
© 2013. Asfa Praveen & Shamimul Qamar. This is a research/review paper, distributed under the terms of the Creative Commons
Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-commercial use,
distribution, and reproduction inany medium, provided the original work is properly cited.

Global Journal of Computer Science and Technology
Software & Data Engineering
Volume 13 Issue 4 Version 1.0 Year 2013
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

An Empirical Investigation for Understanding & Extraction of
Services from Monolithic Legacy Software

 By Asfa Praveen & Shamimul Qamar
 Shri Venkateshwara University

Abstract - While working on modernization of large monolithic application; speed , synchronization
and interaction with other components are the major concern for practical implementation of target
system; as Service-Oriented Computing extends and covering many sections of monolithic legacy to
web oriented development, these aspects becoming a new challenges to existing software
engineering practices, the paper presents work which is undertaken for service orientation of
monolithic legacy application including initial steps of service understanding, comprehension and
extraction so that it can take a part in further migration activities to service oriented architecture
platform. The work also shows that how several useful techniques can be applied to accomplish the
result.

Keywords : web services, ADT, SOA, clusters, comprehension.

GJCST-C Classification : D.2.11

An Empirical Investigation for UnderstandingExtraction of Services from MonolithicLegacy Software

Strictly as per the compliance and regulations of:

Asfa Praveen α & Shamimul Qamar σ

I. Introduction

difficult and complex procedure for any
maintenance project is the initial investigation
which includes understanding of programs of

software with its source code. This research is
undertaken for service orientation of monolithic legacy
software, till now many formal understanding and
comprehension methods have been presented but
conceptually and practically differ from one investigator
to the other. Easy and quick monolithic legacy program
understanding with fast comprehension is major
concern of the work which plays a very important and
crucial role in the planning, designing, feasibility study
and cost estimation for services orientation projects of
monolithic legacy [1]. The empirical examples/case
studies have been presented to explain how the
processes can be used to support better and improved
comprehension in the program and incorporated
services. The role of Ha-Slicer tool and web-mining
techniques have been presented with application that
appear to be reasonable for manual and automatically
grouping extraction of services semantically similar in
monolithic software and components [2]. The clusters of
services understood, extracted by these processes

Author α

:

Ph.D. (Computer Sc.) Research Scholar, Faculty of Science

& Technology, Shri Venkateshwara University, Gajraula, (U.P.), India.

E-mail : asfa_praveen@yahoo.com

Author

σ

:

Professor of Electronics & Computer Engineering, Noida

Institute of Engineering & Technology, Greater Noida, (U.P.), India.

E-mail : jsqamar@gmail.com

represent an abstraction of the program source code
based on a semantic similarities which should be
incorporated further to high-level design of target
system.

II. Problems for Understanding of
Program

This section shows a sample program as
presented in fig. 1, an analyzed program is depicted in
the left hand side of the fig. 2, contains declarations,
initializations and embedded print loop for each of three
strings. The strings are considered as primitive data
type for this illustration with no shared functionality for
printing. To understand this program the library of
program plan has to be considered, which has
previously compiled knowledge for composition of
program in this domain as shown in fig. 3; fig. 3 shows
the library plan which contains the program plan [3] that
contains the class string or abstract data type. The
understanding of services and translation for source
code with including singly abstract data type can be
performed if the mapping can take place between
original source and complied knowledge in the domain
of services which is shown in fig. 2.

A

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

 I
ss
ue

 I
V
 V

er
sio

n
I

15

(
DDDD DDDD

)
Y
e
a
r

01
3

2
C

An Empirical Investigation for Understanding
& Extraction of Services from Monolithic

Legacy Software

Abstract - While working on modernization of large monolithic
application; speed , synchronization and interaction with other
components are the major concern for practical imple-
mentation of target system; as Service-Oriented Computing
extends and covering many sections of monolithic legacy to
web oriented development, these aspects becoming a new
challenges to existing software engineering practices, the
paper presents work which is undertaken for service
orientation of monolithic legacy application including initial
steps of service understanding, comprehension and extraction
so that it can take a part in further migration activities to
service oriented architecture platform. The work also shows
that how several useful techniques can be applied to
accomplish the result.

Keywords : web-services, ADT, SOA, clusters, compreh-
ension.

Figure 1

: Sample

Program

 2

© 2013 Global Journals Inc. (US)

Y
e
a
r

01
3

2

 16

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

 I
ss
ue

 I
V
 V

er
sio

n
I

(
DD DD DDDD

)
C

An Empirical Investigation for Understanding & Extraction of Services from Monolithic Legacy Software

Class String {
char locStr [SIZE]
String(char* intStr)

for (int a=0; intStr [a]; a+ +)
locStr[a] = intStr[a]; }

printString () {
for (int a=0; locStr[a]; a++);

 printf("%s", locStr[a];}}

main () main()
{ {
 Char* X, char* Y
 X=”string 1”; String X(“string 1”);
 Y= “string 2”; String Y (“string 2”);
 String Z (“string 3”);

…….
 ….. X.printString;
 …. ………
for (int i=0; Y[i]; i++) Y.printString;
printf (“%s”,Y[i]); ………
…………

Z.printString; }

{

}
……….
…………
for (int k=0; X[k]; k++)
printf (“%s”, X[k]);
………….
}

char* Z ;

Z= “string 3”;

for (int j=0; Z[j]; j++)

printf(“%s”, Z[j];

Understanding of
string abstract data

type

Figure 2 : Presentation of understating of mappings of C code abstract data type in view of object code [3]

Figure 3 : String ADT within hierarchical plan program library [3]

Code in the left hand side of fig. 2 is given to
explain the problem of understanding for program plan
with the known context of as in the sting abstract data
types. Identification of services and duplicate code may
result in one time instance and incorporation of abstract
data types. Abstract data types functionalities has been
implemented same types in the right hand side of the
fig. 2 in the object code the same concept has also
been implemented in any other service oriented
frameworks.

Suggested solution of the problems of
understanding process is proposed in two phases, (1)
investigate all instances of abstract data type in the
source code with intention to convert them in services
by abstract program features, (2) identify services plan
blocks with program slices will relate to assure the
hierarchical structure specified in the program plan
based on knowledge. This can resolve the problem of
knowledge management. Some useful advantages of
identification are applied in the mapping of source code
to the target service comprehension plan as when
planning for replacing the source code by service
oriented code resulting code will contain less code with
same functionality and abstract data type and size for
running, saving will be reduced, that will helpful for
further implementation tasks. Mapping of the source
code to the services is the main elementary blocks for
the service oriented plan [4] and establishing plan
library for either translation of code or identification of
knowledge; it will reduce the bigger task of
understanding.

 III.

Applications of Slicing, Haslicer
Tools for Service Identification

 Slicing based on Functional Dependence
Graphs (FDG)

contains five phases as illustrated in fig. 4
[5] the study conducted by Nuno et.al. The first phase
parses the source code and originates the Abstract
Syntax Tree instance t, which is

followed by an
abstraction procedure that extracts the useful
information from t

for constructing a FDG instance g
with

estimating the different types of nodes. Actual
slicing is performed in the third phase,

a slicing
standard is composed here by a node of t and a
specific slicing algorithm, the original FDG g is sliced,
generating a sub-graph of g that is g’. The slicing takes
place over the FDG to make the result which is always a
sub-graph of the original graph.]

The fourth phase performs cutting AST t, based

on the sliced graph g. At this point, each program entity
that is not present in graph g’, is used to clip the
correspondent syntactic entity in t, giving origin to a sub-
tree t’ of t. Finally, code reconstruction takes place,
where the clipped tree t’ is consumed to generate the
sliced program by a reverse process of phase one.

specialized by “string”

AND

AND

index by instance

String planning

initialize string
print string

copy for char* initialize the loop string

formal charter

copy the character looping by char array

AND

OR

indexed if function
is printf, stringf

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

 I
ss
ue

 I
V
 V

er
sio

n
I

17

(
DDDD DDDD

)
Y
e
a
r

01
3

2
C

An Empirical Investigation for Understanding & Extraction of Services from Monolithic Legacy Software

Figure 4 : Slicing Process [5]

Haslicer [6] is a sample tool for slicing for
monolithic programs as sample here entirely written in
Haskell language that will cover forward, backward and
forward dependency slicing. The samples are sliced by
implementing the slicing [7] and mention some other
problems which are fundamentals to service component
identification as (1) the definition of the extraction
process from source code and (2) the incorporation of a
visual interface by the generated FDG to support
programmer interaction. It is accepting now only Haskell
code [8] but can be plug-in for other monolithic code
written in functional languages including purely
functional language.

Fig.5 shows two snapshots of the sample
working over a Haskell program [9]. Screenshot 5(a)
shows the visualization of the entire FDG loaded in the
tool. Notice that the differently colored nodes indicate
different program entity types according to Table 1. Fig.
5(a) reproduces the sub-graph resulted from performing
slice over one of the nodes of the graph from fig. 5(b).
Once a slice has been computed, the user may retrieve
the corresponding code. The whole process can be
canceled or started again with different criteria.

Table 1 : FDG Edge Code

 (a) (b)

Figure 5

: Slicing Process with HaSlicer [6]

There are basically two ways in which slicing

techniques and the HaSlicer tool can be used in the
process of service identification; either as a support
procedure for manual identification or as a discovery
procedure in which the whole system is searched for
possible location of services. In this section both
approaches are applied and briefly discussed, the first
approach applied for manual service identification
guided by analyzing and slicing some representation of
the legacy code. In this context, the FDG seems to
provide applicable representation model. Through its
analysis, the program designer can identify all the

2: Abstraction

3: Slicing

1: Parsing

Slicing criterion

5: Code reconstruction

4: Prune (t, g’)

Code t:AST g: FDG

Sliced Code t’: AST g’ : FDG

 2

© 2013 Global Journals Inc. (US)

Y
e
a
r

01
3

2

 18

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

 I
ss
ue

 I
V
 V

er
sio

n
I

(
DD DD DDDD

)
C

An Empirical Investigation for Understanding & Extraction of Services from Monolithic Legacy Software

dependencies between the code entities and look for
certain architectural patterns or undesired depend-
encies in the graph. The process starts in a top-down
way, looking for the top level functions that characterize
the desired service, once these functions are found,
forward dependency slicing is applied, starting from the
corresponding FDG nodes. It produces a series of
sliced code files, that have to be merged together in
order to build the desired services. Forward
dependency slice collects all the program entities in
which each top level function requires to operate
correctly. Thus, by merging all the forward dependency

slices corresponding to a particular service one gets the
least derived program that implements it.

The second approach uses slicing mentioned in
the beginning of this section under the name of
component discovery relies on slicing techniques for the
automatic isolation of possible components. As per
experience this was found particularly useful at early
stages of service identification. Such procedures,
however, must be used carefully, since they may lead to
the identification of both false positives and false
negatives. This means that there might be good
candidates for services which are not found as well as
situations in which several possible services are
identified which turn out to lack any practical or
operational concern. To use an automatic service
discovery procedure, one must first understand what to
look for, since there is no universal way of stating which
characteristics correspond to a possible software code
component. Thus, process has to look for services by
indirect means, which certainly include the identification

of certain characteristics that components usually bear,
but also some filtering criteria. Therefore a possible
criterion for service discovery is based on the data types
defined on the original code. The idea is to take each
data type and isolate both data types and every
program entity in the system that depends on it. Such
an operation can be accomplished by performing a
backward slicing starting from each data type node in
the FDG.

Another identified feature for service-orientation
task relates to the fact that interesting services typically
present a high level of coupling and a high level of
cohesion [10]. Coupling is a measure to estimate how
mutually dependable two components services are, so it
tries to measure how much a change in one service
component affects other service components in a
system whereas cohesion estimates how the functions
as shown below [5] of a specific component which are
internally related.

In a service component with a low cohesion
degree errors and undesirable behavior are difficult to
detect. In practice if its functions are weakly related,
errors may hide themselves in hardly ever used areas
and remain unseen to testing for some time. The
conjunction of these two measurement leads to
discovery criteria, which uses the FDG to look for
specific clusters of functions that is sets of strongly
related functions, with reduced dependencies on any
other program entity outside this set. Such function
clusters cannot be identified by program slicing
techniques, but the FDG is still very useful in
determining this clusters. The HaSlicer tools compute
the combined value where G is a FDG and F a set of
functions under inspection. This is presented in study
conducted by Nuno et.al. [5], which is depending on
how easily or hardly service component discovery
criteria are; then different acceptance limits for coupling
and cohesion can be used. This will explain what
clusters will be considered as location

 of prospective
service components. Once such clusters are identified,
the process continues by applying forward dependency
slicing

 on every function in the cluster and merging the
resultant code.

Clustering for services of source code is based
on semantic and structural information which is useful in

the understanding and comprehension of monolithic
software systems, on the other hand clustering can be
used to support in re-modularization of systems and the
identification of services from abstract data types [11]. If
the program is to be reengineered for a service-oriented
platform from a monolithic program this type of
clustering would be very useful. The purpose is to
decrease the quantity of source code when an engineer
wants to observe at once and guess about possible
relationships with the system not obvious from the
current organization’s documentation.

The method used here focuses on

using reports

generated by conceptual approaches, for this case a
vector represented by latent semantic indexing [12] is
generated to compare services and classify them into
clusters of semantically similar concepts and for huge
program it can be partitioned into a group of only source
code documents by which the features for each
document are prepared. Program documents are
divided semantically based on similarities for connecting
other documents to cluster the source code. For this
purpose there are many

applied clustering algorithms:

construction, optimization, hierarchical and graph
theoretical algorithms. There are also several other
algorithms that use notion of hybrid concept applied for
different classification for specific problems. The
framework here proposes graph theoretic approach
although numbers of other types of clustering algorithms
have been used to cluster software program.

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

 I
ss
ue

 I
V
 V

er
sio

n
I

19

(
DDDD DDDD

)
Y
e
a
r

01
3

2
C

An Empirical Investigation for Understanding & Extraction of Services from Monolithic Legacy Software

(1)

(2)

(3)

To cluster the documents minimal spanning tree
algorithm [13] can be is used if the document is similar
to at least some documents in the cluster then it is
added to cluster, this can give an opportunity to group
together the documents of similar type. The
measurement of similarity is calculated by the cosine of
the two vector representations of the source code
documents. The similarity values has [-1, 1] for a
domain, with the value 1 being closely similar. Non
required symbols can be removed by using simple
parsing of the source code that can break the source
into the proper way. Comment delimiters and syntactical
reserved words are removed; they had to add little or no
semantic knowledge for problem domain [14]. On the
other hand information retrieval process will analyses
such confusing words such as semi-colons with a
completely non-selective characteristic between source
code and service components. So the variation with this
characteristic is very little like zero thus; if two
components have a semi-colon then not sure about
their similarity. For the uses of latent semantic indexing
on natural language perspectives a paragraph or code
section is used for document because sentences are to
be small and chapters too large. Source code that has
similar concepts are: function, structure, module, file,
class, etc. Observably the statement granularity is very
low and file containing many functions can be too big.

V. Applying Web-Mining Techniques to
Understand Services

So many techniques have been developed in
Web-mining for successfully analyze the structure of
web-services [16]. These techniques undertake the
internet based web as a large graph which is based on
hyperlink structure to identify the intended web pages.
This section presents the study shows the application of
web mining techniques, how to apply them to trace and
understand classes and web services. HITS web-mining
algorithm [15] is suggested to identify hubs and
authorities for the web services. The HITS algorithm can
be combined with the compressed call graph. The
classes which are related with excellent “hubs” in the
compressed call graph are good candidates for
introduction of aspects.

a) Identifying Hubs and Authority in Big Web-Graphs
The concepts of “hub” and “authority” are

introduced by HITS web-mining algorithm [15], hubs are
pages that refer to pages containing information rather
than being enlightening themselves, for examples web
directories, lists of personal pages etc. and a page is
called an authority if it has useful information. Thus, a
web-page is a good hub if it is providing useful
information. A page can be called as good authority if it
is used by many good hubs. The HITS algorithm is
based on this relation between hubs and authorities.
This example considers the web-graph shown in fig. 6.

Figure 6 : Example Web-Graph

The HITS algorithm starts with initializing all h’s
and a’s to 1, and repeatedly updates the values for all
pages, using the formula (1) and (2). If after each
update the values are normalized, this process
converges to stable sets of authority and hub weights
[15]. It is also possible to add weights to the edges in
the graph. Adding weights to the graph can be
interesting to capture the fact that some edges are more
important than others. This extension only requires a
small modification to the update rules. Let w [i, j] be the
weight of the edge from page i to page j. The update
rules become

1

2

3

5

4

 2

© 2013 Global Journals Inc. (US)

Y
e
a
r

01
3

2

 20

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

 I
ss
ue

 I
V
 V

er
sio

n
I

(
DD DD DDDD

)
C

An Empirical Investigation for Understanding & Extraction of Services from Monolithic Legacy Software

Example: For given graph, the hub and
authority weights to the following values:

In this graph, 2 and 3 are good authorities, and
4 and 5 are good hubs, and 1 is a less good hub. The
authority of 2 is larger than the authority of 3, because
the only in-links that do not have in common are 1 2 and
2 3, and 1 is a better hub than 2. 4 and 5 are better hubs
than 1, as they point to better authorities. The HITS
algorithm works as follows: Every page i get assigned to
it two numbers; ai denotes the authority of the page,
while hi denotes the hubiness. Let i j denote that there is
a hyperlink from page i to page j. The recursive relation
between authority and hubiness is confined by the
following formula.

(1)

(2)

=

i j

a j

i j

=

hi

hi =ij[i, j].aj

and

a = i[i, j].hi j

aj

hi

In the context of web-mining, the identification
of hubs and authorities by the HITS algorithm has turned
out to be very useful. Because HITS only uses the links
between web-pages then can be used in services [15].

VI. Service Extraction Process

The initial three steps of the service extraction
process [18] as shown in fig. 7 represent the candidate
service identification phase; candidate service
identification is a challenging job, so a step-wise
identification approach is designed. (a) Initially, the
research finds how to utilize architectural reconstruction
and source code visualization techniques. This step
facilitates the proper understanding of code and to
obtain structural properties of the source code [17]. The
source code visualization technique presented by Geet
et.al.[19] appears to be a good starting point. (b) The
next step is to identify the design patterns [Gamma,
1995], one of the largely studied and applied techniques
in context of reverse engineering. This is the extension
for design pattern detection and its applicability in
legacy to service oriented migration. (c) In the last step,
linguistic analysis techniques are used [20] and concept
analysis is used to find appropriate concepts that have
been applied in the source code. The service extraction
is performed after the application of concept slicing
technique which can be further applied to extract the
complete code generating the identified functionalities; it
is fairly used to extract from source code various useful
features for program comprehension [20]. It can
independently extract from source code with the help of
code query method. [21], that helps to extract abstract
data type and common concern features, this extraction
maps source code to service composition, the language
features then supports the fixing composition related
issues, in order to build new services. The main
advantage of extraction is to generate services by
component effective approaches then compose them to
achieve target system implementation. With all these
steps, process has achieved a simplified identification of
candidate services in the monolithic code.

a) Service Understanding and Extraction Guidelines
There are following guidelines [22] for extraction

and understanding of services;
i. Realistic Representation

Any service understood from the code must
present real functional state in the program. This is the
most important criteria if this is having any conflict with
any other then this should be given priority because

initial investigation goes through the program which is
more trustworthy asset than a documentation.

ii. Multiple representations for different abstraction of
hierarchy

Different development teams require different
representations of services, for example, a programmer
would like to have web services represented as code
segments, while developer may require different types of
forms as decision table, tree or chart to get the logical
structure; so it must be represented in a hierarchy
oriented way. Service understanding is more complex if
they are in various constraints based perspectives, such
as legal, marketing and technology. It is hardly tuff task
to trace services without some form of abstractions or
decomposition of the program.
iii. Domain Oriented Policies

Services expressed in the domain specific
environment are far better because it connects with
domain concept and propagates path for easy
application. Then many tools can be applied for
identification of logic of algorithm, data structures and
other program entities.
iv. Human-Assisted Automation

As monolithic programs are huge having a lot of
difficulties so if not impossible it is devised to use semi-
automatic tool for service understanding. The software
maintainers prefer to have an interactive tool that allow
them to extract services, simplify their representations,
and provide linkage to the code, rather than providing a
black-box tool that generate services code
automatically.

v. Maintenance Tool
Understood services will be useful in other

software reengineering activities. Understanding should
be managed together with the monolithic software using
the same tool as the mapping from any service to its
corresponding code segments. This capability will
permit the software engineers to focus on only those
segments and functions of the software that is relevant
to a particular service type.

VII. onclusion

This paper focused on program understanding
and extraction for service orientation of monolithic code
and presented various applied methods, techniques as
clustering, web-mining, slicing, reverse engineering, and
some more used tools that facilitates the automated
process as Ha-Slicer with their previous applications,
also presented the results and procedures, which was
started with the understanding of code and finally
concluded on the extraction of services.

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

 I
ss
ue

 I
V
 V

er
sio

n
I

21

(
DDDD DDDD

)
Y
e
a
r

01
3

2
C

An Empirical Investigation for Understanding & Extraction of Services from Monolithic Legacy Software

C

h1 = 64

h2 = 48

h3 = 0

h4 = 100

h5 = 100

a1 = 0

a2 = 100

a3 = 94

a4 = 24

a5 = 0

Figure 7 : Service Extraction Process

References Références Referencias

1. http://www.podcast.com/Technology/I-9445.htm
2. Shahanawaj Ahamad, “Web Centric Evolution of

Legacy System”, International Journal of Electrical
and Computer Science, Vol: 10, No:1, pp:
19-24, 2010.

3. Steven Woods and Qiang Yang, “Program
Understanding as Constraint Satisfaction”, IEEE,
Department of Computer Science, University of
Waterloo, Canada, 1995.

5. Nuno F. Rodrigues, Lu´ıs S. Barbosa, “Component
Identification Through Program Slicing”, in
Electronic Notes in Theoretical Computer Science,
Science Direct, Elsevier, pp: 291-304, 2006.

6. Nuno Miguel et.al, “Slicing Techniques Applied to
Architectural Analysis of Legacy Software”, report of
Departamento de Informatica Escola de
Engenharia, Universidade do Minho, 2008.

7. N. Rodrigues, “A basis for slicing functional
programs”. Technical report, PURe Project Report,
DICCTC, U. Minho, 2005.

8. http://www.haskell.org/haskellwiki/Haskell
9. http://en.wikipedia.org/wiki/Haskell_(programming_l

anguage)
10. http://www.shu.ac.uk/softeng/extrabits/modularity/m

odularity%20-%20new%20version.doc
11. Adrian Kuhn et. al., “Semantic clustering: Identifying

topics in source code”, Information and Software
Technology, Elsevier, pp: 230–243, 2007.

12. T. K. Landauer and S.T. Dumais, "A Solution to
Plato's Problem: The Latent Semantic Analysis
Theory of the Acquisition, Induction, and
Representation of Knowledge", Psychological
Review, vol. 104, no. 2, pp. 211-240, 1997.

13. J. B. Kruskal, "On the Shortest Spanning Subtree of
a Graph and the Traveling Salesman Problem",
Proc. Amer. Math. Soc., vol.7, no. 1, pp.
48-50, 1956.

15. J. M. Kleinberg, “Authoritative sources in a

hyperlinked environment”, Journal of the ACM,
46(5): 604–632, 1999.

16. D. Gibson, J. M. Kleinberg, and P. Raghavan.
“Inferring web communities from link topology”, In
UK Conference on Hypertext, pages 225–234, 1998.

18. http://www.docstoc.com/docs/94425343/Journal-of-
Computer-Science-and-Research-Vol-9-No-8-
August-2011

Code Documentation

Open source

Artifacts

Monolithic Code

Service Extraction

Phase: 1,

Identify structure and

design pattern

Code

Phase: 2,

Code Slicing
Code

Phase:3, Understand
 independent

Code

Phase: 4,

Extract services from code
Code

Phase: 5,

Services definition
Code

Artifact

Header

Header

Header Sn ……

Phase:6,

Service

Assembly and composition

Header S1 Header S2 Header Sn …

 2

© 2013 Global Journals Inc. (US)

Y
e
a
r

01
3

2

 22

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

 I
ss
ue

 I
V
 V

er
sio

n
I

(
DD DD DDDD

)
C

An Empirical Investigation for Understanding & Extraction of Services from Monolithic Legacy Software

SnSn

Component

4. http://technet.microsoft.com/en-us/magazine/ee677
579.aspx

14. Jonathan I. Maletic et.al, Supporting program
comprehension using semantic and structural
information, Proceeding ICSE '01 Proceedings of
the 23rd International Conference on Software
Engineering Pp: 103-112, 2001.

17. http://www.erikvanveenendaal.nl/NL/files/e-book%2
0PRISMA.pdf

19. J. Van Geet and S. Demeyer, “Lightweight
visualisations of cobol code for supporting
migration to SOA,” in 3rd International ERCIM
Symposium on Software Evolution, October, 2007.

20. N. och Dag, B. Regnell, V. Gervasi, and S.
Brinkkemper, “A linguistic engineering approach to
large-scale requirements management,” Software,
IEEE, vol. 22, no. 1, pp. 32–39, 2005.

21. S. R. Tilley, D. B. Smith, and S. Paul, “Towards a
framework for program understanding,” in 4th
International Workshop on Program Comprehension
(WPC’96), 1996, pp. 19–28.

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

 I
ss
ue

 I
V
 V

er
sio

n
I

23

(
DDDD DDDD

)
Y
e
a
r

01
3

2
C

An Empirical Investigation for Understanding & Extraction of Services from Monolithic Legacy Software

22. http://www.infosys.com/infosys-labs/publications/D
ocuments/knowledge-engineering-management.pdf

	An Empirical Investigation for Understanding & Extraction ofServices from Monolithic Legacy Software
	Authors
	Keywords
	I. Introduction
	II. Problems for Understanding ofProgram
	III. Appli cations of Slicing, HaslicerTools for Service Identification
	IV. Clustring Source Code Components Services Documents
	V. Applying Web-Mining Techniques toUnderstand Services
	a) Identifying Hubs and Authority in Big Web-Graphs

	VI. Service Extraction Process
	a) Service Understanding and Extraction Guidelines
	i. Realistic Representation
	ii. Multiple representations for different abstraction ofhierarchy
	iii. Domain Oriented Policies
	iv. Human-Assisted Automation
	v. Maintenance Tool

	VII. Conclusion
	References Références Referencias

