1,201 research outputs found

    GCC-Plugin for Automated Accelerator Generation and Integration on Hybrid FPGA-SoCs

    Full text link
    In recent years, architectures combining a reconfigurable fabric and a general purpose processor on a single chip became increasingly popular. Such hybrid architectures allow extending embedded software with application specific hardware accelerators to improve performance and/or energy efficiency. Aiding system designers and programmers at handling the complexity of the required process of hardware/software (HW/SW) partitioning is an important issue. Current methods are often restricted, either to bare-metal systems, to subsets of mainstream programming languages, or require special coding guidelines, e.g., via annotations. These restrictions still represent a high entry barrier for the wider community of programmers that new hybrid architectures are intended for. In this paper we revisit HW/SW partitioning and present a seamless programming flow for unrestricted, legacy C code. It consists of a retargetable GCC plugin that automatically identifies code sections for hardware acceleration and generates code accordingly. The proposed workflow was evaluated on the Xilinx Zynq platform using unmodified code from an embedded benchmark suite.Comment: Presented at Second International Workshop on FPGAs for Software Programmers (FSP 2015) (arXiv:1508.06320

    PERFORMANCE EVALUATION OF MEMORY AND COMPUTATIONALLY BOUND CHEMISTRY APPLICATIONS ON STREAMING GPGPUS AND MULTI-CORE X86 CPUS

    Get PDF
    In recent years, multi-core processors have come to dominate the field in desktop and high performance computing. Graphics processors traditionally used in CAD, video games, and other 3-d applications, have become more programmable and are now suitable for general purpose computing. This thesis explores multi-core processors and GPU performance and limitations in two computational chemistry applications: a memory bound component of ab-initio modeling and a computationally bound Monte Carlo simulation. For the applications presented in this thesis, exploiting multiple processors is done using a variety of tools and languages including OpenMP and MKL. Brook+ and the Compute Abstraction Layer streaming environments are used to accelerate applications on AMD GPUs. This thesis gives qualitative assertions about these languages and tools regarding ease of use and optimization in addition to quantitative analyses of performance. GPUs can yield modest performance improvements with little effort in some applications and even larger speedups with simple optimizations

    A Compiler and Runtime Infrastructure for Automatic Program Distribution

    Get PDF
    This paper presents the design and the implementation of a compiler and runtime infrastructure for automatic program distribution. We are building a research infrastructure that enables experimentation with various program partitioning and mapping strategies and the study of automatic distribution's effect on resource consumption (e.g., CPU, memory, communication). Since many optimization techniques are faced with conflicting optimization targets (e.g., memory and communication), we believe that it is important to be able to study their interaction. We present a set of techniques that enable flexible resource modeling and program distribution. These are: dependence analysis, weighted graph partitioning, code and communication generation, and profiling. We have developed these ideas in the context of the Java language. We present in detail the design and implementation of each of the techniques as part of our compiler and runtime infrastructure. Then, we evaluate our design and present preliminary experimental data for each component, as well as for the entire system

    Locality Enhancement and Dynamic Optimizations on Multi-Core and GPU

    Get PDF
    Enhancing the match between software executions and hardware features is key to computing efficiency. The match is a continuously evolving and challenging problem. This dissertation focuses on the development of programming system support for exploiting two key features of modern hardware development: the massive parallelism of emerging computational accelerators such as Graphic Processing Units (GPU), and the non-uniformity of cache sharing in modern multicore processors. They are respectively driven by the important role of accelerators in today\u27s general-purpose computing and the ultimate importance of memory performance. This dissertation particularly concentrates on optimizing control flows and memory references, at both compilation and execution time, to tap into the full potential of pure software solutions in taking advantage of the two key hardware features.;Conditional branches cause divergences in program control flows, which may result in serious performance degradation on massively data-parallel GPU architectures with Single Instruction Multiple Data (SIMD) parallelism. On such an architecture, control divergence may force computing units to stay idle for a substantial time, throttling system throughput by orders of magnitude. This dissertation provides an extensive exploration of the solution to this problem and presents program level transformations based upon two fundamental techniques --- thread relocation and data relocation. These two optimizations provide fundamental support for swapping jobs among threads so that the control flow paths of threads converge within every SIMD thread group.;In memory performance, this dissertation concentrates on two aspects: the influence of nonuniform sharing on multithreading applications, and the optimization of irregular memory references on GPUs. In shared cache multicore chips, interactions among threads are complicated due to the interplay of cache contention and synergistic prefetching. This dissertation presents the first systematic study on the influence of non-uniform shared cache on contemporary parallel programs, reveals the mismatch between the software development and underlying cache sharing hierarchies, and further demonstrates it by proposing and applying cache-sharing-aware data transformations that bring significant performance improvement. For the second aspect, the efficiency of GPU accelerators is sensitive to irregular memory references, which refer to the memory references whose access patterns remain unknown until execution time (e.g., A[P[i]]). The root causes of the irregular memory reference problem are similar to that of the control flow problem, while in a more general and complex form. I developed a framework, named G-Streamline, as a unified software solution to dynamic irregularities in GPU computing. It treats both types of irregularities at the same time in a holistic fashion, maximizing the whole-program performance by resolving conflicts among optimizations

    Adaptive Data Parallelism for Internet Clients on Heterogeneous Platforms

    Get PDF
    Il Web moderno ha da molto superato le pagine statiche, limitate alla formattazione HTML e poche immagini. Siamo entrati i un era di Rich Internet Applications come giochi, simulazioni fisiche, rendering di immagini, elaborazione di foto, etc eseguite localmente dai programmi client. Nonostante questo gli attuali linguaggi lato client hanno limitatissime capacità di utilizzare le capacità computazionali della piattaforma, tipicamente eterogenea, sottostante. Presentiamo un DSL (Domain Specific Language) chiamato ASDP (ActionScript Data Parallel) integrato in ActionScript, uno dei linguaggi più popolari per la programmazione lato client e un parente prossimo di JavaScript. ASDP è molto similare ad ActionScript e permette frequentemente di introdurre la programmazione parallela con minime modifiche al codice sorgente. Presentiamo anche un prototipo di un sistema in cui computazioni data parallel possono essere eseguite su CPU o GPU. Il sistema runtime si occuperà di selezionare in modo trasparente la miglior unità computazionale a seconda della computazione, dell'architettura e del carico attuale del sistema. Vengono inoltre valutate le performance del sistema su diversi benchmark, rappresentativi dei seguenti tipi di applicazioni: fisica, elaborazione di immagini, calcolo scientifico e crittografia. Today’s Internet is long past static web pages full of HTML-formatted text sprinkled with an occasional image or animation. We have entered an era of Rich Internet Applications executed locally on Internet clients such as web browsers: games, physics engines, image rendering, photo editing, etc. And yet today’s languages used to program Internet clients have limited ability to tap to the computational capabilities of the underlying, often heterogeneous, platforms. We present how a Domain Specific Language (DSL) can be integrated into ActionScript, one of the most popular scripting languages used to program Internet clients and a close cousin of JavaScript. Our DSL, called ASDP (ActionScript Data Parallel), closely resembles ActionScript and often only minimal changes to existing ActionScript programs are required to enable data parallelism. We also present a prototype of a system, where data parallel workloads can be executed on either CPU or a GPU, with the runtime system transparently selecting the best processing unit, depending on the type of workload as well as the architecture and current load of the execution platform. We evaluate performance of our system on a variety of benchmarks, representing different types of workloads: physics, image processing, scientific computing and cryptography

    Symbolic crosschecking of data-parallel floating-point code

    Get PDF

    Programming and parallelising applications for distributed infrastructures

    Get PDF
    The last decade has witnessed unprecedented changes in parallel and distributed infrastructures. Due to the diminished gains in processor performance from increasing clock frequency, manufacturers have moved from uniprocessor architectures to multicores; as a result, clusters of computers have incorporated such new CPU designs. Furthermore, the ever-growing need of scienti c applications for computing and storage capabilities has motivated the appearance of grids: geographically-distributed, multi-domain infrastructures based on sharing of resources to accomplish large and complex tasks. More recently, clouds have emerged by combining virtualisation technologies, service-orientation and business models to deliver IT resources on demand over the Internet. The size and complexity of these new infrastructures poses a challenge for programmers to exploit them. On the one hand, some of the di culties are inherent to concurrent and distributed programming themselves, e.g. dealing with thread creation and synchronisation, messaging, data partitioning and transfer, etc. On the other hand, other issues are related to the singularities of each scenario, like the heterogeneity of Grid middleware and resources or the risk of vendor lock-in when writing an application for a particular Cloud provider. In the face of such a challenge, programming productivity - understood as a tradeo between programmability and performance - has become crucial for software developers. There is a strong need for high-productivity programming models and languages, which should provide simple means for writing parallel and distributed applications that can run on current infrastructures without sacri cing performance. In that sense, this thesis contributes with Java StarSs, a programming model and runtime system for developing and parallelising Java applications on distributed infrastructures. The model has two key features: first, the user programs in a fully-sequential standard-Java fashion - no parallel construct, API call or pragma must be included in the application code; second, it is completely infrastructure-unaware, i.e. programs do not contain any details about deployment or resource management, so that the same application can run in di erent infrastructures with no changes. The only requirement for the user is to select the application tasks, which are the model's unit of parallelism. Tasks can be either regular Java methods or web service operations, and they can handle any data type supported by the Java language, namely les, objects, arrays and primitives. For the sake of simplicity of the model, Java StarSs shifts the burden of parallelisation from the programmer to the runtime system. The runtime is responsible from modifying the original application to make it create asynchronous tasks and synchronise data accesses from the main program. Moreover, the implicit inter-task concurrency is automatically found as the application executes, thanks to a data dependency detection mechanism that integrates all the Java data types. This thesis provides a fairly comprehensive evaluation of Java StarSs on three di erent distributed scenarios: Grid, Cluster and Cloud. For each of them, a runtime system was designed and implemented to exploit their particular characteristics as well as to address their issues, while keeping the infrastructure unawareness of the programming model. The evaluation compares Java StarSs against state-of-the-art solutions, both in terms of programmability and performance, and demonstrates how the model can bring remarkable productivity to programmers of parallel distributed applications
    corecore