou, A. Test generation for time critical systems: Tool and case study.

13th Euromicro Conference on Real-Time Systems, Delft , Netherlands. pp. 155-

162.

http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1406&dDocName=en537141
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1406&dDocName=en537141
http://www.netbeans.org/

References

 195

Nielsen, B. and Skou, A. (2003) Automated test generation from timed automata.

International Journal on Software Tools for Technology Transfer, 5 pp. 59–77.

Offutt, A. J. and Jie, P. (1996) Detecting equivalent mutants and the feasible path

problem. Proceedings of the Eleventh Annual Conference on Computer

Assurance, Gaithersburg, MD , USA pp. 224-236.

Offutt, A. J. and King, K. N. (1987) A Fortran 77 interpreter for mutation analysis.

Papers of the Symposium on Interpreters and interpretive techniques, St. Paul,

Minnesota, United States: ACM, pp. 177-188.

Offutt, A. J. and Xu, W. (1996) Mutation Operators for Ada. George Mason University

Fairfax, Virginia, USA: Technique Report,

Ouedraogo, L., Khoumsi, A. and Nourelfath, M. (2010) SetExp: a method of

transformation of timed automata into finite state automata. Real-Time Syst., 46

(2), pp. 189-250.

Pazul., K. (1999) Controller Area Network (CAN) Basics. Microchip Technology Inc.

Preliminary DS00713A, pp. 1-7.

Pinto Ferraz Fabbri, S. C., Delamaro, M. E., Maldonado, J. C. and Masiero, P. C. (1994)

Mutation analysis testing for finite state machines. 5th International Symposium

on Software Reliability Engineering, , pp. 220-229.

Pnueli, A. The temporal logic of programs. 18th Annual Symposium on Foundations of

Computer Science, Providence, RI, USA pp. 46-57.

Pressman, R. S. (2010) Software Engineering: A Practitioner’s Approach. 7th ed. New

York: McGraw-Hill.

Probert, R. L. and Guo, F. (1991) Mutation testing of protocols: Principles and

preliminary experimental results. Proceedings of the IFIP TC6 Third

International Workshop on Protocol Teste Systems, North Holand, pp. 57-76.

Queille, J.-P. and Sifakis, J. (1982) Specification and verification of concurrent systems

in CESAR. Proceedings of the 5th Colloquium on International Symposium on

Programming, London, UK: Springer-Verlag, pp. 337-351.

References

 196

Ramanathan, R. (1995) Using AHP for resource allocation problems. European Journal

of Operational Research, 80 (2), pp. 410-417.

Rapps, S. and Weyuker, E. J. (1985) Selecting Software Test Data Using Data Flow

Information. IEEE Transactions on Software Engineering, 11 (4), pp. 367-375.

Ravi, V., Shankar, R. and Tiwari, M. K. (2005) Analyzing alternatives in reverse logistics

for end-of-life computers: ANP and balanced scorecard approach. Computers and

Industrial Engineering, 48 (2), pp. 327-356.

Rivest, R. L. and Schapire, R. E. (1989) Inference of finite automata using homing

sequences. Proceedings of the twenty-first annual ACM symposium on Theory of

computing, Seattle, Washington, United States: ACM, pp. 411-420.

Robson, A. and Henderson, W. (2010) The Production Cell A Real-Time Case Study

Version 1.0. Northumbria University,

Rollet, A. (2003) Testing robustness of real-time embedded systems. In Proceedings of

Workshop On Testing Real-Time and Embedded Systems (WTRTES), Satellite

Workshop of FM 2003 Symposium, Pisa, Italy,

Rütz, C. and Schmaltz, J. (2011) An Experience Report on an Industrial Case-Study about

Timed Model-Based Testing with UPPAAL-TRON. Proceedings of the 2011

IEEE Fourth International Conference on Software Testing, Verification and

Validation Workshops, Berlin IEEE Computer Society, pp. 39-46.

Saaty, T. L. (1977) A scaling method for priorities in hierarchical structures. Journal of

Mathematical Psychology, 15 (3), pp. 234-281.

Saaty, T. L. (1980) The Analytic Hierarchy Process: Planning, Priority Setting:

Resource Allocation. McGraw-Hill, New York.

Saaty, T. L. (1987) A new macroeconomic forecasting and policy evaluation method

using the analytic hierarchy process. Mathematical Modelling, 9 (3/5), pp. 219-

231.

Saaty, T. L. (1990a) How to make a decision: The analytic hierarchy process. European

Journal of Operational Research, 48 (1), pp. 9-26.

References

 197

Saaty, T. L. (1990b) Multicriteria Decision Making: The Analytic Hierarchy Process:

Planning, Priority Setting, Resource Allocation. Pittsburgh: RWS Publications.

Saaty, T. L. (2001) Decision Making for Leaders: The Analytic Hierarchy Process for

Decisions in a Complex World, New Edition 2001 RWS Publications

Saaty, T. L. (2008) Decision making with the analytic hierarchy process. International

Journal of Services Sciences, 1 (1), pp. 83-98.

Saaty, T. L. and Kearns, K. P. (1985) Analytical Planning. Pergamon Press.

Saaty, T. L. and Vargas, L. G. (1984) The legitimacy of rank reversal. Omega, 12 (5), pp.

513-516.

Saaty, T. L. and Vargas, L. G. (1991) Prediction, Projection, and Forecasting:

Applications of the Analytic Hierarchy Process in Economics, Finance, Politics,

Games, and Sports. Kluwer Academic Publication.

Saaty, T. L. and Vargas, L. G. (2000) Models, Methods, Concepts and Applications of the

Analytic Hierarchy Process. Springer.

Salmeron, J. L. and Herrero, I. (2005) An AHP-based methodology to rank critical

success factors of executive information systems. Computer Standards and

Interfaces, 28 pp. 1-12.

Santhanam, R. and Kyparisis, G. J. (1996) A decision model for interdependent

information system project selection. European Journal of Operational Research,

89 pp. 380-399.

Sarikaya, B. and Bochmann, G. (1984) Synchronization and Specification Issues in

Protocol Testing. IEEE Transactions on Communications, 32 (4), pp. 389-395.

Souza, S. D. R. S. D., Maldonado, C., Fabbri, S. C. P. F. and Souza, W. L. D. (1999)

Mutation Testing Applied to Estelle Specifications. Software Quality Control, 8

(4), pp. 285-301.

Spivey, J. M. (1992) The Z Notation: A Reference Manual. 2nd ed. Englewood Cliffs:

Prentice Hall.

References

 198

Springintveld, J., Vaandrager, F. and D'Argenio, P. R. (2001) Testing timed automata.

Theoretical Computer Science, 254 (1-2), pp. 225-257.

Springintveld, J. and Vaandrager, F. W. (1996) Minimizable Timed Automata.

Proceedings of the 4th International Symposium on Formal Techniques in Real-

Time and Fault-Tolerant Systems, Uppsala, Sweden: Springer-Verlag,

Sugeta, T., Maldonado, J. and Wong, W. (2004) Mutation Testing Applied to Validate

SDL Specifications. Springer Berlin / Heidelberg.

Tahat, L. H., Vaysburg, B., Korel, B. and Bader, A. J. Requirement-based automated

black-box test generation. 25th Annual International Computer Software and

Applications Conference, Chicago, IL , USA pp. 489-495.

Taylor, B. (1980) Introducing Real-time Constraints into Requirements and High Level

Design of Operating Systems. In Proc. of the National Telecommunications

Conference, Houston, TX, pp. 18.5.1–18.5.5.

Tindell, K., Burns, A. and Wellings, A. J. (1995) Calculating controller area network

(can) message response times. Control Engineering Practice, 3 (8), pp. 1163-

1169.

Trakhtenbrot, M. (2007) New Mutations for Evaluation of Specification and

Implementation Levels of Adequacy in Testing of Statecharts Models.

Proceedings of the Testing: Academic and Industrial Conference Practice and

Research Techniques - MUTATION, Winsdor, UK: IEEE Computer Society, pp.

151-160.

Tretmans, J. (1996) Test Generation with Inputs, Outputs, and Quiescence. Proceedings

of the Second International Workshop on Tools and Algorithms for Construction

and Analysis of Systems: Springer-Verlag, pp. 127-146

Ülengin, F. (1994) Forecasting foreign exchange rates: A comparative evaluation of

AHP. Omega, 22 (5), pp. 505-519.

Untch, R. H., Offutt, A. J. and Harrold, M. J. (1993) Mutation analysis using mutant

schemata. Proceedings of the 1993 ACM SIGSOFT international symposium on

Software testing and analysis, Cambridge, Massachusetts, United States: ACM,

pp. 139-148.

References

 199

Ural, H. and Yang, B. (1991) A test sequence selection method for protocol testing. IEEE

Transactions on Communications, 39 (4), pp. 514-523.

Utting, M. and Legeard, B. (2007) Practical model-based testing: a tools approach San

Francisco: Elsevier.

Uyar, M. Ü., Wang, Y., Batth, S. S., Wise, A. and Fecko, M. A. (2005) Timing Fault

Models for Systems with Multiple Timers. Testing of Communicating Systems:

Springer Berlin / Heidelberg, pp. 192-208.

Vadim Okun , Y. Y. (2004) Specification mutation for test generation and analysis.

University of Maryland at Baltimore County, Catonsville, MD, pp. 1-72.

Vilela, P., Machado, M. and Wong, W. E. (2002) Testing for Security Vulnerabilities in

Software. Software Engineering and Applications,

Walsham, G. (1995) Interpretive Case Studies in IS Research: Nature and Method.

European Journal of Information Systems, 4 pp. 74-81.

Wang, Y., Uyar, M. Ü., Batth, S. S. and Fecko, M. A. (2009) Fault masking by multiple

timing faults in timed EFSM models. Computer Networks, 53 (5), pp. 596-612.

Wei, C. C., Chien, C. F. and Wang, M. J. (2005) An AHP-based approach to ERP

systems selection. International Journal for Production Economics, 96 (1), pp.

47-62.

Wolper, P. (1981) Temporal logic can be more expressive. 22nd Annual Symposium on

Foundations of Computer Science, SFCS '81, Nashville, TN, USA, pp. 340-348.

Woodward, M. R. (1992) OBJTEST: an experimental testing tool for algebraic

specifications. IEE Colloquium on Automating Formal Methods for Computer

Assisted Prototying pp. 2.

Woodward, M. R. (1993) Errors in algebraic specifications and an experimental mutation

testing tool. Software Engineering Journal, 8 (4), pp. 211-224.

Woodward, M. R. and Halewood, K. (1988) From weak to strong, dead or alive? an

analysis of some mutation testing issues. Proceedings of the Second Workshop on

Software Testing, Verification, and Analysis, Banff Albert, Canda, pp. 152-158.

References

 200

Yin, R. K. (1994) Case Study Research Design and Methods. London, UK: Sage.

Yoon, H., Choi, B. and Jeon, J.-O. (1998) Mutation-Based Inter-Class Testing.

Proceedings of the Fifth Asia Pacific Software Engineering Conference, Taipei,

Taiwan: IEEE Computer Society, pp. 174.

Zeng, G., Jiang, R., Huang, G., Xu, M. and Li, J. (2007) Optimization of wastewater

treatment alternative selection by hierarchy grey relational analysis. Journal of

environmental management, 82 (2), pp. 250-259.

Zheng, M., Alagar, V. and Ormandjieva, O. (2008) Automated generation of test suites

from formal specifications of real-time reactive systems. Journal of Systems and

Software 81 (2), pp. 286-304.

Appendix A

 201

Appendix A

Timed Specification Mutation Operators

This Appendix presents detailed timed mutation operators (RTC, WTC and STC)

that have been used for SMA application on TA specification models.

Restricting Timing Constraint (RTC)

Clock Guard Mutated Clock Guards

x < a

x < a – ε

x‎≤‎a‎– ε

ε‎<‎x‎<‎a

ε‎≤‎x‎<‎a

ε1‎<‎x‎<‎a‎- ε2

ε1‎≤‎x‎<‎a‎- ε2

ε1‎<‎x‎≤‎a‎- ε2

ε1‎≤‎x‎≤‎a‎- ε2

x‎≤‎a

x < a

x‎≤‎a‎- ε

x < a - ε

ε‎≤‎x‎≤‎a

ε‎<‎x‎≤‎a

ε‎≤‎x‎<‎a

ε‎<‎x‎<‎a

ε1‎≤‎x‎≤‎a‎- ε2

ε1‎<‎x‎≤‎a‎- ε2

ε1‎≤‎x‎<‎a‎- ε2

ε1‎<‎x‎<‎a‎- ε2

x > a

x‎>‎a‎+‎ε

x‎≥‎a‎+‎ε

a‎<‎x‎<‎ε

a‎<‎x‎≤‎ε

a‎+‎ε1‎<‎x‎<‎ε2

a‎+‎ε1‎<‎x‎≤‎ε2

a‎+‎ε1‎≤‎x‎<‎ε2

a‎+‎ε1‎≤‎x‎≤‎ε2

Appendix A

 202

Restricting Timing Constraint (RTC)

Clock Guard Mutated Clock Guards

x‎≥‎a

x > a

x‎≥‎a‎+‎ε

x‎>‎a‎+‎ε

a‎≤‎x‎<‎ε

a‎≤‎x‎≤‎ε

a‎<‎x‎<‎ε

a‎<‎x‎≤‎ε

a‎+‎ε1‎≤‎x‎≤‎ε2

a‎+‎ε1‎<‎x‎≤‎ε2

a‎+‎ε1‎≤‎x‎<‎ε2

a‎+‎ε1‎<‎x‎<‎ε2

a < x < b

a‎+‎ε‎<‎x‎<‎b

a‎+‎ε‎‎≤‎x‎<‎b

a < x < b - ε

a‎<‎x‎≤‎b‎- ε

a‎+‎ε‎<‎x‎<‎b‎- ε

a‎+‎ε‎≤‎x‎<‎b‎- ε

a‎+‎ε‎<‎x‎≤‎b‎- ε

a‎+‎ε‎≤‎x‎≤‎b‎- ε

a‎≤‎x‎<‎b

a < x < b

a‎+‎ε‎<‎x‎<‎b

a‎+‎ε‎‎≤‎x‎<‎b

a‎≤‎x‎<‎b‎- ε

a‎≤‎x‎≤ b - ε

a < x < b - ε

a‎<‎x‎≤‎b‎- ε

a‎+‎ε‎<‎x‎<‎b‎- ε

a‎+‎ε‎≤‎x‎<‎b‎- ε

a‎+‎ε‎<‎x‎≤‎b‎- ε

a‎+‎ε‎≤‎x‎≤‎b‎- ε

a‎<‎x‎≤‎b

a < x < b

a‎+‎ε‎<‎x‎<‎b

a +‎ε ≤‎x‎<‎b

a < x < b - ε

a‎<‎x‎≤‎b‎- ε

a‎+‎ε‎<‎x‎<‎b‎- ε

a‎+‎ε‎≤‎x‎<‎b‎- ε

a‎+‎ε‎<‎x‎≤‎b‎- ε

a‎+‎ε‎≤‎x‎≤‎b‎- ε

Appendix A

 203

Restricting Timing Constraint (RTC)

Clock Guard Mutated Clock Guards

a‎≤‎x‎≤‎b

a‎<‎x‎≤‎b

a‎≤‎x‎<‎b

a < x < b

a‎+‎ε‎<‎x‎≤‎b

a‎+‎ε ≤‎x‎≤‎b

a‎+‎ε‎<‎x‎<‎b

a‎+‎ε ≤‎x‎<‎b

a‎≤‎x‎<‎b‎- ε

a‎≤‎x‎≤‎b‎- ε

a < x < b - ε

a‎<‎x‎≤‎b‎- ε

a‎+‎ε‎<‎x‎<‎b‎- ε

a‎+‎ε‎≤‎x‎<‎b‎- ε

a‎+‎ε‎<‎x‎≤‎b‎- ε

a‎+‎ε‎≤‎x‎≤‎b‎- ε

True

x‎>‎ε

x‎≥‎ε

x‎<‎ε

x‎≤‎ε

ε1‎<‎x‎<‎ε2

ε1‎≤‎x‎< ε2

ε1‎<‎x‎≤‎ε2

ε1‎≤‎x‎≤‎ε2

Appendix A

 204

Widening Timing Constraint (WTC)

Clock Guard Mutated Clock Guards

x < a

x‎≤‎a

x‎<‎a‎+‎ε

x‎≤‎a‎+‎ε

True

x‎≤‎a

x‎≤‎a‎+‎ε

x‎<‎a‎+‎ε

True

x > a

x ≥‎a

x > a - ε

x‎≥‎a‎- ε

True

x‎≥‎a

x‎≥‎a‎– ε

x > a - ε

True

a < x < b

a‎≤‎x‎<‎b‎

a‎<‎x‎≤‎b

a‎≤‎x‎≤‎b

a - ε‎<‎x‎<‎b

a - ε ≤‎x‎<‎b

a - ε‎<‎x‎≤‎b

a - ε ≤‎x‎≤‎b

a‎<‎x‎<‎b‎+‎ε

a‎<‎x‎≤‎b‎+‎ε

a‎≤ x‎<‎b‎+‎ε

a‎≤ x‎≤‎b‎+‎ε

a - ε‎<‎x‎<‎b‎+‎ε

a - ε‎≤‎x‎<‎b‎+‎ε

a - ε‎<‎x‎≤‎b‎+‎ε

a - ε‎≤‎x‎≤‎b +‎ε

True

a‎≤‎x‎<‎b

a‎≤‎x‎≤‎b

a - ε‎<‎x‎<‎b

a - ε ≤‎x‎<‎b

a - ε‎<‎x‎≤‎b

a - ε ≤‎x‎≤‎b

a‎≤‎x‎<‎b‎+‎ε

a‎≤‎x‎≤‎b‎+‎ε

a - ε‎<‎x‎<‎b‎+‎ε

a - ε‎≤‎x‎<‎b‎+‎ε

a - ε‎<‎x‎≤‎b‎+‎ε

a - ε‎≤‎x‎≤‎b‎+‎ε

True

Appendix A

 205

Widening Timing Constraint (WTC)

Clock Guard Mutated Clock Guards

a‎<‎x‎≤‎b

a‎≤‎x‎≤‎b

a - ε‎<‎x‎≤‎b

a - ε ≤‎x‎≤‎b

a‎<‎x‎<‎b‎+‎ε

a‎<‎x‎≤‎b‎+‎ε

a‎≤ x‎<‎b‎+‎ε

a‎≤ x‎≤‎b‎+‎ε

a - ε‎<‎x‎<‎b‎+‎ε

a - ε‎≤‎x‎<‎b‎+‎ε

a - ε‎<‎x‎≤‎b‎+‎ε

a - ε‎≤‎x‎≤‎b‎+‎ε

True

a‎≤‎x‎≤‎b

a - ε‎<‎x‎≤‎b

a - ε ≤‎x‎≤‎b

a‎≤‎x‎<‎b‎+‎ε

a‎≤‎x‎≤‎b‎+‎ε

a - ε‎<‎x‎<‎b‎+‎ε

a - ε‎≤‎x‎<‎b‎+‎ε

a - ε‎<‎x‎≤‎b‎+‎ε

a - ε‎≤‎x‎≤‎b‎+‎ε

True

Appendix A

 206

Shifting Timing Constraint (STC)

Clock Guard Mutated Clock Guards

x < a

ε‎≤‎x‎≤‎a

ε‎<‎x‎≤‎a

ε‎≤‎x‎<‎a‎+‎ε

ε‎<‎x‎<‎a‎+‎ε

ε‎≤‎x‎≤‎a‎+‎ε

ε‎<‎x‎≤‎a‎+‎ε

x‎≤‎a

ε‎≤‎x‎≤‎a‎+‎ε

ε‎<‎x‎≤‎a‎+‎ε

ε‎≤‎x‎<‎a‎+‎ε

ε‎<‎x‎<‎a‎+‎ε

x > a

a‎≤‎x‎<‎ε

a‎≤‎x‎≤‎ε

a - ε1‎<‎x‎<‎ε2

a - ε1‎<‎x‎≤‎ε2

a - ε1‎≤‎x‎<‎ε2

a - ε1‎≤‎x‎≤‎ε2

x‎≥‎a

a - ε1‎≤‎x‎<‎ε2

a - ε1‎≤‎x‎≤ ε2

a - ε1‎<‎x‎<‎ε2

a - ε1‎<‎x‎≤‎ε2

a < x < b

a‎+‎ε‎<‎x‎≤‎b

a‎+‎ε‎≤‎x‎≤‎b

a‎+‎ε‎<‎x‎<‎b‎+‎ε

a‎+‎ε‎≤‎x‎<‎b‎+‎ε

a‎+‎ε‎<‎x‎≤‎b‎+‎ε

a‎+‎ε‎≤‎x‎≤‎b‎+‎ε

a ≤‎x‎<‎b‎- ε

a ≤‎x‎≤‎b‎- ε

a - ε‎<‎x‎<‎b‎- ε

a - ε‎≤‎x‎<‎b‎- ε

a - ε‎<‎x‎≤‎b‎- ε

a - ε‎≤‎x‎≤‎b‎- ε

a‎≤‎x‎<‎b

a‎<‎x‎≤‎b

a‎+‎ε‎<‎x‎<‎b‎+‎ε

a‎+‎ε‎≤‎x‎<‎b‎+‎ε

a‎+‎ε‎<‎x‎≤‎b‎+‎ε

a‎+‎ε‎≤‎x‎≤‎b‎+‎ε

a - ε‎<‎x‎<‎b‎– ε

a - ε‎≤‎x‎<‎b‎– ε

a - ε‎<‎x‎≤‎b‎– ε

a - ε‎≤‎x‎≤‎b‎– ε

Appendix A

 207

Shifting Timing Constraint (STC)

Clock Guard Mutated Clock Guards

a‎<‎x‎≤‎b

a‎+‎ε‎<‎x‎<‎b‎+‎ε

a‎+‎ε‎≤‎x‎<‎b‎+‎ε

a‎+‎ε‎<‎x‎≤‎b‎+‎ε

a‎+‎ε‎≤‎x‎≤‎b‎+‎ε

a‎≤‎x‎<‎b

a - ε‎<‎x‎<‎b‎- ε

a - ε‎≤‎x‎<‎b‎- ε

a - ε‎<‎x‎≤‎b‎- ε

a - ε‎≤‎x‎≤‎b‎- ε

a‎≤‎x‎≤‎b

a‎<‎x‎≤‎b‎+‎ε

a ≤‎x‎<‎b‎+‎ε

a‎+‎ε‎<‎x‎<‎b‎+‎ε

a‎+‎ε‎≤‎x‎<‎b‎+‎ε

a‎+‎ε‎<‎x‎≤‎b‎+‎ε

a‎+‎ε‎≤‎x‎≤‎b‎+‎ε

a - ε‎≤‎x‎<‎b‎

a - ε‎<‎x‎<‎b‎

a - ε‎<‎x‎<‎b‎- ε

a - ε‎≤‎x‎<‎b‎- ε

a - ε‎<‎x‎≤‎b‎- ε

a - ε‎≤‎x‎≤‎b‎- ε

Appendix B

 208

Appendix B

CRC Calculation

This appendix presents clock region coverage achieved by each testing approach

(SM, BCT and PA) that generate timed test cases from specification models of the

‘production-cell’‎ test‎ bed‎ (Control‎ Panel,‎ Conveyor,‎ Robot-In and Robot-Out).

The number of effective clock regions was calculated for each input transition

using Equation (‎3.5). The number of clock regions covered by each testing

approach was then observed to calculate the CRC ratio for each input transition.

The Final CRC was calculated for the whole specification model using Equation

(‎4.1).

CRC Ratio for input transitions in the Control Panel

Transitions NCR SM BCT PA

S0-S1

Total No. 55

Covered 1 1 55

Ratio 0.018 0.018 1

S2-S3

Total No. 11

Covered 2 3 11

Ratio 0.181 0.272 1

S3-S4

Total No. 55

Covered 1 1 55

Ratio 0.018 0.018 1

S5-S6

Total No. 57

Covered 2 3 57

Ratio 0.035 0.055 1

S6-S7

Total No. 55

Covered 1 1 55

Ratio 00.18 0.018 1

S8-S9

Total No. 9

Covered 2 3 9

Ratio 0.222 0.333 1

S9-S10

Total No. 55

Covered 1 1 55

Ratio 0.018 0.018 1

Appendix B

 209

CRC Ratio for input transitions in the Conveyor

Transitions NCR SM BCT PA

S0-S1

Total No. 11

Covered 1 1 11

Ratio 0.091 0.091 1

S1-S2

Total No. 11

Covered 1 1 11

Ratio 0.091 0.091 1

S3-S4

Total No. 13

Covered 2 3 13

Ratio 0.154 0.231 1

S4-S5

Total No. 11

Covered 1 1 11

Ratio 0.091 0.091 1

S6-S7

Total No. 11

Covered 1 1 11

Ratio 0.091 0.091 1

S8-S9

Total No. 10

Covered 2 3 10

Ratio 0.2 0.3 1

S9-S10

Total No. 11

Covered 1 1 11

Ratio 0.091 0.091 1

CRC Ratio for input transitions in the Robot IN

Transitions
Number of

Regions
SM BCT PA

S0-S1

Total No. 15

Covered 1 1 15

Ratio 0.067 0.067 1

S2-S3

Total No. 16

Covered 2 3 16

Ratio 0.125 0.188 1

S4-S5

Total No. 10

Covered 2 3 10

Ratio 0.2 0.3 1

S6-S0

Total No. 15

Covered 1 1 15

Ratio 0.067 0.067 1

Appendix B

 210

CRC Ratio for input transitions in the Robot Out

Transitions NCR SM BCT PA

S0-S1

Total No. 21

Covered 1 1 21

Ratio 0.048 0.048 1

S2-S3

Total No. 22

Covered 2 3 22

Ratio 0.091 0.136 1

S4-S5

Total No. 10

Covered 2 3 10

Ratio 0.2 0.3 1

S6-S0

Total No. 21

Covered 1 1 21

Ratio 0.048 0.048 1

Appendix C

 211

Appendix C

Interview Sheet

Having that all required information was given to the interviewee, the interview

questions are structured as follows:

Q1- Can you please rank the pair-wise comparison preference of the seven testing

sets with respect to application importance, complexity and development stage

using the following scale of ranking?

Pairwise Comparison scale for AHP Preferences

Numerical Rating Verbal Judgements of Preferences

1 C is equally preferable to D

2 C is equally to moderately preferable to D

3 C is moderately preferable to D

4 C is moderately to strongly preferable to D

5 C is strongly preferable to D

6 C is strongly to very strongly preferable to D

7 C is very strongly preferable to D

8 C is very strongly to exceptionally preferable to D

9 C is exceptionally preferable to D

Importance B OB IB B+OB B+IB OB+IB B+OB+IB

B 1

OB 1

IB 1

B+OB 1

B+IB 1

OB+IB 1

B+OB+IB 1

Appendix C

 212

Complexity B OB IB B+OB B+IB OB+IB B+OB+IB

B 1

OB 1

IB 1

B+OB 1

B+IB 1

OB+IB 1

B+OB+IB 1

Development

Stage
B OB IB B+OB B+IB OB+IB B+OB+IB

B 1

OB 1

IB 1

B+OB 1

B+IB 1

OB+IB 1

B+OB+IB 1

Q2- Can you please have a look at testing Scenario One and Two, and rank the

pair-wise comparison preference of the criteria and sub-criteria using the same

scale of ranking? The criteria dentitions are provided.

 Test

Adequacy

Test

Cost

Application

Domain

Test Adequacy 1

Test Cost 1

Application Domain 1

 Fault Coverage Clock Region Coverage

Fault Coverage 1

Clock region Coverage 1

 Test Traces Length Test Execution Time

Test Traces Length 1

Test Execution Time 1

Appendix C

 213

 Importance Complexity Development Stage

Importance 1

Complexity 1

Development stage 1

Q3- Can you please order (1-7) the test sets according to the best suitability to the

Scenario One?

 B OB IB B+OB B+IB OB+IB B+OB+IB

Appendix D

 214

Appendix D

AHP Matrices

The complete set of AHP pair-wise comparison matrices that have been filled by

five testing experts (E1…E5)‎is presented in this Appendix with their normalised

form and consistency ratio.

Pair-wise Comparison Matrix of alternatives with respect to Importance (E1)

Importance B OB IB B+OB B+IB OB+IB B+OB+IB

B 1 1 1 0.5 0.25 0.2 0.11

OB 1 1 1 0.5 0.25 0.2 0.11

IB 1 1 1 0.5 0.25 0.2 0.11

B+OB 2 2 2 1 0.33 0.25 0.14

B+IB 4 4 4 3 1 0.25 0.14

OB+IB 5 5 5 4 4 1 0.14

B+OB+IB 9 9 9 7 7 7 1

Consistency Ratio =0.0582

Normalized Matrix of alternatives with respect to Importance (E1)

B OB IB B+OB B+IB OB+IB B+OB+IB

Eigen-

Vector

B 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.034515

OB 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.034515

IB 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.034515

B+OB 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.056999

B+IB 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.109731

OB+IB 0.19 0.19 0.19 0.19 0.2 0.2 0.19 0.194743

B+OB+IB 0.54 0.54 0.54 0.53 0.53 0.53 0.54 0.534981

Pair-wise Comparison Matrix of alternatives with respect to Complexity (E1)

Complexity B OB IB B+OB B+IB OB+IB B+OB+IB

B 1 1 1 0.5 0.25 0.2 0.11

OB 1 1 1 0.5 0.25 0.2 0.11

IB 1 1 1 0.5 0.25 0.2 0.11

B+OB 2 2 2 1 0.33 0.25 0.14

B+IB 4 4 4 3 1 0.25 0.14

OB+IB 5 5 5 4 4 1 0.14

B+OB+IB 9 9 9 7 7 7 1

Consistency Ratio =0.0582

Appendix D

 215

Normalized Matrix of alternatives with respect to Complexity (E1)

B OB IB B+OB B+IB OB+IB B+OB+IB

Eigen-

Vector

B 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.034515

OB 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.034515

IB 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.034515

B+OB 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.056999

B+IB 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.109731

OB+IB 0.19 0.19 0.19 0.19 0.2 0.2 0.19 0.194743

B+OB+IB 0.54 0.54 0.54 0.53 0.53 0.53 0.54 0.534981

Pair-wise Comparison Matrix of alternatives with respect to Development Stage

(E1)

Stage B OB IB B+OB B+IB OB+IB B+OB+IB

B 1 1 1 0.5 0.25 0.2 0.11

OB 1 1 1 0.5 0.25 0.2 0.11

IB 1 1 1 0.5 0.25 0.2 0.11

B+OB 2 2 2 1 0.33 0.25 0.14

B+IB 4 4 4 3 1 0.25 0.14

OB+IB 5 5 5 4 4 1 0.14

B+OB+IB 9 9 9 7 7 7 1

Consistency Ratio =0.0582

Normalized Matrix of alternatives with respect to Development Stage

Stage
B OB IB B+OB B+IB OB+IB B+OB+IB

Eigen-

Vector

B 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.034515

OB 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.034515

IB 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.034515

B+OB 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.056999

B+IB 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.109731

OB+IB 0.19 0.19 0.19 0.19 0.2 0.2 0.19 0.194743

B+OB+IB 0.54 0.54 0.54 0.53 0.53 0.53 0.54 0.534981

Pair-wise Comparison Matrix of the main criteria with respect to Goal (E1,

Scenario 1)

 Test Adequacy Test Cost Application Domain

Test Adequacy 1 0.33 5

Test Cost 3 1 9

Development Stage 0.2 0.11 1

Consistency Ratio =0.0245

Appendix D

 216

Normalized Matrix of the main criteria with respect to Goal (E1, Scenario 1)

Test Adequacy
Test

Cost

Application

Domain
Eigenvector

Test Adequacy 0.27 0.27 0.27 0.265381

Test Cost 0.67 0.67 0.67 0.671695

Application Domain 0.06 0.06 0.06 0.062924

Pair-wise Comparison Matrix of the sub-criteria with respect to Test

Adequacy (E1, Scenario1)

 Fault Coverage Clock Region Coverage

Fault Coverage 1 9

Clock Region Coverage 0.11 1

Consistency Ratio =0.00

Normalized Matrix of the sub-criteria with respect to Test adequacy Scenario1

 Fault Coverage Clock Region Coverage Eigenvector

Fault Coverage 0.9 0.9 0.900045

Clock Region

Coverage
0.1 0.1 0.099955

Pair-wise Comparison Matrix of the sub-criteria with respect to Test

Cost (E1, Scenario1)

 Test Traces Length Test Execution time

Test Traces Length 1 0.11

Test Execution time 9 1

Consistency Ratio =0.00

Normalized Matrix of the sub-criteria with respect to Test Cost Scenario1

 Test Traces Length Test Execution time Eigenvector

Test Traces

Length
0.1 0.1 0.099955

Test Execution

time
0.9 0.9 0.900045

Pair-wise Comparison Matrix of the sub-criteria with respect to Application

domain (E1, Scenario 1)

 Importance Complexity Development Stage

Importance 1 0.33 0.11

Complexity 3 1 0.17

Development Stage 9 6 1

Consistency Ratio =0.0461

Appendix D

 217

Normalized Matrix of the sub-criteria with respect to Application domain (E1,

Scenario 1)

 Importance Complexity Development Stage Eigenvector

Importance 0.07 0.07 0.07 0.067879

Complexity 0.16 0.16 0.16 0.161814

Development Stage 0.77 0.77 0.77 0.770307

Pair-wise Comparison Matrix of the main criteria with respect to Goal (E1,

Scenario 2)

 Test Adequacy Test Cost Application Domain

Test Adequacy 1 8 9

Test Cost 0.12 1 1

Development Stage 0.11 1 1

Consistency Ratio =0.0011

Normalized Matrix of the main criteria with respect to Goal (Scenario 2)

Test Adequacy
Test

Cost

Application

Domain
Eigenvector

Test Adequacy 0.81 0.81 0.81 0.80925

Test Cost 0.1 0.1 0.1 0.097263

Application Domain 0.09 0.09 0.09 0.093488

Pair-wise Comparison Matrix of the sub-criteria with respect to Test

Adequacy (E1, Scenario2)

 Fault Coverage Clock Region Coverage

Fault Coverage 1 7

Clock Region Coverage 0.14 1

Consistency Ratio =0.00

Normalized Matrix of the sub-criteria with respect to Test adequacy Scenario2

 Fault Coverage Clock Region Coverage Eigenvector

Fault Coverage 0.87 0.87 0.874945

Clock Region

Coverage
0.13 0.13 0.125055

Pair-wise Comparison Matrix of the sub-criteria with respect to Test

Cost (E1, Scenario2)

 Test Traces Length Test Execution time

Test Traces Length 1 1

Test Execution time 1 1

Consistency Ratio =0.00

Appendix D

 218

Normalized Matrix of the sub-criteria with respect to Test Cost (E1, Scenario2)

 Test Traces Length Test Execution time Eigenvector

Test Traces Length 0.5 0.5 0.5

Test Execution time 0.5 0.5 0.5

Pair-wise Comparison Matrix of the sub-criteria with respect to Application

domain (E1, Scenario 2)

 Importance Complexity Development Stage

Importance 1 9 1

Complexity 0.11 1 0.14

Development Stage 1 7 1

Consistency Ratio =0.0061

Normalized Matrix of the sub-criteria with respect to Application domain (E1,

Scenario 2)

 Importance Complexity Development Stage Eigenvector

Importance 0.49 0.49 0.49 0.490084

Complexity 0.06 0.06 0.06 0.059215

Development Stage 0.45 0.45 0.45 0.4507

Pair-wise Comparison Matrix of alternatives with respect to Importance (E2)

Importance B OB IB B+OB B+IB OB+IB B+OB+IB

B 1 0.25 1 0.17 0.17 0.17 0.11

OB 4 1 1 0.11 0.11 0.11 0.11

IB 1 1 1 0.11 0.11 0.11 0.11

B+OB 6 9 9 1 1 1 1

B+IB 6 9 9 1 1 1 1

OB+IB 6 9 9 1 1 1 1

B+OB+IB 9 9 9 1 1 1 1

Consistency Ratio =0.0413

Normalized Matrix of alternatives with respect to Importance (E2)

B OB IB B+OB B+IB OB+IB B+OB+IB

Eigen-

Vector

B 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.027478

OB 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.037394

IB 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.02617

B+OB 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.224433

B+IB 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.224433

OB+IB 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.224433

B+OB+IB 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.235657

Appendix D

 219

Pair-wise Comparison Matrix of alternatives with respect to Complexity (E2)

Complexity B OB IB B+OB B+IB OB+IB B+OB+IB

B 1 1 1 0.17 0.14 0.12 0.11

OB 1 1 1 0.17 0.14 0.12 0.11

IB 1 1 1 0.17 0.14 0.12 0.11

B+OB 6 6 6 1 0.5 1 0.2

B+IB 7 7 7 2 1 1 0.2

OB+IB 8 8 8 1 1 1 0.2

B+OB+IB 9 9 9 5 5 5 1

Consistency Ratio =0.0494

Normalized Matrix of alternatives with respect to Complexity (E2)

B OB IB B+OB B+IB OB+IB B+OB+IB

Eigen-

Vector

B 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.026559

OB 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.026559

IB 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.026559

B+OB 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.127301

B+IB 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.166505

OB+IB 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.160092

B+OB+IB 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.466425

Pair-wise Comparison Matrix of alternatives with respect to Development Stage

(E2)

Stage B OB IB B+OB B+IB OB+IB B+OB+IB

B 1 1 1 0.17 0.14 0.12 0.11

OB 1 1 1 0.17 0.14 0.12 0.11

IB 1 1 1 0.17 0.14 0.12 0.11

B+OB 6 6 6 1 0.5 1 0.2

B+IB 7 7 7 2 1 1 0.2

OB+IB 8 8 8 1 1 1 0.2

B+OB+IB 9 9 9 5 5 5 1

Consistency Ratio =0.0494

Normalized Matrix of alternatives with respect to Development Stage (E2)

Stage
B OB IB B+OB B+IB OB+IB B+OB+IB

Eigen-

Vector

B 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.026559

OB 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.026559

IB 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.026559

B+OB 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.127301

B+IB 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.166505

OB+IB 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.160092

B+OB+IB 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.466425

Appendix D

 220

Pair-wise Comparison Matrix of the main criteria with respect to Goal (E2,

Scenario1)

 Test Adequacy Test Cost Application Domain

Test Adequacy 1 0.25 3

Test Cost 4 1 6

Development Stage 0.33 0.17 1

Consistency Ratio =0.0467

Normalized Matrix of the main criteria with respect to Goal (E2, Scenario1)

Test Adequacy
Test

Cost

Application

Domain
Eigenvector

Test Adequacy 0.22 0.22 0.22 0.217641

Test Cost 0.69 0.69 0.69 0.690909

Application Domain 0.09 0.09 0.09 0.09145

Pair-wise Comparison Matrix of the sub-criteria with respect to Test

adequacy (E2, Scenario1)

 Fault Coverage Clock Region Coverage

Fault Coverage 1 0.2

Clock Region Coverage 5 1

Consistency Ratio =0.00

Normalized Matrix of the sub-criteria with respect to Test adequacy Scenario1

 Fault Coverage Clock Region Coverage Eigenvector

Fault Coverage 0.17 0.17 0.166667

Clock Region

Coverage
0.83 0.83 0.833333

Pair-wise Comparison Matrix of the sub-criteria with respect to Test

Cost (E2, Scenario1)

 Test Traces Length Test Execution time

Test Traces Length 1 0.333

Test Execution time 3 1

Consistency Ratio =0.00

Normalized Matrix of the sub-criteria with respect to Test Cost Scenario1

 Test Traces Length Test Execution time Eigenvector

Test Traces Length 0.25 0.25 0.249906

Test Execution time 0.75 0.75 0.750094

Appendix D

 221

Pair-wise Comparison Matrix of the sub-criteria with respect to Application

domain (E2, Scenario 1)

 Importance Complexity Development Stage

Importance 1 1 4

Complexity 1 1 6

Development Stage 0.25 0.17 1

Consistency Ratio =0.0163

Normalized Matrix of the sub-criteria with respect to Application domain (E2,

Scenario 1)

 Importance Complexity Development Stage Eigenvector

Importance 0.42 0.42 0.42 0.423137

Complexity 0.48 0.48 0.48 0.484396

Development Stage 0.09 0.09 0.09 0.092467

Pair-wise Comparison Matrix of the main criteria with respect to Goal (E2,

Scenario 2)

 Test Adequacy Test Cost Application Domain

Test Adequacy 1 1 0.25

Test Cost 1 1 0.33

Development Stage 4 3 1

Consistency Ratio =0.0076

Normalized Matrix of the main criteria with respect to Goal (E2, Scenario 2)

Test Adequacy
Test

Cost

Application

Domain
Eigenvector

Test Adequacy 0.17 0.17 0.17 0.174381

Test Cost 0.19 0.19 0.19 0.191863

Application Domain 0.63 0.63 0.63 0.633756

Pair-wise Comparison Matrix of the sub-criteria with respect to Test

adequacy (E2, Scenario2)

 Fault Coverage Clock Region Coverage

Fault Coverage 1 0.5

Clock Region Coverage 2 1

Consistency Ratio =0.00

Normalized Matrix of the sub-criteria with respect to Test adequacy (E2, Scenario2)

 Fault Coverage Clock Region Coverage Eigenvector

Fault Coverage 0.33 0.33 0.333333

Clock Region

Coverage
0.67 0.67 0.666667

Appendix D

 222

Pair-wise Comparison Matrix of the sub-criteria with respect to Test

Cost (E2, Scenario2)

 Test Traces Length Test Execution time

Test Traces Length 1 0.17

Test Execution time 6 1

Consistency Ratio =0.00

Normalized Matrix of the sub-criteria with respect to Test Cost (E2, Scenario2)

 Test Traces Length Test Execution time Eigenvector

Test Traces Length 0.14 0.14 0.14298

Test Execution time 0.86 0.86 0.85702

Pair-wise Comparison Matrix of the sub-criteria with respect to Application

domain (E2, Scenario 2)

 Importance Complexity Development Stage

Importance 1 0.11 0.5

Complexity 9 1 7

Development Stage 2 0.14 1

Consistency Ratio =0.0186

Normalized Matrix of the sub-criteria with respect to Application domain (E2,

Scenario 2)

 Importance Complexity Development Stage Eigenvector

Importance 0.08 0.08 0.08 0.075989

Complexity 0.79 0.79 0.79 0.792759

Development Stage 0.13 0.13 0.13 0.131252

Pair-wise Comparison Matrix of alternatives with respect to Importance (E3)

Importance B OB IB B+OB B+IB OB+IB B+OB+IB

B 1 3 4 0.33 0.33 0.33 0.2

OB 0.33 1 2 0.25 0.25 0.25 0.17

IB 0.25 0.5 1 0.14 0.14 0.14 0.11

B+OB 3 4 7 1 2 2 0.5

B+IB 3 4 7 0.5 1 2 0.25

OB+IB 3 4 7 0.5 0.5 1 0.33

B+OB+IB 5 6 9 2 4 3 1

Consistency Ratio =0.0395

Appendix D

 223

Normalized Matrix of alternatives with respect to Importance (E3)

B OB IB B+OB B+IB OB+IB B+OB+IB

Eigen-

Vector

B 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.072293

OB 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.040749

IB 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02379

B+OB 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.208153

B+IB 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.159781

OB+IB 0.13 0.13 0.13 0.13 0.13 0.14 0.13 0.134572

B+OB+IB 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.360663

Pair-wise Comparison Matrix of alternatives with respect to Complexity (E3)

Complexity B OB IB B+OB B+IB OB+IB B+OB+IB

B 1 1 0.5 3 3 3 7

OB 1 1 0.5 3 3 3 7

IB 2 2 1 4 4 4 8

B+OB 0.33 0.33 0.25 1 0.5 0.5 3

B+IB 0.33 0.33 0.25 2 1 0.5 3

OB+IB 0.33 0.33 0.25 2 2 1 4

B+OB+IB 0.14 0.14 0.12 0.33 0.33 0.25 1

Consistency Ratio =0.0226

Normalized Matrix of alternatives with respect to Complexity (E3)

B OB IB B+OB B+IB OB+IB B+OB+IB

Eigen-

Vector

B 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.20597

OB 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.20597

IB 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.322725

B+OB 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.062752

B+IB 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.076837

OB+IB 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.098205

B+OB+IB 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.027541

Pair-wise Comparison Matrix of alternatives with respect to Development Stage

(E3)

Stage B OB IB B+OB B+IB OB+IB B+OB+IB

B 1 1 0.5 1 1 1 1

OB 1 1 0.5 1 1 1 1

IB 2 2 1 2 2 2 2

B+OB 1 1 0.5 1 1 1 1

B+IB 1 1 0.5 1 1 1 1

OB+IB 1 1 0.5 1 1 1 1

B+OB+IB 1 1 0.5 1 1 1 1

Consistency Ratio =0.00

Appendix D

 224

Normalized Matrix of alternatives with respect to Development Stage (E3)

Stage
B OB IB B+OB B+IB OB+IB B+OB+IB

Eigen-

Vector

B 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.125

OB 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.125

IB 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

B+OB 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.125

B+IB 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.125

OB+IB 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.125

B+OB+IB 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.125

Pair-wise Comparison Matrix of the main criteria with respect to Goal (E3,

Scenario1)

 Test Adequacy Test Cost Application Domain

Test Adequacy 1 0.33 0.5

Test Cost 3 1 2

Development Stage 2 0.5 1

Consistency Ratio =0.0076

Normalized Matrix of the main criteria with respect to Goal (E3, Scenario 1)

Test Adequacy
Test

Cost

Application

Domain
Eigenvector

Test Adequacy 0.16 0.16 0.16 0.163374

Test Cost 0.54 0.54 0.54 0.539651

Application Domain 0.3 0.3 0.3 0.296975

Pair-wise Comparison Matrix of the sub-criteria with respect to Test

adequacy (E3, Scenario1)

 Fault Coverage Clock Region Coverage

Fault Coverage 1 0.5

Clock Region Coverage 2 1

Consistency Ratio =0.00

Normalized Matrix of the sub-criteria with respect to Test adequacy (E3, Scenario1)

 Fault Coverage Clock Region Coverage Eigenvector

Fault Coverage 0.33 0.33 0.333333

Clock Region Coverage 0.67 0.67 0.666667

Pair-wise Comparison Matrix of the sub-criteria with respect to Test

Cost (E3, Scenario1)

 Test Traces Length Test Execution time

Test Traces Length 1 0.5

Test Execution time 2 1

Consistency Ratio =0.00

Appendix D

 225

Normalized Matrix of the sub-criteria with respect to Test Cost (E3, Scenario1)

 Test Traces Length Test Execution time Eigenvector

Test Traces Length 0.33 0.33 0.333333

Test Execution time 0.67 0.67 0.666667

Pair-wise Comparison Matrix of the sub-criteria with respect to Application

Domain (E3, Scenario 1)

 Importance Complexity Development Stage

Importance 1 4 2

Complexity 0.25 1 0.5

Development Stage 0.5 2 1

Consistency Ratio =0.00

Normalized Matrix of the sub-criteria with respect to Application domain (E3,

Scenario 1)

 Importance Complexity Development Stage Eigenvector

Importance 0.57 0.57 0.57 0.571429

Complexity 0.14 0.14 0.14 0.142857

Development Stage 0.29 0.29 0.29 0.285714

Pair-wise Comparison Matrix of the main criteria with respect to Goal (E3,

Scenario 2)

 Test Adequacy Test Cost Application Domain

Test Adequacy 1 5 4

Test Cost 0.2 1 0.5

Development Stage 0.25 2 1

Consistency Ratio =0.0212

Normalized Matrix of the main criteria with respect to Goal (E3, Scenario 2)

Test Adequacy
Test

Cost

Application

Domain
Eigenvector

Test Adequacy 0.68 0.68 0.68 0.68334

Test Cost 0.12 0.12 0.12 0.11685

Application Domain 0.2 0.2 0.2 0.19981

Pair-wise Comparison Matrix of the sub-criteria with respect to Test

adequacy (E3, Scenario2)

 Fault Coverage Clock Region Coverage

Fault Coverage 1 1

Clock Region Coverage 1 1

Consistency Ratio =0.00

Appendix D

 226

Normalized Matrix of the sub-criteria with respect to Test adequacy (E3,

Scenario2)

 Fault Coverage Clock Region Coverage Eigenvector

Fault Coverage 0.5 0.5 0.5

Clock Region

Coverage
0.5 0.5 0.5

Pair-wise Comparison Matrix of the sub-criteria with respect to Test

Cost (E3, Scenario2)

 Test Traces Length Test Execution time

Test Traces Length 1 2

Test Execution time 0.5 1

Consistency Ratio =0.00

Normalized Matrix of the sub-criteria with respect to Test Cost (E3, Scenario2)

 Test Traces Length Test Execution time Eigenvector

Test Traces Length 0.67 0.67 0.66667

Test Execution time 0.33 0.33 0.33333

Pair-wise Comparison Matrix of the sub-criteria with respect to Application

domain (E3, Scenario 2)

 Importance Complexity Development Stage

Importance 1 4 3

Complexity 0.25 1 0.5

Development Stage 0.33 2 1

Consistency Ratio =0.0155

Normalized Matrix of the sub-criteria with respect to Application domain (E3,

Scenario 2)

 Importance Complexity Development Stage Eigenvector

Importance 0.63 0.63 0.63 0.625052

Complexity 0.14 0.14 0.14 0.136512

Development Stage 0.24 0.24 0.24 0.238437

Pair-wise Comparison Matrix of alternatives with respect to Importance (E4)

Importance B OB IB B+OB B+IB OB+IB B+OB+IB

B 1 4 2 0.33 0.25 0.5 0.17

OB 0.25 1 0.33 0.17 0.14 0.2 0.11

IB 0.5 3 1 0.25 0.2 0.33 0.14

B+OB 3 6 4 1 0.5 2 0.25

B+IB 4 7 5 2 1 3 0.33

OB+IB 2 5 3 0.5 0.33 1 0.2

B+OB+IB 6 9 7 4 3 5 1

Consistency Ratio =0.0368

Appendix D

 227

Normalized Matrix of alternatives with respect to Importance (E4)

B OB IB B+OB B+IB OB+IB B+OB+IB

Eigen-

Vector

B 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.063724

OB 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.023876

IB 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.043459

B+OB 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.144631

B+IB 0.21 0.21 0.21 0.22 0.22 0.22 0.22 0.214967

OB+IB 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.095876

B+OB+IB 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.413467

Pair-wise Comparison Matrix of alternatives with respect to Complexity (E4)

Complexity B OB IB B+OB B+IB OB+IB B+OB+IB

B 1 4 2 0.33 0.25 0.5 0.17

OB 0.25 1 0.33 0.17 0.14 0.2 0.11

IB 0.5 3 1 0.25 0.2 0.33 0.14

B+OB 3 6 4 1 0.5 2 0.25

B+IB 4 7 5 2 1 3 0.33

OB+IB 2 5 3 0.5 0.33 1 0.2

B+OB+IB 6 9 7 4 3 5 1

Consistency Ratio =0.0368

Normalized Matrix of alternatives with respect to Complexity (E4)

B OB IB B+OB B+IB OB+IB B+OB+IB

Eigen-

Vector

B 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.063724

OB 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.023876

IB 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.043459

B+OB 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.144631

B+IB 0.21 0.21 0.21 0.22 0.22 0.22 0.22 0.214967

OB+IB 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.095876

B+OB+IB 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.413467

Pair-wise Comparison Matrix of alternatives with respect to Development Stage

(E4)

Stage B OB IB B+OB B+IB OB+IB B+OB+IB

B 1 4 2 0.33 0.25 0.5 0.17

OB 0.25 1 0.33 0.17 0.14 0.2 0.11

IB 0.5 3 1 0.25 0.2 0.33 0.14

B+OB 3 6 4 1 0.5 2 0.25

B+IB 4 7 5 2 1 3 0.33

OB+IB 2 5 3 0.5 0.33 1 0.2

B+OB+IB 6 9 7 4 3 5 1

Consistency Ratio =0.0368

Appendix D

 228

Normalized Matrix of alternatives with respect to Development Stage (E4)

Stage
B OB IB B+OB B+IB OB+IB B+OB+IB

Eigen-

Vector

B 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.063724

OB 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.023876

IB 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.043459

B+OB 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.144631

B+IB 0.21 0.21 0.21 0.22 0.22 0.22 0.22 0.214967

OB+IB 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.095876

B+OB+IB 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.413467

Pair-wise Comparison Matrix of the main criteria with respect to Goal (E4,

Scenario 1)

 Test Adequacy Test Cost Application Domain

Test Adequacy 1 1 0.33

Test Cost 1 1 0.5

Development Stage 3 2 1

Consistency Ratio =0.0155

Normalized Matrix of the main criteria with respect to Goal (E4, Scenario 1)

Test Adequacy
Test

Cost

Application

Domain
Eigenvector

Test Adequacy 0.21 0.21 0.21 0.209797

Test Cost 0.24 0.24 0.24 0.240229

Application Domain 0.55 0.55 0.55 0.549974

Pair-wise Comparison Matrix of the sub-criteria with respect to Test

adequacy (E4, Scenario1)

 Fault Coverage Clock Region Coverage

Fault Coverage 1 1

Clock Region Coverage 1 1

Consistency Ratio =0.00

Normalized Matrix of the sub-criteria with respect to Test adequacy (E4, Scenario1)

 Fault Coverage Clock Region Coverage Eigenvector

Fault Coverage 0.5 0.5 0.5

Clock Region Coverage 0.5 0.5 0.5

Pair-wise Comparison Matrix of the sub-criteria with respect to Test

Cost (E4, Scenario1)

 Test Traces Length Test Execution time

Test Traces Length 1 1

Test Execution time 1 1

Consistency Ratio =0.00

Appendix D

 229

Normalized Matrix of the sub-criteria with respect to Test Cost (E4, Scenario1)

 Test Traces Length Test Execution time Eigenvector

Test Traces Length 0.5 0.5 0.5

Test Execution time 0.5 0.5 0.5

Pair-wise Comparison Matrix of the sub-criteria with respect to Application

domain (E4, Scenario 1)

 Importance Complexity Development Stage

Importance 1 1 0.33

Complexity 1 1 0.5

Development Stage 3 2 1

Consistency Ratio =0.0155

Normalized Matrix of the sub-criteria with respect to Application domain (E4,

Scenario 1)

 Importance Complexity Development Stage Eigenvector

Importance 0.21 0.21 0.21 0.209797

Complexity 0.24 0.24 0.24 0.240229

Development Stage 0.55 0.55 0.55 0.549974

Pair-wise Comparison Matrix of the main criteria with respect to Goal (E4,

Scenario 2)

 Test Adequacy Test Cost Application Domain

Test Adequacy 1 0.5 1

Test Cost 2 1 3

Development Stage 1 0.33 1

Consistency Ratio =0.0155

Normalized Matrix of the main criteria with respect to Goal (E4, Scenario 2)

Test Adequacy
Test

Cost

Application

Domain
Eigenvector

Test Adequacy 0.24 0.24 0.24 0.240229

Test Cost 0.55 0.55 0.55 0.549974

Application Domain 0.21 0.21 0.21 0.209797

Pair-wise Comparison Matrix of the sub-criteria with respect to Test

adequacy (E4, Scenario2)

 Fault Coverage Clock Region Coverage

Fault Coverage 1 1

Clock Region Coverage 1 1

Consistency Ratio =0.00

Appendix D

 230

Normalized Matrix of the sub-criteria with respect to Test adequacy (E4, Scenario2)

 Fault Coverage Clock Region Coverage Eigenvector

Fault Coverage 0.5 0.5 0.5

Clock Region

Coverage
0.5 0.5 0.5

Pair-wise Comparison Matrix of the sub-criteria with respect to Test

Cost (E4, Scenario2)

 Test Traces Length Test Execution time

Test Traces Length 1 1

Test Execution time 1 1

Consistency Ratio =0.00

Normalized Matrix of the sub-criteria with respect to Test Cost (E4, Scenario2)

 Test Traces Length Test Execution time Eigenvector

Test Traces Length 0.5 0.5 0.5

Test Execution time 0.5 0.5 0.5

Pair-wise Comparison Matrix of the sub-criteria with respect to Application

domain (E4, Scenario 2)

 Importance Complexity Development Stage

Importance 1 0.33 1

Complexity 3 1 2

Development Stage 1 0.5 1

Consistency Ratio =0.0155

Normalized Matrix of the sub-criteria with respect to Application domain (E4,

Scenario 2)

 Importance Complexity Development Stage Eigenvector

Importance 0.21 0.21 0.21 0.209797

Complexity 0.55 0.55 0.55 0.549974

Development Stage 0.24 0.24 0.24 0.240229

Pair-wise Comparison Matrix of alternatives with respect to Importance (E5)

Importance B OB IB B+OB B+IB OB+IB B+OB+IB

B 1 0.5 0.33 0.33 0.25 0.2 0.17

OB 2 1 0.5 0.5 0.33 0.33 0.25

IB 3 2 1 2 0.5 0.33 0.25

B+OB 3 2 0.5 1 0.5 0.33 0.25

B+IB 4 3 2 2 1 3 0.33

OB+IB 5 3 3 3 0.33 1 0.5

B+OB+IB 6 4 4 4 3 2 1

Consistency Ratio =0.0501

Appendix D

 231

Normalized Matrix of alternatives with respect to Importance (E5)

B OB IB B+OB B+IB OB+IB B+OB+IB

Eigen-

Vector

B 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.036491

OB 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.058787

IB 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.099639

B+OB 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.081867

B+IB 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.207896

OB+IB 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.178103

B+OB+IB 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.337216

Pair-wise Comparison Matrix of alternatives with respect to Complexity (E5)

Complexity B OB IB B+OB B+IB OB+IB B+OB+IB

B 1 0.5 0.33 0.33 0.25 0.2 0.17

OB 2 1 0.5 0.5 0.33 0.33 0.25

IB 3 2 1 2 0.5 0.33 0.25

B+OB 3 2 0.5 1 0.5 0.33 0.25

B+IB 4 3 2 2 1 3 0.33

OB+IB 5 3 3 3 0.33 1 0.5

B+OB+IB 6 4 4 4 3 2 1

Consistency Ratio =0.0501

Normalized Matrix of alternatives with respect to Complexity (E5)

B OB IB B+OB B+IB OB+IB B+OB+IB

Eigen-

Vector

B 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.036491

OB 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.058787

IB 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.099639

B+OB 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.081867

B+IB 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.207896

OB+IB 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.178103

B+OB+IB 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.337216

Pair-wise Comparison Matrix of alternatives with respect to Development Stage

(E5)

Stage B OB IB B+OB B+IB OB+IB B+OB+IB

B 1 0.5 0.33 0.33 0.25 0.2 0.17

OB 2 1 0.5 0.5 0.33 0.33 0.25

IB 3 2 1 2 0.5 0.33 0.25

B+OB 3 2 0.5 1 0.5 0.33 0.25

B+IB 4 3 2 2 1 3 0.33

OB+IB 5 3 3 3 0.33 1 0.5

B+OB+IB 6 4 4 4 3 2 1

Consistency Ratio =0.0501

Appendix D

 232

Normalized Matrix of alternatives with respect to Development Stage (E5)

Stage
B OB IB B+OB B+IB OB+IB B+OB+IB

Eigen-

Vector

B 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.036491

OB 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.058787

IB 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.099639

B+OB 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.081867

B+IB 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.207896

OB+IB 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.178103

B+OB+IB 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.337216

Pair-wise Comparison Matrix of the main criteria with respect to Goal (E5,

Scenario 1)

 Test Adequacy Test Cost Application Domain

Test Adequacy 1 5 7

Test Cost 0.2 1 2

Development Stage 0.14 0.5 1

Consistency Ratio =0.0125

Normalized Matrix of the main criteria with respect to Goal (E5, Scenario 1)

Test Adequacy
Test

Cost

Application

Domain
Eigenvector

Test Adequacy 0.74 0.74 0.74 0.739564

Test Cost 0.17 0.17 0.17 0.166591

Application Domain 0.09 0.09 0.09 0.093845

Pair-wise Comparison Matrix of the sub-criteria with respect to Test

adequacy (E5, Scenario1)

 Fault Coverage Clock Region Coverage

Fault Coverage 1 6

Clock Region Coverage 0.17 1

Consistency Ratio =0.00

Normalized Matrix of the sub-criteria with respect to Test adequacy (E5, Scenario1)

 Fault Coverage Clock Region Coverage Eigenvector

Fault Coverage 0.86 0.86 0.85702

Clock Region Coverage 0.14 0.14 0.14298

Pair-wise Comparison Matrix of the sub-criteria with respect to Test

Cost (E5, Scenario1)

 Test Traces Length Test Execution time

Test Traces Length 1 0.17

Test Execution time 6 1

Consistency Ratio =0.00

Appendix D

 233

Normalized Matrix of the sub-criteria with respect to Test Cost (E5, Scenario1)

 Test Traces Length Test Execution time Eigenvector

Test Traces Length 0.14 0.14 0.14298

Test Execution time 0.86 0.86 0.85702

Pair-wise Comparison Matrix of the sub-criteria with respect to Application

domain (E5, Scenario 1)

 Importance Complexity Development Stage

Importance 1 3 4

Complexity 0.33 1 3

Development Stage 0.25 0.33 1

Consistency Ratio =0.0629

Normalized Matrix of the sub-criteria with respect to Application domain (E5,

Scenario 1)

 Importance Complexity Development Stage Eigenvector

Importance 0.61 0.61 0.61 0.614469

Complexity 0.27 0.27 0.27 0.268324

Development Stage 0.12 0.12 0.12 0.117206

Pair-wise Comparison Matrix of the main criteria with respect to Goal (E5,

Scenario 2)

 Test Adequacy Test Cost Application Domain

Test Adequacy 1 6 2

Test Cost 0.17 1 0.25

Development Stage 0.5 4 1

Consistency Ratio =0.0086

Normalized Matrix of the main criteria with respect to Goal (E5, Scenario 2)

Test Adequacy
Test

Cost

Application

Domain
Eigenvector

Test Adequacy 0.59 0.59 0.59 0.587583

Test Cost 0.09 0.09 0.09 0.089043

Application Domain 0.32 0.32 0.32 0.323374

Pair-wise Comparison Matrix of the sub-criteria with respect to Test

adequacy (E5, Scenario2)

 Fault Coverage Clock Region Coverage

Fault Coverage 1 2

Clock Region Coverage 0.5 1

Consistency Ratio =0.00

Appendix D

 234

Normalized Matrix of the sub-criteria with respect to Test adequacy (E5, Scenario2)

 Fault Coverage Clock Region Coverage Eigenvector

Fault Coverage 0.67 0.67 0.666667

Clock Region

Coverage
0.33 0.33 0.333333

Pair-wise Comparison Matrix of the sub-criteria with respect to Test

Cost (E5, Scenario2)

 Test Traces Length Test Execution time

Test Traces Length 1 0.17

Test Execution time 6 1

Consistency Ratio =0.00

Normalized Matrix of the sub-criteria with respect to Test Cost (E5, Scenario2)

 Test Traces Length Test Execution time Eigenvector

Test Traces Length 0.14 0.14 0.14298

Test Execution time 0.86 0.86 0.85702

Pair-wise Comparison Matrix of the sub-criteria with respect to Application

domain (E5, Scenario 2)

 Importance Complexity Development Stage

Importance 1 3 4

Complexity 0.33 1 3

Development Stage 0.25 0.33 1

Consistency Ratio =0.0629

Normalized Matrix of the sub-criteria with respect to Application domain (E5,

Scenario 2)

 Importance Complexity Development Stage Eigenvector

Importance 0.61 0.61 0.61 0.614469

Complexity 0.27 0.27 0.27 0.268324

Development Stage 0.12 0.12 0.12 0.117206

