
Programming and Parallelising

Applications for Distributed

Infrastructures

Enric Tejedor

Advisor:
Rosa M. Badia

A dissertation submitted in partial fulfillment of
the requirements for the degree of:

Doctor per la Universitat Politècnica de Catalunya

Doctorat en Arquitectura de Computadors
Departament d’Arquitectura de Computadors

Universitat Politècnica de Catalunya

Barcelona
June 2013

A la Pasqui i l’Enric.

Per ser incondicionals.

Abstract

The last decade has witnessed unprecedented changes in parallel and distributed
infrastructures. Due to the diminished gains in processor performance from
increasing clock frequency, manufacturers have moved from uniprocessor archi-
tectures to multicores; as a result, clusters of computers have incorporated such
new CPU designs. Furthermore, the ever-growing need of scientific applica-
tions for computing and storage capabilities has motivated the appearance of
grids: geographically-distributed, multi-domain infrastructures based on shar-
ing of resources to accomplish large and complex tasks. More recently, clouds
have emerged by combining virtualisation technologies, service-orientation and
business models to deliver IT resources on demand over the Internet.

The size and complexity of these new infrastructures poses a challenge for
programmers to exploit them. On the one hand, some of the difficulties are in-
herent to concurrent and distributed programming themselves, e.g. dealing with
thread creation and synchronisation, messaging, data partitioning and transfer,
etc. On the other hand, other issues are related to the singularities of each
scenario, like the heterogeneity of Grid middleware and resources or the risk of
vendor lock-in when writing an application for a particular Cloud provider.

In the face of such a challenge, programming productivity - understood as
a tradeoff between programmability and performance - has become crucial for
software developers. There is a strong need for high-productivity programming
models and languages, which should provide simple means for writing parallel
and distributed applications that can run on current infrastructures without
sacrificing performance.

In that sense, this thesis contributes with Java StarSs, a programming model
and runtime system for developing and parallelising Java applications on dis-
tributed infrastructures. The model has two key features: first, the user pro-
grams in a fully-sequential standard-Java fashion - no parallel construct, API
call or pragma must be included in the application code; second, it is completely
infrastructure-unaware, i.e. programs do not contain any details about deploy-
ment or resource management, so that the same application can run in different
infrastructures with no changes. The only requirement for the user is to select
the application tasks, which are the model’s unit of parallelism. Tasks can be
either regular Java methods or web service operations, and they can handle any
data type supported by the Java language, namely files, objects, arrays and
primitives.

i

For the sake of simplicity of the model, Java StarSs shifts the burden of
parallelisation from the programmer to the runtime system. The runtime is re-
sponsible from modifying the original application to make it create asynchronous
tasks and synchronise data accesses from the main program. Moreover, the im-
plicit inter-task concurrency is automatically found as the application executes,
thanks to a data dependency detection mechanism that integrates all the Java
data types.

This thesis provides a fairly comprehensive evaluation of Java StarSs on three
different distributed scenarios: Grid, Cluster and Cloud. For each of them, a
runtime system was designed and implemented to exploit their particular char-
acteristics as well as to address their issues, while keeping the infrastructure
unawareness of the programming model. The evaluation compares Java StarSs
against state-of-the-art solutions, both in terms of programmability and perfor-
mance, and demonstrates how the model can bring remarkable productivity to
programmers of parallel distributed applications.

Acknowledgements

This thesis has been supported by the following institutions: the Universitat
Politècnica de Catalunya with a UPC Recerca predoctoral grant; the Span-
ish Ministry of Science and Innovation and the Comisión Interministerial de
Ciencia y Tecnoloǵıa (CICYT), with contracts TIN2007-60625 and CSD2007-
00050; the European Commission in the context of the HiPEAC Network of
Excellence (contract IST-004408), the HPC-Europa2 Research Infrastructure
(contract 222398), the FP6 CoreGRID Network of Excellence (contract IST-
2002-004265), the FP6 XtreemOS project (contract IST- FP6-033576) and the
FP7 OPTIMIS project (grant agreement 257115); the Generalitat de Catalunya
(contract 2009-SGR-980 and travel grant BE-DGR 2009).

iii

Contents

Abstract ii

Acknowledgements iii

Contents x

List of Figures xvii

List of Tables xix

1 Introduction 1
1.1 Context and Motivation . 1

1.1.1 Evolution in Parallel and Distributed Infrastructures . . . 1
1.1.2 The Programming Productivity Challenge 2
1.1.3 Approaches to Parallelism and Distribution 3
1.1.4 StarSs for Parallel and Distributed Infrastructures 4

1.2 Contributions . 6
1.2.1 Parallel Programming Model for Java Applications 7
1.2.2 Runtime System for Distributed Parallel Infrastructures . 8

1.2.2.1 Grid . 9
1.2.2.2 Cluster . 9
1.2.2.3 Cloud . 9

1.3 Thesis Organisation . 10

2 Programming Model 13
2.1 Overview . 14

2.1.1 Basic Steps . 14
2.1.1.1 Identifying the Potential Tasks 14
2.1.1.2 Defining a Task Selection Interface 15

2.1.2 Sequential Programming 16
2.2 The Task Selection Interface . 17

2.2.1 Method-level Annotations 17
2.2.1.1 @Method . 17
2.2.1.2 @Service . 18
2.2.1.3 @Constraints . 19

v

2.2.2 Parameter-level Annotations 19

2.2.2.1 @Parameter . 19

2.3 The Main Program . 20

2.3.1 Scenarios . 21

2.3.1.1 Regular Application 21

2.3.1.2 Composite Service 21

2.3.2 Invoking Tasks . 22

2.3.2.1 Methods . 22

2.3.2.2 Services . 23

2.3.3 Sharing Data Between Tasks 24

2.3.4 Working with Objects . 24

2.3.4.1 Objects in a Task 24

2.3.4.2 Access in Main Program 26

2.3.5 Working with Arrays . 27

2.3.5.1 Arrays in a Task 28

2.3.5.2 Access in Main Program 28

2.3.6 Working with Primitive Types 28

2.3.6.1 Primitives in a Task 29

2.3.6.2 Access in Main Program 29

2.3.7 Working with Files . 29

2.3.7.1 Files in a Task 30

2.3.7.2 Access in Main Program 31

2.4 Summary . 31

3 Runtime: Common Features 33

3.1 General Structure . 33

3.2 Bytecode Instrumentation . 35

3.2.1 How? . 35

3.2.2 When? . 36

3.2.3 What? . 36

3.2.4 What For? . 37

3.2.4.1 Asynchronous Task Generation 37

3.2.4.2 Data Access Surveillance 38

3.3 Data Dependency Analysis . 38

3.4 Data Renaming . 41

3.5 Data Layout and Transfer . 41

3.6 Task Scheduling . 42

3.6.1 Method Tasks . 43

3.6.1.1 Algorithms . 43

3.6.1.2 Pre-scheduling 44

3.6.2 Service Tasks . 44

3.7 Task Submission, Execution and Monitoring 46

3.8 Summary . 46

4 Grid 49

4.1 Context . 49

4.1.1 The Grid . 49

4.1.1.1 Architecture . 50

4.1.1.2 Virtual Organisations 51

4.1.1.3 Secure Access 51

4.1.1.4 Data Management 52

4.1.2 e-Science Applications . 52

4.1.3 Grid APIs: Standardisation Efforts 53

4.1.4 Component-Based Grid Software 54

4.2 Runtime Design . 55

4.2.1 Componentisation . 56

4.2.1.1 Task Analyser 57

4.2.1.2 Task Scheduler 57

4.2.1.3 Job Manager . 57

4.2.1.4 File Manager . 58

4.2.2 Uniform Grid API . 58

4.2.3 Execution Model . 58

4.2.4 Data Model . 59

4.3 Relevant Technologies . 60

4.3.1 ProActive . 60

4.3.2 The Grid Application Toolkit 60

4.4 Programmability Evaluation . 61

4.4.1 Taverna . 61

4.4.2 Hmmpfam Application . 62

4.4.3 Comparison . 63

4.4.3.1 Hmmpfam in Java StarSs 63

4.4.3.2 Hmmpfam in Taverna 65

4.4.3.3 Discussion . 66

4.5 Experiments . 67

4.5.1 Large-Scale Tests . 67

4.5.1.1 The Discrete Application 67

4.5.1.2 Testbed . 69

4.5.1.3 Results . 72

4.5.2 Small-Scale Tests . 78

4.5.2.1 Component Distribution in Nord 78

4.5.2.2 Hmmpfam in MareNostrum 80

4.6 Related Work . 84

4.6.1 Grid Programming Models 84

4.6.2 Workflow Managers . 85

4.6.3 Component-Based Grid Software 86

4.7 Summary . 86

5 Cluster 89
5.1 Context . 89

5.1.1 Cluster Computing . 89
5.1.2 Cluster versus Grid . 90
5.1.3 Productivity in Cluster Programming: APGAS 91

5.2 Runtime Design . 92
5.2.1 Java StarSs and APGAS 92
5.2.2 Runtime Structure . 93
5.2.3 Communication Protocol 94
5.2.4 Execution Model . 95
5.2.5 Data Model . 95

5.2.5.1 Data Layout . 95
5.2.5.2 Data Transfer 96
5.2.5.3 Data Reuse and Locality 96

5.3 Relevant Technologies . 96
5.3.1 IBM APGAS Runtime . 96

5.4 Programmability Evaluation . 97
5.4.1 The X10 Programming Language 97

5.4.1.1 Places and Activities 98
5.4.1.2 Synchronisation 98
5.4.1.3 Data Distribution 98

5.4.2 Application Description 98
5.4.2.1 Matrix Multiplication 99
5.4.2.2 Sparse LU . 102
5.4.2.3 K-means . 104

5.4.3 Programmability Discussion 105
5.5 Experiments . 107

5.5.1 Testbed . 107
5.5.2 X10 Comparison Results 107

5.5.2.1 Test Setup . 107
5.5.2.2 Matrix Multiplication 108
5.5.2.3 Sparse LU . 110
5.5.2.4 K-means . 112

5.5.3 NAS Parallel Benchmarks 115
5.5.3.1 Test Setup . 115
5.5.3.2 Embarrassingly Parallel (EP) 117
5.5.3.3 Fourier Transformation (FT) 117
5.5.3.4 Integer Sort (IS) 117

5.6 Related Work . 118
5.7 Summary . 119

6 Cloud 121
6.1 Context . 121

6.1.1 Cloud Computing . 121
6.1.2 Clouds and Service-Oriented Architectures 123
6.1.3 Clouds for HPC Science 124

6.2 Runtime Design . 125
6.2.1 Support for Services as Tasks 125
6.2.2 Integration In a Service-Oriented Platform 126
6.2.3 Exploitation of Virtual Cloud Resources 127

6.3 Relevant Technologies . 128
6.3.1 Cloud Provider Connectors 129
6.3.2 SSH Adaptor of JavaGAT 129
6.3.3 Apache CXF . 129

6.4 Programmability Evaluation . 129
6.4.1 Programming with Services 130

6.4.1.1 WS-BPEL . 130
6.4.1.2 Travel Booking Service 130
6.4.1.3 Comparison . 132

6.4.2 Programming with Objects 134
6.4.2.1 Deployment . 134
6.4.2.2 Object Creation 134
6.4.2.3 Asynchronous Computations 135
6.4.2.4 Synchronisation 137
6.4.2.5 Termination . 137

6.5 Experiments . 138
6.5.1 Gene Detection Composite 138
6.5.2 Testbed . 139
6.5.3 Resource Elasticity and Cloud Bursting 141
6.5.4 Performance . 144

6.6 Related Work . 148
6.6.1 Platform-as-a-Service Solutions 148
6.6.2 Frameworks for Service Composition 149
6.6.3 Cloud Programming Models 150

6.7 Summary . 151

7 Conclusions and Future Work 153
7.1 Programming Model . 153

7.1.1 Future work . 155
7.2 Runtime System . 155

7.2.1 Future work . 157

Bibliography 159

A Applications 173
A.1 Hmmpfam - Java StarSs . 173
A.2 Discrete - Java StarSs . 175

A.2.1 Main Program . 175
A.2.2 Task Selection Interface 176
A.2.3 Task Graph . 178

A.3 Gene Detection - Java StarSs . 179
A.3.1 Main Program . 179

A.3.2 Task Selection Interface 180

B Resource Description 183
B.1 Resources File . 183
B.2 Project File . 185

List of Figures

1.1 Star Superscalar execution model. 5

1.2 Thesis organisation. 10

2.1 Steps of the Java StarSs programming model. In the application,
which is programmed sequentially, the user identifies the methods
and services to be tasks and then selects them. The model is
based on inter-task parallelism and task asynchrony. 15

2.2 Example of code refactoring. An application that increments the
rows of a matrix (a), composed by two loops, is reorganised to
encapsulate the inner loop in a method incrementRow (b) so that
it can become a task. 16

2.3 Syntax of a task selection interface, comprised of a method task
and a service task declarations. The annotations are represented
in bold: @Method for identifying a method, @Service for a service
operation, @Constraints to specify the resource requirements of a
method task and @Parameter to state the direction and type of a
method task parameter. The elements of each annotation are in
italics. 18

2.4 Parts of the application code: main program and task code. In
the main program, except for the black-box area, the program-
ming model features are enabled. 21

2.5 Examples of two scenarios for a Java StarSs application: (a) regu-
lar application with a main method that starts the execution, (b)
composite service operation provided by a remotely-accessible
web service. 22

2.6 Examples of task invocations from a main program (a), for both
methods and services (including stateless and stateful-like invoca-
tions). In (b), the corresponding task selection interface is shown
as a complement to the main program in (a). 23

2.7 Sample sequential application (a) and its corresponding task se-
lection interface (b). Method foo, implemented by class exam-
ple.A, is chosen as a task in (b); it is an instance method (invoked
on an object of class A), receives an input object parameter of
class B and returns a C object. 25

xi

2.8 Case of synchronisation by transition to black-box area. Object
y is returned by method task of class X, which we assume was
selected as a task and therefore is spawned asynchronously. When
the main program reaches the call to method blackBox, which is
implemented in a non-watched class Z, a synchronisation takes
place to get y and pass it to blackBox. 27

2.9 Example of synchronisation by access to an array element from
the main program. foo is assumed to be a task that receives a
one-dimensional array as a parameter, updates it and returns a
two-dimensional array. Those arrays are accessed later in the
main program, each forcing a synchronisation. 28

2.10 Example of synchronisation for primitive types. The invocation
of the task method foo is synchronous here, because of the integer
value i that it returns. Primitive types that are passed as task
parameters, like b, do not require synchronisation. 29

2.11 Sample sequential application (a) and its task selection inter-
face (b). Method increment is chosen as a task in (b); it re-
ceives an input/output file parameter where a counter value is
stored and increments that value. In (a), the main program opens
streams on the same file incremented by the task. 30

3.1 Java StarSs runtime structure. The master side deals with the
main program of the application, whereas the worker side handles
the task code. 34

3.2 As a result of applying the programming model, the user provides
the Java classes corresponding to the task selection interface and
the sequential application. In order to enable its parallelisation,
the application is instrumented to insert calls to the Java StarSs
runtime at certain key points. At execution time, the runtime
will use the information in the interface to parallelise the instru-
mented application. 35

3.3 Main program of the Sum application (a), its corresponding task
selection interface (b) and the graph generated when running
it (c). At every iteration, the genRandom task method generates a
random number and writes it in file rdFile; after that, method add
(also a task) adds that number to a sum stored in the sum object.
When executing the application, the runtime detects different
kinds of dependencies, some of which can be avoided by means of
a data renaming technique (WaW, WaR), whereas some cannot
(RaW). 40

3.4 In the code snippet in (a), A is a matrix divided in N×N blocks.
The createBlock method allocates a single block of size M×M
doubles and initialises all its elements with a given constant VAL.
createBlock is selected as a task in the interface in (b) and is also
marked as an initialisation task (isInit = true field in the @Method
annotation); note that the parameters of createBlock do not need
the @Parameter annotation, since their type is primitive and,
consequently, their direction is IN. Finally, the scheduling of the
createBlock initialisation tasks leads to the allocation of blocks
among resources shown in (c), assuming 3 resources, 4 slots per
resource and N=6. 45

3.5 Overview of the basic features of the Java StarSs runtime. 47

4.1 Grid architecture layers. Courtesy of the GridCafé website [23]. . 50

4.2 Location of the Java StarSs runtime in the Grid stack. 56

4.3 Component hierarchy and interactions in the Grid Java StarSs
runtime, which sits on top of a uniform Grid API. 57

4.4 Simple workflow in Taverna. Node1 has two input ports and two
output ports, while Node2 has only one of each kind. The link
between the two nodes represents a data dependency. 62

4.5 Task selection interface corresponding to the Hmmpfam applica-
tion in Java StarSs. 64

4.6 Example of a task dependency graph generated by Hmmpfam
when running it with Java StarSs. In this case, the database is
split in two fragments and the query sequences file in four parts.
This creates eight independent tasks that run hmmpfam on a
pair of database-sequence fragments. After that, there are three
levels of reduction tasks, the last one merging the results from
the two different database fragments. 64

4.7 First version of Hmmpfam in Taverna. 65

4.8 Second version of Hmmpfam in Taverna. 66

4.9 Testbed comprising two large-scale scientific grids (Open Science
Grid, Ibergrid) and a local BSC-owned grid. The Discrete appli-
cation, running on a laptop with Java StarSs, interacts with the
grids through GAT and its middleware adaptors. 71

4.10 Test results for the Discrete application when run with Java
StarSs in the Grid testbed: (a) distribution of the Discrete tasks
among the three grids; (b) comparison of percentage of transfers
between the locality-aware and FIFO scheduling algorithms; (c)
evolution of the number of transfers when applying locality-aware
scheduling. 74

4.11 Detail of the task constraint specification for the Discrete appli-
cation. The complete task selection interface can be found in
Appendix A.2.2. 77

4.12 Reduced version of the Discrete graph, only for illustrative pur-
poses (the real one is in Appendix A.2.3). The constraints in
Figure 4.11 lead to the task scheduling on the three grids repre-
sented by this figure. 77

4.13 Deployments of the Mergesort runtime: Single-node and Dis-
tributed. 79

4.14 Performance comparison for Hmmpfam between Java StarSs and
MPI-HMMER. 81

4.15 Execution of Hmmpfam with Java StarSs. The figure depicts the
percentage of Idle+Transferring time in the workers, with respect
to the total of Idle+Transferring+Computing, with and without
pre-scheduling. 82

4.16 Number of concurrent transfers that Java StarSs is performing
during the first 500 seconds of Hmmpfam, varying the number
of worker cores (16, 64, 256) and applying pre-scheduling or not.
Pre-scheduling keeps the master busy (transferring) longer, ex-
cept in case of overload. 83

5.1 Design of Java StarSs on top of APGAS. 93
5.2 Pseudo-code representing the skeleton of the Java StarSs runtime

that is run in all nodes. Essentially, the main node executes the
main program of the application and the worker nodes wait to
respond to incoming AMs. 94

5.3 Cluster Java StarSs architecture: Java StarSs runtime on top of
the APGAS runtime, invoking the latter through Java bindings.
X10 shares the same underlying APGAS layer as Java StarSs. . . 97

5.4 Main algorithm of the matrix multiplication application in Java
StarSs. The method multiply multiplies two input blocks of ma-
trices A and B and accumulates the result in an in-out block of
matrix C. 99

5.5 Implementation in X10 of the matrix multiplication benchmark. (a)
contains the creation, initialisation and distribution of the three
matrices A, B and C involved in the computation. (b) shows the
main algorithm. 100

5.6 A second implementation of the X10 matrix multiplication. In
this version, the three matrices created in (a) are distributed.
The main algorithm is not shown since it is equivalent to the
one in Figure 5.5(b). The fact of distributing matrices A and B
makes necessary to add some code, depicted in (b), to the activity
method multiply for explicitly transferring blocks. 101

5.7 X10 matrix distributions used in the tested benchmarks: (a) Block
distribution along the 0th axis, (b) Block distribution along the
1st axis, (c) Block Cyclic distribution along the 0th axis with a
block size of two rows. In the benchmarks, each cell of a dis-
tributed matrix is itself a sub-matrix (i.e. a block of the bench-
mark). 102

5.8 (a) Main algorithm of the Sparse LU benchmark for Java StarSs
and (b) the corresponding task dependency graph generated for
an input matrix of 5x5 blocks. Different node colours in (b)
represent different task methods and the number in each node
is the generation order. Also in (b), the three highlighted task
levels correspond to the three different finish blocks in the X10
implementation. 103

5.9 Test results for the Matrix multiplication benchmark for Java
StarSs and X10. Study of the best block size, with a fixed number
of 64 cores, keeping the same problem size and varying the block
size: (a) benchmark execution times and (b) average task/activity
times. Scalability analysis: (c) execution times and (d) speedup
for a range of cores, input matrices of N=64 and M=200, i.e.
64x64 blocks of size 200x200 doubles; for X10, two different con-
figurations of the matrices are considered: replicating matrices A
and B (ABRep) or distributing them (ABDist). In (e), study of
different problem sizes with a fixed number of 64 cores and using
the best block size found (200x200). 109

5.10 Test results for the Sparse LU benchmark for Java StarSs and
X10. Study of the best block size, with a fixed number of 64 cores,
keeping the same problem size and varying the block size: (a)
benchmark execution times and (b) average task/activity times.
Scalability analysis: (c) execution times and (d) speedup for a
range of cores, input matrices of N=64 and M=300, i.e. 64x64
blocks of size 300x300 doubles; for X10, two different partition-
ings of the matrix to factorise are considered: Block distribution
and Block Cyclic distribution. In (e), study of different problem
sizes with a fixed number of 64 cores and using the best block
size found (300x300). 111

5.11 Test results for the K-means application for Java StarSs and X10.
Study of the best fragment size, with a fixed number of 64 cores,
keeping the same problem size and varying the fragment size: (a)
application execution times and (b) average task/activity times.
Scalability analysis: (c) execution times and (d) speedup for a
range of cores, input parameters: 128000000 points, 4 dimensions,
512 clusters, 50 iterations; two fragment sizes are considered:
31250 points and 500000 points. (e) influence of JIT compilation
in the iteration time for the two fragment sizes. In (f), study of
different problem sizes with a fixed number of 64 cores and using
the best fragment sizes found (31250 for Java StarSs, 500000 for
X10). 114

5.12 Execution times (seconds) of the NAS parallel benchmarks: (a)
Embarrassingly Parallel, (b) Fourier Transformation and (c) In-
teger Sort. Tested implementations: Java StarSs, ProActive, F-
MPJ and NPB-MPI (original). 116

6.1 Location of the Java StarSs programming model, runtime and
applications in the Cloud stack. 123

6.2 Architecture of the Java StarSs Cloud runtime. A service hosted
in a Web services container can be accessed by any service con-
sumer (e.g. web portal, application). The interface of this ser-
vice offers several operations, which can be composites previously
written by a service developer following the Java StarSs program-
ming model. When the container receives a request for a given
composite, the Java StarSs runtime starts generating the corre-
sponding task dependency graph on the fly, so that it can or-
chestrate the execution of the selected tasks. Service tasks will
lead to the invocation of external services (possibly deployed in
the Cloud), while method tasks can be run either on virtualised
Cloud resources or on physical ones. 126

6.3 Technologies leveraged by the Java StarSs Cloud runtime. 128

6.4 In (a), graphical workflow of the travel booking composite, as
shown by the Eclipse BPEL Designer; the invocations to exter-
nal services are numbered. In (b), a fragment of the correspond-
ing WS-BPEL document, focusing on the invocation of service
BookFlight. 131

6.5 Java StarSs version of the travel booking composite service: (a) main
program of the composite and (b) task selection interface. In (a),
the calls to external services are underlined. 133

6.6 Java StarSs version of N-body: (a) main program and (b) task
selection interface. 135

6.7 Comparison of key fragments in the N-body application. 136

6.8 Task dependency graph generated for N-body, with a universe of
3 domains and 3 iterations. Yellow (light) tasks correspond to
the addForce method, whereas red (dark) ones represent calls to
moveBody. 137

6.9 Gene detection composite service. The dependency graph of the
whole orchestration is depicted on the right of the figure: cir-
cles correspond to method tasks and diamonds map to service
task invocations, while stars represent synchronisations due to
accesses on task result values from the main program. A snippet
of the composite code is provided, focusing on a particular frag-
ment which runs BLAST to obtain a list of sequences and then
parses their identifiers. The graph section generated by this piece
of code is also highlighted in the overall structure of the composite.139

6.10 Testbed comprising two clouds: a private cloud, located at BSC,
and the Amazon EC2 public cloud (Ireland data centre). The
GeneDetection composite service is deployed in a server machine,
which contacts the VMs of the private cloud through a VPN. An
external server publishes the operations corresponding to service
tasks. 140

6.11 Execution of two requests for the gene detection composite that
illustrates the elasticity and bursting features of the Java StarSs
runtime: (a) evolution of the load generated by the composite’s
method tasks; (b) evolution of the number of VMs in the private
cloud and Amazon EC2; (c) state of the VMs during the execution
of the requests. 142

6.12 Graph generated by the GeneWise computation in the gene de-
tection composite, for an execution that finds 8 relevant regions
in the genomic sequence. Red (dark) tasks correspond to the
genewise method, whereas yellow (light) ones represent calls to
mergeGenewise. 144

6.13 Execution of the GeneWise computation, with private VMs only
and bursting to Amazon: (a) evolution of the number of tasks, (b)
VM elasticity. 145

6.14 Execution times of the GeneWise computation, with private VMs
only (‘Private’) and a combination of private and public VMs
(‘Hybrid’). 147

A.1 Main program of the Hmmpfam application for Java StarSs. . . . 174
A.2 Main program of the Discrete application for Java StarSs. 176
A.3 Task selection interface of the Discrete application for Java StarSs.177
A.4 Graph generated by Java StarSs for Discrete; input parameters:

10 structures, 27 different configurations of EPS, FSOLV and
FVDW. 178

A.5 Main program of the Gene Detection composite for Java StarSs. 180
A.6 Task selection interface of the Gene Detection composite for Java

StarSs. 181

B.1 Snippet of a resources file. 185
B.2 Snippet of a project file. 186

List of Tables

4.1 Job submission and file transfer statistics for Discrete. 75
4.2 Influence of component distribution in Mergesort 80

5.1 Number of code lines of the tested applications. 106

6.1 Statistics of the GeneWise part of the gene detection composite.
Times in seconds. 146

xix

Chapter 1

Introduction

1.1 Context and Motivation

1.1.1 Evolution in Parallel and Distributed Infrastructures

The last decade has witnessed unprecedented changes in parallel and distributed
infrastructures. The year 2002 marked a turning point in the field of computer
architecture, when improving processor performance by increasing clock fre-
quency became hardly sustainable, due to three main factors: the growing gap
between processor and memory speeds (the memory wall), the stalemate in the
exploitation of instruction-level parallelism (the ILP wall) and the limitations
in power dissipation (the power wall) [83]. As a response to those issues, manu-
facturers engaged in the design of multicore architectures, which gather simple
processing units on the same die. The current fastest supercomputers are based
on multicore technologies, sometimes combining them with specialised GPUs
(Graphics Processing Units) in hybrid setups. Moreover, the fact that multi-
cores are available at affordable costs has contributed to the commoditisation of
parallel hardware, making it reach a broader audience.

On the applications side, some scientific programs - from diverse fields like
particle physics, bio-informatics or earth sciences - came up with a need for
large computing and storage capabilities. This computationally-intensive sci-
ence working on immense data sets was named e-Science, and often required
more high-performance computing resources than those of a single institution.
As a result, users from different communities started to share their resources to
build grids [128]: infrastructures that combine loosely-coupled resources from
multiple administrative domains scattered over a wide geographic area. Scien-
tists from around the globe can use grids to tackle large and complex tasks, to
accomplish projects that would be impossible otherwise. Besides, grids enable
global collaboration: scientists can share data, data storage space, computing
power, expertise and results in a large scale. A key feature of grids is their het-
erogeneity, not only in terms of the resources they federate, but also regarding
the middleware that provides the basic services to access those resources.

1

1.1. Context and Motivation Chapter 1. Introduction

In its early days, one of the concepts behind Grid computing was that of
utility computing : a global public Grid was envisaged to provide on-demand
and metered access to computation and data just like the power grid delivers
electricity. Although never truly realised for grids, the concept was later revis-
ited by some private companies like Amazon, which in 2006 started offering the
Elastic Compute Cloud (EC2) [2]. In addition to utility computing, EC2 relied
on virtualisation technologies, which had resurged to improve resource usage
and management in Internet service providers [115]. Hence, Amazon and other
vendors started renting virtual machines - deployed in their datacentres - to cus-
tomers in a pay-as-you-go basis; moreover, this was delivered as a service over
the Internet. Such combination of utility computing, virtualisation and service-
orientation was popularised as Cloud computing. Nowadays, clouds allow to
outsource any part of the IT stack, i.e. not only hardware but also development
/deployment platforms and entire applications. Many Cloud providers have
appeared so far, each offering its own interface to access its services.

1.1.2 The Programming Productivity Challenge

The previous subsection has explained how parallel and distributed infrastruc-
tures have increased in size and complexity. On the one hand, multicores have
shifted the focus of performance from hardware to software. It is no longer
sufficient to write single-threaded code and rely on new CPUs to boost perfor-
mance; instead, applications are required to manage the concurrent execution
of multiple threads to exploit all the cores [140]. This complicates the job of the
programmer, who is faced with two main duties: (i) thinking about parallelism,
which involves identifying the computations that compose the application and
the data they share, and sometimes restructuring the program in a way that
favours concurrency; (ii) dealing with parallelisation, which entails things like
creating and synchronising threads, scheduling/balancing the work load between
threads, debugging and fixing data races and deadlocks, etc.

Furthermore, the computation/storage demands of an application may re-
quire it to execute over a set of distributed resources. In this scenario, the afore-
mentioned duties of parallel programming are still present and they can get
even more complex (e.g. synchronisation of remote processes, data exchange
by message passing). In addition, distributed systems introduce some new con-
cerns. Perhaps one of the biggest is achieving a consistent view of data across
processes, since every process works with its own private memory and may up-
date shared data. Another example is fault tolerance: a distributed application
spawning processes in different nodes should continue executing properly in the
event of a failure, either at process or hardware (node, network) level. Finally,
as a distributed infrastructure grows in size, the scalability of the applications
that execute on it becomes increasingly relevant.

On the other hand, some of the difficulties met by the programmer are not
strictly related to parallel/distributed programming, but to the singularities of
each infrastructure. Grids are inherently heterogeneous, both in terms of their
resources and the middleware that manages them. Hence, a Grid application

2

1.1. Context and Motivation Chapter 1. Introduction

may need to function over machines with different architectures and operating
systems. Besides, there is no standard way of accessing Grid services such as job
submission and file transfer, and instead that depends on the interface provided
by the particular middleware installed in a grid, which hinders portability. A
similar problem exists in current clouds: every vendor offers its own API to
reserve virtual machines in its infrastructure or to develop applications for its
platform, which increases the risk of lock-in when writing an application for a
given Cloud provider.

Due to all the factors discussed above, programming productivity, understood
as a tradeoff between ease of programming and performance, has become cru-
cial [83, 140]. For economic reasons, it is not enough anymore to merely make
an efficient use of hardware, it is also necessary now to make a highly efficient
use of software developers, whose time is valuable. Moreover, new commodity
parallel architectures should be made available to a vast majority of developers
that lack concurrent programming expertise. This brings a need for parallel
languages and programming models that assist developers when writing appli-
cations for parallel and distributed infrastructures. Ideally, the applications
developed in those languages/models should be portable, i.e. not tied to a
certain platform.

1.1.3 Approaches to Parallelism and Distribution

Different types of approaches have been proposed to achieve parallelism and
distribution in applications, each requiring a certain level of effort or control
from the programmer [161]. At one extreme, some research in parallelising
compilers has been conducted in the past decades, in order to automatically
convert sequential programs into a parallel form (mainly focusing on loops).
However, the results of that research are still limited, especially for object-
oriented languages, due to the complexity of detecting when it is safe or worth
to parallelise codes with non-trivial data dependencies [160, 154].

The impossibility to simply rely on a compiler to efficiently parallelise an
application made the programming community move on to explicit parallel pro-
gramming. Nevertheless, this is not an easy step because most mainstream lan-
guages were designed for sequential programming [95, 94]. The lack of support
for concurrency and distribution in those languages was initially compensated
with special libraries for threading, synchronisation and remote communica-
tion, e.g. Pthreads [50] in C/C++ or RMI [158] in Java. In this category,
two models have gained the widest acceptance in high-performance computing:
OpenMP [102] and MPI [116]. On the one hand, OpenMP offers an inter-
face to make a master thread fork child threads that work in parallel; it is
relatively easy to use compared to raw threading, but it is restricted to shared-
memory systems and fork-join parallelism. On the other hand, MPI can work in
distributed environments, structuring a computation in parallel processes that
exchange messages; nevertheless, it requires a considerable effort and expertise
to, for instance, fragment the application data and manage the communication
between processes.

3

1.1. Context and Motivation Chapter 1. Introduction

Without abandoning explicit parallelism but aiming for better productivity,
other approaches integrate concurrency and distribution in the syntax of a lan-
guage, providing means to express the parallel structure of an application in
a higher level; such means include special constructs for e.g. loop parallelisa-
tion, message passing, spawning of computations or data distribution. This has
been done either by extending an existing mainstream language with special
syntax [110, 146] or by creating a brand new language [101, 100, 178]; the first
option usually has a lower learning curve, since programmers can reuse their
knowledge of the original language and incrementally learn the new syntax. A
family of languages in this category is based on the Partitioned Global Ad-
dress Space (PGAS) model, which presents a shared partitioned address space
to simplify the development of distributed applications, while exposing data
locality to enhance performance; some of these languages follow a pure SPMD
pattern [110, 146], while others are able to dynamically spawn asynchronous
threads [101, 100]. Another group in this category is the so-called concurrency-
oriented languages [178, 121], which focus on distribution and fault tolerance.
The most successful one is perhaps Erlang, which expresses distributed appli-
cations as a set of lightweight processes that share nothing and communicate
through messages, but in a more natural and easy way than e.g. MPI, by using
high-level language constructs that keep the network transparent.

As opposed to the aforementioned examples, implicit parallel programming
models for distributed-memory machines [184, 103, 84] feature few or no ex-
plicit parallel constructs and primitives. Instead, they combine a sequential
syntax with parallelism discovered at execution time. Therefore, they shift the
parallelisation effort from the user to the implementation of the model, thus
making possible for non-expert programmers to produce concurrent codes. In
Section 1.1.2 we distinguished between reasoning about parallelism and actually
battling with issues related to parallelisation and distribution, as the two main
tasks of the programmer. In implicit models, the former is still recommendable
to create opportunities for concurrency in the application, but the programmer
is freed from the latter and the complexity of the underlying system is hidden.
Although implicit models limit the ability of the user to tune for every last bit
of performance, they do it to maximise programmability. The tradeoff between
these two concepts defines then the productivity delivered by such a model.

1.1.4 StarSs for Parallel and Distributed Infrastructures

Star Superscalar (StarSs) is a task-based and dependency-aware programming
model that belongs to the field of implicit parallel programming. Applications
in StarSs are developed in a sequential fashion, while a runtime system is in
charge of exploiting their intrinsic concurrency at execution time. Parallelism
is achieved by means of hints given by the programmer, which identify parts of
the code that operate on a set of parameters. Such parts are encapsulated in
functions/methods, called tasks. With the help of those hints, task invocations
are automatically detected, as well as their data interdependencies. Hence, a
dataflow task graph is dynamically generated and tasks are scheduled and run

4

1.1. Context and Motivation Chapter 1. Introduction

Figure 1.1: Star Superscalar execution model.

in parallel - when dependencies allow - on the available resources. Figure 1.1
illustrates this execution model, where a single thread of control running the
main program of the application creates tasks and distributes them on resources.

StarSs is in fact a general term used to design a family of programming mod-
els for several hardware platforms, which share the same principles described
above. Thus, StarSs has been implemented for Cell/B.E [152], SMP [151] and
GPU [155], in each case supported by a specific runtime. This thesis will dis-
cuss an implementation of StarSs for parallel distributed infrastructures - such
as clusters, grids and clouds - based on the Java language.

The election of Java was motivated by a set of factors. Java is one of the most
popular programming languages nowadays, as reported in [51, 64]. Besides, it
has several appealing characteristics: object orientation, which favours encap-
sulation and code reuse; portability, since Java applications are first compiled
to an intermediate representation - the bytecode - that can run on any platform
provided with a Java Virtual Machine (JVM), which is useful in heterogeneous
environments; automatic garbage collection that frees unused memory, which
together with strong type checking makes programs more robust. Despite all
these benefits, the use of Java in high-performance computing is still limited.
The poor performance of the language in its early days - mainly caused by slow
bytecode interpretation and garbage collection pauses - hindered its adoption,
along with some numerical issues that are not completely solved yet [92, 35].
Nevertheless, the continuous improvements in the Just-in-Time compilers of
JVMs, which transform bytecode to native code at execution time, have signifi-
cantly narrowed the gap between Java’s performance and that of languages like
C/C++ [165, 82, 162, 1]. Java is extensively used in distributed computing,
primarily in software for the Web [8, 32] but also in frameworks for big-data
applications [6] and distributed databases [4], or even in contest-winning sys-
tems [28]. Regarding HPC, a relevant project based on Java is ESA Gaia [147].

5

1.2. Contributions Chapter 1. Introduction

1.2 Contributions

This thesis demonstrates that it is possible to develop a distributed parallel
application in a totally sequential fashion and independently of the underlying
infrastructure where the application will run.

In that sense, we contribute with (i) the design of an implicit parallel
programming model for distributed Java applications and (ii) a runtime
system that implements the features of the aforementioned model for three dif-
ferent distributed parallel infrastructures. With these contributions we address
the programming-productivity challenge, trying to maximise the programma-
bility of distributed parallel applications without hindering their performance
at execution time.

The publications that support this thesis are listed below in chronological
order. In the next subsections we describe the contributions in more detail and
link them with the publications.

• [168] E. Tejedor and R. M. Badia, COMP Superscalar: Bringing
GRID superscalar and GCM Together. In 8th IEEE International
Symposium on Cluster Computing and the Grid (CCGrid08), May 2008.

• [169] E. Tejedor, R. M. Badia, R. Royo and J. L. Gelṕı. Enabling HM-
MER for the Grid with COMP Superscalar. In 10th International
Conference on Computational Science 2010 (ICCS10), May 2010.

• [171] E. Tejedor, M. Farreras, D. Grove, R. M. Badia, G. Almasi and J.
Labarta, ClusterSs: A Task-Based Programming Model for Clus-
ters. In 20th International ACM Symposium on High-Performance Par-
allel and Distributed Computing (HPDC11), June 2011.

• [173] E. Tejedor, F. Lordan and R. M. Badia, Exploiting Inherent
Task-Based Parallelism in Object-Oriented Programming. In
12th IEEE/ACM International Conference on Grid Computing (Grid11),
September 2011.

• [170] E. Tejedor, J. Ejarque, F. Lordan, R. Rafanell, J. Álvarez, D. Lezzi,
R. Sirvent and R. M. Badia, A Cloud-unaware Programming Model
for Easy Development of Composite Services. In 3rd IEEE Inter-
national Conference on Cloud Computing Technology and Science (Cloud-
Com11), November 2011.

• [172] E. Tejedor, M. Farreras, D. Grove, R. M. Badia, G. Almasi and J.
Labarta, A High-Productivity Task-Based Programming Model
for Clusters. In Journal Concurrency and Computation: Practice and
Experience. Volume 24, Issue 18, pages 2421–2448, December 2012.

6

1.2. Contributions Chapter 1. Introduction

1.2.1 Parallel Programming Model for Java Applications

First, this thesis contributes with a parallel programming model for distributed
Java applications that will be referred to as Java StarSs in this document.
The features of this model have been presented in [168], [172], [173] and [170].

Java StarSs targets productivity when developing applications for distributed
parallel infrastructures; for that purpose, like other StarSs members, it is based
on fully-sequential programming, so that programmers do not need to deal with
the typical duties of parallelisation and distribution, such as thread creation
and synchronisation, data distribution, messaging or fault tolerance. Besides,
Java StarSs incorporates some distinctive properties that are considered contri-
butions of this thesis:

• Applications are ‘clean’: the model does not require to use any API
call, special pragma or construct in the application, everything is pure
standard Java syntax and libraries. The hints for parallelisation, like task
identification or parameter direction, are provided in an interface com-
pletely separated from the code of the application. This property brings
three benefits: first, it makes possible for some existing applications to be
parallelised without any changes to their source code; second, it makes
applications portable between different distributed infrastructures, since
programs do not include any detail that could tie them to a particular
platform, like deployment or resource management; third, it facilitates
the learning of the model, since Java programmers can reuse most of their
previous knowledge of the language.

• Hybrid tasking model: like other implicit models, Java StarSs permits
to select a method as a task, for it to be spawned on a resource at exe-
cution time. In addition, Java StarSs supports tasks that correspond to
web service operations, published in some web service container over the
Internet. These service tasks are integrated in the dataflow dependency
system together with regular method tasks, which means that Java StarSs
applications can dynamically generate workflows whose nodes can be ei-
ther methods or service invocations. In that sense, Java StarSs offers a
model to programmatically create composite services, that is, applications
that reuse functionalities wrapped in services or methods, adding some
value to create a new product that can also be published as a service.
This model is especially well suited for service-oriented environments like
clouds.

• Complete coverage of data types: all the data types of the Java lan-
guage are supported in Java StarSs, both for use in the main program of
the application and as task parameters. In addition to files, arrays and
primitive types, Java StarSs integrates objects in the model. The aim is
for the programmer to code as she would do in any sequential Java appli-
cation, where objects are created, receive invocations and field accesses,
are passed as parameters or returned by methods, while the management
of concurrency and distribution of these objects is kept transparent to her.

7

1.2. Contributions Chapter 1. Introduction

1.2.2 Runtime System for Distributed Parallel Infrastruc-
tures

Second, this thesis contributes with a runtime system that has been implemented
on top of three different distributed parallel infrastructures: Grid, Cluster
and Cloud. The runtime enables the features of the programming model and
abstracts it from what is underneath; in order to do so, it needs to handle the
peculiarities of each infrastructure while the model is unaware of them. There
exist a set of duties that are delegated to the runtime so that the programmer
does not have to deal with them, including: bytecode instrumentation, data
dependency analysis, data renaming, control of data layout and transfer, task
scheduling, task submission, execution and monitoring. Such responsibilities are
split between a master part, which runs the main program of the application,
and a worker part, which executes the tasks.

Among the functionalities implemented by the Java StarSs runtime, three
of them are presented as contributions of this thesis:

• Instrumentation: it corresponds to the dynamic transformation of a se-
quential application into an application that can be parallelised. The in-
strumentation process basically involves inserting calls to the Java StarSs
runtime in the application code before executing it, thus enabling the
asynchronous creation of tasks and automatic data synchronisation. This
functionality makes possible that the application is completely sequential
and eliminates the need for the programmer to use any API.

• Object management: the use of objects at the programming model level
requires some support in the runtime, in order to coordinate the concur-
rency and distribution of these objects. Hence, the Java StarSs runtime
incorporates the management of objects to the following functionalities:
task dependency detection, synchronisation in the main program and data
transfer.

• Orchestration of composite services: Java StarSs can be used to
program composite services, formed by calls to method and service tasks.
The Java StarSs runtime is able to orchestrate (steer) the execution of
such composites, scheduling and invoking the inner method or service
tasks when they are free of dependencies and managing the data exchange
between them.

Furthermore, for each infrastructure, this thesis provides an exhaustive study
of the productivity of Java StarSs, considering two factors: first, ease of pro-
gramming, comparing how a set of representative applications are developed in
Java StarSs and in other languages/models of the same field; second, perfor-
mance, presenting experiments in real-world infrastructures (e.g. Open Science
Grid, MareNostrum supercomputer, Amazon Elastic Compute Cloud) that com-
pare the Java StarSs runtime against other state-of-the-art approaches.

8

1.2. Contributions Chapter 1. Introduction

1.2.2.1 Grid

Grids are characterised by their heterogeneity, both in terms of the resources
they federate and the middleware that provides the basic services to access those
resources. On the one hand, the fact that Java StarSs is based on Java helps
working with heterogeneous resources, thanks to the portability offered by
this language. On the other hand, the Java StarSs runtime for grids is built on
top of a uniform API with a set of adaptors, each one implementing the client
of a particular grid middleware; this way, the runtime can interact with grids
managed by different middleware, belonging to different administrative
domains and requiring different credentials.

None of the Grid-related details mentioned above appear in the application,
thus ensuring that the programming model is not aware of the infrastructure.
The work for grids has been published in [168] and [169].

1.2.2.2 Cluster

In order to improve the performance of applications in the Cluster scenario, the
Java StarSs runtime for clusters was implemented on top of a communication
layer that enables fast one-sided communications and the exploitation of
high-speed networks.

Besides, the design of this runtime incorporates new features for the sake of
scalability: persistent workers that maintain a cache of in-memory task data,
which favours data reuse and locality; data communications between workers,
bypassing the master, which reduces the load of the latter; tasks that permit to
allocate and initialise data directly in a worker node, so that the total memory
is not limited to that of the master node, and so that there is no need to transfer
all the data from the master to the workers at the beginning of the application.
These new features do not affect the programmability of the model, which is
kept as simple as possible. The work for clusters has been published in [171],
[172] and [173].

1.2.2.3 Cloud

In its most recent version, the Java StarSs runtime has been adapted to func-
tion in Cloud environments, integrating it in a service-oriented and virtualised
platform.

On the one hand, the Cloud runtime can orchestrate the execution of multi-
ple composite applications simultaneously, each generating its own graph
of tasks. These applications can then be part of a service class, offered as op-
erations of a service interface and published as a service in a service container,
for clients to invoke them.

On the other hand, the runtime is also able to interact with virtualised
Cloud providers in order to elastically acquire and release virtual machines
depending on the task load that it is processing at every moment. In the same
execution, the runtime can dialogue with more than one Cloud provider, which

9

1.3. Thesis Organisation Chapter 1. Introduction

2. Programming Model

Arrays Objects

Methods Services

4. Grid 5. Cluster 6. Cloud

3. Runtime: Common Features

Instrumentation
Dependency

Analysis
Data

Renaming
Task

Scheduling
Data

Transfer

Distributed Parallel Infrastructures

Primitives Files

Figure 1.2: Thesis organisation.

facilitates interoperability and makes possible hybrid setups, like the combina-
tion of a private cloud with bursting to a public cloud to face peaks in load.

Similarly to the other two scenarios, a Java StarSs application does not
contain any Cloud specifics; service orchestration and virtualised resource man-
agement are automatically taken care of by the runtime. The work for clouds
has been published in [170] and submitted for publication in [136].

1.3 Thesis Organisation

Figure 1.2 depicts the organisation of this thesis.

The two chapters after this introduction present the basic features of the
Java StarSs programming model and the runtime system that enables it. More
precisely, Chapter 2 provides a comprehensive description of the whole program-
ming model, including the supported types of task (method, service) and data
(primitive, file, array, object). Then, Chapter 3 describes the core function-
alities of the runtime system, such as dependency analysis or task scheduling,
which exist in all its implementations.

After that, three chapters examine each of the distributed parallel infras-
tructures where Java StarSs has been implemented, namely Chapter 4 for Grid,
Chapter 5 for Cluster and Chapter 6 for Cloud. The order of these three chap-
ters corresponds to the chronological order in which the student worked on each

10

1.3. Thesis Organisation Chapter 1. Introduction

infrastructure, for the reader to understand the challenges found in each case
and how the thesis evolved to address them. In fact, both the programming
model and the runtime have been modified incrementally, resulting in an imple-
mentation that can execute in all these three kinds of infrastructure.

The Grid, Cluster and Cloud chapters follow the same structure, basically
divided in three parts: first, an introduction to the context of the infrastructure
and the design/technology decisions that it motivated; second, an evaluation of
the model on that infrastructure in terms of productivity (i.e. programmability
and performance); third, a state-of-the-art section that compares Java StarSs to
other models and runtime systems for that particular infrastructure. Therefore,
the state of the art is not discussed as a whole at the beginning of the document,
but separately at the end of chapters 4, 5 and 6, so that the implementation of
Java StarSs for each infrastructure is explained before the differences with other
approaches are highlighted.

Finally, Chapter 7 discusses the conclusions of the thesis and proposes some
future work. In addition, as a complement of the preceding chapters, Ap-
pendix A shows the code and dependency graph of some applications developed
and executed with Java StarSs.

11

1.3. Thesis Organisation Chapter 1. Introduction

12

Chapter 2

Programming Model

Parallel programming is generally considered to be harder than sequential pro-
gramming, partly because of the complexity of reasoning, developing, testing
and debugging an application in the context of concurrency. Programmers with
experience in writing sequential programs usually find it difficult to move to a
parallel environment, where they are faced with duties like work partitioning,
data partitioning, parallel data access control, synchronisation, communication,
etc. Such duties can affect programming expressiveness and make users reluc-
tant to adopt a given parallel language or model.

In that sense, this chapter presents a programming model, Java StarSs, that
intends to maximise programmability of Java applications running on paral-
lel and distributed infrastructures. Although the users of this model need to
think about opportunities for parallelism when designing their applications, the
programming is fully sequential, thus eliminating most of the aforementioned
drawbacks of concurrent/distributed programming.

The aim of the model is for the user to code as she would do with a sequential
Java application, where built-in control flow statements and primitive types are
used; where objects are created, receive method invocations or field accesses,
are passed as parameters or returned by methods; where arrays are accessed
by referencing their elements; where files are created or opened and read or
written by means of streams. Any data type of the Java language can be used,
independently of the infrastructure where the application will run.

The next sections gather all the features of the programming model, showing
how it can be used to easily parallelise a sequential program. The description
of the model is abstracted both from the runtime underneath - introduced in
Chapter 3 - and from the particularities of each infrastructure on which it has
been implemented - Chapters 4, 5 and 6. The chapter is organised in a first
section with a general overview of the model, followed by two sections with a
comprehensive specification of its syntax and semantics and how the user should
proceed.

13

2.1. Overview Chapter 2. Programming Model

2.1 Overview

The central concept in Java StarSs is that of a task, which represents the model’s
unit of parallelism. A task is a method or a service called from the application
code that is intended to be spawned asynchronously and possibly run in parallel
with other tasks on a set of resources, instead of locally and sequentially. In
the model, the user is mainly responsible for identifying and selecting which
methods and/or services she wants to be tasks.

A strong point of the model is that the application is programmed in a totally
sequential fashion; no threading or remote method invocation interface needs
to be used. However, at execution time, concurrency is automatically achieved
by intercepting the calls to the selected tasks and asynchronously launching
them, leaving to a runtime system - explained in Chapter 3 - all the burden of
managing the tasks, controlling the data they access and mapping them to the
available resources. Such runtime is also in charge of abstracting the application
from the infrastructure-related details, so that aspects like resource management
or deployment do not appear in the application code.

2.1.1 Basic Steps

The Java StarSs programming model mainly involves thinking about and choos-
ing the right tasks for our application. In order to do that, the user should pro-
ceed in two basic steps: identifying the tasks and selecting them. These steps
are summarised in Figure 2.1 and discussed next.

2.1.1.1 Identifying the Potential Tasks

In a first step, the programmer determines which will be the tasks of the appli-
cation. Tasks are entities enclosing a certain computation and they can be of
two types:

• Regular Java methods.

• Services, abstractly understood as a piece of software accessible over a
network through a well-defined interface.

Therefore, the current implementation of the model requires the task code to
be encapsulated either in a method or a service. In some cases, the application
may already be formed by calls to computationally-intensive methods or services
that are clear candidates to become tasks. Nevertheless, sometimes it may
be necessary to do some code refactoring in order to delimit what will be a
task, especially when the programmer does not start from scratch but from an
already existing sequential application. Figure 2.2 depicts an example of such a
situation: the code in (a) increments every element of a matrix A. Let us assume
that the user wants the inner loop that increments a row of the matrix to be
a task. For that purpose, the loop is encapsulated in method incrementRow, as
shown in (b).

14

2.1. Overview Chapter 2. Programming Model

Task Selection Interface {

}

Application {

}

fooMethod(...);

barService(...);

fooMethod

Identify tasks in sequential app Select the tasks

fooMethod

barService

Resource 1

barService

Resource 2 Resource N...

Task

Programming Model Steps

Unit of parallelism
Asynchronous computation

1. 2.

Figure 2.1: Steps of the Java StarSs programming model. In the application,
which is programmed sequentially, the user identifies the methods and services
to be tasks and then selects them. The model is based on inter-task parallelism
and task asynchrony.

Another aspect that the programmer should take into consideration is task
granularity. There is a general tradeoff when choosing the granularity of tasks:
more and smaller tasks help achieve better load balance when the application
runs whereas, on the contrary, fewer and coarser-grained tasks incur in less task
management and communication overhead. For example, in Figure 2.2(b), the
granularity of incrementRow (the amount of computation) is controlled by the
number of columns of the matrix (NCOLS). On the other hand, depending on
the infrastructure, the adequate granularity can vary (e.g. coarse grained in
grids, finer in clusters); however, this granularity can be a parameter of the
application, so that the code of the latter does not have to be adapted to each
infrastructure.

2.1.1.2 Defining a Task Selection Interface

Once the user has figured out which will be the application tasks, the next step
is selecting them. In order to do that, the user defines a Java interface which
declares those methods and services to be the application tasks.

The task selection interface is not a part of the application: it is completely
separated from the application code and it is not implemented by any of
the user’s classes; its purpose is merely specifying the tasks.

All the information needed for parallelisation is contained in this separate
interface, and not in the application code. In particular, each method or service

15

2.1. Overview Chapter 2. Programming Model

// A is a matrix of NROWSxNCOLS integers
for (int i = 0; i < NROWS; i++)

for (int j = 0; j < NCOLS; j++)
A[i][j]++;

(a)

for (int i = 0; i < NROWS; i++)
incrementRow(A[i]);

...

public static void incrementRow(int[] row) {
for (int j = 0; j < NCOLS; j++)

row[j]++;
}

(b)

Figure 2.2: Example of code refactoring. An application that increments the
rows of a matrix (a), composed by two loops, is reorganised to encapsulate the
inner loop in a method incrementRow (b) so that it can become a task.

declared in the interface must be accompanied by some metadata to uniquely
specify it and to state how its parameters are accessed. More details about these
metadata and the way they are provided will be given in Section 2.2.

2.1.2 Sequential Programming

The applications that follow the Java StarSs model are programmed in pure
sequential Java. The user is not required to include any API call or special
pragma in the code. Moreover, the invocation of a task (for both methods and
services) is performed on a regular Java method, and the application data is
also accessed as normal.

Even though tasks are asynchronously submitted to remote resources, the
model ensures sequential consistency of the parallel execution. In other words,
the results of the application are guaranteed to be the same as if it ran serially
on a single core. Actually, the user can test the application by running it
sequentially and also debug it locally; once the program behaves as desired, it
can be parallelised with the model, thus simplifying the testing and debugging
stages of the application development.

Regarding the application data, on the one hand, the user can select tasks
that share data through their parameters and, on the other, those data can
also be read and/or written later from the sequential part of the application;
in neither of those cases the user is aware of data being transferred back and
forth, data versioning or data access synchronisation. Moreover, the user does
not control the data layout of the application in a distributed execution. All of
this is taken care of transparently by the runtime, which makes sure that the
application performs its accesses on the right data versions and which manages
data locations, as will be seen in Chapter 3.

16

2.2. The Task Selection Interface Chapter 2. Programming Model

The way the programmer utilises the diverse features of the Java language
and its implications at Java StarSs level will be examined in Section 2.3.

2.2 The Task Selection Interface

The task selection interface is the means to tell Java StarSs about the tasks.
Each entry of the interface selects and describes a task method or service, and
is composed by two parts: first, the declaration of the method/service itself,
formed by its name, formal parameters and return value; second, some metadata
about the task, specified as Java annotations [31], which are a subset of the Java
syntax. Annotations consist of an at-sign (@) followed by an annotation type
and a list of element-value pairs in parentheses. These annotations are used
by the programmer to provide task information both at method level - “what
method/service am I referring to?” - and at parameter level - “how does the
task access its parameters?”.

Consequently, a Java StarSs programmer is responsible for choosing and
describing the tasks. Alternatively, Java StarSs could transform every single
method invocation into a task, but some of these methods could be too fine-
grained for them to be worth distributing. In that sense, the programmer knows
her application and can better decide which subset of methods are suitable to
become tasks. On the other hand, we are investigating techniques to automat-
ically infer how task parameters are accessed, but such research is out of the
scope of this thesis.

Figure 2.3 defines the syntax of the task selection interface, which will be
explained in the next subsections.

2.2.1 Method-level Annotations

Every task method or service in the interface must be preceded by an annotation
that marks it as such and describes it.

2.2.1.1 @Method

The @Method annotation is associated to a method task. It contains the follow-
ing elements:

• declaringClass (mandatory): fully-qualified name of the class that contains
the implementation of the method. It allows to uniquely identify a method,
together with the name of the method and the type of its parameters,
which can be extracted from the method declaration itself.

• isModifier (optional, default true): when set to false for an instance method
(i.e. non-static), it indicates that the method only reads the object it is
invoked on. The use of this element will be exemplified in Section 2.3.4.

• isInit (optional, default false): when set to true, the task is marked as an
initialisation task. Even though the programmer cannot specify the data

17

2.2. The Task Selection Interface Chapter 2. Programming Model

public interface class nameItf {

[@Constraints(property name = ”property value”)]
@Method(declaringClass = ”package name.class name”

[, isInit = [true | false]] [, isModifier = [true | false]])
return type method name(

[@Parameter([direction = [IN | OUT | INOUT]] [, type = FILE])]
parameter type parameter name

);

@Service(namespace = ”service namespace”, name = ”service name”,
port = ”service port”)

return type operation name(
parameter type parameter name

);

}

Figure 2.3: Syntax of a task selection interface, comprised of a method task and
a service task declarations. The annotations are represented in bold: @Method
for identifying a method, @Service for a service operation, @Constraints to specify
the resource requirements of a method task and @Parameter to state the direction
and type of a method task parameter. The elements of each annotation are in
italics.

layout of the application, she can use initialisation tasks to distribute data
uniformly among the available resources. Usually, they are methods that
allocate (and return) data in the resource where they run, and they are
especially treated in terms of scheduling. The usage and behaviour of this
kind of tasks will be further discussed in Chapter 3, Sections 3.5 and 3.6.

For a method to be a task, it must only fulfill a couple of restrictions. First,
the method must be pure, that is, it cannot access global data, only its parame-
ters and local variables. Second, the parameters, return value and callee object
(if any) of the method must be serializable - i.e. implement the standard Java
Serializable interface - for them to be sent over a network.

Java StarSs tasks can be either an instance method or a class method. Fur-
thermore, they can either be void or return an object, an array or a primitive
type.

2.2.1.2 @Service

The @Service annotation is associated to a service task, which corresponds
to a Web Service operation. A Web Service [68] is commonly defined as a
software system that supports interoperable machine-to-machine interaction
over a network. It has an interface described in a machine-processable for-
mat (WSDL [69]), containing the operations it offers. Other systems interact
with a Web Service in a manner prescribed by its description using SOAP [55]
messages, typically conveyed using HTTP [25].

18

2.2. The Task Selection Interface Chapter 2. Programming Model

In the task selection interface, service tasks are declared as normal Java
methods whose name and parameters match exactly those of the service opera-
tion to which they refer. Besides, this declaration comes along with a @Service
annotation, which has the following elements that complete the identification of
the service operation:

• namespace (mandatory): namespace of the service, i.e. the context for
the identifiers of the service.

• name (mandatory): name of the service.

• port (mandatory): service port where the operation is defined.

2.2.1.3 @Constraints

Optionally, the programmer can utilise a third type of method-level annotation,
only for method tasks. The @Constraints annotation allows to specify the set of
capabilities that a resource must have in order to execute the task. Thus, the
user can demand, for instance, some processor-related characteristics (architec-
ture, number of CPUs, GHz), memory, storage capacity or operating system.

Please note how these constraints do not tie the application to a particular
infrastructure because they are not a part of the application code, instead they
are placed in the task selection interface. Moreover, they are not mandatory,
they can be optionally used by the programmer to make sure that some resource
requirements of the tasks are fulfilled when scheduling them.

2.2.2 Parameter-level Annotations

Method tasks need an additional annotation at parameter level. The main pur-
pose of this annotation is to state how the task accesses its parameters, i.e. in
read, write or read/write mode. This information is of utmost importance be-
cause it permits to control dependencies on data accessed by several tasks. How
the Java StarSs runtime detects data dependencies based on this information
will be explained in Chapter 3, Section 3.3.

Service tasks, on the other hand, do not require the programmer to specify
any parameter access mode. The parameters of a web service operation are
always read-only: they are sent to the server running the service and whatever
happens in the operation code remains hidden to the user; the response of the
operation is provided through its return value.

2.2.2.1 @Parameter

The @Parameter annotation precedes each parameter of a method task. It can
have two elements:

• direction (mandatory in some cases, default IN): direction of the parame-
ter, i.e. how the parameter is accessed inside the task. It can be IN (read
mode), OUT (write mode) or INOUT (read/write). It is not necessary

19

2.3. The Main Program Chapter 2. Programming Model

for primitive types, for which direction is assumed to be IN because Java
primitives are always passed by value: the actual parameter is copied into
a location that holds the formal parameter’s value.

• type (only mandatory for files): Java StarSs type of the parameter. A
task parameter can be of any type supported in Java: primitives, objects
and N-dimensional arrays. In addition, Java StarSs features a special type
FILE intended for method tasks that work with files; in that case, what
the user passes as parameter is a String object containing the path to the
file. In most occasions, the user does not need to specify the type of the
parameter, since it can be automatically inferred from its formal type in
the method declaration; in particular, this can be done with objects, arrays
and primitives. However, for file parameters, the pair “type = Type.FILE”
must appear in the annotation; in this case, the Java StarSs type (FILE)
cannot be deduced from the formal type (String): the user needs to clarify
whether that string is a file URI or not.

Note that, for objects or arrays with IN direction and primitive types, none of
the elements listed above is mandatory, and therefore the @Parameter annotation
can be omitted.

2.3 The Main Program

Once the user has finished the task selection, the application is conceptually
divided in two parts (see Figure 2.4):

• The tasks: code that runs asynchronously in a certain resource.

• The main program: non-task code. It is completely sequential and exe-
cutes on the resource where the application is launched.

The main program is the part of the application where the programming
model features are applied. In other words, it is the code from where the user
can invoke tasks and eventually access their data, always writing in sequential
Java. In order to keep the simplicity of the model and, at the same time, make
possible the parallelisation, there is a need for a runtime system that steers the
application execution.

In practice, such steering is not performed in every single class that is ref-
erenced from the main program, but on a restricted set of classes that is con-
figurable by the user. Consequently, the main program becomes divided in two
areas: one that is under supervision and a black box whose code runs serially
with no intervention of the runtime. The reasons of this division will be ex-
plained in Chapter 3, which will also thoroughly describe the runtime support
for all the programming model features that are presented in this chapter.

The rest of this section first overviews two possible scenarios where the
programming model can be applied, which differ in how the main program is
exposed for execution. After that, it discusses how, in the context of the main

20

2.3. The Main Program Chapter 2. Programming Model

Task Code

Main Program
calls

Application Code

Programming model
not applied

Black Box

Task spawning

Data synchronization

Figure 2.4: Parts of the application code: main program and task code. In the
main program, except for the black-box area, the programming model features
are enabled.

program, the user deals with the key aspects of the model: invoking a task,
passing data to a task and working with data created/modified by a task.

2.3.1 Scenarios

The Java StarSs programming model contemplates two types of application,
listed next.

2.3.1.1 Regular Application

The first kind (Figure 2.5(a)) is a regular sequential Java application, formed
by the application class, which contains the main method, and the rest of classes
that are directly or indirectly referenced from that class. The main method is the
entry point for the main program and the first code that runs when launching
the application.

2.3.1.2 Composite Service

The second kind (Figure 2.5(b)) is an application accessible as a service. In this
case, the main program is actually a service operation (compositeService method)
implemented in a service class and offered in a service interface to external
users. Hence, the entry point for the main program is a web service invocation
which leads to the execution of the corresponding method. An @Orchestration
annotation must accompany a service operation method where the programming
model is applied.

This scenario allows to create composite services as sequential Java programs
from which other services and regular methods are called. Therefore, composites
can be hybrid codes that reuse functionalities wrapped in services or methods,

21

2.3. The Main Program Chapter 2. Programming Model

public class RegularAppClass {

public static void main(String args[]) {

... // main body

}

... // rest of the class

}
(a)

public class ServiceClass {

@Orchestration
public static Response compositeService(...) {

... // main body

}

... // rest of the class

}
(b)

Figure 2.5: Examples of two scenarios for a Java StarSs application: (a) regular
application with a main method that starts the execution, (b) composite service
operation provided by a remotely-accessible web service.

adding some value to create a new product that can also be published as a
service. This kind of applications fit in the area of Cloud Computing, which
will be addressed in Chapter 6.

2.3.2 Invoking Tasks

In Java StarSs, tasks are always invoked like a normal Java method, no mat-
ter whether they correspond to methods or to service operations. Figure 2.6
provides examples of invocations for both kinds of task.

2.3.2.1 Methods

As introduced earlier in this chapter, method tasks correspond to Java methods
implemented in a certain class. Even if a given method has been selected as a
task, its invocation from the main program remains the same.

An example can be found in Figure 2.6(a), line 1, where a task method sam-
pleMethod is called. Here, the method is static (although instance methods are
also supported, see Section 2.3.4) and returns an object of type Value. When the
application reaches line 1, a task for sampleMethod is asynchronously spawned,
thus letting the program continue its execution right away.

22

2.3. The Main Program Chapter 2. Programming Model

// method task invocation
1 Value val = sampleMethod();

// stateless service task invocation
2 statelessServiceOp(val);

// stateful service task invocation
3 SampleService s = new SampleService();
4 s.statefulServiceOp(val);

(a)

public interface SampleItf {

@Method(declaringClass = ”sample.Sample”)
Value sampleMethod();

@Service(namespace = ”http://sample.com/sample”,
name = ”SampleService”, port = ”SamplePort”)

void statelessServiceOp(
Value val

);

@Service(namespace = ”http://sample.com/sample”,
name = ”SampleService”, port = ”SamplePort”)

void statefulServiceOp(
Value val

);

}
(b)

Figure 2.6: Examples of task invocations from a main program (a), for both
methods and services (including stateless and stateful-like invocations). In (b),
the corresponding task selection interface is shown as a complement to the main
program in (a).

2.3.2.2 Services

The programming model also allows to execute service operations as tasks: the
invocation of a service task from the main program leads to the creation of an
asynchronous computation, like for any other task.

Services are external software entities accessible through a network and, as
such, they require a mechanism for the user to invoke them from the application.
In this sense, the invocation of service tasks is not different from that of method
tasks: service operations are called as regular Java methods as well. Chapter 3,
Section 3.2.4.1 will explain how the mechanism for service task invocation is
exactly implemented.

On the other hand, a service can have an internal state that might be mod-
ified when running one of its operations. In that regard, the model offers two
ways of calling a service operation: stateless, if the operation does not change
the state of the service, and stateful, if it does.

23

2.3. The Main Program Chapter 2. Programming Model

An example of a stateless service invocation is given in Figure 2.6(a), line
2. The statelessServiceOp operation is called by means of a static representative
method with its same name and parameters.

A stateful service invocation is slightly different: first, in line 3, an object of
class SampleService - which can be seen as the state of the service - is created;
then, in line 4, the operation is invoked on that object. Therefore, this time
the call is performed on a class representative method declared in class Sample-
Service, named after the service. Stateful invocations may modify the internal
state of the service and, consequently, Java StarSs guarantees that they will be
serialised so that the state is updated in mutual exclusion.

2.3.3 Sharing Data Between Tasks

Tasks are not isolated, they can access data coming from both the main program
and other tasks. The way for tasks - both methods and services - to share data
is by means of their parameters, return values and callees, never through global
data of the application (e.g. static class fields). Data created in the main
program can later be handled by a task, and also data produced or accessed by
a task can be reused by a subsequent task. Nevertheless, the user does not have
to explicitly control the various data versions nor the possible data dependencies
between tasks or between a task and the main program; this is all managed by
the runtime, as will be seen in Chapter 3.

As an example of task data sharing, in Figure 2.6(a), the val object returned
by sampleMethod in line 1 is then received as a parameter by sampleServiceOp
in lines 2 and 4.

2.3.4 Working with Objects

Like in other object-oriented languages, objects are the main concept which
drives the developing of a Java application. Hence, any Java-based parallel pro-
gramming model must address the issue of combining objects and concurrency.

In Java StarSs, objects can be created and used in the main program of
the application, and they can also appear anywhere in the signature of a task.
The aim is for the programmer to code as she would do with any sequential
application where objects are created, receive invocations or field accesses, are
passed as parameters or returned by methods.

The next subsections will go through the different aspects of programming
with objects in the model. A sample application, depicted in Figure 2.7, will
illustrate some of the explanations. Although this example uses a method task,
it could also have been done with a service task.

2.3.4.1 Objects in a Task

Figure 2.7(a) shows how Java objects created in the main program of the appli-
cation (a and b, lines 1-2) can eventually be used by a task afterwards (line 3,
foo method, selected in the interface in Figure 2.7(b)).

24

2.3. The Main Program Chapter 2. Programming Model

1 A a = new A();
2 B b = new B();

3 C c = a.foo(b); // call to a selected (task) method

... // other statements

4 c.bar(); // synchronisation by method call on c

5 int i = a.f; // synchronisation by field access on a
(a)

public interface AppItf {
@Method(declaringClass = ”example.A”)
C foo(

@Parameter(direction = IN)
B b

);
}

(b)

Figure 2.7: Sample sequential application (a) and its corresponding task selec-
tion interface (b). Method foo, implemented by class example.A, is chosen as a
task in (b); it is an instance method (invoked on an object of class A), receives
an input object parameter of class B and returns a C object.

Just like in any regular method call, a task object can be located in three
different positions, discussed next.

* Callee

Object a is the callee of method foo, i.e. the target object on which the
method is invoked. foo is an instance method implemented in example.A, speci-
fied in the interface as its declaring class, so it is invoked on an object of class A.
By default, the type of access on the callee object is assumed to be INOUT, but
the programmer can change it to IN by adding an isModifier element with value
false to the @Method annotation; this element can be helpful for avoiding a data
dependency between foo and a subsequent task that reads its callee (please refer
to Chapter 3 for more information about data dependency control):

@Method(declaringClass = ”example.A”, isModifier = false)
C foo(...); // foo accesses its callee object in read mode

In addition to instance methods, static ones are also supported. The dec-
laration in the interface for both kinds is equivalent, but all the considerations
just discussed do not apply on the latter since they are not invoked on any
object.

* Parameter

Object b is passed as parameter of method foo. In the declaration of foo
in the interface, the parameter is defined to have IN direction (@Parameter
annotation), i.e. the foo task will read it. Notice that the direction could also

25

2.3. The Main Program Chapter 2. Programming Model

be INOUT or OUT if the parameter were read/written or only written by the
task, respectively.

* Return Value

Object c is the return value of method foo. This case differs from the other
two in the fact that the object is not created in the main program but inside
a task. Conceptually, a return value is like a parameter that has always OUT
direction, since it is a result produced by the task.

In order to keep the asynchrony in the generation of tasks that return an
object, the programming model features future objects [109]: whenever there is
a call to a task method returning an object, the task is immediately spawned
and an object of the same class, the future, is created for it to take the place
of the not-yet-generated object in the main program. This requires the class of
the object to have an empty constructor with no arguments, which will be used
to create the substitute object and return it right away.

For the programmer, future objects are just like any other object. Thus,
in the main program, the object returned by a task call can then be accessed
or passed to another task. Synchronisation is completely transparent to the
programmer, as will be explained next in Section 2.3.4.2.

2.3.4.2 Access in Main Program

Any object that participates in a task call can be accessed later on in the main
program. From the point of view of the programmer, the use of an object is not
different whether it has been created/accessed by a task before or not.

However, in order to guarantee the sequential memory consistency of the
application, when the main program accesses an object previously produced or
updated by a task, a synchronisation is needed to fetch the right (last) version
of the object. The programmer is completely unaware of such process and codes
as if the application had to be run sequentially.

The next points describe the different kinds of access to an object that can
be detected and synchronised. More details about how this is done will be given
in Chapter 3, Section 3.2.

* Method Call

In Figure 2.7(a), object c, which was returned by the task method foo in line
3, is next accessed from the main program in line 4 by invoking the bar method
on it. The bar call on c is done as any other method call.

It is worth pointing out that the synchronisation for c is delayed until line
4, when bar is invoked and the last value for c is truly needed. This fact helps
increase parallelism, since other statements between line 3 and 4 (possibly in-
cluding task invocations) can execute before the main program is blocked to
synchronise.

* Field Access

An object can also have one of its fields accessed. Figure 2.7(a) shows an
access on field f of object a in line 5. A synchronisation is triggered at that
point because the foo task invoked in line 3 generates a new version of a (callee

26

2.3. The Main Program Chapter 2. Programming Model

Figure 2.8: Case of synchronisation by transition to black-box area. Object
y is returned by method task of class X, which we assume was selected as a
task and therefore is spawned asynchronously. When the main program reaches
the call to method blackBox, which is implemented in a non-watched class Z, a
synchronisation takes place to get y and pass it to blackBox.

objects have INOUT access mode by default), possibly modifying field f. Hence,
the last value for f has to be obtained and stored in i.

* Transition to Black-Box Area

The accesses to fields and the invocation of methods on objects are not
watched in those classes that are part of the black box of the main program (see
Section 2.3); therefore, the corresponding synchronisation mechanisms do not
take place when running code inside those classes.

However, as illustrated in Figure 2.8, there is a kind of synchronisation
by transition from watched code to the black box. This happens when, from
supervised code, there is a call to a method or a constructor of a class which is
part of the black box. If such method/constructor call receives as parameter any
object previously accessed by a task, a synchronisation is started. Such action
is necessary because the black-box code may read the object and therefore the
right value has to be passed.

2.3.5 Working with Arrays

Arrays in Java are objects, but a special kind of object. They act as containers
of a fixed number of elements of the same type. The elements of an array are not

27

2.3. The Main Program Chapter 2. Programming Model

1 int[] iArray = new int[SIZE];

2 B[][] bArray = foo(iArray); // foo is a task

... // other statements

3 int i = iArray[0]; // synchronisation by element access (1D)

4 B b = bArray[1][2]; // synchronisation by element access (2D)

Figure 2.9: Example of synchronisation by access to an array element from the
main program. foo is assumed to be a task that receives a one-dimensional array
as a parameter, updates it and returns a two-dimensional array. Those arrays
are accessed later in the main program, each forcing a synchronisation.

accessed with variable names, instead they are referenced by array expressions
that use non-negative integer index values. Moreover, the elements of a Java
array can be references to other arrays, thus forming multidimensional arrays.

2.3.5.1 Arrays in a Task

The positions of an array in a task are analogous to those of the rest of objects,
namely callee, parameter and return value. Nevertheless, an array is unlikely
to be the callee of a task, since the only methods that can be invoked on an
array are those inherited by the Object class, i.e. those that are common to all
objects, which provide very basic functionalities.

2.3.5.2 Access in Main Program

In addition to the kinds of access that apply to objects (method call, field access
and transition to black box), arrays are most typically accessed by referencing
one of their elements.

* Access to an Element
Figure 2.9 depicts an example of synchronisation by access to an array ele-

ment. Line 1 allocates a 1D array of integers which is later passed as a parameter
of method foo in line 2. This method, which is assumed to be selected as a task,
both reads and writes its parameter and returns a 2D array of B objects.

Line 3 reads the value of the element in position 0 of iArray, which causes
a synchronisation to get that array, modified by foo. Similarly, in line 4, the
synchronisation ensures that the 2D access on bArray will be done on the array
returned by foo. The same mechanism would be applied for any N-dimensional
array.

2.3.6 Working with Primitive Types

The Java programming language supports eight pre-defined primitive types,
namely byte, short, int, long, float, double, boolean and char. Character strings
are objects of the String class and therefore they are not a primitive type.

28

2.3. The Main Program Chapter 2. Programming Model

2.3.6.1 Primitives in a Task

Primitive types can be either a parameter of a method or a return value, and
so these are the two positions where they can be found in a task.

When passed as parameters, primitives have always IN direction, because in
Java they can only be passed by value. On the other hand, like for objects and
arrays, when a primitive type is returned by a task its direction is implicitly
OUT.

2.3.6.2 Access in Main Program

Since primitive types that act as parameters of a task are always passed by value,
this eliminates the need for synchronising them later in the main program. In
Figure 2.10, boolean b is an actual parameter of foo, a task method, called in
line 2; however, no synchronisation takes place when reading b in line 3.

Concerning primitives that are returned by a task, they are not objects and
consequently they cannot be replaced by futures. The synchronisation, in this
case, is immediate. In Figure 2.10, integer i is returned by foo in line 2; since
i might be required later, foo cannot be asynchronous and the main program
must wait for the task to generate i and then get that value. Hence, when
reaching line 4, the main program has already got the value and can run the
increment statement safely.

1 boolean b = false;

2 int i = foo(b); // foo is a task, immediate synchronization for i

... // other statements

3 boolean c = b; // no need to synchronise

4 i++; // previously synchronised

Figure 2.10: Example of synchronisation for primitive types. The invocation
of the task method foo is synchronous here, because of the integer value i that
it returns. Primitive types that are passed as task parameters, like b, do not
require synchronisation.

2.3.7 Working with Files

In addition to data in memory, a Java programmer also has means to work with
files. Arguably, one of the first things a programmer learns with a new language
is how to read and write to files, since the saving and loading of data is an
important feature of most software.

Java offers a rich variety of file handling classes, which are mainly based on
the use of streams: input streams are sources of data, whereas output streams
are destinations for data. Besides, I/O operations can deal either with raw bytes
or with characters in a given encoding.

29

2.3. The Main Program Chapter 2. Programming Model

1 String myFile = ”/path/to/myfile/counter”;

2 FileOutputStream fos = new FileOutputStream(myFile);
3 fos.write(VAL);
4 fos.close();

5 increment(myFile); // call to a task method

...

// synchronisation by input stream opening
6 FileInputStream fis = new FileInputStream(myFile);
7 int i = fis.read();
8 fis.close();

9 increment(myFile); // call to a task method

...

// no need to synchronise: out access
10 FileOutputStream fos = new FileOutputStream(myFile);
11 fos.write(NEW VAL);
12 fos.close();

(a)

public interface AppItf {
@Method(declaringClass = ”example.myClass”)
void increment(

@Parameter(direction = INOUT, type = FILE)
String file

);
}

(b)

Figure 2.11: Sample sequential application (a) and its task selection inter-
face (b). Method increment is chosen as a task in (b); it receives an input/output
file parameter where a counter value is stored and increments that value. In (a),
the main program opens streams on the same file incremented by the task.

The next subsections will go through the different aspects of programming
with files in the model. A sample application, depicted in Figure 2.11, will
illustrate some of the explanations.

2.3.7.1 Files in a Task

Files can be parameters of a method task. The way to pass a file to a task is by
means of a String object that contains the path to the file. In Figure 2.11(a), a
String that refers to a sample file is created in line 1; then, in line 2, an output
stream is opened on the file using that string, in order to write an initial value
for the counter (line 3); line 4 closes the stream; finally, a task method increment
is invoked passing the string as a parameter.

Regarding the task selection interface (Figure 2.11(b)) files are the only case

30

2.4. Summary Chapter 2. Programming Model

in which the programmer must explicitly specify the data type of the parameter;
because the real type of the parameter is String, it is necessary to state that
such string represents a file path. On the other hand, since method increment
reads the counter value in a file, increments it and writes it back to that file,
the direction of the parameter is INOUT.

2.3.7.2 Access in Main Program

The programming model permits to open streams on files in the main program,
even if those files are written by a previously-spawned task. It is guaranteed
that, when necessary, the right version of the file will be obtained before the
stream is created on it. Again, such process is transparent to the programmer,
who works with the stream in a normal way.

In Figure 2.11(a), line 6, an input stream is opened on myFile in order to
read its counter value (line 7). This triggers a synchronisation to get the value
incremented by task increment, invoked in line 5.

A second call to increment happens in line 9, thus generating a second asyn-
chronous task. When the program reaches line 10, another stream is opened on
myFile; however, since this time it is an output stream that truncates the file,
there is no need to wait for the value of the second increment: the stream is
created immediately and a new value is written in the file (line 11).

Besides the ones in Figure 2.11(a), the model also supports several other
kinds of streams and file handling classes, including buffered streams (like
BufferedInputStream) and character streams (like FileWriter).

2.4 Summary

This chapter has provided a whole view of the Java StarSs programming model
and constitutes a specification of its syntax, semantics and usage.

The main purpose of the model is to hide the complexity of developing
Java applications for parallel and distributed infrastructures. Writing such an
application with this model only requires sequential programming skills: the
application code is in plain serial Java, with no changes to the way the pro-
grammer invokes methods and works with data, and no need to include any
library call, pragma or infrastructure-related detail.

In Java StarSs, the user is primarily responsible for identifying and choosing
the application tasks, which are the model’s unit of parallelism: concurrency
is achieved by asynchronously spawning tasks to a set of available resources.
Tasks are methods or services called from the application and selected by the
user in a separate Java interface, which contains all the information needed
for parallelisation. Even if the programming is sequential, it is advisable that
the user think about opportunities for concurrency and task granularity when
choosing the tasks.

So far, little information has been given about how the application is ac-
tually run, i.e. how the various features of the programming model are made

31

2.4. Summary Chapter 2. Programming Model

possible at execution time. In that regard, the model is supported by a runtime
system that is in charge of managing the execution of the application; its general
characteristics will be described in Chapter 3. Furthermore, some of the aspects
of the model were conceived for or fit better in a particular environment; hence,
the three infrastructure chapters (4, 5 and 6) will focus on different parts of the
model. Those chapters will also complement the current chapter with examples
of real applications and benchmarks programmed with Java StarSs.

32

Chapter 3

Runtime: Common
Features

As a result of following the steps of the Java StarSs programming model, pre-
sented in Chapter 2, the user ends up with two outcomes: (i) a sequential
application and (ii) an interface that selects the tasks. Clearly, these two ele-
ments by themselves do not enable parallelisation: there is a need for a runtime
system that, taking (i) and (ii) as input, provides the magic and brings the
model’s features into action.

In that regard, this chapter describes the core functionalities of the run-
time system on top of which the programming model is built. This includes
generating asynchronous tasks, watching data accesses from the main program,
controlling task dependencies, transferring data, scheduling, submitting and
monitoring tasks; all this is done automatically and transparently to the pro-
grammer, and keeping the application agnostic to the infrastructure. Moreover,
the chapter is a link between the programming model characteristics - what the
user writes - and their implementation - what happens at execution time.

The functionalities discussed here are common to the three distributed in-
frastructures considered in this dissertation (Grid, Cluster and Cloud). The
next chapters (4, 5 and 6) will show how the design of the runtime was adapted
to each infrastructure to address its particularities.

The chapter is organised in a first section about the general structure of
the runtime, followed by six sections, each corresponding to one of the core
functionalities. The functionalities are presented as they manifest during the
application execution, so that the reader can get a better picture of the entire
execution process.

3.1 General Structure

The Java StarSs runtime is organised in a master-worker structure, as depicted
in Figure 3.1:

33

3.1. General Structure Chapter 3. Runtime: Common Features

Master RT

Main Resource

Computational Resource

...

Service
Resource

Task

Worker RT

Main
Program

Task
Code

Task

Task
Code

Task generation
Data dependency analysis

Task scheduling & submission
Data transfer

instruments

steers

submits

calls

Data renaming

Figure 3.1: Java StarSs runtime structure. The master side deals with the main
program of the application, whereas the worker side handles the task code.

• Master : the master part executes in the resource where the application
is launched, i.e. where the main program runs. It can be described as
the ‘brains’ of the runtime: it is responsible for steering the parallelisation
of the application and implements most of the features of the runtime,
which basically concern task processing and data management. In a first
phase, the master runtime inserts some code in the application to spawn
tasks and synchronise data; when the main program starts running, tasks
are asynchronously generated and the runtime inspects which data they
access and how, thus discovering the data dependencies between them;
after that, the dependency-free tasks are scheduled on the available re-
sources; finally, the master runtime transfers the input data of the tasks
to their destination resources, submits them for execution and controls
their completion.

• Worker : the worker side of the runtime is mainly in charge of responding
to task execution requests coming from the master, although in some
designs of the runtime it also has data transfer capabilities, as will be seen
in Chapter 5. On the other hand, the worker runtime is only present in
worker computational resources, which typically correspond to a node of a
cluster or grid, or a virtual machine in a cloud; in service resources, which
are services deployed in an external container, the task code is executed
with no intervention of the runtime on the server side.

34

3.2. Bytecode Instrumentation Chapter 3. Runtime: Common Features

3.2 Bytecode Instrumentation

As introduced in Chapter 2, Section 2.3, the main program of the application is
divided in two parts: one that is under supervision of the Java StarSs runtime,
where the programming model features are applied, and another one that is seen
as a black box, whose code runs normally. The first part is the one instrumented
by the runtime. In short, instrumenting the main program means inserting some
logic in it to:

• Replace the calls to the selected methods and services by the asynchronous
creation of their associated tasks.

• Watch the data accesses, in order to ensure the sequential memory con-
sistency of the execution.

Figure 3.2 shows the elements that intervene in the instrumentation process
and how they interact.

Original
Application

provides
Task Selection

Interface

Instrumented
Application

Java StarSs
Runtime

reads instruments

calls

.class
.class

Figure 3.2: As a result of applying the programming model, the user provides the
Java classes corresponding to the task selection interface and the sequential ap-
plication. In order to enable its parallelisation, the application is instrumented
to insert calls to the Java StarSs runtime at certain key points. At execution
time, the runtime will use the information in the interface to parallelise the
instrumented application.

3.2.1 How?

The runtime instruments the application with the help of Javassist [33], a Java
library for class editing. This tool can be used for Aspect-Oriented Program-
ming [129], which allows to express cross-cutting concerns of a program in stand-
alone modules called ‘aspects’. An aspect is essentially the combination of some
code - the ‘advice’ - plus the point of execution in the application where that

35

3.2. Bytecode Instrumentation Chapter 3. Runtime: Common Features

code needs to be applied - the ‘pointcut’. Javassist works with the bytecode of
the application, provided by the user; bytecode is the format to which Java is
compiled and that the JVM knows how to interpret, i.e. the classes.

In Java StarSs, the pointcuts are both the calls to the selected tasks and
the accesses to their data from the main program, while the advices are the
code of the runtime that handles those events. In other words, the instrumen-
tation mainly permits to intercept and respond to a set of key events, thanks
to the insertion of some additional code in the original application that checks:
first, whether a given method invocation corresponds to a selected task; second,
whether it is necessary to synchronise the data involved in a certain access.

3.2.2 When?

The instrumentation is always performed before the application starts to run;
indeed, only an instrumented application, i.e. containing calls to the runtime,
can be parallelised. However, depending on the type of application (see Chap-
ter 2, Section 2.3.1), the instrumentation is done on-the-fly or offline.

For regular applications, the instrumentation usually takes place when launch-
ing them, in a dynamic way: before loading an application class which does not
belong to the black box, the runtime first instruments it and then lets the mod-
ified class be loaded into memory.

In the case of composite service applications, class instrumentation happens
before the service is published. Hence, classes are instrumented statically, the
modified bytecode is stored in class files and then these files are included in
the service package; the package is later deployed in a container and the service
becomes ready for execution. Note that regular applications could also be in-
strumented offline, but most users find it simpler to do it in a single step when
starting the program.

3.2.3 What?

By default, the runtime only instruments the class containing either the main
method (for a regular application) or the composites (for applications deployed
as services). The user can tell otherwise by defining an instrumentation path,
whose concept is similar to that of the Java class path, but in this case it specifies
the classes to be instrumented.

Typically, amongst all the classes referenced by a given application, the
user only calls tasks and eventually accesses their data from a certain subset of
classes; therefore, it makes sense to instrument only the latter and leave the rest
untouched. Examples of classes that are likely to belong to the black box are
standard Java libraries (lists, hash tables, etc.) or classes in external packages
that were not programmed by the user. The instrumentation does add some
overhead to the execution, due to the extra checks inserted in the code, and so it
is advisable to restrict its scope; in general, though, such overhead is negligible
when working in distributed environments.

36

3.2. Bytecode Instrumentation Chapter 3. Runtime: Common Features

3.2.4 What For?

As introduced in Chapter 2, Section 2.1.2, the Java StarSs model frees the
user from including any invocation to the runtime in the application; instead,
this is done automatically by instrumenting its bytecode. Thus, the purpose of
the instrumentation process is to produce a modified application that is able
to intercept certain events and inform the runtime about them, so that the
latter can take the necessary actions to respond to those events and steer the
parallelisation of the application.

The next two subsections discuss the kinds of event that need to be watched
by the runtime and the behaviour that they trigger.

3.2.4.1 Asynchronous Task Generation

As seen in Chapter 2, Section 2.3.2, both method and service tasks are invoked
from the main program as regular Java methods. In the case of method tasks,
the invocation is performed on the same method that was selected as a task,
implemented by some Java class. Regarding services, the actual method invoked
is a local representative of the service operation with the same signature. Every
web service interface specifies the operations it provides and the data types that
these operations use; with this information, a representative for the task service
operation is automatically generated along with the necessary Java types, for
the programmer to use them in the main program.

Both for method and service tasks, the invocation needs to be substituted
by the spawning of an asynchronous task. This means that, neither a method
corresponding to a method task nor a representative of a service task is executed
locally; instead, in both cases the runtime must add a task to the graph and, at
some point, execute the method in some resource / call the service operation.

In that sense, the instrumentation phase intercepts every method call that
is performed from the main program and checks if the invoked method corre-
sponds to a selected method or service task. In order to do that, the runtime
reads the content of the task selection interface, i.e. the declared methods and
their attached annotations, and compares them with the called method. The
compared information depends on the kind of task:

• A match is found for a method task when the called method has the same
signature (name and parameter types) and declaring class as that task.

• A match is found for a service task when the called method - the local
representative - has the same signature as the service operation and the
package of the method’s class is a concatenation of the namespace, service
name and port name of the operation.

When a given call is identified as a task invocation, the runtime replaces
the original call by the creation of a task containing the information of that
method or service operation; at execution time, that task will be spawned asyn-
chronously, thus letting the main program continue its execution immediately.
Otherwise, the original call is left untouched.

37

3.3. Data Dependency Analysis Chapter 3. Runtime: Common Features

The task generation mechanism is essential for the asynchrony of the model:
the main program can keep going while tasks are spawned and processed in the
background by the runtime.

3.2.4.2 Data Access Surveillance

Sometimes, a piece of data that is created or updated by a task is later accessed
from the main program, in any of the ways that have been described in Chap-
ter 2, Sections 2.3.4 to 2.3.7. In such a situation, the main program cannot
continue running until the right value for those data - the output of the task -
is obtained.

In that regard, the Javassist tool permits to intercept and get information
about several kinds of useful events, namely: method calls (to inspect their callee
objects or parameters), field accesses (to check the associated object), object
creation (to control streams created on files) and accesses to an array element
(to check the array). This wide variety of supported pointcuts/events makes it
possible to leave all the burden of watching data accesses to the runtime and,
consequently, to allow the programmer to use her data in the main program in
a normal way: it is the code inserted during the instrumentation phase that
takes care of synchronisation.

From the moment a piece of data is first accessed by a task, it remains
under surveillance of the runtime, which maintains a registry of task data; this
is important not only to discover dependencies between tasks, as will be seen in
Section 3.3, but also to control data accesses from the main program. Indeed, the
runtime must watch such accesses in order to guarantee the sequential memory
consistency of the application. Therefore, when the main program reaches a
point where some data previously created/modified by a task is accessed, the
runtime detects such situation, blocks the thread running the main program
and starts a synchronisation to fetch the data from the node where the task
ran. Once the data are available, the access is performed and the main program
resumes its execution.

3.3 Data Dependency Analysis

As a result of the instrumentation phase, the Java StarSs runtime produces
a modified bytecode of the application that can determine when a selected
method or service is invoked and, in such a situation, instruct the runtime
to asynchronously create a task.

Consequently, as the main program runs, the runtime receives task creation
requests. Each of these requests contains information that uniquely identifies
and describes the task, most of it taken from the task selection interface and its
annotations. Of special interest is the list of task parameters, which stores the
value, type and direction of each parameter.

The information about parameter direction is of utmost importance for the
runtime, because it is the basis for the data dependency analysis system. A

38

3.3. Data Dependency Analysis Chapter 3. Runtime: Common Features

task is said to be dependent on another task if the former reads some data
written by the latter. In this sense, for every new task, the runtime detects
the data dependencies between that task and the previous ones, taking into
account how all of them access their parameters. As new tasks come and their
dependencies are discovered, the runtime dynamically builds a task dependency
graph, whose nodes are the tasks and whose arrows symbolise the dependencies.
Such graph represents the workflow of the application and imposes what can be
run concurrently and what cannot.

Java StarSs features a complete dependency analysis mechanism, compris-
ing all the data types that can be used in a Java program and that may be
subject to dependencies, namely objects, arrays and files. Primitive types are
excluded from this analysis because their direction is always IN, as discussed
in Section 2.3.6 of Chapter 2, and consequently they cannot incur in depen-
dencies. In order to know if two tasks access the same object or array, the
memory references of these objects/arrays are compared, whereas in the case of
files the absolute paths to the files are checked. It is worth pointing out that
callee objects and return values, even if they are not strictly parameters, are
also considered in the dependency study.

Figure 3.3 illustrates the dependency analysis technique of the runtime with
an example. In Figure 3.3(a), there is the code of an application that generates
random numbers and cumulatively adds them. Line 1 creates a Sum object -
initialised to zero - that will store the sum, and line 2 sets a name for a file
rdFile where random numbers will be written in. From line 3 to 6, a loop with
two iterations calculates the sum of two random numbers. First, in line 4,
genRandom generates a random number and writes it in rdFile; second, in line
5, the add method adds the number in rdFile to the value held by object sum.

Both genRandom and add are selected as a task in Figure 3.3(b). The file
parameter of genRandom has OUT direction (it is truncated and overwritten with
a new number at each iteration). add receives an input parameter of type file;
moreover, it is an instance method of class Sum, and so it is always invoked on
a callee object belonging to that class; such callee, as explained in Section 2.3.4
of Chapter 2, is assumed to be accessed in INOUT mode by default.

Finally, Figure 3.3(c) shows the task dependency graph built by the runtime
as a result of running the code in Figure 3.3(a), taking into account the interface
in Figure 3.3(b). A total of four tasks are created, two per iteration of the loop.
The task numbers correspond to the order in which the tasks are generated.
The continuous arrows represent the real dependencies, i.e. those that cannot
be avoided, which appear when some data is first written by a task and later read
by another task. In the application, such situation happens in two cases: first,
when add reads the file written by genRandom in the same iteration; second,
when add reads the accumulated value of sum, updated by another add in the
previous iteration. Note how these dependencies are found automatically and
on-the-fly as the application executes and the tasks are asynchronously spawned.

Section 3.4 will discuss another functionality of the runtime, data renaming,
which is strongly related to the dependency analysis. Such functionality allows
to prevent ‘false dependencies’, as it will be explained next.

39

3.3. Data Dependency Analysis Chapter 3. Runtime: Common Features

1 Sum sum = new Sum(0);
2 String rdFile = ”random.txt”;
3 for (int i = 0; i < 2; i++) {
4 genRandom(rdFile); // rdFile ← random()
5 sum.add(rdFile); // sum ← sum + val(rdFile)
6 }

(a)

public interface SumItf {
@Method(declaringClass = ”example.Sum”)
void genRandom(

@Parameter(direction = OUT, type = FILE)
String fileName

);

@Method(declaringClass = ”example.Sum”)
void add(

@Parameter(direction = IN, type = FILE)
String fileName

);
}

(b)

genRandom

T1

genRandom

T3

T2

add

T4

add

Real

dependencies dependencies

False

WaW(rdFile)

WaR(rdFile)
RaW(rdFile)RaW(rdFile)

WaW(sum)

RaW(sum)

(c)

Figure 3.3: Main program of the Sum application (a), its corresponding task
selection interface (b) and the graph generated when running it (c). At every
iteration, the genRandom task method generates a random number and writes
it in file rdFile; after that, method add (also a task) adds that number to a sum
stored in the sum object. When executing the application, the runtime detects
different kinds of dependencies, some of which can be avoided by means of a
data renaming technique (WaW, WaR), whereas some cannot (RaW).

40

3.4. Data Renaming Chapter 3. Runtime: Common Features

3.4 Data Renaming

Two subsequent accesses to the same data can lead to different kinds of de-
pendencies [123]. When the first access is for writing and the second one is for
reading (Read-After-Write or RaW) the dependency cannot be prevented. On
the contrary, when dealing with Write-after-Write (WaW) and Write-after-Read
(WaR) combinations, the dependencies disappear if the data are renamed.

In that regard, the Java StarSs runtime implements a renaming/versioning
system for task data: when it processes a task that writes a parameter, the
runtime generates a renaming - a new name - for that parameter. The main
objective of the renaming technique is to avoid false dependencies between tasks,
so that the task dependency graph exhibits more parallelism.

A renaming can be seen as a particular version of a given piece of data, and
therefore it is identified by a pair <data id, version id>. In the runtime, new
data versions are registered as writer tasks are generated; also, if the main pro-
gram updates some data previously accessed by a task, a renaming is created
as well. Hence, a registry is maintained to keep track of all the data accessed
by tasks and the main program, as well as the versions they read and/or write.
At every moment, the runtime knows which versions of which data each task
needs/produces; furthermore, if the main program accesses some data, the run-
time can identify the right version to obtain in order to guarantee the sequential
memory consistency of the application.

Nevertheless, the renaming mechanism does not only involve creating a new
name, it also implies allocating new memory/disk space for the renamed data.
This way, two tasks that work with different versions of the same data can run
simultaneously, even in the same node. For instance, in Figure 3.3(c), T2 and
T3 can execute in parallel, since there are no real dependencies between them.
T2 reads the first version of rdFile, produced by T1; on the other hand, T3
writes rdFile, generating a new version and causing a WaR dependency with
T2. The fact that the new version of rdFile is stored in a new (renamed) file
makes it possible that T2 and T3 execute concurrently, each working with a
different renaming of rdFile. The explanation for the resolution of the WaW
dependencies in Figure 3.3(c) is analogous.

As the execution progresses, a renaming might become obsolete. This hap-
pens when all the reader tasks for that concrete renaming have already com-
pleted. The runtime is able to identify such a situation and to instruct the node
that stores the renaming to either delete it or reuse its space for a new version,
in order to decrease the memory footprint. In the example of Figure 3.3(c),
when T2 ends, the first version of rdFile becomes obsolete and can be removed
because no other task will read it.

3.5 Data Layout and Transfer

As introduced in Chapter 2, Section 2.3, the creation of data in a Java StarSs
application can happen in two scopes:

41

3.6. Task Scheduling Chapter 3. Runtime: Common Features

• In the main program: the data are allocated in the resource running the
main program, either in memory (for objects, arrays and primitive types)
or in a disk accessible from that resource (for files).

• Inside a task: tasks can also produce new data and make them available
to possible consumers - other tasks or the main program - through their
output parameters, e.g. a return value of type object/array/primitive or
an output file parameter. In the case of method tasks, those data initially
reside in the resource where the task ran, also in memory or disk. On the
contrary, the data produced by a service task invocation is returned to
the master runtime, which acts as the client of the service, and therefore
those data are allocated in the main resource.

Data-allocating method tasks bring two advantages that are crucial for scal-
ability. First, they permit to work around the restriction that all the application
data must fit in one node (the one that executes the main program): the overall
memory/disk space becomes the addition of every node’s memory/disk. Sec-
ond, the fact that data is initially distributed reduces the startup time of the
application, since it prevents the main node from being the source of all data
and turning into a communication bottleneck.

No matter their initial location, data will flow between nodes during the
application execution depending on task scheduling, which will be described
in Section 3.6. The runtime keeps track of all the locations where each data
version is at every moment. This way, once the destination resource for a
method task has been decided, the runtime knows where to find the input
data of the task and can perform the necessary data transfers to that resource;
concerning service tasks, the inputs are transferred to the main resource so
that they can be embedded in the invocation message (more information in
Section 3.7). Similarly, when the main program accesses some data that is not
locally available, the runtime responds by transferring the right data version
for the access to complete. In order to learn about the technologies used for
transferring data, please refer to the infrastructure chapters (4, 5 and 6).

Hence, for the sake of simplicity of the programming model, the user is
unaware of the exact location of her data and where they are transferred to as
the application progresses. Also importantly, the user does not control the data
layout of the application, e.g. by specifying the partitioning and distribution of
an array among a set of resources when creating it. Nevertheless, the model does
provide a basic mechanism to uniformly distribute data across worker resources:
by marking data-allocation tasks as initialisation tasks, as was presented in
Section 2.2.1 of Chapter 2 and will be further discussed next in Section 3.6.

3.6 Task Scheduling

A task that depends on other tasks remains in the task dependency graph until
all its predecessors have completed and, as a consequence, its dependencies are
solved. When this happens, the task is ready to be scheduled on a resource.

42

3.6. Task Scheduling Chapter 3. Runtime: Common Features

As a general rule, the runtime is provided with a list of worker resources,
each of them having a number of assigned slots; these slots correspond to the
maximum number of simultaneous tasks that the resource can execute. A com-
putational resource usually has as many slots as cores, while in the case of a
service resource that number is related to the server capacity. An example of
the configuration files that describe the resources to be used by the runtime can
be found in Appendix B.

If the runtime is able to find an available resource - with free slots - that can
run a dependency-free task, such task is scheduled on that resource. Otherwise,
the task is added to a queue of pending tasks waiting for a resource to be freed.

Java StarSs implements several scheduling policies to map a task to a given
resource. These policies depend on the task type and they are discussed in the
next two subsections.

3.6.1 Method Tasks

Method tasks are scheduled on computational resources, either physical or vir-
tual. For such kind of resources, the runtime has information about their ca-
pabilities (e.g. memory, disk, architecture, etc.). As explained in Chapter 2,
Section 2.2.1, the user can add an annotation to a method task in the task selec-
tion interface to define the constraints of that task. If such annotation is present
for a given task, the runtime first filters the available resources depending on
their capabilities, keeping only those that fulfill the task constraints; otherwise,
the list of resources is not filtered.

Once the runtime has found the list of suitable resources for a task, it can
apply two different scheduling algorithms, described next.

3.6.1.1 Algorithms

* Locality Aware - Default

As seen in Section 3.5, the runtime manages the flow of data between re-
sources and maintains a registry of where those data reside. Such registry is a
key structure for the default scheduling algorithm, which is locality-aware: the
runtime tries to exploit data locality when selecting the worker resource that
will execute the task.

More precisely, when deciding where to run a given task, the runtime checks
its input/in-out parameters and where they can be found; the worker with a
higher number of these parameters in its local memory/disk will be chosen.
Similarly, when a task ends and a resource slot gets free, the pending tasks
will be examined to find the one with the highest score (number of parameters
already on that resource).

* Round Robin - Initialisation Tasks

Section 2.2.1 of Chapter 2 showed how the user can mark a task as an ‘initial-
isation task’. These kind of tasks are treated differently in terms of scheduling:
they are assigned to resources in a round-robin fashion.

43

3.6. Task Scheduling Chapter 3. Runtime: Common Features

Typically, initialisation tasks enclose some data allocation and initialisation
instructions. This way, they can be utilised to uniformly allocate data across a
set of resources, where those data can remain for later use.

Figure 3.4 illustrates the use of initialisation tasks and the corresponding
scheduling decisions made by the runtime. In Figure 3.4(a), A is declared as a
4D matrix divided in N×N blocks, each block being a 2D matrix of doubles.
The block creation is done inside the method createBlock, which allocates a
block of M×M doubles and initialises every double with a given value VAL.
createBlock is chosen as an initialisation task in Figure 3.4(b). When running
the piece of code in Figure 3.4(a), assuming there are three available resources
with four slots each and N=6, the allocation of the blocks among the resources
resulting from the task scheduling would be the one in Figure 3.4(c).

3.6.1.2 Pre-scheduling

The Java StarSs runtime can work in pre-scheduling mode, where tasks are pre-
assigned to resources with no free slots at that moment, so that the transfers
for those tasks are triggered beforehand; later, when the processor gets free,
the next task can be submitted immediately, without having to wait for any
transfer.

This technique aims to overlap computation and communication as much as
possible, as well as to distribute the load of the master runtime all along the
execution, preventing ‘hot spots’ when many transfers have to be performed.

3.6.2 Service Tasks

Service tasks map to operations that execute on service providers. A certain
service can be offered by more than one provider, that is, several instances of
the same service can be deployed at different locations. The way the runtime
schedules tasks on service instances depends on the kind of service invocation
(see Chapter 2, Section 2.3.2).

On the one hand, for a stateless service invocation, the runtime simply picks
one of the free service instances, i.e. with at least one slot available. Thus,
when receiving a bunch of tasks linked to the same service, the load is balanced
among the instances of that service.

On the other hand, stateful service tasks are necessarily tied to a particular
instance of the service, because they modify the internal state of that instance.
As a consequence, all the tasks resulting from stateful invocations of the same
service are scheduled on the same service instance. In the task dependency
graph, all those tasks are arranged in a chain of dependent tasks to ensure
mutual exclusion when updating the state of the instance. Therefore, none of
the tasks is scheduled until the previous one in the chain has finished.

44

3.6. Task Scheduling Chapter 3. Runtime: Common Features

double[][][][] A = new double[N][N][][];

for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++)

A[i][j] = createBlock(M, VAL);

(a)

public interface AppItf {
@Method(declaringClass = ”example.App”, isInit = true)
double[][] createBlock(

int blockSize,
double initValue

);
}

(b)

(c)

Figure 3.4: In the code snippet in (a), A is a matrix divided in N×N blocks. The
createBlock method allocates a single block of size M×M doubles and initialises
all its elements with a given constant VAL. createBlock is selected as a task in the
interface in (b) and is also marked as an initialisation task (isInit = true field in
the @Method annotation); note that the parameters of createBlock do not need
the @Parameter annotation, since their type is primitive and, consequently, their
direction is IN. Finally, the scheduling of the createBlock initialisation tasks leads
to the allocation of blocks among resources shown in (c), assuming 3 resources,
4 slots per resource and N=6.

45

3.7. Task Submission & Execution Chapter 3. Runtime: Common Features

3.7 Task Submission, Execution and Monitoring

Once a task is scheduled on a certain resource and the necessary transfers of its
input data have been performed, the task is ready to be sent for execution.

In the case of a method task, the master runtime asynchronously submits
the task to the destination resource chosen in the scheduling step, where the
input data is already available; moreover, it registers for notifications coming
from the worker resource to inform about the completion of the task. In the des-
tination resource, the pre-deployed worker part of the runtime (see Figure 3.1)
will be in charge of the task execution. Depending on the infrastructure, that
worker runtime is transient or persistent: while in the former case a new JVM
process is started every time a task request arrives, in the latter a process re-
mains in the resource all along the application lifetime. The motivation and
implications associated to each type of worker runtime will be further explored
in Chapters 4, 5 and 6.

Concerning service tasks, the input data is in the main node, where the
master runtime acts as the client and performs a synchronous invocation of the
selected service instance. When the requested operation ends on the server, the
runtime gets a response with the return value of the operation, if any.

Furthermore, for any kind of task, the master runtime implements a fault-
tolerance mechanism: if there is an error in a task submission, the runtime tries
a second time with the same resource; if the submission fails again, the task is
rescheduled on another resource.

When a task completes normally, the runtime removes it from the task
dependency graph, possibly resulting in newly dependency-free tasks that are
ready to be scheduled.

Information about the underlying technologies used for task submission and
monitoring can be found in Chapters 4, 5 and 6.

3.8 Summary

This chapter has provided an overview of the basic functionalities of the Java
StarSs runtime (Figure 3.5), so that the user can get an idea of the whole
execution process of the application: how the main program is instrumented
to allow the creation of asynchronous tasks and to watch the data accesses;
how the created tasks can incur in data dependencies, and how the runtime
detects them and builds a task dependency graph; how the application data
is renamed to prevent some types of dependencies and how the runtime keeps
track of all the data versions and their locations; how dependency-free tasks are
scheduled on a set of available resources, possibly considering data locality or
task constraints; how the runtime transfers the input data of a task prior to
its execution; how tasks are submitted to their destination resources and their
completion is monitored.

All these functionalities are relevant because they free the user from manag-
ing data and computations in the context of concurrency and distribution. Of

46

3.8. Summary Chapter 3. Runtime: Common Features

Figure 3.5: Overview of the basic features of the Java StarSs runtime.

special importance, though, are the instrumentation and dependency detection
features, because they are crucial for enabling the programming model presented
in Chapter 2. The fully-sequential programming would not be possible if the ap-
plication were not automatically instrumented, and both task asynchrony and
data access from the main program inevitably require a dependency analysis
mechanism.

In this sense, the Java StarSs runtime integrates a programming model based
on asynchronous computations with an exhaustive data dependency detection
and synchronisation system, which comprises all the data types that can be
used in a Java application, namely objects, arrays, primitive types and files.
Furthermore, the runtime is able to handle two kinds of task, regular methods
and service operations, and make possible the data exchange between them.

The runtime features described here are common to all the infrastructures
contemplated in this dissertation. The next three chapters will go into detail
about how these features were designed and implemented in each infrastructure,
considering the singularities of the Grid, Cluster and Cloud scenarios while ab-
stracting the programming model from them. Those chapters will also evaluate
both the programmability offered by the model and the results of execution
tests in every scenario.

47

3.8. Summary Chapter 3. Runtime: Common Features

48

Chapter 4

Grid

This chapter starts a trilogy of chapters that overview three kinds of parallel
and distributed infrastructures, corresponding to the different scenarios where
the programming model has been applied. Amongst all the model’s features
presented in Chapter 2, each infrastructure chapter will highlight, demonstrate
and evaluate those features that are most relevant in each scenario.

In particular, the current chapter will begin this three-stop journey focusing
on the Grid. The content organisation will follow the same pattern in every
infrastructure chapter: first, an introduction to the context and to some basic
concepts; second, an explanation of the runtime design decisions motivated by
the scenario; third, a description of the technologies that influenced the runtime
implementation for that infrastructure; fourth, a programmability evaluation
of the programming model, comparing it to another approach for the same
scenario; fifth, the results of the experiments carried out in the infrastructure;
finally, a related work section and a concluding summary.

4.1 Context

4.1.1 The Grid

The term ‘Grid’ was coined by Ian Foster and Carl Kesselman back in the late
1990s [128] and it designs a set of loosely-coupled and heterogeneous resources,
owned by multiple parties, which are usually scattered over a wide geographic
area across multiple administrative domains and which share their computing
power and data storage capacity.

The origins of Grid computing lie in the growing need of certain scientific
applications for computing and storage capabilities. Grids can combine the
resources of many computers to create a vast computing resource, which can be
used to accomplish large and complex tasks.

Although the Grid was initially envisioned as a global network of computers
joined together, reality has brought instead hundreds of grids around the world,
each one built to help one or more specific groups of users.

49

4.1. Context Chapter 4. Grid

Figure 4.1: Grid architecture layers. Courtesy of the GridCafé website [23].

4.1.1.1 Architecture

The architecture of a grid is generally divided in four layers, shown in Figure 4.1.
While the two uppermost ones focus on the user, the two lowermost ones are
centred on the hardware.

• Network : it ensures the connectivity of all the resources of a grid. Some
grids are built on top of dedicated high-performance networks, such as the
intra-European GÉANT network [62], but grid nodes can also be inter-
connected by slow Wide Area Networks (WAN) or the Internet.

• Resources: this layer contains computers, storage systems, sensors and
instruments like telescopes that are connected to the network.

• Middleware: the middleware layer brings together the elements located in
lower layers (servers, storage, network) and enables them to participate in
a unified Grid environment. Furthermore, it provides the applications on
the top layer with access to Grid resources, by means of services covering

50

4.1. Context Chapter 4. Grid

the submission of jobs (computations), data management, security and in-
formation systems. Just like Grid resources, Grid middleware is heteroge-
neous too: each Grid infrastructure is managed by some given middleware
with its own set of tools, for instance the Globus Toolkit [117], gLite [132]
or UNICORE [163].

• Applications: applications in science, engineering, business, finance, etc.
fall into this layer. Moreover, it also includes portals and development
toolkits to support the applications, as well as software that monitors
resource utilisation by Grid users.

4.1.1.2 Virtual Organisations

Grid computing is about people sharing their resources to achieve a common
goal. This leads to the concept of a Virtual Organisation (VO): a group of people
in different organisations seeking to cooperate and share resources across their
organisational boundaries [118].

Therefore, the users of a grid are grouped into VOs. In order to achieve
their mutual objective, people within a VO agree to share their expertise and
resources, thus contributing to the creation of a grid. This grid can give VO
members direct access to each other’s computers, programs, files, data, instru-
ments and networks.

Nevertheless, such resource sharing must be controlled. Members of a VO
are subject to a set of resource-usage rules and conditions, which establish the
resources to which they have access and in what amount.

4.1.1.3 Secure Access

A subset of the Grid middleware is responsible for guaranteeing the secure access
of users to resources. One of the aspects of Grid security is authentication of
both users and resources.

The Grid utilises asymmetric cryptography [122] for authentication. Any
user willing to access the resources of a grid needs to be in possession of a key
pair: a public key or certificate, which is made public, and a private key, which
is kept secret. The user obtains a valid key pair from a Certification Authority
(CA), an entity that issues digital certificates and that is trusted by that grid;
the CA signs the key pair to confirm the identity of the subject - the user - in
the certificate. A CA-signed key pair is also known as the credentials of a user.

Once a user has got a certificate, she can use it to authenticate herself when
requesting access to Grid resources. Many grids use, in addition, a system of
proxy certificates or proxies for a user to delegate her rights to Grid services,
which may have to contact other services in behalf of the user. A proxy is created
by the user from her own credentials and is only valid for a limited period of
time, in order to minimise potential damage should the proxy be compromised.

Proxies can contain extensions carrying additional information about users,
such as their affiliations with VOs. This way, users are only authorised to access
Grid resources in a manner determined by their VO membership.

51

4.1. Context Chapter 4. Grid

4.1.1.4 Data Management

Data management is one of the key features of a grid, where potentially large
amounts of data are distributed amongst remote sites, possibly all over the
world. The primary unit for Grid data management is the file [19]: big data
is stored in files that may be replicated across different sites for reliability and
faster access. To ensure consistency between replicas, typically Grid files are
read-only, i.e. not modified after creation. Moreover, users do not need to know
where a file is located, as they can refer to a set of replicas of a file with a logical
name.

Storage devices - e.g. disks, tapes - are connected to other resources - com-
puters, instruments - by means of the network layer. On the other hand, the
middleware layer provides a set of tools to manage the content of those storage
devices, allowing to:

• Copy files between data stores residing at distributed sites. The tool
of choice here is GridFTP [77], a high-performance secure data-transfer
protocol implemented by the Globus Toolkit.

• Uniquely identify Grid files, mapping logical file names to physical file
locations. This is achieved with a Replica Catalogue for naming and
locating replicas.

• Combine file transfer with file cataloguing and offer it as an atomic trans-
action to the user (Replica Management Service).

Usually, the input files required by a Grid job are staged-in (transferred)
from persistent storage to some temporary path in the node where the job is
scheduled. Similarly, when the job ends, the generated output files are staged-
out from that node to some long-term storage element. Jobs are normally
coarse-grained, lasting from several minutes to hours, in order to compensate
the overhead and latencies of a Grid environment (middleware processing, move-
ment of data to distant resources, queue time).

4.1.2 e-Science Applications

As introduced earlier in this chapter, behind the inception of Grid computing
there is the growing need of some scientific applications for massive computation
and storage capabilities. This computationally intensive science working on
immense data sets was named e-Science, and nowadays it is perhaps the most
important field on which Grid technologies are applied.

Scientists from around the globe can use the Grid to tackle bigger problems,
to enable projects that would be impossible otherwise. Besides, e-Science is
about global collaboration in key areas of science: scientists can share data,
data storage space, computing power, expertise and results in an unprecedented
scale.

The following points are examples of scientific areas that have evolved into
e-Science [23], [19], [71]:

52

4.1. Context Chapter 4. Grid

• Particle physics: the Large Hadron Collider (LHC) is the world’s largest
particle accelerator; it was built by the European Organisation for Nu-
clear Research (CERN) to test the predictions of different theories of
particle physics and high-energy physics. Annually, the LHC generates
15 Petabytes of data, whose processing requires huge computational and
storage resources, as well as the associated human effort for operation
and support. To help with that, the Worldwide LHC Computing Grid
(WLCG) was created: a grid integrated by thousands of computers and
storage systems in hundreds of data centres worldwide.

• Bio-informatics: over the last years the size of biological sequence databases
has grown exponentially, now containing millions of genes and proteins
that are freely available to researchers over the Internet. In order to ef-
ficiently process and analyse these biological data, many tools have been
developed; for example, programs that locate a gene within a sequence,
predict a protein’s structure or function and cluster protein sequences into
families of related sequences. Grids provide the infrastructure to perform
such kind of analysis in a reasonable time scale.

• Earth sciences: earth science applications and, more precisely, weather
and climate modeling, are currently among the most computationally-
demanding programs. Furthermore, a number of tasks such as ensemble
prediction, sensitivity analysis, etc. consist of running the same appli-
cation many times with slight variations in the configuration parameters
(which is known as parameter-sweeping algorithms), thus requiring an
appropriate production infrastructure like a grid.

This chapter will show examples of how the Java StarSs programming model
and execution runtime can help developing e-Science applications and running
them over large-scale heterogeneous grids.

4.1.3 Grid APIs: Standardisation Efforts

One of the reasons why the romantic idea of a worldwide Grid - seen as a single,
interconnected and interoperating computer farm - has not become real is the
considerable lack of widely-adopted Grid standards. Many smaller grids exist
instead, each customised to meet the specific needs of a user group, each using
a certain set of technologies.

This issue also affects the development of Grid applications. A programmer
willing to access Grid services using Application Programming Interfaces (APIs)
faces several problems: first, due to middleware heterogeneity, applications im-
plemented with a given API are not portable to other Grid sites managed by
different middleware; second, Grid APIs tend to be too low-level and verbose for
programmers who are domain experts rather than computer scientists, which
hampers their adoption; third, in some cases the APIs change too frequently for
applications to follow.

53

4.1. Context Chapter 4. Grid

In the Grid world, the Open Grid Forum (OGF) [42] is the largest community
pursuing the adoption of Grid standards. The OGF provides an opportunity
for volunteers to contribute to the development of new standards. In this sense,
there is an OGF working group named SAGA [120] (Simple API for Grid Ap-
plications), which targets the definition of a uniform API for Grid applications
to access common Grid services, such as job management, file transfer and se-
curity. This API aims to be high-level, abstracting the programmer from the
middleware underneath. The design of SAGA was very much influenced by pre-
vious work on the Grid Application Toolkit [78], a technology that is used by
the Java StarSs runtime and that will be further explained in Section 4.3.2.

4.1.4 Component-Based Grid Software

Along with the efforts to simplify and standardise APIs for Grid services, a
complementary initiative appeared with the purpose of facilitating the develop-
ment of Grid software, ranging from applications to middleware: Component-
Based Software Engineering (CBSE). Although the idea of using components
in software is not new [139], it regained interest in the late 1990’s - early
2000’s [96] [131] due to, primarily, the growing complexity of software systems
and the inability of the extant programming models to face that issue properly.

CBSE changes the way of developing software systems, composing rather
than programming them. A component is a unit of independent deployment
and composition that states, by means of interfaces, the services that uses and
provides. By creating software from off-the-shelf components, CBSE promotes
reusability : one can benefit from the functionalities of already existing compo-
nents, thus reducing development time.

The manner in which components are composed and interact is specified by
a component model. As a part of the CoreGRID Network of Excellence [61], a
working group was created to define a component model particularly intended
for the Grid: the Grid Component Model (GCM) [74]. The main objective of
GCM is to hide to the programmer the inherent complexity of a large-scale
distributed environment like the Grid: heterogeneous hardware and operating
systems, user authorisation and security, resource load and failure, etc.

The following points summarise the main properties of GCM:

• Hierarchical organisation: GCM components can be either primitive or
programmed as compositions of other components (composites). Primitive
components encapsulate basic functionalities of a software system, whereas
composites group related functionalities.

• Functional and controller interfaces: used to access the functionalities
implemented by the component and to dynamically reconfigure the com-
ponent by modifying its behaviour, respectively.

• Structured communications: support for one-to-one communications be-
tween client/server interfaces, as well as collective interactions such as
multicast (one-to-many) and gathercast (many-to-one).

54

4.2. Runtime Design Chapter 4. Grid

• Autonomic managers: support for autonomic behaviour of components -
self-configuration, self-optimisation - necessary in highly-dynamic, hetero-
geneous and networked architectures.

• Deployment : the application code is free of details about deployment of
components; instead, they are specified in separate descriptors.

The principles of CBSE and GCM were put in practice when designing the
Java StarSs runtime, as will be seen next in Section 4.2.

4.2 Runtime Design

Chapter 3 provided a general description of the basic functionalities of the Java
StarSs runtime. The way they are implemented depends, though, on the speci-
ficities of each infrastructure.

Therefore, the design and implementation of the Grid flavour of the runtime
were driven by the characteristics of Grid computing, as well as by the tech-
nologies and initiatives in that field. At the light of what has been presented
in Section 4.1, the list of Grid characteristics that influenced the genesis of the
Grid runtime includes:

1. Geographically-distributed and heterogeneous resources: the runtime must
be able to exploit resources with diverse hardware and software charac-
teristics, possibly scattered around the globe and belonging to different
administrative domains.

2. Heterogeneous middleware: the runtime must be able to utilise various
kinds of middleware to access a basic set of Grid services, namely job
management, data transfer and security management.

3. Resources bound to failure: Grid applications normally run for long pe-
riods of time and use a big amount of non-necessarily reliable resources,
which increases the probability of errors at some point (e.g. node or
network failure, software errors). Consequently, there is a need for the
runtime to implement fault-tolerance mechanisms for the application to
continue running even in case of failure of some kind.

4. The primary unit for Grid data management is the file: the runtime must
be able to deal with the files accessed from a Grid application. Mainly, this
involves registering those files and eventually transferring them between
Grid resources.

5. Slow networks: the fact that Grid resources can be separated by thousands
of kilometres and interconnected by wide-area links increases network la-
tency and makes data locality more important. Moreover, when the size of
the application data is big, avoiding transfers becomes even more crucial,
especially when lacking a high-bandwidth network underneath.

55

4.2. Runtime Design Chapter 4. Grid

Network

Resources

Java StarSs Runtime

Middleware

Applications

Figure 4.2: Location of the Java StarSs runtime in the Grid stack.

In the Grid stack, depicted in Figure 4.1, the Grid implementation of the
runtime is located in the Applications layer, giving support to applications pro-
grammed in the Java StarSs model and interacting with the middleware in the
lower layer, as shown in Figure 4.2. The next subsections will present and jus-
tify the design decisions for the runtime, taking into account the aforementioned
Grid characteristics.

4.2.1 Componentisation

The Grid runtime was designed and implemented following the principles of
CBSE and, in particular, GCM, introduced in Section 4.1.4 as a model to build
componentised Grid software.

In a first phase of design, the runtime of GRID superscalar (GRIDSs) [85]
was taken as a starting point. GRIDSs also offers a task-based dependency-
aware programming model for Grid applications, and it can be considered the
predecessor of Java StarSs (see Section 4.6 to learn more). The GRIDSs run-
time was studied in order to identify its main functionalities, namely dependency
analysis, scheduling and file and job management. Each of these functionalities
was assigned to a separate component, thus resulting in a componentised run-
time with a new set of interesting properties: reusability, ease of deployment in
Grid contexts, flexibility and separation of concerns.

The components that form the Grid runtime are depicted in Figure 4.3.
They inherit from GCM some of its properties, listed in Section 4.1.4: they are
structured in a hierarchical way; they invoke each other through well-defined
interfaces; they can have one-to-one or collective communications (e.g. a multi-
cast initialisation call for all the components); the information to deploy them
in a Grid infrastructure is contained in descriptor files.

The next subsections explain the functionalities that each of the runtime
components enclose.

56

4.2. Runtime Design Chapter 4. Grid

Task Scheduler Job Manager

G
rid

 A
P

I

File Information
Provider

File Transfer
Manager

File Manager

Java StarSs Runtime

Task Analyser

Figure 4.3: Component hierarchy and interactions in the Grid Java StarSs run-
time, which sits on top of a uniform Grid API.

4.2.1.1 Task Analyser

It processes the tasks coming from the application and detects their dependen-
cies, based on which files they access and how (read, write or both), building a
task dependency graph. It interacts with the File Manager to register the file
accesses of each task. Once a task is free of dependencies, the Task Analyser
sends it to the Task Scheduler.

4.2.1.2 Task Scheduler

It decides where to execute the dependency-free tasks received from the Task
Analyser. This decision is made by a scheduling algorithm with three informa-
tion sources: first, the available Grid resources and their capabilities; second,
the set of task constraints - if any - defined by the user in the task selection
interface (see Chapter 2, Section 2.2.1); third, the location of the input data
required by the task (information obtained from the File Manager) to exploit
locality. This component addresses Grid characteristics #1 and #5.

4.2.1.3 Job Manager

It is in charge of job submission and monitoring. It receives the scheduled tasks
from the Task Scheduler and delegates the file transfers required by each task
to the File Manager. Upon completion of a task’s transfers, the Job Manager
submits the task to its target resource by creating a Grid job with a Grid API,
performing the necessary user authentication; then, the component controls the
proper completion of the job. The Task Scheduler and the Task Analyser are
notified when a task ends, for them to update the list of available resources
and the dependency graph, respectively. Finally, the Job Manager implements
a fault-tolerance mechanism: failed jobs are retried first to the same resource
and, if the error persists, the Task Scheduler is asked for a rescheduling of the
corresponding task. This component addresses Grid characteristics #2 and #3.

57

4.2. Runtime Design Chapter 4. Grid

4.2.1.4 File Manager

It takes care of all the operations where files are involved, playing the role of a
replica management system. It is a composite component which encompasses
the File Information Provider and the File Transfer Manager components. The
former gathers all the information related with files: what kind of file accesses
have been done, which versions of each file exist and where they are located, thus
acting as a file catalogue; every time a task writes a file (out or in-out access),
that new version is assigned to a new logical file and added to the catalogue.
The latter is the component that actually replicates files from one resource to
another, using a Grid API and also authenticating the user first; moreover, it
informs the File Information Provider about new physical locations (replicas) of
logical files. The File Manager applies fault-tolerance strategies too: each failed
transfer is retried using all the available replicas for that file, and if the error
repeats the Task Scheduler is asked for a rescheduling of the corresponding task.
This component addresses Grid characteristics #2, #3 and #4.

4.2.2 Uniform Grid API

The Job Manager and File Transfer Manager components are the ones that
communicate with Grid services, in particular for job creation, file transfer and
user authentication. As discussed in Section 4.1.3, some efforts have been made
to standardise and facilitate the invocation of Grid services by means of an API.

In this sense, the aforementioned components of the Java StarSs runtime
interact with the Grid using a Grid API (Figure 4.3). Such API provides a
set of methods to uniformly access various kinds of Grid middleware. This way,
applications programmed with the Java StarSs model can run on grids managed
by different middleware, in a transparent way to the user. Tasks generated by
an application can be submitted to any of the grids available, and files can be
transferred to/from any grid, or even between two grids. Furthermore, prior
to any of those operations the user is automatically authenticated in that grid,
provided that the user credentials are present in the host from where the Grid
services are invoked (usually, where the application is launched).

4.2.3 Execution Model

Chapter 3, Section 3.1 explained how the Java StarSs runtime is divided in
a master and a worker part. The component structure shown in Figure 4.3
corresponds to the master part, which encompasses the main functionalities of
the runtime.

When the user starts the execution of the application, first of all the compo-
nents of the master runtime are deployed and initialised. The way the compo-
nents are deployed is specified in a deployment descriptor that, in short, maps
the components to the physical resources where they will be created. Java StarSs
provides a default deployment descriptor where all the runtime components are
mapped to the user’s host - where the application is launched - but it can be

58

4.2. Runtime Design Chapter 4. Grid

modified to deploy any component in a remote host, thus benefiting from the
distribution capabilities of GCM.

Once the runtime is up and running, its components begin to process the
incoming application tasks as described in Section 4.2.1.

Although the application execution is mostly managed by the master run-
time, there is still a need for a worker part that performs some task handling
in the Grid execution resources. Prior to the execution of the application, that
worker runtime must be installed in the Grid resources to be used, along with
the bytecode, binaries, scripts, etc. that the application tasks may require.

In Grid environments, it is common to interact with a head node to which
jobs are submitted; such node then delegates the scheduling of each job to a local
scheduler in charge of managing a certain set of resources, all this being hidden
from the user. In such a scenario, workers must be transient : no permanent
process can be kept in a Grid resource because, on the one hand, the final
execution node is unknown and, second, the master runtime cannot interact
directly with that node. Instead, a new worker process is created for every
job, which launches a JVM, parses the execution parameters received from the
master, runs the task and then terminates.

4.2.4 Data Model

The Grid Java StarSs runtime focuses on files as the main unit of data. In the
programming model, the user can write a Grid application that deals with files
as described in Chapter 2, Section 2.3.7. These files can be either local or remote
(e.g. located in some GridFTP server); in the last case, the user references them
with a complete URI (Uniform Resource Identifier [66]), including the resource
name and the absolute path of the file in the resource.

During the application execution, files are moved between Grid resources
depending on the task needs and in a transparent way to the programmer.
Typically, the steps that take place when a task has to be executed are:

1. After the master runtime has decided the target resource for the task, it
transfers the task input files to a storage server or disk that is accessible
from that target resource.

2. The job is submitted to the target resource and, as a result, the worker
runtime ends up being launched in the final execution host, which is pos-
sibly behind a head (or front-end) node and selected by a local scheduler
of the target resource.

3. Stage in: if the execution host is hidden to the master runtime, the task
input data must be copied from a storage server to a temporary directory
in the local disk of that host; this is done for faster access to the data.
File stage-in is taken care either by the worker runtime or, in some cases,
by the Grid middleware itself.

59

4.3. Relevant Technologies Chapter 4. Grid

4. The task runs in the execution host, perhaps generating one or more out-
put files. If the host is behind a front-end, these output files are normally
placed in the same temporary directory as the input ones.

5. Stage out: once the task ends, its output files might need to be moved to
a storage server, if they are in a hidden host’s temporary folder (otherwise
they would be lost). Again, this step can be the duty of the worker runtime
or the middleware, and it is not necessary if the master runtime has direct
access to the disk of the execution host.

The experiments in Section 4.5.1 will illustrate how data is managed in
various grids controlled by different middleware.

As a final note, the fact the Grid focuses on files does not mean that the
Java StarSs programmer cannot use objects or arrays in her application: the
master and worker parts of the Grid Java StarSs runtime were extended to
automatically serialise/deserialise objects and arrays to/from files, so that they
can be sent to a Grid resource and passed to the tasks scheduled there.

4.3 Relevant Technologies

This section presents the Grid technologies that were used to implement the
runtime design seen in Section 4.2.

4.3.1 ProActive

ProActive [99] is a Java Grid middleware library for parallel, distributed and
multi-threaded computing. Among some other features that will be explored in
other chapters of this thesis - more precisely, in Chapter 6 - ProActive provides
the reference implementation of GCM.

Therefore, the components of the Grid runtime are built using ProActive,
which offers an API to create, start, stop and destroy GCM components. The hi-
erarchical component structure is defined in an ADL file (Architecture Descrip-
tion Language) [74], where components are described in terms of their interfaces,
their bindings with other components and the Java classes that implement their
functionalities (for primitive components). Individual communications as well
as collective ones are supported for the component bindings.

As discussed earlier in Section 4.2.3, components can be mapped to resources
by means of deployment descriptors, which are processed by ProActive when
setting up a component structure. Section 4.5.2 will give an example of a custom
remote deployment of the master runtime components.

4.3.2 The Grid Application Toolkit

JavaGAT is the Java version of the Grid Application Toolkit [78], which is a
generic and flexible API for accessing Grid services from application codes, por-
tals and data management systems. The calls to the GAT API are redirected

60

4.4. Programmability Evaluation Chapter 4. Grid

to specific adaptors which contact the Grid services, thus offering a uniform in-
terface to numerous types of Grid middleware. Among the adaptors supported
by JavaGAT there are widely-used middleware like the Globus Toolkit [117],
gLite [132] or UNICORE [163], as well as an adaptor to establish SSH (Secure
Shell) [63] connections. It is worth noting that, in order to invoke Grid services
from a given machine with JavaGAT, it is not necessary to have all these middle-
ware installed in that machine: the JavaGAT adaptors and the user credentials
are enough.

The Java StarSs Grid runtime invokes the JavaGAT API to perform three
basic operations:

• Authenticate a user in a grid: JavaGAT allows to define ‘security contexts’,
which are containers for the credentials of a user in a given grid, e.g. a
user certificate, a VO proxy or SSH keys.

• Submit and monitor Grid jobs: the master runtime encapsulates tasks
into JavaGAT jobs when submitting them for execution. A JavaGAT job
contains the following information: the program to be run (a script of
the worker runtime), the parameters (related to the particular task) and
the target resource. Moreover, the status of the job can be monitored, in
order to control its proper completion.

• Transfer files: the master runtime uses JavaGAT to manage logical files,
i.e. files that are identified by a logical name and that contain a set of
replicas. When a task has a given logical file as input, it is copied to its
destination from one of its replicas.

Section 4.5.1 will illustrate the use of the JavaGAT API in several real grids.

4.4 Programmability Evaluation

This section will evaluate the ease of programming of Java StarSs in Grid envi-
ronments. For that purpose, a comparison with another approach in the same
field will be carried out, more precisely with Taverna [142], a well-known graph-
ical tool for designing and executing Grid workflows.

The comparison study will consist in implementing the same bio-informatics
application with both Java StarSs and Taverna, and then highlighting the most
relevant differences. The next subsections will present Taverna and the appli-
cation and finally conclude with the comparison discussion.

4.4.1 Taverna

Taverna mainly differs from Java StarSs in the fact that applications are devel-
oped graphically rather than programmatically. Despite this fact, it has been
chosen for this study because of its popularity, especially in the life-sciences
area.

61

4.4. Programmability Evaluation Chapter 4. Grid

input_port1 input_port2

Node1

output_port1 output_port2

input_port

Node2

output_port

Figure 4.4: Simple workflow in Taverna. Node1 has two input ports and two
output ports, while Node2 has only one of each kind. The link between the two
nodes represents a data dependency.

A Taverna workflow is specified by a directed graph where nodes represent
software components. A node consumes data that arrives on its input ports and
produces data on its output ports. Each arrow in the graph connects a pair
of ports, and denotes a data dependency from the output port of the source
node to the input port of the destination node. Figure 4.4 shows a very basic
workflow example.

The nodes of a Taverna workflow can be computations executed in the Grid,
their ports being their input/output files or streams. Although the official Tav-
erna distribution only includes an SSH adaptor to submit computations to Grid
resources, some projects have developed plugins to make Taverna work on top
of Globus-based middleware as well. Moreover, Taverna also supports external
Web Services as workflow nodes.

Other features of Taverna include control flow structures, both implicit (like
loops on output ports that are lists) and explicit (like condition checking encap-
sulated in a workflow node).

4.4.2 Hmmpfam Application

HMMER [24] is a bio-informatics suite that contains several tools for pro-
tein sequence analysis. It is based on profile hidden Markov models (profile
HMMs) [108], which are statistical models of multiple sequence alignments.
Each HMM represents a protein family, and captures position-specific informa-
tion about how conserved each column of the alignment is and which residues
are likely to occur.

One of the most important programs in the HMMER collection is hmmpfam.
This tool reads a sequence file and compares each sequence in it, one at a
time, against a database of HMMs, searching for significantly similar sequence
matches with each model and producing a result file that summarises the best
scores. The work performed by hmmpfam is computationally intensive and
embarrassingly parallel, which makes it a good candidate to run on the Grid.

62

4.4. Programmability Evaluation Chapter 4. Grid

4.4.3 Comparison

4.4.3.1 Hmmpfam in Java StarSs

A common way of parallelising sequence-database search algorithms like hmmp-
fam is segmentation, which can be of two types:

• Query segmentation: it consists in splitting a set of query sequences so
that each resource is responsible from a fraction of these query sequences.
On the other hand, a copy of the database is replicated in every resource.
As a result, several searches can be run in parallel.

• Database segmentation: in this case, independent fragments of the database
are searched on each resource. Splitting the databases is becoming more
and more necessary due to their increasing size: if the database does not fit
in memory, the overhead of disk I/O can significantly hinder performance.

In the Java StarSs implementation of hmmpfam, both segmentation strate-
gies are supported. The application is a completely sequential Java code that
receives these parameters: database file, sequences file, name of result file (score
report), command line arguments for hmmpfam, number of database fragments
and number of sequence fragments. The code is divided in three main phases:

• Segmentation: the database file and the query sequences file are split,
depending on the number of database fragments (N ≥ 1) and the number
of sequence fragments (M ≥ 1), respectively, both received as parameter.

• Execution: the hmmpfam binary is wrapped in a Java method and invoked
for each pair of sequence-database fragments (N×M).

• Reduction: the partial outputs for each pair of sequence-database frag-
ments are merged into a final result file. This is done by invoking a merge
method that combines two partial results at a time, resulting in (N×M)−1
calls to that method.

Following the steps detailed in Chapter 2, Section 2.1.1, the potential ap-
plication tasks were identified. Concerning the segmentation phase, it was not
worth to select any method as a task because splitting the input files can be done
fast enough locally. Regarding the execution phase, there was a clear candidate:
the method containing the call to hmmpfam, which is the computationally in-
tensive part of the application. Finally, the reduction phase was intended to
be performed distributedly as a set of tasks - merge tasks - instead of locally
and sequentially; if the merge phase were done entirely in the master node, the
master would have to wait for the generation of the partial results, get them all
and process them, which can cause a bottleneck when N×M is high.

The task selection interface resulting from identifying the application tasks
is depicted in Figure 4.5. Two tasks are selected: first, hmmpfam, which calls
the hmmpfam tool with some command line arguments for a given pair of input
database-sequence fragments, and outputs a report file; second, merge, which

63

4.4. Programmability Evaluation Chapter 4. Grid

public interface HMMPfamItf {

@Method(declaringClass = ”worker.hmmer.HMMPfam”)
void hmmpfam(

String clineArgs,
@Parameter(type = FILE)
String dbFragFile,
@Parameter(type = FILE)
String seqFragFile,
@Parameter(type = FILE, direction = OUT)
String reportFile

);

@Method(declaringClass = ”worker.hmmer.HMMPfam”)
void merge(

@Parameter(type = FILE, direction = INOUT)
String report1,
@Parameter(type = FILE)
String report2

);

}

Figure 4.5: Task selection interface corresponding to the Hmmpfam application
in Java StarSs.

hmmpfam

merge

DB fragment 2DB fragment 1

hmmpfam hmmpfam hmmpfam hmmpfam hmmpfam hmmpfam hmmpfam

merge merge merge

merge merge

merge

Figure 4.6: Example of a task dependency graph generated by Hmmpfam when
running it with Java StarSs. In this case, the database is split in two fragments
and the query sequences file in four parts. This creates eight independent tasks
that run hmmpfam on a pair of database-sequence fragments. After that, there
are three levels of reduction tasks, the last one merging the results from the two
different database fragments.

64

4.4. Programmability Evaluation Chapter 4. Grid

receives two partial hmmpfam results and combines them into the first result
file. As explained in Chapter 2, Section 2.2.2, if the direction is not specified
it is assumed to be IN; on the other hand, the clineArgs parameter does not
need to be annotated, since its type (object) and direction (input) are automat-
ically inferred. For space reasons, the main program of Hmmpfam is provided
separately in Appendix A.1.

At execution time, Hmmpfam generates a graph like the one in Figure 4.6.
Note how N and M , which in this case are 2 and 4 respectively, determine the
number of tasks and consequently the amount of parallelism exhibited by the
graph.

In conclusion, the Hmmpfam application was designed with parallelism in
mind - the problem is first split in independent computations and then the par-
tial results are merged - but, most importantly, the programming is sequential,
i.e. the user does not have to deal with the burden of parallelisation (spawning
of asynchronous tasks, synchronisation, data dependencies).

4.4.3.2 Hmmpfam in Taverna

The structure of the Taverna implementation of Hmmpfam is quite the same as
for Java StarSs. In this case, though, the application is composed graphically,
the tasks being nodes of a Taverna workflow.

Workflow output ports

Workflow input ports

merged_report

ClineArgs

hmmpfam_1 hmmpfam_2 hmmpfam_3 hmmpfam_4 hmmpfam_5 hmmpfam_6 hmmpfam_7 hmmpfam_8

db_frag1 db_frag2seq_frag1 seq_frag2 seq_frag3 seq_frag4

merge_1 merge_2 merge_3 merge_4

merge_5 merge_6

merge_7

Figure 4.7: First version of Hmmpfam in Taverna.

Two distinct implementations of Hmmpfam in Taverna have been consid-
ered. The first one (Figure 4.7, shown with no details of the node ports for
simplicity) is a workflow that receives as input the command line arguments
and the fragments of database and sequence, previously generated; this appears
in Figure 4.7 as ‘Workflow input ports’. These inputs are passed to a first row
of hmmpfam nodes, where one node was drawn for each pair database-sequence.

65

4.4. Programmability Evaluation Chapter 4. Grid

The output of the hmmpfams is connected to a set of merge nodes, which finally
converge in a final report in ‘Workflow output ports’. Therefore, this option re-
quires to create statically a number of fragments and link them with an equally
static number of hmmpfam nodes.

Workflow output ports

Workflow input ports

reports

DB

db num_db_frags

GenerateDbFrags

db_frags

Sequences

num_seq_frags sequences

GenerateSeqFrags

seq_frags

ClineArgs

cline_args db_frag seq_frag

hmmpfam

report

numSeqFragsnumDBFrags

Figure 4.8: Second version of Hmmpfam in Taverna.

The second version (Figure 4.8) tries to bring some dynamism to the ap-
plication. In this case, the workflow input ports contain the database file, the
sequences file and the number of fragments for both. These data are passed to
a couple of nodes, GenerateDbFrags and GenerateSeqFrags, which correspond to
local processes; those nodes will produce each a list of database and sequence
fragments, respectively. This is where Taverna’s implicit iterators enter the pic-
ture: the two lists are connected to a third node, hmmpfam, which actually will
be transformed into several nodes at execution time; for every two elements of
the lists, a hmmpfam will be created, thus producing a list of output reports.
Nevertheless, the downside is that the list of output files cannot be merged into
a single file, Taverna does not provide any graphical mechanism to do that.
Consequently, this option is simpler but it requires a post-processing of the list
of partial reports, which is directly included in the workflow output ports.

4.4.3.3 Discussion

In light of the Hmmpfam implementations just described (Java StarSs and Tav-
erna), this section highlights the main differences between these two approaches:

• Graphical versus code programming : Taverna users build the application
workflow as a graphical composition of nodes. Contrarily, Java StarSs
generates the task graph (analogous to the Taverna workflow) at execution
time, as invocations to the selected tasks are found. Taverna also requires

66

4.5. Experiments Chapter 4. Grid

some code programming, but only to fill the content of the nodes: the
workflow drawn by the user constitutes the structure of the application.

• Data dependencies: Taverna users must know both how a node accesses its
data (defined by input or output ports) and which are the data dependen-
cies between nodes (defined by the lines that link nodes). In contrast, Java
StarSs only requires the user to know how a task accesses its data, which
is specified as the parameter direction in the @Parameter annotation in
the task selection interface. This is a remarkable difference, especially for
applications with complex dependencies: while in Taverna the user would
have to figure out and draw all the dependencies, which is an error-prone
task, Java StarSs would find those dependencies automatically.

• Dynamicity : the graph generated by a Java StarSs application is never
static, it can vary depending on the input parameters and data, and is
subject to the result of control flow statements (‘if’ conditions, loops,
etc.). Taverna also offers some dynamicity (e.g. with implicit loops on
lists) but it is more restrictive on what can be drawn, as exemplified in
the Hmmpfam version of Figure 4.8.

Although this programmability evaluation has focused on tasks/nodes that
correspond to computations executed on grids, Taverna also has some support
for service invocation. Services can be added to a Taverna workflow as nodes
and they can be connected to other nodes, much like in Java StarSs services can
be invoked as regular methods and they can exchange data with other tasks.
Moreover, both Java StarSs and Taverna allow to create composite services, i.e.
services whose tasks/nodes are other services. The use of services in Java StarSs
will be further discussed in Chapter 6.

4.5 Experiments

The experiments in this section will be divided in two series. The first series
demonstrate how Java StarSs is able to run applications on large-scale hetero-
geneous grids, as well as to handle various kinds of Grid middleware. As a
complement, a second series of tests will evaluate the performance and some
features of Java StarSs in smaller and more restricted environments.

4.5.1 Large-Scale Tests

This first series of tests will show how the tasks of an e-Science application
are executed in three different grids with Java StarSs. After describing the
application and the testbed, the experiments will be discussed.

4.5.1.1 The Discrete Application

DISCRETE [54] is a package devised to simulate the dynamics of proteins using
the Discrete Molecular Dynamics (DMD) methods. In such simulations, the

67

4.5. Experiments Chapter 4. Grid

particles are assumed to move with constant velocity until a collision occurs,
conserving the total momentum and energy, which drastically saves computation
time compared to standard MD protocols.

The simulation program of DISCRETE receives as input a coordinate and
a topology files, which are generated with a setup program also included in the
package. The coordinate file provides the position of each atom in the struc-
ture, and the topology file contains information about the chemical structure
of the molecule and the charge of the atoms. Besides, the simulation program
reads a parameter file, which basically specifies three values: EPS (Coulomb
interactions), FSOLV (solvation) and FVDW (Van Der Waals terms).

The Discrete application is a sequential Java program that makes use of the
DISCRETE package. Starting from a set of protein structures, the objective of
Discrete is to find the values of the EPS, FSOLV and FVDW parameters that
minimise the overall energy obtained when simulating their molecular dynamics
with DISCRETE. Hence, Discrete is an example of a parameter-sweeping appli-
cation: for each parameter, a fixed number of values within a range is considered
and a set of simulations (one per structure) is performed for each combination
of these values (configuration). Once all the simulations for a specific configura-
tion have completed, the configuration’s score is calculated and later compared
to the others in order to find the best one.

The main program of the Discrete application, whose code can be found in
Appendix A.3.1, is divided in three phases:

1. For each of the N input protein structures, their corresponding topology
and coordinate files are generated. These files are independent of the
values of EPS, FSOLV and FVDW.

2. Parameter-sweep simulations: a simulation is executed for each configura-
tion and each structure. These simulations do not depend on each other.
The more values evaluated for each parameter, the more accurate will be
the solution.

3. Finding the configuration with minimal energy: the execution of each sim-
ulation outputs a trajectory and an energy file, which are used to calculate
a coefficient for each configuration. The main result of the application is
the configuration that minimises that coefficient.

Regarding the tasks of the application, a total of six methods were chosen.
The following points describe them, the subindexes indicating the phase to which
they belong (please refer to Appendix A.2.2 for the task selection interface):

• genReceptorLigand1: given a structure file, it generates some associated
files (receptor and ligand). It is invoked N times (one per structure).

• dmdSetup1: it executes the DMDSetup binary, included in the DISCRETE
package, with a structure’s receptor and ligand as input; as output, it
generates the topology and coordinate files for the structure. It is invoked
N times (one per structure).

68

4.5. Experiments Chapter 4. Grid

• simulate2: it runs the simulation binary of the DISCRETE suite, given a
coordinate file, a topology and a specific configuration (FVDW, FSOLV
and EPS values); it returns an average score file. If the number of values
considered for EPS, FSOLV and FVDW is SEPS , SFSOLV and SFV DW ,
respectively, this method is invoked N × SEPS × SFSOLV × SFV DW

times.

• merge2: it merges two average score files belonging to the same configura-
tion of parameters. It is invoked (N−1) × SEPS × SFSOLV × SFV DW

times.

• evaluate3: it generates the final coefficient from all the average scores of a
configuration. It is invoked once per configuration, i.e. SEPS × SFSOLV ×
SFV DW times.

• min3: it receives two coefficient files and outputs the lowest one. It is
invoked (SEPS × SFSOLV × SFV DW)− 1 times.

4.5.1.2 Testbed

The Discrete application was executed with Java StarSs on real large-scale sci-
entific grids. The whole infrastructure used in the tests is depicted in Figure 4.9,
and it includes three grids: the Open Science Grid, Ibergrid and a small grid
owned by the Barcelona Supercomputing Center.

* Open Science Grid
The Open Science Grid (OSG) [44] is a science consortium, funded by the

United States Department of Energy and the National Science Foundation, that
offers an open Grid cyberinfrastructure to the research and academic communi-
ties. OSG federates more than 100 sites around the world, most of them located
in the United States, including laboratory, campus, and community facilities.
These sites provide guaranteed and opportunistic access to shared computing
and storage resources. As of May 2011, OSG comprised a total of around 70,000
cores and 29 Petabytes of disk storage and it provided 1.4 million CPU hours/
day [48].

OSG is used by scientists and researchers to perform data analysis tasks
that are too computationally intensive for a single data center or supercomputer.
This grid was created to process data coming from the Large Hadron Collider at
CERN, and consequently most of its resources are allocated for particle physics;
however, it is also used by research teams from disciplines like biology, chemistry,
astronomy and geographic information systems.

Each of the OSG sites - clusters, computing farms - is configured to deploy
a set of Grid services, like user authorisation, job submission and storage man-
agement. Basically, a site is organised in a Compute Element (CE), running in
a front-end node known as the gatekeeper, plus several worker nodes (or execu-
tion nodes). The CE allows users to run jobs on a site by means of the Globus
GRAM (Grid Resource Allocation Manager) [117] interface; at the back-end of

69

4.5. Experiments Chapter 4. Grid

this GRAM gatekeeper, each site features one or more local batch systems - like
Condor [174], PBS [43] or LSF [49] - that process a queue of jobs and schedule
them on the worker nodes. Besides, the standard CE installation includes a
GridFTP server; typically, the files uploaded to this server are accessible from
all the nodes of the site via a distributed file system like NFS (Network File
System [39]).

* Ibergrid

Ibergrid was set up in May 2010 as an umbrella organisation for ES-NGI [56]
and INGRID [29] - the Spanish and Portuguese National Grid Initiatives, re-
spectively - in the framework of the European Grid Initiative (EGI), which has
the mission of creating and maintaining a pan-European Grid infrastructure.

Ibergrid offers aggregated computing power of more than 24,000 cores and 20
Petabytes of online storage and supports scientists in several fields of research,
including high-energy physics, computational chemistry, engineering and nuclear
fusion. Ibergrid also dedicates, like the OSG, a significant part of its resources
to process data from the LHC. In total, the usage of Ibergrid reached 124 million
CPU hours in 2011 [26].

Similarly to OSG, the Ibergrid infrastructure is composed by different sites,
each one with a gatekeeper node interfacing to the cluster, a local resource man-
agement system (batch) and a set of worker nodes. However, in Ibergrid the
middleware installed is gLite [132] and job management is a bit different: instead
of submitting the jobs to a given CE directly, the user proceeds by interacting
with a Workload Management Server (WMS), which acts as a meta-scheduling
server. Therefore, matchmaking is performed at a higher level: the WMS in-
terrogates the Information Supermarket (an internal cache of information) to
determine the status of computational and storage resources, and the File Cata-
logue to find the location of any required input files; based on that information,
the WMS selects a CE where to execute the job.

* BSC Grid

Finally, the Barcelona Supercomputing Center (BSC) Grid [9] is a small
cluster located in the BSC premises and formed by five nodes. Three of them
have a single-core processor at 3.60GHz, 1 GB of RAM and a local disk of 60
GB. The other two have a quad-core processor at 2.50GHz each core, 4 GB of
RAM and a local disk of 260 GB. The cluster does not have any shared file
system configured.

The BSC Grid is the only grid of the testbed that supports interactive exe-
cution: the user can connect to any of the nodes separately via SSH and launch
computations on them. Moreover, files can be transferred to/from the local disk
of each node through SSH as well.

70

4.5. Experiments Chapter 4. Grid

V
O

 p
ro

xy

-O
S
G
-

gL
ite

G
lo

bu
s

G
R

A
M

S
S

H

Ja
va

 S
ta

rS
s

R
un

tim
e

G
rid

 A
pp

lic
at

io
n

To
ol

ki
t

B
S

C
 G

rid

G
ri

d
F

T
P

C
om

pu
te

 E
le

m
en

t

W
M

S
er

ve
r

V
O

 p
ro

xy

-I
be
rg
rid
-

Figure 4.9: Testbed comprising two large-scale scientific grids (Open Science
Grid, Ibergrid) and a local BSC-owned grid. The Discrete application, running
on a laptop with Java StarSs, interacts with the grids through GAT and its
middleware adaptors.

71

4.5. Experiments Chapter 4. Grid

4.5.1.3 Results

* Configuration and Operation Details
In order to run the Discrete application in the described testbed, the testing

environment was configured as shown in Figure 4.9.
The access point to the Grid was a laptop equipped with a dual-core 2.8

GHz processor and 8 GB RAM. This is different from the traditional procedure
of submitting jobs from a User Interface node (UI) of a grid, where the software
to interact with that grid is already present. Since the experiments did not
target a particular grid but three different ones, and to illustrate how a user can
execute a Java StarSs application on the Grid from her own machine, another
approach was followed.

The laptop hosted the main program of the application, and therefore it had
the Java StarSs runtime and the JavaGAT library installed. Notice that no
client middleware had to be installed in the laptop, the GAT adaptors sufficed
to interact with all the grids. In addition, prior to the execution, the credentials
for each grid were obtained. Putting aside the setup of the SSH keys to access
the BSC Grid, OSG and Ibergrid required proxy certificates for authentication,
each with a different VO extension. Both proxies were created in a UI node
of Ibergrid with the VOMS tools [67] and then placed in the laptop, so that
JavaGAT could make use of those credentials when contacting the grids.

Concerning the Grid middleware, the points below list the GAT adaptors
and the corresponding grids where they were used. The resources available in
each grid were specified in a resources file, along with their capabilities (e.g.
associated storage servers).

• Globus GRAM and OSG : a total of six OSG sites that support our VO
(Engage) were used in the tests, each with its own CE. The gatekeeper of
every CE was contacted by means of the Globus GRAM adaptor, used for
job submission and monitoring in OSG.

• gLite and Ibergrid : the gLite adaptor was used to submit and monitor
jobs by connecting to an Ibergrid WMS, which is in charge of selecting
the execution site in Ibergrid. Among all the WMS at the disposal of our
VO (ICT), the one with most availability was chosen.

• GridFTP (OSG and Ibergrid): the OSG CEs and the Ibergrid WMS offer
each a GridFTP server. The GAT GridFTP adaptor was used to transfer
files to those servers during execution.

• SSH and BSC Grid : two nodes of BSC Grid were used in the tests, be-
ing accessed through the GAT SSH adaptors for job submission and file
transfer.

Before execution, there was a previous phase of deployment where some
required files were installed in the grids; those included, on the one hand, the
worker runtime and, on the other, the classes and executables of the application
tasks. In OSG, the files to be deployed were copied to the GridFTP server of

72

4.5. Experiments Chapter 4. Grid

each CE, so they could be accessed from the worker nodes. In Ibergrid, the files
were transferred to the GridFTP server of the WMS, since the final execution
site is not known in advance in this scenario; each time a job is created in
Ibergrid, those files are copied by the worker runtime from the GridFTP server
to the site where the job will run. Finally, in BSC Grid the files were placed in
the local disk of the nodes.

At execution time, the master runtime of Java StarSs sends the Discrete
tasks and transfers files to the three grids by means of GAT. In OSG, the input
files of each task are first pre-staged to the GridFTP server of the target CE, thus
being accessible through the NFS server of that CE too; after that, when the
job is created in the CE to execute the task, the worker runtime copies the input
files from NFS to the local disk of the target worker node; similarly, the output
files are copied from local to NFS at the end of the task, thus being available in
the GridFTP server as well. In Ibergrid, the task input files are transferred to
the GridFTP server of the WMS; the pre and post-staging of those files to/from
the final worker node is taken care by gLite: the WMS chooses the execution
site, sends the job to the head node of that site, then the job is locally scheduled
and the input files are copied from the GridFTP server to the local disk of the
worker node (the process is inverse for the output files). Lastly, the BSC Grid
scenario is simpler since the files can be directly transferred to/from the local
disk of the final execution node.

In the case of Discrete, all the application input files were initially located in
the laptop’s disk and then progressively transferred to the execution resources
as the application ran; nevertheless, for applications dealing with huge files, the
programmer can also refer to those files with a whole URI (i.e. including the
resource name) in the application code, so that they are got from that resource.

When scheduling jobs on the grids, the Java StarSs runtime takes into ac-
count locality: a task will be assigned, if possible, to a resource that already
possesses one or more of the task’s input files (in its GridFTP server or local
disk). Whenever a resource is freed (a task finishes), the scheduler chooses the
task with the best score among the pending ones, the score being the number of
task input files in the resource. Note that Ibergrid counts as a single entity for
locality, because the final destination of the job is not decided by Java StarSs.
If some input file is missing in the chosen resource, such file is replicated to that
resource. If the source and destination resources share the same credentials (e.g.
two OSG sites) such transfer happens directly between them; otherwise, the file
is first copied to the laptop and then to the destination resource.

* Discussion of the Results
From the point of view of the application, all the Grid management dis-

cussed above is transparent. The application deals with its parameters, i.e.
number of structures and coefficients. For these experiments, the parameters
were the following: N = 10 (structures), SEPS = 3, SFSOLV = 3, SFV DW = 3
(i.e. 27 configurations for parameter sweeping). Applying the formulae in Sec-
tion 4.5.1.1, this leads to a total of 586 tasks - the whole graph can be seen in
Appendix A.2.3. Out of those 586, 270 are simulation tasks, which are the most
computationally-intensive (between one and two minutes of execution time).

73

4.5. Experiments Chapter 4. Grid

OSG Ibergrid BSC Grid

(a)

TransferLocal

100%

80%

60%

40%

20%

0%
Locality-aware FIFO

(b)

1

0

3

2

TransferLocal

in

pu
t f

ile
s

tasks

Phase 2 (simulate + merge)

Phase 1 (genReceptorLigand + dmdSetup) Phase 3 (evaluate + min)

(c)

Figure 4.10: Test results for the Discrete application when run with Java StarSs
in the Grid testbed: (a) distribution of the Discrete tasks among the three grids;
(b) comparison of percentage of transfers between the locality-aware and FIFO
scheduling algorithms; (c) evolution of the number of transfers when applying
locality-aware scheduling.

74

4.5. Experiments Chapter 4. Grid

Table 4.1: Job submission and file transfer statistics for Discrete.

Job sub. # File tra.
Grid Resource OK Failed OK Failed

OSG

brgw1.renci.org 72 4 102 1
gridgk01.racf.bnl.gov 43 0 70 1
rossmann-osg.rcac.purdue.edu 57 14 89 11
smufarm.physics.smu.edu 69 1 92 1
stargrid02.rcf.bnl.gov 55 0 90 1
u2-grid.ccr.buffalo.edu 62 1 96 0

TOTAL 358 20 539 15

Ibergrid wms01.ific.uv.es 33 209 58 0
TOTAL 33 209 58 0

BSC Grid
bscgrid05.bsc.es 122 0 116 0
bscgrid06.bsc.es 73 0 79 0

TOTAL 195 0 195 0

TOTAL 586 229 792 15

Figure 4.10(a) shows how tasks were distributed among the three grids dur-
ing an execution of Discrete with Java StarSs. The six OSG resources were the
ones that consumed more tasks; indeed, among all the OSG sites that support
our VO, the ones with most availability were chosen. The two BSC Grid nodes
also executed a significant number of tasks because they are directly accessible
and therefore those tasks did not suffer from queue waiting times. Ibergrid was
the least used of the grids, primarily because of three factors. First, the high
job load of Ibergrid resources, which can lead to higher queue times. Second,
the internal scheduling policies of the Ibergrid sites, where several sites offer to
our VO only opportunistic access to their resources (i.e. when the owners are
not using them for other purposes); some other sites reserve a certain number
of slots with priority but they are shared by all the Ibergrid VOs. Finally, the
errors when submitting jobs to the WMS were frequent, which made tasks go
through a (sometimes long) resubmission process.

In that sense, Table 4.1 contains the statistics of errors in job submissions
and file transfers for the different grids and a particularly faulty execution of
Discrete, in order to demonstrate the fault tolerance mechanisms of the Java
StarSs runtime. In general, the OSG sites presented only occasional failures in
job submissions and file transfers, which were easily solved with resubmissions
and retransfers with no need for task rescheduling. On the contrary, the errors
when connecting to the Ibergrid WMS were common, possibly because of the
WMS itself or because of a bug in the GAT gLite adaptor; in order to face
that issue, several retries were attempted when necessary for a job (6 per job
on average), progressively increasing the time between two resubmissions. The
most reliable combination of grid/adaptor was BSC Grid/SSH, for which no
errors of any kind were registered.

75

4.5. Experiments Chapter 4. Grid

Regarding data locality, Figure 4.10(b) depicts a comparison between two
executions of Discrete, one using the locality-aware scheduling algorithm and
the other one applying a FIFO (First In First Out) strategy: an incoming task
is always assigned to the first available resource on the list, and a freed resource
is matched with the first pending task if any. The bars show the percentage
of transfers actually performed versus the percentage of locality (the transfer
was not necessary because the input file was already on the target execution
resource), the total being the number of input files of all tasks. The locality-
aware algorithm achieved remarkable results, preventing almost 2 out of every
3 transfers and outperforming FIFO by about 25 %.

As a complement to Figure 4.10(b), Figure 4.10(c) illustrates the number
of transfers that could be avoided thanks to locality all along the application
execution. The x-axis represents the tasks of Discrete in the order that they are
scheduled during the application execution; each point of the axis corresponds
to two tasks, so that the number of points is reduced by half and the shape
of the plotted lines is smoother. The y-axis reflects the evolution of avoided
transfers (Local) and performed transfers (Transfer), each point showing the
average of two tasks for both values. In the first phase of the application,
the genReceptorLigand tasks require their input files to be transferred from the
laptop to the Grid resources, while the successor dmdSetup benefit from full
locality because they are scheduled in the same resources as their predecessor
tasks, where the corresponding receptor and ligand files are already present.
After that, there is an explosion of, first, simulate and, later, merge tasks (wide
region of the graph in Appendix A.2.3), for which the runtime can prevent up to
three and two transfers, respectively. Finally, the graph gets narrower when the
merged scores of the simulations are processed by the evaluate and min tasks,
each with two input files subject to locality.

Discrete works with only a few MB of data, but preventing files from being
transferred in grids becomes more important as the size of these data increases.
Furthermore, when dealing with big files the locality algorithm should take
into account not only the number of files but also their size when selecting the
destination host of a task. This requires to keep track of the sizes of each file
updated/generated in the workers, as well as to send that information to the
master runtime for it to make better decisions. Such optimisation was addressed
in [156] but it is out of the scope of this thesis. Alternatively, the user can
associate a given kind of task that accesses some big input data with a certain
resource that is known to host those data, or with a resource that fulfills some
other hardware/software requirements of the task.

In that sense, a variant of the tests discussed above intended to demonstrate
how to use constraints to force the scheduling of tasks on certain resources. Let
us assume that each kind of Discrete task has some hardware/software require-
ments. Figure 4.11 shows how such requirements were specified by means of
the @Constraints annotation, at method level, in the task selection interface (see
Chapter 2, Section 2.2.1 for more details). Those requirements need to match
the resource capabilities contained in the resources file. In this example, the
genReceptorLigand and dmdSetup must be executed in nodes running Scientific

76

4.5. Experiments Chapter 4. Grid

public interface DiscreteItf {
@Constraints(operatingSystem = ”Scientific Linux”)
@Method(...)
void genReceptorLigand(...);

@Constraints(operatingSystem = ”Scientific Linux”)
@Method(...)
void dmdSetup(...);

@Constraints(appSoftware = ”DISCRETE”)
@Method(...)
void simulate(...);

@Constraints(appSoftware = ”DISCRETE”)
@Method(...)
void merge(...);

@Constraints(memory = 4)
@Method(...)
void evaluate(...);

@Constraints(memory = 4)
@Method(...)
void min(...);

}

Figure 4.11: Detail of the task constraint specification for the Discrete applica-
tion. The complete task selection interface can be found in Appendix A.2.2.

1

2

5913 17 21 25 29 33

3

4

61014 18 22 26 30 34

7

8

37

11

12

15

16

38

19

20

23

24

39

27

28

31

32

40

35

36

41 42

43

1. Ibergrid

2. OSG

3. BSC Grid

genReceptorLigand

dmdSetup

simulate

merge

evaluate

min

Figure 4.12: Reduced version of the Discrete graph, only for illustrative purposes
(the real one is in Appendix A.2.3). The constraints in Figure 4.11 lead to the
task scheduling on the three grids represented by this figure.

77

4.5. Experiments Chapter 4. Grid

Linux, which is the operating system installed in some of the grids that process
LHC data, such as Ibergrid. Second, simulate and merge are supposed to run in
resources where the DISCRETE software is present; here, such capability was
assigned only to OSG sites. Finally, evaluate and min have a hardware con-
straint attached - more precisely, the amount of physical memory - which was
only known and specified in the resources file for the BSC Grid nodes.

As a result of the constraints, at execution time the scheduling of tasks on
resources was the one depicted in Figure 4.12. This graph is a smaller version
(only 2 structures and 8 configurations) just for illustration purposes, the actual
graph can be found in Appendix A.2.3. In conclusion, the programmer can use
task constraints to make sure that a given group of tasks will be executed in
one or more resources that conform to a set of requirements.

4.5.2 Small-Scale Tests

In order to complement Section 4.5.1, this section presents some early experi-
ments that analyse other aspects of the Grid runtime, like component distribu-
tion and scheduling techniques. The testbeds in this case are smaller-scale and
cluster-like; this represents a more controlled environment that facilitates the
evaluation of those aspects.

4.5.2.1 Component Distribution in Nord

A first series of experiments took place in Nord, a cluster of 28 nodes, each node
equipped with two single-core PowerPC 970FX processors. A total of 18 nodes
were available for the tests, whose objective was to demonstrate the advantages
of component distribution when applied to the Java StarSs Grid runtime.

Initially, the tests were intended to execute with JavaGAT over SSH for
inter-node communication (job submission and file transfer). Nevertheless, the
SSH job submission adaptor of JavaGAT at that time (2008) scaled poorly as
the number of simultaneous jobs and worker nodes was increased, causing an
overhead that hindered the runtime from distributing tasks quickly enough. For
such reason, these tests used a modified Job Manager component that called
directly the JSch SSH libraries [34], instead of through the JavaGAT API.

Regarding the applications, two different benchmarks were used. First, Mat-
mul multiplies two matrices divided in blocks, which are themselves smaller
matrices of doubles. Each of the tasks generated by Matmul multiplies two
blocks, stored in files. In the resulting graph, tasks are organised in chains, each
calculating the value of one block of the output matrix.

Second, Mergesort sorts a list of integers using the merge-sort algorithm.
In a first phase, the input list of Mergesort is split recursively into sublists of
length 1; then, in a second phase, the sublists are merged back into a sorted
list, also in a recursive way. Therefore, there are two kinds of task: the ones
that split a list and the ones that merge two lists. Concerning the dependency
graph, the number of split tasks that can be run in parallel grows as a power
of 2 until reaching a maximum value of N/2, N being the length of the original

78

4.5. Experiments Chapter 4. Grid

Single-node Distributed

Figure 4.13: Deployments of the Mergesort runtime: Single-node and Dis-
tributed.

list, whereas the number of parallel merge tasks decrease in the same ratio. The
transition between the two phases causes the maximum stress on the runtime,
which has to process a huge number of fine-grained tasks if the input list is long.

In order to show how the distribution of components can contribute to alle-
viate overload conditions, we launched two applications with Java StarSs from
the same node: first, Matmul with input matrices of 32x32 blocks, 8x8 doubles
per block; second, Mergesort with an input list of 200 integers. Matmul was
started 3 minutes before Mergesort, to make Mergesort begin when Matmul
was already on its peak of task load. Furthermore, two configurations were con-
sidered: in the first one, the Java StarSs runtimes for Matmul and Mergesort
were both completely deployed in the same node, while in the second one the
File Manager component of the Mergesort runtime was remotely deployed in a
second node, by means of a modified deployment descriptor; Figure 4.13 shows
the two deployments of the Mergesort runtime. Concerning the workers, a total
of 16 nodes (32 processors) were used.

Table 4.2 contains the average time (in seconds) corresponding to the execu-
tion of Mergesort with the two configurations (Single-node and Distributed). We
distinguish three periods: Start, including the component deployment, start and
initialization, Task processing, related to the analysis, scheduling and submission
of all the application tasks, and lastly Finalisation, comprising the component
cleanup and termination.

On the one hand, the remote deployment does not introduce an overhead
concerning the start and finalisation of the components, and even the Start
period takes less time thanks to the distribution of the component start and
initialization. Similarly, the time spent in the Task processing period is smaller
when using the distributed configuration; the reason is clear: in the case of
the Single-node configuration, the master becomes a bottleneck when having to
process a huge number of tasks, especially at the transition between the split
and merge phases, while on the contrary the distributed Mergesort runtime
divides its load, leading to better results. In total, the Distributed configuration

79

4.5. Experiments Chapter 4. Grid

Table 4.2: Influence of component distribution in Mergesort
Configuration Period of the execution (in seconds)
of master Start Task processing Finalisation

Single-node 85 251 8.7

Distributed 64.3 198.3 8.7

outperforms by more than 20% the Single-node one, thus proving the benefits
of distributing an overloaded master runtime.

4.5.2.2 Hmmpfam in MareNostrum

A second series of experiments were carried out in the MareNostrum supercom-
puter, equipped with IBM PowerPC 970MP processors at 2.3 GHz, which are
organised in JS21 blades of 2 dual-core processors, 8 GB RAM and 36 GB of
local storage. 280 TB of additional shared storage are provided via the Gen-
eral Parallel File System (GPFS) [27]. The interconnection network used was a
Gigabit Ethernet.

These tests evaluate the performance of the Grid runtime of Java StarSs
when running the Hmmpfam application, described in Section 4.4.3.1.

* Speedup Measures

A first kind of experiment measured the speedup and scalability of Java
StarSs running HMMPfam. Besides, the same tests were run with a reference
parallel implementation of hmmpfam, included in the MPI-HMMER suite [182].
MPI hmmpfam is based on a master-worker paradigm. Each worker must have
a copy of the HMM database available either locally or via a network storage.
The master distributes to the workers the sequences and the indexes of the
HMMs to compute, and finally post-processes the results from all workers.

Concerning the execution parameters, the input files were Superfamily [58]
as the HMM database and a set of 5000 sequences produced for benchmarking
by researchers from the European Bioinformatics Institute (EBI) [13].

In the case of Java StarSs, the SSH JavaGAT adaptor (updated to the 2010
version) was used to perform job submission and file transfer operations. In
every execution of Hmmpfam with Java StarSs, both the database and the se-
quences file were initially located on the shared storage (GPFS); when starting
the execution, the database and/or the sequences file were segmented by Hmmp-
fam and the fragments were put in the local storage of the master node. From
that moment on, the fragments were transferred via SSH from the master to the
local storage of a worker or between workers, depending on the scheduling of the
tasks, which was locality-aware. The fragments of database or sequences were
not stored in GPFS because of performance issues when a number of nodes is
accessing the same shared GPFS file. Besides, the I/O-bound nature of hmmp-
fam would make the problem worse and would prevent the application from
scaling. For the same reason, in the case of MPI-HMMER we pre-distributed
the database file to the local store of each worker node before the execution.

80

4.5. Experiments Chapter 4. Grid

 0

 20

 40

 60

 80

 100

 120

 140

8 16 32 64 128 256

S
p

e
e

d
u

p

Number of worker cores

Java StarSs
MPI-HMMER

Figure 4.14: Performance comparison for Hmmpfam between Java StarSs and
MPI-HMMER.

Regarding the segmentation strategy in Hmmpfam-Java StarSs, the appli-
cation only produced fragments of the query sequences file, since the database
fitted in memory and so there was no real need to segment it. The number of
sequence fragments was set to 512, based on previous experiments, to obtain a
good tradeoff between the overhead of task processing and the load balancing
among resources.

Figure 4.14 compares the performance of Hmmpfam for the Java StarSs and
MPI-HMMER versions. The baseline of the speedups is a sequential run of the
hmmpfam binary with the aforementioned input parameters.

On the one hand, Figure 4.14 shows the lack of scalability of MPI-HMMER
Hmmpfam, which is mainly due to the excessive communication between the
master and the workers. This was previously stated in [183] and [126], which
propose enhanced versions of the HMMER suite that achieve better performance
than the original one. We did not choose any of these works to establish a
comparison with Java StarSs because they either modify the original hmmpfam
code to introduce optimisations or they target a particular infrastructure. On
the contrary, the Grid runtime of Java StarSs relies on standard I/O, makes use
of commodity hardware and the hmmpfam code has not been tuned; therefore,
we found that the comparison with MPI-HMMER was more adequate.

On the other hand, Hmmpfam with Java StarSs clearly exhibits better scal-
ability than its competitor despite having to transfer the database file, which is
about 370 MB, to all the worker nodes during the execution. On the contrary,
the times of MPI-HMMER do not include the pre-distribution of the database
to all the worker nodes before execution.

In terms of speedup, Java StarSs Hmmpfam still has room for improve-
ment, mainly by increasing the throughput of the master node (tasks processed
and submitted per unit of time) but, yet, the results are quite satisfactory,
achieving 100x with 256 workers; it is worth noting that, in a revision of MPI-
HMMER [183] at that time (2010), the authors only reached a speedup of 80x
without modifying the hmmpfam binary to cache the database.

81

4.5. Experiments Chapter 4. Grid

 0

 10

 20

 30

 40

 50

8 16 32 64 128 256

P
e

rc
e

n
ta

g
e

Number of worker cores

No-Presched
Presched

Figure 4.15: Execution of Hmmpfam with Java StarSs. The figure depicts the
percentage of Idle+Transferring time in the workers, with respect to the total
of Idle+Transferring+Computing, with and without pre-scheduling.

* Benefits of Pre-Scheduling
The pre-scheduling technique implemented by the Grid runtime and de-

scribed in Chapter 3, Section 3.6.1.2 is analysed in this subsection.
During the execution of an application, it can happen that the master be-

comes idle when all the dependency-free tasks have been scheduled and submit-
ted to their destination host. Later, when a task finishes, the master leaves its
idle state to update the dependency graph and possibly send a new task to the
freed resource, along with its input files.

Pre-scheduling makes the most of the master inactivity periods, assigning
tasks to busy resources and pre-transferring the files that they need to these
resources. Thus, the overlapping of computation and communication in the
workers is improved.

Figure 4.15 shows how pre-scheduling contributes to shrink the non-computing
periods in the workers, for several runs of Hmmpfam with Java StarSs and dif-
ferent numbers of worker processors. During execution, a worker processor can
be in three states:

• Idle (I): the worker is inactive, that is to say, it is not running any task
nor receiving any file.

• Transferring (T): the worker is receiving one or more input files for a task.

• Computing (C): the worker is running a task.

In Figure 4.15, the percentage of non-computing time in the workers (I+T)
is calculated with respect to the total time (I+T+C). The lower is the I+T
percentage, the higher is the utilisation of the workers. As expected, the weight
of I+T increases along the x-axis due to two factors: first, the more worker
cores, the less data locality is achieved and the more transfers are necessary;
second, a higher number of worker cores also increases the load of the master,
which causes larger idle periods on workers that have finished a task and are

82

4.5. Experiments Chapter 4. Grid

Figure 4.16: Number of concurrent transfers that Java StarSs is performing
during the first 500 seconds of Hmmpfam, varying the number of worker cores
(16, 64, 256) and applying pre-scheduling or not. Pre-scheduling keeps the
master busy (transferring) longer, except in case of overload.

waiting for the next one. However, when pre-scheduling is activated the I+T
percentage is smaller. This happens because more transfers are overlapped with
computation, and a core that gets free can receive sooner a new (pre-scheduled)
task, without having to wait for any transfer at that point. Such statement is
not true for the case of 256 workers, when the overload of the master prevents it
from applying pre-scheduling: it continuously has newly idle workers to which
to transfer files and submit tasks.

Figure 4.16 illustrates how pre-scheduling helps distributing the load of the
master more uniformly all along the execution of Hmmpfam. It depicts, for
different numbers of worker cores, the average number of concurrent transfers
that the master is handling during the first 500 seconds of the execution, both
for pre-scheduling and no pre-scheduling. For 16 workers, the pre-schedule line
falls about 50 seconds later than the other one, due to the pre-transfers that
the master performs. The difference between the two lines is more significant
for 64 workers, because the master has more workers to which to transfer input
files of pre-scheduled tasks. In the case of 256 workers, however, there is no
noticeable difference between the two lines: no pre-scheduling is actually done,
again because the overloaded master is never idle.

83

4.6. Related Work Chapter 4. Grid

4.6 Related Work

4.6.1 Grid Programming Models

Apart from Java StarSs, there exist other programming models for applications
executed in computational grids [133].

Ninf-G [166] provides an implementation of the GridRPC API, a standard of
the Open Grid Forum. GridRPC offers a programming model based on client-
server remote procedure calls on the Grid: client programs can call libraries on
remote resources using the client API provided by a GridRPC system. Ninf-G
uses specific Grid middleware, the Globus Toolkit, to submit the calls from the
client (tasks) to the server where the executables reside, whereas Java StarSs
can submit tasks using different kinds of Grid middleware. Furthermore, Ninf-
G has a more complex programming model than Java StarSs: with Ninf-G,
the programmer has to substantially modify the original application code by
including the invocations to the GridRPC API. Finally, Java StarSs features a
complex mechanism of data dependency analysis for tasks, which Ninf-G lacks.

Satin [175] is a Java-based programming model for the Grid which permits
to express divide-and-conquer parallelism; it uses marker interfaces to indicate
that certain method invocations need to be considered for potentially parallel
(spawned) execution; similarly to Java StarSs, Satin features a bytecode rewriter
that transforms such invocations into tasks. Nevertheless, the programmer must
explicitly use a synchronisation primitive to wait for the spawned tasks; unlike
Satin, Java StarSs takes care of task and data synchronisation automatically. On
the other hand, Satin supports shared objects that can be accessed by different
tasks, but the programmer must mark the methods invoked on those objects
as global (applied to all the object replicas) or local (applied only to the local
copy owned by the task); in Java StarSs, data sharing is only achieved through
task parameters. Finally, Java StarSs is not restricted to the divide-and-conquer
paradigm but targets all applications with potentially concurrent tasks.

OpenWP [98] is a programming and runtime environment that aims to ease
the adaptation and execution of already existing applications on grids. For that
purpose, OpenWP provides a set of directives, inspired by OpenMP [148], that
have to be included in the application code to express parallelism and distribu-
tion. These directives allow to run coarse-grain parts of the application (tasks)
in parallel on the Grid. Regarding the workflow engine, OpenWP works on
top of Condor DAGMan [11], while Java StarSs can access various middleware
through JavaGAT. From the programming model point of view, the main dif-
ference between Java StarSs and OpenWP is that the latter requires to indicate
the dependencies between tasks in the application code, whereas the former
finds them automatically at execution time.

ASSIST [76] is a programming environment that makes possible the develop-
ment of parallel and distributed applications. It offers a coordination language
to express parallel programs in two main parts: a module graph which defines
how nodes interact using data flow streams, and a set of modules, either sequen-
tial or parallel, which actually implement the nodes of the graph; in addition,

84

4.6. Related Work Chapter 4. Grid

a module or a whole graph can be wrapped as a component interoperable with
Web Services. ASSIST and Java StarSs have distinct purposes: while the former
gives support to high-performance Grid-aware applications, the latter offers a
much simpler programming model that is oriented to Grid-unaware applications.

Finally, special mention is deserved by GRID superscalar (GRIDSs) [85], the
starting point of the work on Java StarSs. GRIDSs offers a programming model
and an execution runtime for Grid-unaware applications. The programming
model is also task-based: similarly to Java StarSs, the user is required to provide
an IDL (Interface Definition Language) file that selects the tasks and provides
the type and direction of their parameters. Besides, the main program of the
application must use a set of API methods, e.g. to start/stop the runtime and to
wait for some data; in contrast, Java StarSs applications do not need to include
any library call. The parameter types of GRIDSs tasks are restricted to files and
primitives, while Java StarSs tasks can handle any kind of data used in a Java
program. The runtimes of Java StarSs and GRIDSs have similar functionalities;
in the case of data dependency analysis, renaming and transfer, Java StarSs
extends them to deal with other kinds of data (objects and arrays). The runtime
of GRIDSs is programmed in C++ and works on top of the Globus Toolkit and
SSH, whereas the Java StarSs runtime is written in Java and can access several
kinds of Grid middleware. The work on GRIDSs has been discontinued to be
substituted by Java StarSs.

4.6.2 Workflow Managers

With respect to workflow managers, some systems have been proposed to specify
the elements of a workflow and the connections between them, either graphi-
cally or by means of a high-level workflow description language; in this sense
they differ from Java StarSs, where the workflow graph is implicitly defined by
a concrete execution of an application and built dynamically at runtime. In
addition to the already discussed Taverna [142] (Section 4.4.1), other examples
of these systems are P-GRADE, Triana, ASKALON and Pegasus.

P-GRADE [127] is a general-purpose, workflow-oriented, Globus-based Grid
portal; it offers a high-level, graphical workflow development system and an ex-
ecution environment for various grids. Triana [167] is a Problem-Solving Envi-
ronment (PSE) that permits to describe applications by dragging and dropping
their components and connecting them together to build a workflow graph; like
in Java StarSs, Triana workflows can access the Grid through the Grid Appli-
cation Toolkit. ASKALON [145] is an application development and computing
environment that makes it possible, through the use of a portal, to create a UML
model of a workflow; in a second step, this model is automatically translated to
an abstract language that represents the workflow and then given to a set of mid-
dleware services for scheduling and reliable execution on the Grid. Pegasus [104]
is a workflow management system that takes high-level workflow descriptions
(abstract workflows) and automatically maps them to the distributed Grid re-
sources; Pegasus performs execution site selection, manages the input data and
provides directives for data transfer and registration.

85

4.7. Summary Chapter 4. Grid

4.6.3 Component-Based Grid Software

Regarding the CBSE field, some efforts were made to componentise Grid mid-
dleware and applications. [93] presents a component-based design of the runtime
of the Science Experimental Grid Laboratory (SEGL), a programming environ-
ment which allows end-users to program and manage complex, computation-
intensive simulation and modeling experiments for science and engineering;
this work, though, merely specifies the architecture of a Grid middleware with
the CORBA component model [73], whereas Java StarSs also provides a fully-
functional implementation and complies with GCM, intended for the Grid.

A good example of a component-based application can be found in [149],
where the authors transform an object-oriented distributed numerical solver by
applying the features of the Fractal model [97] (predecessor of GCM) with some
extensions.

Finally, some approaches to build applications as a set of components have
been proposed, for instance the Grid IDE, HOC-SA and CB-PSE; however, only
the first one can construct GCM components. The Grid Integrated Develop-
ment Environment (GIDE) [87] provides an integrated environment to support
both the software development process and operation of GCM applications; it is
released as plugins for the Eclipse framework [60]. HOC-SA [79] is a program-
ming environment for constructing Grid applications as a composition of Higher-
Order Components (HOCs), which implement generic and reusable patterns of
parallelism provided as a collection of Grid Services; HOCs can be customized
by parameterising them not only with data but also with application-specific
code. CB-PSE [181] is a distributed problem-solving environment for scientific
computing, which can be used to graphically build applications by connect-
ing software components together; such components can be JavaBeans [57] or
CORBA objects that contain sequential or parallel code.

4.7 Summary

This chapter has provided an overview of the first infrastructure contemplated
in this dissertation: the Grid. Such infrastructure is mainly characterised by
the heterogeneity and geographic distribution of its resources, as well as by the
diversity of the middleware that manages those resources. Applications that run
on the Grid face the challenge of overcoming that heterogeneity and exploiting
the computing power and storage capacity shared by Grid resources. In that
sense, the first version of Java StarSs came along to help with the development
and execution of Grid applications.

On the one hand, the Java StarSs programming model first focused on files,
since they are the Grid’s main unit of data; files can be passed as parameters
of tasks and accessed from the main program by opening streams on them, like
it would happen in any sequential Java application. Regarding tasks, they are
preferably coarse-grained in order to compensate the latencies, waiting times
and middleware overhead typical of grids.

86

4.7. Summary Chapter 4. Grid

On the other hand, the Grid runtime of Java StarSs was designed with the
Grid characteristics in mind. First, in order to deal with the variety in Grid
middleware, the runtime accesses Grid services through a uniform interface with
a set of adaptors for several kinds of middleware; this fact is completely trans-
parent to the application programmer, who only needs to provide the necessary
credentials for each grid. Second, the structure of the runtime was compo-
nentised following the principles of a component model particularly intended
for the Grid, thus gaining in reusability, ease and flexibility of deployment in
Grid contexts, parallelisation and separation of concerns. Furthermore, the
functionalities encompassed by each component were also adapted to the Grid,
e.g. by supporting fault-tolerance mechanisms or enforcing data locality in task
scheduling.

The evaluation of Grid Java StarSs, both in terms of programmability and
performance, was done with applications coming from e-Science, which is the
main field where Grid technologies are applied. Such evaluation has highlighted
the benefits of using Java StarSs in comparison to well-known alternatives in
the field; besides, it has also demonstrated how the Grid runtime can exploit
large-scale heterogeneous grids, managed by different middleware and belonging
to distinct administrative domains, while abstracting the application from any
Grid-related detail.

The last experiments presented in this chapter represent a transition to the
Cluster scenario, providing the first performance results of the Grid runtime. Al-
though such results were satisfactory enough for the considered applications, the
main conclusion was that there was still room for improvement when executing
on clusters. The Grid and Cluster environments have different characteristics,
and therefore the design and technologies that are suitable for grids are not nec-
essarily convenient for clusters. For instance, the GAT API and adaptors make
less sense in a homogeneous environment like a cluster, and the componentised
structure of the runtime introduces some overhead that might not be tolerable
for cluster applications.

Therefore, Chapter 5 will explore the changes that were made to Java StarSs
in order to tackle the Cluster characteristics and, as a result, improve its per-
formance.

87

4.7. Summary Chapter 4. Grid

88

Chapter 5

Cluster

This chapter continues the overview of those parallel distributed infrastructures
where Java StarSs has been applied, and it does so by focusing on the Cluster
computing paradigm. The Java StarSs programming model and runtime, ini-
tially designed for the Grid, had to evolve in order to optimise the execution
on clusters. The characteristics, technologies and types of application that are
particular to Cluster computing motivated such adaptation.

The content of the chapter is organised in the following points: first, a short
introduction to the context of Cluster computing and to some basic concepts;
second, an explanation of the runtime design decisions driven by the scenario;
third, a description of the technologies that influenced the runtime implemen-
tation for clusters; fourth, a programmability evaluation of the programming
model, comparing it to another approach in the area; fifth, the results of the ex-
periments carried out in clusters; finally, a related work section and a concluding
summary.

5.1 Context

5.1.1 Cluster Computing

A cluster can be defined as a type of parallel system that consists of intercon-
nected whole computers and is used as a single, unified computing resource [153].
Clusters appeared decades ago as applications needed more computing power
than a sequential computer could provide; instead of improving the speed of a
single processor or increasing the amount of memory to meet the demands of
applications, cluster computing proposed a alternative solution by connecting
multiple processors together and coordinating their computational efforts.

In the early 1990’s, the availability of low-price microprocessors and the ad-
vances in network technologies contributed to the widespread construction of
clusters, which were more cost-effective than specialised proprietary parallel su-
percomputers [86]. As a consequence, a much broader community could benefit

89

5.1. Context Chapter 5. Cluster

from powerful computing resources, thus creating new opportunities in sectors
like science, industry and commerce.

Nowadays, computer clusters have a wide range of applicability, designs
and configurations: from small business clusters with a few nodes built with
commodity hardware, to large and expensive supercomputers with hundreds of
thousands of cores; from web-based applications to scientific HPC programs.
Clusters have already incorporated multi-core processor technologies and are
currently exploring solutions like hybrid CPU (Central Processing Unit) - GPU
(Graphics Processing Unit) platforms.

5.1.2 Cluster versus Grid

Grids usually integrate clusters as building blocks, as seen in the Grid testbeds
of Chapter 4. Both clusters and grids emerged to meet the growing demands
of applications by interconnecting resources, but they differ in several aspects,
summarised in the following points:

1. Area and size: clusters occupy a small, restricted and single-owned area
and they normally gather less resources than grids. Cluster resources com-
municate through Local Area Networks (LAN), oppositely to the WAN
links and geographic distribution of Grid resources across multiple admin-
istrative domains.

2. Network: cluster nodes are tightly-coupled and interconnected by dedi-
cated fast networks, in some cases featuring very low-latency and high-
bandwidth, while grids are typically built on top of slow links.

3. Resources: clusters are usually an aggregation of the same or similar type
of machines running the same operating system. This homogeneity con-
trasts with the variety that characterises Grid resources.

4. Applications: an important kind of cluster applications are those that
require frequent communication between nodes, mostly implemented with
the Message Passing Interface (MPI) [144]. The other extreme corresponds
to those applications mainly composed of independent computations that
need little or no communication, close to Grid computing where data
transfers are more expensive.

5. Data: in addition to files, which are the Grid’s main unit of data, many
cluster applications work with memory data structures that are allocated
in the nodes involved in the computation, and eventually sent to other
nodes through the network.

6. Granularity: applications that run on grids need to have enough granular-
ity to compensate for the waiting times, middleware overhead and latencies
of the Grid. In cluster environments, applications and the computations
they encompass are normally more fine-grained.

90

5.1. Context Chapter 5. Cluster

7. Management: unlike the Grid, which has a more distributed nature, Clus-
ter computing relies on a centralised management that makes the nodes
available to users as orchestrated shared servers.

5.1.3 Productivity in Cluster Programming: APGAS

In the advent of multi-core processors, next-generation clusters are increasing
not only in size but also in complexity. In such a scenario, programming produc-
tivity - understood as a tradeoff between programmability and performance - is
becoming crucial for software developers. Parallel languages and programming
models need to provide simple means for developing applications that can run
on parallel systems without sacrificing performance.

MPI has dominated so far the programming of HPC applications for infras-
tructures with distributed memory but, arguably, parallelising an application
in MPI requires a considerable effort and expertise. Some of the duties of the
MPI developer include manually fragmenting the application data and explicitly
managing the communication (sends and receives) between processes.

In response to that fact, in the last years the research community has initi-
ated different projects to create a suitable and robust programming model for
distributed-memory platforms like clusters. One of such approaches is that of
the Partitioned Global Address Space (PGAS) languages, which came along in
order to address the programming-productivity wall. PGAS languages, such as
UPC [110], Co-Array Fortran [146] and Titanium [185], extend pre-existing lan-
guages (C, Fortran and Java, respectively) with constructs to express parallelism
and data distribution. These languages provide a simpler, shared-memory-like
programming model, where the address space is partitioned and the program-
mer has control over the data layout. Besides, they have a strong sense of
ownership and locality: each variable is stored in a particular memory segment
and, although tasks can access any lexically visible variable, local variables are
cheaper to access than remote ones.

Nevertheless, PGAS languages focus on the Single Program Multiple Data
(SPMD) threading model and lack support for asynchrony. Therefore, sev-
eral research groups started to investigate about asynchronous computation in
the PGAS model [113], and the concept of APGAS (Asynchronous PGAS) ap-
peared. APGAS languages, such as X10 [101] or Chapel [100], follow the PGAS
memory model but they also provide mechanisms for asynchronous execution:
they allow to create an activity and return immediately, an activity meaning a
computational unit that can run in parallel with the main program. The basis of
the APGAS communication model is the Active Message (AM) paradigm [180].
In short, an AM is a message with a header containing the address of a user-
space handler to be executed upon message arrival at the receiver, with the
contents of the message passed as an argument to the handler; the mission of
the AM handler is to extract the data from the network and integrate it into
the ongoing computation with a small amount of work.

91

5.2. Runtime Design Chapter 5. Cluster

5.2 Runtime Design

The differences between Cluster and Grid computing enumerated in Section 5.1.2
motivated a change in the design and implementation of the runtime. The modi-
fications mainly affected the following aspects of the Grid flavour of Java StarSs:

• Componentised structure: even if the componentised runtime had inter-
esting properties like reusability and deployability, the ProActive imple-
mentation of GCM introduced a considerable overhead primarily due to
an inefficient communication protocol between components. Hence, while
maintaining the functionalities described in Chapter 3, the runtime was
re-designed with performance and scalability in mind.

• Underlying communication layer: the Grid API and the middleware adap-
tors were not adequate for execution on a homogeneous environment like
a cluster. Instead, the runtime was built on top of a fast communication
system capable of exploiting high-speed networks.

• New data types: the runtime was extended to support memory structures
as task parameters subject to dependencies, as well as to watch their
access from the main program. This chapter will focus on arrays, whereas
Chapter 6 will discuss the use of objects.

• New execution and data model, with persistent workers and data exchange
between any pair of nodes.

The next subsections will further explain the modifications made to the Java
StarSs runtime design in order to adapt it to Cluster computing.

5.2.1 Java StarSs and APGAS

The APGAS communication system efficiently supports asynchronous execu-
tion and data transfers. APGAS is based on a one-sided communication model
(by means of AMs), as opposed to the (mostly) two-sided communication pat-
tern in MPI. The one-sided model has proven to achieve better scalability for
large-scale clusters, mainly due to its better overlapping of communication and
computation and to the avoidance of the inherent bottlenecks of two-sided mod-
els (like message matching and preserving ordering semantics [88, 111]). IBM
(International Business Machines [30]) developed its own implementation of an
APGAS runtime, a fast and portable communication layer that has shown its
performance for languages like UPC and X10 [119].

In that sense, it was explored how APGAS could help Java StarSs achieve
better performance and scalability. Java StarSs and APGAS share the same
computational model, which consists in spawning asynchronous computations
as the main program executes, but it was questionable which characteristics of
APGAS would be beneficial for Java StarSs. There were basically two APGAS
properties of our concern: (i) a partitioned global address space, where every
thread is able to locate (address/access) shared data and, at the same time, the

92

5.2. Runtime Design Chapter 5. Cluster

Figure 5.1: Design of Java StarSs on top of APGAS.

concept of affinity allows to exploit data locality; (ii) a communication layer
based on one-sided communications.

In the re-design of Java StarSs, only (ii) was taken into account, i.e. APGAS
was exclusively used as an underlying layer to handle inter-node communica-
tions, following the AM paradigm. With respect to (i), a partitioned global
address space permits to increase the address space by adding up every node’s
memory; nevertheless, the programmer is responsible for specifying the data
distribution among nodes and for exploiting data locality. In that regard, it
was decided to preserve the simplicity of the Java StarSs model, only requiring
the user to select the tasks, while the actual parallel execution and data place-
ment is kept transparent. Indeed, exposing data distribution to the user would
lead to a more complicated programming model, and therefore this option was
discarded. Instead, our approach is to automatically distribute the application
data according to the computation needs, but still being able to use the whole
memory of the cluster. The data model in the Cluster design of Java StarSs
will be further explained in Section 5.2.5.

Next, the design of the Cluster flavour of Java StarSs will be described, as
well as the interaction between Java StarSs and APGAS, in terms of structure of
the program executed in all the nodes, the architecture and models of execution
and data in Java StarSs. Figure 5.1 illustrates this description.

5.2.2 Runtime Structure

The Java StarSs runtime for clusters is internally implemented as an SPMD pro-
gram, i.e. all nodes hold a copy of the whole program code. Thus, at execution
time, every node starts running the same code, summarized in Figure 5.2.

93

5.2. Runtime Design Chapter 5. Cluster

main () {
initialisation and AM registration();
barrier();
if (is main(here)) {

application execution();
}
// Workers go directly here and wait for AMs
barrier();
cleanup();
barrier();

}

Figure 5.2: Pseudo-code representing the skeleton of the Java StarSs runtime
that is run in all nodes. Essentially, the main node executes the main program
of the application and the worker nodes wait to respond to incoming AMs.

Every node starts executing the same main method and, after a common
stage of initialisation, the behaviour depends on the role of the node, i.e. main
node or worker node:

• Main node manages Task Generation: the main node runs the actual main
program of the application, leading to the generation of tasks and their
submission to the workers for execution. It encompasses the main func-
tionalities corresponding to the master runtime, like dependency analysis
or task scheduling.

• Worker nodes manage Task Execution: the worker nodes spawn threads
that wait to respond to incoming messages and execute tasks.

5.2.3 Communication Protocol

The Java StarSs communication protocol for clusters features three kinds of
messages:

1. Task submission (main node → worker): this AM submits a task for exe-
cution. It contains the identifier of the method that needs to be executed,
plus the list of its parameters and the necessary information for locating
them.

2. Task completion (main node← worker): this AM notifies task finalisation.
It triggers an update of the task dependency graph.

3. Get requests (main node ↔ worker, worker ↔ worker): workers can ex-
change data, bypassing the main node, to request the input data required
by a task. The main node knows the location of the data and such infor-
mation is included in the Task submission message. If the worker in charge
of the task is missing some of the data, it uses the location information to
request them directly to the node where they reside (be it the main node
or another worker) by means of a Get request message.

94

5.2. Runtime Design Chapter 5. Cluster

Both in the main node and in the workers there is a Communication thread
that periodically polls the network for incoming messages, queues them in a
Message queue and then processes this queue. For Task submission messages,
such thread uses the information about the location of the task input data to
send the appropriate Get requests to obtain those data from other nodes, if
necessary. Once all its data are available at the execution node, the task is
queued in the Ready queue, which is consumed by a pool of Task threads that
run the tasks. When a task finishes, a Task completion message is sent to the
main node to notify that fact; the message is processed by the Communication
thread of that node, leading to an update of the task dependency graph.

5.2.4 Execution Model

The main difference between the execution model in the Grid and Cluster sce-
narios is the persistence of the workers: while in the Grid workers are necessar-
ily transient (Chapter 4, Section 4.2.3), the Cluster runtime features persistent
workers.

As seen in Section 5.2.2, the Cluster runtime is internally implemented as
an SPMD program: on startup, a process is launched at each node and remains
there for the entire lifetime of the application. This is possible because all
the nodes involved in the computation are known from the start and directly
accessible.

One of the benefits of persistency is that workers can keep in memory those
data structures passed as task parameters for later use, as discussed next in
Section 5.2.5.

5.2.5 Data Model

5.2.5.1 Data Layout

The data created in memory by the main program of the application initially
resides in the main node. Furthermore, Java StarSs supports data-allocating
tasks: when a task creates and returns some data, such data is allocated directly
in the worker node that runs the task.

The possibility of allocating data by means of a task prevents the application
from being limited to the memory of the main node, which would represent a
severe scalability impediment; instead, the total amount of memory is extended
to that of all the nodes involved in the computation. Besides, the fact of allo-
cating data in tasks frees the main node from having to transfer those data to
the workers.

On the other hand, as explained in Section 5.2.1, the Java StarSs program-
ming model does not permit to explicitly define data distributions. However, it
does provide a mechanism to uniformly allocate data among the worker nodes:
initialisation tasks, exemplified in Section 3.6.1 of Chapter 3, are scheduled in
a round-robin manner across the available worker Task threads.

95

5.3. Relevant Technologies Chapter 5. Cluster

5.2.5.2 Data Transfer

Differently from the Grid case, where the master runtime was always responsible
for initiating the transfer between two resources, the Cluster runtime supports
data transfers between two worker nodes without the intervention of the main
node. Workers extract the information about parameter location from the Task
submission message; when a location corresponds to another worker, that worker
is contacted directly, bypassing the main node. Hence, the main node is freed
from processing every single transfer, which contributes to increase scalability.

5.2.5.3 Data Reuse and Locality

Every node in a Cluster Java StarSs execution maintains a structure called
Application Data Directory (ADD) to manage its task in-memory data. The
worker nodes store in the ADD: (i) the task input data transferred from other
nodes, (ii) the new versions of data updated by tasks and (iii) the data returned
by tasks. Similarly, when some data updated by a task is later accessed by
the main program, those data are transferred to the main node and added to
its ADD; eventually the main node may update the data and generate a new
version which is also stored.

The ADD allows to store renamings for later reuse, thus preventing unnec-
essary transfers of the same data in the future. As a matter of fact, it is a key
structure in the realisation of locality-aware scheduling.

5.3 Relevant Technologies

This section presents the Cluster technologies that were used to implement the
runtime design seen in Section 5.2.

5.3.1 IBM APGAS Runtime

The IBM APGAS runtime provides a fast and portable communication system
to efficiently exchange messages between the nodes of a cluster. By means of the
APGAS API, a given node can start a one-sided communication with another
node by sending an active message to the latter. Furthermore, the IBM APGAS
runtime is able to exploit high-performance networks and has been implemented
on a number of platforms, e.g. Myrinet [112], DCMF for BlueGene [130] and
LAPI [124].

As depicted in Figure 5.3, the cluster flavour of the Java StarSs runtime
was built on top of the IBM APGAS runtime and its various network adaptors.
Java StarSs invokes APGAS through Java bindings that make use of the Java
Native Interface [134]; these bindings offer a Java API for calling the actual
APGAS runtime API (written in C). The IBM APGAS runtime is used as a
communication layer: the APGAS AMs implement the communications between
the main node and the workers or between workers, which have been detailed
in Section 5.2.3.

96

5.4. Programmability Evaluation Chapter 5. Cluster

Figure 5.3: Cluster Java StarSs architecture: Java StarSs runtime on top of the
APGAS runtime, invoking the latter through Java bindings. X10 shares the
same underlying APGAS layer as Java StarSs.

5.4 Programmability Evaluation

This section aims to study the development expressiveness of Java StarSs in the
Cluster scenario by comparing it to the X10 language [101]. For that purpose,
two linear-algebra benchmarks (Matrix Multiplication and Sparse LU factorisa-
tion), as well as the K-means clustering application, were implemented in both
languages/programming models.

The next subsections explain the most relevant characteristics of X10 and
the chosen applications for their Java StarSs and X10 versions, and finally the
programmability of both approaches is discussed.

5.4.1 The X10 Programming Language

X10 [101] is an object-oriented programming language designed by IBM for
high-productivity programming of Cluster computing systems.

As in Java StarSs, the X10 execution model is based on spawning asyn-
chronous computations as the application runs. Nevertheless, unlike Java StarSs,
X10 provides the programmer with means for decomposing the application’s
data across a partitioned global address space and for orchestrating the flow
of computation through the system; concretely, such means consist in high-
level programming language constructs for describing data distribution, creating
asynchronous tasks and synchronising them.

This subsection will present a brief summary of the X10 language, focus-
ing on the core features that are used in the applications considered in this
programmability analysis.

97

5.4. Programmability Evaluation Chapter 5. Cluster

5.4.1.1 Places and Activities

A central concept in X10 is that of a place, which is intended to map to a
data-coherent unit in a system, i.e. a node in a cluster. Thus, cluster-level
parallelism can be exploited in X10 by creating multiple places. A place acts
as a container of both data and asynchronous computations, called activities,
which enable node-level concurrency.

In an X10 program, place 0 starts executing the main method, from which
activities can be spawned either to the same place or to other places. The
statement form of an activity is async (P) S, where S is a statement and P
is a place expression; such a construct asynchronously creates an activity at
the place designated by P to execute S. Throughout its lifetime, an activity
executes at the same place, and has direct access only to data stored at that
place; however, an activity can recursively launch additional activities at places
of its choosing.

5.4.1.2 Synchronisation

X10 also offers means to synchronise activities. In order to enforce the global
termination of a set of activities, they can be enclosed in a finish block. Such
construct acts as a barrier: it is guaranteed that finish S will not complete until
all the activities (possibly recursively) generated by S have terminated.

5.4.1.3 Data Distribution

X10 is a member of the PGAS (partitioned global address space) languages
and, as such, it permits to partition and distribute data across different places,
each place being the host and owner of a fragment of those data. Typically, in
order to distribute an X10 aggregate object (array), the programmer proceeds
in two steps: first, specifying the region of the array, i.e. the set of indices for
which the array has values; second, determining a distribution mapping from
indices in the region to places. X10 provides some pre-defined distributions, for
instance, to divide the coordinates in one axis in blocks or to assign in a cyclic
way coordinates to places.

Since an X10 distributed array belongs to a global address space, any place
can have a reference to any element of the array. However, a given element can
only be accessed on the node where it resides, more precisely by launching an
activity to that place. Reading an array element from a node other than its
owner requires an explicit transfer using a copy method of the X10 API. Only
constant (immutable) data can be accessed transparently from any place.

5.4.2 Application Description

This subsection describes the linear-algebra benchmarks and the K-means ap-
plication. Concerning the benchmarks, all of them are programmed using data
blocks, i.e. they operate on matrices which are divided in blocks. This kind
of algorithms decompose a problem into smaller problems, and they map easily

98

5.4. Programmability Evaluation Chapter 5. Cluster

for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++)

for (int k = 0; k < N; k++)
multiply(A[i][k], B[k][j], C[i][j]);

Figure 5.4: Main algorithm of the matrix multiplication application in Java
StarSs. The method multiply multiplies two input blocks of matrices A and B
and accumulates the result in an in-out block of matrix C.

into tasks that access parts of the data. The division of matrices in blocks that
fit into the cache is a common practice to optimise serial codes for a particular
architecture, the block size being chosen depending on the cache size.

In both Java StarSs and X10 the blocks were defined as flat 1D arrays.
In Java, this ensures that each block is allocated contiguously, which prevents
extra-copies when transferring data through the APGAS runtime.

5.4.2.1 Matrix Multiplication

The main algorithm of the matrix multiplication in Java StarSs (Figure 5.4)
multiplies two input matrices A and B and stores the result in C. Each ma-
trix is divided in N×N blocks of M×M doubles. The multiplication of two
blocks is done by a task (multiply method) with a simple three-nested-loop im-
plementation. When executed with Java StarSs, the program generates N3

tasks arranged as N2 chains of N tasks in the dependency graph.
On the other hand, before the code in Figure 5.4 is executed, the blocks of

matrices A, B and C are allocated by means of initialisation tasks. Figure 3.4 in
Chapter 3 exemplifies how such initialisation is done for the A matrix, the code
for the other two matrices being equivalent; only a slight modification to that
code was performed in order to flatten the matrix blocks, i.e. to turn them into
1D arrays instead of 2D.

Concerning the X10 implementation, the same algorithm was ported to X10
utilising its parallelism and data distribution constructs. Regarding the data
distribution of the matrices, two different configurations were considered:

• C distributed, A and B replicated everywhere: in this configuration, each
place (node) is assigned a whole replica of the input matrices A and B and
a part of the output matrix C. Figure 5.5(a) shows the code that performs
such distribution. Line 1 defines the region of a matrix of N×N points,
each point being a block. Line 2 specifies the distribution of the points
across the places, called ‘Block distribution’ in X10; more precisely, it di-
vides the coordinates along the 0th axis (the rows) in as many parts as
there are places1 and assigns successive parts to successive places (see Fig-
ure 5.7(a)). Lines 3-4 do the actual creation of the output matrix following
the previously defined distribution; the second parameter of method make
is the initialisation function of the blocks that allocates, for each point, a

1Here we refer to X10 blocks as ‘parts’ to prevent confusion with the matrix blocks (the
points), even though X10 uses the term ‘Block distribution’ for this kind of data partitioning.

99

5.4. Programmability Evaluation Chapter 5. Cluster

1 val matrix region = [0,0]..[N-1,N-1];
2 val matrix dist = Dist.makeBlock(matrix region, 0);

3 val C = DistArray.make[Rail[Double]](matrix dist,
4 (p:Point)=>Rail.make[Double](M*M, (Int)=>0 as Double));

5 val A = PlaceLocalHandle.make[ValRail[ValRail[Double]]](
6 Dist.makeUnique(),
7 ()=>ValRail.make[ValRail[Double]](
8 N*N,
9 (Int)=>ValRail.make[Double](M*M, (Int)=>2 as Double)));

10 val B = PlaceLocalHandle.make[ValRail[ValRail[Double]]](
11 Dist.makeUnique(),
12 ()=>ValRail.make[ValRail[Double]](
13 N*N,
14 (Int)=>ValRail.make[Double](M*M, (Int)=>2 as Double)));

(a)

1 finish {
2 for (var i:Int = 0; i < N; i++) {
3 for (var j:Int = 0; j < N; j++) {
4 val i copy = i;
5 val j copy = j;
6 async (C.dist(i,j)) {
7 val pij = Point.make(i copy, j copy);
8 for (var k:Int = 0; k < N; k++) {
9 val k copy = k;
10 finish async multiply(A()(i copy*N + k copy),
11 B()(k copy*N + j copy),
12 C(pij) as Rail[Double]!);
13 }
14 }
15 }
16 }
17 }

(b)

Figure 5.5: Implementation in X10 of the matrix multiplication benchmark. (a)
contains the creation, initialisation and distribution of the three matrices A, B
and C involved in the computation. (b) shows the main algorithm.

1-dimensional array (Rail in X10) of doubles filled with zeroes. After that,
lines 5-14 create and initialise the two input matrices: the PlaceLocalHan-
dle class will allocate a whole copy of the two matrices at each place; the
blocks are again 1D arrays (ValRail = Rail of immutable elements).

• A, B and C distributed: in this case, the three matrices are split across
the places. Two partitionings are considered, both of the type ‘Block
distribution’: one along the 0th axis (Figure 5.6(a), line 2), applied to
matrices C and A (lines 4-7), and another one along the columns (line 3,
example in Figure 5.7(b)), applied to matrix B (lines 8-9).

100

5.4. Programmability Evaluation Chapter 5. Cluster

1 val matrix region = [0,0]..[N-1,N-1];
2 val matrix dist 0 = Dist.makeBlock(matrix region, 0);
3 val matrix dist 1 = Dist.makeBlock(matrix region, 1);

4 val C = DistArray.make[Rail[Double]](matrix dist 0,
5 (p:Point)=>Rail.make[Double](M*M, (Int)=>0 as Double));

6 val A = DistArray.make[Rail[Double]](matrix dist 0,
7 (p:Point)=>Rail.make[Double](M*M, (Int)=>2 as Double));

8 val B = DistArray.make[Rail[Double]](matrix dist 1,
9 (p:Point)=>Rail.make[Double](M*M, (Int)=>2 as Double));

(a)

1 val size = M*M;
2 val block:Rail[Double]! = Rail.make[Double](size);
3 val remote ref = at (A.dist(p)) A(p);
4 block.copyFrom(0, A.dist(p), ()=>Pair[Rail[Double],Int](remote ref, 0), size);

(b)

Figure 5.6: A second implementation of the X10 matrix multiplication. In this
version, the three matrices created in (a) are distributed. The main algorithm
is not shown since it is equivalent to the one in Figure 5.5(b). The fact of
distributing matrices A and B makes necessary to add some code, depicted
in (b), to the activity method multiply for explicitly transferring blocks.

The main algorithm, like in the Java StarSs version, is implemented with
three nested loops and operates block by block as well. The code is shown
in Figure 5.5(b), being equivalent no matter what distribution is chosen. An
outermost finish (lines 1-17) guarantees synchronisation for all the activities
inside it. A first level of N2 activities are spawned from place 0 (running the
main program) to the places owning each block of C (line 6), since all the updates
of a given block must happen at the place where it resides. The i and j variables
must be copied into constants (lines 4-5, declared with the val keyword) before
invoking async, for them to be automatically transferred to the place where
the activity will run. A second level of N activities per C block are locally
launched on the place owning each C block (lines 10-12), which perform the
actual multiplication of two blocks. The finish construct right before the async
ensures that the activities are executed as a sequential chain of computations.

When distributing all the matrices, the subroutine multiply (called from lines
10-12) needs to include some code to explicitly transfer the input blocks from
A and B if they are not resident in the place owning the C block. Figure 5.6(b)
shows such code, where a reference to the remote point - a block - is obtained
(line 3) before it is copied to a local Rail (line 4). Since X10 does not internally
cache data copied from other places like Java StarSs does, these transfers can
severely affect the performance of the application, as will be seen in Section 5.5.2.

101

5.4. Programmability Evaluation Chapter 5. Cluster

(a) (b) (c)

Figure 5.7: X10 matrix distributions used in the tested benchmarks: (a) Block
distribution along the 0th axis, (b) Block distribution along the 1st axis, (c)
Block Cyclic distribution along the 0th axis with a block size of two rows. In
the benchmarks, each cell of a distributed matrix is itself a sub-matrix (i.e. a
block of the benchmark).

5.4.2.2 Sparse LU

The Sparse LU kernel computes an LU matrix factorisation on a sparse blocked
matrix. The matrix size (number of blocks) and the block size are parameters
of the application. As the algorithm progresses, the area of the matrix that
is accessed is smaller; concretely, at each iteration, the 0th row and column of
the current matrix are discarded. On the other hand, due to the sparseness of
the matrix, some of its blocks might not be allocated and, therefore, no work is
generated for them.

The Java StarSs version produces several types of task with different gran-
ularity and numerous dependencies between them. In a first phase, a group
of initialisation tasks sparsely allocate blocks of the matrix. The decision of
whether or not to create a block is made according to a certain criteria, and
the final placement of the blocks in nodes follows the same pattern as in Fig-
ure 3.4(c) in Chapter 3 except that only some of the blocks are allocated. After
the initialisation, the actual computation starts. Figure 5.8 depicts both the
main algorithm (a) and the graph generated for a matrix size of 5x5 blocks (b).
When running the code in (a), the invocations to the methods selected as tasks
(in italics: lu0, fwd, bdiv and bmod) are replaced by the asynchronous creation
of tasks, which are dynamically added to the graph. This is an example of how
Java StarSs is able to deal with an application with complex dependencies, au-
tomatically detecting them and trying to exploit the parallelism of the graph as
much as possible, while the user programs in a totally sequential fashion.

The X10 implementation is analogous to the Java StarSs one, but they dif-
fer in three main aspects: first, the matrix to be factorised is defined as a dis-
tributed array; second, there is the need to insert explicit data transfers; third,
the synchronisation between activities must be managed by the programmer.

102

5.4. Programmability Evaluation Chapter 5. Cluster

for (int k = 0; k < N; k++) {
lu0(A[k][k]);
for (int j = k+1; j < N; j++)

if (A[k][j] != null)
fwd(A[k][k], A[k][j]);

for (int i = k+1; i < N; i++) {
if (A[i][k] != null) {

bdiv(A[k][k], A[i][k]);
for (int j = k+1; j < N; j++) {

if (A[k][j] != null) {
if (A[i][j] == null)

A[i][j] = bmod(A[i][k],
A[k][j]);

else
bmod(A[i][k], A[k][j],

A[i][j]);
}

}
}

}
}

(a)

(b)

Figure 5.8: (a) Main algorithm of the Sparse LU benchmark for Java StarSs
and (b) the corresponding task dependency graph generated for an input matrix
of 5x5 blocks. Different node colours in (b) represent different task methods
and the number in each node is the generation order. Also in (b), the three
highlighted task levels correspond to the three different finish blocks in the X10
implementation.

Concerning the first point, two distributions were considered:

• Block distribution along the 0th axis (Figure 5.7(a)).

• Block Cyclic distribution along the 0th axis (Figure 5.7(c)): this helps
alleviate the load unbalance problem of the previous distribution, where
the places owning the first rows of the matrix soon get starved since their
data is not accessed anymore.

With respect to data copies, the distributed matrix is both read and written
by the application: a block written on its owner node might be read later by
another node to update a block the latter owns. Since X10 does not handle
such accesses transparently, some code to explicitly transfer blocks like the one
in Figure 5.6(b) had to be added. In particular, the fwd and bdiv methods read
one block and bmod receives two input blocks; inside those methods, such input
blocks must be transferred before the computation can begin.

103

5.4. Programmability Evaluation Chapter 5. Cluster

Regarding synchronisation, for every iteration of the main loop three finish
blocks were defined, each enclosing a group of activities. Every X10 activity
spawned, like in the Java StarSs tasks, runs one of the lu0, fwd, bdiv and bmod
methods. The three finish blocks correspond to the task levels in Figure 5.8(b);
in that example, the first level has one lu0 task, the second one has six tasks
(three fwd, three bdiv), the third one has five bmod, etc. In X10, the activities in
each of the levels follow a fork-join pattern: they can run in parallel, but there
is a global barrier at the end of the level. Although this means there is less
concurrency in the X10 version, trying to program in X10 a synchronisation as
fine-grained as the represented by a Java StarSs graph would be unreasonably
hard.

5.4.2.3 K-means

K-means clustering is a method of cluster analysis that aims to partition n points
into k clusters in which each point belongs to the cluster with the nearest mean.
It follows an iterative refinement strategy to find the centers of natural clusters
in the data.

The Java StarSs version of K-means first generates the input points by means
of initialisation tasks. For parallelism purposes, the points are split in a number
of fragments received as parameter, each fragment being created by an initialisa-
tion task and filled with random points. Thus, the fragments are allocated in the
worker nodes in a round-robin manner. After the initialisation, the algorithm
goes through a set of iterations. In every iteration, a computation task is cre-
ated for each fragment; then, there is a reduction phase where the results of each
computation are accumulated two at a time by merge tasks (the graph looks like
the one in Figure 4.6 of Chapter 4, a reversed binary tree); finally, at the end
of the iteration the main program post-processes the merged result, generating
the current clusters that will be used in the next iteration. Consequently, if F
is the total number of fragments, K-means generates F computation tasks and
F − 1 merge tasks per iteration.

In X10, the number of fragments for the points is also a parameter. Each
fragment is created as a PlaceLocalHandle, assigned to a given place (the code
is equivalent to that of the matrix multiplication in Figure 5.5(a)), lines 5-9)
and initialised with random points. Every place possesses the same number
of fragments. Regarding the main algorithm, in every iteration an activity is
spawned to each place to perform the computation of its fragments. Inside
each of these first-level activities, a second level of K activities, K being the
number of fragments per place, are launched locally on each place to compute
the clusters. This computation phase is enclosed by a finish construct. After
that, there is a reduction phase, also inside a finish; here, every place sends K
activities to place 0 to atomically accumulate the partial clusters. Similarly to
what happens in the Java StarSs version, place 0 then performs a post-process
whose result will be passed to the next iteration.

104

5.4. Programmability Evaluation Chapter 5. Cluster

5.4.3 Programmability Discussion

Although ease of programming is something difficult to quantify, here we will
take into account two possible indicators, namely the use of parallelisation syn-
tax in the application and the number of lines of code.

On the one hand, Java StarSs applications are programmed in pure sequen-
tial Java, whereas X10 programmers need to use some constructs to express
concurrency and data distribution. This analysis focuses on the X10 syntax
that appears in our test applications, taking into account the following aspects:

• Asynchronous computations: X10 provides the async statement to launch
new activities, where the user has to specify the place where the activity
will run. In contrast, the selection of tasks in Java StarSs is done by means
of a separate interface, leaving the sequential application untouched. The
runtime automatically replaces on-the-fly the calls to the task methods by
the creation of remote tasks and is in charge of scheduling them in the
available workers.

• Nested computations: X10 allows to spawn activities from inside other
activities and between any pair of places, thus making possible to express
recursive algorithms and nested parallelism. This is used, for instance, in
the K-means application to first send an activity from place 0 to every
place, and then launch a second group of activities inside each place to
compute the local clusters. The current Java StarSs implementation does
not support such feature, and all the tasks are submitted from the main
node to the workers.

• Synchronisation: synchronisation of activities in X10 has to be done man-
ually, i.e. by enclosing them in a finish block. Contrarily, Java StarSs frees
the user from task synchronisation: it is implicitly imposed by the data de-
pendencies between tasks and enforced by the runtime; furthermore, even
complex dependencies which would be hard to manage manually, like the
ones in the Sparse LU kernel, are automatically detected by Java StarSs.

• Data distribution: X10 provides classes to create and initialise distributed
structures, e.g. DistArray and PlaceLocalHandle. In a second step, activ-
ities can be submitted to the places where each part of these structures
has been allocated in order to access them. On the other hand, the Java
StarSs philosophy is not to let the programmer specify the distribution of
the data, thus preferring simplicity of the programming model rather than
the ability of tuning the performance of the application. Nevertheless, a
Java StarSs task can be marked as an initialisation one, which means it
will be scheduled in a round-robin fashion; such tasks can be used to allo-
cate data directly in the workers, which overcomes the problem of being
limited to the memory of the main node.

• Data management : in X10, mutable data (e.g. the parts of a distributed
array) can only be accessed in its owner place. This means that, if an

105

5.4. Programmability Evaluation Chapter 5. Cluster

Table 5.1: Number of code lines of the tested applications.
App. Java StarSs X10
name Main Program Interface Main Code

Matmul 54 24 36

Sparse LU 128 57 203

K-means 148 41 135

activity needs some data that resides in a place other than its own, an
explicit transfer must be issued (copyFrom method). An example of such
scenario is the matrix multiplication benchmark when the three matrices
are distributed: every update of a block of matrix C needs a block from A
and a block from B, which may be located in different places. Moreover,
X10 does not reuse data that has already been transferred (which also
hinders performance). In contrast, the Java StarSs runtime is responsible
for transparently copying the input data to the node where a task will run,
possibly from another node where a predecessor task executed; in addition,
the data are kept in the node for subsequent tasks to reuse them.

On the other hand, Table 5.1 shows the number of code lines for each ap-
plication as another indicator of productivity. For Java StarSs, we distinguish
between the number of lines of the Java sequential program itself (‘Main Pro-
gram’) and those of the annotated interface that declares the tasks (‘Interface’).
Although the latter are not part of the main program, we include them for
the sake of accuracy, since the parallelisation of the application is based on
the information specified in the interface. Nevertheless, note that the length
of the interface is not proportional to that of the main program - in fact, the
interface is usually much shorter - and its definition is straightforward once the
programmer has decided which methods will be remote tasks.

For matrix multiplication and K-means, the X10 programs are a bit shorter.
The difference is mainly due to the initialisation of data structures. In X10, the
initialisation is ‘embedded’ in the method which allocates the structure (e.g. in
Figure 5.6(a), lines 4-5, the block elements are initialised to zeroes); this is more
compact than the loop-based Java initialisation of the Java StarSs programs,
but also less intuitive. However, if we compare the number of code lines of
strictly the main loop e.g. in the matrix multiplication benchmark (Figure 5.4
for Java StarSs, Figure 5.5(b) for X10), that number is lower in Java StarSs.

In the case of the Sparse LU benchmark, the async, finish and array copies
make the X10 version longer and remarkably harder to program.

In summary, based on the student’s experience in programming in both lan-
guages, Java StarSs applications are arguably easier to code, while X10 requires
the learning of some syntax which sometimes is not very expressive. On the one
hand, Java StarSs frees the programmer from dealing with data distribution
and transfer, spawning of asynchronous computations and synchronisation. On
the other hand, the X10 constructs provide the programmer with more control
over the application, making possible to fine-tune its performance.

106

5.5. Experiments Chapter 5. Cluster

5.5 Experiments

The experiments in this section will be divided in two series. The first series
represents a continuation of the productivity comparison between Java StarSs
and X10 started in Section 5.4, this time focusing on the performance of the ap-
plications introduced in that section. The second series extend the performance
evaluation by running a standard parallel benchmark suite with Java StarSs,
and comparing the results to other implementations of the same benchmarks.

5.5.1 Testbed

All the experiments were conducted in the MareNostrum supercomputer, hosted
by the Barcelona Supercomputing Center. MareNostrum [9] is a cluster of 2560
JS21 blades, each of them equipped with two dual-core IBM PPC 970-MP
processors that share 8 GBytes of main memory. Each core has a 64 KByte
instruction/32 KByte data L1 cache and 1024 KBytes of L2 cache. The blades
run the SLES10 (Linux) operating system. The interconnection network is
Myrinet, accessible through the MX driver.

5.5.2 X10 Comparison Results

5.5.2.1 Test Setup

The IBM APGAS runtime was compiled to use the MX adaptor [112]. Since
both Java StarSs and X10 share that same APGAS communication layer (see
Figure 5.3), their performance can be directly compared in the tests.

For Java StarSs, the Java Virtual Machine used was the IBM J9 VM 1.6 for
PPC 64 bits with its Testarrossa Just-in-Time (JIT) compiler. Regarding X10,
an X10 program can be compiled to either Java or C++; in these tests we chose
the X10 C++ runtime because it was able to work with more than one node.
The X10 applications were compiled at the highest level of optimisation.

In the tests, for Java StarSs the application data (matrix blocks, points)
were allocated on the worker nodes using initialisation tasks, so that those data
were transparently distributed among the available nodes (see Section 5.2.5). In
X10, the syntax for data distribution was used as described for each application
in Section 5.4.2. The measures presented in the next subsection do not include
this initialisation time neither for Java StarSs nor for X10.

The results are depicted for different numbers of cores. In the case of Java
StarSs, the cores of the main node are not counted, given that in the current
implementation that node never runs any task.

Concerning how the speedup is calculated, in Java StarSs the baseline is
always a regular execution of the corresponding sequential Java application with
the same granularity as when it is run with Java StarSs (e.g. same number
of blocks and block size). In X10, the baseline is an X10 program which is
equivalent to the corresponding parallel one (also with the same granularity),
except that the activity-spawning and synchronisation constructs have been
removed so that the execution is totally sequential.

107

5.5. Experiments Chapter 5. Cluster

Each application will be evaluated in three steps. First, an adequate gran-
ularity for the tasks/activities in Java StarSs/X10 will be selected. For a given
input data size, small block sizes provide more parallelism but also more run-
time overhead, because more tasks/activities are generated; conversely, using
big blocks reduces runtime overhead but also limits parallelism and load bal-
ancing. Second, the chosen granularity will be used to analyse the scalability of
the application in terms of execution times and speedup. Finally, other problem
sizes will be explored.

5.5.2.2 Matrix Multiplication

The evaluation of the Matrix multiplication benchmark begins with a study of
the best block size for the matrices. Figures 5.9(a) and 5.9(b) show, respec-
tively, the execution times of the benchmark and the average running times of a
task/activity (i.e. the multiplication of two blocks) for a range of block sizes. In
these tests, the number of cores was fixed to 64 and the problem size was always
the same, e.g. for a block size of 200x200 the matrix size (number of blocks)
is 64x64, whereas for 400x400 the matrix is divided in 32x32 blocks. In X10,
every place had a copy of the A and B matrices (first distribution described in
Section 5.4.2.1).

At the light of the results, the best block size for both Java StarSs and X10
is 200x200 doubles. Such size is the last one in the considered range where
the two input blocks of the block multiplication fit in the 1-MB L2 cache of
each core, which explains the higher times for bigger block sizes. The increase
in the execution time for smaller blocks can be attributed to the overhead of
processing more asynchronous computations. As an example, provided that
the Java StarSs matrix multiplication spawns a total of N3 tasks, N being the
number of rows or columns of the matrix, for N = 64 there is a total of 262144
tasks, while for N = 128 there are eight times more tasks. In the X10 version
this overhead is a bit smaller because, as seen in Section 5.4.2.1, only N2 remote
activities are launched.

In a second series of tests, the chosen block size was used to analyse scal-
ability. Figures 5.9(c) and 5.9(d) depict, respectively, the execution times and
speedup of the benchmark for different numbers of cores. Furthermore, for X10,
another kind of distribution was explored: in addition to ABRep (input matrices
A and B are replicated), we present the results for ABDist (A and B distributed
as detailed in Section 5.4.2.1).

Regarding the times, Java StarSs performs better than any of the X10 con-
figurations. As can be seen in Figure 5.9(b), the Just-In-Time compiler of the
Java Virtual Machine is able to produce faster code for the block multiplica-
tion than the X10 compiler and its C++ backend, which has a direct influence
on the execution time of the benchmark. The speedup offers another view by
comparing the times to the baseline execution. In this case, Java StarSs does
not scale as much as X10 ABRep. The difference is due to three reasons. First,
the execution for X10 ABRep is embarrassingly parallel and there is no data
transfer at all between nodes, since every place has a copy of the whole A and

108

5.5. Experiments Chapter 5. Cluster

(a) (b)

(c) (d)

(e)

Figure 5.9: Test results for the Matrix multiplication benchmark for Java StarSs
and X10. Study of the best block size, with a fixed number of 64 cores, keeping
the same problem size and varying the block size: (a) benchmark execution times
and (b) average task/activity times. Scalability analysis: (c) execution times
and (d) speedup for a range of cores, input matrices of N=64 and M=200, i.e.
64x64 blocks of size 200x200 doubles; for X10, two different configurations of the
matrices are considered: replicating matrices A and B (ABRep) or distributing
them (ABDist). In (e), study of different problem sizes with a fixed number of
64 cores and using the best block size found (200x200).

109

5.5. Experiments Chapter 5. Cluster

B matrices and a part of the output matrix C; in Java StarSs, on the contrary,
every worker allocates a portion of A, B and C, and consequently there is the
need to eventually transfer A and B blocks, as well as the renamings created for
C. Second, as mentioned earlier in this section, the X10 matrix multiplication
only spawns N2 remote tasks, while in Java StarSs this number is N3. Third,
the granularity of a block multiplication is smaller in Java StarSs than in X10
(Figure 5.9(b), for a block size of 200x200, 40 ms in Java StarSs versus 75 ms in
X10); bigger granularities help scale better because the runtime has to process
less tasks per unit of time and the workers need to be fed less often.

On the other hand, for the sake of performance X10 ABRep replicates the
input matrices in every node, which implies more memory usage. As an alter-
native, the results for ABDist are shown, in order to see what happens when
A and B are also distributed. In this case, the explicit transfers that must be
added before every block multiplication significantly hinder performance; more-
over, for 8 and 16 cores the results are not included because they failed to finish
in a reasonable time, possibly due to the garbage collection of all the transferred
blocks.

To conclude the study, other problem sizes were considered. In Figure 5.9(e),
the execution times for three different sizes of the matrices are depicted, namely
48x48, 64x64 (the one already used in Figures 5.9(c) and 5.9(d)) and 80x80.
The number of cores was 64 and the block size was the best found for both
Java StarSs and X10 (200x200). The version taken for X10 is ABRep. The
results show how, as the problem size increases, and so does the number of
tasks/activities, the execution time in X10 grows faster than in Java StarSs.

5.5.2.3 Sparse LU

The Sparse LU benchmark represents a more challenging problem for the schedul-
ing and dependency-analysis features of Java StarSs, due to the higher com-
plexity of its task dependency graph. The numerous data dependencies and
the different granularity of the various kinds of task make the load balancing
harder.

The evaluation of Sparse LU proceeds in a similar way as with the Matrix
multiplication. First, there is a study of the best block size for the matrix to be
factorised. Figures 5.10(a) and 5.10(b) show, respectively, the execution times
of the benchmark and the average running times of a task/activity (the lu0, fwd,
bdiv and bmod methods) for a range of block sizes. In these tests, the number
of cores was fixed to 64 and the problem size was always the same, e.g. for a
block size of 300x300 the matrix size (number of blocks) is 64x64, whereas for
400x400 the matrix is divided in 48x48 blocks. In X10, the Block distribution
described in Section 5.4.2.2 was used.

As can be drawn from the results, the best block size for X10 is 300x300
doubles; in Java StarSs the three smallest sizes present the same execution
times, which made us select 300x300 as the block size for both. The effect of
the cache on this benchmark is harder to analyse, since there are four kinds of
task/activity that can work with one, two or three blocks; nevertheless, taking

110

5.5. Experiments Chapter 5. Cluster

(a) (b)

(c) (d)

(e)

Figure 5.10: Test results for the Sparse LU benchmark for Java StarSs and
X10. Study of the best block size, with a fixed number of 64 cores, keeping the
same problem size and varying the block size: (a) benchmark execution times
and (b) average task/activity times. Scalability analysis: (c) execution times
and (d) speedup for a range of cores, input matrices of N=64 and M=300,
i.e. 64x64 blocks of size 300x300 doubles; for X10, two different partitionings
of the matrix to factorise are considered: Block distribution and Block Cyclic
distribution. In (e), study of different problem sizes with a fixed number of 64
cores and using the best block size found (300x300).

111

5.5. Experiments Chapter 5. Cluster

into account Figure 5.10(b), 300x300 seems a good choice. The corresponding
matrix size, 64x64, leads to the creation of 24510 remote tasks/activities.

In a second series of tests, the selected block size was used to analyse scala-
bility. Figures 5.10(c) and 5.10(d) depict, respectively, the execution times and
speedup of the benchmark for various numbers of cores. Furthermore, for X10,
another kind of distribution is explored: in addition to Block, we present the
results for Block Cyclic, also detailed in Section 5.4.2.2.

In this benchmark, Java StarSs has almost linear scalability up to 32 workers.
Here, the data dependencies play an important role: the graph is complex and
gets narrower from top to bottom. Therefore, at the end of the execution there
can be worker starvation caused by the lack of tasks. This situation gets worse
as we increase the number of workers.

Nevertheless, Java StarSs clearly outperforms X10 with respect to both ex-
ecution time and speedup. There are at least four reasons that explain such
results. First, the X10 version has some additional overhead caused by the ex-
plicit data transfers of input blocks, discussed in Section 5.4.2.2; in Java StarSs
there are also transfers between workers, but every worker has an internal struc-
ture (the Application Data Directory, see Section 5.2.5) where it stores the data
accessed by the tasks for eventual reuse. Second, a transfer in X10 is delayed
until one of the worker threads of the node (which run the activities) gets free,
whereas in Java StarSs there is a communication thread periodically polling
for transfer requests on each worker. Third, Java StarSs is able to manage
task dependencies in a more fine-grained fashion, whilst in X10 there are three
coarse-grain synchronisation blocks per iteration. Fourth, as the application
progresses, some blocks of the matrix are no longer accessed; since in X10 every
datum can be modified only on its owner node, the owners of the unused blocks
get starved. The Block Cyclic distribution mitigates a bit this effect, as can be
seen in Figure 5.10(c), because the last rows of the matrix are cyclically assigned
to places; however, at 128 cores (32 places) both distributions converge, each
place receiving two consecutive rows of the 64-row matrix. Oppositely, in Java
StarSs a written datum can be sent to any other node and updated again there,
which helps balance the load.

Finally, other problem sizes were taken into account. In Figure 5.10(e), the
execution times for three different sizes of the matrix are shown, namely 48x48,
64x64 (the one already used in Figures 5.10(c) and 5.10(d)) and 80x80. The
number of cores was 64 and the block size was the best found for both Java
StarSs and X10 (300x300). X10 ran with the Block distribution to ensure that
the same number of matrix rows were assigned to each place. In these tests,
the aforementioned drawbacks of the X10 Sparse LU make it again remarkably
slower than the Java StarSs version as the problem size increases.

5.5.2.4 K-means

In order to parallelise the K-means application, the input points must be divided
in fragments so that each computation task/activity calculates the clusters for
a given fragment. In this sense, the evaluation of the fragment size is shown

112

5.5. Experiments Chapter 5. Cluster

in: 5.11(a) execution times of K-means for different sizes and 5.11(b) average
running times of the tasks/activities that compute new clusters. In these tests,
the number of cores was fixed to 64 and the problem size was always the same,
e.g. for a fragment size of 500K points a total of 256 fragments were created,
while splitting the points in 1024 fragments implies 125K of fragment size.

The study reveals that, differently from the other two applications, there is
no fragment size that is equally suitable for both Java StarSs and X10. Re-
garding X10, the execution time of the application is quite stable across all the
range of sizes, though 500K seems the best one. Conversely, in Java StarSs the
fragment size makes the execution time vary significantly, the best value being
31.25K. The average task time, however, does not follow the same pattern and
grows proportionally to the fragment size. Such irregular behaviour of the Java
StarSs execution times depending on the fragment size will be explained next
in the scalability analysis.

In order to do the evaluation of the application scalability, the two fragment
sizes mentioned above were taken into account. Figures 5.11(c) and 5.11(d)
depict, respectively, the execution times and speedup of K-means for various
numbers of cores. The results of Java StarSs 31.25K show remarkable scalability
and are very close to the X10 ones, which again are quite stable no matter the
fragment size. Nevertheless, the 500K configuration is clearly not convenient for
Java StarSs, mainly due to two factors: the influence of the Java JIT compiler
and the bad load balancing at the end of each iteration.

Concerning the JIT effect, the method that finds new clusters for a given
fragment of points is compiled at different optimisation levels during the exe-
cution of the application. Some of these levels apply profiling techniques and
increase significantly the execution time of the method. At the highest level of
optimisation the peak performance is reached, but it takes several executions
of the method for that to happen. This means that, the more fragments are
created, the more (and shorter) executions of the task method there will be,
and thus the sooner the method will be optimised at the highest level. Fig-
ure 5.11(e) shows the execution time of the first ten iterations, using 64 cores,
for both Java StarSs and X10 with the two fragment sizes. It can be observed
how for Java StarSs 500K it takes longer to reach the peak performance, while
for 31.25K this happens already in the second iteration. Note that X10 does not
experience this problem, since the generated C++ code is statically compiled
before execution and therefore the method duration is constant from the very
beginning.

With respect to load balancing, it is more difficult to balance the load when
dealing with coarse-grain tasks, e.g. the ones produced by Java StarSs 500K,
which last about five seconds (Figure 5.11(b)). In a given node, one of the cores
could be running such a long task while the others are idle because there are no
more tasks to run. Since this balancing happens at the end of each iteration,
where the results of all the computations are merged and the new clusters are
passed to the next iteration, the influence in the overall execution time is more
important. This explains why in Figure 5.11(e) the Java StarSs iteration time
for the two fragment sizes becomes constant at different values.

113

5.5. Experiments Chapter 5. Cluster

(a) (b)

(c) (d)

(e) (f)

Figure 5.11: Test results for the K-means application for Java StarSs and X10.
Study of the best fragment size, with a fixed number of 64 cores, keeping the
same problem size and varying the fragment size: (a) application execution times
and (b) average task/activity times. Scalability analysis: (c) execution times
and (d) speedup for a range of cores, input parameters: 128000000 points, 4
dimensions, 512 clusters, 50 iterations; two fragment sizes are considered: 31250
points and 500000 points. (e) influence of JIT compilation in the iteration time
for the two fragment sizes. In (f), study of different problem sizes with a fixed
number of 64 cores and using the best fragment sizes found (31250 for Java
StarSs, 500000 for X10).

114

5.5. Experiments Chapter 5. Cluster

Lastly, other problem sizes were studied. In Figure 5.11(f), the execution
times for three different numbers of input points are depicted, namely 96000000,
128000000 (the one already used in Figures 5.11(c) and 5.11(d)) and 160000000.
The number of cores was 64 and the fragment size was the best found for Java
StarSs (31.25K) and for X10 (500K), respectively. The results show how the
comparisons between Java StarSs and X10 still hold for other problem sizes,
their execution times increasing more or less in the same proportion.

5.5.3 NAS Parallel Benchmarks

The NAS parallel benchmarks (NPB) [106] are a set of kernels that evaluate
diverse computation and communication patterns, and they are widely used
for parallel performance benchmarking. In order to extend the performance
evaluation of the Cluster runtime, a sequential Java version of the NPB was
developed for running them with Java StarSs. This section compares the results
of the Java StarSs NPB with other implementations of the same benchmarks.

5.5.3.1 Test Setup

The Java StarSs implementation of the NPB was compared to three other ver-
sions of the benchmarks. The one used as reference was the MPI version (3.2,
in C and Fortran) [106]. Besides, a couple of implementations in Java were
considered as well. First, the version of ProActive [99], a parallel programming
model and runtime for distributed-memory infrastructures that will be further
discussed in Chapter 6; the ProActive NPB were executed over RMI [158] -
its default communication protocol - and also PNP, a custom protocol created
by the ProActive team. Second, a Java MPI version was also tested on top of
F-MPJ [137], an MPI library for Java.

Most of the data exchanged in the benchmarks were implemented as 1-
dimensional arrays, which can be transferred directly from the Java heap using
the IBM APGAS runtime on Myrinet MX, with no extra copies; the lines named
‘Java StarSs Arrays’ in the plots represent the tests where such optimisation
was used in our runtime. F-MPJ also exploits this optimisation on MX, which
facilitates the comparison with ‘Arrays’. On the other hand, we also ran the
benchmarks instructing our runtime to treat the 1D arrays as regular objects;
these tests correspond to the ‘Java StarSs Objects’ line of the plots. In this
case, before transferring each object or array, it is first serialised into an array
of bytes. Such marshalling happens in ProActive for both RMI and PNP, and
therefore these tests were included for a more fair comparison. Regarding the
NPB-MPI benchmarks, they were compiled with the xlc 10.1 and xlf 12.1 64 bit
compilers with the -O3 option, and ran on a MPICH MX implementation.

Concerning the common execution parameters, the kernels were run with C
class size. The JVM used is the 1.6 IBM J9 64 bit. The times presented are the
average of 5 executions for each number of cores; they do not include the time
spent in initialisation and previous warm-up operations. All the cores in a node
(4) were used.

115

5.5. Experiments Chapter 5. Cluster

(a) EP

(b) FT

(c) IS

Figure 5.12: Execution times (seconds) of the NAS parallel benchmarks: (a) Em-
barrassingly Parallel, (b) Fourier Transformation and (c) Integer Sort. Tested
implementations: Java StarSs, ProActive, F-MPJ and NPB-MPI (original).

116

5.5. Experiments Chapter 5. Cluster

5.5.3.2 Embarrassingly Parallel (EP)

EP is a test for computation performance that generates pseudorandom floating
point numbers and has few communications.

Figure 5.12(a) shows how the performance for all the Java versions is similar,
and quite close to NPB-MPI. Nevertheless, ProActive is a bit behind, especially
for RMI, which crashes when running on 256 cores. The next benchmarks will
confirm the poor results of RMI, which can be partly attributed to the protocol
itself and its scalability limitations.

5.5.3.3 Fourier Transformation (FT)

This benchmark tests computation performance by solving a differential equa-
tion with FFTs and communication by sending large messages.

As can be seen in Figure 5.12(b), ‘Objects’ outperforms PA PNP, which fails
to run on 256 cores due to timeout errors. ‘Arrays’ also has a good behaviour
and scales similarly to F-MPJ, but for 256 cores there is a sharp drop of the
F-MPJ time, getting closer to NPB-MPI. This could be due to a change in the
communication protocol: when the message size in F-MPJ is equal to or lower
than 64 KB, it abandons the ‘rendezvous’ protocol to adopt an ‘eager’ one,
which has no handshake; such transition happens with 256 processes, when the
message size becomes 32 KB.

5.5.3.4 Integer Sort (IS)

This kernel also tests computation, but especially communication performance.
It sorts a large array of integers and is characterised by numerous transfers.

In Figure 5.12(c), ‘Objects’ is definitely better than PA PNP, which does not
seem to solve completely the scalability problems of RMI. Both ‘Objects’ and
‘Arrays’ experience a decrease in performance for 256 cores. The cause is the
massive transfer of data in IS, combined with little computation. In the MPI ver-
sions, the data exchanges are implemented as all-to-all operations, where every
process sends a distinct message to all other participating processes. Obviously,
there is no such operation in sequential Java. Instead, in our implementation of
IS, the exchange is done in two phases: first there are N2 ‘get’ tasks, N being
the number of cores, where every core gets a piece of data from the rest; second,
N2 ‘set’ tasks assign the values obtained by the gets. As N increases, so does
the number of these types of task (e.g. 81920 for 256 cores), which produces
more overhead for the runtime. This also happens in FT, but the fact that it is
more computationally intensive implies coarser-grain tasks, which helps overlap
computation and communication and consequently scale better.

The times for F-MPJ are quite the same as for ‘Arrays’ until 64 cores;
from that point on, its behaviour is a bit irregular, increasing and decreasing
again. The more performing implementation of the all-to-all exchanges in F-
MPJ explains why it reaches better results than Java StarSs.

117

5.6. Related Work Chapter 5. Cluster

5.6 Related Work

The current mainstream parallel programming models in high-performance com-
puting are OpenMP [102] and MPI [116]. Although OpenMP initially focused on
loop-level parallelism for shared-memory systems, the last version 3.0 has been
extended with a tasking model. Task data dependencies are not yet considered
in this standard, although it is under consideration and there are proposals
to extend it with them [107]. The MPI programming model has the widest
practical acceptance for programming on distributed-memory architectures like
clusters. MPI applications are composed of a set of processes with separate
address spaces that perform computation on their local data and use communi-
cation primitives to share data when necessary. However, the common practice
in MPI applications is to separate computation and communication in differ-
ent phases, with the corresponding loss of performance due to load unbalance
derived from the synchronisation points. An approach to overlap communica-
tion and computation is presented in [138] with a hybrid programming model
that composes SMPSs with MPI. In such model, communications are encapsu-
lated in tasks that can be aborted and re-scheduled when the communication is
ready. This mechanism achieves a global asynchronous data-flow execution of
both communication and computation tasks.

An alternative to these standards is Cilk [164], a task-based programming
model. Cilk is based on the identification of tasks with the spawn keyword
and the sync statement is used to wait for spawned tasks. Both OpenMP and
Cilk consider nested tasks (tasks that generate new tasks) but data dependency
detection is not supported and additional synchronisation points are required.
While Cilk only supported parallel tasks, Cilk++ also supports parallel loops.

The Asynchronous PGAS languages X10 [101] (already introduced in Sec-
tion 5.4.1) and Chapel [100] share the same underlying computational model
as Java StarSs, which is based on spawning asynchronous computations as the
main program executes. However, they expose that model to the programmer in
fundamentally different ways. In both X10 and Chapel, the programmer is pri-
marily responsible for decomposing the application’s data across the partitioned
global address space and for orchestrating the flow of computation through the
system. Both languages provide high-level programming language constructs
for describing data distribution and creating/synchronising large numbers of
asynchronous tasks. In contrast, in Java StarSs managing data distribution and
concurrency control is the responsibility of the underlying runtime system, not
the programmer.

Swift [184] provides a scripting language to program parallel applications,
as well as a runtime to execute them on large-scale clusters. The opportu-
nities for parallel execution are revealed via a combination of parallel loop
constructs and an implicit data-flow programming model. Calls to external
programs from a Swift code are transformed into remote tasks and the depen-
dencies between them are controlled. Although both Java StarSs and Swift are
task-based dependency-aware programming models, they mainly differ in the
kind of data they handle - all data types (files, arrays, objects, primitives) in

118

5.7. Summary Chapter 5. Cluster

Java StarSs, only files in Swift - and in the language itself - pure Java in Java
StarSs, scripting language with parallel statements in Swift.

StarPU [84] features a runtime system for executing applications on hetero-
geneous machines, i.e. equipped with accelerators such as GPUs. In StarPU,
the programmer can define a ‘codelet’ - an abstraction of a task - that can be
executed asynchronously on a core of the machine or offloaded to an accelerator.
Similarly to Java StarSs, the programmer specifies the direction of the codelets
parameters so that the runtime discovers and enforces the dependencies between
them. Differently from Java StarSs, which does not require to change the se-
quential code of the application, StarPU programmers need to include some API
calls in the code for task spawning or data registering. The StarPU runtime
cannot work with more than one node like Java StarSs, but it is able to move
data between different computational units and take into account data locality
when scheduling tasks.

Terracotta [59] is a solution for running Java web applications on clusters.
Like Java StarSs, Terracotta relies on dynamic bytecode instrumentation to con-
trol the execution of the application. The programmer creates and synchronises
Java threads as normal, but those operations are transparently transformed by
Terracotta into their distributed version when necessary; however, Terracotta
has no concept of global thread scheduler and the programmer must manually
launch multiple instances of the application and balance the load. Regarding the
application data, the programmer specifies in a configuration file those classes to
be shared between nodes, which will cause Terracotta to populate the changes
made to instances of these classes. Unlike Terracotta, Java StarSs is based on
fully-sequential Java programming and a shared-nothing paradigm, which frees
the user from managing threads and data sharing; furthermore, the load of the
application (the tasks) is automatically balanced.

5.7 Summary

This chapter has provided an overview of the second infrastructure contem-
plated in this dissertation: Clusters. Such infrastructure is mainly characterised
by resources with fairly homogeneous hardware and software, interconnected by
dedicated and fast local-area networks. Applications that run on clusters can
benefit from those high-speed links to perform communications of data struc-
tures involved in the computation.

In order to fully exploit the characteristics of Cluster computing, the Java
StarSs runtime was re-designed and implemented to move away from Grid tech-
nologies and adapt to the new scenario. In that sense, the IBM APGAS runtime
played a key role, becoming the underlying communication layer of Java StarSs
and enabling fast one-sided communications - with active messages - between
nodes. Moreover, the new design featured persistent workers that maintain a
cache of task data, thus favouring data reuse and locality, and that are able
to exchange data without the intervention of the main node, which increases
scalability.

119

5.7. Summary Chapter 5. Cluster

Regarding the programming model, it was extended to support memory data
structures (arrays, objects) as task parameters. However, in order to preserve
the simplicity of the model, it was decided not to allow the programmer to
explicitly specify the distribution of those data, as it happens in the APGAS
languages. Instead, the model permits to mark tasks as initialisation tasks,
which are scheduled in round-robin among the available resources and thus can
be used to uniformly allocate data on those resources; furthermore, thanks to
those data-allocating tasks that create data directly in the workers, the total
amount of memory is extended to that of all the nodes, which favours scalability.

In the evaluation part of the chapter, the Cluster flavour of Java StarSs has
been analysed in terms of productivity, i.e. with respect to its programma-
bility and performance, showing a good tradeoff between these two aspects.
On the one hand, the ease of programming has been compared to that of the
X10 language, concluding that the use of X10 entails learning a compact but
sometimes opaque syntax, while Java StarSs applications only require knowl-
edge of sequential Java and they are arguably easier to code. Java StarSs frees
the programmer from dealing with data distribution and transfer, spawning
of asynchronous computations and synchronisation; in contrast, X10 constructs
provide the programmer with more control over the application, making possible
to fine-tune its execution.

On the other hand, this chapter has also focused on performance, compar-
ing the results of Java StarSs and X10 for a set of applications. As a general
conclusion, Java StarSs performs better than X10 in applications where some
data is both read and written, and often a given piece of data updated on one
node needs to be read by another node. Such applications usually have com-
plex data dependencies which are hard to control manually in the code. Java
StarSs handles those cases with no burden for the programmer, creating a task
dependency graph, defining renamings of written data, transferring them if nec-
essary to balance the load and caching them for later use. On the contrary,
when the user can partition the application data in such a way that every node
only accesses its own fragment or few transfers are required, X10 can manage it
more efficiently; furthermore, the possibility of spawning asynchronous compu-
tations between any pair of nodes in X10 contributes to reduce the load of place
0 (main node). As a complement, the study of the well-known NAS parallel
benchmarks demonstrates that Java StarSs provides competitive results com-
pared to other Java-based implementations and the reference Fortran/C code.
However, since it is based on sequential Java to simplify programming, Java
StarSs lacks collective communication operations that exist e.g. in MPI; hence,
communication-intensive applications with little computation constitute a case
where Java StarSs still has room for improvement. The possible extensions and
modifications to the Java StarSs design in order to increase its performance and
scalability even further will be discussed in the Conclusions Chapter 7.

120

Chapter 6

Cloud

This chapter completes the trilogy of infrastructure chapters with the currently
emerging trend of Cloud computing. Clouds, just like grids and clusters, present
a set of distinctive characteristics that motivated changes and extensions in the
Java StarSs programming model and runtime. In that sense, Java StarSs evolved
once more to exploit the service-oriented nature and virtualisation features of
the Cloud.

The content of the chapter will be organised in the following points: first,
an introduction to the context of Cloud computing and to some basic concepts;
second, an explanation of the runtime design decisions driven by the scenario;
third, a description of the technologies that influenced the runtime implemen-
tation for clouds; fourth, a programmability evaluation of the programming
model, focusing on the use of services and objects in the model and comparing
Java StarSs to other approaches; fifth, the results of the experiments carried out
in private and public clouds; finally, a related work section and a concluding
summary.

6.1 Context

6.1.1 Cloud Computing

According to the National Institute of Standards and Technology (NIST) [141],
Cloud computing is a model for enabling ubiquitous, convenient, on-demand net-
work access to a shared pool of configurable computing resources (e.g. networks,
servers, storage, applications and services) that can be rapidly provisioned and
released with minimal management effort or service provider interaction.

Clouds are now emerging as an IT (Information Technology) paradigm shift,
challenging the common understanding of the location, management and eco-
nomics of IT infrastructures. The next concepts are pillars of Cloud computing:

• Everything as a service: clouds enable technology to be accessed as ser-
vices delivered over the Internet.

121

6.1. Context Chapter 6. Cloud

• Utility computing : pools of computing resources are consumed and paid
by users as they need them.

• Virtualisation: virtualisation technologies introduce a layer between the
execution environment - seen by applications and operating systems - and
the hardware underneath [115]. Virtual Machines (VMs) are represen-
tations of physical machines with their own set of virtual hardware and
software; multiple VMs of different users can be multiplexed and isolated
from each other in a single physical machine, which makes resource man-
agement more efficient.

• Elasticity : Cloud resources can be elastically acquired and released, in
some cases automatically, in order to scale with demand.

Companies can outsource to the Cloud any part of the IT stack. The levels
of that stack, which ranges from hardware to applications, are known in the
Cloud as [141] (see Figure 6.1):

• Infrastructure as a Service (IaaS): the consumer is provided with vir-
tualised basic computing resources like processing, storage and network.
The consumer can select the amount and configuration of those resources,
where she can deploy and run software of her choice (operating systems
and applications) while the underlying Cloud infrastructure is kept trans-
parent. A pioneer and leading player in this sector is Amazon, which
started offering the Amazon Elastic Compute Cloud (EC2) [2] in 2006,
permitting customers to rent VMs in a pay-as-you-go basis; other exam-
ples are Rackspace Cloud [52] and FlexiScale [17].

• Platform as a Service (PaaS): the consumer is provided with programming
models, libraries, services and tools to ease the development, testing and
deployment of applications onto a Cloud infrastructure. Such infrastruc-
ture is not managed by the consumer, who only controls the configuration
of the deployed applications and their hosting environment. Examples
in this field are Google App Engine [20], Microsoft Azure [37] and Sales-
force.com’s Force.com [18]. The Java StarSs programming model and
runtime also fall into this category, since they offer means to program and
run applications in the Cloud.

• Software as a Service (SaaS): the consumer is provided with network-
accessible applications running on a Cloud infrastructure. The applica-
tions can be invoked from diverse client devices through, for instance, a
web browser or a program interface. The consumer has no control over
the Cloud infrastructure nor the application capabilities, although she
may be allowed to define user-specific application settings. Examples in
this area are Salesforce.com sales management applications [53], Google’s
Gmail [22] and NetSuite [38]. Applications programmed with the Java
StarSs model and published as a service can be considered SaaS as well.

122

6.1. Context Chapter 6. Cloud

Infrastructure (IaaS)

Platform (PaaS)

Java StarSs PM & RT

Applications (SaaS)

Java StarSs Apps

Figure 6.1: Location of the Java StarSs programming model, runtime and ap-
plications in the Cloud stack.

An organisation that leverages Cloud computing does not need, therefore, to
own the IT infrastructure, platform or services; instead, these can be hosted by a
third-party and delivered over the Internet, which allows to reduce infrastructure
costs and maintenance effort. This was the initial idea behind Cloud computing
- what is known as Public Cloud - but some companies are reluctant to adopt it
because they do not want to lose control over their data or they prefer to own
their resources. As a response, Private Clouds install Cloud technologies on-
premises and provide services to internal users; this way, the company keeps its
data at home but still benefits from e.g. flexible resource management, better
hardware utilisation and metering [70]. A hybrid approach can also be taken:
a private cloud can be complemented with public cloud resources to face peaks
in load - what is called Cloud Bursting.

In conclusion, enterprises working with the Cloud can adjust virtualised
resources in real time to meet demand; this is especially important when such
demand fluctuates significantly, and it is potentially more cost-effective than
over-provisioning local resources. Moreover, by facilitating and accelerating
software development, the time to market of new products decreases.

6.1.2 Clouds and Service-Oriented Architectures

The growing interest in providing applications as Cloud services raises one ques-
tion: how to develop such applications in order to take full advantage of the
service-oriented nature of the Cloud? A potential answer is the Service-Oriented
Architecture (SOA) paradigm [135].

SOA defines the architecture of an enterprise system as a set of services
delivered to a network of consumers. Those services are loosely-coupled and
correspond to specific business processes; furthermore, they can be combined to
create new composite services with an added value. Hence, SOA favours soft-
ware reuse and increases agility when adapting to changes. A company willing to

123

6.1. Context Chapter 6. Cloud

embrace SOA needs to decompose the architecture of its system into functional
primitives, understand their behaviour and the information they receive/gen-
erate and finally re-build the system by defining language-neutral service in-
terfaces [157]. In order to support this architectural style, the Web Service
standards [68] provide a fairly mature and predominant implementation of the
SOA concept.

In the last years, the use of SOA has been mainly restricted to internal
integration in companies rather than exposed for external consumption [150].In
that regard, Cloud computing represents a new field where SOA principles could
be applied on an Internet scale, given the service-orientation of both paradigms.
An organisation may decide to rely on Cloud-resident services e.g. to outsource
a part of its SOA business logic.

The service-oriented nature of Cloud computing - especially when comple-
mented with SOA - brings a need for, on the one hand, programming models that
ease the development of applications composed by services and, on the other,
systems that orchestrate (i.e. manage, steer) the execution of those services in
the Cloud. In that sense, the Java StarSs programming model and runtime were
extended to support service invocation, composition and orchestration in Cloud
environments, which will be further discussed in Section 6.2.

6.1.3 Clouds for HPC Science

Scientific applications are characterised by an ever-growing need for processing,
storage and network resources. So far, such need has been addressed by either
Grid or Cluster computing, discussed in Chapters 4 and 5, respectively.

Research projects or institutions with enough money are able to purchase
their own cluster, dedicated to satisfy the computing demands of their users
and applications. In this case, there is a fixed computing capacity that can only
be extended or upgraded by buying more resources.

When local resources do not suffice and new equipment cannot be afforded,
one can opt for the resource-sharing philosophy of grids: an organisation that
contributes to a grid with its local resources gains access to the overall infras-
tructure, while still keeping the ownership of its resources and being able to de-
cide how to share them with others, like in the Open Science Grid (OSG) [44].
In other cases, research projects can simply apply for compute cycles on na-
tional or international Grid initiatives such as the European Grid Infrastruc-
ture (EGI) [14]. However, quality of service is generally not guaranteed in
grids, and consequently an application may have to wait for resources when it
needs them [105].

Currently, Cloud computing is being investigated as an alternative to owner-
centric HPC, although the field is still in its infancy. The pros to adopt the
Cloud for e-Science include elasticity to respond to peaks in resource demand,
immediate provision of resources and cost-effectiveness of the pay-per-use model.
On the cons side, the low performance of VMs in comparison with physical
nodes, mainly due to virtualisation and sharing of the underlying infrastructure
in the Cloud provider [125].

124

6.2. Runtime Design Chapter 6. Cloud

Another aspect in favour of Cloud computing for scientific applications is
its flexibility when it comes to installing and configuring different environments
and technologies in the VMs: users can deploy VMs with arbitrary software
(operating system, applications, libraries). In contrast, grids require skilled sys-
tem administrators to manage the process of maintaining and upgrading the
infrastructure for particular communities of users. Besides, there are often con-
straints regarding e.g. the operating system or the middleware to use (Scientific
Linux and gLite in EGI, respectively). Ideally, user communities should be able
to deploy technologies or updates to their software environments at a timescale
that suits them, and this is something that the Cloud can make possible. As
a matter of fact, some Grid initiatives are already starting to study how they
could attract new users with Cloud computing [75].

In summary, clouds have some advantages that could be exploited by com-
putational science, but this field is still largely unexplored. In this chapter, we
will contribute with an example of a service-based e-Science application pro-
grammed with Java StarSs and executed in the Cloud (Section 6.5).

6.2 Runtime Design

Chapter 5 explained how the design of the runtime evolved from Grid to Cluster
in order to address the differences between these two scenarios. Likewise, the
characteristics of Cloud computing, enumerated in Section 6.1.1, also motivated
significant changes in the design of the Java StarSs Grid runtime.

The next subsections overview the new aspects of the Cloud runtime. Fig-
ure 6.2 shows the whole picture of this new design and can help follow the
explanations.

6.2.1 Support for Services as Tasks

In Java StarSs, only sequential programming skills are required to write appli-
cations composed of services. In Chapter 2, Section 2.3.2 showed how service
operations can be easily invoked as normal methods from a Java StarSs ap-
plication, with no use of any library or new syntax. Those operations can be
selected as tasks and thus be integrated in the data flow of the application,
consuming/producing data from/to other tasks or the main program.

Such feature at programming model level required some new support from
the runtime:

• Allow for services to be integrated in the data dependency control, syn-
chronisation and scheduling mechanisms. The runtime can now add ser-
vice tasks to the dependency graph, possibly together with method tasks,
and orchestrate the execution of such tasks in the available resources. Be-
sides, it also watches the accesses from the main program to data produced
by a service operation.

125

6.2. Runtime Design Chapter 6. Cloud

Web Portal

Application

Service Class

Composite 1

Composite 2

Composite n

Java StarSs Runtime

Method
M

S
er

vi
ce

 In
te

rf
ac

e

Tasks

Service Container
Service A

Service B

Method
N

Figure 6.2: Architecture of the Java StarSs Cloud runtime. A service hosted
in a Web services container can be accessed by any service consumer (e.g. web
portal, application). The interface of this service offers several operations, which
can be composites previously written by a service developer following the Java
StarSs programming model. When the container receives a request for a given
composite, the Java StarSs runtime starts generating the corresponding task
dependency graph on the fly, so that it can orchestrate the execution of the
selected tasks. Service tasks will lead to the invocation of external services
(possibly deployed in the Cloud), while method tasks can be run either on
virtualised Cloud resources or on physical ones.

• Implement the invocation of service operations inside the runtime, for it
to act on behalf of the application and call a service operation when freed
from dependencies.

• Extend data management to support object orientation, since objects are
often parameters of service operations. This means enabling tasks to han-
dle objects, detecting dependencies on them and synchronising their access
from the main program.

6.2.2 Integration In a Service-Oriented Platform

Composing and orchestrating an application that invokes external services is
only the first step to service orientation. For such an application to become a
SaaS composite, it must be also deployed and published as a service with an
added value.

In that sense, the second step consisted in fully integrating the runtime in a
service platform. The next points summarise the main architectural changes:

126

6.2. Runtime Design Chapter 6. Cloud

• Publication of the composite: a class containing the implementation of one
or more composites (like the one in Figure 2.5(b), Chapter 2, Section 2.3.1)
first goes through the instrumentation phase, which makes the composites
invoke the Java StarSs runtime for task creation and data synchronisation
(see Chapter 3, Section 3.2). After that, the class is included in a service
package and deployed in a service container, which can be hosted in the
Cloud. Hence, composites become service operations published in a service
interface so they can be accessed by service consumers.

• Concurrent applications: a fundamental change with respect to the Grid
and Cluster scenarios is the ability of the Java StarSs runtime to manage
more than one application concurrently. When the service is deployed, the
Java StarSs runtime is started and awaits the arrival of new work. Multiple
requests for the execution of one or more composites can then reach the
service container, whose threads begin to process them in parallel. This
makes the Java StarSs runtime receive task creation requests coming from
several composite executions; as a response, the runtime builds a task
dependency subgraph for each of them. Furthermore, the subgraphs of
different composite executions can be connected if they access shared data
(e.g. some structure declared in the service class or a file).

• Service nesting: the new service-oriented design of Java StarSs inherently
leads to nested services. As explained earlier in this section, the orches-
tration of a Java StarSs composite can include invocations to external
services. Those services, at their turn, can also be composites deployed
in another service container and managed by another Java StarSs run-
time. This creates a SOA where, on the one hand, services rely on other
services to provide a new functionality and, on the other, a hierarchy of
orchestrations is unrolled as the execution progresses.

6.2.3 Exploitation of Virtual Cloud Resources

In the final step of its Cloud adaptation, the resource management of the Java
StarSs runtime was extended to handle virtual machines hosted in the Cloud.

In addition to external services, the nodes of a composite’s task dependency
graph can also correspond to Java methods. Chapters 4 and 5 showed how the
runtime was able to schedule those method tasks in a given set of Grid and
Cluster resources, respectively. In order to exploit the virtualisation features of
Cloud computing, the new design incorporates the ability to reserve VMs and
submit method tasks to those VMs. Moreover, Cloud elasticity is exploited by
increasing/decreasing the number of VMs depending on the current load.

The Java StarSs runtime communicates with the Cloud by means of Cloud
connectors. Each connector implements the interaction of the runtime with a
given Cloud provider, more precisely by supporting four basic operations: ask
for the price of a certain VM in the provider, get the time needed to create a
VM, create a new VM and terminate a VM. Connectors abstract the runtime

127

6.3. Relevant Technologies Chapter 6. Cloud

SSH

GAT

Amazon
EC2

EMOTIVE
Cloud

Apache CXF

Java StarSs
Runtime

...
...

Connectors

Service A

Method
N

Method
M

IaaS Providers

Service B

createVM

deleteVM

execute, copy file

invoke

Figure 6.3: Technologies leveraged by the Java StarSs Cloud runtime.

from the particular API of each provider; furthermore, this design facilitates
the addition of new connectors for other providers.

The task load generated by the execution of composites directly influences
the number of VMs acquired. The runtime calculates the current load by in-
specting the number of dependency-free tasks and their estimated time of exe-
cution; the time estimation for a task takes into account previous executions of
the same kind of task. The runtime may decide to increase the number of VMs
based on the task load, the current VMs and the time that it takes to launch a
new VM. Similarly, when the number of tasks to execute decreases, the runtime
may terminate a VM. The provider where to create/eliminate a VM is chosen
depending on the cost of a VM in all the available providers. Finally, the run-
time also takes into account task constraints when requesting the capabilities of
a new VM.

On the other hand, this new resource management makes possible to have
hybrid executions that combine physical machines (like for grids and clusters)
and virtual ones that can scale on demand, depending on the load produced
by method tasks. Please note that service tasks do not take part in the elas-
ticity mechanism, since they are executed in external service containers whose
resources are not under the control of the Java StarSs runtime.

6.3 Relevant Technologies

This section presents the Cloud and SOA technologies that were used to im-
plement the runtime design seen in Section 6.2. Figure 6.3 illustrates these
technologies.

128

6.4. Programmability Evaluation Chapter 6. Cloud

6.3.1 Cloud Provider Connectors

The dialog of the Java StarSs runtime with the different Cloud infrastructure
providers is encapsulated inside connectors, each containing the particular API
calls to manage resources in a certain provider.

The connectors that will be tested in this thesis are the ones for EMOTIVE
Cloud [176] and Amazon EC2 [2], although there exist prototypes for other
offerings like OpenNebula [46] and Microsoft Azure [37].

6.3.2 SSH Adaptor of JavaGAT

Once a VM has been acquired from a provider, a key set is configured in order
to access that VM through SSH. As explained in Chapter 4, Section 4.3, the
Grid runtime of Java StarSs was built on top of the JavaGAT API [78], which
features adaptors for different kinds of Grid middleware.

Since one of those adaptors implements the SSH protocol, the Cloud runtime
reuses that technology and contacts VMs for job submission and file transfer
by SSH with JavaGAT. Moreover, it is still possible to access physical resources
with SSH or other adaptors as well.

6.3.3 Apache CXF

Regarding service tasks, Java StarSs executes them by means of Apache CXF [5],
an open source services framework that helps build and develop services using
programming APIs. One of the APIs implemented by CXF is the Java API
for XML Web Services (JAX-WS), which can be used to program clients of
SOAP-based web services.

Hence, the Java StarSs runtime utilises CXF to create dynamic clients that,
given the WSDL of the server, namespace, port name, operation name and
parameters, generate a SOAP message to invoke an operation of a service. This
way, the runtime can request the execution of service tasks to external servers
on behalf of the application.

6.4 Programmability Evaluation

This section will evaluate the ease of programming of Java StarSs in Cloud
and service-oriented environments. For that purpose, a comparison with other
approaches in the same field will be carried out, in particular by implementing
the same applications in the models/languages examined and then highlighting
the most relevant differences.

In a first subsection, the development of composite services will be addressed,
comparing Java StarSs to the WS-BPEL language [40]. After that, the use of
objects in parallel programming models will be illustrated by contrasting Java
StarSs with ProActive [99]; this second study is included in this chapter because
services often manipulate data in the form of objects, although the use of objects
with Java StarSs is absolutely possible in Grid and Cluster environments as well.

129

6.4. Programmability Evaluation Chapter 6. Cloud

6.4.1 Programming with Services

6.4.1.1 WS-BPEL

WS-BPEL [40] is a workflow-based composition language for web services, stan-
dardised by the OASIS consortium [47]. A WS-BPEL composition is an XML
document (Extensible Markup Language [16]) whose tags represent different
actions:

• Variable definition: the ‘variable’ tag defines a variable of a type specified
in an XML schema.

• Structure: ‘sequence’ encloses an ordered sequence of steps, whereas the
statements encompassed by ‘flow’ can be executed in parallel. In order to
represent data dependencies between statements inside ‘flow’, WS-BPEL
provides the tag ‘link’.

• Service interaction: the ‘receive’ and ‘reply’ tags are placed at the begin-
ning and end of the composition to define the input and output of the
composite service, respectively. The ‘invoke’ tag represents a call to a
external service operation defined in a WSDL file.

• Control flow : WS-BPEL provides tags like ‘if’/‘else’ or ‘while’ to express
control-flow statements as in an imperative language.

• Embedded code: ‘javaCode’ allows to embed Java statements in WS-BPEL
in order to, for instance, check if a condition holds.

• Others: other examples include the ‘assign’ tag to copy data from one
variable to another, or ‘throw’ to raise exceptions.

Since editing XML documents is a tedious task, some visual editors for WS-
BPEL have appeared; one of them is the Eclipse BPEL Designer [12], which
will be used in this section.

6.4.1.2 Travel Booking Service

The comparison between Java StarSs and WS-BPEL will be illustrated by an
example derived from the one in [65].

The scenario of this example is based upon the procedure of making travel
arrangements. Therefore, the composite service to be built will go through the
steps of a travel booking process, which include:

1. The customer enters the data for her travel arrangements.

2. The system checks her credit card information.

3. If the card validation succeeds, three different reservations are made for
the flight, hotel and car; otherwise an error is returned.

4. Once the reservations have finished, a confirmation number is returned to
the customer.

130

6.4. Programmability Evaluation Chapter 6. Cloud

(a)

1 <bp:process name=”TravelBooking” ...>
...

2 <bp:flow ...>
...

3 <bp:invoke name=”BookFlight” operation=”bookFlight”
4 portType=”ns4:FlightReservation”
5 inputVariable=”FlightReservationInput”
6 outputVariable=”FlightReservationOutput” ...>
7 <bp:targets> <bp:target linkName=”Link6”/> </bp:targets>
8 <bp:sources> <bp:source linkName=”Link9”/> </bp:sources>
9 </bp:invoke>

...
10 </bp:flow>
11 </bp:process>

(b)

Figure 6.4: In (a), graphical workflow of the travel booking composite, as shown
by the Eclipse BPEL Designer; the invocations to external services are num-
bered. In (b), a fragment of the corresponding WS-BPEL document, focusing
on the invocation of service BookFlight.

131

6.4. Programmability Evaluation Chapter 6. Cloud

6.4.1.3 Comparison

The graphical representation of the travel booking composite service, captured
from the Eclipse BPEL Designer, is depicted in Figure 6.4(a). The arrows
represent data dependencies (links) between WS-BPEL statements. Inside the
composite’s body, four external services are invoked: (1) CheckCreditCard, (2)
BookHotel, (3) BookFlight and (4) BookCar. Before the invocation of each of
those services, an ‘assign’ statement initialises a request variable (input of the
service). CheckCreditCard is executed first to ensure that the card is valid. Af-
ter that, there is an ‘if’ clause that checks the result of the validation: if it
succeeded, the three reservation lines are started in parallel, otherwise the com-
posite replies with an error. The three reservations converge in the Confirmation
box, which represents a Java code embedded in the WS-BPEL that checks the
proper completion of the reservations and sets a variable with the booking con-
firmation number to be returned to the customer.

In Figure 6.4(b), a part of the corresponding WS-BPEL is shown, in particu-
lar the one that contains the invocation to the BookFlight service - the complete
document is about 325 lines long. In lines 3-6, the ‘invoke’ element specifies
some information about the operation called (e.g. name of the operation and
port, input and output variables). Also, inside ‘invoke’ there are the ‘targets’
and ‘sources’ tags (lines 7 and 8) that define the links of that service invoca-
tion with other activities in the flow: BookFlight depends on the InitBFRequest
assignment and produces data consumed by Confirmation (‘Link6’ and ‘Link9’,
respectively). In contrast, Java StarSs does not require to manually specify the
data flow; instead, data dependencies between tasks and synchronisation from
the main program are performed transparently to the programmer.

The Java StarSs version can be found in Figure 6.5. In (a) appears the
composite service operation bookTravel, which is a method of a service class;
the whole class is about 80 lines long. The code of bookTravel follows the same
steps as the WS-BPEL implementation, which were described in Section 6.4.1.2.

In the Java StarSs composite, the travel booking process is implemented
as a sequential Java program, and the invocations to the external services are
regular Java method calls (underlined in Figure 6.5(a) and selected in (b));
before those calls, initialisation methods build the request objects to be passed
to the services. Like in WS-BPEL, the calls to the reservation services are
executed in parallel: the Java StarSs runtime will spawn an asynchronous and
independent task for each of them. Regarding control flow statements, like the
‘if’ that checks the result of the card validation, they are Java statements in
Java StarSs, as opposed to the XML tags in WS-BPEL.

Finally, in the confirmation phase (lines 13-18 in Figure 6.5(a)), the Java
StarSs runtime automatically synchronises the main program with the results
of the reservation services, so that the confirmation number can be generated
if everything went well. For WS-BPEL, the Confirmation box in Figure 6.4(a)
corresponds to an embedded Java code that is equivalent to that in Figure 6.5(a),
lines 13-18. Therefore, the users of WS-BPEL still need to use an imperative
language to cover some cases that WS-BPEL alone cannot handle.

132

6.4. Programmability Evaluation Chapter 6. Cloud

1 @Orchestration
2 public BookResponse bookTravel(BookRequest tbRequest) {

// Check credit card
3 CCardRequest ccRequest = initCCCRequest(tbRequest);
4 CCardResponse card = checkCreditCard(ccRequest);

5 BookResponse replyBooking = new BookResponse();
6 if (card.isValid()) {

// Hotel booking
7 HotelRequest hrRequest = initBHRequest(tbRequest);
8 HotelResponse hotel = bookHotel(hrRequest);

// Flight booking
9 FlightRequest frRequest = initBFRequest(tbRequest);
10 FlightResponse flight = bookFlight(frRequest);

// Car booking
11 CarRequest crRequest = initBCRequest(tbRequest);
12 CarResponse car = bookCar(crRequest);

// Confirmation
13 String msg;
14 if (hotel.isBooked() && flight.isBooked() && car.isBooked())
15 msg = ”Travel booked. Confirmation no.: ” + generateNum();
16 else
17 msg = ”Your travel could not be booked”;
18 replyBooking.setInformation(msg);
19 }
20 else {
21 replyBooking.setInformation(”Invalid credit card”);
22 }

23 return replyBooking;
24 }

(a)

public interface TravelBookingItf {
@Service(name = ”TravelBooking”, namespace = ”...”, port = ”...”)
CCardResponse checkCreditCard(CCardRequest ccRequest);

@Service(name = ”TravelBooking”, namespace = ”...”, port = ”...”)
HotelResponse bookHotel(HotelRequest hrRequest);

@Service(name = ”TravelBooking”, namespace = ”...”, port = ”...”)
FlightResponse bookFlight(FlightRequest frRequest);

@Service(name = ”TravelBooking”, namespace = ”...”, port = ”...”)
CarResponse bookCar(CarRequest crRequest);

}
(b)

Figure 6.5: Java StarSs version of the travel booking composite service: (a) main
program of the composite and (b) task selection interface. In (a), the calls to
external services are underlined.

133

6.4. Programmability Evaluation Chapter 6. Cloud

6.4.2 Programming with Objects

ProActive [99] is an object-oriented parallel programming model and runtime for
general distributed-memory infrastructures (clusters, grids, clouds). ProActive
applications achieve parallelism by creating ‘Active Objects’ (AOs), which can
be deployed remotely and run concurrently. Each AO has its own thread of
control and serves incoming (and possibly remote) requests for the execution of
methods. Method calls on AOs can be asynchronous, returning future objects
that force synchronisation when accessed (a mechanism that is called ‘wait by
necessity’). ProActive also implements ‘automatic continuation’, which allows
future objects to be passed as parameters of calls on AOs, synchronising when
the data is actually accessed in the method body.

ProActive shares the same underlying computational model as Java StarSs,
based on spawning asynchronous computations as the main program executes.
However, they expose that model to the programmer differently. The next
subsections go through the basics of how objects are handled in both models.
The comparison will be illustrated with a simple version of an application which
solves the classical N-body problem [91]. This problem simulates the evolution
of a system of N bodies in space, where the position of a body changes depending
on the gravitational force exerted by the rest of the bodies.

Figure 6.6 shows the N-body application for Java StarSs, consisting of (a) the
main program, written in sequential Java, and (b) the task selection interface
declaring two methods to be run as tasks. The universe is divided in domains,
each one containing a planet. For every iteration, the force experimented by
each planet due to the planets in the rest of domains is calculated; after that,
each planet is moved according to that force. For space reasons, the whole code
of the ProActive N-body is not provided; nevertheless, Figure 6.7 compares some
relevant fragments of both implementations to make the next explanations easier
to follow.

6.4.2.1 Deployment

ProActive programmers must manage the application deployment from the
source code (lines 1-6 in Figure 6.7, right column). In ProActive, a ‘virtual
node’ is mapped to one or more physical nodes. This mapping is defined inside
XML descriptors, loaded from the application to start the deployment of the
Java virtual machines in the nodes (lines 1-3). In the example, the virtual node
‘Workers’ is used to obtain the list of physical nodes (lines 4-6). The launched
JVMs will host the AOs created later on in the application. On the contrary,
Java StarSs programs do not include any deployment details; instead, at exe-
cution time, objects are transferred to nodes by the runtime according to the
scheduling of tasks, just like any other type of data.

6.4.2.2 Object Creation

In ProActive, regular object creation is replaced by a library call for those
objects intended to be active. i.e. the domains in N-body (line 8, right column).

134

6.4. Programmability Evaluation Chapter 6. Cloud

Domain[] domains = new Domain[numBodies];
for (int i = 0; i < numBodies; i++)

domains[i] = new Domain(new Planet(universe));

for (int iter = 0; iter < numIter; iter++) {
for (Domain d : domains)

for (Domain e : domains)
if (d != e) d.addForce(e);

for (Domain d : domains)
d.moveBody();

}

for (Domain d : domains)
d.getPlanet().print();

(a)

public interface NBodyItf {
@Method(declaringClass = ”nbody.Domain”)
void addForce(Domain d);

@Method(declaringClass = ”nbody.Domain”)
void moveBody();

}
(b)

Figure 6.6: Java StarSs version of N-body: (a) main program and (b) task
selection interface.

Each call to newActive will trigger the creation of an AO in a given node, i.e.
an object plus a thread to serve requests on that object. In Java StarSs, objects
are created in a regular way and no API call is needed (line 1, left column);
moreover, those objects are just data, they do not have any associated thread.

6.4.2.3 Asynchronous Computations

In both programming models, asynchronous computations are spawned as a
result of method calls. However, the execution model behind them is different.

Regarding ProActive, the asynchronous invocations are performed on objects
created as active. Each computation is, then, linked to a certain AO and will
be served in the node where that object and its thread reside. Asynchronous
calls can happen between the main program and an AO or between any pair of
AOs - in the ProActive N-body, each domain AO calls addForce on the rest of
domains - but the programmer must manage the AO references and ensure that
no deadlock takes place.

Concerning Java StarSs, the methods that will spawn asynchronous tasks
are only those declared in the task selection interface (Figure 6.6(b), methods
addForce and moveBody of class Domain). The node where those methods will
finally run is not determined by the callee object - in fact, several nodes can
have a copy of that object - but by the task scheduling algorithm.

135

6.4. Programmability Evaluation Chapter 6. Cloud

S
e
q
u

e
n
ti

a
l

J
a
v
a

(u
se

d
b
y

J
a
v
a

S
ta

rS
s)

P
ro

A
c
ti

v
e

d
ep

lo
y
m
en

t

1
G
C
M
A
p
p
li
ca
ti
o
n
g
cm

a
d
=

2
P
A
G
C
M
D
ep

lo
ym

en
t.
lo
a
d
A
p
p
li
ca
ti
o
n
D
es
cr
ip
to
r(

n
ew

F
il
e(
xm

lF
))
;

3
g
cm

a
d
.s
ta
rt
D
ep

lo
ym

en
t(
);

4
G
C
M
V
ir
tu
a
lN

o
d
e
w
or
ke
rs

=
g
cm

a
d
.g
et
V
ir
tu
a
lN

o
d
e(
”
W
or
ke
rs
”
);

5
w
or
ke
rs
.w
a
it
R
ea
d
y(
);

6
N
o
d
e[
]
n
o
d
es

=
w
or
ke
rs
.g
et
C
u
rr
en

tN
o
d
es
()
.t
o
A
rr
ay
(n

ew
N
o
d
e[
]{
})
;

1
d
o
m
a
in
s[
i]
=

n
ew

D
o
m
a
in
(n

ew
P
la
n
et
(u
n
iv
er
se
))
;

o
b
je
ct

cr
ea
ti
o
n

7
O
b
je
ct
[]
p
r
=

n
ew

O
b
je
ct
[]
{

n
ew

P
la
n
et
(u
n
iv
er
se
)
};

8
d
o
m
a
in
s[
i]
=

P
A
A
ct
iv
eO

b
je
ct
.n
ew

A
ct
iv
e(
D
o
m
a
in
.c

la
ss
,p
r,
n
o
d
es
[i
])
;

2
d
.a
d
d
F
or
ce
(e
);

a
sy
n
c
co
.

9
d
.a
d
d
F
or
ce
(p
la
n
et
);

3
d
.g
et
P
la
n
et
()
.p
ri
n
t(
);

sy
n
ch
ro

1
0

d
.g
et
P
la
n
et
()
.p
ri
n
t(
);

te
rm

in
a
ti
o
n

1
1

fo
r
(D

o
m
a
in

d
:
d
o
m
a
in
s)

1
2

P
A
A
ct
iv
eO

b
je
ct
.t
er
m
in
a
te
A
ct
iv
eO

b
je
ct
(d
,

fa
ls

e)
;

Figure 6.7: Comparison of key fragments in the N-body application.

136

6.4. Programmability Evaluation Chapter 6. Cloud

1 2

3

5

7

4

6

8

9

10

12

11

13

14

16

15

17

18

Figure 6.8: Task dependency graph generated for N-body, with a universe of
3 domains and 3 iterations. Yellow (light) tasks correspond to the addForce
method, whereas red (dark) ones represent calls to moveBody.

6.4.2.4 Synchronisation

Both programming models support futures, i.e. objects returned by an asyn-
chronous computation. In the example, for the ProActive version, the call
d.getPlanet() returns a future object of class Planet, which is immediately ac-
cessed by invoking print() on it. This triggers a synchronisation for the result of
the getPlanet call.

In addition to returned objects, the Java StarSs runtime automatically syn-
chronises the accesses to any object that participates in a task (i.e. also callees
and parameters). Moreover, such synchronisation can take place between two
tasks or between a task and the main program. The main loop in Figure 6.6(a)
generates moveBody and addForce tasks, which update the domains. The syn-
chronisation between such tasks is enforced by the task dependency graph built
on the fly by the runtime (see Figure 6.8). At the end of the application, the
invocations of getPlanet on the domain objects need to be done on the last ver-
sion of each domain, produced by the tasks. Hence, before getPlanet is called on
a given domain, the runtime blocks the application thread until the right (last)
version of that domain is obtained.

In ProActive, that kind of data dependencies would have to be managed
manually in the application code. For instance, if an AO call modified an
object parameter and this value were required by a subsequent call to another
AO, there would have to be a explicit synchronisation and transfer of that value
between AOs.

6.4.2.5 Termination

ProActive requires to explicitly terminate an AO and its associated thread (lines
11-12, right column). Oppositely, the Java StarSs runtime automatically takes
care of cleaning the objects transferred to the worker nodes during execution.

137

6.5. Experiments Chapter 6. Cloud

6.5 Experiments

This section presents a set of experiments carried out in clouds, both private
and public. The section starts with the description of the application and the
testbed used in the experiments. After that, a first series of tests demonstrate
the virtual resource management and elasticity capabilities of the Java StarSs
runtime. Finally, a second series of tests show some performance results.

6.5.1 Gene Detection Composite

The experiments in this section will be executing a real example of an e-Science
composite service programmed with Java StarSs.

The original application on which the composite is based is a gene detection
code [159] designed by members of the Life Sciences department of the Barcelona
Supercomputing Center [9]. Its core algorithm is GeneWise [90], a program for
identifying genes in a genomic DNA sequence. First, the application finds a
set of relevant regions in a DNA sequence, and then runs GeneWise only for
those regions, which is faster than scanning the whole DNA. The application
is a sequential Perl code that invokes a set of publicly available bioinformatics
services by means of SOAP WS libraries. Those invocations are synchronous
and, consequently, no parallelism is achieved between service calls.

Such application was ported to Java following the steps of the Java StarSs
programming model: first, in a task selection interface, a total of five service
tasks and seven method tasks were declared, for them to be the building blocks of
the composite; second, following the example of the original Perl, the composite
was programmed as a sequential code that invokes the selected tasks.

The structure of the resulting composite is represented on the right side
of Figure 6.9. Each box corresponds to a different part of the composite that
contributes to the overall process; the task calls in each part generate a fragment
of the whole dependency graph, shown inside the boxes. The following points
summarise the structure:

• Genome DB formatting : translation of the input genomic DNA sequence
to two different formats that will be required later in the program.

• Sequences retrieval : obtention of a list of amino acid sequences (proteins)
that are similar to a reference input sequence.

• Gene search: search of the relevant genomic regions of the DNA sequence
for each protein.

• GeneWise: execution of the GeneWise algorithm for all the relevant re-
gions found.

The leftmost side of Figure 6.9 contains a snippet of the composite code
where a couple of task calls are highlighted: first, a call to runNCBIBlastp, a
method task, executes the BLAST program [80] to produce a report object that
contains all the proteins similar to the reference protein fastaSeq; second, the

138

6.5. Experiments Chapter 6. Cloud

fGfB

Genome DB
Formatting

Gene Detection Composite

... rBrB

...

mB

bG

ov

public class GeneDetection {
 ...
 @Orchestration
 public void detectGenes(String genome, String sequence) {

 ...

 ...
 BLASTText report = runNCBIBlastp(fastaSeq, params);

 BlastIDs bIds = parseBlastIDs(report);
 ...

 ...

 ...

 }
}

Code snippet Overall structure

Graph
section

Service Task
invocation

Method Task
invocation

Data
dependency

detection

pB

rBp

... rGrG

...
mG

GeneWise

...lA lA

...gF gF

Sequences
Retrieval

rBp

pB

Gene
Search

Figure 6.9: Gene detection composite service. The dependency graph of the
whole orchestration is depicted on the right of the figure: circles correspond
to method tasks and diamonds map to service task invocations, while stars
represent synchronisations due to accesses on task result values from the main
program. A snippet of the composite code is provided, focusing on a particular
fragment which runs BLAST to obtain a list of sequences and then parses their
identifiers. The graph section generated by this piece of code is also highlighted
in the overall structure of the composite.

parseBlastIDs service task takes that report as input and parses the identifiers
of those proteins. Notice how the data dependency between the two tasks is
automatically detected. The whole code of the composite and the corresponding
task selection interface can be found in Appendix A.3.

It is worth pointing out that, although both the Java StarSs and the original
versions are programmed sequentially, they behave differently at execution time:
while the Perl script runs serially, Java StarSs asynchronously generates a graph
to exploit the parallelism between tasks. Furthermore, service tasks and method
tasks can be easily combined, like in the case of runNCBIBlastp and parseBlastIDs:
they are called and exchange data just like in a regular Java program.

6.5.2 Testbed

The testbed used in the experiments is formed by the following actors and
infrastructures (see Figure 6.10):

• Client : Java application that invokes the gene detection composite service.

• Composite server : machine running an Apache Tomcat 7.0 WS con-
tainer [8] that hosts the gene detection service. It is a dual-core Intel

139

6.5. Experiments Chapter 6. Cloud

S
M
M

M M

M
M

S

S

S

Client

Server

Private Cloud

Amazon EC2

VPNVPN

Composite

Server
Task

Figure 6.10: Testbed comprising two clouds: a private cloud, located at BSC,
and the Amazon EC2 public cloud (Ireland data centre). The GeneDetection
composite service is deployed in a server machine, which contacts the VMs of
the private cloud through a VPN. An external server publishes the operations
corresponding to service tasks.

Core i7 at 2.8 GHz, 8 GB of RAM and 120 GB of disk space. Both the
composite’s main program and the Java StarSs master runtime execute in
this machine. This machine also runs an OpenVPN [45] client.

• Task server : machine running an Apache Tomcat 7.0 WS container, which
hosts a service that offers the service task operations. Such container is
contacted by the Java StarSs runtime to execute service tasks called from
the composite.

• Private cloud : cluster managed by EMOTIVE Cloud as an IaaS virtu-
alisation layer. On the one hand, the cluster has a front-end node that
acts an OpenVPN server and EMOTIVE scheduler. On the other hand,
a total of 7 nodes are used for hosting VMs: 3 nodes with two eight-core
AMD Opteron 6140 at 2.6 GHz processors, 32 GB of memory and 2 TB
of storage each; 4 nodes with two six-core Intel Xeon X5650 at 2.67 GHz
processors, 24 GB of memory and 2 TB of storage each. The nodes are
interconnected by a Gigabit Ethernet network. The Client, Composite

140

6.5. Experiments Chapter 6. Cloud

server, Task server and Private cloud are all located in the BSC/UPC
premises in Barcelona, Spain.

• Amazon EC2 : public IaaS Cloud provider. In the tests, all the Amazon
VMs are deployed in the European Union West zone, which corresponds
to a data centre located near Dublin, Ireland.

A typical execution begins when a Client issues a WS invocation request to
the gene detection service published in the Composite server. This triggers the
execution of the composite, leading to the creation of new method and service
tasks. The Java StarSs runtime executes service tasks by issuing WS requests to
the Task server container. Method tasks are run in VMs on the Private cloud or
on Amazon EC2. In the case of the Private cloud, the Composite server and the
VMs belong to the same virtual private network, so that they can communicate
through SSH. Regarding Amazon, the VMs are also contacted by SSH to their
public IP addresses. All the VMs run a Linux distribution where the Java StarSs
worker runtime, BLAST and GeneWise have been pre-installed.

6.5.3 Resource Elasticity and Cloud Bursting

This subsection presents some experiments to demonstrate the elasticity capa-
bilities of the Java StarSs runtime in Cloud environments. In the tests, not
only private cloud resources will be reserved as the base infrastructure, but also
there will be bursting to a public cloud to meet peak demands. The advantage
of such a hybrid deployment is that one only pays for extra compute resources
when they are needed.

Figure 6.11 aims to illustrate how elasticity works in the Java StarSs runtime.
The figure depicts the arrival of two requests for the gene detection service at the
Composite server and their corresponding executions. In (a) the load generated
by the executions of the composite can be found - in particular that of the
method tasks, which are the ones executed in VMs under the control of the
runtime. The instants when each of the two requests arrive are indicated in
the figure. Both requests have the same parameters, and thus they generate
equivalent loads. The plotted load corresponds to the estimated execution time
(in minutes) of all the dependency-free tasks that the runtime is processing
at a given moment. Although there are seven types of method task, only the
three that are most relevant in the overall load are shown: blast and genewise
run those two bioinformatics tools, while mergeGenewise merges intermediate
GeneWise results. It can be observed how GeneWise is responsible for most of
the computation of the composite.

Figure 6.11(b) plots the evolution of the number of VMs for both providers
(Private and Amazon). Here, the maximum number of Private and Amazon
VMs was set to three and two, respectively. In both providers, the number of
cores per VM requested is one (more precisely, in Amazon the instance type
is ‘m1.medium’). As a complement, Figure 6.11(c) represents the state of the
VMs during the considered time interval. The possible VM states are: Creating,
if the VM has been requested to the provider and is being created and booted;

141

6.5. Experiments Chapter 6. Cloud

(a)

(b)

(c)

Figure 6.11: Execution of two requests for the gene detection composite that
illustrates the elasticity and bursting features of the Java StarSs runtime: (a)
evolution of the load generated by the composite’s method tasks; (b) evolution
of the number of VMs in the private cloud and Amazon EC2; (c) state of the
VMs during the execution of the requests.

142

6.5. Experiments Chapter 6. Cloud

Active, if the VM is ready to be used by the task scheduler; Saved, if the VM
is no longer necessary given the current load, but it is saved for later reuse;
Terminated, if the provider has been contacted to delete the VM.

When the first request is received, there already exists a Private VM that
was created when the service container started; this VM constitutes the resource
critical set and it will always be kept active. This is the sequence of relevant
events in the depicted time interval:

• First VM creation: the first request initially spawns a set of blast tasks,
which produce a small increase in the load. As a response, the Java StarSs
runtime asks for a new VM (30); the chosen provider is Private, since its
VMs are cheaper than Amazon’s. When a VM is created, a key set is
configured for SSH access and the classes that implement the method
tasks are deployed on that VM.

• First VM saving : soon, the load decreases again and VM 30 is not needed
anymore: at this point (minute 4) VM 30 is saved. Saving a VM means
that the connector puts that VM aside so that the scheduler does not take
it into account, but it is not destroyed just in case it is needed again in
the near future.

• Bursting : around minute 5 the appearance of genewise tasks causes a
sudden and huge increase in the total task load. Such increase cannot be
handled with Private VMs alone, which are limited to three, and hence
the Java StarSs runtime relies on Cloud bursting: after Private VM 64,
two Amazon VMs are also requested (114 and 219). Note how VM 30 will
also help with this load increase, but it does not have to be created: it
was saved and now it can immediately become active again.

• Deadline of a Private VM : around minute 23, the genewise load is almost
gone, which makes the Java StarSs runtime progressively save VMs (start-
ing with the Amazon ones, the most expensive). In the case of Private
VMs, they are saved for only up to 10 minutes, and after that time the
provider is requested to terminate them (the dashed lines in the VM bars
of Figure 6.11(c) represent the VM deadlines). This happens with VM 64
in minute 33: the next spike in load does not arrive soon enough, and the
connector decides to turn it off. Before deleting a VM the runtime saves
its critical files, that is, those only present in that VM and needed by at
least one of the current tasks.

• Reuse of VMs: the genewise tasks coming from the second request lead to
another peak load in minute 36; conveniently, three VMs are still saved
(30, 114, 219) and can be reused, but since VM 64 was deleted a new
Private VM (193) is created to take its place.

• Final VM deadlines: once the second bag of genewise tasks is completed,
a total of four VMs are saved (around minute 55). As explained above,
Private VMs are deleted when 10 minutes have passed since they were

143

6.5. Experiments Chapter 6. Cloud

1

9

2 3

10

4 5

11

6 7

12

8

13 14

15

Figure 6.12: Graph generated by the GeneWise computation in the gene de-
tection composite, for an execution that finds 8 relevant regions in the genomic
sequence. Red (dark) tasks correspond to the genewise method, whereas yellow
(light) ones represent calls to mergeGenewise.

saved. Regarding Amazon VMs, the termination policy is different: Ama-
zon rents its VMs in slots of one hour, i.e. when creating an Amazon VM
a full hour is paid in advance, even if the VM is terminated before that
hour ends. Consequently, the Amazon EC2 connector of Java StarSs tries
to make the most of a VM and only terminates it when the end of its hour
slot is approaching and it is in ‘Saved’ state (the dashed lines in Amazon
VM bars represent the duration of the hour slot).

6.5.4 Performance

This subsection gives some performance and scalability results of executing
the gene detection composite. In particular, the tests will focus in the most
computationally-intensive part of the composite, that is, the execution of the
GeneWise algorithm on a set of relevant regions of the genomic sequence. This
part of the application generates a graph with the shape of a reversed binary
tree, like the one in Figure 6.12, which first runs GeneWise on every relevant
region previously found and then merges all the partial reports into one.

As a continuation of Section 6.5.3, which discussed elasticity and bursting,
the following tests measure how long it takes to execute the GeneWise com-
putation with two configurations: first, only acquiring VMs from the private
cloud; second, reserving Amazon VMs as well. In the experiments, the Private
VMs have 4 cores, 2 GB of RAM and 1 GB of storage (home directory). The
Amazon VMs are of type ‘m1.xlarge’ (extra large), which also features 4 cores,
15 GB of RAM and 1690 GB of storage. For the results to be more consistent,
the EMOTIVE Cloud scheduler was configured to create Private VMs solely in
the AMD machines of the private cloud, since the performance of a Private VM
differs slightly depending on where it is launched (AMD node or Intel node).

The two lines in Figure 6.13(a) plot the sum of genewise and mergeGenewise
tasks that are either running or waiting to be scheduled. The configuration

144

6.5. Experiments Chapter 6. Cloud

(a)

(b)

Figure 6.13: Execution of the GeneWise computation, with private VMs only
and bursting to Amazon: (a) evolution of the number of tasks, (b) VM elasticity.

called ‘Private Only’ sets a maximum number of 8 Private VMs (no Amazon
VMs are allowed). In the ’Bursting’ configuration, in addition to the 8 Private
VMs, up to 4 Amazon VMs can be reserved. The cost of an extra large Amazon
VM in the EU West zone is $0.68 per hour plus tax. In both configurations,
the execution starts from 1 Private VM and then new VMs are progressively
acquired from the corresponding providers - the evolution of the number of
machines is depicted in Figure 6.13(b). To complement the figure, Table 6.1
contains information about the tasks for each configuration. Times are calcu-
lated by getting a time stamp right before submitting the task and right after a
task end notification is received. The real computation is in the genewise tasks,
whose duration can vary significantly depending on the length of the genomic
region to explore, while the mergeGenewise tasks are more light-weight. On

145

6.5. Experiments Chapter 6. Cloud

Table 6.1: Statistics of the GeneWise part of the gene detection composite.
Times in seconds.

Task Private Only Bursting
name genewise mergeGW genewise mergeGW

tasks 3068 3067 3068 3067

Avg time 12.62 0.20 12.07 0.21

Min time 2.42 0.18 2.77 0.18

Max time 45.49 4.93 44.36 2.93

the other hand, in ‘Bursting’ the average task times are a little lower because
the Amazon VMs are a bit more performing than the Private ones, which also
contributes to decrease the overall execution time.

As can be seen in Figure 6.13, the fact of outsourcing some of the tasks to
Amazon EC2 helps finish the GeneWise computation in 8 minutes less, which
means a reduction of about 29% in execution time with 33% more cores. In this
case, there are at least a couple of factors that prevent the runtime from achiev-
ing better results. First, the elastic resource manager/scheduler of Cloud Java
StarSs is not locality-aware: it applies a round-robin scheduling algorithm on
the available resources, and re-balances the task load when a VM is obtained/re-
moved; this increases the number of transfers to be performed. Second, when
sending computations and data to a distant infrastructure like the Amazon data
centre, the communications suffer from some extra latency. These factors will
be further discussed in the next experiments.

Thus, a second series of tests provides some scalability results for the exe-
cution of GeneWise with private and public VMs. In this case, the VMs are
created beforehand, and so there is no delay associated with progressively ac-
quiring/releasing VMs. Furthermore, the scheduling algorithm applied does
take into account data locality in order to reduce the number of transfers. The
VMs have the same characteristics as in the previous tests (4 cores each).

Figure 6.14 depicts the execution times (in logarithmic scale) of the Ge-
neWise computation for different numbers of cores, more precisely the average
of three executions per number of cores. The number of tasks per execution
and their granularity are equivalent to those specified in Table 6.1. One line
corresponds to runs with only private VMs (‘Private’), while the other line plots
the combination of both Private and Amazon VMs (‘Hybrid’).

The measures show that Java StarSs achieves good scalability, especially
when running the whole computation in one Cloud provider (‘Private’). In the
‘Hybrid’ executions, the results are affected by the distributed nature of the
testbed (Figure 6.10). When distributing the tasks of the GeneWise compu-
tation graph over more than one provider, task dependencies eventually lead
to data transfers between VMs in different providers, even if the locality-aware
scheduling algorithm of Java StarSs tries to minimise the number of transfers.
Providers can be geographically dispersed, like in our testbed, and consequently
latencies become similar to those of the Grid scenario. Moreover, there can be
no connectivity between VMs of different providers: this happens in our case,

146

6.5. Experiments Chapter 6. Cloud

Figure 6.14: Execution times of the GeneWise computation, with private VMs
only (‘Private’) and a combination of private and public VMs (‘Hybrid’).

where every data transfer between a Private and an Amazon VM passes through
the Composite server first. However, the fact that the GeneWise reports are
rather small (up to a few kilobytes) helps scale better the application even under
those conditions.

On the other hand, task granularity (see Table 6.1) also plays an important
role in the performance of GeneWise. The variability in the duration of the
genewise tasks challenges the load balancing mechanism of the runtime, while the
small execution time of mergeGenewise complicates the overlapping of transfers
and computation, particularly for the ‘Hybrid’ case where the average transfer
time is higher. Nevertheless, even if they are hardly worth distributing, the
mergeGenewise method invocations are run as tasks to prevent the main program
from having to reduce all the partial GeneWise reports.

As a final note, in order to improve the hybrid private-public scenario, Java
StarSs could link entire composite runs to specific providers. In a server that
receives multiple requests for composites, this could be done by bursting to
a public cloud the whole execution of a composite, instead of offloading some
of the tasks of a composite that is already being executed in private VMs.
This strategy would execute full graphs in VMs of a sole provider, so that data
dependencies and their associated transfers always happen inside the boundaries
of a provider. The elasticity mechanism of the Java StarSs runtime would decide
to create a VM in Amazon only under two conditions: first, a new request for
a composite arrives at the server and, second, the private VMs are already
overloaded; from that point on, all the tasks generated by that new execution
of the composite would be scheduled in public VMs. Hence, setting affinity
between composite runs and providers would be especially useful when the size
of the data exchanged by tasks is big and transfers through the Internet are
more costly. A runtime that applies such a strategy is left as future work.

147

6.6. Related Work Chapter 6. Cloud

6.6 Related Work

The service-oriented nature of Cloud computing and its convergence with SOA
brings a need for, on the one hand, programming models that ease the devel-
opment of applications composed by services and, on the other, systems which
orchestrate the execution of those services in the Cloud.

In that sense, Java StarSs contributes with a model for true Cloud-unaware
programming and easy service composition, combined with a runtime for auto-
matic service orchestration.

This section overviews other approaches in the area of Cloud and service-
oriented programming and highlights the differences with respect to Java StarSs.

6.6.1 Platform-as-a-Service Solutions

The Java StarSs programming model and runtime are linked to the concept of
PaaS, since they offer means to program and run applications in the Cloud (see
Section 6.1.1). Numerous PaaS solutions have appeared so far, providing APIs,
tools and infrastructure abstractions to build up network-accessible software -
most commonly web sites and web applications. The market is dominated by
public PaaS, each managed by a company that restricts the execution of the
developed applications to that company’s data centres.

One example of PaaS is Microsoft Azure [37]. Azure is primarily based on
Microsoft technologies (e.g. Azure VMs can only run a Windows operating
system). The programming model features two roles in which the application
code can be structured: first, Web role, representing a web server that accepts
and processes HTTP requests; second, Worker role, which is typically used for
background processing tasks. Each instance of these roles executes in a VM on
the Azure platform. Two roles can communicate by means of queues, and they
can access persistent storage through the ‘blobs’ and ‘tables’ APIs.

Google App Engine [20] is a platform for programming, testing and deploying
web applications. It features three runtime environments for Java, Python and
Go (Google’s language) and provides APIs to e.g. access a database (known as
‘datastore’), invoke external services or queue tasks for background execution.
App Engine places some restrictions on what the applications can do, either for
the sake of performance and scalability (e.g. join operations on the database are
not allowed) or for security and isolation reasons (applications run in a sandbox
environment where they cannot write to local files nor open sockets).

There exist some differences between Java StarSs and the aforementioned
PaaS. First, Java StarSs is not tied to a particular infrastructure: it can poten-
tially operate on top of any Cloud provider thanks to the connector-based design
of its runtime, explained in Section 6.2, thus preventing vendor lock-in; there
is some work in progress on providing Java StarSs with a development environ-
ment, analogous to what other PaaS offer, which will assist the programming
steps with the model and also automate the deployment of the application in
the desired provider. Second, Java StarSs programmers do not need to invoke
any API from the application code; instead, aspects like external service in-

148

6.6. Related Work Chapter 6. Cloud

vocation, message exchange or data transfer and synchronisation are handled
transparently by the runtime. Third, Java StarSs is not restrictive regarding
what a Java programmer can do in her code: she can freely use any Java data
type or standard Java library. Finally, there is no particular structure to which
the user must adhere when programming; a Java StarSs application can follow
any pattern and generate any arbitrary graph of tasks, while the runtime takes
care of the data dependencies.

6.6.2 Frameworks for Service Composition

Several frameworks have been proposed to combine services in a process-oriented
way. Such frameworks are normally formed by three elements: first, a composi-
tion language or model that defines how to specify the services involved in the
composition and their relationships; second, a development environment that is
commonly a visual editor to add and edit services; third, a runtime system that
executes the process logic by orchestrating the composite service.

The most prominent example in this area is the WS-BPEL language [40]
standard, already discussed in Section 6.4.1, together with any editor and work-
flow engine that supports service composition and orchestration based on WS-
BPEL (e.g. Eclipse BPEL Designer [12] and Apache Orchestration Director
Engine [7], respectively). In contrast to this kind of approaches, the workflow
of a Java StarSs application (i.e. the task dependency graph) is not defined
graphically, but dynamically generated by the logic of the main program itself
as it runs: each invocation of a selected method or service is replaced on-the-fly
by the creation of an asynchronous task which is added to the graph. Further-
more, graphical editors require the user to manually specify the dependencies
(links) between the services of the composition, while Java StarSs discovers
those dependencies automatically.

Also regarding the composition of service-based processes, there exists the
concept of ‘mashup’ [89]: a web application created by combining existing web
resources (services, APIs, data sources), possibly belonging to different domains,
in order to build a new service with an added value. Most of those resources
are accessed as RESTful services (REpresentational State Transfer [114]); such
services are designed to use basic HTTP operations (GET, POST, DELETE,
PUT) as methods and they represent a more light-weight alternative to SOAP
Web services. There are many examples of mashups, like mapping mashups (e.g.
ChicagoCrime.org [15] combines data from the Chicago Police Department’s
online database with cartography from Google Maps) or search and shopping
mashups (e.g. Bizrate [10] aggregates comparative price data obtained from
different vendors). Besides, platforms like Yahoo Pipes [72] or FAST [179] allow
non-skilled users to visually construct mashups out of pre-built gadgets.

Like in the case of WS-BPEL editors, Java StarSs differs from the aforemen-
tioned mashup platforms in the way services are composed: programmatically
versus graphically. On the other hand, Java StarSs does not currently support
RESTful services as tasks - only SOAP-based ones. Nevertheless, it could be
easily extended at two levels to support them: first, concerning the program-

149

6.6. Related Work Chapter 6. Cloud

ming model, a method representing a RESTful service could be declared in the
task selection interface, along with specific Java annotations to define its at-
tributes (e.g. URI of the target resource and HTTP operation); second, the
runtime could invoke the external service through a REST client API like the
one provided by Jersey [36].

JOLIE [143] is analogous to Java StarSs in the sense that it permits to textu-
ally program service compositions. However, JOLIE features a custom language
with a certain syntax to write the main program and invoke services from it,
while Java StarSs relies on a widely-known language like Java. Furthermore,
JOLIE requires the user to explicitly deal with parallelism (by specifying oper-
ators between statements) and data dependencies (by binding input and output
ports of services), whereas Java StarSs relies on sequential Java programming
and leaves all that burden to the runtime.

6.6.3 Cloud Programming Models

This subsection analyses some approaches that, like Java StarSs, have evolved
from the Grid/Cluster scenario into a more Cloud-oriented perspective.

MapReduce [103] is a programming model and software framework for writ-
ing applications that process vast amounts of data in parallel. In the MapRe-
duce model, the application code is basically divided in a ‘map’ function that
processes a key/value pair to generate a set of intermediate key/value pairs,
and a ‘reduce’ function that merges all the intermediate values associated with
the same intermediate key. MapReduce applications have shown high scalability
when running in large commodity clusters and, with the popularisation of Cloud
computing, some platforms have started to facilitate the execution of MapRe-
duce programs in Cloud infrastructures too, like Amazon Elastic MapReduce [3]
and Google App Engine MapReduce [21]; the process usually involves upload-
ing the input data to the vendor’s storage, making the application invoke a
supported MapReduce API and establishing limits on the VMs to use. MapRe-
duce is a powerful yet simple model that has gained widespread adoption, but
it is only suitable for a set of applications that can be expressed in the ‘mappers
and reducers’ pattern. On the contrary, Java StarSs is more flexible and can
accommodate a broader range of applications, which can generate any arbitrary
workflow graph.

Aneka [177], originally a .NET-based software system for the creation of en-
terprise grids, has moved to a market-oriented Cloud PaaS. The most important
changes in Aneka concern its runtime and how it manages dynamic provisioning
and accounting of virtual resources in private and public clouds. Regarding the
programming model, Aneka provides a software development kit to write three
types of application: first, task-based, for expressing bags of independent tasks;
second, thread-based, for porting multi-threaded applications to a distributed
environment; third, MapReduce applications. None of these alternatives al-
low to create workflows with automatically-controlled dependencies nor address
the easy development of composite services for the Cloud, which are two key
characteristics of Java StarSs.

150

6.7. Summary Chapter 6. Cloud

ProActive, already discussed in Section 6.4.2, offers a new resource manager
that, like the Java StarSs runtime, can use Grid resources and eventually burst
to Amazon if necessary [81]. However, the ProActive programming model has
not been extended for use in Cloud environments and it lacks proper service-
orientation: although an active object can be hidden behind a service interface,
there is no special support for orchestration of several service active objects.

6.7 Summary

This chapter has provided an overview of the third and last infrastructure con-
templated in this dissertation: the Cloud. Such infrastructure is mainly charac-
terised by, on the one hand, a service-oriented approach that delivers different
types of technology as services over the Internet and, on the other, virtualised
resources that can be elastically acquired and released to scale with demand
and that are paid as-you-go.

Due to the service-based nature of the Cloud, Cloud applications can benefit
from the principles of the Service-Oriented Architecture style, which defines ap-
plications as composite services that combine other services to provide an added
value. Those composites, delivered in the form of Software-as-a-Service, need to
be orchestrated in the Cloud while exploiting its elastic resource provisioning.

Therefore, Cloud applications require both programming models that ease
the development of composite services and systems that steer the execution
of those services in the Cloud. As a response, the Java StarSs programming
model and runtime were extended to support service invocation, composition
and orchestration in Cloud environments, as well as to handle objects - a data
type commonly found among the parameters of a service. The Cloud flavour
of Java StarSs can be fully integrated in a service platform, where composites
are published as service operations and thus they can be invoked by multiple
clients; those requests for the execution of composites lead to the generation of
multiple task dependency graphs, possibly formed by both method and service
tasks, and the Java StarSs runtime manages the execution of those workflows in
the Cloud. For that purpose, the runtime is also able to increase and decrease
the number of virtual resources depending on the current task load.

As a first step to evaluate Cloud Java StarSs, its programmability has been
compared to other approaches regarding two aspects: first, how are composite
services created from other services and methods, and how their execution is
steered; second, how are objects manipulated in the main program and passed to
tasks for them to participate in remote computations. This study demonstrates
that Java StarSs allows to easily combine services and methods that access
objects in the form of plain-Java sequential programs, while the orchestration of
the generated tasks and the management of their data are completely delegated
to the runtime.

In a second step of the evaluation, a set of experiments have demonstrated
how Java StarSs can orchestrate the execution of a SaaS composite, formed by
calls to external services and normal methods as tasks, in a real Cloud setup. On

151

6.7. Summary Chapter 6. Cloud

the one hand, it has been discussed how Java StarSs exploits Cloud elasticity,
dynamically increasing/decreasing the number of virtual resources depending
on task load; furthermore, such elasticity can combine both private and public
clouds (bursting) to face sudden spikes in load. On the other hand, a scalability
study has shown good results when running the computationally-intensive part
of an e-Science composite in both a private cloud and a combination of private
and public virtual machines.

152

Chapter 7

Conclusions and Future
Work

Two fundamental facts have shaken up the computing landscape in the last
decade: on the one hand, the increase in complexity and size of new parallel
and distributed infrastructures and, on the other, the growing need of some ap-
plications for computing and storage resources. In such a scenario, programmers
face the challenge of developing applications that exploit those infrastructures,
which is often not an easy undertaking. Dealing with duties related to paral-
lelisation and distribution, or with the specifics of a particular infrastructure,
complicates such task.

In that sense, there is a strong need for programming models that build
a bridge to connect infrastructures and applications. Moreover, these models
must target programming productivity, understood as a tradeoff between pro-
grammability and performance, which has become crucial for software develop-
ers. Therefore, highly-productive models are required to provide simple means
for writing parallel and distributed applications; in addition, such applications
must be able to run on current infrastructures without sacrificing performance.

This thesis has contributed to address the programming-productivity chal-
lenge with Java StarSs, which includes (i) a parallel programming model
for distributed Java applications and (ii) a runtime system that implements
the features of the model for three different distributed parallel infrastructures.
The next subsections go into further detail about these contributions, discussing
the conclusions obtained and some envisaged future work.

7.1 Programming Model

In light of how the computing scene has evolved, it seems inevitable that pro-
grammers will have to change the way they approach software developing. Since
parallelising and distributing a sequential code in an automatic and efficient
manner still seems unfeasible, the intervention of the programmer is required

153

7.1. Programming Model Chapter 7. Conclusions and Future Work

to some extent. However, we argue that such intervention does not have to
include the duties that make parallelisation and distribution hard, like thread
creation and synchronisation, messaging or fault tolerance. Instead, those can
be delegated to a runtime system, while the user only provides hints to help
with the process. It is advisable, though, that the user has a good knowledge
of her application, that is, of the computations that compose that application
and the data they access and share, so that she can reason about opportunities
for parallelism and structure the application in a manner that eases the work
of the runtime.

Such philosophy has been demonstrated with the Java StarSs programming
model, by means of its three main characteristics. First, the model is based on
fully-sequential programming, which eliminates the need for explicitly dealing
with parallelisation constructs and libraries in the code and makes the model
appealing to those users that lack concurrent programming expertise. Second,
the model abstracts the application from the underlying distributed infrastruc-
ture: Java StarSs programs do not include any detail that could tie them to
a particular platform, which makes them portable between infrastructures as
diverse as grids, clusters and clouds, as it has been seen in this thesis. Third,
the model is based on a mainstream language like Java, which facilitates its
adoption to a big community of users that can reuse their knowledge of the
language; this is a good quality with respect to alternatives that propose new
languages, whose learning curve can be steep (e.g. X10, analysed in this thesis).

In short, Java StarSs applications are sequential plain-Java programs that
encapsulate computations in tasks, which can be regular methods or service
operations. A task can either contain Java code or act as a wrapper of some
functionality programmed in another language. The user is mainly responsible
for identifying those tasks, as well as for stating how they access their param-
eters. The way tasks share data is through those parameters, which can be
of any type supported in Java (primitives, files, objects, arrays). Concurrency
is implicit in the model, based on tasks that are asynchronously spawned at
execution time and whose data dependencies are automatically discovered.

This thesis has shown how the model is general enough to be applied to a
variety of applications, including e-Science programs, HPC benchmarks or busi-
ness workflows. Furthermore, the comparison with other representative models
and languages has demonstrated the good programmability of Java StarSs, as
a result of freeing the programmer from things like statically determining data
dependencies, specifying data distributions with complex syntax or using APIs
to create and invoke remote objects. Contrarily, other models provide means
to tune applications for every last bit of performance, which often sacrifices
programming expressiveness. In the end, there is no perfect approach, it all
depends on the type of user that a given model targets. However, it seems clear
that a vast majority of programmers have little or no knowledge in parallel pro-
gramming, which makes implicit models like Java StarSs indispensable for these
people to benefit from new parallel and distributed platforms.

154

7.2. Runtime System Chapter 7. Conclusions and Future Work

7.1.1 Future work

Since its initial design, the programming model has continuously evolved to
incorporate new features, often driven by the needs of users and applications,
but always preserving its simplicity and its main characteristics.

In that sense, the model could be extended even further. Perhaps the most
interesting change would be to allow for nested tasks. Currently, task nesting
is inherently supported for the service-oriented scenario, where a Java StarSs
composite can include invocations to external services, selected as tasks. Those
services, at their turn, can also be composites deployed in another service con-
tainer. This creates a SOA where services rely on other (nested) services to
provide a new functionality.

Such hierarchical creation of tasks could also be supported for method tasks,
which now are only spawned from the main program. The model could permit to
generate subtasks from inside a method task, so that the main program contains
coarse-grain tasks that encompass other tasks with finer granularity. This maps
perfectly to distributed infrastructures with many-core nodes, which seem to be
the future of computer architecture, since big tasks can be sent to a node and
then be decomposed there into smaller subtasks to feed the cores of that node.

7.2 Runtime System

As an implicit parallel programming model, Java StarSs needs a runtime system
that enables its features and abstracts it from what is underneath. Hence, this
thesis has presented the design of a runtime that takes care of several duties on
behalf of the programmer, like data dependency analysis, data transfer or task
scheduling. Besides, along with the programming model, the runtime system
has also evolved during the realisation of this thesis, in order to deal with the
singularities of each infrastructure on which it has been implemented. For three
different scenarios like grids, clusters and clouds, this thesis has shown how the
runtime can keep the specifics of each of them transparent to the model.

The work started by focusing on applications that manipulate files and exe-
cute in heterogeneous geographically-distributed grids. Here, the diverse alter-
natives in terms of Grid middleware were covered at runtime level, so that the
programmer did not have to change her application depending on the particu-
lar grid to be used. However, any programmer should still bear in mind that
grids are characterised by significant latencies, middleware overhead and wait-
ing times, and therefore the granularity of the computations should be chosen
accordingly for the application to be worth distributing.

When exploring the cluster scenario, we concluded that the technologies
that are suitable for grids are not necessarily convenient for a more homoge-
neous environment like a cluster. As an example, the JavaGAT library brings
interoperability between different kinds of Grid middleware, but at the expense
of performance; in clusters, an efficient communication layer that can exploit
fast networks is more desirable. On the other hand, the master - worker de-

155

7.2. Runtime System Chapter 7. Conclusions and Future Work

sign of the runtime also had to be revised to make it more scalable, creating
persistent workers that can allocate, cache and exchange in-memory data (ar-
rays, objects). Arguably, in a parallel programming model based on sequential
coding, the path to scalability always consists in freeing the main thread from
as many responsibilities as possible and distributing them among the rest of
threads, perhaps until the point in which the main thread is only in charge of
executing the main program and generating the first level of tasks.

Finally, Cloud computing was addressed, first by supporting the orchestra-
tion of composite services that invoke other services and, second, by being able
to interact with different Cloud providers and elastically manage virtualised re-
sources. The Cloud is a more flexible scenario than the Grid or Cluster ones,
not only because of its dynamic resource provisioning, but also regarding the
easy creation of custom setups in the form of virtual machine images. Never-
theless, the execution of an application over multiple Cloud providers (e.g. in
a private-public hybrid configuration) can lead to an overhead and communica-
tion latencies similar to those of a grid and, consequently, offloading work to an
external provider should be done with care in order to minimise data transfers
across provider boundaries.

Overall, one of the lessons learned along this process is that, no matter
the infrastructure, portability of applications and interoperability are always a
major concern. There is typically a plethora of alternatives to implement and
execute an application in a certain scenario, and several vendors compete to
make their solutions dominate the market. Standards do appear, either ‘de
facto’ or produced by collaborative organisations that develop them, but it is
often complicated for them to be widely accepted. This situation, which is likely
to keep happening in future scenarios, increases the importance of systems like
the Java StarSs runtime that free the user from porting the same application
over different platforms.

All the infrastructure chapters (4, 5, 6) have tested the performance of Java
StarSs applications as the second aspect of the productivity analysis, providing
experiments in real-world infrastructures. However, it is perhaps Chapter 5 the
one that has focused the most on HPC, thoroughly evaluating the performance
and scalability of a set of benchmarks. These experiments show that Java StarSs
can achieve remarkable performance in comparison to other state-of-the-art ap-
proaches. In particular, the model is especially suitable for codes with complex
data dependencies that are hard to control manually. The Java StarSs runtime
handles those cases with no burden for the programmer, automatically detect-
ing the dependencies, defining renamings of written data, transferring them if
necessary to balance the task load and caching them for later use. On the other
hand, communication-intensive applications with little computation constitute
a case where Java StarSs still has room for improvement. Since it is based on se-
quential Java, Java StarSs lacks collective communication operations that exist
e.g. in MPI. Such kind of communications, and more precisely reductions, could
be useful in applications like Hmmpfam or GeneDetection, seen in Chapters 4
and 6 respectively, to merge a group of partial results.

156

7.2. Runtime System Chapter 7. Conclusions and Future Work

7.2.1 Future work

Part of the future work could include studying how to handle collective com-
munications in Java StarSs. The most important condition to fulfill would be
to keep the simplicity of the model, based on sequential Java with no use of any
API in the application. In the case of reduction operations, one possible option
would be to mark a given task as a reduction task in the selection interface. In
applications like Hmmpfam where a computation phase is followed by a merge
phase, the runtime would know that the partial computation results can be
merged in any order by the reduction tasks, and it would invoke such a task as
soon as two (or more) partial results are available.

As discussed in Section 7.1.1, the programming model could also be extended
to allow task nesting. This would require some support from the runtime system
as well. Concretely, the master runtime would partially delegate some function-
alities to the workers, like bytecode instrumentation or dependency analysis, for
them to be able to generate and process the subtasks of a given task. Notice
how such delegation would favour scalability, since the master runtime would
not be the only one responsible for task processing, sharing this job with the
workers. In addition, master-worker communications would be reduced, since
a single task invocation from the main program would lead to the creation of
multiple computations in a worker.

Concerning object task parameters, another possible modification to the
runtime would be to detect dependencies on subobjects, i.e. objects referenced
by other objects; for instance, if a task updated an object F which is a field
of another object O, and a subsequent task read O, the runtime would find a
data dependency between these two tasks. Furthermore, there is some work
in progress to support persistent objects that live beyond the execution of an
application and can be loaded in subsequent runs.

157

7.2. Runtime System Chapter 7. Conclusions and Future Work

158

Bibliography

[1] Alioth. The Computer Language Benchmarks Game.
http://shootout.alioth.debian.org/.

[2] Amazon Elastic Compute Cloud (EC2). http://aws.amazon.com/ec2/.

[3] Amazon Elastic MapReduce.
http://aws.amazon.com/elasticmapreduce/.

[4] Apache Cassandra. http://cassandra.apache.org/.

[5] Apache CXF. http://cxf.apache.org/.

[6] Apache Hadoop. http://hadoop.apache.org/.

[7] Apache ODE (Orchestration Director Engine).
http://ode.apache.org/.

[8] Apache Tomcat. http://tomcat.apache.org/.

[9] Barcelona Supercomputing Center. http://www.bsc.es.

[10] Bizrate. http://www.bizrate.com.

[11] Directed Acyclic Graph Manager, a Meta-scheduler for Condor.
http://research.cs.wisc.edu/condor/dagman/.

[12] Eclipse BPEL Designer. http://www.eclipse.org/bpel/.

[13] European Bioinformatics Institute. http://www.ebi.ac.uk.

[14] European Grid Infrastructure. http://www.egi.eu.

[15] EveryBlock’s Chicago crime. http://www.chicagocrime.org.

[16] Extensible Markup Language (XML). http://www.w3.org/XML/.

[17] FlexiScale. http://www.flexiscale.com.

[18] Force.com Platform. http://www.salesforce.com/platform/.

159

http://shootout.alioth.debian.org/
http://aws.amazon.com/ec2/
http://aws.amazon.com/elasticmapreduce/
http://cassandra.apache.org/
http://cxf.apache.org/
http://hadoop.apache.org/
http://ode.apache.org/
http://tomcat.apache.org/
http://www.bsc.es
http://www.bizrate.com
http://research.cs.wisc.edu/condor/dagman/
http://www.eclipse.org/bpel/
http://www.ebi.ac.uk
http://www.egi.eu
http://www.chicagocrime.org
http://www.w3.org/XML/
http://www.flexiscale.com
http://www.salesforce.com/platform/

Bibliography Bibliography

[19] gLite User Guide.
https://edms.cern.ch/file/722398/1.4/gLite-3-UserGuide.pdf.

[20] Google App Engine. http://code.google.com/appengine/.

[21] Google App Engine MapReduce .
http://code.google.com/p/appengine-mapreduce/.

[22] Google Gmail. http://www.gmail.com.

[23] GridCafé, CERN. http://www.gridcafe.org.

[24] HMMER: biosequence analysis using profile hidden Markov models.
http://hmmer.janelia.org.

[25] Hypertext Transfer Protocol. http://www.w3.org/Protocols/.

[26] Ibergrid 2011 Year Report.
http://www.es-ngi.es/documentos/Ibergrid_report_2011_

downloadable.pdf.

[27] IBM General Parallel File System.
http://www-03.ibm.com/systems/software/gpfs/.

[28] IBM Watson, winner of Jeopardy!
http://www-03.ibm.com/innovation/us/watson/.

[29] Iniciativa Nacional Grid. http://www.gridcomputing.pt.

[30] International Business Machines. http://www.ibm.com.

[31] Java annotations.
http://java.sun.com/j2se/1.5.0/docs/guide/language/

annotations.html.

[32] Java Platform, Enterprise Edition (Java EE).
http://www.oracle.com/javaee.

[33] Java programming assistant. http://www.javassist.org.

[34] Java Secure Channel. http://www.jcraft.com/jsch/.

[35] JavaNumerics, Java Grande Forum Numerics Working Group.
http://math.nist.gov/javanumerics/.

[36] Jersey, JAX-RS (JSR 311) Implementation. http://jersey.java.net/.

[37] Microsoft Azure. http://www.microsoft.com/azure/.

[38] NetSuite. http://www.netsuite.com.

[39] Network File System. http://www.ietf.org/rfc/rfc3010.

160

https://edms.cern.ch/file/722398/1.4/gLite-3-UserGuide.pdf
http://code.google.com/appengine/
http://code.google.com/p/appengine-mapreduce/
http://www.gmail.com
http://www.gridcafe.org
http://hmmer.janelia.org
http://www.w3.org/Protocols/
http://www.es-ngi.es/documentos/Ibergrid_report_2011_downloadable.pdf
http://www.es-ngi.es/documentos/Ibergrid_report_2011_downloadable.pdf
http://www-03.ibm.com/systems/software/gpfs/
http://www-03.ibm.com/innovation/us/watson/
http://www.gridcomputing.pt
http://www.ibm.com
http://java.sun.com/j2se/1.5.0/docs/guide/language/annotations.html
http://java.sun.com/j2se/1.5.0/docs/guide/language/annotations.html
http://www.oracle.com/javaee
http://www.javassist.org
http://www.jcraft.com/jsch/
http://math.nist.gov/javanumerics/
http://jersey.java.net/
http://www.microsoft.com/azure/
http://www.netsuite.com
http://www.ietf.org/rfc/rfc3010

Bibliography Bibliography

[40] OASIS Web Services Business Process Execution Language (WS-BPEL).
http://www.oasis-open.org/committees/wsbpel/.

[41] OGSA Information Modeling. https://forge.gridforum.org/sf/go/

doc13726.

[42] Open Grid Forum. http://www.gridforum.org/.

[43] Open Portable Batch System. http://www.openpbs.org/.

[44] Open Science Grid. http://www.opensciencegrid.org.

[45] Open VPN. http://openvpn.net/.

[46] OpenNebula. http://www.opennebula.org.

[47] Organization for the Advancement of Structured Information Standards
(OASIS). https://www.oasis-open.org/.

[48] OSG Document Database. http://osg-docdb.opensciencegrid.org/.

[49] Platform Load Sharing Facility.
http://www.platform.com/workload-management/

high-performance-computing.

[50] POSIX.1c, Threads extensions (IEEE Std 1003.1c-1995).
http://standards.ieee.org/develop/wg/POSIX.html.

[51] Programming Language Popularity. http://www.langpop.com/.

[52] Rackspace Cloud. http://www.rackspace.com.

[53] Salesforce.com. http://www.salesforce.com.

[54] ScalaLife Project Pilot Applications - DISCRETE.
http://www.scalalife.eu/applications.

[55] Simple Object Access Protocol. http://www.w3.org/TR/soap/.

[56] Spanish National Grid Initiative. http://www.es-ngi.es/.

[57] Sun Microsystems. JavaBeans.
http://java.sun.com/products/javabeans/.

[58] SUPERFAMILY Database. http://supfam.cs.bris.ac.uk.

[59] Terracotta Distributed Shared Objects. http://www.terracotta.org.

[60] The Eclipse Project. http://www.eclipse.org/.

[61] The European Research Network on Foundations, Software Infrastruc-
tures and Applications for large scale distributed, GRID and Peer-to-Peer
Technologies - CoreGRID. http://www.coregrid.net/.

161

http://www.oasis-open.org/committees/wsbpel/
https://forge.gridforum.org/sf/go/doc13726
https://forge.gridforum.org/sf/go/doc13726
http://www.gridforum.org/
http://www.openpbs.org/
http://www.opensciencegrid.org
http://openvpn.net/
http://www.opennebula.org
https://www.oasis-open.org/
http://osg-docdb.opensciencegrid.org/
http://www.platform.com/workload-management/high-performance-computing
http://www.platform.com/workload-management/high-performance-computing
http://standards.ieee.org/develop/wg/POSIX.html
http://www.langpop.com/
http://www.rackspace.com
http://www.salesforce.com
http://www.scalalife.eu/applications
http://www.w3.org/TR/soap/
http://www.es-ngi.es/
http://java.sun.com/products/javabeans/
http://supfam.cs.bris.ac.uk
http://www.terracotta.org
http://www.eclipse.org/
http://www.coregrid.net/

Bibliography Bibliography

[62] The GÉANT pan-European data network. http://www.geant.net.

[63] The Secure Shell (SSH) Authentication Protocol.
http://www.ietf.org/rfc/rfc4252.

[64] TIOBE Programming Community Index. http://www.tiobe.com/

index.php/content/paperinfo/tpci/index.html.

[65] Travel Booking BPEL Example.
http://publib.boulder.ibm.com/bpcsamp/scenarios/

travelBooking.html.

[66] Uniform Resource Identifiers (URI): Generic Syntax.
http://www.ietf.org/rfc/rfc2396.

[67] Virtual Organization Membership Service.
http://edg-wp2.web.cern.ch/edg-wp2/security/voms/.

[68] Web Services Architecture - W3C. http://www.w3.org/TR/ws-arch/.

[69] Web Services Description Language. http://www.w3.org/TR/wsdl.

[70] What the ’Private Cloud’ really means. http://www.infoworld.com/t/

cloud-computing/what-the-private-cloud-really-means-463.

[71] Worldwide LHC Computing Grid. http://lcg.web.cern.ch.

[72] Yahoo Pipes. http://pipes.yahoo.com/pipes/.

[73] CORBA Component Model Specification, version 4.0. http://www.omg.

org/technology/documents/formal/components.html, April 2006.

[74] Basic Features of the Grid Component Model (assessed). CoreGRID De-
liverable D.PM.04, 2007.

[75] Integration of Clouds and Virtualisation into the European Production
Infrastructure. EGI Inspire EU Deliverable 2.6, 2011.

[76] M. Aldinucci, M. Coppola, M. Danelutto, M. Vanneschi, and C. Zoccolo.
ASSIST as a research framework for high-performance Grid programming
environments. In J. C. Cunha and O. F. Rana, editors, Grid Computing:
Software environments and Tools, chapter 10, pages 230–256. Springer
Verlag, Jan. 2006.

[77] B. Allcock, J. Bester, J. Bresnahan, A. L. Chervenak, I. Foster, C. Kessel-
man, S. Meder, V. Nefedova, and D. Q. Steven. Efficient data transport
and replica management for high-performance data-intensive computing.
In in Mass Storage Conference, 2001.

162

http://www.geant.net
http://www.ietf.org/rfc/rfc4252
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://publib.boulder.ibm.com/bpcsamp/scenarios/travelBooking.html
http://publib.boulder.ibm.com/bpcsamp/scenarios/travelBooking.html
http://www.ietf.org/rfc/rfc2396
http://edg-wp2.web.cern.ch/edg-wp2/security/voms/
http://www.w3.org/TR/ws-arch/
http://www.w3.org/TR/wsdl
http://www.infoworld.com/t/cloud-computing/what-the-private-cloud-really-means-463
http://www.infoworld.com/t/cloud-computing/what-the-private-cloud-really-means-463
http://lcg.web.cern.ch
http://pipes.yahoo.com/pipes/
http://www.omg.org/technology/documents/formal/components.html
http://www.omg.org/technology/documents/formal/components.html

Bibliography Bibliography

[78] G. Allen, K. Davis, T. Goodale, A. Hutanu, H. Kaiser, T. Kielmann,
A. Merzky, R. van Nieuwpoort, A. Reinefeld, F. Schintke, T. Schütt,
E. Seidel, and B. Ullmer. The Grid Application Toolkit: Towards Generic
and Easy Application Programming Interfaces for the Grid. In Proceedings
of the IEEE, volume 93, pages 534–550, Mar. 2005.

[79] M. Alt, J. Dünnweber, J. Müller, and S. Gorlatch. HOCs: Higher-Order
Components for Grids. In V. Getov and T. Kielmann, editors, Component
Models and Systems for Grid Applications, CoreGRID, pages 157–166.
Springer-Verlag, June 2004.

[80] S. Altschul, W. Gish, W. Miller, E. Myers, and D. Lipman. Basic local
alignment search tool. Journal of Molecular Biology, 215:403–410, 1990.

[81] B. Amedro, F. Baude, D. Caromel, C. Delbé, I. Filali, F. Huet, E. Mathias,
and O. Smirnov. An Efficient Framework for Running Applications on
Clusters, Grids and Clouds. In Cloud Computing: Principles, Systems
and Applications. Springer Verlag, 2010.

[82] B. Amedro, V. Bodnartchouk, D. Caromel, C. Delbe, F. Huet, and
L. Taboada, Guillermo. Current State of Java for HPC. Technical Report
RT-0353, INRIA, 2008.

[83] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands,
K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams,
and K. A. Yelick. The Landscape of Parallel Computing Research: A
View from Berkeley. Technical Report UCB/EECS-2006-183, EECS De-
partment, University of California, Berkeley, Dec 2006.

[84] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier. StarPU: A
Unified Platform for Task Scheduling on Heterogeneous Multicore Archi-
tectures. Concurrency and Computation: Practice and Experience, Euro-
Par 2009 best papers issue, 2010.

[85] R. M. Badia, J. Labarta, R. Sirvent, J. M. Pérez, J. M. Cela, and
R. Grima. Programming Grid Applications with GRID superscalar. Jour-
nal of GRID Computing, 1(2):151–170, June 2003.

[86] M. Baker and R. Buyya. Cluster Computing at a Glance. In High Perfor-
mance Cluster Computing: Architectures and Systems, chapter 1, pages
3–47. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1999.

[87] A. Basukoski, V. Getov, J. Thiyagalingam, and S. Isaiadis. Component-
Based Development Environment for Grid Systems: Design and Imple-
mentation. In CoreGRID Workshop - Making Grids Work, pages 119–128,
2007.

[88] C. Bell, D. Bonachea, R. Nishtala, and K. A. Yelick. Optimizing band-
width limited problems using one-sided communication and overlap. In

163

Bibliography Bibliography

Proc. IEEE International Parallel & Distributed Processing Symposium
(20th IPDPS’06), Rhodes Island, Greece, Apr. 2006. IEEE Computer So-
ciety.

[89] D. Benslimane, S. Dustdar, and A. Sheth. Services Mashups: The New
Generation of Web Applications. IEEE Internet Computing, 12(5):13–15,
2008.

[90] E. Birney, M. Clamp, and R. Durbin. GeneWise and Genomewise.
Genome Research, 14(5):988–995, May 2004.

[91] G. Blelloch and G. Narlikar. A practical comparison of n-body algorithms.
In Parallel Algorithms, Series in Discrete Mathematics and Theoretical
Computer Science. American Mathematical Society, 1997.

[92] R. F. Boisvert, J. Moreira, M. Philippsen, and R. Pozo. Java and Numer-
ical Computing. Computing in Science and Engineering, 3(2):18–24, Mar.
1996.

[93] H. L. Bouziane, C. Perez, N. Currle-Linde, and M. Resch. A Software
Component-based Description of the SEGL Runtime Architecture. Tech-
nical Report TR-0054, Institute on Grid Systems, Tools and Environ-
ments, CoreGRID - Network of Excellence, July 2006.

[94] C. I. Bradford L. Chamberlain. Concurrency Oriented Programming
in Erlang. http://www.guug.de/veranstaltungen/ffg2003/papers/

ffg2003-armstrong.pdf, 2003.

[95] C. I. Bradford L. Chamberlain. Multiresolution Languages for Portable
yet Efficient Parallel Programming, White paper.
http://chapel.cray.com/papers/DARPA-RFI-Chapel-web.pdf, 2007.

[96] A. W. Brown, editor. Component-Based Software Engineering: Selected
Papers from the Software Engineering Institute. IEEE Computer Society
Press, Los Alamitos, CA, USA, 1996.

[97] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.-B. Stefani. An
Open Component Model and Its Support in Java. In Component-Based
Software Engineering, pages 7–22, 2004.

[98] M. Cargnelli, G. Alleon, and F. Cappello. OpenWP: Combining annota-
tion language and workflow environments for porting existing applications
on grids. In Proceedings of the 2008 9th IEEE/ACM International Con-
ference on Grid Computing, GRID ’08, pages 176–183, Washington, DC,
USA, 2008. IEEE Computer Society.

[99] D. Caromel, W. Klauser, and J. Vayssiere. Towards Seamless Computing
and Metacomputing in Java. Concurrency and Computation: Practice
and Experience, 10(11–13):1043–1061, September-November 1998.

164

http://www.guug.de/veranstaltungen/ffg2003/papers/ffg2003-armstrong.pdf
http://www.guug.de/veranstaltungen/ffg2003/papers/ffg2003-armstrong.pdf
http://chapel.cray.com/papers/DARPA-RFI-Chapel-web.pdf

Bibliography Bibliography

[100] B. Chamberlain, D. Callahan, and H. Zima. Parallel Programmability and
the Chapel Language. Int. J. High Perform. Comput. Appl., 21(3):291–
312, 2007.

[101] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu,
C. von Praun, and V. Sarkar. X10: an object-oriented approach to non-
uniform cluster computing. In OOPSLA ’05: Proceedings of the 20th
annual ACM SIGPLAN conference on Object-oriented programming, sys-
tems, languages, and applications, pages 519–538, New York, NY, USA,
2005. ACM.

[102] L. Dagum and R. Menon. OpenMP: An Industry-Standard API for
Shared-Memory Programming. IEEE Comput. Sci. Eng., 5(1):46–55, Jan.
1998.

[103] J. Dean and S. Ghemawat. MapReduce: simplified data processing on
large clusters. Commun. ACM, 51:107–113, January 2008.

[104] E. Deelman, G. Singh, M. hui Su, J. Blythe, A. Gil, C. Kesselman,
G. Mehta, K. Vahi, G. B. Berriman, J. Good, A. Laity, J. C. Jacob, and
D. S. Katz. Pegasus: a framework for mapping complex scientific work-
flows onto distributed systems. Scientific Programming Journal, 13:219–
237, 2005.

[105] E. Deelman, G. Singh, M. Livny, B. Berriman, and J. Good. The cost
of doing science on the cloud: the montage example. In Proceedings of
the 2008 ACM/IEEE conference on Supercomputing, SC ’08, pages 50:1–
50:12, Piscataway, NJ, USA, 2008. IEEE Press.

[106] N. N. A. S. Division. NAS Parallel Benchmarks.
http://www.nas.nasa.gov/Software/NPB/.

[107] A. Duran, R. Ferrer, E. Ayguadé, R. M. Badia, and J. Labarta. A proposal
to extend the OpenMP tasking model with dependent tasks. International
Journal of Parallel Programming, 37(3):292–305, 2009.

[108] S. R. Eddy. Profile hidden Markov models. Bioinformatics, 14(9):755–763,
1998.

[109] Edward F. Walker and Richard Floyd and Paul Neves. Asynchronous Re-
mote Operation Execution in Distributed Systems. In 10th Intl. Conf. on
Distributed Computing Systems (ICDCS-10), pages 253–259, May 1990.

[110] T. A. El-Ghazawi, W. W. Carlson, and J. M. Draper. UPC Language
Specifications, v1.1.1 edition, October 2003.

[111] M. Farreras. Optimizing programming models for massively parallel com-
puters. PhD thesis, Universitat Politècnica de Catalunya, 2008. Advisor:
Toni Cortes.

165

http://www.nas.nasa.gov/Software/NPB/

Bibliography Bibliography

[112] M. Farreras and G. Almasi. Asynchronous PGAS runtime for Myrinet
networks. PGAS10: 4th Conference Partitioned Global Address Space
Programming Model, 2010.

[113] M. Farreras, V. Marjanovic, E. Ayguade, and J. Labarta. Gaining asyn-
chrony by using hybrid UPC/SMPSs. ICS09: 1st Workshop on Asyn-
chrony in the PGAS Programming Model (APGAS) in the 23rd Interna-
tional Conference on Supercomputing, 2009.

[114] R. T. Fielding. Architectural Styles and the Design of Network-based Soft-
ware Architectures. PhD thesis, 2000.

[115] R. J. O. Figueiredo, P. A. Dinda, and J. A. B. Fortes. Guest editors’ intro-
duction: Resource virtualization renaissance. IEEE Computer, 38(5):28–
31, 2005.

[116] M. P. Forum. MPI: A Message-Passing Interface Standard. Technical
report, Knoxville, TN, USA, 1994.

[117] I. Foster and C. Kesselman. Globus: A Metacomputing Infrastructure
Toolkit. Int. Journal of Supercomputer Applications, 11(2):115–128, 1997.

[118] I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of the Grid: En-
abling Scalable Virtual Organizations. Int. J. High Perform. Comput.
Appl., 15(3):200–222, Aug. 2001.

[119] George Almasi, Ganesh Bikshandi, Calin Cascaval, David Cunning-
ham, Gabor Dozsa, Montse Farreras, David P. Grove, Sreedhar B. Ko-
dali, Nathaniel Nystrom, Igor Peshansky, Vijay Saraswat, Sayantan Sur,
Olivier Tardieu, Ettore Tiotto. HPC Challenge 2009 Awards Competition:
UPC and X10, 2009.

[120] T. Goodale, S. Jha, H. Kaiser, T. Kielmann, P. Kleijer, G. V. Laszewski,
C. Lee, A. Merzky, H. Rajic, and J. Shalf. SAGA: A Simple API for
Grid Applications. High-level application programming on the Grid. In
Computational Methods in Science and Technology, 2006.

[121] S. Haridi, P. V. Roy, P. Brand, and C. Schulte. Programming Languages
for Distributed Applications. New Generation Computing, 16(3):223–261,
1998.

[122] M. E. Hellman. An Overview of Public Key Cryptography. IEEE Com-
munications Society Magazine, 16:24–32, Nov. 1978.

[123] J. L. Hennessy, D. A. Patterson, and D. Goldberg. Computer Architecture:
A Quantitative Approach. Morgan Kaufmann, 2002.

[124] IBM. RSCT LAPI Programming Guide.
http://publib.boulder.ibm.com/epubs/pdf/bl5lpg04.pdf, 1990.

166

http://publib.boulder.ibm.com/epubs/pdf/bl5lpg04.pdf

Bibliography Bibliography

[125] A. Iosup, S. Ostermann, N. Yigitbasi, R. Prodan, T. Fahringer, and
D. Epema. Performance Analysis of Cloud Computing Services for
Many-Tasks Scientific Computing. IEEE Trans. Parallel Distrib. Syst.,
22(6):931–945, June 2011.

[126] K. Jiang, O. Thorsen, A. Peters, B. Smith, and C. P. Sosa. An Effi-
cient Parallel Implementation of the Hidden Markov Methods for Genomic
Sequence-Search on a Massively Parallel System. IEEE Transactions on
Parallel and Distributed Systems, 19(1):15–23, 2008.

[127] P. Kacsuk and G. Sipos. Multi-Grid, Multi-User Workflows in the P-
GRADE Grid Portal. Journal of Grid Computing, 3(3-4):221–238, 2005.

[128] C. Kesselman and I. Foster. The Grid: Blueprint for a New Computing
Infrastructure. Morgan Kaufmann Publishers, San Francisco, CA, USA,
Nov. 1998.

[129] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M.
Loingtier, and J. Irwin. Aspect-oriented programming. In ECOOP, pages
220–242, 1997.

[130] S. Kumar, G. Dozsa, G. Almasi, P. Heidelberger, D. Chen, M. E. Gi-
ampapa, M. Blocksome, A. Faraj, J. Parker, J. Ratterman, B. Smith,
and C. J. Archer. The deep computing messaging framework: generalized
scalable message passing on the blue gene/p supercomputer. In ICS ’08:
Proceedings of the 22nd annual international conference on Supercomput-
ing, pages 94–103, New York, NY, USA, 2008. ACM.

[131] K.-K. Lau. Component-Based Software Development: Case Studies (Se-
ries on Component-Based Software Development). World Scientific Press,
2004.

[132] E. Laure, C. Gr, S. Fisher, A. Frohner, P. Kunszt, A. Krenek, O. Mulmo,
F. Pacini, F. Prelz, J. White, M. Barroso, P. Buncic, R. Byrom, L. Corn-
wall, M. Craig, A. D. Meglio, A. Djaoui, F. Giacomini, J. Hahkala,
F. Hemmer, S. Hicks, A. Edlund, A. Maraschini, R. Middleton, M. Sgar-
avatto, M. Steenbakkers, J. Walk, and A. Wilson. Programming the Grid
with gLite. In Computational Methods in Science and Technology, page
2006, 2006.

[133] C. Lee, S. Matsuoka, D. Talia, A. Sussman, M. Mueller, G. Allen, and
J. Saltz. A Grid Programming Primer. Technical report, Global Grid
Forum Programming Model Working Group, Aug. 2001.

[134] S. Liang. Java Native Interface: Programmer’s Guide and Reference.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.

[135] D. S. Linthicum. Cloud Computing and SOA Convergence in Your En-
terprise: A Step-by-Step Guide. Addison-Wesley Professional, 1st edition,
2009.

167

Bibliography Bibliography

[136] F. Lordan, E. Tejedor, J. Ejarque, R. Rafanell, J. Álvarez, F. Marozzo,
D. Lezzi, R. Sirvent, D. Talia, and R. M. Badia. ServiceSs: an interop-
erable programming framework for the Cloud. Springer Journal of Grid
Computing, Special Issue on Interoperability, Federation, Frameworks and
Application Programming Interfaces for IaaS Clouds.

[137] D. A. Mallón, G. L. Taboada, J. Touriño, and R. Doallo. NPB-MPJ:
NAS Parallel Benchmarks Implementation for Message-Passing in Java.
In Proc. 17th Euromicro Intl. Conf. on Parallel, Distributed, and Network-
Based Processing (PDP’09), pages 181–190, Weimar, Germany, 2009.

[138] V. Marjanovic, J. Labarta, E. Ayguadé, and M. Valero. Effective commu-
nication and computation overlap with hybrid MPI/SMPSs. In Proceed-
ings of the 15th ACM SIGPLAN Annual Symposium on Principles and
Practice of Parallel Programming, pages 337–338, Bangalore, India, 2010.

[139] M. D. McIlroy. Mass Produced Software Components, pages 138–155.
NATO Scientific Affairs Division: Brussels, 1969.

[140] P. E. McKenney. Is Parallel Programming Hard, And, If So, What
Can You Do About It? kernel.org, Corvallis, OR, USA, 2012.
Available: http://kernel.org/pub/linux/kernel/people/paulmck/

perfbook/perfbook.html.

[141] P. Mell and T. Grance. The NIST Definition of Cloud Computing. Recom-
mendations of the National Institute of Standards and Technology. Nist
Special Publication, 145(6):1–2, 2011.

[142] P. Missier, S. Soiland-Reyes, S. Owen, W. Tan, A. Nenadic, I. Dunlop,
A. Williams, T. Oinn, and C. Goble. Taverna, reloaded. In M. Gertz,
T. Hey, and B. Ludaescher, editors, SSDBM 2010, Heidelberg, Germany,
June 2010.

[143] F. Montesi, C. Guidi, and G. Zavattaro. Composing Services with JOLIE.
In Proceedings of the Fifth European Conference on Web Services, pages
13–22, Washington, DC, USA, 2007. IEEE Computer Society.

[144] MPI Forum. MPI-Forum: A Message Passing Interface Standard.
http://www.mpi-forum.org.

[145] F. Nadeem, F. Nerieri, S. Podlipnig, J. Qin, M. Siddiqui, H.-l. Truong, and
A. Villazon. ASKALON: A Development and Grid Workflows. Workflows
for eScience, page 450–471, 2007.

[146] R. W. Numrich and J. Reid. Co-Array Fortran for parallel programming.
ACM Fortran Forum, 17(2):1 – 31, 1998.

[147] W. O’Mullane, X. Luri, P. Parsons, U. Lammers, J. Hoar, and J. Her-
nandez. Using Java for distributed computing in the Gaia satellite data
processing, European Space Agency Gaia mission. CoRR, abs/1108.0355,
2011.

168

http://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html
http://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html
http://www.mpi-forum.org

Bibliography Bibliography

[148] OpenMP Specifications. Openmp application programing interface. v3.0.
http://www.openmp.org/mp-documents/spec30.pdf, May 2008.

[149] N. Parlavantzas, M. Morel, V. Getov, F. Baude, and D. Caromel. Perfor-
mance and Scalability of a Component-Based Grid Application. In 9th Int.
Workshop on Java for Parallel and Distributed Computing, in conjunction
with the IEEE IPDPS conference, April 2007.

[150] C. Pedrinaci and J. Domingue. Toward the Next Wave of Services: Linked
Services for the Web of Data. J. UCS, 16(13):1694–1719, 2010.

[151] J. M. Perez, R. M. Badia, and J. Labarta. A dependency-aware task-based
programming environment for multi-core architectures. In Proceedings of
the 2008 IEEE International Conference on Cluster Computing, pages
142–151, 2008.

[152] J. M. Perez, P. Bellens, R. M. Badia, and J. Labarta. CellSs: Making it
easier to program the cell broadband engine processor. IBM Journal of
Research and Development, 51(5), August 2007.

[153] G. F. Pfister. In Search of Clusters (2nd ed.). Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1998.

[154] M. Philippsen. A survey of concurrent object-oriented languages. Con-
currency - Practice and Experience, 12(10):917–980, 2000.

[155] J. Planas, R. M. Badia, E. Ayguadé, and J. Labarta. Hierarchical task
based programming with StarSs. International Journal of High Perfor-
mance Computing, 23(3):284–299, August 2009.

[156] R. Rafanell. Extensió de COMP Superscalar. Projecte de Fi de Carrera,
Universitat Autònoma de Barcelona.

[157] G. Raines. Cloud Computing and SOA, Service-Oriented Architecture
Series. Technical report, The MITRE Corporation, October 2009.

[158] Java Remote Method Invocation. http://www.oracle.com.

[159] R. Royo, J. López, D. Torrents, and J. Gelpi. A BioMoby-based workflow
for gene detection using sequence homology. In International Supercom-
puting Conference (ISC’08), Dresden (Germany), 2008.

[160] W. Schulte and N. Tillmann. Automatic parallelization of programming
languages: past, present and future. In Proceedings of the 3rd Interna-
tional Workshop on Multicore Software Engineering, IWMSE ’10, pages
1–1, New York, NY, USA, 2010. ACM.

[161] D. B. Skillicorn and D. Talia. Models and Languages for Parallel Compu-
tation. ACM Computing Surveys, 30(2):123–169, 1998.

169

http://www.openmp.org/mp-documents/spec30.pdf
http://www.oracle.com

Bibliography Bibliography

[162] E. Stewart. High Performance Java for Compute Intensive Applications,
Visual Numerics Java Trends. Java Developer’s Journal, Dec. 2007.

[163] A. Streit, D. Erwin, T. Lippert, D. Mallmann, R. Menday, M. Ram-
badt, M. Riedel, M. Romberg, B. Schuller, and P. Wieder. Unicore —
From project results to production grids, volume 14 of Advances in Paral-
lel Computing, pages 357–376. Elsevier, 2005.

[164] Supercomputing Technologies Group. MIT Laboratory for Computer Sci-
ence. Cilk 5.4.6 Reference Manual, April 2005. http://supertech.lcs.
mit.edu/cilk.

[165] G. L. Taboada, S. Ramos, R. R. Exposito, J. Touriño, and R. Doallo.
Java in the High Performance Computing arena: Research, practice
and experience. Science of Computer Programming, 2011 (In press
http://dx.doi.org/10.1016/j.scico.2011.06.002).

[166] Y. Tanaka, H. Nakada, S. Sekiguchi, T. Suzumura, and S. Matsuoka. Ninf-
G: A Reference Implementation of RPC-based Programming Middleware
for Grid Computing. Journal of Grid Computing, 1(1):41–51, 2003.

[167] I. Taylor, M. Shields, I. Wang, and A. Harrison. Visual Grid Workflow in
Triana. Journal of Grid Computing, 3(3-4):153–169, September 2005.

[168] E. Tejedor and R. M. Badia. COMP Superscalar: Bringing GRID Su-
perscalar and GCM Together. In Proceedings of the 2008 Eighth IEEE
International Symposium on Cluster Computing and the Grid, CCGrid
’08, Lyon, France, pages 185–193, May 2008.

[169] E. Tejedor, R. M. Badia, R. Royo, and J. L. Gelṕı. Enabling HMMER for
the Grid with COMP Superscalar. In Proceedings of the 10th International
Conference on Computational Science 2010, ICCS ’10, Amsterdam, The
Netherlands, May 2010.

[170] E. Tejedor, J. Ejarque, F. Lordan, R. Rafanell, J. Álvarez, D. Lezzi, R. Sir-
vent, and R. M. Badia. A Cloud-unaware Programming Model for Easy
Development of Composite Services. In Proceedings of the 3rd IEEE Inter-
national Conference on Cloud Computing Technology and Science, Cloud-
Com ’11, Athens, Greece, November 2011.

[171] E. Tejedor, M. Farreras, D. Grove, R. M. Badia, G. Almasi, and
J. Labarta. ClusterSs: a Task-based Programming Model for Clusters.
In Proceedings of the 20th International ACM Symposium on High Per-
formance Distributed Computing, HPDC ’11, San Jose, California, USA,
pages 267–268, June 2011.

[172] E. Tejedor, M. Farreras, D. Grove, R. M. Badia, G. Almasi, and
J. Labarta. A high-productivity task-based programming model for
clusters. Concurrency and Computation: Practice and Experience,
24(18):2421–2448, 2012.

170

http://supertech.lcs.mit.edu/cilk
http://supertech.lcs.mit.edu/cilk

Bibliography Bibliography

[173] E. Tejedor, F. Lordan, and R. M. Badia. Exploiting Inherent Task-Based
Parallelism in Object-Oriented Programming. In Proceedings of the 12th
IEEE/ACM International Conference on Grid Computing, GRID ’11,
Lyon, France, pages 74–81, September 2011.

[174] D. Thain, T. Tannenbaum, and M. Livny. Condor and the Grid. In
F. Berman, G. Fox, and T. Hey, editors, Grid Computing: Making the
Global Infrastructure a Reality. John Wiley & Sons Inc., December 2002.

[175] R. V. van Nieuwpoort, G. Wrzesińska, C. J. Jacobs, and H. E. Bal. Satin:
A high-level and efficient grid programming model. ACM Transactions
on Programming Languages and Systems (TOPLAS), 32(3):1–39, 2010.

[176] A. Vaqué, Í. Goiri, J. Guitart, and J. Torres. EMOTIVE Cloud: The
BSC’s IaaS Open Source Solution for Cloud Computing. In L. Vaquero,
J. Cáceres, and J. Hierro, editors, Open Source Cloud Computing Systems:
Practices and Paradigms, pages 44–60. IGI Global, 2012.

[177] C. Vecchiola, X. Chu, and R. Buyya. Aneka: A Software Platform
for .NET-based Cloud Computing. Computing Research Repository,
abs/0907.4, 2009.

[178] R. Virding, C. Wikström, and M. Williams. Concurrent programming in
ERLANG (2nd ed.). Prentice Hall International (UK) Ltd., Hertfordshire,
UK, 1996.

[179] Volker Hoyer et al. The FAST Platform: An Open and Semantically-
Enriched Platform for Designing Multi-channel and Enterprise-Class Gad-
gets. In International Conference on Service Oriented Computing, pages
316–330, 2009.

[180] T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser. Active
messages: A mechanism for integrated communication and computation.
In 19th International Symposium on Computer Architecture, pages 256–
266, Gold Coast, Australia, 1992.

[181] D. W. Walker, M. Li, O. F. Rana, M. S. Shields, and Y. Huang. The
software architecture of a distributed problem-solving environment. Con-
currency: Practice and Experience, 12(15):1455–1480, 2000.

[182] J. P. Walters. MPI-HMMER. http://code.google.com/p/mpihmmer/.

[183] J. P. Walters, R. Darole, and V. Chaudhary. Improving MPI-HMMER’s
scalability with parallel I/O. Parallel and Distributed Processing Sympo-
sium, International, 0:1–11, 2009.

[184] M. Wilde, I. Foster, K. Iskra, P. Beckman, Z. Zhang, A. Espinosa,
M. Hategan, B. Clifford, and I. Raicu. Parallel scripting for applications
at the petascale and beyond. Computer, 42:50–60, 2009.

171

http://code.google.com/p/mpihmmer/

Bibliography Bibliography

[185] K. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B. Liblit, A. Krishna-
murthy, P. Hilfinger, S. Graham, D. Gay, P. Colella, and A. Aiken. Ti-
tanium: A high-performance Java dialect. In ACM, editor, ACM 1998
Workshop on Java for High-Performance Network Computing, New York,
NY 10036, USA, 1998. ACM Press.

172

Appendix A

Applications

A.1 Hmmpfam - Java StarSs

Main program of the Hmmpfam application for Java StarSs. Code shown in
next page.

173

A.1. Hmmpfam - Java StarSs Appendix A. Applications

public static void main(String args[]) throws Exception {
// Parameter parsing
String dbName = args[0];
String seqsName = args[1];
String outputName = args[2];
File fSeq = new File(seqsName);
File fDB = new File(dbName);

int numDBFrags = Integer.parseInt(args[3]);
int numSeqFrags = Integer.parseInt(args[4]);
List<String> dbFrags = new ArrayList<String>(numDBFrags);
List<String> seqFrags = new ArrayList<String>(numSeqFrags);

CommandLineArgs clArgs = new CommandLineArgs(args, 5);
String finalArgs = clArgs.getArgs();

/* FIRST PHASE
* Segment the database file, the query sequences file or both
*/

split(fDB, fSeq, dbFrags, seqFrags, numDBFrags, numSeqFrags);

/* SECOND PHASE
* Launch hmmpfam for each pair of seq - db fragments
*/

int numReports = numDBFrags * numSeqFrags;
String[] outputs = new String[numReports];
int i = 0;
for (String dbFrag : dbFrags) {

for (String seqFrag : seqFrags) {
outputs[i] = ”report” + i + ”.out”;
hmmpfam(finalArgs, dbFrag, seqFrag, outputs[i]);
i++;

}
}

/* THIRD PHASE
* Merge all output in a single file
*/

for (int gap = 1; gap < numReports; gap *= 2) {
for (int pos = 0; pos < numReports; pos += 2 * gap)

if (pos + gap < numReports)
merge(outputs[pos], outputs[pos + gap]);

}

// Result is in file outputs[0]
prepareResultFile(outputs[0], outputName, dbName, seqsName);

}

Figure A.1: Main program of the Hmmpfam application for Java StarSs.

174

A.2. Discrete - Java StarSs Appendix A. Applications

A.2 Discrete - Java StarSs

Main program, task selection interface and example of a task graph generated
by the Discrete application with Java StarSs.

A.2.1 Main Program

public static void main(String args[]) throws Exception {
// Parameter parsing
String binDir = args[0];
String dataDir = args[1];
String structDir = args[2];
String tmpDir = args[3];
String scoreDir = args[4];
readParams(dataDir);

// Generate coordinate and topology files for each structure
for (int i = 1; i <= N; i++) {

String pdbFile = structDir + ”/1B6C ” + i + ”.pdb”;
String recFile = tmpDir + ”/receptor ” + i;
String ligFile = tmpDir + ”/ligand ” + i;
String topFile = tmpDir + ”/topology ” + i;
String crdFile = tmpDir + ”/coordinates ” + i;

genReceptorLigand(pdbFile, binDir, recFile, ligFile);
dmdSetup(recFile, ligFile, binDir, dataDir, topFile, crdFile);

}

String pydockFile = dataDir + PYDOCK;
Queue<String> coeffList = new LinkedList<String>();
Queue<String> list = new LinkedList<String>();

// Parameter sweeping
for (int i = 1; i <= STEPS; i++) {

double fvdw = i * FVDW STEP;
for (int j = 1; j <= STEPS; j++) {

double fsolv = j * FSOLV STEP;
for (int k = 1; k <= STEPS; k++) {

double eps = k * EPS STEP;
String paramFile = genParamFile(fvdw, fsolv, eps);

// N simulations, one for each structure
for (int ii = 1; ii <= N; ii++) {

String topFile = tmpDir + ”/topology ” + ii;
String crdFile = tmpDir + ”/coordinates ” + ii;
String averageFile = tmpDir + ”/average ” + UUID.randomUUID();
list.add(averageFile);
simulate(paramFile, topFile, crdFile, natom, binDir, dataDir, averageFile);

}

175

A.2. Discrete - Java StarSs Appendix A. Applications

// Merge all averages in a single file
while (list.size() > 1) {

Queue<String> listAux = new LinkedList<String>();
while (list.size() > 1) {

String a1 = list.poll();
String a2 = list.poll();
merge(a1, a2);
listAux.add(a1);

}
if (list.size() == 1) listAux.add(list.peek());
list = listAux;

}

String scoreFile = scoreDir + ”/score ” + fvdw + ” ”
+ fsolv + ” ” + eps + ”.score”;

String coeffFile = tmpDir + ”/coeff ” + UUID.randomUUID();
coeffList.add(coeffFile);

// Generate the score file and calculate the final coefficient
evaluate(list.poll(), pydockFile, fvdw, fsolv, eps, scoreFile, coeffFile);

}
}

}

// Find the min coefficient of all configurations
while (coeffList.size() > 1) {

String c1 = coeffList.poll();
String c2 = coeffList.poll();
min(c1, c2);
coeffList.add(c1);

}
}

Figure A.2: Main program of the Discrete application for Java StarSs.

A.2.2 Task Selection Interface

176

A.2. Discrete - Java StarSs Appendix A. Applications

public interface DiscreteItf {
@Method(declaringClass = ”worker.discrete.DiscreteImpl”)
void genReceptorLigand(

@Parameter(type = FILE) String pdbFile,
String binDir,
@Parameter(type = FILE, direction = OUT) String recFile,
@Parameter(type = FILE, direction = OUT) String ligFile

);

@Method(declaringClass = ”worker.discrete.DiscreteImpl”)
void dmdSetup(

@Parameter(type = FILE) String recFile,
@Parameter(type = FILE) String ligFile,
String binDir,
String dataDir,
@Parameter(type = FILE, direction = OUT) String topFile,
@Parameter(type = FILE, direction = OUT) String crdFile

);

@Method(declaringClass = ”worker.discrete.DiscreteImpl”)
void simulate(

@Parameter(type = FILE) String paramFile,
@Parameter(type = FILE) String topFile,
@Parameter(type = FILE) String crdFile,
String natom,
String binDir,
String dataDir,
@Parameter(type = FILE, direction = OUT) String average

);

@Method(declaringClass = ”worker.discrete.DiscreteImpl”)
void merge(

@Parameter(type = FILE, direction = INOUT) String f1,
@Parameter(type = FILE) String f2

);

@Method(declaringClass = ”worker.discrete.DiscreteImpl”)
void evaluate(

@Parameter(type = FILE) String averageFile,
@Parameter(type = FILE) String pydockFile,
double fvdw,
double fsolv,
double eps,
@Parameter(type = FILE, direction = OUT) String scoreFile,
@Parameter(type = FILE, direction = OUT) String coeffFile

);

@Method(declaringClass = ”worker.discrete.DiscreteImpl”)
void min(

@Parameter(type = FILE, direction = INOUT) String f1,
@Parameter(type = FILE) String f2

);
}

Figure A.3: Task selection interface of the Discrete application for Java StarSs.

177

A.2. Discrete - Java StarSs Appendix A. Applications

A.2.3 Task Graph

1 2d2

21

d4

41

d4

61

d4

81

d4

10
1

d4

12
1

d4

14
1

d4

16
1

d4

18
1d4

20
1

d4

22
1

d4

24
1

d4

26
1

d4

28
1

d4

30
1

d4

32
1

d4

34
1

d4

36
1

d4

38
1

d4

40
1

d4

42
1

d4

44
1

d4

46
1

d4

48
1

d4

50
1

d4

52
1

d4

54
1

d4

3 4d7

22

d9

42

d9

62

d9

82

d9

10
2

d9

12
2

d9

14
2

d9

16
2

d9

18
2d9

20
2

d9

22
2

d9

24
2

d9

26
2

d9

28
2

d9

30
2

d9

32
2

d9

34
2

d9

36
2

d9

38
2

d9

40
2

d9

42
2

d9

44
2

d9

46
2

d9

48
2

d9

50
2

d9

52
2

d9

54
2

d9

5 6d1
2

23

d1
4

43

d1
4

63

d1
4

83

d1
4

10
3

d1
4

12
3

d1
4

14
3

d1
4

16
3

d1
4

18
3d1
4

20
3

d1
4

22
3

d1
4

24
3

d1
4

26
3

d1
4

28
3

d1
4

30
3

d1
4

32
3

d1
4

34
3

d1
4

36
3

d1
4

38
3

d1
4

40
3

d1
4

42
3

d1
4

44
3

d1
4

46
3

d1
4

48
3

d1
4

50
3

d1
4

52
3

d1
4

54
3

d1
4

7 8d1
7

24

d1
9

44

d1
9

64

d1
9

84

d1
9

10
4

d1
9

12
4

d1
9

14
4

d1
9

16
4

d1
9

18
4d1
9

20
4

d1
9

22
4

d1
9

24
4

d1
9

26
4

d1
9

28
4

d1
9

30
4

d1
9

32
4

d1
9

34
4

d1
9

36
4

d1
9

38
4

d1
9

40
4

d1
9

42
4

d1
9

44
4

d1
9

46
4

d1
9

48
4

d1
9

50
4

d1
9

52
4

d1
9

54
4

d1
9

9 10d2
2

25

d2
4

45

d2
4

65

d2
4

85

d2
4

10
5

d2
4

12
5

d2
4

14
5

d2
4

16
5

d2
4

18
5d2
4

20
5

d2
4

22
5

d2
4

24
5

d2
4

26
5

d2
4

28
5

d2
4

30
5

d2
4

32
5

d2
4

34
5

d2
4

36
5

d2
4

38
5

d2
4

40
5

d2
4

42
5

d2
4

44
5

d2
4

46
5

d2
4

48
5

d2
4

50
5

d2
4

52
5

d2
4

54
5

d2
4

11 12d2
7

26

d2
9

46

d2
9

66

d2
9

86

d2
9

10
6

d2
9

12
6

d2
9

14
6

d2
9

16
6

d2
9

18
6d2
9

20
6

d2
9

22
6

d2
9

24
6

d2
9

26
6

d2
9

28
6

d2
9

30
6

d2
9

32
6

d2
9

34
6

d2
9

36
6

d2
9

38
6

d2
9

40
6

d2
9

42
6

d2
9

44
6

d2
9

46
6

d2
9

48
6

d2
9

50
6

d2
9

52
6

d2
9

54
6

d2
9

13 14d3
2

27

d3
4

47

d3
4

67

d3
4

87

d3
4

10
7

d3
4

12
7

d3
4

14
7

d3
4

16
7

d3
4

18
7d3
4

20
7

d3
4

22
7

d3
4

24
7

d3
4

26
7

d3
4

28
7

d3
4

30
7

d3
4

32
7

d3
4

34
7

d3
4

36
7

d3
4

38
7

d3
4

40
7

d3
4

42
7

d3
4

44
7

d3
4

46
7

d3
4

48
7

d3
4

50
7

d3
4

52
7

d3
4

54
7

d3
4

15 16d3
7

28

d3
9

48

d3
9

68

d3
9

88

d3
9

10
8

d3
9

12
8

d3
9

14
8

d3
9

16
8

d3
9

18
8d3
9

20
8

d3
9

22
8

d3
9

24
8

d3
9

26
8

d3
9

28
8

d3
9

30
8

d3
9

32
8

d3
9

34
8

d3
9

36
8

d3
9

38
8

d3
9

40
8

d3
9

42
8

d3
9

44
8

d3
9

46
8

d3
9

48
8

d3
9

50
8

d3
9

52
8

d3
9

54
8

d3
9

17

18

d4
2

29

d4
4

49

d4
4

69

d4
4

89

d4
4

10
9

d4
4

12
9

d4
4

14
9

d4
4 16
9d4
4

18
9

d4
4

20
9

d4
4

22
9

d4
4

24
9

d4
4

26
9

d4
4

28
9

d4
4

30
9

d4
4

32
9

d4
4

34
9

d4
4

36
9

d4
4

38
9

d4
4

40
9

d4
4

42
9

d4
4

44
9

d4
4

46
9

d4
4

48
9

d4
4

50
9

d4
4

52
9

d4
4

54
9

d4
4

19

20

d4
7

30

d4
9

50

d4
9

70

d4
9

90

d4
9

11
0

d4
9

13
0

d4
9

15
0

d4
9

17
0

d4
9

19
0

d4
9

21
0d4
9

23
0

d4
9

25
0

d4
9

27
0

d4
9

29
0

d4
9

31
0

d4
9

33
0

d4
9

35
0

d4
9

37
0

d4
9

39
0

d4
9

41
0

d4
9

43
0

d4
9

45
0

d4
9

47
0

d4
9

49
0

d4
9

51
0

d4
9

53
0

d4
9

55
0

d4
9

31

d5
2

d5
3

32

d5
4

d5
5

33d5
6

d5
7

34

d5
8

d5
9

35

d6
0

d6
1

36

d5
2

d5
4

37

d5
6

d5
8

39

d6
0

38

d5
2

d5
6

d5
2

40d5
2

56
1

d6
4

51

d6
6

d6
7

52

d6
8

d6
9

53d7
0

d7
1

54

d7
2

d7
3

55

d7
4

d7
5

56

d6
6

d6
8

57

d7
0

d7
2

59

d7
4

58

d6
6

d7
0

d6
6

60d6
6

d7
7

71

d7
9

d8
0

72

d8
1

d8
2

73d8
3

d8
4

74

d8
5

d8
6

75

d8
7

d8
8

76

d7
9

d8
1

77

d8
3

d8
5

79

d8
7

78

d7
9

d8
3

d7
9

80

d7
9

56
2

d9
0

91

d9
2

d9
3

92

d9
4

d9
5

93d9
6

d9
7

94

d9
8

d9
9

95

d1
00

d1
01

96

d9
2

d9
4

97

d9
6

d9
8

99

d1
00

98

d9
2

d9
6

d9
2

10
0d9
2

d1
03

11
1

d1
05

d1
06

11
2

d1
07

d1
08

11
3d1
09

d1
10

11
4

d1
11

d1
12

11
5

d1
13

d1
14

11
6

d1
05

d1
07

11
7

d1
09

d1
11

11
9

d1
13

11
8

d1
05

d1
09

d1
05 12
0d1
05

56
3d1
16

13
1

d1
18

d1
19

13
2

d1
20

d1
21

13
3d1
22

d1
23

13
4

d1
24

d1
25

13
5

d1
26

d1
27

13
6

d1
18

d1
20

13
7

d1
22

d1
24

13
9

d1
26

13
8

d1
18

d1
22

d1
18 14
0

d1
18

d1
29

15
1

d1
31

d1
32

15
2

d1
33

d1
34

15
3d1
35

d1
36

15
4

d1
37

d1
38

15
5

d1
39

d1
40

15
6

d1
31

d1
33

15
7

d1
35

d1
37

15
9d1
39

15
8

d1
31

d1
35

d1
31

16
0

d1
31

56
4

d1
42

17
1

d1
44

d1
45

17
2

d1
46

d1
47

17
3d1
48

d1
49

17
4

d1
50

d1
51

17
5

d1
52

d1
53

17
6

d1
44

d1
46

17
7

d1
48

d1
50

17
9

d1
52

17
8

d1
44

d1
48

d1
44

18
0d1
44

d1
55

19
1

d1
57

d1
58

19
2

d1
59

d1
60

19
3d1
61

d1
62

19
4

d1
63

d1
64

19
5

d1
65

d1
66

19
6

d1
57

d1
59

19
7

d1
61

d1
63

19
9d1
65

19
8

d1
57

d1
61

d1
57

20
0d1
57

56
5

d1
68

21
1

d1
70

d1
71

21
2

d1
72

d1
73

21
3d1
74

d1
75

21
4

d1
76

d1
77

21
5

d1
78

d1
79

21
6

d1
70

d1
72

21
7

d1
74

d1
76

21
9

d1
78

21
8

d1
70

d1
74

d1
70

22
0d1
70

d1
81

23
1

d1
83

d1
84

23
2

d1
85

d1
86

23
3d1
87

d1
88

23
4

d1
89

d1
90

23
5

d1
91

d1
92

23
6

d1
83

d1
85

23
7

d1
87

d1
89

23
9d1
91

23
8

d1
83

d1
87

d1
83

24
0d1
83

56
6

d1
94

25
1

d1
96

d1
97

25
2

d1
98

d1
99

25
3d2
00

d2
01

25
4

d2
02

d2
03

25
5

d2
04

d2
05

25
6

d1
96

d1
98

25
7

d2
00

d2
02

25
9d2
04

25
8

d1
96

d2
00

d1
96

26
0d1
96

d2
07

27
1

d2
09

d2
10

27
2

d2
11

d2
12

27
3d2
13

d2
14

27
4

d2
15

d2
16

27
5

d2
17

d2
18

27
6

d2
09

d2
11

27
7

d2
13

d2
15

27
9

d2
17

27
8

d2
09

d2
13

d2
09

28
0d2
09

56
7d2
20

29
1

d2
22

d2
23

29
2

d2
24

d2
25

29
3d2
26

d2
27

29
4

d2
28

d2
29

29
5

d2
30

d2
31

29
6

d2
22

d2
24

29
7

d2
26

d2
28

29
9d2
30

29
8

d2
22

d2
26

d2
22

30
0

d2
22

d2
33

31
1

d2
35

d2
36

31
2

d2
37

d2
38

31
3d2
39

d2
40

31
4

d2
41

d2
42

31
5

d2
43

d2
44

31
6

d2
35

d2
37

31
7

d2
39

d2
41

31
9d2
43

31
8

d2
35

d2
39

d2
35

32
0d2
35

56
8

d2
46

33
1

d2
48

d2
49

33
2

d2
50

d2
51

33
3d2
52

d2
53

33
4

d2
54

d2
55

33
5

d2
56

d2
57

33
6

d2
48

d2
50

33
7

d2
52

d2
54

33
9

d2
56

33
8

d2
48

d2
52

d2
48

34
0d2
48

d2
59

35
1

d2
61

d2
62

35
2

d2
63

d2
64

35
3d2
65

d2
66

35
4

d2
67

d2
68

35
5

d2
69

d2
70

35
6

d2
61

d2
63

35
7

d2
65

d2
67

35
9

d2
69

35
8

d2
61

d2
65

d2
61 36
0d2
61

56
9d2
72

37
1

d2
74

d2
75

37
2

d2
76

d2
77

37
3

d2
78

d2
79

37
4

d2
80

d2
81

37
5d2
82

d2
83

37
6

d2
74

d2
76

37
7

d2
78

d2
80

37
9d2
82

37
8

d2
74

d2
78

d2
74

38
0

d2
74

d2
85

39
1

d2
87

d2
88

39
2

d2
89

d2
90

39
3d2
91

d2
92

39
4

d2
93

d2
94

39
5

d2
95

d2
96

39
6

d2
87

d2
89

39
7

d2
91

d2
93

39
9

d2
95

39
8

d2
87

d2
91

d2
87 40
0d2
87

57
0d2
98

41
1

d3
00

d3
01

41
2

d3
02

d3
03

41
3d3
04

d3
05

41
4

d3
06

d3
07

41
5

d3
08

d3
09

41
6

d3
00

d3
02

41
7

d3
04

d3
06

41
9

d3
08

41
8

d3
00

d3
04

d3
00

42
0d3
00

d3
11

43
1

d3
13

d3
14

43
2

d3
15

d3
16

43
3d3
17

d3
18

43
4

d3
19

d3
20

43
5

d3
21

d3
22

43
6

d3
13

d3
15

43
7

d3
17

d3
19

43
9

d3
21

43
8

d3
13

d3
17

d3
13 44
0

d3
13

57
1

d3
24

45
1

d3
26

d3
27

45
2

d3
28

d3
29

45
3d3
30

d3
31

45
4

d3
32

d3
33

45
5

d3
34

d3
35

45
6

d3
26

d3
28

45
7

d3
30

d3
32

45
9

d3
34

45
8

d3
26

d3
30

d3
26 46
0d3
26

d3
37

47
1

d3
39

d3
40

47
2

d3
41

d3
42

47
3d3
43

d3
44

47
4

d3
45

d3
46

47
5

d3
47

d3
48

47
6

d3
39

d3
41

47
7

d3
43

d3
45

47
9d3
47

47
8

d3
39

d3
43

d3
39

48
0

d3
39

57
2

d3
50

49
1

d3
52

d3
53

49
2

d3
54

d3
55

49
3d3
56

d3
57

49
4

d3
58

d3
59

49
5

d3
60

d3
61

49
6

d3
52

d3
54

49
7

d3
56

d3
58

49
9d3
60

49
8

d3
52

d3
56

d3
52 50
0d3
52

d3
63

51
1

d3
65

d3
66

51
2

d3
67

d3
68

51
3d3
69

d3
70

51
4

d3
71

d3
72

51
5

d3
73

d3
74

51
6

d3
65

d3
67

51
7

d3
69

d3
71

51
9

d3
73

51
8

d3
65

d3
69

d3
65 52
0d3
65

57
3d3
76

53
1

d3
78

d3
79

53
2

d3
80

d3
81

53
3d3
82

d3
83

53
4

d3
84

d3
85

53
5

d3
86

d3
87

53
6

d3
78

d3
80

53
7

d3
82

d3
84

53
9

d3
86

53
8

d3
78

d3
82

d3
78

54
0d3
78

d3
89

55
1

d3
91

d3
92

55
2

d3
93

d3
94

55
3d3
95

d3
96

55
4

d3
97

d3
98

55
5

d3
99

d4
00

55
6

d3
91

d3
93

55
7

d3
95

d3
97

55
9

d3
99

55
8

d3
91

d3
95

d3
91

56
0

d3
91

57
4

d4
02

d6
4

57
5

d9
0

d1
16

57
6

d1
42

d1
68

57
7d1
94

d2
20

57
8d2
46

d2
72

57
9

d2
98

d3
24

58
0

d3
50

d3
76

58
1

d4
02

d9
0

58
2

d1
42

d1
94

58
3

d2
46

d2
98

58
4d3
50

d4
02

58
5d1
42

d2
46

58
6

d3
50

d1
42

Figure A.4: Graph generated by Java StarSs for Discrete; input parameters: 10
structures, 27 different configurations of EPS, FSOLV and FVDW.

178

A.3. Gene Detection - Java StarSs Appendix A. Applications

A.3 Gene Detection - Java StarSs

Main program and task selection interface of the Gene Detection composite
service developed with Java StarSs.

A.3.1 Main Program

public class GeneDetection {

private static final String NAMESPACE = ”ENSEMBL”;
private static final int NALIGN = 100;

@Orchestration
public String detectGenes(String genome, String sequence) {

/* ##### Genome DB formatting ##### */
String genomeNCBI = genome + ” NCBI.zip”;
runNCBIFormatdb(genome, genomeNCBI);
String genomeCNA = genome + ” CNA”;
CommentedNASequence cnaProperties

= fromFastaToCommentedNASequence(genome, genomeCNA);

/* ##### Sequences retrieval ##### */
FASTA fastaSeq = loadSequenceFromFile(sequence);
RunNCBIBlastpParameters params = setupNCBIBlastpParams(NALIGN));
BLASTText report = runNCBIBlastp(fastaSeq, params);
BlastIDs bIds = parseBlastIDs(report);
List<NemusObject> seqIds = bIds.getIds(); // Synchronisation
int numSeqs = seqIds.size();
FASTA[] fastaSeqs = new FASTA[numSeqs];
int i = 0;
for (NemusObject seqId : seqIds) {

BioTools btService = new BioTools();
btService.loadAminoAcidSequence(seqId);
fastaSeqs[i++] = btService.fromGenericSequenceToFasta(seqId);

}

/* ##### Gene search ##### */
BLASTText[] blastResults = new BLASTText[numSeqs];
for (i = 0; i < numSeqs; i++) {

blastResults[i] = runNCBIBlastAgainstDBFromFASTA(
genomeNCBI, fastaSeqs[i], setupNCBIBlastParameters());

}
for (int next = 1; next < numSeqs; next *= 2) {

for (int result = 0; result < numSeqs; result += 2 * next) {
if (result + next < numSeqs) {

blastResults[result].mergeBlastResults(blastResults[result+next]);
}

}
}
Bl2GAnnotations bl2gAnnots = runBlast2Gene(

blastResults[0], setupBlast2GeneParameters(), Database.UNIREF 90);
Bl2GAnnotations overlapAnnots = overlappingFromBL2G(bl2gAnnots);

179

A.3. Gene Detection - Java StarSs Appendix A. Applications

/* ##### GeneWise ##### */
List<BL2GAnnotation> notOverlappedRegions =

overlapAnnots.getAnnots(); // Synchronisation
int numRegions = notOverlappedRegions.size();
GenewiseReport[] gwResults = new GenewiseReport[numRegions];
for (BL2GAnnotation reg : notOverlappedRegions) {

FASTA seq = getSequence(reg.getProtID().getValue(), fastaSeqs);
gwResults[i++] = runGenewise(genomeCNA, cnaProperties, reg, seq);

}
for (int next = 1; next < numRegions; next *= 2) {

for (int result = 0; result < numRegions; result += 2 * next) {
if (result + next < numRegions) {

gwResults[result].mergeGenewiseResults(gwResults[result+next]);
}

}
}

String gwReport = gwResults[0].getGff().getValue(); // Synchronisation
return gwReport;

}
...

}

Figure A.5: Main program of the Gene Detection composite for Java StarSs.

A.3.2 Task Selection Interface

public interface GeneDetectionItf {
/* METHODS */

@Method(declaringClass = ”core.genedetect.GeneDetectMethods”)
void runNCBIFormatdb(

String genomeName,
@Parameter(type = FILE, direction = OUT) String genomeFile

);

@Method(declaringClass = ”core.genedetect.GeneDetectMethods”)
CommentedNASequence fromFastaToCommentedNASequence(

String genomeName,
@Parameter(type = FILE, direction = OUT) String genomeFile

);

@Method(declaringClass = ”core.genedetect.GeneDetectMethods”)
BLASTText runNCBIBlastp(

FASTA fastaSeq,
RunNCBIBlastpParameters params

);

@Method(declaringClass = ”core.genedetect.GeneDetectMethods”)
BLASTText runNCBIBlastAgainstDBFromFASTA(

@Parameter(type = FILE) String blastDBFile,
FASTA fasta,
RunNCBIBlastAgainstDBFromFASTAParameters params

);

180

A.3. Gene Detection - Java StarSs Appendix A. Applications

@Method(declaringClass = ”core.genedetect.BLASTText”)
void mergeBlastResults(

BLASTText report
);

@Method(declaringClass = ”core.genedetect.GeneDetectMethods”)
GenewiseReport runGenewise(

@Parameter(type = FILE) String genomeCNAFile,
CommentedNASequence cnaProperties,
BL2GAnnotation region,
FASTA sequence

);

@Method(declaringClass = ”core.genedetect.GenewiseReport”)
void mergeGenewiseResults(

GenewiseReport report
);

/* SERVICES */

@Service(namespace = ”http://genedetect.core”, name = ”BioTools”,
port = ”BioToolsPort”)

BlastIDs parseBlastIDs(
BLASTText report

);

@Service(namespace = ”http://genedetect.core”, name = ”BioTools”,
port = ”BioToolsPort”)

void loadAminoAcidSequence(
NemusObject seqId

);

@Service(namespace = ”http://genedetect.core”, name = ”BioTools”,
port = ”BioToolsPort”)

FASTA fromGenericSequenceToFasta(
NemusObject seqId

);

@Service(namespace = ”http://genedetect.core”, name = ”BioTools”,
port = ”BioToolsPort”)

Bl2GAnnotations runBlast2Gene(
BLASTText blastResult,
RunBlast2GeneParameters params,
Database db

);

@Service(namespace = ”http://genedetect.core”, name = ”BioTools”,
port = ”BioToolsPort”)

Bl2GAnnotations overlappingFromBL2G(
Bl2GAnnotations annots

);

}

Figure A.6: Task selection interface of the Gene Detection composite for Java
StarSs.

181

A.3. Gene Detection - Java StarSs Appendix A. Applications

182

Appendix B

Resource Description

For the Java StarSs runtime to know the Grid/Cluster/Cloud resources at its
disposal, it needs to be provided with a couple of XML configuration files that
describe those resources. The next subsections present such configuration files.

B.1 Resources File

The resources file specifies a set of resources and their capabilities. Figure B.1
illustrates the definition of four different kinds of resources:

• Physical machine: the description of a physical machine includes its hard-
ware and software capabilities, such as processor details, operating system,
memory and storage sizes and software installed. These capabilities are
used by the runtime to match the task constraints, if any, defined in the
task selection interface (see an example in Figure 4.11 of Chapter 4). The
XML tags are based on the Information Modeling standard proposal [41]
by the Open Grid Services Architecture group of the Open Grid Forum.

• Grid front-end node: in a Grid scenario, the runtime can interact with
a front-end node that provides access to a set of resources. This type of
resource definition can also specify capabilities, in case they are known for
the worker resources behind the front-end. In the example, a GridFTP
server provided by the Grid site is defined.

• Service instance: this designs an instance of a web service hosted by a
given server. Its tags are used to match the annotation of a service task in
the task selection interface (see the service tasks declared in Figure A.6).

• Cloud provider : when working in Cloud environments, this kind of re-
source provides details about a particular Cloud provider, namely the
connector that implements the interaction with the provider, the images
available and the instance types that can be requested. This information
is used by the runtime to dynamically create VMs on the provider.

183

B.1. Resources File Appendix B. Resource Description

<ResourceList>

<Resource Name=”s05c2b14-gigabit1”>
<Capabilities>

<Processor>
<Architecture>PPC</Architecture>
<Speed>2.3</Speed>
<CPUCount>4</CPUCount>

</Processor>
<OS>

<OSType>Linux</OSType>
</OS>
<StorageElement>

<Size>36</Size>
</StorageElement>
<Memory>

<PhysicalSize>8</PhysicalSize>
</Memory>
<ApplicationSoftware>

<Software>GeneWise</Software>
<Software>BLAST</Software>

</ApplicationSoftware>
</Capabilities>

</Resource>

<Resource Name=”brgw1.renci.org:2119/jobmanager-pbs”>
<Capabilities>

...
<StorageElement>

<Server name=”brgw1.renci.org” dir=”/home/engage/compss/”/>
</StorageElement>
...

</Capabilities>
</Resource>

<Service wsdl=”http://bscgrid05.bsc.es:20390/biotools/biotools?wsdl”>
<Name>BioTools</Name>
<Namespace>http://genedetect.core</Namespace>
<Port>BioToolsPort</Port>

</Service>

<CloudProvider name=”Amazon”>
<Connector>integratedtoolkit.connectors.amazon.EC2</Connector>
<ImageList>

<Image name=”ami-7b85820f”>
<OS>

<OSType>Linux</OSType>
</OS>
<ApplicationSoftware>

<Software>Discrete</Software>
</ApplicationSoftware>

</Image>
</ImageList>

184

B.2. Project File Appendix B. Resource Description

<InstanceTypes>
<Resource Name=”t1.micro”>

<Capabilities>
<Processor>

<CPUCount>1</CPUCount>
</Processor>
<StorageElement>

<Size>30</Size>
</StorageElement>
<Memory>

<PhysicalSize>0.5</PhysicalSize>
</Memory>

</Capabilities>
</Resource>
<Resource Name=”m1.small”> ...
<Resource Name=”m1.medium”> ...
<Resource Name=”m1.large”> ...
<Resource Name=”m1.xlarge”> ...

</InstanceTypes>
</CloudProvider>

</ResourceList>

Figure B.1: Snippet of a resources file.

B.2 Project File

The project file contains the resources to be used in a particular execution of
a Java StarSs application. The resources in this file must be a subset of those
appearing in the resources file. Figure B.2 shows an example of a project file,
where the four resources in Figure B.1 are selected.

The project file specifies some information related to the execution of the
application. This includes the number of slots offered by the resource (LimitOf-
Tasks), i.e. the number of concurrent tasks that can be run in that resource.
For Cloud providers, a useful feature is the possibility to specify packages to
deploy on a newly created VM before submitting tasks to it (Package).

185

B.2. Project File Appendix B. Resource Description

<Project>

<Worker Name=”s05c2b14-gigabit1”>
<InstallDir>/home/bsc19121/IT worker/</InstallDir>
<WorkingDir>/home/bsc19121/IT worker/files/</WorkingDir>
<User>bsc19121</User>
<LimitOfTasks>4</LimitOfTasks>

</Worker>

<Worker Name=”brgw1.renci.org:2119/jobmanager-pbs”>
<InstallDir>/osg/osg-app/IT worker/</InstallDir>
<WorkingDir>/osg/osg-data/</WorkingDir>
<LimitOfTasks>2</LimitOfTasks>

</Worker>

<Worker Name=”http://bscgrid05.bsc.es:20390/biotools/biotools?wsdl”>
<LimitOfTasks>2</LimitOfTasks>

</Worker>

<Cloud>
<Provider name=”Amazon”>

<LimitOfVMs>4</LimitOfVMs>
<Property>

<Name>Placement</Name>
<Value>eu-west-1a</Value>

</Property>
<Property>

<Name>KeyPair name</Name>
<Value>keypair enric</Value>

</Property>
...
<ImageList>

<Image name=”ami-7b85820f”>
<InstallDir>/aplic/COMPSs/</InstallDir>
<WorkingDir>/home/ec2-user/</WorkingDir>
<User>ec2-user</User>
<Package>

<Source>/home/etejedor/genedetect.tar.gz</Source>
<Target>/home/ec2-user</Target>

</Package>
</Image>

</ImageList>
<InstanceTypes>

<Resource name=”m1.medium” />
</InstanceTypes>

</Provider>
</Cloud>

</Project>

Figure B.2: Snippet of a project file.

186

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Introduction
	Context and Motivation
	Evolution in Parallel and Distributed Infrastructures
	The Programming Productivity Challenge
	Approaches to Parallelism and Distribution
	StarSs for Parallel and Distributed Infrastructures

	Contributions
	Parallel Programming Model for Java Applications
	Runtime System for Distributed Parallel Infrastructures
	Grid
	Cluster
	Cloud

	Thesis Organisation

	Programming Model
	Overview
	Basic Steps
	Identifying the Potential Tasks
	Defining a Task Selection Interface

	Sequential Programming

	The Task Selection Interface
	Method-level Annotations
	@Method
	@Service
	@Constraints

	Parameter-level Annotations
	@Parameter

	The Main Program
	Scenarios
	Regular Application
	Composite Service

	Invoking Tasks
	Methods
	Services

	Sharing Data Between Tasks
	Working with Objects
	Objects in a Task
	Access in Main Program

	Working with Arrays
	Arrays in a Task
	Access in Main Program

	Working with Primitive Types
	Primitives in a Task
	Access in Main Program

	Working with Files
	Files in a Task
	Access in Main Program

	Summary

	Runtime: Common Features
	General Structure
	Bytecode Instrumentation
	How?
	When?
	What?
	What For?
	Asynchronous Task Generation
	Data Access Surveillance

	Data Dependency Analysis
	Data Renaming
	Data Layout and Transfer
	Task Scheduling
	Method Tasks
	Algorithms
	Pre-scheduling

	Service Tasks

	Task Submission, Execution and Monitoring
	Summary

	Grid
	Context
	The Grid
	Architecture
	Virtual Organisations
	Secure Access
	Data Management

	e-Science Applications
	Grid APIs: Standardisation Efforts
	Component-Based Grid Software

	Runtime Design
	Componentisation
	Task Analyser
	Task Scheduler
	Job Manager
	File Manager

	Uniform Grid API
	Execution Model
	Data Model

	Relevant Technologies
	ProActive
	The Grid Application Toolkit

	Programmability Evaluation
	Taverna
	Hmmpfam Application
	Comparison
	Hmmpfam in Java StarSs
	Hmmpfam in Taverna
	Discussion

	Experiments
	Large-Scale Tests
	The Discrete Application
	Testbed
	Results

	Small-Scale Tests
	Component Distribution in Nord
	Hmmpfam in MareNostrum

	Related Work
	Grid Programming Models
	Workflow Managers
	Component-Based Grid Software

	Summary

	Cluster
	Context
	Cluster Computing
	Cluster versus Grid
	Productivity in Cluster Programming: APGAS

	Runtime Design
	Java StarSs and APGAS
	Runtime Structure
	Communication Protocol
	Execution Model
	Data Model
	Data Layout
	Data Transfer
	Data Reuse and Locality

	Relevant Technologies
	IBM APGAS Runtime

	Programmability Evaluation
	The X10 Programming Language
	Places and Activities
	Synchronisation
	Data Distribution

	Application Description
	Matrix Multiplication
	Sparse LU
	K-means

	Programmability Discussion

	Experiments
	Testbed
	X10 Comparison Results
	Test Setup
	Matrix Multiplication
	Sparse LU
	K-means

	NAS Parallel Benchmarks
	Test Setup
	Embarrassingly Parallel (EP)
	Fourier Transformation (FT)
	Integer Sort (IS)

	Related Work
	Summary

	Cloud
	Context
	Cloud Computing
	Clouds and Service-Oriented Architectures
	Clouds for HPC Science

	Runtime Design
	Support for Services as Tasks
	Integration In a Service-Oriented Platform
	Exploitation of Virtual Cloud Resources

	Relevant Technologies
	Cloud Provider Connectors
	SSH Adaptor of JavaGAT
	Apache CXF

	Programmability Evaluation
	Programming with Services
	WS-BPEL
	Travel Booking Service
	Comparison

	Programming with Objects
	Deployment
	Object Creation
	Asynchronous Computations
	Synchronisation
	Termination

	Experiments
	Gene Detection Composite
	Testbed
	Resource Elasticity and Cloud Bursting
	Performance

	Related Work
	Platform-as-a-Service Solutions
	Frameworks for Service Composition
	Cloud Programming Models

	Summary

	Conclusions and Future Work
	Programming Model
	Future work

	Runtime System
	Future work

	Bibliography
	Applications
	Hmmpfam - Java StarSs
	Discrete - Java StarSs
	Main Program
	Task Selection Interface
	Task Graph

	Gene Detection - Java StarSs
	Main Program
	Task Selection Interface

	Resource Description
	Resources File
	Project File

