53,999 research outputs found

    Web Data Extraction, Applications and Techniques: A Survey

    Full text link
    Web Data Extraction is an important problem that has been studied by means of different scientific tools and in a broad range of applications. Many approaches to extracting data from the Web have been designed to solve specific problems and operate in ad-hoc domains. Other approaches, instead, heavily reuse techniques and algorithms developed in the field of Information Extraction. This survey aims at providing a structured and comprehensive overview of the literature in the field of Web Data Extraction. We provided a simple classification framework in which existing Web Data Extraction applications are grouped into two main classes, namely applications at the Enterprise level and at the Social Web level. At the Enterprise level, Web Data Extraction techniques emerge as a key tool to perform data analysis in Business and Competitive Intelligence systems as well as for business process re-engineering. At the Social Web level, Web Data Extraction techniques allow to gather a large amount of structured data continuously generated and disseminated by Web 2.0, Social Media and Online Social Network users and this offers unprecedented opportunities to analyze human behavior at a very large scale. We discuss also the potential of cross-fertilization, i.e., on the possibility of re-using Web Data Extraction techniques originally designed to work in a given domain, in other domains.Comment: Knowledge-based System

    Incorporating the knowledge management cycle in e-business

    Get PDF
    In e-business, knowledge can be extracted from the recorded information by intelligent data analysis and then utilised in the business transaction. E-knowledge is a foundation for e-business. E-business can be supported by an intelligent information system that provides intelligent business process support and advanced support of the e-knowledge management cycle. Knowledge is stored as knowledge models that can be updated in the e-knowledge management cycle. As illustrated in examples, the e-knowledge cycle aids in the business decision taking, production management, and costs management

    Wrapper Maintenance: A Machine Learning Approach

    Full text link
    The proliferation of online information sources has led to an increased use of wrappers for extracting data from Web sources. While most of the previous research has focused on quick and efficient generation of wrappers, the development of tools for wrapper maintenance has received less attention. This is an important research problem because Web sources often change in ways that prevent the wrappers from extracting data correctly. We present an efficient algorithm that learns structural information about data from positive examples alone. We describe how this information can be used for two wrapper maintenance applications: wrapper verification and reinduction. The wrapper verification system detects when a wrapper is not extracting correct data, usually because the Web source has changed its format. The reinduction algorithm automatically recovers from changes in the Web source by identifying data on Web pages so that a new wrapper may be generated for this source. To validate our approach, we monitored 27 wrappers over a period of a year. The verification algorithm correctly discovered 35 of the 37 wrapper changes, and made 16 mistakes, resulting in precision of 0.73 and recall of 0.95. We validated the reinduction algorithm on ten Web sources. We were able to successfully reinduce the wrappers, obtaining precision and recall values of 0.90 and 0.80 on the data extraction task

    Automatically assembling a full census of an academic field

    Get PDF
    The composition of the scientific workforce shapes the direction of scientific research, directly through the selection of questions to investigate, and indirectly through its influence on the training of future scientists. In most fields, however, complete census information is difficult to obtain, complicating efforts to study workforce dynamics and the effects of policy. This is particularly true in computer science, which lacks a single, all-encompassing directory or professional organization. A full census of computer science would serve many purposes, not the least of which is a better understanding of the trends and causes of unequal representation in computing. Previous academic census efforts have relied on narrow or biased samples, or on professional society membership rolls. A full census can be constructed directly from online departmental faculty directories, but doing so by hand is prohibitively expensive and time-consuming. Here, we introduce a topical web crawler for automating the collection of faculty information from web-based department rosters, and demonstrate the resulting system on the 205 PhD-granting computer science departments in the U.S. and Canada. This method constructs a complete census of the field within a few minutes, and achieves over 99% precision and recall. We conclude by comparing the resulting 2017 census to a hand-curated 2011 census to quantify turnover and retention in computer science, in general and for female faculty in particular, demonstrating the types of analysis made possible by automated census construction.Comment: 11 pages, 6 figures, 2 table

    Web Mining Functions in an Academic Search Application

    Get PDF
    This paper deals with Web mining and the different categories of Web mining like content, structure and usage mining. The application of Web mining in an academic search application has been discussed. The paper concludes with open problems related to Web mining. The present work can be a useful input to Web users, Web Administrators in a university environment.Database, HITS, IR, NLP, Web mining
    corecore