1,187 research outputs found

    Treebank-based acquisition of Chinese LFG resources for parsing and generation

    Get PDF
    This thesis describes a treebank-based approach to automatically acquire robust,wide-coverage Lexical-Functional Grammar (LFG) resources for Chinese parsing and generation, which is part of a larger project on the rapid construction of deep, large-scale, constraint-based, multilingual grammatical resources. I present an application-oriented LFG analysis for Chinese core linguistic phenomena and (in cooperation with PARC) develop a gold-standard dependency-bank of Chinese f-structures for evaluation. Based on the Penn Chinese Treebank, I design and implement two architectures for inducing Chinese LFG resources, one annotation-based and the other dependency conversion-based. I then apply the f-structure acquisition algorithm together with external, state-of-the-art parsers to parsing new text into "proto" f-structures. In order to convert "proto" f-structures into "proper" f-structures or deep dependencies, I present a novel Non-Local Dependency (NLD) recovery algorithm using subcategorisation frames and f-structure paths linking antecedents and traces in NLDs extracted from the automatically-built LFG f-structure treebank. Based on the grammars extracted from the f-structure annotated treebank, I develop a PCFG-based chart generator and a new n-gram based pure dependency generator to realise Chinese sentences from LFG f-structures. The work reported in this thesis is the first effort to scale treebank-based, probabilistic Chinese LFG resources from proof-of-concept research to unrestricted, real text. Although this thesis concentrates on Chinese and LFG, many of the methodologies, e.g. the acquisition of predicate-argument structures, NLD resolution and the PCFG- and dependency n-gram-based generation models, are largely language and formalism independent and should generalise to diverse languages as well as to labelled bilexical dependency representations other than LFG

    Towards a machine-learning architecture for lexical functional grammar parsing

    Get PDF
    Data-driven grammar induction aims at producing wide-coverage grammars of human languages. Initial efforts in this field produced relatively shallow linguistic representations such as phrase-structure trees, which only encode constituent structure. Recent work on inducing deep grammars from treebanks addresses this shortcoming by also recovering non-local dependencies and grammatical relations. My aim is to investigate the issues arising when adapting an existing Lexical Functional Grammar (LFG) induction method to a new language and treebank, and find solutions which will generalize robustly across multiple languages. The research hypothesis is that by exploiting machine-learning algorithms to learn morphological features, lemmatization classes and grammatical functions from treebanks we can reduce the amount of manual specification and improve robustness, accuracy and domain- and language -independence for LFG parsing systems. Function labels can often be relatively straightforwardly mapped to LFG grammatical functions. Learning them reliably permits grammar induction to depend less on language-specific LFG annotation rules. I therefore propose ways to improve acquisition of function labels from treebanks and translate those improvements into better-quality f-structure parsing. In a lexicalized grammatical formalism such as LFG a large amount of syntactically relevant information comes from lexical entries. It is, therefore, important to be able to perform morphological analysis in an accurate and robust way for morphologically rich languages. I propose a fully data-driven supervised method to simultaneously lemmatize and morphologically analyze text and obtain competitive or improved results on a range of typologically diverse languages

    Automatic Scaling of Text for Training Second Language Reading Comprehension

    Get PDF
    For children learning their first language, reading is one of the most effective ways to acquire new vocabulary. Studies link students who read more with larger and more complex vocabularies. For second language learners, there is a substantial barrier to reading. Even the books written for early first language readers assume a base vocabulary of nearly 7000 word families and a nuanced understanding of grammar. This project will look at ways that technology can help second language learners overcome this high barrier to entry, and the effectiveness of learning through reading for adults acquiring a foreign language. Through the implementation of Dokusha, an automatic graded reader generator for Japanese, this project will explore how advancements in natural language processing can be used to automatically simplify text for extensive reading in Japanese as a foreign language

    Treebank-Based Deep Grammar Acquisition for French Probabilistic Parsing Resources

    Get PDF
    Motivated by the expense in time and other resources to produce hand-crafted grammars, there has been increased interest in wide-coverage grammars automatically obtained from treebanks. In particular, recent years have seen a move towards acquiring deep (LFG, HPSG and CCG) resources that can represent information absent from simple CFG-type structured treebanks and which are considered to produce more language-neutral linguistic representations, such as syntactic dependency trees. As is often the case in early pioneering work in natural language processing, English has been the focus of attention in the first efforts towards acquiring treebank-based deep-grammar resources, followed by treatments of, for example, German, Japanese, Chinese and Spanish. However, to date no comparable large-scale automatically acquired deep-grammar resources have been obtained for French. The goal of the research presented in this thesis is to develop, implement, and evaluate treebank-based deep-grammar acquisition techniques for French. Along the way towards achieving this goal, this thesis presents the derivation of a new treebank for French from the Paris 7 Treebank, the Modified French Treebank, a cleaner, more coherent treebank with several transformed structures and new linguistic analyses. Statistical parsers trained on this data outperform those trained on the original Paris 7 Treebank, which has five times the amount of data. The Modified French Treebank is the data source used for the development of treebank-based automatic deep-grammar acquisition for LFG parsing resources for French, based on an f-structure annotation algorithm for this treebank. LFG CFG-based parsing architectures are then extended and tested, achieving a competitive best f-score of 86.73% for all features. The CFG-based parsing architectures are then complemented with an alternative dependency-based statistical parsing approach, obviating the CFG-based parsing step, and instead directly parsing strings into f-structures

    Knowledge Expansion of a Statistical Machine Translation System using Morphological Resources

    Get PDF
    Translation capability of a Phrase-Based Statistical Machine Translation (PBSMT) system mostly depends on parallel data and phrases that are not present in the training data are not correctly translated. This paper describes a method that efficiently expands the existing knowledge of a PBSMT system without adding more parallel data but using external morphological resources. A set of new phrase associations is added to translation and reordering models; each of them corresponds to a morphological variation of the source/target/both phrases of an existing association. New associations are generated using a string similarity score based on morphosyntactic information. We tested our approach on En-Fr and Fr-En translations and results showed improvements of the performance in terms of automatic scores (BLEU and Meteor) and reduction of out-of-vocabulary (OOV) words. We believe that our knowledge expansion framework is generic and could be used to add different types of information to the model.JRC.G.2-Global security and crisis managemen

    Multiword expression processing: A survey

    Get PDF
    Multiword expressions (MWEs) are a class of linguistic forms spanning conventional word boundaries that are both idiosyncratic and pervasive across different languages. The structure of linguistic processing that depends on the clear distinction between words and phrases has to be re-thought to accommodate MWEs. The issue of MWE handling is crucial for NLP applications, where it raises a number of challenges. The emergence of solutions in the absence of guiding principles motivates this survey, whose aim is not only to provide a focused review of MWE processing, but also to clarify the nature of interactions between MWE processing and downstream applications. We propose a conceptual framework within which challenges and research contributions can be positioned. It offers a shared understanding of what is meant by "MWE processing," distinguishing the subtasks of MWE discovery and identification. It also elucidates the interactions between MWE processing and two use cases: Parsing and machine translation. Many of the approaches in the literature can be differentiated according to how MWE processing is timed with respect to underlying use cases. We discuss how such orchestration choices affect the scope of MWE-aware systems. For each of the two MWE processing subtasks and for each of the two use cases, we conclude on open issues and research perspectives

    Parsing and Evaluation. Improving Dependency Grammars Accuracy. Anàlisi Sintàctica Automàtica i Avaluació. Millora de qualitat per a Gramàtiques de Dependències

    Get PDF
    Because parsers are still limited in analysing specific ambiguous constructions, the research presented in this thesis mainly aims to contribute to the improvement of parsing performance when it has knowledge integrated in order to deal with ambiguous linguistic phenomena. More precisely, this thesis intends to provide empirical solutions to the disambiguation of prepositional phrase attachment and argument recognition in order to assist parsers in generating a more accurate syntactic analysis. The disambiguation of these two highly ambiguous linguistic phenomena by the integration of knowledge about the language necessarily relies on linguistic and statistical strategies for knowledge acquisition. The starting point of this research proposal is the development of a rule-based grammar for Spanish and for Catalan following the theoretical basis of Dependency Grammar (Tesnière, 1959; Mel’čuk, 1988) in order to carry out two experiments about the integration of automatically- acquired knowledge. In order to build two robust grammars that understand a sentence, the FreeLing pipeline (Padró et al., 2010) has been used as a framework. On the other hand, an eclectic repertoire of criteria about the nature of syntactic heads is proposed by reviewing the postulates of Generative Grammar (Chomsky, 1981; Bonet and Solà, 1986; Haegeman, 1991) and Dependency Grammar (Tesnière, 1959; Mel’čuk, 1988). Furthermore, a set of dependency relations is provided and mapped to Universal Dependencies (Mcdonald et al., 2013). Furthermore, an empirical evaluation method has been designed in order to carry out both a quantitative and a qualitative analysis. In particular, the dependency parsed trees generated by the grammars are compared to real linguistic data. The quantitative evaluation is based on the Spanish Tibidabo Treebank (Marimon et al., 2014), which is large enough to carry out a real analysis of the grammars performance and which has been annotated with the same formalism as the grammars, syntactic dependencies. Since the criteria between both resources are differ- ent, a process of harmonization has been applied developing a set of rules that automatically adapt the criteria of the corpus to the grammar criteria. With regard to qualitative evaluation, there are no available resources to evaluate Spanish and Catalan dependency grammars quali- tatively. For this reason, a test suite of syntactic phenomena about structure and word order has been built. In order to create a representative repertoire of the languages observed, descriptive grammars (Bosque and Demonte, 1999; Solà et al., 2002) and the SenSem Corpus (Vázquez and Fernández-Montraveta, 2015) have been used for capturing relevant structures and word order patterns, respectively. Thanks to these two tools, two experiments have been carried out in order to prove that knowl- edge integration improves the parsing accuracy. On the one hand, the automatic learning of lan- guage models has been explored by means of statistical methods in order to disambiguate PP- attachment. More precisely, a model has been learned with a supervised classifier using Weka (Witten and Frank, 2005). Furthermore, an unsupervised model based on word embeddings has been applied (Mikolov et al., 2013a,b). The results of the experiment show that the supervised method is limited in predicting solutions for unseen data, which is resolved by the unsupervised method since provides a solution for any case. However, the unsupervised method is limited if it Parsing and Evaluation Improving Dependency Grammars Accuracy only learns from lexical data. For this reason, training data needs to be enriched with the lexical value of the preposition, as well as semantic and syntactic features. In addition, the number of patterns used to learn language models has to be extended in order to have an impact on the grammars. On the other hand, another experiment is carried out in order to improve the argument recog- nition in the grammars by the acquisition of linguistic knowledge. In this experiment, knowledge is acquired automatically from the extraction of verb subcategorization frames from the SenSem Corpus (Vázquez and Fernández-Montraveta, 2015) which contains the verb predicate and its arguments annotated syntactically. As a result of the information extracted, subcategorization frames have been classified into subcategorization classes regarding the patterns observed in the corpus. The results of the subcategorization classes integration in the grammars prove that this information increases the accuracy of the argument recognition in the grammars. The results of the research of this thesis show that grammars’ rules on their own are not ex- pressive enough to resolve complex ambiguities. However, the integration of knowledge about these ambiguities in the grammars may be decisive in the disambiguation. On the one hand, sta- tistical knowledge about PP-attachment can improve the grammars accuracy, but syntactic and semantic information, and new patterns of PP-attachment need to be included in the language models in order to contribute to disambiguate this phenomenon. On the other hand, linguistic knowledge about verb subcategorization acquired from annotated linguistic resources show a positive influence positively on grammars’ accuracy.Aquesta tesi vol tractar les limitacions amb què es troben els analitzadors sintàctics automàtics actualment. Tot i els progressos que s’han fet en l’àrea del Processament del Llenguatge Nat- ural en els darrers anys, les tecnologies del llenguatge i, en particular, els analitzadors sintàc- tics automàtics no han pogut traspassar el llindar de certes ambiguïtats estructurals com ara l’agrupació del sintagma preposicional i el reconeixement d’arguments. És per aquest motiu que la recerca duta a terme en aquesta tesi té com a objectiu aportar millores signiflcatives de quali- tat a l’anàlisi sintàctica automàtica per mitjà de la integració de coneixement lingüístic i estadístic per desambiguar construccions sintàctiques ambigües. El punt de partida de la recerca ha estat el desenvolupament de d’una gramàtica en espanyol i una altra en català basades en regles que segueixen els postulats de la Gramàtica de Dependèn- dencies (Tesnière, 1959; Mel’čuk, 1988) per tal de dur a terme els experiments sobre l’adquisició de coneixement automàtic. Per tal de crear dues gramàtiques robustes que analitzin i entenguin l’oració en profunditat, ens hem basat en l’arquitectura de FreeLing (Padró et al., 2010), una lli- breria de Processament de Llenguatge Natural que proveeix una anàlisi lingüística automàtica de l’oració. Per una altra banda, s’ha elaborat una proposta eclèctica de criteris lingüístics per determinar la formació dels sintagmes i les clàusules a la gramàtica per mitjà de la revisió de les propostes teòriques de la Gramàtica Generativa (Chomsky, 1981; Bonet and Solà, 1986; Haege- man, 1991) i de la Gramàtica de Dependències (Tesnière, 1959; Mel’čuk, 1988). Aquesta proposta s’acompanya d’un llistat de les etiquetes de relació de dependència que fan servir les regles de les gramàtques. A més a més de l’elaboració d’aquest llistat, s’han establert les correspondències amb l’estàndard d’anotació de les Dependències Universals (Mcdonald et al., 2013). Alhora, s’ha dissenyat un sistema d’avaluació empíric que té en compte l’anàlisi quantitativa i qualitativa per tal de fer una valoració completa dels resultats dels experiments. Precisament, es tracta una tasca empírica pel fet que es comparen les anàlisis generades per les gramàtiques amb dades reals de la llengua. Per tal de dur a terme l’avaluació des d’una perspectiva quan- titativa, s’ha fet servir el corpus Tibidabo en espanyol (Marimon et al., 2014) disponible només en espanyol que és prou extens per construir una anàlisi real de les gramàtiques i que ha estat anotat amb el mateix formalisme que les gramàtiques. En concret, per tal com els criteris de les gramàtiques i del corpus no són coincidents, s’ha dut a terme un procés d’harmonització de cri- teris per mitjà d’unes regles creades manualment que adapten automàticament l’estructura i la relació de dependència del corpus al criteri de les gramàtiques. Pel que fa a l’avaluació qualitativa, pel fet que no hi ha recursos disponibles en espanyol i català, hem dissenyat un reprertori de test de fenòmens sintàctics estructurals i relacionats amb l’ordre de l’oració. Amb l’objectiu de crear un repertori representatiu de les llengües estudiades, s’han fet servir gramàtiques descriptives per fornir el repertori d’estructures sintàctiques (Bosque and Demonte, 1999; Solà et al., 2002) i el Corpus SenSem (Vázquez and Fernández-Montraveta, 2015) per capturar automàticament l’ordre oracional. Gràcies a aquestes dues eines, s’han pogut dur a terme dos experiments per provar que la integració de coneixement en l’anàlisi sintàctica automàtica en millora la qualitat. D’una banda, Parsing and Evaluation Improving Dependency Grammars Accuracy s’ha explorat l’aprenentatge de models de llenguatge per mitjà de models estadístics per tal de proposar solucions a l’agrupació del sintagma preposicional. Més concretament, s’ha desen- volupat un model de llenguatge per mitjà d’un classiflcador d’aprenentatge supervisat de Weka (Witten and Frank, 2005). A més a més, s’ha après un model de llenguatge per mitjà d’un mètode no supervisat basat en l’aproximació distribucional anomenat word embeddings (Mikolov et al., 2013a,b). Els resultats de l’experiment posen de manifest que el mètode supervisat té greus lim- itacions per fer donar una resposta en dades que no ha vist prèviament, cosa que és superada pel mètode no supervisat pel fet que és capaç de classiflcar qualsevol cas. De tota manera, el mètode no supervisat que s’ha estudiat és limitat si aprèn a partir de dades lèxiques. Per aquesta raó, és necessari que les dades utilitzades per entrenar el model continguin el valor de la preposi- ció, trets sintàctics i semàntics. A més a més, cal ampliar el número de patrons apresos per tal d’ampliar la cobertura dels models i tenir un impacte en els resultats de les gramàtiques. D’una altra banda, s’ha proposat una manera de millorar el reconeixement d’arguments a les gramàtiques per mitjà de l’adquisició de coneixement lingüístic. En aquest experiment, s’ha op- tat per extreure automàticament el coneixement en forma de classes de subcategorització verbal d’el Corpus SenSem (Vázquez and Fernández-Montraveta, 2015), que conté anotats sintàctica- ment el predicat verbal i els seus arguments. A partir de la informació extreta, s’ha classiflcat les diverses diàtesis verbals en classes de subcategorització verbal en funció dels patrons observats en el corpus. Els resultats de la integració de les classes de subcategorització a les gramàtiques mostren que aquesta informació determina positivament el reconeixement dels arguments. Els resultats de la recerca duta a terme en aquesta tesi doctoral posen de manifest que les regles de les gramàtiques no són prou expressives per elles mateixes per resoldre ambigüitats complexes del llenguatge. No obstant això, la integració de coneixement sobre aquestes am- bigüitats pot ser decisiu a l’hora de proposar una solució. D’una banda, el coneixement estadístic sobre l’agrupació del sintagma preposicional pot millorar la qualitat de les gramàtiques, però per aflrmar-ho cal incloure informació sintàctica i semàntica en els models d’aprenentatge automàtic i capturar més patrons per contribuir en la desambiguació de fenòmens complexos. D’una al- tra banda, el coneixement lingüístic sobre subcategorització verbal adquirit de recursos lingüís- tics anotats influeix decisivament en la qualitat de les gramàtiques per a l’anàlisi sintàctica au- tomàtica
    corecore