14,563 research outputs found

    HyBIS: Windows Guest Protection through Advanced Memory Introspection

    Full text link
    Effectively protecting the Windows OS is a challenging task, since most implementation details are not publicly known. Windows has always been the main target of malwares that have exploited numerous bugs and vulnerabilities. Recent trusted boot and additional integrity checks have rendered the Windows OS less vulnerable to kernel-level rootkits. Nevertheless, guest Windows Virtual Machines are becoming an increasingly interesting attack target. In this work we introduce and analyze a novel Hypervisor-Based Introspection System (HyBIS) we developed for protecting Windows OSes from malware and rootkits. The HyBIS architecture is motivated and detailed, while targeted experimental results show its effectiveness. Comparison with related work highlights main HyBIS advantages such as: effective semantic introspection, support for 64-bit architectures and for latest Windows (8.x and 10), advanced malware disabling capabilities. We believe the research effort reported here will pave the way to further advances in the security of Windows OSes

    An Empirical Study on Android for Saving Non-shared Data on Public Storage

    Get PDF
    With millions of apps that can be downloaded from official or third-party market, Android has become one of the most popular mobile platforms today. These apps help people in all kinds of ways and thus have access to lots of user's data that in general fall into three categories: sensitive data, data to be shared with other apps, and non-sensitive data not to be shared with others. For the first and second type of data, Android has provided very good storage models: an app's private sensitive data are saved to its private folder that can only be access by the app itself, and the data to be shared are saved to public storage (either the external SD card or the emulated SD card area on internal FLASH memory). But for the last type, i.e., an app's non-sensitive and non-shared data, there is a big problem in Android's current storage model which essentially encourages an app to save its non-sensitive data to shared public storage that can be accessed by other apps. At first glance, it seems no problem to do so, as those data are non-sensitive after all, but it implicitly assumes that app developers could correctly identify all sensitive data and prevent all possible information leakage from private-but-non-sensitive data. In this paper, we will demonstrate that this is an invalid assumption with a thorough survey on information leaks of those apps that had followed Android's recommended storage model for non-sensitive data. Our studies showed that highly sensitive information from billions of users can be easily hacked by exploiting the mentioned problematic storage model. Although our empirical studies are based on a limited set of apps, the identified problems are never isolated or accidental bugs of those apps being investigated. On the contrary, the problem is rooted from the vulnerable storage model recommended by Android. To mitigate the threat, we also propose a defense framework

    On the Effect of Semantically Enriched Context Models on Software Modularization

    Full text link
    Many of the existing approaches for program comprehension rely on the linguistic information found in source code, such as identifier names and comments. Semantic clustering is one such technique for modularization of the system that relies on the informal semantics of the program, encoded in the vocabulary used in the source code. Treating the source code as a collection of tokens loses the semantic information embedded within the identifiers. We try to overcome this problem by introducing context models for source code identifiers to obtain a semantic kernel, which can be used for both deriving the topics that run through the system as well as their clustering. In the first model, we abstract an identifier to its type representation and build on this notion of context to construct contextual vector representation of the source code. The second notion of context is defined based on the flow of data between identifiers to represent a module as a dependency graph where the nodes correspond to identifiers and the edges represent the data dependencies between pairs of identifiers. We have applied our approach to 10 medium-sized open source Java projects, and show that by introducing contexts for identifiers, the quality of the modularization of the software systems is improved. Both of the context models give results that are superior to the plain vector representation of documents. In some cases, the authoritativeness of decompositions is improved by 67%. Furthermore, a more detailed evaluation of our approach on JEdit, an open source editor, demonstrates that inferred topics through performing topic analysis on the contextual representations are more meaningful compared to the plain representation of the documents. The proposed approach in introducing a context model for source code identifiers paves the way for building tools that support developers in program comprehension tasks such as application and domain concept location, software modularization and topic analysis

    Interaction-aware development environments: recording, mining, and leveraging IDE interactions to analyze and support the development flow

    Get PDF
    Nowadays, software development is largely carried out using Integrated Development Environments, or IDEs. An IDE is a collection of tools and facilities to support the most diverse software engineering activities, such as writing code, debugging, and program understanding. The fact that they are integrated enables developers to find all the tools needed for the development in the same place. Each activity is composed of many basic events, such as clicking on a menu item in the IDE, opening a new user interface to browse the source code of a method, or adding a new statement in the body of a method. While working, developers generate thousands of these interactions, that we call fine-grained IDE interaction data. We believe this data is a valuable source of information that can be leveraged to enable better analyses and to offer novel support to developers. However, this data is largely neglected by modern IDEs. In this dissertation we propose the concept of "Interaction-Aware Development Environments": IDEs that collect, mine, and leverage the interactions of developers to support and simplify their workflow. We formulate our thesis as follows: Interaction-Aware Development Environments enable novel and in- depth analyses of the behavior of software developers and set the ground to provide developers with effective and actionable support for their activities inside the IDE. For example, by monitoring how developers navigate source code, the IDE could suggest the program entities that are potentially relevant for a particular task. Our research focuses on three main directions: 1. Modeling and Persisting Interaction Data. The first step to make IDEs aware of interaction data is to overcome its ephemeral nature. To do so we have to model this new source of data and to persist it, making it available for further use. 2. Interpreting Interaction Data. One of the biggest challenges of our research is making sense of the millions of interactions generated by developers. We propose several models to interpret this data, for example, by reconstructing high-level development activities from interaction histories or measure the navigation efficiency of developers. 3. Supporting Developers with Interaction Data. Novel IDEs can use the potential of interaction data to support software development. For example, they can identify the UI components that are potentially unnecessary for the future and suggest developers to close them, reducing the visual cluttering of the IDE

    An Empirical Investigation for Understanding

    Get PDF
    While working on modernization of large monolithic application; speed , synchronization and interaction with other components are the major concern for practical implementation of target system; as Service-Oriented Computing extends and covering many sections of monolithic legacy to web oriented development, these aspects becoming a new challenges to existing software engineering practices, the paper presents work which is undertaken for service orientation of monolithic legacy application including initial steps of service understanding, comprehension and extraction so that it can take a part in further migration activities to service oriented architecture platform. The work also shows that how several useful techniques can be applied to accomplish the result

    Computational Sociolinguistics: A Survey

    Get PDF
    Language is a social phenomenon and variation is inherent to its social nature. Recently, there has been a surge of interest within the computational linguistics (CL) community in the social dimension of language. In this article we present a survey of the emerging field of "Computational Sociolinguistics" that reflects this increased interest. We aim to provide a comprehensive overview of CL research on sociolinguistic themes, featuring topics such as the relation between language and social identity, language use in social interaction and multilingual communication. Moreover, we demonstrate the potential for synergy between the research communities involved, by showing how the large-scale data-driven methods that are widely used in CL can complement existing sociolinguistic studies, and how sociolinguistics can inform and challenge the methods and assumptions employed in CL studies. We hope to convey the possible benefits of a closer collaboration between the two communities and conclude with a discussion of open challenges.Comment: To appear in Computational Linguistics. Accepted for publication: 18th February, 201

    Machine Learning Overview

    Get PDF
    Non
    • …
    corecore