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ABSTRACT 
 

In recent years, multi-core processors have come to dominate the field in desktop 

and high performance computing. Graphics processors traditionally used in CAD, video 

games, and other 3-d applications, have become more programmable and are now 

suitable for general purpose computing. This thesis explores multi-core processors and 

GPU performance and limitations in two computational chemistry applications: a 

memory bound component of ab-initio modeling and a computationally bound Monte 

Carlo simulation. For the applications presented in this thesis, exploiting multiple 

processors is done using a variety of tools and languages including OpenMP and MKL. 

Brook+ and the Compute Abstraction Layer streaming environments are used to 

accelerate applications on AMD GPUs. This thesis gives qualitative assertions about 

these languages and tools regarding ease of use and optimization in addition to 

quantitative analyses of performance. GPUs can yield modest performance improvements 

with little effort in some applications and even larger speedups with simple 

optimizations. 
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1 Introduction 

Software development is currently undergoing a radical paradigm shift. Rather 

than using sequentially executed programs running on a single processor, applications are 

becoming increasingly parallel. Multi-core processors give little performance 

improvement over single processors to applications not written to execute in parallel 

(exploiting either task or data level parallelism). As such, application developers are 

recoding many of their applications to be able to perform multiple tasks simultaneously. 

In addition to multi-core processors, Graphics Processing Units (GPUs) are becoming 

general purpose enough to use in generic computation. 

This thesis compares the computational speed of two chemistry applications 

running on an AMD graphics accelerator to their speed on x86 multi-core processors. The 

applications accelerated include a variational Monte Carlo application used in quantum 

modeling and a piece of ab-initio modeling (the computation of a potential grid using 

Gaussian basis functions). The former is computationally bound while the latter is 

memory bound. While using graphic accelerators to perform general computation has 

been done before [1, 2] and AMD’s Compute Abstraction Layer has been used to 

accelerate a Monte Carlo application in gluodynamics [3], the applications presented in 

this thesis have not been mapped to AMD’s streaming model. This thesis explains several 

strategies for optimizing these applications running in a streaming model and how these 

strategies compare to those used on conventional Intel multi-core processors. This thesis 

shows that AMD GPUs can be used to achieve a 7-10x speedup over multi-core 
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implementations of the presented applications. 

The research performed in this thesis evaluates using AMD GPUs with a 

streaming model and multi-core Intel processors in computational chemistry applications. 

When taken in context with other work on these applications1, a comparison of many 

emerging architectures is given. The work presented in this thesis yields expectations of 

how much effort is required to code an algorithm on multi-core processors and AMD 

GPUs, how much work is needed to optimize that code, and what performance can be 

achieved an application written in Brook+, CAL, or C. These expectations can be applied 

to other applications to determine if writing code to use multiple processors or an AMD 

GPU is worth the costs of doing so. Additionally, the models presented in this thesis 

allow performance predictions based on problem size. 

This thesis is divided into three sections. The first section (chapters 1-3) serves to 

provide introductory information for the reader about developing software for modern 

multi-core processors and GPUs, how the hardware is designed, and a high level 

description of both the quantum Monte Carlo and Gaussian Basis Function applications. 

The second section describes how these applications are implemented and how the 

execution speed compares on x86 multi-core processors and an AMD GPU (chapter 4). 

The final section (chapter 5) concludes the thesis, and describes future work for these 

applications. 

 

                                                

1 Akila Gothandaraman at the University of Tennessee has implemented the variational 
Monte Carlo application for CUDA and FPGAs. Philip Brown from Bristol University 
evaluated the grid potential computation on Clearspeed, Cell, and CUDA platforms. 
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1.1 Multi-Core Processors 

Until several years ago, performance gains in applications were generally 

achieved through hardware upgrades. Higher clock rates increased the instruction 

execution rate, while deeper pipelines and out of order execution schemes that exploited 

Instruction Level Parallelism (ILP) provided performance increases to legacy software. 

ILP allowed software developers and end users to rely on better hardware to improve an 

application’s performance with little to no recoding or compilation. Unfortunately, ILP 

does have limits in its effectiveness at yielding performance gains [4]. 

A number of factors have caused architecture designers to focus on exploiting 

parallelism at the data level rather improving the execution rate of a single processor. 

Firstly, decreases in memory latencies have not kept up with increases in CPU clock rates 

[5]. This increases the amount of time a processor spends waiting for data from memory. 

High-speed caches have helped overcome memory latencies, but data reuse is necessary 

to make them effective and their relatively small size limits their effectiveness in some 

applications. Besides memory latencies, power consumption and heat dissipation (a 

byproduct of power consumption and processor size) make designing processors with 

higher clock rates more difficult. Multi-core design addresses power wall limitations by 

reducing clock frequencies while increasing throughput [6]. Its ability to overcome the 

memory wall is disputed; small numbers of cores do provide parallel speedup but 

performance drops off fairly quickly in data intensive applications [7]. However, kernels 

that can be efficiently blocked to efficiently exploit caches may have a less grim outlook 

[8]. Using multiple cores allows properly written applications to perform several tasks 
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concurrently. While multi-core and symmetric multi-processing are beginning to emerge 

as a viable means of running data parallel tasks, Graphics Processor Units (GPUs) are 

also becoming an effective way of performing computation. 

1.2 Graphics Processors for General Purpose Computation 

Graphics processors traditionally have been relegated to, as their name implies, 

rendering graphics. They were originally designed with a fixed pipeline used to arrange 

vertices into polygons and then fill these polygons [1]. The main application domains 

included games, computer aided drafting, and anything that required real-time 3-D 

modeling. However, as these applications began to demand more realism in rendering, 

fixed pipelines on GPUs became replaced with programmable shaders. Using vertex and 

pixel shaders, developers could define their own functionality for rendering polygons, 

allowing for more sophisticated lighting and shadowing [1]. These shader capabilities 

allow GPUs to be used for more than graphics. 

Graphics accelerator manufacturers are now recognizing the need for general high 

performance general purpose computing. Both Nvidia and AMD have languages for 

developing programs to run on their GPUs. While many current languages, such as 

CUDA [9] and Brook+ [10] are vendor specific, OpenCL [11] seeks to provide cross 

platform GPU support. Additionally, Stanford’s BrookGPU [2] project, from which 

Brook+ is derived,  is cross platform. These languages allow developers to exploit the 

performance of graphics processors, which is often an order of magnitude higher than 

conventional processors. 
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2 X86 architecture 

The x86 is a traditional CPU architecture with a long history. Introduced by Intel 

in 1978, the 8086 set the foundation for an architecture that continues to dominate the 

personal computing and server markets. Since its inception, the x86 has evolved from a 

16-bit microprocessor running at 5-10Mhz with an optional x87 80-bit floating-point co-

processor to a 64-bit superscalar, out of order, multi-core behemoth capable of several 

orders of magnitude more performance than its ancestor in virtually any application. 

Given the X86 architecture’s wide deployment and familiarity with developers, this 

platform serves as performance baseline for comparison to other hardware [12].  

Intel and AMD both offer x86 processors with a number of features that make 

them suitable for scientific computation. Firstly, the x86 processors have instructions for 

performing vector computations. Streaming SIMD (Same Instruction Multiple Data) 

Extensions (SSE) provide instructions for loading and storing (usually 16 byte aligned) 

128 bit data types containing four single precisions floating point numbers or two double 

precision numbers. Other operations perform vectorized computation, such as adding or 

multiplying, four single or two double precision values at a time [13]. In addition to SSE, 

x86 processors have become multi-core in he past several years [14]. This makes them 

suitable for exploiting task level parallelism. In order to exploit these hardware features, a 

number of libraries exist, such as Intel Threading Blocks2, OpenMP, and pthreads. 

 

                                                

2 http://software.intel.com/en-us/intel-tbb/ 
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2.1 Multi-core/Scientific Computing APIs 

Developers wanting to use SSE enabled processors generally write code to 

explicitly use this feature or invoke library calls that use SSE. While modern C compilers 

can perform auto-vectorization [15], quality of implementation can vary widely and 

usually requires very strict assumptions and relaxed constraints to ensure correctness. As 

such, SSE enabled code is often created using intrinsics (wrapper functions that usually 

correspond to assembly instructions) or assembly language. Fortunately, many linear 

algebra and vector routines have already been compiled into SSE-enabled libraries. Many 

vendor-provided implementations of Basic Linear Algebra Subprograms (BLAS), for 

example, use tuned SSE-enabled kernels to achieve high performance. These libraries 

allow applications to more easily exploit hardware functionality while writing fewer 

tuned linear algebra kernels. Running applications on multiple processors is typically 

done at using a high level library such as OpenMP [16] or using pthreads at a low level. 

2.2 OpenMP 

While there are several methods for achieving task or data parallelism by using 

multiple processors, OpenMP is among the easiest to use. OpenMP provides parallelism 

through a number of task-oriented mechanisms. Several different parallel mechanisms are 

declared using #pragma compiler directives. Since pragma directives not understood by 

the compiler are ignored, it is possible to write code that will compile with or without 

OpenMP support. One of the simplest parallel paradigms supported by OpenMP is the 

parallel for, which executes separate loop iterations concurrently on multiple processors. 

More generally, one can declare a parallel region and the number of threads to execute 
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that region of code. OpenMP handles task scheduling for the user in one of three ways 

[16]. 

Tasks can be scheduled using work-stealing queues, or statically assigned. Using 

the static scheduling approach, tasks are always assigned to the same thread. If a user 

runs a static section multiple times, each worker thread will always receive the same 

tasks. This allows for predictable cache use across threads in some applications, but 

threads can suffer from work starvation under this schedule (e.g. some threads finish their 

tasks more quickly than others, leaving them with no work to do). Dynamic scheduling 

allows threads to request work to perform. This has the advantage of reducing the effects 

of thread starvation, but at a cost of predictability. With dynamic scheduling, tasks are 

divided into equally sized chunks of work. Guided scheduling creates large chunks of 

work for threads to initially compute, but as threads’ assigned tasks decrease in size as 

more work is requested. This allows for the best load balancing of the three scheduling 

methods [16]. 

OpenMP’s memory model allows threads to share and hide data as necessary. 

Buffers and variables are shared by default, which means that two threads writing to the 

same variable are in fact writing to the same memory location. If no mutual exclusion 

constructs are used, this usually constitutes a race condition and is highly undesirable. 

While OpenMP contains constructs for ensuring exclusive use of memory regions by 

threads, data can alternatively be declared as private. If a variable or buffer is declared 

private using the threadprivate directive or the private clause, then it is allocated and 

copied once for each thread. This allows each thread to write to unique memory regions 

and negates the need for expensive mutual exclusion constructs in many cases. [16] 
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2.3 Intel™ Math Kernel Library (MKL) 

Intel’s Math Kernel Library (MKL) allows users to accelerate applications that 

use linear algebra routines. MKL is a collection of linear algebra and other mathematical 

routines. It contains BLAS, LAPACK, Vector Math Library (VML), and other libraries in 

a single package [17]. These libraries are tuned to exploit the performance capabilities of 

Intel’s processors. While its optimizations allow for one of the best performing single-

threaded collection of routines, MKL can also use OpenMP or pthreads to parallelize 

these routines. [17]  

In some cases, MKL provides an effective means of exploiting multi-core 

processors. Some algorithms, such as iterative methods, have too many dependencies and 

are inherently sequential in nature. Under these conditions, coarse grain parallelism isn’t 

achievable, meaning that the only way to achieve parallelism is to exploit it in the linear 

algebra routines. While some applications best achieve parallelism in this manner, many 

best achieve parallelism at higher levels (such as the two applications presented in this 

paper). 
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3 Graphic Processor Unit (GPU) Hardware 

While graphics processors originally had a fixed functionality pipeline, this has 

been replaced with programmable shader units. In graphics applications, the pipeline 

assembles data into a scene that can be turned into an image. Typically, the pipeline first 

assembles vertices into geometric primitives (usually triangles). The geometry is then 

filled, usually by mapping a 2-D image onto its surface (e.g. texturing). Finally, lighting 

and shadowing are computed to yield the final scene. This scene is then projected into a 

2-D bitmap that is rendered to a graphics context (usually the user’s monitor). Modern 

GPUs allow developers to define how geometry is drawn and filled by using vertex and 

texel shaders respectively. Due to demand for high quality yet low latency rendering, 

GPUs have many processors for constructing images in a highly parallel manner [1].  

While GPUs are inherently designed for 3-D graphics, many of their qualities 

make them exceptionally well suited for scientific computing. Graphics processors 

typically have large amounts of dedicated memory (256MB up to 4GB) with enormous 

bandwidth (10-100GB/s or more) [18]. This RAM is mainly used to store many large 

textures in graphics applications. In scientific computing, this RAM can store matrices 

and vectors. In addition to large amounts of high bandwidth memory, GPUs feature a 

large number of processors (64-100s, depending what one defines a “processor” to be) for 

computing texture filling and vertex transformations (which are actually small matrix-

vector multiplications). This arrangement of many small processors is also convenient for 

many scientific applications. Projects such as Folding@Home and NAMD have been 
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implemented on GPUs to achieve large speedups [1]. 

3.1 Advanced Micro Devices (AMD) Hardware 

AMD’s GPUs use a hierarchy of processors to provide massive parallelism. This 

arrangement is shown in Figure 3.1. Stream processors are divided into SIMD engines. 

Each SIMD engine runs a number of threads concurrently on its thread processors. These 

threads are grouped into a wavefront. Each SIMD engine can time slice execution of 

multiple wavefronts. Within a wavefront, a number of threads execute concurrently. Four 

threads are multiplexed per thread processor to hide memory latencies [10] (in a manner 

similar to Intel’s Hyperthreading technology [19]). Finally, each thread processor 

contains 5 stream cores.  

Thread creation, termination, and switching are automatically handled by the 

rasterization hardware. Threads are created in a zig-zag pattern through the domain of 

 
Figure 3.1: Stream processor layout on ATI GPUs 
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execution. This is shown in Figure 3.2. The scheduler assigns groups of four threads 

(quads) to be run on thread processors within a SIMD engine [10]. 

Threads executing on the same SIMD engine reside in a wavefront (analogous to 

a “warp” on Nvidia cards [20]) and execute the same instruction [10]. This implies that if 

a branch is taken by some threads and rejected by others within a wavefront, every thread 

in the wavefront must take both sides of the branch. The side of the branch that is not 

supposed to be executed does not save any of its results and has no effect on correctness 

but negatively impacts performance. As such, threads within a SIMD engine should 

ideally branch the same way to avoid doing extra computation.  

Stream cores are the hardware components that actually perform computation. 

 
Figure 3.2: Thread layout on AMD hardware 
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Four of the five cores can perform basic integer or single precision floating-point 

calculations (add, multiply, etc.), while the fifth can additionally perform more complex 

calculations such as natural logarithm, power, etc. On some newer GPUs (such as the 

Firestream 9170), the four non-transcendental floating-point units can be chained 

together to perform double precision computations. Transcendental operations cannot be 

performed on double precision numbers in hardware and only one double precision 

instruction can be issued per clock cycle rather than five[10]. 

Data storage and movement is handled through several mechanisms on the GPU. 

Firstly, large amounts of high-bandwidth GDDR (Graphics Double Data Rate) memory 

are used to store textures (or streams in the case of general purpose use). The Firestream 

9170 has 2GB of GDDR3 memory with a peak bandwidth of 51.2GB/s3. For storing 

intermediate calculations in a kernel, memory mapped registers are used. These registers 

use high-speed memory and the number used determines how many wavefronts can be 

run concurrently. Since using more registers reduces the number of wavefronts that can 

be run simultaneously, reducing register usage (if possible) can improve parallel 

performance. Registers are 128-bits wide and divided into four components: x, y, z, and 

w. This allows four single-precision floating-point numbers, four integers, or two doubles 

to be stored in them. Complex swizzling operations are supported, allowing specific 

components of a register to be used in an instruction. When using double precision 

instructions, two components are passed to an instruction, the first containing the upper 

32 bits and the seconds containing the lower 32 bits. 

                                                

3 Personal communication with AMD 
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3.2 GPU Software 

To develop general-purpose applications, AMD provides two APIs that use the 

streaming paradigm: CAL and Brook+. Streaming is a computational model designed to 

separate data accesses from computation. It uses two abstractions for managing each: 

streams are collections of data and kernels are units of execution. Streams are an n-

dimensional abstract data type. An array can be represented with a one-dimensional 

stream, a matrix with a two-dimensional stream, etc. Each element in a stream can have 

multiple values (e.g. a stream of float4 types). The domain of execution is usually defined 

to be the size of an entire stream. Kernels are executed at each point in the domain[10]. 

Kernels are the abstraction representing executable code. Many copies of a kernel 

are run in parallel. Within a kernel, streams can be either read from or written to, but not 

both. Intermediate results are kept in registers or other fast memory. These restrictions 

allow compilers to statically schedule memory transfers and kernel executions 

efficiently[21]. 

3.2.1 Brook+ 

Brook+ is a high level stream computing language developed by AMD. It is based 

on the Brook project at Stanford University[2]. Brook+ is a C-like programming 

language that uses kernels running on the GPU in conjunction with host side code written 

in C++. Kernels are defined using the kernel keyword. Top-level kernels operate on 

streams while other kernels can be used to modularize code. If a kernel is top-level, it can 

read from and write to streams, but cannot return data. Kernels that are not top level 

cannot operate on streams. Instead, they serve as functions to return a result based on 
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some inputs. Kernels may not call regular functions, though functions can call kernels. 

When running code in Brook+, the domain of execution is defined by default to be the 

size of a kernel’s first output stream, though the user can change this manually. Kernel 

instances are created for each point in the domain of execution (Figure 3.3) and may 

write only to the instance’s location in an output stream in the standard kernel. Likewise, 

streams may only be read from at the current location in the domain of execution in a 

standard kernel. However, to overcome the limitations this model implies, Brook+ allows 

streams to be declared as scatter (for output streams) or gather (for input streams) using 

the [] operator instead of the <> operator, allowing for random access. Streams can be 

declared as input or output; input streams can only be read from while output streams can 

only be written to [10]. An example matrix/vector addition is given in Figure 3.4 [10]. If 

a, b, and c are 2x2 matrices represented as streams, this kernel will be called four times, 

effectively executing Figure 3.5. 

Brook+ code is cross-compiled using brcc into backend code. Kernels are created 

in both C++ and Intermediate Language (IL) implementations to allow for execution 

using either the CPU or GPU runtime. Developers manage streams and kernel invocation 

through a C++ frontend. While streams and kernels can actually be statically managed in 

the Brook+ language, this is less flexible than using C++. 

3.2.2 Compute Abstraction Layer (CAL) 

The Compute Abstraction Layer (CAL) is a low-level streaming environment for 

performing computation. Like Brook+, it uses a streaming model for processing data. 
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Figure 3.3: Streaming Computational Model 

 

 

kernel void add(float a<>, float b<>, out float c<>) 
{ 
 c = a + b; 
} 

Figure 3.4: Stream Addition 

 

 

 c[1,1] = a[1,1] + b[1,1]; 
 c[2,1] = a[1,2] + b[1,2]; 
 c[2,1] = a[2,1] + b[2,1]; 
 c[2,2] = a[2,2] + b[2,2]; 

Figure 3.5: Effective Kernel Computation 
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However, CAL has additional constructs that can be used in kernels. Shared registers are 

accessible by all threads in a wavefront (rather than being accessible by only a single 

thread). In addition to reading and writing to streams, the global buffer can be used in 

scatter kernels. The global buffer is 128-bit addressed and can be read or written to by 

any thread at any index. It is most useful for reduce kernels [10]. 

CAL is divided into two components: the CAL runtime and Intermediate 

Language (IL). The runtime serves as the frontend for managing streams, devices, 

kernels, contexts, hardware counters, and kernel compilation. The runtime is 

implemented as a library of C functions. For handling streams, a number of options exist. 

A stream can be allocated locally (on the GPU) or remotely (on the host)[10]. In addition 

to these, a feature exists allowing a stream to be allocated on the host in any address the 

developer desires. This contrasts with remote allocation, which returns an address the 

runtime creates. Using this feature, data can be written directly into a buffer without 

needing to be copied. Local allocations are limited by the amount of memory on the 

GPU, remote allocations are limited to 64MB, and pinning memory is limited to 16MB 

(as of SDK v1.3 for Linux)4.  

To create a kernel, an assembly-like language (IL) is used. Since different video 

cards may have different architectures, portability is difficult to achieve if programming 

in a particular card’s assembly language. IL is a pseudo-assembly language that maps to a 

specified device’s assembly language, which is then assembled into object code at 

runtime. Unlike most assembly languages, IL has high-level instructions for directly 
                                                

4 Learned through personal communication on AMD StreamSDK forums. Topic: Double 
memory copy in CAL? What about calCtxResCreate? 
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performing loops, if/else blocks, and switch statements. True function calls (i.e. not 

inlined) are supported, allowing for some recursion, though the call depth is limited to 32 

levels. While IL has several transcendental instructions, many of these are accurate to 

only 21 bits. This can limit their usefulness in many applications. Additionally, some 

Brook+ standard math functions (such as exp()) do not exist as transcendental 

instructions. Having no transcendental operations, double precision’s utility is limited in 

many applications. This is a non-issue for many linear algebra kernels, such as matrix-

matrix multiply, but does restrict CAL’s usefulness in double precision when 

implementing scientific applications (such as the ones used in this paper). Each 

instruction is capable of powerful swizzling operations [22]. Swizzling allows the user to 

determine which components of a SIMD register are used in operations. For example, the 

x component of a register can be added to the y component of another register and stored 

in the w component in a third register. 

Compiling and running IL kernels is a multi-step process that occurs at runtime. 

Kernels are stored in C-style strings using a newline to delimit lines. Compilation 

generally consists of getting device information from the CAL runtime (to determine 

which platform to target), compiling an IL kernel stored in a C-string via a function call, 

and linking objects into an image. To run a kernel, streams must first be mapped to 

register symbols used by the kernel. For example, if a kernel writes to register o0, the 

stream mapped to that register is written to at the current domain of execution. Unlike 

Brook+, the domain is always manually specified before execution. The number of 

streams mapped to registers must equal the number of input, output, constant buffer, and 

global buffer registers used in the kernel. Failing to map the correct number of streams to 
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registers will cause unpredictable behavior in a kernel. The same behavior is exhibited 

when a stream’s dimensionality does not match its declaration in a kernel. Both of these 

cases are difficult to debug, since the function that loads the kernel returns no error 

message [10]. 

As implemented, the CAL API is extremely verbose. For example, allocating a 

stream resource requires a function call and another two functions to copy the stream to 

the GPU. To actually run a kernel, the developer must load the module that contains the 

kernel, get the entry point of the kernel from the module, get a memory handle for each 

resource, map each resource to a symbol (which takes 2 function calls), and then finally 

call a function that actually runs the kernel. To make the CAL implementation more 

readable and cleaner, a C++ library was developed to wrap functions into classes.  

The calutil library, which I developed for this thesis, provides a simplified 

interface for the CAL while maintaining most of CAL’s functionality. This library is 

divided into three essential classes, and two extension classes. The CALgpu class is used 

to handle devices and contexts. CALbuffer objects are a stream abstraction. They function 

in a fashion similar to Brook+ streams; they have read() and write() member functions 

that accept generic pointers. GPU memory is allocated in CALbuffer constructors and 

deallocated in destructors. The CALkernel class is used for managing kernels that run on 

the GPU. Its constructor automatically compiles and links supplied IL source code. To 

run a kernel, call load() then assignSymbolsAndRun(). 

In addition to simplifying CAL’s interface, the calutil library uses C++ exception 

handling and provides access to hardware counters. The CALperfcounter class creates a 

hardware counter. Currently, there are two counter types supported in CAL: one that 
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measures the cache hit rate and one that measures the idle time. Normally, these counters 

are hidden away in API extensions. Exceptions are thrown whenever a 

CAL_RESULT_ERROR is thrown by a CAL API function. Additional error checking not 

done by the CAL API (validating a stream’s dimensionality and size versus its reference 

in an IL kernel for example) remains as future work. 

In summary, CAL and Brook+ are the two APIs used to develop software on 

AMD GPUs. While Brook+ provides high-level abstractions, it does add overhead to 

kernels. CAL on the other hand can yield higher performance than Brook+ at the expense 

of development time and a higher learning curve. To help reduce the understanding 

needed to develop applications in CAL, I developed the calutil library, which provides 

C++ exceptions and class abstractions. 
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4 Applications 

This thesis presents how to accelerate two applications using a graphics processor. 

The first application computes a Gaussian basis function. The second is a quantum Monte 

Carlo algorithm for determining an n-body atomic interaction.  

4.1 Grid Potential Computation 

Gaussian basis functions are used in the Hartree-Fock method for approximating 

the ground state wavefunction and energy in an n-body quantum-mechanical 

arrangement. While Slater functions are a natural fit for computing molecular orbitals, 

they are difficult to compute when orbitals are centered on different nuclei. Fortunately, 

linear combinations of Gaussian functions can serve as reasonable approximations to 

Slater functions and are more conducive to computation in a model[23]. Gaussian 

functions take the form

€ 

exp(−αr2), where alpha is the radial spread of a Gaussian function 

and r is the distance between the centers of two orbitals.  

When generating Gaussian functions in this application, a large number of 

coordinates are applied with a comparatively small number of basis functions. In the 

experiments run in this paper, 262,144 grid coordinates (from which the radius r is 

computed) were used with 640 basis functions (α). Both the n grid coordinates and m 

basis functions reside in vectors and the result created is an nxm (or mxn) matrix. This 

matrix is referred to as the grid potential. Each point in the matrix is given below. 

€ 

g j (ri) = eα j xi
2 +yi

2 +zi
2( ) (1)  
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4.1.1 Naïve Implementation 

A simple C algorithm for computing the grid potentials is given in Figure 4.1. The 

grid potentials are explicitly iterated over using two loops. In order to eliminate 

redundant computation, the coordinate radius is computed once in the outer loop and 

reused. Grid potentials are stored with the coordinates iterating in the leading or trailing 

dimension, depending on which method best maps to a given architecture.  

The Brook+ implementation (Figure 4.2) is comparable in complexity to the C 

implementation. Looping is implicit over the grid potentials since the kernel is 

instantiated once for each point in the domain of execution. Since Brook+ does not allow 

more than 67,108,864 elements in a stream, the kernel had to be tiled into blocks of 8192 

coordinates and 640 basis functions. The basis functions iterate in the leading dimension 

to make elements contiguous when stored back onto the host while maximizing the 

amount of work done in a kernel. This was also done to make the implementation 

consistent with the CAL implementation for a more direct comparison. Using tiles of 

8192 coordinates, 32 kernel invocations are made to compute the entire set. Unlike the C 

implementation, the radius is recomputed many times. To reuse the radii requires an 

additional kernel call to precompute the radii into a separate stream, which is non-trivial 

unlike moving the computation out a loop as in the C implementation. 
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for(i = 0; i < npt; i++) 
{ 
  float r2 = x[i] * x[i] + y[i] * y[i] + z[i] * z[i]; 
  for(j = 0; j < nbas; j++) 
  { 
    gridpot[j*npt+i] = exp(alpha[j] * r2);  
  } 
} 

Figure 4.1: A Naive Algorithm for Computing Grid Potential 

 

kernel void  
computeBasisFunction(float alpha[], float xCoord[], 

float yCoord[], float zCoord[], out float basis<>) 
{ 
  float2 index = indexof(basis).xy; 
 
  float x2;  
  float y2;  
  float z2;  
  float r2;  
 
  x2 = xCoord[index.y] * xCoord[index.y]; 
  y2 = yCoord[index.y] * yCoord[index.y]; 
  z2 = zCoord[index.y] * zCoord[index.y]; 
   
  r2 = x2 + y2 + z2;  
 
  basis = exp(alpha[index.x] * r2); 
} 

Figure 4.2: Naive Brook+ Algorithm for Computing Grid Potential 
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The naïve CAL implementation functions identically to the Brook+ 

implementation. The kernel operates on 32 8192x640 tiles of the grid potential to 

compute the complete result. Unlike Brook+, CAL does not have an exponential 

function. As such, a power instruction was used with e as the base to mimic an 

exponential. The maximum error this incurred in this application with the parameters 

used was approximately .00037%, similar to that given by the exp function in Brook+. As 

an alternative method of computing the exponential, the equation below was used. This 

was attempted because CAL has a 2^x instruction. Numerical results and performance 

were similar to using the power instruction. 

€ 

ex = 2
x

ln(2) (1) 

4.1.2 Optimized Implementation 

To improve performance, optimizations were performed. These optimizations are listed 

by platform in Table 4.1. Loop unrolling transforms a loop to perform fewer iterations 

while doing more work per iteration. This amortizes loop overhead and can improve 

pipelining in several cases. Since each kernel in a streaming language writes to a single 

element, loop unrolling is often irrelevant. However, both Brook+ and CAL allow eight 

outputs to be written per kernel invocation. As such, the kernel can be written to compute 

an element in eight tiles per invocation. This optimization is referred to as kernel 

unrolling in this thesis. According to the Stream Computing User Guide in the section 

implementing an optimized matrix multiply, “Aggregating the memory fetches per kernel 

significantly increases the efficiency of the stream processor.” [10] Vectorization makes 

use of SIMD instructions while coalescing loads and stores. Precomputing radii, basis  
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function caching, and cache blocking all exploit high-speed cache present on processors. 

Specifically, these three optimizations encourage data reuse for which caches are 

specifically designed.The x86 implementation of the grid potential computation uses all 

of these optimizations except for kernel unrolling. The inner loop of the naïve algorithm 

is nearly fully unrolled. This is done implicitly through vectorizing exp(αr2). In fact, 

the inner loop exists only to provide cache blocking. Dividing the coordinates into 128 

blocks of 2,048 elements was found to yield optimal performance. When this size is used, 

all temporary buffers fit into L1 cache and enough room is left over to allow the write to 

the matrix to store its result in cache. Since vsexp() does not use non-polluting stores, it is 

written to cache. This was observed by stepping through the function’s disassembly. 

Vectorization is implicitly used through the MKL library. All radii are precomputed and 

stored in a vector so they can be fully cached. Basis functions are implicitly cached in 

BLAS’s sscal() function, using a single alpha as the scalar. 

In addition to these optimizations, the host implementation is further sped up 

through parallelization. An OpenMP parallel for is used on the outer loop with private 

buffers. Guided scheduling is used to reduce thread starvation. Work was parallelized by 

Table 4.1: Optimizations implemented by platform 

Platform Loop 
unrolling 

Kernel 
unrolling 

Vectorization Precompute 
radii 

Cache 
alphas 

Cache 
Blocking 

x86_64 Yes No Yes (MKL) Yes Yes Yes 

Brook+ No Yes Yes Yes Implicit Implicit 

CAL No Yes Yes No Implicit Implicit 
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rows in the result matrix, yielding a number of tasks equal to the number of basis 

functions used (640). 

To optimize the Brook+ implementation explicitly requires only three of the 

optimizations presented. Passing the basis functions in as a float4 and storing the x, y, 

and z components of the coordinates in a float3 allows computation to be vectorized. 

Multiplying four basis functions by the computed radii yields 4 grid potential elements. 

Results are written to 8192x160 tiles of the grid potential. Each element in the grid 

potential is a float4. Doing this adds a constraint on the input; the number of basis 

functions must be a multiple of 4. In addition to allowing coalesced reads and writes, 

vectorization on the AMD GPUs also allows for SIMD computation. Combined with 

vectorization, kernel unrolling allows kernel instances to load and store more data, 

making them more efficient. Additionally, unrolling reduced the number of times the 

compute kernel must be called from the host program by a factor of eight. This 

optimization requires the number of coordinates used to be a multiple of 8. Unrolling was 

implemented by writing to eight tiles of the grid potential rather than 1.  Combining these 

optimizations yields a kernel that produces 8 8192x160 float4 tiles of the grid potential. 

Precomputing radii was performed in the optimized implementation, but yielded less than 

a 1% speedup after the other optimizations had been applied. This was implemented by 

creating another kernel that performs the radii computation. 

The CAL implementation of the basis function uses the same optimizations as the 

Brook+ version. This provides performance comparisons between Brook+ and CAL 

given the same implementation. Furthermore, because of their similar computational 

models, Brook+ and CAL readily lend themselves to the same optimizations. 
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Vectorization was performed using float4 data types for the grid potentials and alphas. 

Since CAL does not support float3 data types, a float4 was used for the coordinates with 

junk data being used for the fourth element. Kernel unrolling was also implemented by 

writing to registers o0, o1, … o7. Like Brook+, these two optimizations yielded a kernel 

that produces 8 8192x160 (with the number of coordinates and basis functions used in 

experiments) float4 tiles of the grid potential, with alphas varying in the leading 

dimension. Furthermore, they added the constraints requiring the number of basis 

functions to be a multiple of 4 and the number of coordinates to be a multiple of 8. Radii 

precomputation actually hurt performance by a marginal (<1%) amount. 

4.1.3 Results 

Because the x86 is a traditional architecture with widespread adoption in high 

performance computing markets, it serves as a baseline for performance comparison. 

According to top500.org, the x86_64/EM64T architecture is used in 85.8% of the 500 

most powerful supercomputers in the world[24]. 

Benchmarking the Gaussian Basis function’s performance on the x86 was 

performed on an idle Xeon5355 box running Ubuntu 8.04. This machine has two 

pseudoquad-core Xeon5355 processors running at 2.66Ghz. This machine can utilize 

7.5GB/s of memory bandwidth (BSTREAM) in the STREAM[25] copy benchmark. This test 

was performed with OpenMP enabled, calling memcpy() rather than the default copy 

code, and with gcc’s level 3 optimizations enabled (-O3 flag). Each processor has 8MB 

of L2 cache (4MB shared between 2 cores). For the optimized implementation on the 

x86, the code was compiled with –fopenmp and –O3 flags. The naïve implementation 
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used –O0, as any optimization level used on this kernel degraded performance by almost 

an order of magnitude. Output buffers were zeroed with 8 threads before execution to 

force page-ins. This also evicted initialized data from cache. The benchmark program 

was run 5 times and the results given are an average of these runs. Since threads are 

created to evict cache before running the kernel, their creation overhead is not considered 

in timings. The naïve implementation always runs with 1 thread (e.g. it has no omp 

parallel construct). Results for the optimized implementation are given using 1, 2, 4, and 

8 threads. 

While memory is a performance bottleneck in the Gaussian basis application, 

computing the exponentials also takes considerable time. Equation 2 gives the latency to 

perform a single exponential calculation. This equation shows that the latency of an 

operation is the inverse of the aggregate execution rate of an operation. The aggregate 

execution rate is assumed to be a core’s execution rate times the number of cores. On the 

Xeon 5100 series processor, MKL can perform one exponential in 6.92 (E) clock cycles 

in high accuracy mode5, (both the read and write vectors need to be in cache to achieve 

this). The X5355 in the tested setup has 8 cores (n) running at 2.66Ghz (f). This implies a 

latency of 0.325ns per exponential. Equation 3 shows the latency of a data transfer as a 

function of the bandwidth and amount of data transferred. In this case, the latency 

calculated is the time to store a single precision floating point number. An optimized 

STREAM copy benchmark was used for the aggregate memory bandwidth of the 

machine, since the peak bandwidth is not sustainable. Using the empirically found 

                                                

5 http://www.intel.com/software/products/mkl/data/vml/functions/exp.html 
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bandwidth and the size of a single precision number, a store latency of 0.533ns is derived 

per grid potential. The modeled execution rate is approximately the inverse of the sum of 

the calculation time and store time. While some memory/computation interleaving occurs 

on an x86 processor, its finite hardware resources prevent perfect interleaving since the 

rate data can be stored is less than the rate it can be computed. 

€ 

Texp =
Ecycles / exp

fclockncores
=

6.92
2.66E9*8

= 0.325 ns
exp

(2)
 

€ 

Tmemwrite =
sizeof ( float)
BSTREAM

=
4

7.5E9
= 0.533 ns

float
(3)

 

€ 

Etheoretical ≈
1

Texp + Tmemwrite
=

1
0.325 + 0.533

=1.18Gexp
s

(4)  

 

The naïve algorithm performed yielded poor performance. As shown in Figure 

4.3, only 25Mexp/s were achieved. This is due to several factors. Firstly, only 12.5% of 

the theoretical computational performance was even achievable since it was not multi-

threaded. Secondly, only ¼ of the performance of a single core is achievable because 

vector operations are not used. Thirdly, the exponential function given in math.h is far 

less optimal than the one provided by MKL. Finally, the naïve kernel is not blocked for 

efficient cache reuse. 

Actual performance for the optimized x86 implementation is given in Figure 4.4. 

Performance scaled linearly when doubling the number of threads, but did not scale 

linearly thereafter. This is due to the fact that additional threads speedup the exponential 

computation without increasing the maximum memory bandwidth of the machine, as the 

model assumes maximum bandwidth usage for any given number of cores used.  



 29 

Figure 4.3: Performance of naive and optimized implementations of grid potential 
computation 

 
Figure 4.4: x86 performance scalability 
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Assuming infinite speedup in the exponential calculation, the throughput is still 

limited to 1.88Gexp/s on this machine as per Amdahl’s law. The time to store the 

exponentials becomes the limiting factor. Using 8 threads, an execution rate of 

862Mexp/s is achieved on this machine. This translates to 74% of the achievable 

performance given by the model. Since the model is optimistic in memory bandwidth, 

doesn’t account for thread overheads, doesn’t factor the time to precompute the radii, and 

ignores time to performed the fully cached multiplication of the basis functions by radii, 

100% of the theoretical performance is not achieved in practice.  

The Brook+ performance benchmark requires fewer assumptions to make a 

synthetic benchmark than the x86 test bench. The kernel is timed by forcing 

synchronization after data is transferred and after the kernels are complete. Time taken is 

measured starting immediately after data transfer to the GPU until all kernels complete 

execution (e.g. the second synchronization occurs). As such, data is assumed to reside on 

the GPU in these timings. Data transfers to and from the GPU are not included in the 

computation time. To amortize data transfer costs and realize the speedup given by this 

assumption, additional components of the simulation need to be moved to the GPU. This 

benchmark was run on a Firestream 9170 using the AMD stream SDK v1.3. 

Since GPUs are able to achieve a high degree of computational parallelism (e.g. n 

is large in equation 2), performance is mostly limited by memory bandwidth in this 

application. With 51.2GB/s of bandwidth, this means the Firestream 9170 can compute at 

most 12.8 Gexp/s. Additionally, it has 2GB of GDDR3 memory, allowing all data to be 

stored on the GPU. 

The Brook+ naïve implementation was easy to develop and sped up the grid 
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potential computation by a factor of 108 (shown in Figure 4.5). It’s important to note that 

parallelism is inherent to the Brook+ language, unlike C. As such, the Brook+ 

implementation is able to achieve data-level parallelism with no additional effort. The C 

implementation requires explicitly declaring how to achieve parallelism through OpenMP 

or a threading library, which is beyond the scope of a naïve algorithm. Running this 

kernel on the GPU yielded 810Mexp/s (Figure 4.3). This naïve algorithm is comparable 

in performance to the x86 implementation using full optimization and parallelism. 

When optimized, Brook+ more than tripled its performance (Figure 4.3). It was 

able to achieve 2.66Gexp/s. This translates to using 20.8% of the Firestream 9170’s 

memory bandwidth. Writing to 8 tiles rather than 1 reduced the number of kernels that 

had to be executed and increased the efficiency of each individual kernel execution. 

Some of the discrepancy between theoretical and achieved performance is attributable to 

Brook+ overhead and compiler inefficiencies. Using more basis functions can improve 

performance by a small amount. Using 4096 basis functions and 65,536 coordinates 

yielded over 3Gexp/s of performance. 

CAL’s benchmark application makes the same assumptions that the Brook+ 

version makes. The same Firestream 9170 with SDK v1.3 is used in these tests. 

The naïve CAL based algorithm yielded higher performance than the other two 

environments (even with optimized implementations). It achieved 3.05 Gexp/s (Figure 

4.3), which is a 414-fold speedup (Figure 4.5) over the naïve reference algorithm. The 

high performance over Brook+ is likely due to fewer overheads associated with the 

kernel. When the Brook+ code was disassembled, it yielded significantly more IL 

instructions than the CAL kernel. 
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When optimized, the CAL grid potential computation kernel furthered its 

performance advantage and approached the theoretical bound. A 3.35x performance gain 

(Figure 4.6) was had through kernel unrolling and vectorization. Radii precomputation 

hurt performance by approximately 0.5%. As shown in Figure 4.3, this kernel achieved 

10.19 Gexp/s, 79.7% of the theoretical upper bound. When comparing all optimized 

kernels with one another, this implementation was 11.83x faster than the x86 

implementation (Figure 4.7). 

4.1.4 Other Work 

Philip Brown has implemented the grid potential computation on a variety of other 

architectures. He has compared performance on the Clearspeed X620, Cell processor, and 

Nvidia 8800GTX.6 Applying minor modifications to his CUDA implementation (e.g.  

                                                

6 Personal communication with Phillip Brown 

 
Figure 4.5: Speedup factor over x86 architecture in naive grid potential 
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Figure 4.6: Performance increases due to optimization 

 
Figure 4.7: Speedup in optimized kernels over x86 optimized implementation 
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using #pragma unroll to unroll the basis function iteration) and using an Nvidia 8800 

Ultra, 11.8 Gexp/s were achieved in an optimized kernel. This is slightly higher than the 

optimized CAL implementation. However, the 8800 Ultra has 103.7 GB/s of memory 

bandwidth, nearly double that of the Firestream 9170. Furthermore, the kernel is 

conceptually more complex, using shared memory and thread blocking. 

4.2 Quantum Monte Carlo (QMC) 

Monte Carlo methods are used in computation when a deterministic algorithm is 

impractical due to computational complexity. This can be extended to approximate 

integration of multi-dimensional functions. Monte Carlo integration replaces an 

integration grid with a sampled version of the grid. The points in this sampled grid are 

modified over time using random numbers. At each discrete time interval, an estimate of 

the grid interval is formed. The mean and variance of these estimates can then be 

computed. Increasing the number of samples improves the estimate by allowing the grid 

to be more accurately represented.[26] 

This paper looks at accelerating the variational Monte Carlo method. Typically, the 

term “quantum Monte Carlo” refers to either the variatonal or diffusion method. The 

variational method uses a trial wavefunction (e.g. a guess as to what ψ(x) should be). The 

trial wavefunctions parameters are then tweaked to find the most accurate representation 

of the true wavefunction (ψ0(x)). A Monte Carlo approach is then used to compute the 

high-dimensional integrals.[26] 

An algorithm for establishing the minimum energy is given in Figure 4.8. The most 

computationally intensive part of this is step 2, which requires running the Monte Carlo 
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method to get the expected value. Only step 2 was implemented for this paper to give a 

performance expectation on a variety of architectures; minimizing the wave function 

remains as future work and is beyond the scope of this thesis. 

To find the expected energy of the system, the grid is randomly sampled a number 

of times and atomic movements are simulated for some number of time steps. Each 

simulation of time steps is referred to as a walker. Having each walker run on a separate 

processor trivially parallelizes QMC. While each iteration time step performs N2 

computations, buffers can be accumulated in place, using O(N) memory. Since memory 

use is limited to small reusable buffers, cache can be efficiently used and memory traffic 

can be minimized.  

The wave function, potential, and kinetic energy can be computed in a single kernel 

call, which reuses radius calculations, or broken up into several calls. While using several 

calls requires recomputing atomic distances, separating the wave function calculation 

from the other two can reduce computation in the long run. Since atomic perturbations 

are accepted or rejected based on the computed wave function, the potential and kinetic 

energy calculations can be omitted if the atom’s movement is rejected (future work).  

1. Create a trial many-particle wave function 
parameterized by the n parameters α=(α0, α1, …, αn). This 
wave function is dependent on the coordinates of the 
particles. 

2. Find the expected energy 
3. Apply some minimization function on α to revise the 

wavefunction. 
Figure 4.8: Algorithm for Variational Monte Carlo[27] 
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4.2.1 Naïve Implementation 

The quantum Monte Carlo algorithm computes the wave function, potential, and 

kinetic energies of a molecular system. This algorithm is implemented in Brook+ using 

single precision arithmetic. Akila Gothandaraman and Lee Warren at the University of 

Tennessee originally wrote a naïve implementation using double precision for CPUs7. 

Single precision was found to be significantly slower than double on the CPU (taking 

approximately 66% longer to complete) and far too inaccurate to be useful. This same 

issue occurred in the Fortran reference implementation. The performance issue was 

investigated, but not resolved. A single precision MKL implementation was also 

attempted, which was still slower than the double precision MKL implementation. The 

single precision accuracy issues occurred when performing the reduction of pair-wise 

contributions into the total calculation. 

The naïve C implementation of QMC serves as a comparison baseline. The pair-

wise computations are iterated over using two loops. The outer loop determines which 

atom is first in the each pair-wise computation. The second loop iterates only over all 

preceding atoms. This saves unnecessary computation (the interaction of particle m with 

n is the same as n with m). Computed values are updated in place to minimize memory 

traffic and improve cache reuse. 

Because values are updated in place, the naïve QMC compute kernel is 

computationally bound by the speed at which the potential, Laplacian, wave function, and 

gradient can be calculated. These functions are called O(N2) times, as there are O(N2) 

                                                

7 Personal communication with Akila Gothandaraman 
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pair-wise particle interactions. For problems sizes feasibly computed on today’s 

architectures, memory accesses are low cost because all data can fit in cache (possibly 

L1). The quantum force vectors and the particle coordinates are the largest items used by 

the compute kernel, each of which uses O(N) memory. The remaining objects used in the 

naïve computation are of size O(1). However, translating this kernel into a streaming 

model in an intuitive way sacrifices the low memory access overhead by storing all pair-

wise contributions and summing them.  

A natural way to express the QMC algorithm in the streaming model is to create a 

domain encompassing all pair-wise interactions. Doing this yields 2-D streams of 

individual potential, kinetic, wave function, and quantum force contributions. Each 

element in the potential stream, for example, represents potential energy contributed by a 

single pair-wise interaction. These matrices of partial contributions can be reduced to 

produce the potential energy, kinetic energy, or wave function of the whole system. 

Unfortunately, this naïve approach uses O(N2) memory, which may require fetching data 

from main GPU memory rather than cache. 

The partial potential energy, wave function, and kinetic energy calculations are 

stored in a lower triangular matrix with zeros on the diagonal. The element at row i 

column j denotes the resulting interaction of particles i and j. The diagonal is zero 

because these elements imply a particle interacting with itself. When computing the 

partial energies and wave functions, F(r i,j) is equal to F(r i,j.), (where F is either the 

potential energy, wave function, or kinetic energy). This would imply that the partial 

computation matrix is symmetric. However, each interaction is included only once so 

they are not doubly counted in the total interaction. Computing quantum forces is more 
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complicated in a streaming environment. 

Quantum forces are more complex to compute. Ultimately, the quantum force 

needs to be stored as three vectors (in this implementation, the quantum force is stored in 

a single vector containing float3 elements) so it may be used to compute the total kinetic 

energy. To accomplish this, the partial quantum forces are computed and stored in the 

lower triangle of a matrix with the upper triangle and diagonal being zero. The easiest 

way to create the quantum force vectors is to perform a row gather operation on the 

matrix. This matrix can be created from the partial quantum forces by doing a column 

reduction on them and placing the resulting vector on the diagonal of the quantum forces 

matrix. To reduce memory bandwidth usage, this matrix isn’t actually created. Rather, the 

column gather is stored in a temporary register and then subtracted from the row gather.  

4.2.2 Optimized QMC 

How one optimizes the quantum Monte Carlo algorithm is architecture dependent. 

The x86 implementation can be optimized to better exploit data level parallelism by using 

SIMD computations and multiple processors. In a streaming environment, where data 

parallelism is expressed implicitly through the language, optimizing memory usage 

(usually at the expense of redundant computation) can speed up the application. 

To substantially improve performance on the host CPU, data and task level 

parallelism must be exploited. This is achieved in two ways: running several instances of 

the application to exploit multi-core processors, and using MKL to implicitly use the 

SIMD units on the x86 processor. The former optimization is trivial to implement; n 

copies of the applications evaluate m/n ensembles with a different seed, where m is the 
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total number of ensembles. As such, this is also performed in the naïve implementation. 

The results can then be averaged between the n processes. The latter requires removing 

the inner loop and replacing it with vector operations. This is simple to do when 

branching doesn’t occur. Since the potential function is defined to be 1 for x≥D, a branch 

instruction is needed to check for this. To overcome this, elements in the vector are all 

computed assuming this is false. The algorithm then iterates over this vector again, 

writing the value 1 at elements for which this condition is true. While this creates extra 

computation, it allows optimized MKL vector math library functions to be used. To keep 

memory use down, the potential energy, kinetic energy, wave function, and quantum 

forces are updated in place by adding vector reductions. By performing the entire loop in 

vectors, cache is efficiently reused which minimizes memory traffic (for a feasibly 

computable number of particles). Because of the increased number of buffers over the 

naïve algorithm, cache performance may be worse than the naïve implementation for 

larger clusters. 

Optimizing QMC in Brook+ requires rethinking what an element in a stream 

should be. Memory use can be reduced to O(N) by performing a partial reduction in place 

and storing data in a 1-d stream. Under this strategy, element i of the potential energy 

stream represents the sum of the potential energy calculations that result from the pair-

wise interactions of particle i with particles i through N. 

Quantum forces can also be stored in a 1-d stream. Since individual pair-wise 

interactions are not stored, each pair-wise quantum force contribution is computed twice 

(once for the ith row gather and once for the jth column gather). Since the number of 

computations performed is still O(N2), this redundant computation is well worth the 
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memory use reduction as the number of particles evaluated increases. Furthermore, this 

memory reduction allows up to 65 million particles to be simulated simultaneously 

without marshalling data. 

Reducing memory usage has the side effect of reducing the implicit parallelism 

expressed in the Brook+ algorithm. When using O(N2) memory, N2 threads are created. 

Reducing the number of elements per stream to O(N) reduces the number of threads to N. 

This can cause the optimized implementation to perform worse than the intuitive 

implementation for small numbers of particles. 

4.2.3 QMC Performance 

The CPU implementations of QMC use double precision floating point due to the 

aforementioned single precision performance and accuracy issues. The GPU 

implementations do not suffer from accuracy problems to the same degree as the x86 

because Brook+ makes associativity and commutivity guarantees in reduction 

kernels[10]. Since AMD’s Brook+ development environment lacks double precision 

transcendental functions8, QMC was implemented in single precision on this platform. A 

double precision implementation remains as future work when Brook+ is updated to 

support 64-bit floating-point transcendental functions. 

CPU timings were achieved in the same environment as was used in the grid 

potential application. Eight Xeon Clovertown cores running at 2.66GHz with 4MB L2 

cache were used. These were distributed across two sockets. The test machine has 32GB 

of DDR2 RAM and can achieve an optimized STREAM copy benchmark of 7.5GB/s. 
                                                

8 As of Brook+ version 1.4, described in the release notes 
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GCC 4.2.4 for X86_64 linux-gnu was used to compile all benchmarks. All CPU and GPU 

implementations used the –O3, -g, and –m64 flags.  

When run on the CPU, 50 iterations were used per process with 10 sample points in 

the integral grid. Eight copies of the process were run concurrently to use multiple cores 

for both the MKL and naïve implementations. CPU implementation timings given in  

Table 4.2 list the maximum runtimes of the right execution times. Together, these eight 

processes performed 400 iterations of 10 points in the QMC method. A processes 

execution time is measured as the time between the main function’s stack frame creation 

and just before the application’s termination. 

Timings gathered on the GPU were run using Brook+ v1.3 on a Firestream 9170. To 

perform the same amount of work as the CPU benchmark, 400 iterations were run on the 

GPU with 10 grid samples. The time listed encompasses the entire process runtime in 

seconds.  

 Performance varied across implementations with the number of particles. MKL 

achieved highest performance when 512 atoms were used. Indeed, even the naïve CPU 

implementation beat out both GPU implementations for this cluster size. There are 

Table 4.2: Timings for QMC Kernels (Fastest in Bold) 

Time (s) 512 Atoms 1024 Atoms 2048 Atoms 4096 Atoms 

Naïve CPU 13.086871 54.040897 217.229559 852.711762 

MKL CPU 9.799197 39.472391 168.918917 819.450457 

Naive Brook+ 28.215723 33.475018 89.333456 316.697359 

Optimized 
Brook+ 

27.825212 45.438193 52.141224 139.652555 
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several factors that contribute to this: Brook+ runtime overhead and data transfers. When 

a 1024 atom cluster was simulated, the memory-bound GPU implementation performed 

best. This is likely due to the increased parallelism and ability to hide memory latencies. 

This implementation was slightly faster than the optimized CPU implementation. As the 

number of atoms increased to 2048 and 4096, the computationally bound Brook+ 

implementation performed computation most quickly. The performance speedup of each 

implementation is compared against the naïve CPU and MKL implementations in Figure 

4.9 and Figure 4.10 respectively.  

The gap between naïve and MKL CPU implementations narrowed when the 

number of atoms increased to 4096. MKL only improved the naïve implementation by 

4% at this size. At this size, the MKL implementation can’t fit all its vectors in L1 cache. 

 
Figure 4.9: Performance Improvement over Naive Implementation 
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To understand where time is being spent on execution of the QMC algorithm, a 

performance model (Figure 4.11) is used. This model allows extrapolation of how 

performance will change with additional computation resources or a larger number of 

particles. As the number of particles increases, computation begins to dominate the 

runtime. This means the runtime follows a quadratic relation (Figure 4.12) to the number 

of atoms in the cluster. The GPU implementations of this algorithm execute more quickly 

than the C versions. This is because the computation is distributed across more 

processors. The naïve Brook+ algorithm is slower for large numbers of atoms compared 

to the optimized implementation because memory accesses are more expensive. In the 

optimized algorithm, memory accesses can better fit in cache since the size of the data is 

less; this reduces load and store latencies. 

 
Figure 4.10: Performance Improvement over MKL Implementation 
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Figure 4.11: Performance Model of QMC Runtime 

 

 
Figure 4.12: QMC Runtime 
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5 Conclusions 

This thesis has shown that AMD GPGPUs can be used to obtain speedups in both 

memory and computation bound applications of sufficient complexity. Using AMD’s 

CAL runtime, a 10-fold speedup was achieved over eight Clovertown processors in the 

grid potential calculation. Again, this speedup assumes this is part of a larger compute 

kernel that can either amortize or eliminate the data transfer of the grid potential back to 

the host. A 5.86x speedup was obtained in the QMC application for cluster sizes of 4096. 

Brook+ and CAL were evaluated (the latter in only the first application) for 

performance. This thesis has shown how to map two different algorithms to the streaming 

model and how to optimize implementations in Brook+ and CAL. In the grid potential 

computation, I was able to use almost 80% of the GPU’s memory bandwidth (the limiting 

factor) in CAL. This was done without explicitly managing texture caches, shared 

memory, or designating how threads should block the problem. Few optimizations were 

needed to give this performance and they were simple to implement. Brook+, while 

lagging behind CAL’s performance in the grid potential computation, was still able to 

outpace the x86 implementation using MKL and multi-threading. The optimizations 

performed to the Brook+ kernel to maximize performance were conceptually simpler to 

implement and fewer in number. In the QMC application, Brook+ yielded almost a 6x 

speedup over QMC running on 8 x86 cores (which were achieving a nearly linear 

speedup over a single core). 
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5.1 Future Work 

Some work remains with these applications. To complete the comparison of 

Brook+ to CAL, the QMC code should be implemented in CAL. In addition to CAL, 

OpenCL would provide an interesting language comparison for both applications 

presented in this thesis. This will demonstrate the price paid for portable algorithms and 

partially answers how well OpenCL can be mapped to GPU and multi-core architectures. 

Intel’s Larrabee can run the x86 versions of the algorithms presented in this paper. This 

would provide a more even comparison, given that the performance of Larrabee will be 

more comparable to that of a GPU than current multi-core processors[28]. This will also 

partially answer the following question of how multi-core processors should be 

implemented in terms of heterogeneity. 
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