
Towards a Machine-Learning
Architecture for Lexical Functional

Grammar Parsing

Grzegorz Chrupa la

A dissertation submitted in fulfilment of the requirements for the award of

Doctor of Philosophy (Ph.D.)

to the

Dublin City University

School of Computing

Supervisor: Prof. Josef van Genabith

April 2008

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DCU Online Research Access Service

https://core.ac.uk/display/11308423?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Declaration

I hereby certify that this material, which I now submit for assessment on the pro-

gramme of study leading to the award of Doctor of Philosophy (Ph.D.) is entirely my

own work, that I have exercised reasonable care to ensure that the work is original, and

does not to the best of my knowledge breach any law of copyright, and has not been

taken from the work of others save and to the extent that such work has been cited

and acknowledged within the text of my work.

Signed (Grzegorz Chrupa la)

Student ID 55130089

Date April 2008

i



Contents

1 Introduction 1

1.1 Shallow vs Deep Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Deep Data-Driven Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Multilingual Treebank-Based LFG . . . . . . . . . . . . . . . . . . . . . 3

1.4 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 The Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.6 Summary of Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Treebank-Based Lexical Functional Grammar Parsing 9

2.1 Lexical Functional Grammar . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 LFG parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Treebank-based LFG parsing . . . . . . . . . . . . . . . . . . . . 15

2.3 GramLab – Treebank-Based Acquisition of Wide-Coverage LFG Resources 20

3 Machine Learning 22

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.1 Supervised learning . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.2 Feature representation . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.1 Perceptron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.2 K-NN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.3 Logistic Regression and MaxEnt . . . . . . . . . . . . . . . . . . 30

3.2.4 Support Vector Machines . . . . . . . . . . . . . . . . . . . . . . 36

3.3 Sequence Labeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

ii



3.3.1 Maximum Entropy Markov Models . . . . . . . . . . . . . . . . . 43

3.3.2 Conditional Random Fields and other structured prediction meth-

ods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4 Treebank-Based LFG Parsing Resources for Spanish 47

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1.1 The Cast3LB Spanish treebank . . . . . . . . . . . . . . . . . . . 47

4.2 Comparison to Previous Work . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3 Improving Spanish LFG Resources . . . . . . . . . . . . . . . . . . . . . 52

4.3.1 Clitic doubling and null subjects . . . . . . . . . . . . . . . . . . 52

4.3.2 Periphrastic constructions . . . . . . . . . . . . . . . . . . . . . . 55

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5 Learning Function Labels 60

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2 Learning Cast3LB Function Labels . . . . . . . . . . . . . . . . . . . . . 61

5.2.1 Annotation algorithm . . . . . . . . . . . . . . . . . . . . . . . . 61

5.2.2 Previous work on learning function labels . . . . . . . . . . . . . 64

5.2.3 Assigning Cast3LB function labels to parsed Spanish text . . . . 64

5.2.4 Cast3LB function label assignment evaluation . . . . . . . . . . . 69

5.2.5 Task-based LFG annotation evaluation . . . . . . . . . . . . . . . 72

5.2.6 Error analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2.7 Adapting to the AnCora-ESP corpus . . . . . . . . . . . . . . . . 75

5.3 Improving Training for Function Labeling by Using Parser Output . . . 78

5.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.3.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6 Learning Morphology and Lemmatization 94

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.1.1 Main results obtained . . . . . . . . . . . . . . . . . . . . . . . . 94

iii



6.2 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.2.1 Inductive Logic Programming . . . . . . . . . . . . . . . . . . . . 95

6.2.2 Memory-based learning . . . . . . . . . . . . . . . . . . . . . . . 99

6.2.3 Analogical learning . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.2.4 Morphological tagging and disambiguation . . . . . . . . . . . . 103

6.3 Simple Data-Driven Context-Sensitive Lemmatization . . . . . . . . . . 104

6.3.1 Lemmatization as a classification task . . . . . . . . . . . . . . . 104

6.3.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.3.3 Evaluation results and error analysis . . . . . . . . . . . . . . . . 109

6.3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.4 Morfette – a Combined Probabilistic Model for Morphological Tagging

and Lemmatization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.4.2 The Morfette system . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.4.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.4.4 Error analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.4.5 Integrating lexicons . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.4.6 Improving lemma class discovery . . . . . . . . . . . . . . . . . . 130

6.4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.5 Morphological Analysis and Synthesis: ILP and Classifier-Based Ap-

proaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.5.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.5.2 Model and features . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.5.3 Results and error analysis . . . . . . . . . . . . . . . . . . . . . . 138

6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

7 Conclusion 142

7.1 Summary of Main Contributions . . . . . . . . . . . . . . . . . . . . . . 142

7.2 Directions for Future Research . . . . . . . . . . . . . . . . . . . . . . . 144

7.2.1 Grammatical functions . . . . . . . . . . . . . . . . . . . . . . . . 144

7.2.2 Morphology and Morfette . . . . . . . . . . . . . . . . . . . . . 145

7.2.3 Other aspects of LFG parsing . . . . . . . . . . . . . . . . . . . . 147

iv



List of Figures

2.1 LFG representation of But stocks kept falling . . . . . . . . . . . . . . . 12

2.2 Pipeline LFG parsing architecture . . . . . . . . . . . . . . . . . . . . . 18

3.1 Averaged Perceptron algorithm . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Example separating hyperplanes in two dimensions . . . . . . . . . . . . 26

3.3 Separating hyperplane and support vectors . . . . . . . . . . . . . . . . 37

3.4 Two dimensional classification example, non-separable in two dimen-

sions, becomes separable when mapped to 3 dimensions by (x1, x2) 7→

(x2
1, 2x1x2, x

2
2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1 On top flat structure of S. Cast3LB function labels are shown in bold.

Below the corresponding (simplified) LFG f-structure. Translation: Let

the reader not expect a definition. . . . . . . . . . . . . . . . . . . . . . 49

4.2 Comparison of f-structure representations for NPs . . . . . . . . . . . . 50

4.3 Comparison of f-structure representations for copular verbs . . . . . . . 51

4.4 Periphrastic construction with two light verbs: The treebank tree, and

the f-structure produced . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.5 Treatment of periphrastic constructions by means of functional uncer-

tainty equations with off-path constraints . . . . . . . . . . . . . . . . . 58

5.1 Examples of features extracted from an example node . . . . . . . . . . 68

5.2 Learning curves for TiMBL (t), MaxEnt (m) and SVM (s). . . . . . . . 69

5.3 Subject - Direct Object ambiguity in a Spanish relative clause. . . . . . 74

5.4 Algorithm for extracting training instances from a parser tree T and gold

tree T ′ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

v



5.5 Example gold and parser tree . . . . . . . . . . . . . . . . . . . . . . . . 85

6.1 Instance for task 2 in Stroppa and Yvon (2005) . . . . . . . . . . . . . . 101

6.2 Features extracted for the MSD-tagging model from an example Roma-
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Abstract

Data-driven grammar induction aims at producing wide-coverage grammars of human

languages. Initial efforts in this field produced relatively shallow linguistic representa-

tions such as phrase-structure trees, which only encode constituent structure. Recent

work on inducing deep grammars from treebanks addresses this shortcoming by also

recovering non-local dependencies and grammatical relations. My aim is to investigate

the issues arising when adapting an existing Lexical Functional Grammar (LFG) induc-

tion method to a new language and treebank, and find solutions which will generalize

robustly across multiple languages.

The research hypothesis is that by exploiting machine-learning algorithms to learn

morphological features, lemmatization classes and grammatical functions from tree-

banks we can reduce the amount of manual specification and improve robustness, ac-

curacy and domain- and language -independence for LFG parsing systems.

Function labels can often be relatively straightforwardly mapped to LFG grammat-

ical functions. Learning them reliably permits grammar induction to depend less on

language-specific LFG annotation rules. I therefore propose ways to improve acquisition

of function labels from treebanks and translate those improvements into better-quality

f-structure parsing.

In a lexicalized grammatical formalism such as LFG a large amount of syntactically

relevant information comes from lexical entries. It is, therefore, important to be able

to perform morphological analysis in an accurate and robust way for morphologically

rich languages. I propose a fully data-driven supervised method to simultaneously

lemmatize and morphologically analyze text and obtain competitive or improved results

on a range of typologically diverse languages.



Chapter 1

Introduction

Natural Language Processing (NLP) seeks to develop methods which make it possible

for computers to deal with human language texts in a meaningful and useful fashion.

Unstructured textual information written by and for humans is ubiquitous and being

able to make sense of it in an automated fashion is highly desirable. Many NLP

applications can benefit if they are able to automatically associate syntactic and/or

semantic structure with natural language text, i.e. to parse it.

1.1 Shallow vs Deep Parsing

Traditionally, approaches to parsing within NLP fell into two types. First, parsing

can be performed by having expert linguists develop a computational grammar for a

given language, which can then be used by a parsing engine to assign a set of analyses

to a sentence. Typically, such a grammar would be based on some sufficiently formal

and explicit theory of language syntax and semantics, and would provide linguistically

well-motivated and rich representations of syntactic structure.

Second, grammars, or more generally parsing models, can be extracted automati-

cally from a large corpus annotated by expert linguists (a treebank). Typically such

a grammar would tend to be a relatively simple, relatively theory-neutral, and would

provide rather shallow syntactic representations.1 However it would have access to
1In this context, by “shallow parsing” I mean finding a basic constituent structure for a sentence.

I do not mean partial parsing, or chunking, where only a simple flat segmentation is imposed on the
sentence.

1



frequency counts of different structures in the training corpus, which can be used for

managing ambiguities pervasive in natural language syntax.

1.2 Deep Data-Driven Parsing

In more recent years significant effort has been put into overcoming this dichotomy and

superseding the tradeoffs it imposes. A number of systems have been developed which

combine the use of linguistically sophisticated, rich models of syntax and semantics with

the data-driven methodology informed by probability theory and machine-learning.

Such “deep data-driven parsing” approaches combine the best of both worlds: they

offer wide-coverage and robustness coupled with linguistic accuracy and depth. The

developments in this area come in a few flavors.

First, shallow probabilistic models have been “deepened”. Many of the complexities

which make natural language syntax difficult, such as long-distance dependencies, were

ignored in shallow approaches early on; however, this need not be the case: treatment

of wh-extraction was incorporated into the Model 3 of Collins parser (Collins, 1997).

Second, many ways have been found to “enrich” the output of shallow parsers with

extra information. Examples include adding function labels (to be discussed in Chapter

5) or resolving long-distance dependencies, e.g.: (Johnson, 2001; Levy and Manning,

2004; Campbell, 2004; Gabbard et al., 2006).

Third, parsers using hand-written grammars have been equipped with probabilistic

disambiguation models trained on annotated corpora (Riezler et al., 2001; Kaplan et al.,

2004; Briscoe and Carroll, 2006). This does not solve the problem of limited coverage

those grammars have, but does provide a principled way to rank alternative analyses.

Limited coverage has been addressed in these systems by implementing robustness

heuristics such as combining partial parses as described by Kaplan et al. (2004).

Finally, standard annotated corpora have been used to train data-driven parsers for

deep linguistic formalisms such as Tree Adjoining Grammar (Xia, 1999), Lexical Func-

tional Grammar (Cahill et al., 2002, 2004), Head-driven Phrase Structure Grammar

(Miyao et al., 2003; Miyao and Tsujii, 2005) and Combinatory Categorial Grammar

(Clark and Hockenmaier, 2002; Clark and Curran, 2004).

2



1.3 Multilingual Treebank-Based LFG

The research described in this thesis was carried out in the context of the GramLab

project which aims to develop resources for wide-coverage multilingual Lexical Func-

tional Grammar parsing.

Initial work on data-driven LFG parsing for English was done by Cahill et al. (2002,

2004) at Dublin City University (DCU). LFG has two parallel syntactic representa-

tions: constituency trees (c-structures) and representations of dependency relations

(f-structures). The DCU approach develops an LFG annotation algorithm which adds

information about LFG grammatical functions and other attributes to English Penn II

treebank-style trees. These annotations can be used to build LFG-style representations

of dependency relations (f-structures). The approach builds LFG representations in

two steps: c-structures are constructed by a probabilistic parsing model trained on a

treebank, then the trees are automatically annotated and the f-structures are built. It

has been demonstrated that this method can successfully compete with parsing sys-

tems which use large hand-written grammars developed over many years, on their own

evaluation data (Burke et al., 2004a; Cahill et al., 2008).

This empirical success provided the motivation for adapting the approach to other

languages. Appropriate training resources, i.e. large, syntactically annotated treebanks

are now available for many languages. However, the challenge of multilinguality is

not only the availability of resources but also the variation across human languages.

Languages differ along a number of dimensions, and often trade off complexity in one

linguistic subsystem for simplicity in another.

Computational language processing follows the standard scientific practice of re-

ductionism, and adopts simplifying assumptions about its object of study that may in

general be untrue but enable incremental progress to be made. Such simplifications are

often unstated and may be difficult to identify until our methods are stress-tested on

diverse data. And multilingual processing is one scenario where our assumptions may

need to be revised.

One aspect of the research described in this thesis is adapting the DCU treebank-

based LFG parsing architecture to the Spanish Cast3LB treebank. This exercise, as

well as work on other languages by members of the GramLab project, illuminated
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a number of linguistic divergences relevant for processing. The two most relevant

divergences between English and a language such as Spanish are along the dimension

of configurationality and morphological richness.

While English has highly constrained constituent order, and grammatical function

of constituents is highly determined by syntactic configuration, in Spanish the order

of main sentence constituents is governed by soft preferences depending on multiple

factors, and grammatical function is less predictable from configuration.

The syntactic rigidity of English goes hand in hand with little inflectional morphol-

ogy. Spanish is morphologically much richer than English (although of course Spanish

morphology is still quite limited compared to Slavic languages or to Arabic).

The syntactic flexibility of a language like Spanish makes it problematic to rely

heavily on a hand-written annotation algorithm which attempts to assign LFG gram-

matical function annotations to constituents in a parse tree. What is needed is a method

which draws information from many sources, such as local configuration, word order,

morphological features, lexical items, semantic features (e.g. animacy) and combines

the evidence to arrive at the final decision.

Rich morphology makes it necessary to use a step of morphological analysis more

complex than simple Part-of-Speech (POS) tagging prior to syntactic analysis. Ac-

curate morphological analysis is important for a deep lexicalized formalism like LFG

where morphological features such as agreement and case are used to constrain possible

syntactic analyses, and where normalized, lemmatized forms of lexical items are used

to build dependency relations.

Obviously we would like to learn to perform those two tasks, namely assigning

grammatical functions to nodes in parse trees and assigning morphological features and

lemmas to words in context, from training data for a particular language. Treebanks are

annotated with information which can be exploited to learn those tasks: they typically

enrich phrase-structure annotation with some grammatical function labels and some

semantic role labels. They are also typically morphologically analyzed and lemmatized

(and additionally there are other morphologically analyzed corpora that can be used

for training).

The driving idea in this thesis is to improve data-driven LFG parsing by making it
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more data-driven: learn more, and hardcode less. Learning to reliably assign function

labels from training data shifts the weight away from a hand-written LFG annotation

algorithm. For a language like Spanish, an annotation algorithm without access to

accurate function labels would work very poorly: in this case learning from data is

a necessity rather than just an improvement. Similarly, for languages with pervasive

inflectional phenomena, accurate and complete morphological analysis is a must. Even

though this can, and has been, achieved by hand writing finite-state analysers, here I

will adhere to the data-driven approach and determine how much and how well can be

learned from annotated data.

1.4 Machine Learning

Machine Learning (ML) is the solution to many of the issues outlined in the previous

section: supervised learning methods allow us to find in our training data correlations

which can be exploited for predicting the phenomena we are interested in, such as a

constituent’s grammatical function, or the morphological features of a word in context.

We extract such hints, or features, from the data, and learn how much and in what way

they contribute to the final prediction; in other words we learn the model parameters.

When we apply the learned model to new data, we obtain a prediction, possibly with

an associated probability or other score indicating how confident we can be in it, which

means we have a well-motivated means of predicting combinations of outcomes, such

as e.g. sequences of morphological labels, using standard techniques from probability

theory.

The most explored setting within supervised machine learning is classification,

where the task is to use a collection of labeled training examples in order to learn

a function which can predict labels for new, unseen examples. Despite its simplicity

this paradigm is remarkably versatile and can be applied to a wide variety of prob-

lems. It can also be extended to learn functions with more complex codomains, such

as sequences of labels.

The ML algorithms used in this thesis fall into the class of discriminative methods,

which model the dependence between the unobserved variable y (the output) on the

observed variable x (the input); in probabilistic terms they describe the conditional
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probability distribution p(y|x), rather than the joint distribution p(x, y) used by gen-

erative models. Discriminative approaches allow us to define rich, fine-grained descrip-

tions of the input objects in terms of arbitrary, possibly non-independent features. This

makes discriminative modeling flexible and empirically successful in countless domains,

including many NLP applications.

In the research described here I use machine learning techniques for classification

and for sequence labeling to enhance the two crucial aspects of data-driven LFG parsing

discussed in the previous section: function labeling, and morphological analysis.

1.5 The Structure of the Thesis

The presentation of my research is organized as follows:

Chapter 2 gives a brief introduction to the aspects of Lexical Functional Grammar

most relevant to parsing natural language, and proceeds to give an overview of existing

work on data-driven treebank-based LFG parsing.

Chapter 3 is a high-level overview of the main aspects of supervised machine learn-

ing. I describe feature vector representations, and introduce several commonly used

learning algorithms, starting with the Perceptron and continuing with k-NN , Maxi-

mum Entropy and Support Vector Machines. Finally I briefly discuss approaches to

sequence labeling.

Chapter 5 presents my work on learning models for assigning function labels to

parser output. I start by giving a summary of my work on adapting the LFG parsing

architecture to Spanish which was the main motivation for developing a classifier-based

function labeler. In Section 5.2 I then describe experiments with three ML methods on

the Spanish Cast3LB treebank, report the evaluation results and error analysis; I also

briefly describe experiments on the more recent AnCora Spanish treebank. In Section

5.3 I describe an improved method of learning a function labeling model by making use

of parser output rather than original treebank trees for training, and report evaluation

results using such a model on English and Chinese.
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Chapter 6 deals with the task of learning morphological analysis models for lan-

guages with rich inflectional morphology. I start by reviewing existing research on

supervised learning of morphology. I discuss in some detail approaches based on In-

ductive Logic Programming (ILP) and Analogical Learning (AL), as well as a number

of other methods. I introduce a classifier-based method to learn lemmatization models

by means of using edit scripts between form-lemma pairs as class labels to be learned.

I report on experiments using this method on data from six languages. I proceed to

introduce the Morfette system which uses the Maximum Entropy approach to learn

a morphological tagging model and a lemmatization model and combines their predic-

tions to assign a sequence of morphological tags and lemmas to sentences. I report on

experiments using this system on Spanish, Romanian and Polish. Finally, I compare

the performance of the classifier-based method to morphological analysis and synthesis

with an ILP implementation Clog on data from the Multext-EAST corpus.

Chapter 7 summarizes the main contributions of this thesis and discusses ideas for

refining and extending the research described in the preceding chapters.

1.6 Summary of Main Results

The main results described in Chapters 5 and 6 are the following:

Spanish treebank-based LFG parsing

• I have overhauled and substantially extended the range of phenomena treated in

the Spanish annotation algorithm. I also revised and extended the gold standard

which now includes 338 f-structures. This served two purposes: to identify areas

where the existing LFG parsing architecture for English needed further work to

make it less language dependent and more portable, and to enable the work on

developing and evaluating a function labeling model for Spanish.

Function labeling

• I have developed a function labeler for Spanish which achieves a relative error

reduction of 26.73% over the previously used method of using the c-structure
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parser to obtain function-labeled trees. The use of this model in the LFG parsing

pipeline also improves the f-structure quality as compared to the baseline method.

• I have described a training regime for an SVM-based function labeling model

where trees output by a parser are used in combination with treebank trees in

order to achieve better similarity between training and test examples. This model

outperforms all previously described function labelers on the standard English

Penn II treebank test set (22.73% relative error reduction over previous highest

score).

Morphological analysis

• I have developed a method to cast lemmatization as a sequence labeling task.

It relies on the notion of edit script which encodes the transformations needed

to perform on the word form to convert it into the corresponding lemma. A

lemmatization model can be learned from a corpus annotated only with lemmas,

with no explicit part-of-speech information.

• I have built the Morfette system which performs morphological analysis by learn-

ing a morphological tagging model and a lemmatization model, and combines the

predictions of those two models to find a globally good sequence of MSD-lemma

pairs for a sentence.

• I have shown that integrating information from morphological dictionaries into

the Maximum Entropy models used by Morfette is straightforward and can

substantially reduce error, especially on words absent from training corpus data.

• I have developed an instantiation of the edit script, the Edit Tree, which im-

proves lemmatization class induction in the case where inflectional morphology

affects word beginnings in addition to word endings, and have shown that the

use of this edit script version results in statistically significant error reductions

on test data in Polish, Welsh and Irish.

• I compared the proposed morphology models against existing systems (Freeling

and Clog): in both cases my proposed models showed superior or competitive

performance
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Chapter 2

Treebank-Based Lexical

Functional Grammar Parsing

In this chapter I provide an overview of the Lexical Functional Grammar (LFG) and

discuss approaches to parsing natural language within the LFG framework. I will

concentrate on the aspects of LFG most relevant to computational implementations.

2.1 Lexical Functional Grammar

Lexical Functional Grammar is a formal theory of language introduced by Bresnan

and Kaplan (1982) and further described in (Bresnan, 2001; Dalrymple, 2001). The

main focus of theoretical linguistics research within LFG has been syntax. LFG syntax

consists of two levels of structure.

C-structures The constituent structure (c-structure) is a representation of the hi-

erarchical grouping of words into phrases. It is used to represent constraints on word

order and constituency; the concept of c-structure corresponds to the notion of context-

free-grammar parse-tree used in formal language theory.

F-structures The level of functional structure (f-structure) describes the grammat-

ical functions of constituents in sentences, such as subject, direct object, sentential

complement or adjunct. F-structures are more abstract and less variable between lan-
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Attribute Meaning
subj subject
obj direct object
obj2 indirect object (also objθ )
obl oblique or prepositional object
comp sentential complement
xcomp non-finite clausal complement
adjunct adjunct

Table 2.1: LFG Grammatical functions

guages than c-structures. They can be thought of as providing a syntactic level close

to the semantics or the predicate-argument structure of the sentence. F-structures are

represented in LFG by attribute-value matrices. The attributes are atomic symbols;

their values can be atomic, they can be semantic forms, they can be f-structures, or

they can be sets of f-structures, depending on the attribute. Formally f-structures are

finite functions whose domain is the set of attributes and the codomain is the set of

possible values. Table 2.1 lists the grammatical functions most commonly assumed

within LFG.

Those two levels of syntactic structure are related through the so-called projection

architecture. Nodes in the c-structure are mapped to f-structures via the many-to-one

projection function φ.

Functional equations An LFG grammar consists of a set of phrase structure rules

and a set of lexical entries, which specify the possible c-structures. Both the phrase

structure rules and the lexical entries are annotated with functional equations, which

specify the mapping φ. The functional equations employ two meta-variables, ↓ and ↑

which refer to the f-structure associated with the current (self) node and the f-structure

associated with its mother node, respectively. The = symbol in the functional equations

is the standard unification operator.

(2.1)
S −→ NP VP

(↑ subj) = ↓ ↑ = ↓
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The phrase structure rule in (2.1) is interpreted as follows: the node S has a left

daughter NP and a right daughter VP, the f-structure associated with S unifies with

the f-structure for VP, while the value of the subj attribute of the f-structure for S

unifies with the f-structure associated with the NP.

The notation (f subj) denotes the f-structure f applied to the attribute subj, i.e.

the value of that attribute in f . Function application is left-associative so (f xcomp

subj) is the same as ((f xcomp) subj) and denotes the value of the subj attribute in

the f-structure (f xcomp).

Figure 2.1 shows the c-structure and the f-structure for the English sentence But

stocks kept falling. The nodes in the c-structure are associated with functional equa-

tions. The equations on the phrasal nodes come from the phrase-structure rules; the

ones on the terminals come from lexical entries. The accompanying f-structure is the

minimal f-structure satisfying the set of constraints imposed by this set of equations.

Two of the sub-f-structures are connected with a line; this notation is a shorthand

signifying that the f-structures are identical.

Semantic forms The values of the pred attribute are so called semantic forms: how-

ever, rather than representing semantics they correspond to subcategorization frames

for lexical items. They encode the number and the grammatical function of the syn-

tactic arguments the lexical item requires. For example ‘fall〈subj〉’1 means that fall

needs one argument, with the grammatical function subj. Semantic forms are uniquely

instantiated, i.e. they should be understood as having an implicit index: only semantic

forms with an identical index are considered equal. This ensure that semantic forms

corresponding to two distinct occurrences of a lexical item in a sentence cannot be

unified. For example in the f-structure for the sentence:

(2.2) The big fish devoured the little fish.

the two semantic forms ‘fish’1 and ‘fish’2 are distinct and cannot be unified.

The line connecting two f-structures to signify that they are identical also implies

that the implicit indices in the semantic forms are identical.
1In ‘keep〈xcomp〉subj’ the subj function is outside the brackets: this notation is used to indicate

that the “raised” subject, which keep shares with its xcomp argument; keep does not impose semantic
selectional restrictions on this raised subject.
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S

↓∈(↑adjunct)
CC

But
(↑pred)=‘but’

(↑subj)=↓
NP

↑=↓
N

stocks
(↑pred)=‘stock’

(↑num)=pl

↑=↓
VP

↑=↓
V

kept
(↑pred)=‘keep〈xcomp〉subj’

(↑subj)=(↑xcomp subj)

(↑xcomp)=↓
VP

↑=↓
V

falling
(↑pred)= ‘fall〈subj〉’



adjunct

{[
pred ‘but’

]}
subj

[
pred ‘stock’
num pl

]
pred ‘keep〈xcomp〉subj’

xcomp

[
subj [ ]

pred ‘fall〈subj〉’

]


Figure 2.1: LFG representation of But stocks kept falling

12



Well-formedness of f-structures F-structures have three general well-formedness

conditions imposed on them (following Bresnan and Kaplan (1982)).

Completeness An f-structure is locally complete iff it contains all the governable

grammatical functions that its predicate subcategorizes for. An f-structure is

complete iff all its sub f-structures are locally complete. Governable grammatical

functions correspond to possible types of syntactic arguments and include subj,

obj, obj2, xcomp, comp, obl.

Coherence An f-structure is locally coherent iff all its governable grammatical func-

tions are subcategorized for by its local predicate. An f-structure is coherent iff

all its sub f-structures are locally coherent.

Consistency In a given f-structure an attribute can have only one value.2

Together these constraints ensure that all the subcategorization requirements are

satisfied and that no non-governed grammatical functions occur in an f-structure.

Long-distance dependencies and functional uncertainty Some phenomena in

natural languages such as topicalization, relative clauses and wh-questions introduce

long distance dependencies. Those are constructions where a constituent can be arbi-

trarily distant from its governing predicate.

(2.3) What1 did she never suspect she would have to deal with �1?

In an LFG analysis of (2.3) the interrogative pronoun what has the grammatical

function focus in the top-level f-structure and at the same time the function obj in

the embedded f-structure corresponding to the prepositional phrase introduced by with

at the end of the sentence. In principle an unbounded number of tensed clauses can

separate the interrogative pronoun from its governing predicate.

In order to express such constraints involving unbounded embeddings, LFG resorts

to functional equations with paths through the f-structures written as regular expres-

sions. Such equations are referred to as functional uncertainty equations. For example

to express the constraint that the value of the focus attribute is equal to the value of
2This constraint follows automatically if we regard f-structures as functions.
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the obj attribute arbitrarily embedded in a number of comps or xcomps one would

write

(f focus) = (f {comp | xcomp}∗ obj) .

The vertical bar operator | is indicates the disjunction of two expressions, while the

Kleene star ∗ operator has the standard meaning of a string of 0 or more of the preceding

expressions.

2.2 LFG parsing

In this section I briefly review common approaches to parsing natural language with

LFG grammars and then describe in some detail the wide-coverage treebank-based LFG

acquisition methodology developed at DCU. This will serve as background to my own

work on integrating machine learning techniques within this approach.

Computational implementations of LFG and related formalisms such as Head-

Driven Phrase-Structure Grammar (HPSG) are sometimes described as deep grammars.

This term highlights the fact that computational work within these frameworks aims at

parsing natural language text into information-rich, linguistically plausible representa-

tions which account for complex phenomena such as control/raising and long-distance

dependencies. They provide a level of syntax abstract and rich enough for interfacing

with semantics. Until relatively recently, data-driven methods for processing language,

such as parsers based on Probabilistic Context Free Grammars (PCFG), did not pro-

vide such rich structures but rather more “shallow”, “surfacy” representations such as

basic constituency trees.

The level of f-structures in LFG is intermediate between a basic constituency tree

and a semantic representation. The higher level of abstraction as compared to c-

structures can be useful for applications such as e.g. Question Answering, where we

would like to have access to some approximation of argument structure. Since the f-

structures abstract over surface word order they are more appropriate for this purpose:

e.g. two English sentences differing only in adverb placement will receive the same

f-structure representation even though their c-structures differ. This benefit is even

more pronounced in languages with flexible constituent order, where e.g. core verb

14



arguments can appear pre- or postverbally. Additionally, at f-structure level, many

dependencies between predicates and their displaced arguments, such as in questions,

relative clauses or topicalization, are resolved, which further eases the task of matching

similar meanings expressed by means of alternative constructions.

Initial work on parsing with deep grammars was based on hand-writing the gram-

mars and using a parsing engine specialized to the grammatical formalism in question

to process sentences. In the context of LFG, the Pargram project (Butt et al., 2002)

has been developing wide-coverage hand-written grammars for a number of languages,

using the XLE parser and grammar development platform (Maxwell and Kaplan, 1996).

Such grammars have been subsequently coupled with stochastic disambiguation models

trained on annotated treebank data which choose the most likely analysis from among

the ones proposed by the parser (Riezler et al., 2001; Kaplan et al., 2004).

2.2.1 Treebank-based LFG parsing

Hand-written LFG grammars such as those developed for the Pargram project can

offer relatively wide coverage. However, their development takes a large amount of

time dedicated by expert linguists, and the coverage still falls short in comparison to

that of shallower, probabilistic parsers which use treebank grammars.

This bottleneck caused by manual grammar writing has motivated an alternative

approach to deep parsing, inspired by probabilistic treebank-based parsers. The idea is

to exploit a treebank and automatically convert it to a deep-grammar representation.

Most research in this framework has used the English Penn II treebank (Marcus et al.,

1994). In addition to constituency trees this treebank employs a number of extra

devices to provide information necessary for the recovery of predicate-argument-adjunct

relations. The most important ones are traces coindexed with phrase structure nodes,

and function labels indicating grammatical functions and semantic roles for adjuncts.

Early work on converting the Penn treebank to a deep-grammar representation and

using this resource to build a data-driven deep parser was carried out within the Tree

Adjoining Grammar (TAG) formalism (Xia, 1999). Subsequently, similar resources

were developed for other grammar formalisms: LFG (Cahill et al., 2002, 2004), HPSG

(Miyao et al., 2003; Miyao and Tsujii, 2005) and Combinatory Categorial Grammar
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(CCG) (Clark and Hockenmaier, 2002; Clark and Curran, 2004).

DCU LFG parsing architecture

The treebank-based parsing research within the HPSG and CCG frameworks follows

a similar pattern: the original treebank trees are semi-automatically corrected and

modified to make them more compatible with the target linguistic representations.

Then a conversion algorithm is applied to the treebank trees, and produces as a results

a collection of HPSG signs or CCG derivations. This transformed treebank is then

used to extract a grammar and train a stochastic disambiguation model which works

on packed chart representations (feature forests (Miyao and Tsujii, 2002, 2008)) and

chooses the most likely parse from among the ones proposed by a dedicated HPSG or

CCG parser.

The projection architecture of LFG with the two levels of syntactic representation

linked via functional annotations on phrase structure rules facilitates an alternative,

more modular implementation strategy. The parsing process is divided into two steps:

c-structure parsing and f-structure construction.

Treebank annotation A key component in the DCU LFG parsing architecture is

the LFG annotation algorithm. It is a procedure which walks the c-structure trees

and annotates each node with functional equations. The result is an annotated c-

structure tree such the one depicted in Figure 2.1. Of course the structure of the tree

underdetermines the set of constraints that defines the corresponding f-structure, so the

annotation algorithm uses additional sources of information to produce the equations:

Head table. This table specifies, for each local subtree of depth one, which constituent

is the head daughter. Similar tables are used in treebank-based lexicalized proba-

bilistic parsers, and the annotation algorithm for the English Penn treebank uses

an adapted version of the head table from Magerman (1994).

Function labels. Function labels in the English Penn treebank annotate some nodes

with their grammatical function, and label some adjuncts with semantic roles.

Grammatical function labels are very useful since they can be mapped straight-

forwardly to LFG functional equations.
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Coindexed traces. Traces in the English Penn treebank provide information neces-

sary to recover predicate-argument structure, identify control/raising construc-

tions and resolve long-distance dependencies.

Integrated and pipeline models There are two alternative approaches to LFG

parsing within the general DCU architecture. The integrated model works as follows.

The original treebank trees are annotated with functional equations. This collection

of annotated trees is used to train a PCFG parser or a lexicalized probabilistic parser

such as (Collins, 1999; Charniak, 2000; Charniak and Johnson, 2005). The functional-

equation-annotated nodes are treated as atomic phrase labels and thus the parser learns

to output trees with such labels. To process new text, the annotated-treebank-trained

model is used to produce a tree. Then the function equations encoded on the labels

are collected and evaluated using a dedicated LFG constraint solver, which produces

the f-structure they define.

The pipeline model takes a more modular approach. The c-structure parsing

model (again using some off-the-shelf data driven parsing engine) is trained on original

treebank trees. When processing a new sentence, it is first parsed into a basic c-

structure tree. The annotation algorithm is run on this tree, and the resulting equations

are again evaluated to obtain an f-structure. The bare c-structure tree does not contain

function labels or traces – the annotation algorithm will still work without those but

may be less accurate. For this reason there is a module which adds function labels to

the c-structure tree.

For both the integrated and pipeline models there is a non-local dependency (NLD)

resolution module which deals with non-local phenomena such as raising/control con-

tructions and long distance dependencies. Figure 2.2 illustrates the complete LFG

parsing architecture in the pipeline version. In the work described in the rest of this

thesis I always assume the pipeline architecture: its modular design makes it easy to

improve specific components in a piecewise fashion, independently of each other. By

breaking up the task it also reduces model size and permits more fine-grained control

over the features used for each component.
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Figure 2.2: Pipeline LFG parsing architecture

Morphological analyzer The first module in the pipeline is the morphological an-

alyzer. For English, which has a reduced amount of inflectional morphology it is a

simple dictionary which associates word forms with their POS tags and lemmas. POS-

tagging is either integrated in the c-structure parser, or an external POS-tagger may

be used. The lemmas are looked up in the dictionary while running the annotation

algorithm since they are needed to construct the semantic forms. For morphologically

richer languages a more sophisticated morphology module can be beneficial: Chapter

6 describes the development of such a module for use with the LFG parsing pipeline.

C-structure parsing A c-structure parser can be any data-driven statistical parser

which can be trained on a treebank. This approach allows us to leverage advances

in parsing by using state-of-the-art components such as the parser of Charniak and

Johnson (2005). On the other hand, the use of c-structure parser within a pipeline

means that decisions are taken early, and if this component chooses a wrong tree, this

mistake will not be undone in later processing stages.

Function labeler C-structures labeled with function labels allow the annotation al-

gorithm to produce more accurate functional equations. For some languages and tree-

banks they are even more important than for English – if c-structures are flat, most

syntactic information resides in the grammatical function labels. Rich function labeling

also reduces the amount of work that needs to be done within the f-structure annota-

tion algorithm, since it can simply exploit the straightforward mapping from function

labels to LFG annotations. For those reasons it is highly desirable to have an accurate

data-driven function label model. Chapter 5 discusses research on developing such a

model for the Spanish treebank and using it for Spanish LFG parsing. Additionally it

introduces a high-performing functional labeler for English, which is also trained and

evaluated on Chinese treebank data.
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NLD module Prior to the application of the NLD module the LFG parser outputs

so-called proto f-structures. The grammatical functions used to analyze wh-questions,

relatives and topicalization, topic and focus are not resolved, i.e. they are not iden-

tified with f-structures at the level where they fulfill subcategorization requirements of

their governing predicate. The NLD module resolves those dependencies; the module

is described in detail in Cahill et al. (2004). In brief, the possible resolution candi-

dates are generated, and they are ranked according to the product of two scores: the

probability of the subcategorization frame given the lemma, and the probability of the

path through f-structure from the source grammatical function to the target (or a fi-

nite approximation of a functional uncertainty equation), given the source grammatical

function. Both conditional probabilities are obtained from f-structures generated for

treebank trees, via Maximum Likelihood estimates.

2.3 GramLab – Treebank-Based Acquisition of Wide-Coverage

LFG Resources

The approach to LFG grammar acquisition and parsing outlined above has been applied

mainly to the English Penn treebank. The aim of the GramLab project is to attempt

to port this architecture to other languages and treebanks. A successful adaptation of

the method would provide valuable NLP resources for those languages and would also

potentially enable multilingual applications such as cross-language information retrieval

or data-driven transfer-based machine translation.

The challenge is to investigate to what degree the methodology developed for En-

glish will work in the context of languages with possibly quite different characteristics.

The payoff is that we learn how to make language processing more robust in the face

of the variety characterizing human languages. Research withing GramLab has investi-

gated treebank-based LFG parsing for Japanese (Oya and van Genabith, 2007), Chinese

(Burke et al., 2004b; Guo et al., 2007), German (Cahill et al., 2005), French (Schluter

and van Genabith, 2007), Arabic (Al-Raheb et al., 2006) and Spanish (O’Donovan

et al., 2005; Chrupa la and van Genabith, 2006a,b).

The research described in this thesis has been carried out within the GramLab
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project. I have investigated the issues arising when adapting the DCU approach to

LFG parsing to the Spanish Cast3LB treebank. The insights learned from this work

have informed my research on applying machine-learning methods to develop robust

language-independent morphology and function labeling modules and thus minimiz-

ing the effort that has to be devoted to developing the highly language-specific LFG

annotation algorithms.
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Chapter 3

Machine Learning

3.1 Introduction

In this chapter I provide a brief introduction to the field of supervised machine-learning

and give an overview of several machine-learning algorithms useful in Natural Language

Processing. In Section 3.2 I present four algorithms used for classification: Perceptron,

k-nearest-neighbors, MaxEnt and Support Vector Machine. In Section 3.3 I briefly

discuss approaches to the sequence labeling task.

3.1.1 Supervised learning

In supervised learning the goal is to learn a function

h : X → Y (3.1)

where x ∈ X are inputs and y ∈ Y are outputs. The input objects are called instances,

or examples, and they can be any kind of object, depending on the particular learning

task: in NLP they could be for example documents to classify, strings of words to tag

with POS-sequences or sentences in the source language to translate into the target

language. Depending on the nature of the output space Y, learning tasks can be

categorized into several types:

• Binary classification: Y = {−1,+1}

• Multiclass classification: Y = {1, . . . ,K} (finite set of labels)
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• Regression: Y = R

• Structured prediction: here the outputs in Y are complex. For example, in a

sequence labeling task such as POS-tagging, Y = {1, . . . ,K}n, i.e. the output is

a sequence of labels of length n equal to the length of the input string.

3.1.2 Feature representation

The prediction is based on the feature function Φ : X → F . The function Φ takes an

input object and extracts features which are useful in predicting the output. Generally

the feature space F most common in machine learning is F = RD, i.e. D-dimensional

real vector space. Specifically in NLP, the features will typically either be binary or

will be symbols rather than numbers; the details depend on the learning algorithm.

Feature binarization

For algorithms which require binary features, we can extract symbolic features from

instances and then binarize the output vectors of symbols. A common way of binarizing

features involves mapping each feature-value pair to a new feature and assigning it 1

if it is active and 0 otherwise. Thus for each original symbolic feature i we create as

many new binary features as the number of possible values for feature i; one of them

is set to 1, while all the others are 0. This gives rise to sparse binary vectors with few

non-zero elements. For a feature vector x of length d the corresponding binary vector

x′ is given by:

x′ = ([[x1 = V11 ]], [[x1 = V12 ]], ..., [[x1 = V1n ]], ..., ..., [[xd = Vd1 ]], ..., [[xd = Vdm ]]) (3.2)

where the jth element of the set of possible values for the ith feature is Vij and where

[[p]] =


1 if p is true

0 otherwise .

In the rest of this chapter I will concentrate on two learning tasks: classification,

that is learning to assign a label from a (small) finite set to examples, and sequence
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labeling, that is assigning sequences of such labels to examples which are typically

strings of words.

3.2 Classification

3.2.1 Perceptron

One of the simplest classification algorithms is the perceptron (Rosenblatt, 1958). Like

more complex algorithms presented later in this chapter (MaxEnt and SVMs), it is a

linear classifier; i.e. in the case of binary classification, it learns the hyperplane sepa-

rating the positive and the negative examples in a multidimensional feature space. I

describe it here as a basic, easy-to-understand instance of a linear hyperplane-based

classification algorithm.

The separating hyperplane is defined by a weight vector w of size d and the bias

b: the weights w0, w1, ..., wd and the bias b correspond to the hyperplane equation

w0x0 + w1x1 + ...+ wdxd + b = 0.

The decision function assigning the example to either the positive or negative class

has the following form:

f(x,w, b) = sign(w · Φ(x) + b) = sign

(
d∑
i=1

wiΦ(x)i + b

)
(3.3)

That is, if the dot product of the weight vector and the feature vector of example x

(plus bias b) is > 0 the example is classified as positive, if it is < 0 it is classified as

negative.

The learning problem thus consists in learning the parameters (the weights and

the bias) from the set of training examples. The perceptron is an online learning

algorithm, i.e. it processes one training example at a time. Initially the parameters are

set to zero. If the current example is correctly classified by the current parameters then

the algorithm proceeds to the next step. If the example is misclassified, the parameters

are updated so that it is correctly classified. The algorithm iterates over the training

examples until no further updates are necessary. The algorithm eventually converges to

parameter settings that correctly classify the whole training set (if the data is linearly
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Perceptron(x1:N , y1:N , I):
1: w← 0; b← 0
2: wa ← 0; ba ← 0
3: c← 0
4: for i = 1...I do
5: for n = 1...N do
6: if yn(w · Φ(xn) + b) ≤ 0 then
7: w← w + ynΦ(xn); b← b+ yn
8: wa ← w + cynΦ(xn); ba ← ba + cyn
9: c← c+ 1

10: return (w −wa/c, b− ba/c)

Figure 3.1: Averaged Perceptron algorithm

Figure 3.2: Example separating hyperplanes in two dimensions

separable).

A modification to the basic algorithm, the averaged perceptron is able to

achieve better generalization to unseen examples. The final parameters which the al-

gorithm returns are the average of all the hypothesized parameters encountered during

the algorithm run. An efficient implementation of the averaged perceptron algorithm

is shown in Figure 3.1 (Daumé III, 2006). It works similarly to the basic version, but in

addition to current parameters (w, b), the averaged parameters (wa, ba) are maintained

(see lines 2 and 8). When an example is incorrectly classified, in line 8 those parameters

are updated, but the update is multiplied by the averaging count c. Finally in line 10,

the algorithm returns (w−wa/c, b− ba/c), which corresponds to the average of all the

values the parameters (w, b) took.

If the data is linearly separable, there are obviously an infinite number of hyper-

planes which will separate the training examples. The solution found by the perceptron

algorithm depends on the order in which the examples are processed. Figure 3.2 shows

three solutions to the problem of separating the positive examples (blank points) from

the negative examples (filled points) found by the averaged perceptron algorithm de-

scribed above. Intuitively, some lines classify better than others: for example the dashed

blue line seems to be a better solution than the solid red line. This intuition can be
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conceptualized as the notion of a margin: we want to find solutions which maximize

the distance between the separating hyperplane and the training examples. It has been

shown that a linear classifier’s generalization error to unseen test data is proportional to

the inverse of the margin (Vapnik, 2006; Freund and Schapire, 1998). The perceptron

algorithm does not maximize margin; an online learning algorithm based on the per-

ceptron idea which does is the Margin Infused Relaxed Algorithm (MIRA) (Crammer

and Singer, 2003). The most common maximum-margin algorithm is Support Vector

Machine discussed in Section 3.2.4.

The version of perceptron presented here can only deal with linear classification.

This limitation can be lifted by using the algorithm in conjunction with the “kernel

trick” (Aizerman et al., 1964); kernels are discussed in Section 3.2.4 in connection with

Support Vector Machines.

3.2.2 K-NN

Another simple classification learning method is the k-nearest-neighbors algorithm (Fix

and Hodges, 1951; Cover and Hart, 1967). The idea is to assign to a new example the

class label associated with the majority of instances in its neighborhood. The neigh-

borhood is determined by the distance in the multidimensional feature space induced

by the feature vectors representing the instances. The parameter k specifies how many

nearest instances form the neighborhood.

In the case of real-valued features Euclidean distance is used, i.e. the distance

∆(x, x′) between instances x and x′ is:

∆(x, x′) =

√√√√ d∑
i=1

(Φ(x)i − Φ(x′)i)2. (3.4)

In NLP k-NN is frequently used with symbolic features, which may encode word

forms, characters, morphological features and other non-numeric attributes. In this

case the most basic distance metric is the Hamming distance, also called overlap metric

or L1 metric. It defines the distance between two instances to be the sum of per-feature

distances; for symbolic features the per-feature distance is 0 for an exact match and 1
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for a mismatch.

∆(x, x′) =
∑
i

δ(Φ(x)i,Φ(x′)i) (3.5)

where

δ(Φ(x)i,Φ(x′)i) =


0 if Φ(x)i = Φ(x′)i

1 if Φ(x)i 6= Φ(x′)i
(3.6)

For a vector with a mixture of symbolic and numeric values, the above definition

of per feature distance is used for symbolic features, while for numeric ones we use the

scaled absolute difference (Daelemans and van den Bosch, 2005):

δ(Φ(x)i,Φ(x′)i) =
Φ(x)i − Φ(x′)i
maxi −mini

. (3.7)

The k-NN algorithm modified to use this distance metric is referred to as IB1 (Aha

et al., 1991). Daelemans and van den Bosch (2005) interpret the k parameter differently

from the traditional meaning: instead of k nearest neighbors they consider neighbors at

k nearest distances. This makes a difference in the case where more than one instance

has the same distance to the test instance.

Feature weighting

It is very common to use the IB1 algorithm with some feature weighting method,

where the per-feature distance is multiplied by the weight of the feature for which it is

computed. That is:

∆(x, x′) =
∑
i

wiδ(Φ(x)i,Φ(x′)i) (3.8)

where wi is the weight of the ith feature. There are many ways to find a good weight

vector w. Daelemans and van den Bosch (2005) describe two entropy-based methods

and a χ2-based method.

Information gain Information gain is a measure of how much knowing the value of

a certain feature for an example decreases our uncertainty about its class, i.e. it is the

difference in class entropy with and without information about the feature value.
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wi = H(Y )−
∑
v∈Vi

P (v)×H(Y |v) (3.9)

where wi is the weight of the ith feature, Y is the set of class labels, Vi is the set of

possible values for the ith feature, P (v) is the probability of value v, and class entropy

is H(Y ) = −
∑

y∈Y P (y) log2 P (y), while P (Y |v) is the conditional class entropy given

that the feature value is v.1

Gain ratio Information gain tends to assign excessive weight to features with a large

number of values. For example if each instance in the union of the training set and test

set has a unique value for a certain feature, then knowing the value of this feature gives

us certainty as to the class label for the instances in the training set. However it is

useless for predicting the class of a test instance as there are no training instances with

the same value for this feature. To remedy this bias information gain can be normalized

by the entropy of the feature values, which gives the gain ratio:

wi =
H(Y )−

∑
v∈Vi

P (v)×H(Y |v)
H(Vi)

(3.10)

For a feature with a unique value for each instance in the training set, the entropy of

the feature values in the denominator will be maximally high, and will thus give a low

weight for this feature.

Chi-squared Daelemans and van den Bosch (2005) adapt the χ2-based attribute

selection method proposed by White and Liu (1994) as an alternative to information-

theoretic methods. The following equation defines the χ2 statistic for a problem with

k classes and m values for feature F :

χ2 =
k∑
i=1

m∑
j=1

Eij −Oij
Eij

(3.11)

where Oij is the observed number of instances with the ith class label and the jth value

of feature F . Eij is the expected number of such instances in case the null hypothesis,

i.e. that the feature F does not predict the class, is true. The expected value is defined
1Numeric values need to be temporarily discretized for this to work.
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as:

Eij =
n·jni·
n··

(3.12)

where nij is the frequency count of instances with the ith class label and the jth value

of feature F , and

n·j =
k∑
i=1

nij (3.13)

ni· =
m∑
j=1

nij (3.14)

n·· =
k∑
i=1

m∑
j=0

nij (3.15)

i.e. the total number of instances. Daelemans and van den Bosch (2005) propose to

either use the χ2 values as feature weights in Equation 3.8, or alternatively to use the

shared variance measure:

SVF =
χ2
F

N × (min(k,m)− 1)
(3.16)

where k is the number of classes, m the number of values for feature F and N the

number of instances.

Distance-weighted class voting

In the basic version of the k-NN algorithm all the instances in the neighborhood are

weighted equally for computing the majority class to be assigned to a new instance.

However, we may want to treat the votes from very close neighbors as more important

than votes from more distant ones. A variety of distance weighting schemes have been

proposed to implement this idea; see (Daelemans and van den Bosch, 2005) for details

and discussion.

The k-NN algorithm, unlike the perceptron, is not a linear classifier, i.e. it does not

depend on the assumption that the data is linearly separable. The basic k-NN and its

various modifications have been referred to as lazy learners or memory-based learners.

During learning little “work” is done by the algorithm: the training instances are simply

stored in memory in some efficient manner. It is during prediction that most of the
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actual computation takes place: the test instance is compared to the training instances,

the neighborhood is calculated, and the majority label assigned. In k-NN no abstraction

is performed, the model generalizes based on directly comparing the test instance with

labeled training examples. No information is discarded, all the “exceptional” and low

frequency items are still available for informing the prediction.

The k-NN algorithm is one of the Machine Learning methods used for function

labeling experiments for Spanish in Section 5.2.

3.2.3 Logistic Regression and MaxEnt

Maximum Entropy (or MaxEnt) models are linear probabilistic classifiers commonly

used in NLP. In multiclass classification they output probability distribution over class

labels. MaxEnt models correspond to logistic regression models, but are derived in

an alternative way. In this section I introduce linear and logistic regression and then

present the MaxEnt classifier as typically used in NLP.

Linear regression

In linear regression models the prediction function h introduced in Equation 3.1 is

instantiated as h : X → R, i.e. we try to build models which predict outcomes in the

set of real numbers based on example objects, or observations, in X . The prediction is

based on the features, or predictors, which are also typically real numbers. The feature

function Φ maps observations to vectors of predictors, i.e. Φ : X → Rd. The model is

defined by the equation:

y = w0 +
d∑
i=1

wiΦ(x)i (3.17)

where y is the outcome, Φ(x)1..Φ(x)d are the feature values, w1..wd are the feature

weights, and w0 is the intercept (or bias). We can eliminate w0 by adding a special

Φ(x)0 feature which is always set to 1, and reduce the above equation to the dot product

between the weight vector and the feature vector:

y = w · Φ(x) (3.18)
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Note the similarity to Equation 3.3 for the linear classifier: in the case of binary clas-

sification we use the sign of the dot product to assign the object to the class; for linear

regression the value of the dot product is the outcome we are predicting.

In order to learn a linear regression model we minimize the sum squared error over

the training set of M examples:

cost(w) =
M∑
j=0

(w · Φ(x(j))− y(j)
obs)

2 (3.19)

There is a closed-form formula for choosing the best weights w, given by:

w = (XTX)−1XTy (3.20)

where the matrix X contains training example features, and y is the vector of outcomes.

Logistic regression

In logistic regression we use the linear model to perform classification, i.e. assign prob-

abilities to class labels. For binary classification we want to predict the probability

of the instance being in the positive class given the instance: p(y = true|x). But the

predictions of a linear regression model are real numbers y ∈ R, whereas probabilities

range between 0 and 1: p(y = true|x) ∈ [0, 1]. To ensure that the response is in the

valid range we can instead predict the logit function of the probability:

ln
(

p(y = true|x)
1− p(y = true|x)

)
= w · Φ(x) (3.21)

p(y = true|x)
1− p(y = true|x)

= ew·Φ(x) (3.22)

Solving for p(y = true|x) we obtain:

p(y = true|x) =
ew·Φ(x)

1 + ew·Φ(x)
(3.23)

=
exp

(∑d
i=0wiΦ(x)i

)
1 + exp

(∑d
i=0wiΦ(x)i

) (3.24)
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In order to learn a logistic regression model we use conditional likelihood estimation.

We choose the weights which make the probability of the observed outcomes (y) be the

highest, given the observations (x). For a training set with N examples:

ŵ = argmax
w

N∏
i=0

pw(y(i)|x(i)) (3.25)

There is no close-form solution to this equation. It is a problem in convex optimization;

several special purpose and generic solutions are available to train those models, e.g.

• L-BFGS (Limited-memory Broyden-Fletcher-Goldfarb-Shanno method)

• gradient ascent

• conjugate gradient

• iterative scaling algorithms

Maximum Entropy Models

Logistic regression with more than two classes is referred to as multinomial logistic

regression, and also known as Maximum Entropy (MaxEnt). The MaxEnt equation

generalizes Equation 3.24 above:

p(y|x) =
exp

(∑d
i=0wiΦ(x, y)i

)
∑

y′∈Y exp
(∑d

i=0wiΦ(x, y′)i
) (3.26)

The denominator is the normalization factor usually called Z used to make the score

into a proper probability distribution:

p(y|x) =
1
Z

exp
d∑
i=0

wiΦ(x, y)i (3.27)

Indicator features Note that in the above the feature function Φ is parameterized

for the class label y. In MaxEnt modeling typically binary indicator features are used,

which depend on the class label. Thus Φ(x, y)i ∈ {0, 1}. For example, in the case of

part of speech tagging, if the object x is the word w0 in the surrounding context, and
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class label y = VBG, then an example feature might be:

Φ(x, y)1 =


1 if suffix3(w0) = ing ∧ y = VBG

0 otherwise

The model weight for this feature will indicate how strong a predictor the suffix “ing”

is for the label VBG.

Maximum Entropy and Maximum Likelihood The name Maximum Entropy

comes from the fact that solving the optimization problem for finding the multinomial

logistic regression model whose weights maximize the likelihood of the training data is

equivalent to finding the probability distribution p∗ with maximum entropy among the

set of distributions C which are consistent with the constraints imposed by the features

and the training data:

p∗ = argmax
p∈C

H(p) (3.28)

where the entropy of the distribution of discrete random variable X is given by:

H(X) = −
∑
x

P (X = x) log2 P (X = x) (3.29)

This duality was demonstrated by Berger et al. (1996). Maximizing the entropy subject

to some constraints is motivated by the well-known Occam’s razor principle: our model

should be as simple as possible while still predicting the data; in this case “simple”

is interpreted as maximally uniform, since the uniform distribution has the highest

entropy. The constraints imposed on the probability model are encoded in the features:

the expected value of each one of I indicator features fi under a model p should be equal

to the expected value under the empirical distribution p̃ obtained from the training

data:

∀i ∈ I, Ep[fi] = Ep̃[fi] (3.30)
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where fi(x, y) = Φ(x, y)i. The expected value under the empirical distribution is given

by:

Ep̃[fi] =
∑
x

∑
y

p̃(x, y)fi(x, y) =
1
N

N∑
j

fi(xj , yj) (3.31)

The expected value according to model p is:

Ep[fi] =
∑
x

∑
y

p(x, y)fi(x, y) (3.32)

However, this requires summing over all possible object - class label pairs, which is in

general not possible. Therefore the following standard approximation is used (Rosen-

feld, 1996):

Ep[fi] =
∑
x

∑
y

p̃(x)p(y|x)fi(x, y) =
1
N

N∑
j

∑
y

p(y|xj)fi(xj , y) (3.33)

where p̃(x) is the relative frequency of object x in the training data; this has the

advantage that p̃(x) for unseen events is 0. The term p(y|x) is calculated according to

Equation 3.26.

Regularization Although the Maximum Entropy principle used in MaxEnt modeling

ensures that the models are maximally uniform subject to the constraints, they can still

overfit the training data, resulting in poor generalization to unseen instances. There

is a technique called regularization which results in relaxing the requirement that the

constraints be satisfied exactly and results in models with smaller weights which may

perform better on new data. Instead of solving the optimization in Equation 3.25,

repeated here in log-space form:

ŵ = argmax
w

M∑
i=0

log pw(y(i)|x(i)), (3.34)

we solve instead the following modified problem:

ŵ = argmax
w

M∑
i=0

log pw(y(i)|x(i)) + αR(w) (3.35)
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where R is the regularizer used to penalize large weights (Jurafsky and Martin, 2008).

We can use a regularizer which assumes that weight values have a Gaussian distribution

centered on 0 and with variance σ2 (Chen and Rosenfeld, 1999). By multiplying each

weight by a Gaussian prior we will maximize the following equation:

ŵ = argmax
w

M∑
i=0

log pw(y(i)|x(i))−
d∑
j=0

w2
j

2σ2
j

(3.36)

where σ2
j are the variances of the Gaussians of feature weights. This modification

corresponds to using a maximum a posteriori rather than maximum likelihood model

estimation. In practice it is common to constrain all the weights to have the same

global variance, which gives a single tunable algorithm parameter, whose optimal value

can be found on held-out data or by cross-validation.

The MaxEnt algorithm is one of the Machine Learning methods used for function

labeling experiments for Spanish in Section 5.2. I also employ Maximum Entropy

models for the Morfette morphological analysis system described in Sections 6.4 and

6.5.

3.2.4 Support Vector Machines

Support Vector Machine (SVM) is a machine learning algorithm which exploits two

two key ideas: large-margin classification, and the “kernel trick”.

Large margin

The idea of large margin classification, mentioned briefly in Section 3.2.1, is both intu-

itively appealing and theoretically motivated. Intuitively, it makes sense for the decision

boundary to be as far away from the training instances as possible: this improves the

chance that if the position of the data points is slightly perturbed, the decision boundary

will still be correct. Results from Statistical Learning Theory confirm these intuitions:

maintaining large margins leads to small generalization error (Vapnik, 1995).

Formally, the functional margin of an instance (x, y) with respect to some hyper-

plane (w, b) is defined to be

γ = y(w · Φ(x) + b) (3.37)
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Figure 3.3: Separating hyperplane and support vectors

Some data points will have the minimum functional margin: the functional margin

of the whole data set with respect to the hyperplane is then twice that quantity.

However, the functional margin can be made larger just by rescaling the weights by

some constant: (λw, λb) without changing the associated hyperplane. Hence we can

fix the functional margin to be 1 and minimize the norm of the weight vector (which

is equivalent to maximizing the geometric margin).

This results in the following quadratic programming optimization formulation of

the SVM learner: For linearly separable training instances ((x1, y1), ..., (xn, yn)) find

the hyperplane (w, b) that solves the optimization problem:

minimizew,b
1
2
||w||2

subject to yi(w · Φ(xi) + b) ≥ 1 ∀i∈1..n

(3.38)

This hyperplane separates the examples with geometric margin 2/||w||

Since SVM finds a separating hyperplane with the largest margin to the nearest

instance, this has the effect of the decision boundary being fully determined by a small

subset of the training examples, namely the nearest ones on both sides. Those instances

are the support vectors which SVM is named after.

Figure 3.3 shows the same data points as Figure 3.2. The solid line is the separating

hyperplane with the maximum margin with respect to the training data; the points on

the dotted line are support vectors.

Soft margin For datasets which are not linearly separable there will be no hyperplane

satisfying the constraints. To deal with such cases the version of SVM with soft margin

has been proposed. It works by relaxing the requirement that all data points lie outside

the margin, and introduces a penalty term which measures how much this requirement

is violated. For each offending instance there is a “slack variable” ξi which measures

how much it would have to be moved to make it obey the margin constraint. This leads
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to the following modified formulation:

minimizew,b
1
2
||w||2 + C

n∑
i=1

ξi

subject to yi(w · Φ(xi) + b) ≥ 1− ξi

∀i∈1..nξi > 0

(3.39)

where

ξi = max(0, 1− yi(w · Φ(xi) + b))

The hyper-parameter C is the cost of margin constraint violation, used to trade off

minimizing the norm of the weight vector versus classifying correctly as many examples

as possible. As the value of C tends towards infinity the soft-margin SVM approximates

the hard-margin version.

Kernel-induced feature spaces

As presented so far the SVM algorithm finds decision boundaries only for linearly

separable data. This limitation can be removed by exploiting the “kernel trick”. The

kernel technique depends on the fact that for some linear classification algorithms,

including SVM, there exist dual formulations, where the weight vector can be expressed

as a linear combination of training examples, and the algorithm only involves computing

dot products between the test instance and training instances.

Dual form The dual formulation of the optimal hyperplane for SVM is in terms of

support vectors, where SV is the set of indices of support vectors:

f(x, α∗, b∗) = sign

(∑
i∈SV

yiα
∗
i (Φ(xi) · Φ(x)) + b∗

)
(3.40)

The weights in this decision function are the Lagrange multipliers α∗. Points which

are not in the support vector set have no influence on the final decision. The dual
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Figure 3.4: Two dimensional classification example, non-separable in two dimensions,
becomes separable when mapped to 3 dimensions by (x1, x2) 7→ (x2

1, 2x1x2, x
2
2)

optimization problem has the following form:

minimize W (α) =
n∑
i=1

αi −
1
2

n∑
i,j=1

yiyjαiαj(Φ(xi) · Φ(xj))

subject to
n∑
i=1

yiαi = 0 ∀i∈1..nαi ≥ 0

(3.41)

The Lagrangian weights together with the support vectors determine the separating

hyperplane parameters (w, b) as follows:

w =
∑
i∈SV

αiyiΦ(xi) (3.42)

b = yk −w · Φ(xk) for any k such that αk 6= 0 (3.43)

Kernel trick Note that both the decision function used to predict classes in Equation

3.40 and the objective function that needs to be optimized during training in Equation

3.41 only use the data points inside dot products between instances. This allows to use

the “kernel trick”, which implicitly maps the data to a higher dimensional space without

actually needing to compute the mapped vectors, by replacing each occurrence of a dot

product with a kernel function (Aizerman et al., 1964). A kernel K : Rd × Rd → R

is a function which computes the dot product of a pair of real-valued vectors in the

kernel-induced feature space. For example the quadratic kernel

K(x,x′) = (x · x′)2 (3.44)

corresponds to mapping the vectors to a quadratic-dimensional space with the function

x 7→ (x1x1, ..., x1xn, x2x1, ..., x2xn, ..., xnx1, ..., xnxn)
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and then computing the dot product between them.

Data which is not separable in the original space usually becomes (more) separable

in the higher-dimensional, kernel-induced space. The geometric intuition behind this

idea is illustrated in Figure 3.4. In two dimensions the blank points are surrounded

by the black points, and thus there is no straight line separating the two classes. We

can, however, project the points into three dimensional space by using a map such as

(x1, x2) 7→ (x2
1, 2x1x2, x

2
2): the addition of a third dimension makes the two classes

easily separable by a plane.

An alternative intuition is that using kernel spaces permits us to use complex at-

tributes which model interactions between simple features of the original low-dimensional

representation. For example the quadratic kernel presented above models all conjunc-

tions of the original features, and it does so without incurring the cost of actually

explicitly computing the high-dimensional representations.

The “kernel trick” also makes it possible to work in infinite-dimensional spaces, such

as those induced by Gaussian kernels. A commonly used and empirically successful

Gaussian kernel used with SVM is the Gaussian Radial Basis Function (RBF), defined

as:

K(x,x′) = exp
(
−γ|x− x′|2

)
(3.45)

where

γ =
1

2σ2

and σ2 is the variance of the Gaussian. The RBF γ parameter can found using some

model selection method such as cross-validation or held out data. As the optimal value

of the soft-margin SVM cost parameter C depends on the choice of kernel parameters,

usually the model selection has to be done jointly for C and γ (or equivalent parameters

for other kernels).

Multiclass classification

SVM is essentially a binary classifier. The most common method to perform multiclass

classification with SVM, and other binary max-margin algorithms, is to train multiple

binary classifiers and combine their predictions to form the final prediction. This can
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be done in two ways:

• One-vs-rest (also known as one-vs-all): train |Y | binary classifiers and choose the

class for which the margin is the largest.

• One-vs-one: train |Y |(|Y | − 1)/2 pairwise binary classifiers, and choose the class

selected by the majority of them.

An alternative method is to make the weight vector, or the feature function Φ,

depend on the output y, and learn a single classifier which will predict the class with

the highest score:

y = argmax
y′∈Y

w · Φ(x, y′) + b (3.46)

Such multiclass extensions to the SVM algorithm have been proposed among others by

(Weston and Watkins, 1999; Crammer and Singer, 2001; Tsochantaridis et al., 2005).

The SVM algorithm is the best-performing Machine Learning method used for

function labeling experiments for Spanish in Section 5.2. I also employed SVM in

the function-labeling experiments described in Section 5.3, and in the context-sensitive

lemmatization work reported in Section 6.3.

3.3 Sequence Labeling

Assigning sequences of labels to sequences of some objects is a very common task

not only in NLP but also in fields such as bioinformatics. In NLP sequence labeling

encompasses tasks such as POS tagging, chunking (shallow parsing) and named-entity

recognition. In the general case, we want to learn a function h : Σ∗ → L∗ to assign

some sequence of labels from the label set L to the sequence of input elements from

the set Σ:

The most frequent, and the more easily tractable case is where each element of the

input sequence receives one label, i.e. the length of the input sequence is equal to the

length of the output sequence:

h : Σn → Ln

This constraint holds for POS or morphological tagging; in cases where it does not

naturally hold, such as chunking, we can decompose the task in such a way that it
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is satisfied. A common way of doing it using an encoding such as the so-called IOB

scheme, introduced by Ramshaw and Marcus (1995), where each element receives a

label indicating whether it is the initial element of a chunk X (B-X), a non-initial

element of a chunk X (I-X) or is outside of any chunk (O).

In the following discussion I will restrict my attention to the more constrained case

of input and output being of equal lengths. For concreteness, I will use POS tagging

as a running example, where the elements of Σ are words and the elements of L are

part-of-speech tags.

Local classifier Possibly the simplest approach to sequence labeling is to simply use

a regular multiclass classifier such as those discussed in Section 3.2, and make a local

decision for each word; predictions for previous words can be used in predicting the

current word. This straightforward strategy can give surprisingly good results.

MaxEnt with beam search If the classifier can output not just a hard decision,

but a score such as a probability for a given label, then we can combine the local

predictions in a less greedy fashion. One option is to use a probabilistic classifier in

combination with a beam search strategy to find a good global sequence of tags. This

method is used by (Ratnaparkhi, 1996): he proposes to train a conditional Maximum

Entropy model to predict tags for words wi given their context ci: the context includes

the focus word as well as a window of preceding and following words, and the tags of

the preceding words. The probability of the sequence of tags (t1, ..., tn) is decomposed

as:

P (t1, ..., tn|c1, ..., cn) =
n∏
i=1

P (ti|ci) (3.47)

For each word wi the beam search algorithm maintains the N (= beam size) highest

scoring tag sequences for words (w1, ..., wi−1) up to the previous word. Each of those

label sequences is combined with the current word wi to create the context ci, and the

Maximum Entropy Model is used to obtain the N probability distributions over tags

for word wi. Now we find N most likely sequences of tags up to and including word wi

by using Equation 3.47, i.e. by multiplying the probability of the sequence of tags up to

wi−1 with the probability for the tag ti given the context formed using that sequence,

40



and we proceed to word wi+1 if i ≤ n.

Maximum Entropy in conjunction with a specialized beam search algorithm is the

sequence labeling method which I chose for the Morfette morphological analysis sys-

tem described in Section 6.4.

A similar approach which uses the Viterbi algorithm to find the globally best se-

quence of tags instead of the beam search is discussed in the next section.

3.3.1 Maximum Entropy Markov Models

The Maximum Entropy Markov Models (MEMMs) approach to sequence labeling was

introduced by McCallum et al. (2000). The method is a combination of the Hidden

Markov Model (HMM) and the Maximum Entropy frameworks adapted to the sequence

labeling setting. A HMM is a generative model, where the probability of a tag sequence

given a sequence of words, P (T |W ) is modeled as P (W |T )P (T ) (via Bayes’ theorem).

In an n-order Markov model the probability of the current tag is conditioned on n

previous tags. Thus in a first-order HMM model in order to find the optimal sequence

of tags, we solve the following argmax:

T̂ = argmax
T

P (T |W )

= argmax
T

P (W |T )P (T )

= argmax
T

∏
i

P (wi|ti)
∏
i

P (ti|ti−1)

(3.48)

In a first-order MEMM the conditional probability of the tag sequence given the

word sequence is decomposed directly into the product of direct conditional probabilities

of tag given word and the previous tag:

T̂ = argmax
T

P (T |W )

= argmax
T

∏
i

P (ti|wi, ti−1)
(3.49)

Those local conditional probabilities are given by a maximum entropy model trained

on the true sequence of tags. During prediction, the previous tag is unknown, so the

previously predicted tag is used, and the argmax is solved using the Viterbi algorithm.
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In comparison to using beam search, the advantage of using dynamic programming

is that this is guaranteed to find the globally best solution. A potential problem arises

if we want to use second or higher-order Markov models (i.e. we want to condition

the decision about the current tag on two or more previous tags). For each additional

previous label that we want to consider we need to add another dimension to the

dynamic programming matrix which may make the computational cost prohibitive.

The beam search approach avoids this issue.

3.3.2 Conditional Random Fields and other structured prediction

methods

The methods described above are usually highly successful in practical applications

such as POS tagging. However they suffer from some theoretical shortcomings. The

greedy use of local classifiers risks suffering from error propagation, where an erroneous

prediction affects the subsequent predictions for the following words. Additionally,

non-local constraints on possible sequences are not enforced.

There is also the limitation to sequence labeling; ideally one would want to have

more general methods able to learn more types of structured outputs.

Conditional Random Fields (CRF) introduced by Lafferty et al. (2001) were one

of the first approaches of type (1); this algorithm is a generalization of the Maximum

Entropy framework to structured outputs. The equation determining the probability

of a structured output y given the input x is identical to the one used for multiclass

classification in Equation 3.26:

p(y|x) =
exp

(∑d
i=0wiΦ(x, y)i

)
∑

y′∈Y exp
(∑d

i=0wiΦ(x, y′)i
) (3.50)

Thus, unlike for MEMMs, here MaxEnt is used to learn a single exponential model for

the probability distribution over the set of possible label sequences. Since the set Y

contains structures such as sequences, the challenge here is to compute the sum in the

denominator. Lafferty et al. (2001) and Sha and Pereira (2003) show that given certain

constraints on Y and on Φ (specifically Φ should obey the Markov property, i.e. no

feature should depend on elements of y that are more than the Markov length l apart)
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dynamic programming techniques can be used to compute it efficiently.

The alternative to learning global probabilistic models such as CRFs is the paradigm

known as Learning and Inference, where predictions from local classifiers are taken as

input to the inference procedure which finds the globally best prediction. Work within

this framework includes (Roth, 2001; Carreras et al., 2002; Roth and Yih, 2004; Canisius

et al., 2006).

Recently several novel approaches to structured prediction have been proposed. It

is a fast-developing field of research in machine learning and a thorough discussion of

those developments is outside the scope of this chapter. Some of the more important

contributions include: structured and incremental Perceptron (Collins, 2002; Collins

and Roark, 2004), Maximum Margin Markov Networks (Taskar et al., 2004), SVMstruct

(Tsochantaridis et al., 2005), Searn (Daumé III, 2006), as well as research within the

discriminative reranking paradigm (Johnson et al., 1999; Collins, 2000; Shen et al.,

2003; Collins and Koo, 2005; Charniak and Johnson, 2005).

3.4 Summary

In this chapter I presented an overview of well-understood machine-learning algorithms,

used to solve binary and multiclass classification and sequence labeling tasks. I dis-

cussed several classification algorithms frequently used in Natural Language Processing.

The Perceptron, Logistic Regression (MaxEnt) and Support Vector Machines are essen-

tially linear classifiers which find a hyperplane separating the data in the feature space;

the Perceptron and the SVM can exploit the kernel trick to deal with non-linear clas-

sification. The k-nearest-neighbors algorithm is non-linear, and is based on the idea of

assigning points the same labels as the majority of their neighbors in the feature space.

Empirically the SVM algorithm tends to outperform the other methods for many

practical tasks. This high performance comes at a price: while the other algorithms

scale linearly in the number of training examples, the SVM can be O(N2) or even

O(N3), depending on the optimization algorithm used, which can make it impractical

for problems with large amounts of training data. For multiclass classification, another

consideration is the number of class labels: the performance of the k-NN algorithm is

constant with size of the class-set, while the other algorithms scale at best linearly.
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I have also briefly reviewed the techniques used to perform sequence labeling. The

simplest but often effective approach is to use a classifier to predict a label at each

position in the sequence, possibly using previous predictions as input for decisions

further on in the sequence. A better-motivated alternative is to combine scores of the

local predictions to find a globally good labeling by using beam search or dynamic

programming techniques. Finally, more sophisticated structured prediction approaches

such as CRF models are able to rank global labelings directly.

Since in sequence labeling the structures to learn are relatively simple often good

results can be obtained by using simple models, which also have the benefit of being

quite efficient to train and use.
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Chapter 4

Treebank-Based LFG Parsing

Resources for Spanish

4.1 Introduction

In this chapter I report on the work carried out on expanding the coverage of the Spanish

annotation algorithm in order to give an indication of the kind of issues involved in

porting this module to a new language and treebank, and provide background for

Section 5.2 in the next chapter.

One of the aims of my research is to test to what degree it is possible to achieve

high portability and language independence by learning as much information as possible

from annotated data. Therefore it was useful to focus on improving the LFG induction

methods for a language other than English and for which little previous work had been

carried out. I expanded the Spanish treebank-based grammar coverage and linguistic

analyses of O’Donovan et al. (2005). The revision and reworking of the Spanish LFG

induction system made it possible to experiment with learning the Cast3LB function

tags from the Spanish treebank.

4.1.1 The Cast3LB Spanish treebank

As input to the LFG annotation algorithm I use the output of Bikel’s parser (Bikel,

2002) trained on the Cast3LB treebank (Civit and Mart́ı, 2004) (compare Section 5.2.3).

Cast3LB contains around 3,500 constituency trees (100,000 words) taken from different
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genres of European and Latin American Spanish. The POS tags used in Cast3LB

encode morphological information in addition to Part-of-Speech information.

Due to the relatively flexible order of main sentence constituents in Spanish, Cast3LB

uses a flat structure for the S node. There is no VP node, but rather all complements

and adjuncts depending on a verb are sisters to the gv (Verb Group) node containing

this verb. An example sentence (with the corresponding f-structure) is shown in Figure

4.1.

Tree nodes are additionally labelled with grammatical function labels. Civit (2004)

provides Cast3LB function label guidelines. Functional labels carry some of the infor-

mation that would be encoded in terms of tree configurations in languages with stricter

constituent order constraints than Spanish.

4.2 Comparison to Previous Work

Preliminary proof-of-concept research on Spanish LFG induction was carried out by

O’Donovan et al. (2005). This work created the following resources:

• Head rules for the syntactic analyses in the Cast3LB treebank, used with the

Bikel parser for c-structure parsing.

• Annotation algorithm for the Cast3LB treebank, relying heavily on function labels

from the treebank.

• Hand-corrected f-structures for 100 sentences to be used as a gold standard.

The gold standard was created by running the annotation algorithm on the tree-

bank trees and inspecting and correcting the output. The annotation algorithm was

quite basic, for most annotations relying on the function labels provided in treebank

trees. Otherwise it generated f-structures which closely mimic the constituent structure

encoded in the trees.

For my experiments on Spanish LFG parsing I decided to adopt f-structures that are

simpler, mimic c-structures less directly, and are more abstract and thus less language

and treebank specific. For example in my f-structures, both prenominal and postnomi-

nal adjectives are put in the adjunct set, whereas in O’Donovan et al. (2005) prenominal
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S

neg-NEG

no
not

gv

espere
expect

sn-SUJ

el lector
the reader

sn-CD

una definición
a definition



pred ‘esperar〈subj,obj〉’
neg +

tense pres

mood subjunctive

subj



spec

[
spec-form el

spec-type def

]
pred ‘lector’
gend masc

num sg

pers 3



obj


spec

[
spec-form uno

spec-type indef

]
pred ‘definición’
gend fem

num sg




Figure 4.1: On top flat structure of S. Cast3LB function labels are shown in bold.
Below the corresponding (simplified) LFG f-structure. Translation: Let the reader not
expect a definition.
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sn

espec

da0fp0

las

di0fp0

diversas

grup.nom

sociedades

Cast3LB tree



spec


det


spec

pred ‘el’
num plural

gen fem


pred ‘diverso’
num plural

gen fem




pred ‘sociedad’
num plural

gen fem





spec

[
spec-form el

spec-type def

]
pred ‘sociedad’
gend fem

num pl

adjunct


[
pred ‘diverso’
atype indef

]



Gold f-structure in O’Donovan et al. (2005) Gold f-structure in current thesis

Figure 4.2: Comparison of f-structure representations for NPs
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S

sn-suj

espec

dd0fp0

esas

grup.nom

ncfp000

variedades

gv

vsip3p0

son

sa-ATR

aq0cp0

iguales

Cast3LB tree



subj



spec

det

pred ‘ese’
num plural

gen fem




pred ‘variedad’
num plural

gen fem

pers 3


pred ‘ser’
tense pres

xcomp

subj [ ]

pred ‘igual’
num plural







subj



spec

[
spec-type def

spec-form ese

]
pred ‘variedad’
num pl

gend fem

pers 3


pred ‘ser’
mood indicative

tense pres

predlink

[
pred ‘igual’
num pl

]


Gold f-structure in O’Donovan et al. (2005) Gold f-structure in current thesis

Figure 4.3: Comparison of f-structure representations for copular verbs

modifiers are nested in the spec attribute. I have also simplified the structure of the

spec, getting rid of redundant gender and number specifications, and extra levels of

nesting due to the det attribute. For illustration, Figure 4.2 shows the Cast3LB analy-

sis for the NP las diversas sociedades (the various societies), and the two corresponding

f-structures.

I also adopted the predlink analysis for copular constructions, as opposed to the

xcomp analysis used by O’Donovan et al. (2005). Figure 4.2 compares the two analyses

for the sentence Esas variedades son iguales (These varieties are the same). Addition-

ally I implemented a variety of other more minor improvements and modifications.
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In addition to the changes detailed above I also tackled three more crucial short-

comings in the O’Donovan et al. (2005)’s annotation algortihm: namely the treatment

of null subjects, clitic doubling, and periphrastic constructions. These enhancements

are detailed in Sections 4.3.1 and 4.3.2.

As another contribution towards LFG parsing resources for Spanish I enlarged the

set of gold-standard f-structures to all the 336 sentences in the test set (i.e. 10% of the

full treebank). This set of f-structures was built in the same manner as in O’Donovan

et al. (2005): i.e. I first extended and enhanced the annotation algorithm, which was

then run on the treebank trees. The resulting f-structures were then inspected and

hand-corrected in the cases when the algorithm did not produce the desired f-structure

representation.

4.3 Improving Spanish LFG Resources

In this section I discuss several problems which became obvious while trying to expand

the coverage of Spanish grammatical constructions and phenomena and while dealing

with the peculiarities of the Spanish treebank. The problems arising from adapting

a grammar acquisition methodology developed for one language/treebank to another

language/treebank combination fall into three broad categories:

• new phenomena and constructions, successfully treated within standard LFG:

clitic doubling, null subjects;

• new phenomena and constructions, problematic within standard LFG: clitic climb-

ing (i.e. complex predicates);

• limitations of the previous approach due to language/treebank specific assump-

tions which no longer hold: flexible constituent order and less configurational

c-structures.

4.3.1 Clitic doubling and null subjects

In Spanish pronominal clitics for Direct and Indirect Object can co-occur with non-clitic

(full NP) objects.Example (4.1) shows clitic doubling with Indirect Object, Example
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(4.2) with Direct Object. The non-clitic Objects are in italics; the co-occurring clitics

are in bold. The clitics agree with the non-clitic arguments in person, number, gender

and case.

(4.1) Algo

something

parecido

similar

les

them

sucede

occurs

a

to

los

def

hombres.

men

Something similar happens to men.

(4.2) Cada

every

cual

which

lo

it

comprende

understands

eso

this

a

to

su

poss

manera.

manner

Everyone understands this in their own way.

Clitic doubling is quite common with Indirect Objects: in our treebank data in

23% of the cases where there is a full (non-clitic) Indirect Object it co-occurs with

a pronominal clitic. Clitic doubling for Direct Objects is more constrained, but still

relatively common at 1% of corpus occurrences of non-pronominal Direct Objects.

In clitic doubling constructions, pronominal clitics should not introduce a pred

value, as that would clash with the one introduced by the non-clitic Object. However

when clitics are not accompanied by non-clitic Objects, they should introduce pred =

‘pro’, in order to satisfy the verb’s subcategorization requirements.

I achieve this effect by means of optional equations (cf. (Andrews, 1990)). Example

4.3 below illustrates the equations associated with the dative le (Indirect Object).

(4.3) le pp3csd00

((↑ pred) = ‘pro’)

((↑ pron-type) = pers)

((↑ pron-form) = el)

(↑ case) = dat

(↑ num) = sg

(↑ pers) = 3

An optional equation (e) is a disjunction of e and true. In standard LFG the correct

disjunct is chosen as follows: in a clitic-doubling context, the first disjunct is excluded

because the pred value it introduces clashes with the one introduced by the non-clitic
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Object, and thus the true disjunct applies. In non-doubling contexts, the first disjunct

applies successfully, while if the second one applies, the resulting f-structure does not

satisfy completeness because of the missing pred value.

In my implementation I do not check for completeness because the pred values

lack subcategorization frames,1 so I use a slightly different definition of optionality. An

optional equation works more like a default equation: the optional equation ((f a) = v)

holding of f-structure f is interpreted as a disjunction of the existential constraint (f a)

and the equation (f a) = v. In the clitic-doubling case the second disjunct (which

introduces the pred value) only applies if the pred value has not been contributed by

some other equation.

Another area where I use optional equations is in the treatment of null subjects (pro-

drop). In Spanish explicit subjects are often absent. Subject features such as person

and number are encoded in agreement morphology on the verb instead. When there is

no overt subject, the pred value that is needed to satisfy the verb’s subcategorization

is introduced by the inflected verb-form.

All finite verb preterminals optionally introduce a ‘pro’ subject. Example 4.4 below

illustrates the annotation associated with the inflected verb form vió (see-3SG).

(4.4) vió vmis3s0

(↑ pred)= ‘ver’

((↑ pred subj) = ‘pro’)

(↑ subj num) = sg

(↑ subj pers) = 3

(↑ subj tense) = past

(↑ subj mood) = indicative

(↑ light) = −

Currently all finite verb forms receive an optional pred equation. This is not

entirely adequate as at least one Spanish verb haber (existential be) can never co-

occur with an overt subject, so ideally it should receive an obligatory pred equation.

Similarly, weather verbs are normally ungrammatical with explicit subjects (Example
1The subcat frames are acquired separately in the DCU architecture. See (O’Donovan et al., 2004).
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4.5 a and b). Exceptionally they can take modified cognate subjects (Example 4.5 c).

(4.5) (a) * Llovió

rained

lluvia.

rain

(b) * La

the

lluvia

rain

llovió.

rained

(c) Llovió

rained

una

a

lluvia

rain

fina

light

pero

but

persistente.

persistent
“A light but persistent rain rained down.”

Whether it is possible to learn from treebank data which verbs do not allow overt

subjects and under what conditions remains an open question for future investigation.

The use of optionality in the treatment of Spanish clitic doubling and null subjects

illustrates language-specific problems that arise for LFG induction, but for which there

are standard solutions in the LFG framework. Those solutions can be adopted and

adapted for our data-driven approach to grammar acquisition. They may require addi-

tional implementation effort (in this case adding appropriate optionality support to the

constraint solver), but otherwise they can be easily accommodated within the existing

methodology.

In the following section I discuss a phenomenon which is more problematic as it

does not have a widely agreed-upon solution in standard LFG and thus is an issue in

any computational implementation including the current one.

4.3.2 Periphrastic constructions

In Spanish periphrastic constructions, such as in Example (4.6 a), verbal pronominal

clitics which are understood as arguments of the “lower” verb can attach to the “higher”

verb. This phenomenon, called clitic climbing, is only grammatical with certain verbs.

Others do not admit it, as illustrated in Example (4.6 b). The verbs that do admit

clitic climbing are sometimes called light verbs.

(4.6) (a) La

her

puedo

can-1sg

ver.

see

Puedo

can-1sg

ver la.

see-her

I can see her.
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(b) * La

her

insist́ı

insisted-1sg

en

in

ver.

see

Insist́ı

insisted-1sg

en

in

ver la.

see-her

I insisted on seeing her.

Normally only the clitic climbing versions of periphrastic constructions present dif-

ficulties for an LFG account due to the mismatch of the position of arguments in the

tree and where they should end up in the f-structure. However, the c-structure config-

uration adopted for periphrastic constructions in Cast3LB generalizes this problematic

mismatch to all contexts.

As illustrated in Figure 4.4, all verbs participating in the periphrastic construction

are under the gv (Verb Group) node, with the argument of the lowest verb being

attached as sister to the gv, rather than the rightmost vm under gv. This example

also illustrates that periphrastic constructions can be combined with each other, so in

principle the lowest non-light verb could be nested a number of levels deep.

There are several proposals of how to deal with periphrastic constructions with

clitic climbing within LFG. Both Alsina (1997) and Butt (1997) propose a predicate

composition analysis. As in standard LFG pred values can never unify, this approach

requires modifications to the unification operation. In (Andrews and Manning, 1999)

the authors propose an even more radical departure from standard LFG and replace the

projection architecture with differential information spreading within the f-structure.

As there seems to be no consensus as to the best treatment of Romance constructions

involving light verbs, I decided in favor of a conservative approach which avoids non-

standard extensions to the LFG formalism. I use functional uncertainty and a nested

xcomp configuration in the treatment of periphrastic constructions. The mechanism is

illustrated in Figure 4.5. The inf(initive) and gerund daughters of the gv node constrain

the f-structure corresponding to their mother nodes to be light +, and introduce their

own f-structure as the value of xcomp attribute.

Non-subject sisters of the gv are annotated with functional uncertainty equations

which specify that their f-structure is the value of the gf attribute arbitrarily embedded

in a series of xcomps. There is an off-path constraint that specifies that the f-structure

containing each of the xcomps in the path has to be light +. Another off-path

constraint on the f-structure containing the final gf restricts it to be light −. Together

54



S

sn-SUJ

El hombre
the man

gv

vm

debió
must-past

inf

vm

acabar
end-up

gerund

vm

creyendo
believing

S-CD

que la vecina ...
that the neighbor...



subj
[
“el hombre”

]
pred ‘deber’

tense past

light +

xcomp



subj [ ]

pred ‘acabar’

light +

xcomp


subj [ ]

pred ‘creer’

light −

comp
[
“que la vecina ...”

]






Figure 4.4: Periphrastic construction with two light verbs: The treebank tree, and the
f-structure produced
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S

gv
↑=↓

vm
↑=↓

inf
(↑ xcomp) = ↓
(↑ light) = +

vm
↑=↓

gerund
(↑ xcomp) = ↓
(↑ light) = +

vm
↑=↓

S-CD
(↑ xcomp* comp ) = ↓

(← light) = + (← light) = −

Figure 4.5: Treatment of periphrastic constructions by means of functional uncertainty
equations with off-path constraints

those annotations ensure that arguments are always attached to the lowest (non-light)

verb. This is the correct analysis for the majority of periphrastic constructions.2

This treatment of periphrastic constructions is a compromise solution: from a de-

scriptive perspective it does not perfectly model the linguistic phenomena in question.

On the other hand, it allows us to avoid implementing a solution which departs too far

from the standard LFG formalism and for which there is no consensus among theoretical

linguists.

For our present purposes, the xcomp-based treatment is adequate, and has the

advantage that the resulting f-structure parallels the analysis that would be used in

languages with no clitic climbing (such as English) for similar sentences. This could

potentially be useful if our LFG resources are to be used in multilingual applications.
2One exception are causative constructions, where, if one insists on an xcomp-type treatment, the

causee should be the argument of the causative verb, whereas the other arguments should depend on
the verb expressing the event caused (Alsina, 1997).
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4.4 Summary

In this chapter I described the work carried out to expand the coverage and linguistic

adequacy of the Spanish annotation algorithm. This effort enabled experiments on

Spanish LFG parsing described in the next chapter. I have also used the enhanced

annotation algorithm to produce a set of 336 hand-corrected f-structures which were

subsequently used for evaluation of the LFG parsing system for Spanish.
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Chapter 5

Learning Function Labels

5.1 Introduction

As described in Section 2.2.1 the only module in the LFG parsing architecture which is

not built by learning a model from labeled data is the annotation algorithm (compare

Figure 2.2). It has to be developed manually, separately for each treebank and language

and requires expertise in the language in question, LFG, as well as programming skills.

Thus it is likely to be the main bottleneck slowing down development of multilingual

data-driven LFG parsing resources using the DCU approach.

Because of this, it is desirable to minimize and simplify this component of the overall

system as much as possible. In this chapter I investigate using machine-learning ap-

proaches to accurately learning syntactic and semantic function labels from treebanks.

The labels often carry the same information as LFG annotations and in many cases

there is a simple mapping between the two, and in many other cases access to accu-

rately recovered function labels simplifies and eases the development of the annotation

algorithms.

Section 5.2 investigates three machine learning methods to acquire function labels

from the Spanish Cast3LB treebank. In Section 5.3 I describe how function labeling

performance can be further improved by reducing the mismatch between training and

testing instances, and I apply the method to English and Chinese data, highlighting

the ease of porting of machine learning methods across languages.

I show that function labels can be reliably learned using machine-learning ap-
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proaches and that all three algorithms tested substantially outperform the baseline,

while the Support Vector Machine performs best for the Spanish treebank data. Fur-

thermore, when the approach is further improved and applied to the English Penn-

treebank data, it achieves the highest score on the function labeling task reported in

literature to date.

Part of the research presented in this chapter has been previously published in

(Chrupa la and van Genabith, 2006a,b) and (Chrupa la et al., 2007).

5.2 Learning Cast3LB Function Labels

In this section I discuss the particular features of Spanish and the Cast3LB treebank

which challenge some of the assumptions made in the design of the LFG acquisition

architecture initially developed using the English Penn Treebank data.

5.2.1 Annotation algorithm

The f-structure annotation algorithm for Spanish is implemented in a similar fashion

to the original one for English, described in detail in (Burke, 2006) and briefly sketched

here in Section 2.2.1. The algorithm visits every node in the c-structure tree and

annotates it with LFG functional equations. The following information is used to

determine the annotation:

Head table. This table specifies, for each local subtree of depth one, which constituent

is the head daughter.

Category labels. Category labels of the current node and the mother node, together

with position relative to head, can in many cases be used to determine the anno-

tation.

POS tags. Cast3LB POS tags encode morphological features which the annotation

algorithm translates into f-structure morphological attributes.

Function labels. Function labels in the Spanish Cast3LB treebank annotate nodes

with their grammatical function. Most non-local dependencies (NLDs) are also
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encoded via function labels1. Grammatical function labels can be mapped straight-

forwardly to LFG functional equations.

The Spanish annotation algorithm depends crucially on the presence of function labels

in c-structure trees. Those function are a used in order to assign annotations to main

sentence constituents, i.e. sisters of the gv (verb group) constituent. In order to

determine annotations for the internal structure of constituents such as noun phrases

or prepositional phrases, configurational information is exploited.

Function labels are present in treebank trees, but typically absent from parser out-

put: thus we will need to develop a method to learn a model able to add them to

parsed trees. The reasons behind the much greater weight given to functional labels in

the Spanish are due to the relatively flexible constituent order and less configurational

nature of this language as compared to English.

Constituent order and configurationality in Spanish

The method of automatic LFG induction was initially developed using the English

Penn-II Treebank data. The idea behind the annotation rules is that limited configu-

rational and categorial information should in most cases be sufficient to determine a

constituent’s grammatical function in the sentence: as evidenced by the good results of

this approach for English, this assumption is borne out for this language. It turns out

that the approach is more problematic for the Spanish Cast3LB data. Spanish allows

much more variation and flexibility in major sentence constituent order than English.

Partly as a consequence of this flexibility, the treebank encoding of syntactic structure

also has to be different than that of the Penn Treebank.

Although the canonical word order for Spanish is SVO, in Cast3LB there are about

20% post-verbal subjects, and about 11% preverbal non-clitic direct objects. Thus the

information on position relative to the verb is not a reliable predictor of grammatical

function in Spanish.

Accordingly, the Spanish treebank makes extensive use of function labels to make

the grammatical function of constituents more explicit. Although there are also func-

tional labels in the Penn Treebank, their use is less necessary. In the Penn Treebank,
1In a small number of cases coindexations are used

60



configuration information alone is often sufficient to determine grammatical function:

e.g.: left NP sister to VP is typically a Subject while right NP daughter to V is an

Object.

While in English tree configuration alone will in most cases constrain the possible

grammatical functions of constituents, this is in general not the case in Spanish. In a

language like Spanish configuration is only one of several sources of interacting “soft”

constraints on grammatical function. This means that an annotation algorithm using

solely categorial and configuration information and a set of categorical rules cannot

reliably generate LFG functional annotations for the Spanish Cast3LB treebank.

Instead we would like to extract features of the constituent trees which are plausible

(but “soft”) predictors of grammatical function and learn from the treebank how to

use them to assign grammatical functions to tree nodes. More concretely, we will learn

from training data how to assign the function labels described above to constituency

trees. Such trees, with nodes tagged with function labels predicted by our model, will

then be used by the annotation algorithm and mapped to LFG functional equations.

Thus the Spanish annotation algorithm will rely on function labels much more heavily

than is the case for English. It is therefore important to be able to enrich parser-output

trees with those labels as reliably as possible.

The initial implementation described in (O’Donovan et al., 2005) relied on the parser

itself to obtain function-tagged parse trees. Bikel’s parser (Bikel, 2002) was trained on

trees where function labels were simply part of the category label, so instead of having

one non-terminal category sn (Noun Phrase) there are several different NP categories

e.g. sn-suj, sn-cd, sn-ci, etc. I treat this simple method as a baseline in order to

determine how much it could be improved on by the following alternative method: I

use the parser to learn and output plain constituency trees and then a separate module

learns how to add Cast3LB function labels in a postprocessing step. The intuition

behind adopting this approach is that we avoid the multiplication of categories (which

could potentially lead to a sparse-data-related decline in performance), and also achieve

better control over the learning method and the feature set used than if we just rely

on the parser.
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5.2.2 Previous work on learning function labels

Blaheta and Charniak (2000) use a generative probabilistic model with feature de-

pendencies encoded by means of feature trees in which nodes are features which are

assumed to depend only on their ancestors. They experiment with a number of feature

trees and learn models to assign Penn-II Treebank function labels to Charniak’s parser

output. Using the best performing model they report an f-score 88.472% on original

treebank trees and 87.277% on the correctly parsed subset of tree nodes.

Jijkoun and de Rijke (2004) describe a method of enriching output of a parser with

information that is included in the original Penn-II trees, such as function labels, empty

nodes and coindexations. They first transform Penn trees to a dependency format and

then use memory-based learning to perform various graph transformations. One of

the transformations is node relabeling, which adds function labels to parser output.

They report an f-score of 88.5% for the task of function labeling on correctly parsed

constituents.

Musillo and Merlo (2005) and Merlo and Musillo (2005) extend the Henderson

parser (Henderson, 2003) and model function labels as both expressions of the lexical

semantics properties of a constituent and as syntactic elements whose distribution is

subject to structural locality constraints. This improves their both parsing score and

function labeling score. They do not report scores on the full set of Penn-II function

labels since they only try to recover the so-called syntactic and semantic label types

(see Table 5.15 in Section 5.3.1).

Gabbard et al. (2006) describe a two stage parser which builds Penn Treebank anal-

yses including both function labels and empty categories and co-indexations. Function

labeling is performed during the first stage: they modify Bikel’s implementation of

Collins’ parsing model to enable it to output function labels. They report 88.96% f-

score on correctly parsed constituents on WSJ section 23. This approach is equivalent

to the one used by O’Donovan et al. (2005), and treated here as a baseline.

5.2.3 Assigning Cast3LB function labels to parsed Spanish text

I divided the Spanish treebank into a training set of 80%, a development set of 10%,

and a test set of 10% of all trees. I randomly assigned treebank files to these sets to
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Part of Speech Features included
Determiner type, number
Noun type, number
Adjective type, number
Pronoun type, number, person
Verb type, number, mood
Adverb type
Conjunction type

Table 5.1: Features included in POS tags. Type refers to subcategories of parts of
speech such as e.g. common and proper for nouns, or main, auxiliary and semiauxiliary
for verbs. For details see (Civit, 2000).

ensure that different textual genres are about equally represented among the training,

development and test trees.

Constituency parsing For constituency parsing I use Bikel’s (Bikel, 2002) parser

for which I developed a Spanish language package adapted to the Cast3LB data. Prior

to parsing, I perform one of the tree transformations described by Cowan and Collins

(2005), i.e. I add CP and SBAR nodes to subordinate and relative clauses. This is

undone in parser output.

The category labels in the Spanish treebank are rather fine grained and often contain

redundant information. For example there are several labels for Nominal Group, such

as grup.nom.ms (masculine singular), grup.nom.fs (feminine singular), grup.nom.mp

(masculine plural) etc. This number and gender information is already encoded in

the POS tags of nouns heading these constituents. I preprocess the treebank and

reduce the number of category labels, only retaining distinctions that are useful for

LFG parsing. The labels we retained are the following: INC, S, S.NF, S.NF.R, S.NF,

S.R, conj.subord, coord, data, espec, gerundi, grup.nom, gv, infinitiu, interjeccio, morf,

neg, numero, prep, relatiu, s.a, sa, sadv, sn, sp, and versions of those suffixed with .co

to indicate coordination). For constituency parsing I also reduce the number of POS

tags by including only selected morphological features. Table 5.1 provides the list of

morphological features included for the different parts of speech. In the experiments I

use gold standard POS tagged development and test-set sentences as input rather than

tagging text automatically.
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LB Precision LB Recall F-score
All 84.18 83.74 83.96
≤ 70 84.82 84.35 84.58

Table 5.2: C-structure parsing performance.

The results of the evaluation of c-structure parsing performance on the test set are

shown in Table 5.2. Labelled bracketing f-score for all sentences is just below 84% for all

sentences, and 84.58% for sentences of length ≤ 70. In comparison, Cowan and Collins

(2005) report an f-score of 85.1% (≤ 70) using a version of Collins’ parser adapted for

Cast3LB, and additionally using reranking to boost performance. They use a different,

more reduced category label set as well as a different training-test split. Both Cowan

and Collins (2005) and the present thesis report scores which ignore punctuation.

Cast3LB function labeling For the task of Cast3LB function label assignment I

experimented with three machine learning algorithms: a memory-based learner (Daele-

mans and van den Bosch, 2005), a maximum entropy classifier (Berger et al., 1996) and

a Support Vector Machine classifier (Vapnik, 1998). For each algorithm I used the same

set of features to represent parse-tree nodes that are to be assigned one of the Cast3LB

function labels. I used a special null label for nodes where no Cast3LB function label

is present. Unlike in the case of the English Penn-II treebank, in Cast3LB a given node

can only have a single function label. Thus we can train a single multiclass model,

rather than a separate binary classification model for each label as in Section 5.3.

In Cast3LB only nodes in certain contexts are eligible for function labels. For this

reason I only consider a subset of all nodes as candidates for function label assignment,

namely those which are sisters of nodes with the category labels gv (Verb Group), in-

finitiu (Infinitive) and gerundi (Gerund). I extract the following three types of features

encoding configurational, morphological and lexical information for the target node and

neighboring context nodes:

• Node features:

– position relative to head
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Figure 5.1: Examples of features extracted from an example node

– head lemma

– alternative head lemma (i.e. the head of NP in PP)

– head POS

– category

– definiteness

– agreement with head verb

– constituent yield length

– human/nonhuman (according to Spanish Wordnet (Vossen, 1998))

• Local features:

– head verb

– verb person

– verb number

– parent category

• Context features: node features (except position) of the two previous and two

following sister nodes (if present).

Figure 5.1 illustrates features extracted from an example node.

I used cross-validation for refining the set of features and for tuning the parameters

of the machine-learning algorithms. I did not use any additional automated feature-

selection procedure.

I made use of the following implementations: TiMBL (Daelemans et al., 2004) for

Memory-Based Learning, the MaxEnt Toolkit (Le, 2004) for Maximum Entropy and

LIBSVM (Chang and Lin, 2001) for Support Vector Machines.
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Figure 5.2: Learning curves for TiMBL (t), MaxEnt (m) and SVM (s).

For TiMBL I used k nearest neighbors = 7, the Jeffrey Divergence as the distance

metric, the Inverse Distance for distance-weighted class voting, and the Gain Ratio

metric for feature weighting. Those options were found using the Paramsearch algo-

rithm (van den Bosch, 2004). Daelemans and van den Bosch (2005) describe the various

options for TiMBL in detail. For MaxEnt, I regularized the model using a Gaussian

prior with σ2 = 1. For SVM I used the RBF kernel with the kernel parameter γ = 2−7

and the cost parameter C = 32.

5.2.4 Cast3LB function label assignment evaluation

I present evaluation results on the original gold-standard trees of the test set as well

as on the test-set sentences parsed by Bikel’s parser. For the evaluation of Cast3LB

function labeling performance on gold trees the most straightforward metric is the

accuracy, or the proportion of all candidate nodes that were assigned the correct label.

However we cannot use this metric for evaluating results on the parser output. The

trees output by the parser are not identical to gold standard trees due to parsing errors,

and the set of candidate nodes extracted from parsed trees will not be the same as for

gold trees. For this reason I use two alternative metrics which are independent of tree

configuration and use only the Cast3LB function labels and positional indices of tokens

in a sentence: the Node Span metric and the Headword metric.

In Node Span, for each function-labeled tree I first remove the punctuation tokens.

Then I extract a set of tuples of the form 〈γ, i, j〉, where γ is the Cast3LB function

label and i..j is the range of tokens spanned by the node annotated with this function.

I use the standard measures of precision, recall and f-score to evaluate the results. For

parser-output trees I apply this metric on the correctly bracketed subset of nodes, since

the evaluation should not be sensitive to what function label, if any, was assigned to

incorrect bracketings.

The Headword metric ignores constituent bracketing altogether and only considers
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Acc. Prec. Recall F-score
MBL 87.55 87.00 82.98 84.94

MaxEnt 88.06 87.66 86.87 85.52
SVM 89.34 88.93 84.90 86.87

Table 5.3: Cast3LB function labeling performance for gold-standard trees (Node Span)

Precision Recall F-score
Baseline 72.63 75.35 73.96

MBL 78.09 78.75 78.42
MaxEnt 78.90 79.44 79.17

SVM 80.58 81.27 80.92

Table 5.4: Cast3LB function labeling performance for parser output (Node Span: cor-
rectly parsed constituents)

whether constituent headwords are assigned the correct function label. For this measure

we project the function label of each constituent down to its head terminal, and measure

precision and recall on sets of tuples 〈γ, i〉 where γ is the function label and i is the index

of the terminal bearing it after projection. The Headword metric does not consider

constituent bracketings and can be applied directly to parser output without filtering

out incorrectly parsed nodes: thus it will give lower absolute numbers than Node Span.

It can be argued that it better approximates how useful the function-labeled tree would

be for an application which needs to recover the basic argument structure of a sentence.

In most such scenarios it is much more important to assign correct function to head

words than to get all constituent boundaries right.

Results for the three algorithms on gold-standard trees are shown in Table 5.3.

Precision, Recall and F-score were computed with the Node Span method. The SVM

outperforms both MBL and MaxEnt, scoring 89.34% on accuracy and 86.87% on f-

score. The learning curves for the three algorithms, shown in Figure 5.2, are also

informative, with SVM outperforming the other two methods for all training set sizes.

In particular, the last section of the plot shows SVM performing almost as well as MBL

with half as much learning material.

Table 5.4 shows the performance of the three methods on parser output with the

Node Span metric on correctly bracketed nodes. The baseline contains the results

achieved by treating compound category-function labels as atomic during parser train-
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Precision Recall F-score
Baseline 69.19 70.77 69.97

MBL 74.85 73.92 74.38
MaxEnt 75.78 74.84 75.30

SVM 77.29 76.44 76.86

Table 5.5: Cast3LB function labeling performance for parser output (Headword)

Methods p-value
Baseline vs SVM 1.169× 10−9

Baseline vs MBL 2.117× 10−6

MBL vs MaxEnt 0.0799
MaxEnt vs SVM 0.0005

Table 5.6: Statistical significance testing results on for the Cast3LB tag assignment on
parser output.

ing so that they are included in parser output. Again the best algorithm turns out

to be SVM. It outperforms the baseline by a large margin: 6.96% absolute f-score or

26.73% relative error reduction.

Table 5.5 show the results computed with the Headword metric: as expected the

absolute values are lower, but the overall ranking of the four methods remains the same,

with SVM performing best.

The difference in performance for gold standard trees, and the correctly parsed

constituents in parser output is rather larger than what Blaheta and Charniak (2000)

report. Further analysis is needed to identify the source of this difference but one con-

tributing factor may be our use of a greater number of context features, combined with

a higher parse error rate in comparison to their experiments on the Penn II Treebank.

Since any mis-analysis of constituency structure in the vicinity of the target node can

have a negative impact, greater reliance on context means greater susceptibility to parse

errors. Another factor to consider is the fact that I trained and adjusted parameters

on gold-standard trees, and the model learned may rely on features of those trees that

the parser is unable to reproduce: I present research addressing this issue in Section

5.3.

For the experiments on parser output I performed a series of sign tests in order to

determine to what extent the differences in performance between the different methods
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Precision Recall F-score
Upper bound 97.80 97.28 97.54

Baseline 73.95 70.67 72.27
SVM 76.90 74.48 75.67

Table 5.7: LFG F-structure evaluation results (preds-only) for parser output

are statistically significant. For each pair of methods I calculate the f-score (using

Node Span) for each sentence in the test set. For those sentences on which the scores

differ, i.e. the number of trials, the number of cases that the second method is better

is the number of successes. Then I run the binomial test with the null hypothesis

that the probability of success is chance (= 0.5) and the alternative hypothesis that

the probability of success is greater than chance (> 0.5). The results are summarized

in Table 5.6. Given that I perform 4 pairwise comparisons, I apply the Bonferroni

correction and adjust the target αβ = α
4 . For the confidence level 95% (αβ = 0.0125)

all pairs give statistically significant results, except for MBL vs MaxEnt.

5.2.5 Task-based LFG annotation evaluation

Finally, I also evaluated the actual f-structures obtained by running the LFG-annotation

algorithm on trees produced by the parser and enriched with Cast3LB function labels

assigned using SVM. For this task-based evaluation I produced a gold standard consist-

ing of f-structures corresponding to all sentences in the test set. The LFG-annotation

algorithm was run on the test set trees (which contained original Cast3LB treebank

function labels), and the resulting f-structures were manually corrected.

Following Crouch et al. (2002), I convert the f-structures to triples of the form

〈GF,Pi, Pj〉, where Pi is the value of the pred attribute of the f-structure, GF is an

LFG grammatical function attribute, and Pj is the value of the pred attribute of the

f-structure which is the value of the GF attribute. This is done recursively for each

level of embedding in the f-structure. Attributes with atomic values are ignored for the

purposes of this evaluation: this is referred to as preds-only evaluation. The results

obtained are shown in Table 5.7. The upper bound on this task is determined by the

preds-only score for f-structure evaluation when the input trees are the original treebank
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atr cc cd ci creg mod suj

atr 136 2 0 0 0 0 5
cc 6 552 12 4 25 18 6
cd 1 19 418 5 3 0 26
ci 0 6 1 50 1 0 0
creg 0 6 0 2 43 0 0
mod 0 0 0 0 0 19 0
suj 0 8 24 2 0 0 465

Table 5.8: Simplified confusion matrix for SVM on test-set gold-standard trees. The
gold-standard Cast3LB function labels are shown in the first row, the predicted tags in
the first column. So e.g. suj was mistagged as cd in 26 cases. Low frequency function
labels as well as those rarely mispredicted have been omitted for clarity.

trees. I also performed a statistical significance test for these results. The p-value given

by the sign test 2.118× 10−5, showing that the improvement is statistically significant.

The score achieved in the LFG f-structure evaluation in (Table 5.7) is comparable

to the Cast3LB tag assignment evaluation using the Headword metric (Table 5.5), but

not identical: in particular the difference between the baseline score and the SVM

score is smaller for the f-structure evaluation. This is can be attributed to the fact

that the mapping from Cast3LB function labels to LFG grammatical functions is not

one-to-one. For example three Cast3LB tags (cc, mod and et) are all mapped to LFG

adjunct. Thus mistagging a mod as cc does not affect the f-structure score. On the

other hand the Cast3LB cd tag can be mapped to obj, comp, or xcomp, and it can be

easily decided which one is appropriate depending on the category label of the target

node. Additionally many nodes which receive no function label in Cast3LB, such as

noun modifiers, are straightforwardly mapped to LFG adjunct. Similarly, objects of

prepositions receive the LFG obj function.

5.2.6 Error analysis

In order to understand sources of error and determine how much room for further

improvement there is, I examined the most common cases of Cast3LB function mistag-

ging. A simplified confusion matrix with the most common Cast3LB tags is shown in

Table 5.8. The most common mistakes occur between suj and cd, in both directions,

and also many cregs are erroneously tagged as cc.
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grup.nom

nc

sistemas
systems

S.R

relatiu

que
which

gv

usan
use

sn

el 95% de los ordenadores
95% of computers

Figure 5.3: Subject - Direct Object ambiguity in a Spanish relative clause.

Subject vs Direct Object I noticed that in over 50% of cases when a Direct Ob-

ject (cd) was misidentified as Subject (suj), the target node’s mother was a relative

clause. It turns out that in Spanish relative clauses genuine syntactic ambiguity is not

uncommon. Consider the following Spanish phrase:

(5.1) Sistemas
Systems

que
which

usan
use

el
det

95%
95%

de
of

los
det

ordenadores.
computers

The c-structure tree for this phrase is shown in Figure 5.3. Its translation into En-

glish is either Systems that use 95% of computers or alternatively Systems that 95% of

computers use. In Spanish, unlike in English, preverbal / post-verbal position of a con-

stituent is not a good guide to its grammatical function in this and similar contexts.

Human annotators can use their world knowledge to decide on the correct semantic

role of a target constituent and use it in assigning a correct grammatical function, but

such information is not explicitly encoded in the features and thus not exploited by the

machine learning methods. Thus such mistakes seem likely to remain unresolvable in

the current approach.

Prepositional Object vs Adjunct The frequent misidentification of Prepositional

Objects (creg) as Adjuncts (cc) seen in Table 5.8 can be accounted for by several

factors. Firstly, Prepositional Objects are strongly dependent on specific verbs and the
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comparatively small size of our training data means that there is limited opportunity

for a machine-learning algorithm to learn low-frequency lexical dependencies. Here the

obvious solution is to use a more adequate amount of training material when it becomes

available.

A further problem with the Prepositional Object - Adjunct distinction is its inher-

ent fuzziness. Because of this, treebank designers may fail to provide easy-to-follow,

clear-cut guidelines and human annotators necessarily exercise a certain degree of ar-

bitrariness in assigning one or the other function.

5.2.7 Adapting to the AnCora-ESP corpus

Recently an expanded and modified version of the Spanish Cast3LB treebank became

available (Mart́ı et al., 2007). This new treebank, the Spanish AnCora treebank2,

roughly doubles the size of Cast3LB: it has approximately 200.000 words.3

The annotation scheme roughly follows the Cast3LB guidelines. However, some

minor modifications have been introduced. The verb group constituent label gv has

been renamed to grup.verb, and a number of additional phrasal levels have been in-

troduced: adjective group (grup.a.ms, grup.a.fs etc), adverb group (grup.adv) and

participle (participi). Additional distinctions have been introduced for noun phrases

referring to different types of named entities (snp, sno etc). Also a new function label

ao, sentential adjunct, was introduced. Additional distinctions were introduced for

verbal adjuncts: cct stands for temporal and ccl for location adjunct. Analyses for

many Cast3LB sentences have been modified to correct errors or to reflect the revised

annotation guidelines.

In order to adapt the LFG grammar acquisition and parsing architecture to this

new resource the following modifications were needed:

• The label reduction scheme had to be changed to collapse some of the distinctions

introduced by new constituent labels. The new labels were reduced to grup.a,

grup.adv and sn.
2Also known as CESS-ESP.
3It is claimed to contain 500.000 words in (Mart́ı et al., 2007), but the currently distributed version

has only 200.000.
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LB Precision LB Recall F-score
All 84.18 83.74 83.96
≤ 70 84.82 84.35 84.58

Table 5.9: C-structure parsing performance for Cast3LB

LB Precision LB Recall F-Score
All 83.82 83.35 83.58
≤ 70 84.37 83.88 84.13

Table 5.10: C-structure parsing performance for AnCora

• Minor modifications were made in the head table to account for new constituent

labels.

• Some modifications were necessary in the annotation algorithm because of new

constituent and function labels

• The 338 f-structures corresponding to the test-set sentences needed to be revised

to reflect the modifications in the analyses introduced in AnCora trees

For development and testing I used the same set of files as in the experiments

with Cast3LB. All the other files in AnCora served as training set. This means that

while in the Cast3LB experiments I had development and test sets which contained a

random sample of files from the whole corpus, this is no longer the case for the AnCora

corpus; specifically all of the additional training files seem to come from newspaper

text exclusively.

Precision Recall F-score
Baseline 72.63 75.35 73.96

SVM 80.58 81.27 80.92

Table 5.11: Cast3LB function labeling performance for parser output (Node Span:
correctly parsed constituents)
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Precision Recall F-score
Baseline 71.68 73.19 72.42

SVM 80.48 79.03 79.75

Table 5.12: AnCora function labeling performance for parser output for correctly parsed
constituents

Precision Recall F-score
Baseline 73.95 70.67 72.27

SVM 76.90 74.48 75.67

Table 5.13: LFG F-structure evaluation results (preds-only) for parser output for
Cast3LB

Results and discussion

Table 5.10 shows the evaluation results for c-structure parsing; Table 5.12 shows results

for function labeling. Table 5.14 presents the evaluation results for f-structure parsing

on the f-structures revised to reflect the revised AnCora trees. The corresponding

Cast3LB results are repeated here for ease of comparison.

Because of the differences in annotation between Cast3LB and AnCora the results

here are not strictly comparable to those reported in the previous section. However a

broad conclusion seems warranted: it seems that doubling the training set size does not

boost either the c-structure parsing or function labeling scores on the test set. This is

likely related to the fact mentioned above: the test-set files are not a random selection

from the AnCora corpus. Compared to the test-set, the additional training sentences

are likely to diverge in domain; it is also possible that there are annotation divergences

between the old and the new part of the corpus. As in the original Cast3LB evaluation,

the system using the SVM function labeler performs better than the baseline system.

Precision Recall F-score
Baseline 75.37 72.77 74.04

SVM 77.21 74.27 75.71

Table 5.14: LFG F-structure evaluation results (preds-only) for parser output for An-
Cora
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5.3 Improving Training for Function Labeling by Using

Parser Output4

5.3.1 Introduction

In this section I apply the SVM-based function labeling method developed for Spanish

in the previous section to the English and Chinese treebanks, and investigate how to

improve its performance by training the model on data more closely resembling the

final test instances.

The function labels used in the Penn treebanks fall into several types. Grammatical

labels are used to encode the grammatical function of some constituents. Form-function

labels are used to indicate the semantic class of adjuncts and discrepancies between

form and function. There is also a label used for topicalization, and several other

miscellaneous labels. Detailed information about the label sets can be found in the

annotation guidelines for the respective treebanks (Bies et al., 1995; Xue and Xia, 2000).

Table 5.15 provides a summary of labels used in the English and Chinese treebanks.

In this section I present research on the impact of different training methods in

a two-stage processing architecture where I use machine learning techniques to train

classifiers which add function labels to bare constituent trees such as those output by

Charniak’s or Collins’ parsers.

In a multi-stage processing pipeline the optimal training input for the downstream

stages is important. Ideally the training at stage n + 1 should be performed on input

from stage n: e.g. a parsing model which uses automatically POS-tagged input should

be trained on tags produced by the POS tagger used to preprocess the raw input, rather

than gold tags. In many existing pipeline architectures this has been violated.

For example, in the case of function labeling, the two-stage models used in pre-

vious work have all used “perfect” treebank trees to train the function labeler even

though the labeler operates on “imperfect” trees output by the parser (Blaheta and

Charniak, 2000; Jijkoun and de Rijke, 2004; Chrupa la and van Genabith, 2006b). This
4The research in this section has been done in collaboration with Nicolas Stroppa and Georgiana

Dinu. Their main contribution was to help come up with and implement instance similarity metrics.
Stroppa also proposed extending the method to use n-best parser output trees (which was implemented
but is not discussed here as it did not consistently improve performance).
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is presumably due to the fact that the function labels we want to learn are attached to

nodes in the treebank trees. Unfortunately, those nodes do not necessarily correspond

to constituents in the trees produced by the parser.

The main contribution of this section consists in presenting a theoretically sound

method of training on parser output rather than treebank trees for the function labeling

task and investigating the effect of versions of this approach on the results as compared

against the baseline method which uses perfect treebank trees. I show that using the

better-motivated method helps to improve the quality and quantity of training material

available to the machine-learning algorithm.

In Section 5.3.2 I present the improved method of obtaining appropriate training

material for function labeling. In Section 5.3.3 I present experimental results for English

and Chinese.

5.3.2 Methods

There are two main approaches to obtaining parse trees with function label information:

• Two-stage systems, where “bare” parse trees are enriched with function labels in

a postprocessing step (Blaheta and Charniak, 2000; Jijkoun and de Rijke, 2004;

Chrupa la and van Genabith, 2006b),

• Modifying the parser’s internals to output function labels (O’Donovan et al., 2005;

Musillo and Merlo, 2005; Merlo and Musillo, 2005; Gabbard et al., 2006).

I use the two-stage architecture, in which the first stage consists of bare constituency

parsing using a statistical parsing model and the second stage decorates constituent

labels with function labels. The labeler is a machine-learning classification model. My

focus is to investigate ways of improving the performance of the classifier by extracting

more and better quality training examples from the available resources.

Improving the quality of the training material means making it more similar to the

instances that the model has to classify during prediction, i.e. we will try to better

approximate the standard assumption made in most machine-learning research that

instances (in training and test) are independently and identically distributed (i.i.d.), in

particular, they should be drawn from the same probability distribution.
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Label Meaning ETB CTB
Clause types
IMP imperative

√

Q question
√

Syntactic labels
LGS logical subject

√ √

PRD predicate
√ √

PUT complement of put
√

SBJ surface subject
√ √

IO indirect object
√

OBJ direct object
√

FOC focus
√

Miscellaneous labels
CLF it-cleft

√

HLN headline
√ √

TTL title
√ √

CLR closely related
√

APP appositive
√

PN proper noun
√

SHORT short form
√

WH WH-phrases
√

Semantic (form-function) labels
ADV adverbial

√ √

BNF benefactive
√ √

DIR direction
√ √

EXT extent
√ √

LOC locative
√ √

MNR manner
√ √

NOM nominal
√

PRP purpose or reason
√ √

TMP temporal
√ √

CND condition
√

IJ interjective
√

VOC vocative
√ √

Topicalization
TPC topicalized

√ √

Table 5.15: Function labels in the English and Chinese Penn Treebanks
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In the previous two-stage approaches (Blaheta and Charniak, 2000; Jijkoun and

de Rijke, 2004; Chrupa la and van Genabith, 2006b) this assumption is not satisfied in

that the training instances are extracted from nodes in the “perfect” parse trees from

the treebank, whereas at prediction time the model has to classify instances extracted

from nodes in imperfect parser output, which can and does contain a certain proportion

of errors (incorrect bracketings or incorrect constituent labels).

I propose to alleviate this issue by using training material which is extracted from

the trees obtained by reparsing the training portion of the treebank and using the

(imperfect) trees output by the parser rather than the original treebank trees. We

still need the original treebank trees in order to assign classes (function labels) to the

training instances extracted from parser output. I do this by matching node-spans

between automatically parsed trees and gold trees in the training set. I only extract

training instances from those nodes in the automatically parsed tree for which there

is a node with the same span in the gold tree, from which we can obtain the function

label.

Baseline method

The baseline method uses a simple two-stage architecture: constituency parsing, fol-

lowed by function labeling: this is the setup used in the experiments described in

Section 5.2. The first stage is performed by the constituency parsing model, obtained

by training a statistical parser on the training portion of the treebank. The output

of this stage, sentences parsed into bare constituency trees, are the input to the sec-

ond stage component, i.e. the function labeler. The labeler is trained, in the baseline

method, on the original “perfect” trees from the training portion of the treebank.

Features Each node to label is represented as a vector of features encoding categorial,

configurational and lexical information about the node and its context. Those features

are similar to the ones used in Section 5.2.3 for Spanish. However, the highly language-

specific features have been dropped (“humanness” according to Wordnet, definiteness

and agreement features). Also due to the fact that Penn trees are less shallow and

more hierarchical than Cast3LB trees, only one preceding and one following context
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nodes are used, but the extra grandmother constituent label feature is added. The full

feature set is as following:

1. Node constituent label

2. Node head word’s part of speech tag

3. Node head word

4. Node’s head-sister’s constituent label

5. Node’s head-sister’s head word’s part of speech

6. Node’s head-sister’s head word

7. Node’s alternative head word’s part of speech tag (alternative head is the head

of the second child for PPs)

8. Node’s alternative head word

9. Node’s yield length

10. Node’s mother’s constituent label

11. Node’s grandmother’s constituent label

12. Offset to node’s head sister

Plus the following:

• Features 1,2,3,7,8,9 for the preceding sister node

• Features 1,2,3,7,8,9 for the following sister node

There is one minor complication: in principle a node can be decorated with more

than one function label (although labels belonging to the same group are (usually)

mutually exclusive). Thus we could train a separate classifier for each label, or a

separate classifier for each label group, or simply treat the label set on the node as an

atomic class. In the experiments reported below I used the first method, i.e. I train a

separate binary classifier for each function label, and combine their output to add a set

of function labels to each node.
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Evaluation metrics

As noted in Section 5.2.4, evaluating the performance of a function labeling system is

not entirely straightforward. Blaheta and Charniak (2000) decide to measure f-score

over the correctly parsed subset of nodes, i.e. those nodes that subtend the correct

portion of the string and have the correct constituent label. This is similar to the Node

Span metric introduced in Section 5.2.4, modulo the fact that here both the bracketing

and the constituent label are used to determine the set of correctly parsed nodes. I will

refer to this metric as Labeled Node Span, and use it for evaluation in order to make

comparison to previous work meaningful. Additionally I also present evaluation results

using the Headword method.

Training on parser output

Using Labeled Node Span described above, since we are evaluating only the correctly

parsed subset of nodes, one might naively expect that the score should be the same for

labeling both the parser output and the perfect treebank trees. However, the results

reported in (Blaheta and Charniak, 2000) show that the performance is over 1% better

for the treebank trees. The authors convincingly explain that the likely cause is that for

parser output, although the focus node to be labeled is correctly parsed, the neighboring

context nodes that some features depend on may be incorrect.

This fact serves as the motivation for extracting training examples from treebank

sentences parsed by the same parser that is used to parse unseen test data. My hy-

pothesis is that training instances obtained in this way are going to be more similar

to test instances than the ones extracted from perfect treebank trees and thus will

better approximate the i.i.d assumption. I expect that the machine learning algorithm

will perform better on test instances which are more similar to those used for train-

ing; for example it might be able to weight down features which depend on incorrect

characteristics of the parse trees, as such features will be less reliable as class predictors.

The improved training example extraction procedure is as follows: sentences in the

training portion of the treebank are reparsed. Then we follow the algorithm presented

in Figure 5.4 to extract training instances. The function instances returns training

instances from a parse tree T given the reference treebank gold tree T ′ for the same
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1 instances(T, T ′) =
2 N ← {nodeSpec(n) | n ∈ nodeSet(T ′)}
3 I ← [ instance(n, T ′) | n ∈ nodeMultiSet(T ) ∧ nodeSpec(n) ∈ N ]
4 return I
5 instance(n, T ′) =
6 C ←

⋃
{funcLabels(n′) | n′ ∈ nodeSet(T ′) ∧ nodeSpec(n′) = nodeSpec(n)}

7 return 〈features(n), C〉
8 nodeSpec(n) = 〈nodeSpan(n), nodeConstituentLabel(n)〉

Figure 5.4: Algorithm for extracting training instances from a parser tree T and gold
tree T ′

Gold tree Parser tree
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NNS

payrolls
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VBD

fell

PP-TMP

IN
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PRT
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NP

NNP
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Figure 5.5: Example gold and parser tree

sentence. For each node n in T we check whether there exist one or more nodes with

the same span and constituent label in the corresponding T ′ (line 3)5. The function

instance takes the union of the function label sets (funcLabels(n′)) found on the

nodes in the gold tree T ′ and returns this set (as a class C) together with the feature

vector features(n) corresponding to node n.

Figure 5.5 illustrates this algorithm: in effect we transfer function labels from nodes

in the gold tree to matching nodes in the parser tree. Matching nodes are those whose

constituent label and span are the same. In the example tree the sbj function label is

transferred but tmp is not since there is no matching node in the parser tree due to a

parsing error.

An issue with the method as described so far is that it uses a constituency parsing

model trained on sections 2-21 of WSJ to reparse those same sections so that we can
5The square bracket notation denotes multisets.
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extract training material from them. It is very likely that the resulting parse trees will

be closer to gold trees than will be the case for test sentences taken from WSJ section 23.

It would be advisable to extract input for our labeling model from the treebank trees

reparsed with parsing models trained on material from which those trees are excluded.

I did not do this for the experiments on the English data with Charniak’s parser, due

to technical difficulties encountered when attempting to retrain this parser. However,

for the experiments on the Chinese data with Bikel’s parser I did 10-fold-cross-training,

that is I divided the training material into 10 parts and parsed each part in turn with

the model trained on the remaining 9 parts. I report the results on the Chinese data

in Section 5.3.3.

Instance similarity I tried to verify the prediction that the instances extracted using

the “reparsing” method would be more similar to test instances. As a simple metric

of similarity, I compare instance overlap between the training set and the test set.

Instance overlap is the cardinality of the intersection of the multiset of instance feature

vectors used for training and the multiset of instance feature vectors used for testing.

For multisets defined as tuples (A, f) with the underlying set A and the multiplicity

function f : A → N which assigns to each element the number of times it occurs,

multiset cardinality is defined as:

|(A, f)| =
∑
a∈A

f(a), (5.2)

and multiset intersection as:

(A, f) ∩ (B, g) = (A ∩B, a 7→ min(f(a), g(a))). (5.3)

I use both the baseline method where examples are extracted from gold trees, and

the improved “reparsing” training method to obtain training examples from sections

2-21 of the Wall Street Journal part of the English Penn Treebank and compare both

against instances extracted from the parsed sentences taken from section 23. For parsing

the test sentences and the training sentences I used the Charniak parser.

Table 5.16 summarizes the comparison. Even though the improved method produces
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Instance count Overlap
Test 44,113 —
Baseline 741,833 9,067
Reparse 712,973 10,022

Table 5.16: Instance counts and instance overlap against test for the English Penn
Treebank training set

Mean distance to Test
Test 15.0999
Baseline 15.1483
Reparse 15.1283

Table 5.17: Mean Hamming distance scores for the English Penn Treebank training set

a lower total number of instances than the baseline (since I only extract instances from

correctly spanning nodes) it still shares 955 instances more with the test set than the

baseline.

To further test the conjecture about the reparsing method giving better training

examples I calculated mean Hamming distance between training examples and test

examples. Hamming distance counts the number of features at which two vectors

differ:

dh(v,w) =
|v|∑
i=1

vi 6= wi . (5.4)

We calculate the mean distance between the collection of test instances T and the

collection of training instances U as:

d̄h(T,U) =
1

|T| × |U|
∑
t∈T

∑
u∈U

dh(t,u) . (5.5)

As shown in Table 5.17, against the test set derived from section 23 of WSJ we

get mean Hamming distance of 15.1483 for the baseline method and 15.1283 for the

reparsing method (for comparison the mean distance of the test set against itself is

15.099). According to this metric examples obtained by my method are more similar

to test examples.
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5.3.3 Experimental results

In this section I present evaluation results on the function labeling task for two datasets:

• Section 23 of the WSJ portion of the English Penn II Treebank, with models

trained on data extracted from sections 2-21. Section 22 was used for develop-

ment. The Charniak parser6 was used for constituency parsing.

• Articles 271 to 300 of the Penn Chinese Treebank 5, with models trained on

data extracted from articles 26 to 270. Articles 1-25 were used for development.

I follow (Levy and Manning, 2003) in adopting this test/training/development

split. The Bikel parser7 was used for constituency parsing.

For both datasets I used the LIBSVM library (Chang and Lin, 2001) which implements

the Support Vector Machines algorithm (Vapnik, 1998).

Experiments with the English Penn Treebank

Table 5.18 summarizes evaluation results for the function labeling task on the En-

glish Penn II Treebank. I report the scores for three methods. The baseline consists

in extracting training data from the treebank trees. Reparse is the training method

described in Section 5.3.2 where nodes in the reparsed trees are mapped to labels in

the original treebank trees. Aux-POS consists in extracting the training data from the

treebank trees; however the terminal nodes in those trees are matched to corresponding

terminals in the reparsed trees and if the reparsed tree has the AUX or AUXG part-

of-speech tag, then the treebank POS tag is changed to that. This method explicitly

takes care of the fact that the Charniak parser’s POS tagger assigns AUX and AUXG

tags to some words which have verb POS tags in the original treebank.

Additionally I tried an alternative reparsing method, Reparse-HW. This is a vari-

ation on the Reparse method: the difference is the way nodes are matched between

the gold trees and the parser trees in order to add function labels to the parser trees:

in Reparse we match on constituent label and span; in Reparse-HW we match just

on the constituent headword index. This more lax way of node matching allows us to
6Available at ftp://ftp.cs.brown.edu/pub/nlparser/
7Available at http://www.cis.upenn.edu/~dbikel/software.html#stat-parser
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use more of the gold function labels from treebank trees and increase the amount of

training data. Since in training constituent bracketing is ignored, I use the Headword

metric for evaluating the performance of Reparse-HW performance since Headword

also ignores the constituent boundaries.

Table 5.19 presents the scores for all four methods using Headword: Reparse-HW

is slightly worse than Reparse: the increase in the number of training examples does

not in this case translate to improved performance.

Table 5.18 shows the results for the first three methods, using Labeled Node Span

to compute precision, recall and f-score. There is a clear increase in f-score over the

baseline for the reparsing method, which gives a relative error reduction of almost 8.5%

over the baseline. The approximate randomization test (Noreen, 1989) with 106 shuffles

obtained a p-value of 10−7 for the baseline versus the reparsing method, showing that

the improvement is statistically significant.

The score of the Aux-POS method shows that a large part of the improvement

obtained with reparse can be attributed to the correction of mismatches between the

training and test data at the level of POS tag, namely to the presence of AUX and

AUXG tags in the output of Charniak’s parser. The Reparse method corrects this

discrepancy between training and test trees automatically, together with other possible

divergences.

The results (91.47% f-score) are the best scores published to date on the function

labeling task evaluated on parser output on the section 23 of WSJ: 87.27% in (Blaheta

and Charniak, 2000), 88.5% in (Jijkoun and de Rijke, 2004) and 88.96% in (Gabbard

et al., 2006)8

Table 5.20 shows the performance broken down per function label. Although per-

formance on three labels (LOC, LGS and PRP) drops, the rest of the labels show the

same score or benefit from the enhanced training method.
8Not all of those scores are exactly comparable to ours or to each other. The score in (Jijkoun and

de Rijke, 2004) is on trees transformed into dependencies. Gabbard et al. (2006) use Bikel’s parser to
produce the trees whereas we use Charniak’s.
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Precision Recall F-score
Baseline 92.28 89.14 90.68
Aux-POS 92.67 89.98 91.31
Reparse 93.07 89.92 91.47

Table 5.18: Function labeling evaluation on parser output for WSJ section 23 - Labeled
Node Span

Precision Recall F-score
Baseline 88.25 84.23 86.19
Aux-POS 88.16 84.74 86.42
Reparse 88.53 84.62 86.53
Reparse-HW 88.37 84.69 86.49

Table 5.19: Function labeling evaluation on parser output for WSJ section 23 - Head-
word

Label Freq. in test Baseline Reparse
SBJ 4148 98.27 98.27
TMP 1303 91.19 91.52
PRD 1025 68.35 91.26
LOC 1024 89.45 89.06
CLR 635 68.98 68.93
ADV 419 85.98 89.36
DIR 293 68.98 71.20
TPC 267 86.50 96.02
PRP 207 68.35 67.95
NOM 199 95.02 95.58
MNR 178 76.12 77.62
LGS 166 88.10 88.10
EXT 105 87.72 88.24
TTL 61 74.42 74.42
HLN 52 18.18 26.23
DTV 19 66.67 66.67
PUT 10 66.67 66.67
CLF 3 — —
BNF 2 — —
VOC 1 — —

Table 5.20: Per-tag performance of baseline and when training on reparsed trees -
Labeled Node Span
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Precision Recall F-score
Baseline 88.35 84.64 86.46
Reparse 88.54 84.82 86.64
Reparse + x-train 89.11 84.88 86.94

Table 5.21: Function labeling evaluation for the CTB on the parser output for the
development set

Experiments with the Penn Chinese Treebank

For the Chinese Treebank I performed experiments evaluating the impact of using the

Reparse method and also the variation with cross-training on the function labeling

task.

The results obtained are somewhat contradictory: there is an improvement in per-

formance using both on the development set (articles 1-25), but on the test set (articles

271-300) the basic method shows practically no improvement whereas cross-training

actually leads to results worse than for the baseline.

Table 5.21 shows the results for the development set which are consistent with the

findings so far: the reparsing method outperforms the baseline by 0.18%. Additionally,

adding cross-training produces a further increase in the f-score of 0.3%.

However, as can be seen in Table 5.22, for the test set the predictions are not borne

out: with cross-training I actually obtain a lower score than the baseline (−0.32%);

without cross-training the score is only marginally better than the baseline (+0.01%).

I performed an approximate randomization test for both the development set and

the set, testing the baseline against the reparsing method with cross-training. For the

development set I obtained a p-value of 0.13; for the test set the p-value was 0.08 –

thus neither the improvement for the development set nor the decrease in f-score for

the test set are statistically significant.

It would be interesting to repeat the experiments for Chinese using larger data sets.

There are two reasons to want to do that. First, testing on a larger test set would offer

a higher confidence in the significance of the observed performance scores. Second,

I suspect that one reason that my approach did not show consistent improvement
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Precision Recall F-score
Baseline 91.46 90.13 90.79
Reparse 91.39 90.23 90.80
Reparse + x-train 91.53 89.43 90.47

Table 5.22: Function labeling evaluation for the CTB on the parser output for the test
set

across both the development set and the test set might be related to the relatively

small amount of training material used, for both training the parser and the function

labeling model. Thus parse quality is rather low, and since we only exploit correctly

parsed nodes in extracting training instances for labeling, the amount of training data

available decreases even further. I also suspect that parse quality for Chinese may

be lower than for English even while holding training set size constant, reflecting the

smaller amount of work which has gone into research on parsing Chinese.

Testing those conjectures remains an area for future investigation. It remains to be

seen whether using my approach with training sets comparable in size with the one we

used for English would more show more consistent benefits for Chinese.

Following up on the research described is this section I would like to better under-

stand what factors influence the effect of the proposed training methods on function

labeling performance. It should also be possible to apply the findings reported in this

section to other tasks where training examples are typically extracted from perfect

trees whereas the test data is produced automatically and contains errors. Training on

parser output instead could be beneficial in those situations.

5.4 Summary

In this chapter I showed how to reliably learn function labels from treebanks for sev-

eral languages using classification techniques from machine-learning. In the machine-

learning setting various interacting parse-tree features can be used to predict the correct

function label. This is more robust and reliable than trying to use categorical rules to

map configurations to grammatical functions in the LFG annotation algorithm. Au-
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tomatically adding function labels to parse trees, and then using them in a simplified

annotation algorithm makes the DCU LFG parsing architecture easier to adapt to new

languages and treebanks.

I have shown how to successfully learn function labels from the Spanish Cast3LB

treebank and how the use of this methods substantially boosts the f-structure parsing

scores for this language. I have also shown how to improve the performance of the

function labeler on English Penn treebank data by extracting training material from

reparsed sentences rather than from original treebank trees. My approach improves

the similarity of the training material to the test instances as measured by instance

overlap and mean Hamming distance. I have consistently found statistically significant

improvements on the English Penn Treebank data, and a more mixed picture for the

Chinese Penn Treebank sentences.
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Chapter 6

Learning Morphology and

Lemmatization

6.1 Introduction

In a lexicalized grammatical formalism such as LFG a large amount of syntactically

relevant information comes from lexical entries. It is, therefore, important to be able to

perform morphological analysis in an accurate and robust way for morphologically rich

languages. It would also be desirable to treat morphological analysis in the same way

as other aspects of building LFG representations: i.e. learn as much as possible from

treebank data, and minimize the amount of language-dependent manual specification.

In this chapter I first present existing work on supervised learning of morphological

structure. Then I present a novel method of learning to lemmatize running text, and

follow on with the description of Morfette - a probabilistic model of morphological

tagging combined with lemmatization.

6.1.1 Main results obtained

This chapter shows how lemmatization can be seen as a classification where the class

label is the representation of the operations needed to map a wordform to the corre-

sponding lemma. Two such representations (or edit scripts) are proposed: reverse

edit list which work best for the most common case of suffixation, and edit tree

which is more general and also gives good class labels for prefixation. I show that the
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classifier approach to lemmatization can be used to lemmatize corpus text, i.e. word-

forms in context, as well as pairs of wordform and morphological tag. In both scenarios

the approach is competitive with state-of-the-art alternative methods.

Furthermore I propose a factored joint model – Morfette – for performing mor-

phological tagging and lemmatization. This model can be used to assign sequences

of lemma - morphological tag pairs to sentences. The model is trained on annotated

corpus data; however it also makes it easy to exploit alternative sources of annotated

data such as morphological dictionaries. The complete system shows good performance

on a number of datasets for inflectional languages.

Part of the research presented in this chapter has been previously published in

(Chrupa la, 2006) and (Chrupa la et al., 2008).

6.2 Previous Work

In this section I summarize existing work on supervised learning of morphological struc-

ture. I will not discuss unsupervised learning or non-data-driven finite-state approaches,

since the literature in those fields is vast and is not directly relevant to the focus of this

chapter.

6.2.1 Inductive Logic Programming

Early work on supervised learning of morphological structure was done within the In-

ductive Logic Programming (ILP) framework. ILP is a machine-learning methodology

for inducing general rules from examples and background knowledge (Muggleton, 1991;

Lavrač and Džeroski, 1994). First-order logic programming is used as a uniform repre-

sentation of the background knowledge, examples and hypotheses. Training examples

are typically represented as ground facts of the target predicate (i.e. the relation to

induce). Background knowledge is also typically represented as ground terms.

Two ILP systems capable of learning first-order decision lists have been used to learn

morphology: initial work made use of Foild (Mooney and Califf, 1995) to learn past

tense of English verbs; subsequently the more efficient ILP system Clog (Manandhar

et al., 1998) was shown to scale to large datasets and to accurately learn complex
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inflectional morphology. Both systems use a hill-climbing strategy to find a locally best

solution.

Mooney and Califf (1995) present the Foidl system which extends the ILP paradigm

with three features which make it suitable for NLP tasks such as learning morphology:

• Background knowledge can be expressed intensionally, i.e. as logic rules rather

than extensionally as a collections of ground terms (facts).

• Negative examples are implicit (using the output completeness assumption)

• The target predicate that is learned can use the extralogical cut operator, i.e. the

clauses in the definition learned are ordered, and thus correspond to first-order

decision lists.

In order to learn the rules for past-tense formation for English verbs they provide the

algorithm with the background predicate split/3 which non-deterministically splits a

non-empty list into a prefix and a suffix. It is defined in Prolog as follows:

split([X,Y | Z], [X], [Y | Z]).

split([X | Y],[X | W],Z) :- split(Y,W,Z).

Since Foild target predicates can use the cut operator it can learn compact or-

dered decision lists where the initial clauses capture the most specific cases (exceptions)

whereas clauses further down the list deal with increasingly general rules. For example

the following target predicate can be learned:

past(A,B) :- split(A,C,[e,e,p]), split(B,C,[e,p,t]),!.

past(A,B) :- split(A,C,[y]), split(B,C,[i,e,d]),!.

past(A,B) :- split(A,C,[e]), split(B,C,[d]),!.

past(A,B) :- split(B,A,[e,d]).

This encodes the following decision list:

• If the word ends in eep, replace eep with ept (e.g. sleep → slept)

• If the word ends in y, replace y with ied (e.g. try → tried)

• If the word ends in e, replace e with ed (e.g. bake → baked)
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• Otherwise, append ed (e.g. cook → cooked)

The authors show that Foild learns rules for predicting the past test of English

verbs with fewer examples and obtains better accuracy than previous ILP systems, and

other approaches such as neural networks or decision-tree forests (Ling, 1994).

Subsequently Foild was also used to learn the synthesis and analysis of Slovene

nouns (Džeroski and Erjavec, 1997).

As discussed by Manandhar et al. (1998) Foild has efficiency issues which make

it difficult to scale to datasets significantly larger than the English past-tense task.

The work on Slovene nominal morphology (Džeroski and Erjavec, 1997) was hampered

by the fact that it could not be trained on sufficiently large datasets. The Clog

ILP system described by Manandhar et al. (1998) remedies those efficiency issues and

demonstrates that the ILP approach can be extended to deal with realistic NLP tasks

such as supervised learning of complex morphology. Manandhar et al. (1998) perform

experiments on learning morphology for English, Romanian, Czech, Slovene and Esto-

nian. The datasets they use come from the Multext-EAST corpus (Erjavec, 2004),

which consists of the text of George Orwell’s novel 1984 in English and its translation

into several Central and East-European languages. The text is tokenized, and the to-

kens are annotated with lemma and a morphosyntactic description tag (MSD). Those

tags encode the part of speech and language-specific morphosyntactic features of the

word. The tags in the corpus text are manually disambiguated. The resource comes

with morphological lexicons which include all the word forms in the corpora, with all

their possible analyses.

For the experiments the authors used word-lemma-MSD triples for wordforms in the

corpus, in their non-disambiguated form. Only nouns and adjectives were used. From

each triple two examples were created, one for morphological analysis and one for syn-

thesis. Some features, irrelevant for morphological behavior, such as proper/common

noun distinction were collapsed to a unspecified value. They used the background

knowledge predicate mate(W1,W2,P1,P2,S1,S2) which is true if P1 and S1 are the

prefix and suffix of W1 and analogously with P2, S2 and W2. This is sufficient to handle

concatenative morphology such as in the languages the paper deals with.

The first three parts of 1984 were used for training and the appendix for testing.
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Analysis Synthesis
English 96.05 98.02
Romanian 92.56 94.66
Czech 97.08 97.34
Slovene 96.95 91.56
Estonian 97.21 83.64

Table 6.1: Morphological synthesis and analysis performance in (Manandhar et al.,
1998)

There were 288 MSDs between the five languages and thus the system had to learn 288

programs for synthesis and analysis each. The accuracies reported by the authors for

Clog trained on the full training set are shown in Table 6.1.

Erjavec and Džeroski (2004) present a system for lemmatizing Slovene open-class

words. Unlike in (Manandhar et al., 1998) the system is able to lemmatize raw word

forms; this is achieved by decomposing the task into two stages: first raw text is

MSD-tagged using a part-of-speech tagger, then the surface wordform-MSD tuples are

lemmatized. The tagger used is the trigram TnT tagger described in (Brants, 2000). It

is trained on 100,000 word corpus of MSD-tagged Slovene from Multext-EAST and

backed up by a lexicon and various heuristics.

The Clog system is used to learn first order decision lists to predict word lemma

given the wordform and the MSD tag determined by the MSD tagging module. Lemma-

tization is only learned for nouns, adjectives, and verbs. Lemmas for closed-class words,

such as pronouns or auxiliary verbs, are retrieved from a lexicon, and for other open-

class words such as adverbs, lemmas are always equal to wordforms. For training

the lemmatizer the Multext-EAST lexicon of approximately 15,000 lemmas and the

corresponding inflected forms was used.

The system was evaluated on the IJS-ELAN Slovene corpus (Erjavec, 2002). Since

the TnT tagger trained on Multext-EAST performed poorly on the test corpus the

authors tried to improve its accuracy by adding to the training set 1% of the test corpus

sentences. They also used a lexicon covering 97% of the test corpus tokens and certain

other heuristics to correct systematic tagging errors.
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The improved MSD tagger achieves an accuracy of 92.9% on all tokens in the test

set, and 90.0% over nouns, adjectives, and verbs only. The authors tested the perfor-

mance of the whole system with lemmatization in the following way: they extracted

a test lexicon from the tagged corpus consisting of words tagged as nouns, adjectives

or verbs, and which have not been assigned a lemma during tagging based on lexicon

lookup. From this they filtered out wordforms which contain non-alphanumeric char-

acters (except hyphen), are less than four characters long, and appear only once in the

corpus, as well as English words. The resulting lexicon consists of 763 distinct pairs

of surface wordform and automatically assigned MSD. On this test set 92% of lemmas

were correctly assigned; most errors were due to MSD-tagging mistakes.

6.2.2 Memory-based learning

An approach to morphological analysis of Dutch wordforms based on the nearest-

neighbor classifier is described in van den Bosch and Daelemans (1999). It deals with

both inflectional and derivational morphology.

For each position in a wordform the system predicts a label which encodes whether

there is a morpheme boundary at that point, its part of speech, and what spelling

changes were present. For example for the wordform abnormaliteiten (abnormalities)

the first character receives the label A+Da, which means the morpheme beginning

at that position is an adjective, and the spelling change is the deletion of the letter

a (i.e. the original adjective morpheme is abnormaal (abnormal)). The character i

which starts the morpheme iteit receives the label N A*, which encodes the fact that

the morpheme attaches to the right of an adjective and produces a noun. Finally the

character e at the start of the morpheme en receives the label m, which stands for

plural inflection.

All the other characters receive the 0 label, meaning that no morphological bound-

ary is present at that position. The wordforms for training and testing were taken

from the CELEX (Baayen et al., 1993) lexical database. The features used were the

character at the current position plus the preceding and following five characters. The

overlap distance metric was used with features weighted by information gain. The

authors performed a 10-fold cross-validation. They report the following generalization
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accuracies: 95.88% instances (i.e. positions in wordforms) are classified correctly. This

translates into 64.63% correctly analyzed words.

6.2.3 Analogical learning

Stroppa and Yvon (2005) present yet another take on supervised learning of morphol-

ogy: analogical learning. Supervised learning using analogical reasoning is a type of

instance-based learning model. Each training instance is a vector of m features. Given

the set of training instances S = {X1, ..., Xn} the task is to predict the missing features

of new instances: thus this setting is more general than the classification task described

in Section 3.2. The inference proceeds as follows: training instances are stored and no

abstraction is performed. Given a new instance X, analogical proportions involving X

are identified: the features of objects involved in these relations are used to infer the

missing features of the instance X. An analogical proportion is a relation involving

four objects, and denoted as A : B :: C : D, i.e. A is to B as C is to D. Let I(X) be

the set of known features of X (projection to the input space) and O(X) for the set of

unknown features of X (projection to the output space). Then the inference process

can be formalized as:

1. Construct the set T (X) ∈ S3 such that

T (X) = {(A,B,C) ∈ S3 | I(A) : I(B) :: I(C) : I(X)}

2. For each (A,B,C) ∈ T (X) compute hypotheses Ô(X) by solving the analogical

equation: Ô(X) = O(A) : O(B) :: O(C) :?

Various methods are used to optimize search in S3 to make it tractable.

The analogical learning model requires the availability of a method to compute

analogical proportions on feature vectors. Stroppa and Yvon (2005) present a general

definition of analogical proportion for semigroups and two concrete instantiations: for

words over finite alphabets and for labeled trees. An element u of the semigroup (U,⊕)

where ⊕ is an associative composition operator on U , can be factorized into factors

u1...un, such that each factor ui ∈ U and u1 ⊕ ... ⊕ un = u. Then (x, y, z, t) ∈ (U,⊕)

form an analogical proportion x : y :: z : t if and only if there exists some factorizations

of x1 ⊕ ...⊕ xd = x (and similar for y, z and t) such that ∀i, (yi, zi) ∈ {(xi, ti), (ti, xi)}.
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input = acrobatically ; output =
Adv

Adj

N

acrobat

Adj|N

ic

Adv|Adj

ally

Figure 6.1: Instance for task 2 in Stroppa and Yvon (2005)

This definition can be instantiated to analogical proportions on strings over finite

alphabets, where U becomes the alphabet and ⊕ the concatenation operator. Yvon

(2003) describes an efficient solver for analogical equations on strings based on finite-

state transducers.

Similarly for labeled trees, analogical proportions can be defined if a binary asso-

ciative operator on trees is defined such as substitution. In order to solve analogical

proportions on trees Stroppa and Yvon (2005) propose to linearize trees into parenthe-

sized strings and use the solver for strings.

Stroppa and Yvon (2005) describe an application of analogical learning to two

morphological tasks. The first task is to predict vectors of features associated with

isolated wordforms. Each vector consists of the lemma, part of speech and various part-

of-speech-dependent morphological features such number, gender, case, tense, mood

etc. A training example for English would be: input=replying, output={reply,V-pp--}.

The second task is similar to that undertaken in (van den Bosch and Daelemans,

1999) above, i.e. morphological segmentation. An example input-output pair for En-

glish for this task is shown in Figure 6.1.

The German, English and Dutch CELEX database was used for task 1. For task

2 only the English data was used. For each experiment they performed 10 runs and

tested on 1,000 randomly picked instances. Generalization performance was measured

as follows: per instance precision was computed as the proportion of correct hypothesis.

Per instance recall was the proportion of correct solutions that were predicted by the

system. Those two scores were averaged over over the test set, and averaged over the
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English
Recall Precision

Nouns 75.26 95.37
Verbs 94.79 97.37
Adjectives 27.89 87.67

Dutch
Nouns 54.59 74.75
Verbs 93.26 94.36
Adjectives 90.02 95.33

German
Nouns 77.32 81.70
Verbs 90.50 90.63
Adjectives 99.01 99.15

Table 6.2: Results for task 1 in Stroppa and Yvon (2005)

Recall Precision
Morphologically complex 46.71 70.92
Other 17.00 46.86

Table 6.3: Results for task 2 in Stroppa and Yvon (2005)

10 runs. The results are summarized in Tables 6.2 and 6.3.

The authors note that high generalization performance is manifest for data with rich

inflectional paradigms such as all German data. On the other hand for categories such

as English adjectives the results are poor. They attribute this effect to the fact that

in order to make search tractable instances are divided into bins based on inflectional

categories – the performance could be improved for English adjectives by using bins

based on derivational rather than inflectional families.

The methods for supervised learning of morphology described above all have in

common the fact that for a given word form they are able to generate the corresponding

lemma (or root or stem) for unseen words.

Another common method of performing data-driven morphological analysis does not

have this property. In this approach morphological analysis is treated as a sequence

labeling task, i.e. a generalization of part of speech tagging. The labels encode mor-

phosyntactic features. A lexicon which maps wordform-label pairs to lemmas is then

98



used to perform lemmatization, which has the disadvantage that words not present in

the lexicon cannot be lemmatized. This problem is solved by (Erjavec and Džeroski,

2004) by learning morphological analysis in two steps, first learning a morphological

labeling model from running corpus text, and then learning a lemmatization model

from a full form lexicon. The output of the first model is used by the second model.

In the following section I briefly review research on morphological tagging and on

disambiguation of morphological analyses; this is relevant to Section 6.4 which presents

a novel method of combining data driven morphological analysis with lemmatization,

different to the approach used by (Erjavec and Džeroski, 2004).

6.2.4 Morphological tagging and disambiguation

Morphological tagging is a data-driven approach to morphological analysis which treats

the task in terms of sequence labeling: i.e. it is modeled on the POS tagging framework.

Morphological information is encoded in a tag, (sometimes called a morphosyntactic

description, MSD) associated with the word form, and the system learns to predict

those sequences of MSDs from annotated data. The main challenge here is dealing

with morphologically rich languages where the number of unique tags is in the hundreds

or thousands. This creates scaling issues for many machine learning approaches, and

data-sparseness problems for those that do scale.

In order to alleviate those issues it is common to restrict MSD tagging to disam-

biguating candidate analyses proposed by a rule-based morphological analyzer, or a

large morphological lexicon. It has also proved useful to predict the features encoded

in the tags separately and combine those factored decisions to choose the full MSD tag.

Research using such approaches has been carried out initially mostly for East Euro-

pean languages. Hajič and Hladká (1998) describe a disambiguating tagger for Czech

which uses an efficient exponential probabilistic model. Hajič (2000) adapts this model

to other Easter European languages and investigates the issue of the relative usefulness

of morphological dictionaries versus annotated corpora (cf. Section 6.4.5).

Tufiş (1999); Tufiş and Dragomirescu (2004); Ceauşu (2006) propose the approach

of tiered tagging and apply it to Romanian. The idea is to reduce the original rich

tagset to a smaller one, train the tagger on the reduced tagset, and recover the original
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tags in a second-stage postprocessing step, which involves either application of hand

written rules and dictionary lookup, or in the most recent paper, a second-stage tagger

which uses the predicted reduced tags as input to recover the original ones.

More recently the tag disambiguation approach has been applied to Korean (Han

and Palmer, 2004), Arabic (Habash and Rambow, 2005), and Turkish (Hakkani-Tür

et al., 2002; Yuret and Türe, 2006). Due to the morphological complexity of those lan-

guages, those systems use an online morphological analyzer rather than a precompiled

dictionary as the source of analysis candidates.

There are varying ways of dealing with lemmatization associated with these ap-

proaches: either ignore it altogether (Hajič and Hladká, 1998), rely on the morphologi-

cal analyzer or dictionary to provide it (this leaves the problem of unknown words) or,

as discussed in the previous section, treat it in a second stage (Erjavec and Džeroski,

2004).

In Section 6.3 I first present a method of learning lemmatization using only running

text annotated with lemmas. This model learns some morphosyntactic features implic-

itly in order to predict lemmas, although such features are not explicitly present in the

training data and are not output by the model. This is a useful mode of operation

when disambiguated morphosyntactic labels are not available and it serves as a proof

of concept for learning lemmatization in the classification setting.

In Section 6.4 I then show how to combine this lemmatization method with mor-

phological tagging in an integrated model which predicts probability distributions over

sequences of morphological tag-lemma pairs. This can be seen as an alternative, ar-

guably simpler and more general approach to the two step method proposed by Erjavec

and Džeroski (2004) for Slovene.

6.3 Simple Data-Driven Context-Sensitive Lemmatization

6.3.1 Lemmatization as a classification task

Many successful machine-learning methods require that the task to be performed be

cast as classification. The training data should consist of a collection of examples with

assigned class labels. The algorithms learn to assign those labels to new examples. Here
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I show how lemmatization can be easily adapted to the classification setting, given some

reasonable assumptions about the data.

It is not immediately obvious what the class labels should be for the task of lemmati-

zation. In principle, lemma classes could be specified manually, on the basis of analysis

of inflectional or derivational paradigms for a given language. This works but is labor-

intensive.

The approach I propose is to derive the classes automatically from training data.

Instead of inspecting data to identify and specify paradigms we try to automatically

discover recurring patterns in the mappings form word forms to lemmas.

I present a very simple class-inference mechanism based on the idea of the edit

script between two strings . An edit script specifies what transformations should be

applied to the input string in order to obtain the output string. There are many

possible string operations and many ways of specifying them in an edit script. Here I

will concentrate on one simple instantiation of this idea: an edit-list (Myers, 1986;

Aho et al., 1976; Hirschberg, 1977). An edit-list of sequences w and w′ is a list of

instructions (insertions and deletions) which, when applied to sequence w, transform

it into sequence w′. An instruction specifies whether an insertion or a deletion should

be performed, at which position in sequence w, and which element is to be inserted

or deleted. As an example consider the strings w = pidieron and w′ = pedir1. An

edit-list which transforms w into w′ is (〈D, i, 2〉, 〈I, e, 3〉, 〈D, e, 5〉, 〈D, o, 7〉, 〈D, n, 8〉).

This is interpreted as

• delete character i at position 2

• insert character e before position 3

• delete character e at position 5

• delete character o at position 7

• delete character n at position 8

I use the edit-list between word forms and their lemmas as class labels.
1pidieron is the 3rd person plural preterite form of the verb pedir, ask in Spanish.
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One nuance is that in the majority of languages inflectional morphology is mostly

suffixal, i.e. it affects the endings of words, or occasionally material in word roots,

rather than the beginning.2 This means that edit-lists will work better as classes

if we index characters starting at the end of the string rather than at the begin-

ning, or equivalently if we compute the edit-list on reversed strings. For example

if we compute editlist(repitieron, repetir)3 we will not get the same edit-list as for

the example above (as all indices will be incremented by 2). However on reversed

strings, editlist(noreidip, ridep) and editlist(noreitiper , riteper) give the same result

{〈D, n, 1〉, 〈D, o, 2〉, 〈D, e, 4〉, 〈D, i, 7〉, 〈I, e, 8〉}. This accords with the linguistic notion

that the strings pedir and repetir are forms of Spanish verbs which occupy the same

position in the verb inflection paradigm of the same conjugation class. If our as-

sumptions about inflectional morphology hold, i.e. if it is predominantly suffixal, such

agreement should happen frequently. I will refer to this adjusted version of the edit list

as reverse-edit-list.

6.3.2 Experiments

I have performed a series of experiments on a range of languages and data sets to

evaluate how this idea works in practice.

Data

I have used lemma-annotated corpora in eight languages.

• Spanish, Cast3LB Civit and Mart́ı (2004)

• Catalan, Cat3LB Civit et al. (2004)

• Portuguese, Bosque 7.3, Afonso et al. (2002)

• French, Paris-7 Treebank, Abeillé et al. (2003)

• Polish, Polish Frequency Corpus, Section B - Press, Bień and Woliński (2003)

• Dutch, Alpino Treebank, van der Beek et al. (2002)
2Celtic languages such as Irish or Welsh are a well-known exception.
3repitieron is the 3rd person plural preterite form of the verb repetir, repeat in Spanish.
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Feature notation Description
f0n , n = |f0| − 12 · · · |f0| − 1 The last 12 characters of the word form
f0 The target token word form (treated atomically)
fn, n ∈ {−3,−2,−1, 1, 2, 3} Word forms of preceding and following 3 tokens

Table 6.4: Feature notation and description for lemmatization

• German, Tiger Treebank, Brants et al. (2002)

• Japanese, Kyoto Text Corpus, Kurohashi and Nagao (2003)

For each corpus I took 10,000 tokens as the test test, another 10,000 tokens as devel-

opment set, and 70,000 as training set.

In the Japanese corpus the word forms appear in Kanji and the lemmas in Hiragana.

Since the method needs data written in the same script, and preferably an alphabetic

one, I convert both Kanji and Hiragana to Romaji using the Kakasi software package.4

I have not evaluated the accuracy of the conversion so there may be some noise in our

Japanese results.

Methodology

For each language I use the same set of features, the presented in Table 6.3.2. Example

features extracted from a Spanish sentence are shown in Table 6.3.2.

In the experiments I use the LIBSVM implementation (Chang and Lin, 2001) of

Support Vector Machines (Boser et al., 1992; Vapnik, 1998), which implements the one-

against-one strategy for non-binary (multi-class) classification. I binarize the features

described above for use with the SVM: i.e. each original feature-value combination is

mapped to a new binary feature.

I use the Radial Basis Function kernel. The parameters C (32768) and γ (3.05 ×

10−5) were chosen by cross-validation on the Spanish development set. Because I did not

repeat feature selection and parameter tuning separately for each language, my results

may underestimate the potential performance of our method for languages other than
4Available for download at http://kakasi.namazu.org/. I would like to thank Masanori Oya for

pointing out Kakasi to me and for help with the conversion.
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Table 6.5: Example features for lemmatization extracted from a Spanish sentence
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Baseline Acc. Accuracy Precision Recall F-score
Catalan 66.33 97.27 95.91 93.40 94.64
German 52.64 95.11 94.61 92.03 93.31
Polish 48.61 95.06 93.75 91.96 92.84
Spanish 69.50 96.44 92.32 92.65 92.48
Japanese 88.42 98.36 94.05 88.77 91.33
Portuguese 71.74 96.38 91.85 90.58 91.21
French 61.88 94.36 92.16 87.93 89.99
Dutch 78.80 94.15 85.38 79.62 82.40

Table 6.6: Lemmatization evaluation for eight languages

Spanish.

When calculating the reverse-edit-list for word form - lemma pairs, both strings

were lowercased and embedded quotes (occasionally found in German compound words)

were removed. These simplifications reduce the number of classes and make the learning

task easier. Also, lemma capitalization is ignored for evaluation.

6.3.3 Evaluation results and error analysis

Table 6.6 presents the results of evaluation for all the languages on the test sets. The

most straightforward performance metric is token accuracy: i.e. what proportion of

tokens were correctly lemmatized (shown in the second column). Depending on the

data set, high accuracy can be achieved by simply returning the word form (the baseline

method). E.g. for Japanese, where the only open-class words which inflect are verbs,

the baseline method give 88.42% accuracy on the test set. Baseline accuracies are

shown in the first column. The second column shows accuracies: for all the data sets

they are above 94%, with the highest score for Japanese at 98.36%.

To give a more informative indication of the performance I also calculate precision,

recall, and the harmonic mean of those two, the f-score. For those metrics I consider

the empty reverse-edit-list, i.e. when the lemma is equal to the word form, as the

null class. The number of correct lemmas, excluding the nulls, are the true positives.

Recall is then calculated by dividing the number of true positives by the number of

non-null lemmas in the gold standard, whereas precision is the number of true positives
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Baseline Acc. Accuracy Precision Recall F-score
Polish 26.31 80.29 81.73 77.53 79.58
Spanish 58.75 86.35 77.97 79.39 78.67
Portuguese 58.58 85.17 76.35 70.32 73.21
Catalan 60.16 82.99 76.11 66.05 70.72
German 55.95 78.88 72.02 62.80 67.09
Japanese 78.96 89.54 74.62 59.88 66.44
French 55.80 76.83 71.42 55.71 62.60
Dutch 66.42 72.40 46.82 31.33 37.54

Table 6.7: Lemmatization evaluation for eight languages – unseen word forms only

divided by the number of non-nulls among the predicted lemmas.

Except for one case, the f-scores cluster between 90% and 95%, even though base-

line accuracies range from under 50% to almost 90%. Thus even though the languages

represent varying degrees of inflectional richness, this has limited impact on the per-

formance of the reverse-edit-list-based lemmatization method.

There is one outlier, however: for Dutch the f-score is over 7% worse than the next

best result. I suspect that this is due to the fact that for this dataset the assumption

of predominantly suffixal inflection does not hold. It turns out that there are many

tokens in the Dutch corpus where mapping the wordform to lemma involves changes

to the beginning of the string, often involving moving an initial part of the wordform

to the end. This happens in the case of separable prefix verbs such as: lesgegeven

→ geef les (teach class) or meelopen → loop mee (run with). In those two examples

the lemma is the verb inflected for present first-person singular, with the separable

particle following it. Even more problematic are cases where the separable prefix that

appears at another point in the utterance is appended at the end of the lemma, e.g.

the sequence of word forms we trokken erop uit (we went out) is lemmatized as follows:

〈we, trek uit, erop, uit〉. Another non-final transformation involves compound words,

where the compounding morpheme -s is replaced by an underscore in the lemma:

verbrandingsmotor → verbranding motor (internal combustion engine). It is clear that

for such transformations classifying examples by reverse-edit-list is not sufficient.

It is also evident, however, that for many datasets such cases are rare and the
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Base Acc. Accuracy Precision Recall F-score
Freeling all 69.50 95.05 92.78 88.13 90.39

unseen 58.75 82.05 82.58 64.36 72.34
rel+SVM all 69.50 96.44 92.32 92.65 92.48

unseen 58.75 86.35 77.97 79.39 78.67

Table 6.8: Comparison of reverse-edit-list+SVM to Freeling on the lemmatization
task for Spanish

simple method shows remarkable high performance. The problems with lemmatizing

the Dutch corpus are only partly caused by the features of the language itself. Equally

important are the choices made by corpus designers. This can be seen by comparing the

results for Dutch to those on the closely related language German, which also has verbs

with separable prefixes and the compounding morpheme -s-. However in the German

Tiger treebank separable prefixes which appear elsewhere in the text are not attached

to the verb lemma, and the morpheme -s- does not get replaced by an underscore

in lemmas for compound nouns. For example the sentence Konzernchefs lehnen den

Milliardär als US-Präsidenten ab (Company bosses reject a billionaire for US president)

is lemmatized as 〈Konzernchef, lehnen, der, Milliardär, als, US-Präsident, ab〉 even

though it contains the verb ablehnen with the separable prefix ab. It could be plausibly

argued that in the common “pipeline” approach to language processing finding such

non-local dependencies is best left to the syntactic level of analysis.

Table 6.7 shows the same statistics as Table 6.6 for the subset of word forms not

seen in the training set. There is more variance in these results than for the all-tokens

evaluation and the relative ranking of languages is also different. Understandably, for

all test-sets there is a significant drop in the f-score for the unseen subset. There is

a group of languages where the difference between the f-scores is below 20% (Polish,

Spanish and Portuguese), another group (Catalan, German, Japanese and French)

between 20% and 30%, and again the outlier datapoint of Dutch, where the difference

is of 44%. It remains to be investigated to what degree these differences are a function

of the morphological features of the languages in question and to what extent they

reflect the nature of the particular datasets or treebanks used in this evaluation.
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Base Acc. Accuracy Precision Recall F-score
Freeling all 66.33 93.32 93.08 83.93 88.27

unseen 60.16 77.16 86.31 46.13 60.13
rel+SVM all 66.33 97.27 95.91 93.40 94.64

unseen 60.16 82.99 76.11 66.05 70.72

Table 6.9: Comparison of reverse-edit-list+SVM to Freeling on the lemmatization
task for Catalan

Comparison to Freeling

In order to determine how the reverse-edit-list-based machine-learning approach

to lemmatization compares to more traditional methods, I compare the results of my

method to the performance of a popular analyzer Freeling (version 1.2) (Carreras et al.,

2004)5. Freeling performs a range of language-processing tasks (tokenization, morpho-

logical analysis, named-entity recognition, chunking etc.) for several languages. Below

I compare the two systems on the lemmatization task on the Spanish and Catalan test

sets. Lemmatization in Freeling is based on lexicon lookup combined with disambigua-

tion based on the part of speech tag in cases where the same word form can correspond

to different lemmas. The Spanish lexicon size is about 71,000 word forms. The Catalan

lexicon contains around 46,000 word forms.

In the input to Freeling I keep the original tokenization and sentence splits present in

the corpus data. In the Spanish and Catalan treebanks multi-word expressions, named-

entities, dates and quantities are treated as single tokens – I also keep those tokens,

and consequently deactivate named-entity, multi-word, date and quantity handling by

Freeling.

Tables 6.8 (Spanish) and 6.9 (Catalan) show the results for Freeling and for the

reverse-edit-list-based method using the SVM classifier. I report results on all

tokens and also results on tokens not seen in our training set. For Spanish, my method

outperforms Freeling by about +2% on all tokens, which corresponds to a relative error

reduction of 28%. The +6.33% difference between the systems on the unseen subset of
5At the time these experiments were performed this was the latest version of Freeling. In Section

6.4.5 the current version, Freeling 2.0, is compared against the complete morphological analysis system
Morfette, which uses the classifier-based lemmatization approach proposed here.

108



Different edit-list better p-value
Spanish 581 360 4.414× 10−9

Catalan 705 550 2.2× 10−16

Table 6.10: Statistical significance test

tokens, gives a relative error reduction of 24%. For Catalan the differences are larger:

+6.37% (50% error reduction) on all tokens and +10.58% (25% error reduction) on the

unseen token subset. The poorer performance of Freeling on the Catalan data probably

reflects its small lexicon size for that language.

Freeling’s lemmatization is not data-driven, and does not use the training data.

The sharp drop in performance it shows for the subset of tokens unseen in the training

material is probably due to the fact that such tokens are relatively uncommon words,

in many cases probably absent from Freeling’s word form lexicon. In those cases,

Freeling simply returns the word form as the lemma, whereas the machine-learning

model generalizes to unseen data and in most cases outputs the correct answer.

To determine how statistically significant the difference between the systems’ per-

formance is, I ran a binomial test on the results for the all tokens comparison. I adopt

a confidence level of 99% (α = 0.01) for these tests.

For each token we check whether the methods give different answers – for these

cases (i.e. the number of trials) we calculate in how many cases the second method

is better than the first (i.e. the number of successes). I then perform the binomial

test with the null hypothesis that the probability of success is chance (= 0.5) and the

alternative hypothesis that the probability of success is greater than chance (> 0.5).

The results are summarized in Table 6.10. For both languages the p-values are much

below α, and statistically significant at that confidence level.

6.3.4 Conclusion

The edit script approach to learning to lemmatize running text is appealingly simple

and manages to combine good performace with a high degree of language independence.

Other methods often rely on a large full-paradigm inflectional lexicon, either to perform
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word form lookup, or as a training resource. To train the system presented here only a

lemmatized corpus is needed. The system is context-sensitive: it incorporates features

of context words surrounding the target word form to combine lemmatization with

disambiguation.

Though certainly useful, lemmatization without accompanying morphological anal-

ysis is often insufficient. In order to perform lemmatization, the system already has

to learn some implicit morphological classes. For example in order to decide whether

the correct lemma class should map the Spanish word form bases to base (basis) or to

basar (to base) the system has to decide whether the token is more likely to be a verb

or a noun. In Section 6.4 I factor out the learning of morphological features and lemma

classes and investigate how to best reintegrate them in a modular fashion.

As evident from the Dutch results, the reverse-edit-list approach is inadequate

when the assumption of suffixal inflection does not hold. A partial solution to this issue

is offered in Section 6.4.6.

6.4 Morfette – a combined probabilistic model for mor-

phological tagging and lemmatization6

6.4.1 Introduction

In this section I describe and evaluate the Morfette system for data-driven morpho-

logical analysis. The approach follows the decomposition of the task of morphological

analysis into two subtasks: the assignment of morphological features to the word form,

and lemmatization.

Many data-driven approaches to morphology involve encoding morphological fea-

tures as tags (MSDs), and use some sequence labeling method to assign MSD sequences

to sentences. In the case of morphologically rich inflectional or agglutinative languages,

the classification decision is often constrained by the use of an MSD lexicon, or a

finite-state morphological analyzer: in such systems the data-driven component is lim-

ited to performing morphological disambiguation rather than morphological analysis
6The research presented in this section was done in collaboration with Georgiana Dinu, who helped

develop the edit-tree lemma induction scheme, proposed the prepruning criterion, prepared software
for error analysis and did the error analysis for Romanian data.
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itself (Hajič and Hladká, 1998; Hajič, 2000; Tufiş, 1999; Tufiş and Dragomirescu, 2004;

Ceauşu, 2006; Han and Palmer, 2004; Habash and Rambow, 2005; Hakkani-Tür et al.,

2002; Yuret and Türe, 2006).

In an MSD disambiguation setting, lemmatization is simple: either the lexicon or

the morphological analyzer already returns the correct lemma corresponding to each of

the candidate analyses. The problematic cases are unknown words: most systems are

able to guess the MSD of an unknown word, but not the corresponding lemma.

As described in Section 6.2.1, Erjavec and Džeroski (2004) solve the problem of lem-

matizing unknown words by using a two stage architecture, first sentences are assigned

MSD sequences by a POS-tagger, and then an ILP system assigns lemmas to unknown

wordform-MSD pairs.

In Section 6.3 I described an alternative approach to lemmatization. This method

automatically induces lemma-classes: they correspond to the edit script between word

forms and the corresponding lemmas. Then a standard classifier is used to “tag” words

with their lemma-classes, from which the words’ lemmas can be obtained by “executing”

the edit script on the word forms. Thus in this approach lemmatization becomes just

another instantiation of sequence labeling.

In this section I present a modular, data-driven model which performs both mor-

phological tagging and lemmatization, i.e. it maps a sequence of word forms of length

n to the sequence of MSD - lemma pairs:

M :Wn → (M× Λ)n (6.1)

I use a generic, language-independent feature-set in the models and investigate how

well such an approach generalizes to three morphologically rich languages.

In Section 6.4.2 I present the architecture of the model, the features used and

the search algorithm. In Section 6.4.3 I present experimental evaluation results for

three languages and corpora. Section 6.4.4 contains a brief error analysis. Section

6.4.5 experiments with integrating lexical resources in the system while Section 6.4.6

proposes an alternative version of edit script to use for lemma class induction. Finally

Section 6.4.7 presents conclusions and ideas for further improvements in data-driven

morphological analysis.
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6.4.2 The Morfette system

Architecture

The Morfette system is composed of two learning modules, one for morphological

tagging and one for lemmatization, and one decoding module which searches for the

best sequence of pairs of morphological tags and lemmas for an input sequence of word

forms. Both modules learn Maximum Entropy classifiers such as that described for

POS tagging by Ratnaparkhi (1996). For the lemmatization model I use the method of

inducing lemma classes described in Section 6.3. I do not, however, use the features or

the SVM classifier, as that configuration turned out to be impractically slow in practice

and to scale poorly. The primary reason for that is that a SVM is a binary classifier

and to perform multiclass classification one has to decompose that task into a series

of binary classifications and combine them using a method such as one-against-all.

For the large number of classes involved in lemmatizing and MSD-tagging inflectional

languages this is computationally quite expensive.

Features

In the Morfette architecture one can use arbitrary features of the focus word and

the context sentence. I use a rather minimalistic and language-independent feature set

in the experiments reported in Section 6.4.3. This has the advantage of being very

general and using very little domain expertise but obviously for maximum performance

it is desirable to extend and refine it using language and domain specific features.

Initially this basic feature configuration was tested on three languages for which we

had sufficient expertise to perform meaningful error analysis, i.e. Spanish, Polish and

Romanian. The features are described in Table 6.11. Figure 6.2 shows the values of

those features extracted from the following example sentence in Romanian:

Wordform În pereţii boxei erau trei orificii

Lemma ı̂n perete boxă fi trei orificiu

MSD Spsa Ncmpry Ncfsoy Vmii3p Mc-p-l Ncfp-n

Gloss In the walls of the cubicle there were three orifices

(6.2)
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Feature notation Description
MSD-tagging model

f0 Lowercased wordform of the focus token
sn(f0), n = 1 · · · 7 Suffixes of length n
pn(f0), n = 1 · · · 5 Prefixes of length n
sp(F0) Spelling pattern of the (non-lowercased) wordform
s1(m−2)⊕ s1(m−1) Concatenation of the first element of the two previous MSDs
f−2, f−1 Lowercased wordform of two previous tokens
m−2,m−1 (Predicted) MSD of two previous tokens
l−2, l−1 (Predicted) Lemma of two previous tokens
mtrain1 Set of MSDs seen in training data for wordform of next token

Lemmatization model
f0 Lowercased wordform of the focus token
sn(f0), n = 1 · · · 7 Suffixes of length n
pn(f0), n = 1 · · · 5 Prefixes of length n
m0 (Predicted) MSD tag
sp(F0) Spelling pattern7 of the (non-lowercased) wordform

Table 6.11: Feature notation and description for the basic configuration

In comparison with the features used in Section 6.3, the main difference is that

here word suffixes of length 1 to 7 are represented explicitly whereas before only single

characters were used. This is due to the fact that the SVM classifier when used with

a kernel can automatically model feature conjunctions by implicitly mapping feature

vectors to higher dimensional spaces whereas in the MaxEnt framework they have to

be represented explicitly.

Search

Maximum entropy models predict probability distributions over classes (i.e. MSD-tags

or lemma-classes) for the current focus word form given its context as encoded in the

features. That is for a focus word wi with the context c ∈ C, for each possible MSD-tag

m ∈M the MSD-tagging model gives p(m|c), and for each possible lemma-class l ∈ L

the lemmatization model gives p(l|c,m). The context includes the focus wordform as

well as the preceding and following wordforms in the same sentence.

The algorithm is a beam search which maintains a list of n-best sequences of (m, l) ∈

M×L (MSD-tag - lemma) pairs up to the current position in the input word sequence.
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Figure 6.2: Features extracted for the MSD-tagging model from an example Romanian
phrase: În pereţii boxei erau trei orificii.
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The conditional probability of a candidate sequence of words w0..wi is given by

P (m0..mi, l0..li|w0..wi) = p(li|ci,mi)p(mi|ci)P (m0..mi−1, l0..li−1|w0..wi−1) (6.3)

The search proceeds as follows: for focus word wi there are n (n being the beam size)

highest probability sequences ((m0, l0)..(mi−1..li−1)). For each of those sequences we

obtain a MSD-tag probability distribution from the MSD-tagging model. For efficiency

reasons we pre-prune this set of tags: given the list of tag probabilities (m0, p0)..(mj , pj)

sorted in decreasing order, we keep all the tags m0..mi where pi satisfies the condition:

pi/

i∑
k=0

pk < T,

where T is a threshold parameter.

Each of the retained morpho-tags for word wi is added to each candidate sequence

and for each of those combinations we obtain lemma-class probability distribution from

the lemmatization model. The lemma-class set is pruned according to the same method

as for MSD-tags. The probability of candidate sequences is updated according to

Equation 6.3, the n highest ranking candidate sequences for w0..w1 are retained and

the algorithm proceeds to word wi+1.

6.4.3 Evaluation

For evaluation I chose three morphologically rich languages for which we had expertise

to perform error analysis. I have not tuned the features or parameters of our system

to any particular dataset. At this stage the focus is not necessarily on improving on

the best published results for a particular language; rather the objective is to see how

well the system performs with a minimalistic feature set and no language-dependent

engineering effort and identify the main source of mistakes for each language.

I use the following data sets:

• Romanian: Multext-EAST corpus (Erjavec, 2004), approx. 13,500 tokens

(chapters 1-3) as a test set, approx. 11,800 tokens (chapters 5 and 6) for de-

velopment and 88,000 tokens (chapters 7-23) for training.
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• Spanish: AnCora treebank (Mart́ı et al., 2007), approx. 10,000 tokens each for

test and development set, and approx. 168,000 tokens for the full training set,

and approx. 70,000 for the small training set.

• Polish: Korpus S lownika Frekwencyjnego (IPI PAN)8, 10,000 tokens each for test

and development sets, and approx. 219,000 for full training set, and approx.

70,000 for the small training set.

The small training set was used in order to be able to have similar training set sizes

across the three languages. Additionally for Polish and Spanish the full set contains

all the available data. No more training data is available in the Romanian corpus.

The Polish data set contains some tokens which have not been disambiguated: I

filtered out all sentences containing such tokens.

For all the experiments reported in the following sections a beam size of 3 was used,

with the prepruning threshold set to 0.3: validation on the development sets showed

that those settings give good results for all the languages.

Table 6.12 shows the evaluation results for the small training set for all three

languages. Table 6.13 shows the results for Spanish and Polish, for which there is a

larger training set available. Note that for seen and unseen tokens in Table 6.13, if we

subtract the improvement in brackets from the scores, we do not get the score in Table

6.12: this is because in Table 6.13 the set of seen and unseen tokens is computed with

reference to the full training set, while in Table 6.12 it is in reference to the small

training set.

More data is clearly beneficial: the scores improve substantially for both languages.

Both the morphological tagging and lemmatization score for Polish is lower than for

the other two languages: this is to be expected for a Slavic language with a rich

inflection and high ambiguity. In the following Section I present a summary of the

most common errors detected on the development set using the models trained with

the basic configuration.
8Available at http://korpus.pl/index.php?page=download
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Unseen word ratio
Spanish 13.05
Romanian 8.77
Polish 20.39

All words
MSD-tagging Lemmatization Joint

Spanish 94.33 97.84 93.83
Romanian 96.83 97.78 96.08
Polish 81.87 93.29 81.19

Seen words
MSD-tagging Lemmatization Joint

Spanish 97.26 99.14 97.22
Romanian 97.81 99.21 97.77
Polish 86.96 97.48 86.81

Unseen words
MSD-tagging Lemmatization Joint

Spanish 74.79 89.20 71.26
Romanian 86.68 82.88 78.50
Polish 61.93 76.88 59.17

Table 6.12: Evaluation results with the basic model with small training set for Span-
ish, Romanian and Polish

Unseen word ratio
Spanish 8.77
Polish 12.92

All words
MSD-tagging Lemmatization Joint

Spanish 95.40 (+1.07) 98.52 (+0.68) 95.02 (+1.19)
Polish 84.91 (+3.04) 95.55 (+2.26) 84.44 (+3.25)

Seen words
MSD-tagging Lemmatization Joint

Spanish 97.29 (+0.77) 99.22 (+0.48) 97.25 (+0.92)
Polish 87.74 (+2.85) 97.69 (+1.93) 87.60 (+3.09)

Unseen words
MSD-tagging Lemmatization Joint

Spanish 75.71 (+4.22) 91.22 (+2.74) 71.84 (+3.99)
Polish 65.87 (+4.33) 81.11 (+4.49) 63.16 (+4.33)

Table 6.13: Evaluation results with a full training set for Spanish and Polish. Numbers
in brackets indicate accuracy improvement over the same model trained on the small
training set
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6.4.4 Error analysis

We performed detailed error analysis for morphological tagging and lemmatization for

Spanish, Romanian and Polish. In this section I summarize the results of this analysis

and suggest possible ways of dealing with some of the common errors our systems

makes.

Errors in morphological tagging and lemmatization tend to co-occur: often an in-

correctly assigned morphological category triggers lemmatization which is consistent

with this category but incorrect given the gold MSD. I will therefore discuss the issues

related to both morphological tags and lemma-class tags jointly.

Named entities A common source of errors in Spanish and Romanian is failure to

detect proper names (the tagset used in Polish does not have a separate tag for proper

nouns). This results in the assignment of the wrong morphological tags and sometimes

also the wrong lemma-class. For example in Spanish certain person or place names, such

as Reyes or Chiapas have the plural suffix but, unlike for common nouns, their correct

lemma-class should not delete it. Poor performance in this area is to be expected as my

focus here is on learning morphological structure and not on detecting and classifying

named entities. The only feature designed to capture some characteristics of those is

sp(F0), the spelling pattern feature, which is clearly very rudimentary. In order to deal

with named entities properly a dedicated module would be probably the best solution.

Suffix ambiguity A problem for all the three languages is suffix ambiguity, i.e.

certain word endings can be indicative of more than one morphological category. In

Spanish and Romanian, nouns and adjectives are difficult to distinguish based only on

word endings and are sometimes mistagged and mislemmatized. This tends to happen

mostly in constructions with adjectives preceding nouns, e.g. Spanish cruenta lucha

“bloody battle”, which are rare and marked in comparison to adjectives post-modifying

the noun.

In Romanian third person singular verbs in the imperfect tense have the same ending

as nouns marked with a definite feminine article, and are also sometimes misclassified.9

9This affects only the written language as in speech those two forms differ in stress, which is not
represented in the spelling.
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Syncretism This is an especially frequent error type for Polish. Sometimes different

grammatical cases of the same lexical item have the same form, e.g. feminine genitive

singular noun forms and feminine genitive plural forms or masculine singular nominative

and accusative.

There is sometimes genuine semantic ambiguity in the sentence but in many other

cases, especially for number ambiguity, the correct morphological tag can be determined

from context, but the system fails to do so. The determination of the right grammatical

case is more difficult as it often involves non-local dependencies on the head verb or

preposition and is unlikely to be solved completely by examining local context only.

Ambiguous function words Some high frequency function words are ambiguous:

Spanish que (coordinating conjunction or relative pronoun), se (third person pronoun

or impersonal pronoun); Romanian a (infinitive particle or a form of auxiliary avea,

“have”), lui and o (article or pronoun); Polish na (locative or directional preposition).

These distinctions are based on function rather than form and can be difficult to de-

termine locally.

Annotation problems A nonnegligible number of errors in both morphological tag-

ging and lemmatization are actually mistakes or inconsistencies in the training and test

data. In the Polish dataset de-verbal nouns such as dzia lanie are sometimes tagged as

nouns and sometimes as “gerunds” (where the corresponding lemma is the verb in-

finitive). There seems to be no consistent pattern to which tag is used when. Some

Spanish plurals are assigned incorrect lemmas in the corpus.

Prefixal morphology Even though in the languages we examined inflectional mor-

phology is almost exclusively suffixal, Polish offers one isolated but important exception.

The superlative form of adjectives is formed by attaching the prefix naj- to the (already

inflected) comparative form. Thus the comparative of wysoki, “tall”, is wyższy, and the

superlative is najwyższy. Since lemma-classes are computed by the reverse-edit-list,

this class induction method fails to generalize over word initial transformations. As a

result, lemmas for superlatives are correct only in the case of very frequent words, and

in general are not predicted correctly.

119



From the evaluation and error analysis performed for three languages I have found

that some error categories occur in all three languages; others are language and corpus

specific. I suspect that the error classes which mostly affect unknown words could be

dealt with successfully by (i) providing more training data, (ii) exploiting additional

resources in conjunction with annotated corpora, such as lexicons – I explore this option

in Section 6.4.5

Other problems such as nominal/accusative syncretism or some ambiguous func-

tion words are more of a challenge, and although some improvement may be obtained

by using more context and smarter features, it may be necessary to defer ambiguity

resolution until a full syntactic structure is built.

Finally, the lemma-class induction mechanism is biased to dealing with suffixal mor-

phology exclusively. In Section 6.4.6 I explore an alternative edit-script instantiation

which is not as heavily biased to suffixal morphology as the reverse-edit-list used

so far.

6.4.5 Integrating lexicons

We have seen that several of the common mistakes the system makes are due to un-

known words in ambiguous contexts: given only the local context and features of the

wordform sometimes there are more than one roughly equally plausible analysis for a

certain token. The most obvious solution to this is to use more annotated data; how-

ever there are two issues here. First it is not always easy to obtain or produce large,

high-quality morphologically annotated corpora. The second issue is the Zipfian nature

of word frequency distribution in natural language, which means that even given a very

large corpus many wordforms will be not appear or will appear only once.

The second most obvious solution is to try to leverage an alternative source of

morphologically annotated data, namely morphological lexicons. In comparison to

corpus data, morphological lexicons are a more impoverished source of information:

they associate wordforms to the set of possible analyses, without taking context or

relative frequency into account.

On the other hand it is easier to provide coverage of uncommon words by means

of including them in a lexicon than by annotating very large corpora with their rich
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contextual and frequency information. Hajič (2000) shows how for five languages the

use of dictionaries is more helpful than more annotated corpus data in alleviating data

sparseness. In the title of his paper he contrasts “data” vs “dictionaries”, but obviously

dictionaries are just another kind of annotated data that we can exploit in a supervised

learning paradigm: those two kinds of data offer different trade-offs in terms of coverage

vs. richness of information. In this section I investigate whether exploiting them both

in an integrated fashion would let us take advantage of the strong points of both and

improve overall morphological analysis results.

Dictionary features

There are several options to exploit morphological dictionaries in a MSD tagging model.

Perhaps the most common one is to treat the dictionary as a source of possible analyses

and let the model simply choose one of them, or disambiguate. This assumes that the

dictionary has very large coverage and is of high quality – also some provision needs to

be made for the unavoidable cases of unknown words. In this approach the dictionary

is a trusted, primary resource, whereas the annotated corpus provides frequency statis-

tics which help disambiguate ambiguous wordforms. This is a well-known and well

understood approach; here I use an alternative method: the dictionary information is

incorporated into an overall MaxEnt model by means of dedicated features. Specifi-

cally, I take the basic model and modify it to incorporate dictionary information; the

resulting model is called basic+dict:

• MSD model:

– The feature mdict0 is added: this is the set of MSD tags which the focus

wordform occurs with in the dictionary.

– The feature mtrain1 is replaced with mdict1 : this is the set of MSD tags which

the wordform of the following token occurs with in the dictionary. The new

feature with MSDs extracted from the lexicon rather than from training

tokens should more completely encode the ambiguity class of the following

wordform.

• Lemmatization model:
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– The feature edict0 is added: this is the set of lemma classes (edit scripts)

computed between the word form and the set of corresponding lemmas in

the dictionary

This approach has the advantage that it automatically adjusts to the size, nature

and quality of the available lexical resource: as the dictionary features are just one of

several kinds of sources of information, the classifier learns to to assign them more or

less importance depending on how useful they are in predicting the class label. An ad-

ditional advantage is that the MSD tagset used, and the choices made in lemmatization,

need not be the same for the annotated corpus and the dictionary: as long as they are

correlated, the inclusion of dictionary features can be helpful. On the other hand this

integration means that the model might sometimes make decisions inconsistent with

the set of possibilities in the dictionary, which may be undesirable in the case when it

gives very high coverage and high quality analyses.

Experiments with dictionaries

Here I experiment with the following two dictionaries for Spanish

• dict-small: Dictionary included in Freeling 1.2. It contains over 71,000 word

forms

• dict-large: Dictionary extracted from the Spanish Resource Grammar project.10

It contains over 556,000 word forms (it is included in the Freeling 2.0 distribution)

The dictionaries do not include proper names. Both dictionaries use the same tagset,

which is also the same as the one used to annotate the AnCora corpus.

Tables 6.14 and 6.15 summarize the evaluation results.

For the small training set the use of the lexicon gives a large relative error reduction

for lemmatization (31.02% and 35.65% for dict-small and dict-large respectively),

and a smaller but still respectable reduction for MSD tagging (10.58% and 16.23%)

and joint analysis (9.72% and 15.07%). It seems that the additional benefit from using

an over 7 times larger lexicon is relatively small – most improvement seems to come

from information covered in the smaller resource. As expected, the dictionary features
10http://www.upf.edu/pdi/iula/montserrat.marimon/srg.html
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All words
MSD-tagging Lemmatization Joint

dict-small 94.93 (+0.60) 98.51 (+0.67) 94.43 (+0.60)
dict-large 95.25 (+0.92) 98.61 (+0.77) 94.76 (+0.93)

Seen words (in training)
MSD-tagging Lemmatization Joint

dict-small 97.45 (+0.18) 99.42 (+0.29) 97.40 (+0.18)
dict-large 97.49 (+0.23) 99.38 (+0.24) 97.47 (+0.25)

Unseen words (in training)
MSD-tagging Lemmatization Joint

dict-small (n=1305) 78.16 (+3.37) 92.41 (+3.22) 74.64 (+3.37)
dict-large (n=1305) 80.31 (+5.52) 93.49 (+4.29) 76.70 (+5.44)

Unseen words (in training or dictionary)
MSD-tagging Lemmatization Joint

dict-small (n=831) 72.92 (+0.12) 92.90 (+0.24) 70.04 (+0.48)
dict-large (n=509) 64.83 (+1.18) 92.34 (+1.57) 60.31 (+1.57)

Table 6.14: Evaluation results of the basic+dict model with the small training
set with lexicons of various sizes for Spanish. Numbers in brackets indicate accuracy
improvement over the basic model with the same training set

All words
MSD-tagging Lemmatization Joint

dict-small 95.69 (+0.29) 98.81 (+0.29) 95.32 (+0.30)
dict-large 95.67 (+0.27) 98.98 (+0.46) 95.33 (+0.31)

Seen words (in training)
MSD-tagging Lemmatization Joint

dict-small 97.38 (+0.09) 99.41 (+0.19) 97.36 (+0.11)
dict-large 97.16 (−0.13) 99.41 (+0.19) 97.14 (−0.11)

Unseen words (in training)
MSD-tagging Lemmatization Joint

dict-small (n = 877) 78.11 (+2.39) 92.59 (+1.37) 74.12 (+2.28)
dict-large (n = 877) 80.16 (+4.45) 94.53 (+3.31) 76.51 (+4.68)

Unseen words (in training or dictionary)
MSD-tagging Lemmatization Joint

dict-small (n = 666) 74.92 (+0.15) 92.49 (−0.75) 71.02 (+0.00)
dict-large (n = 433) 68.59 (+1.62) 92.61 (+0.69) 63.28 (+1.39)

Table 6.15: Evaluation results of the basic+dict model with the full training set
with lexicons of various sizes for Spanish. Numbers in brackets indicate accuracy im-
provement over the basic model with the same training set
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help predict the analysis for words unseen in the training corpus, but have little effect

on words unseen in either the corpus or the lexicon (the small improvements for those

words are not statistically significant, with p-values > 0.5 according to binomial test).

For the full training set there are still large relative error reductions for lemmati-

zation (19.59% and 31.08%), especially for dict-large. The improvements for MSD

tagging and joint analysis for all words are smaller, around 6% relative error reduc-

tion, but statistically significant with p-values below 0.05. It is noteworthy that for all

words, for MSD tagging and for joint analysis the bigger dictionary does not seem to

lead to any further improvement over the smaller one. For words unseen in training

set, all improvements are statistically significant; for those unseen in both corpus and

dictionary the differences are not statistically significant.

Thus, as expected, using annotated data in the form of morphological lexicons in

addition to annotated corpora is beneficial, especially so when using a relatively small

training corpus. Dictionaries, although lacking contextual and frequency information

help alleviate data sparseness in small training sets.

In the next section I compare the performance of the models described here for

Spanish to the morphological analyzer included in Freeling to gain an insight to how the

approach proposed here compares to the more common architecture used by Freeling.

Morfette vs Freeling

I evaluated Morfette against two different Freeling configurations: one using the dict-

small dictionary and one with dict-large. In both cases I use the latest Freeling

version 2.0. As for the evaluations described in Section 6.3 I had to ensure that Freeling

does not retokenize the input in order to be able to compute accuracy: this means that

the Freeling modules for recognition of quantities, numbers, locations and named enti-

ties need to be disabled. Version 2.0 also uses a different analysis for contractions such

as al and del as well as word-final clitics such as in desarrollarlo, which is incompatible

with our training and test set: I postprocessed Freeling output to adjust it. Since Freel-

ing’s treatment of named entities and numbers was disabled, in the evaluation proper

names, numbers, dates and also punctuation were ignored: i.e. all tokens whose gold

MSD starts with one of np, w, z, ao, f were filtered out prior to evaluation.
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Freeling - All words
MSD-tagging Lemmatization Joint

dict-small 91.51 94.73 89.44
dict-large 92.58 (+1.07) 96.55 (+1.81) 91.86 (+2.42)

Table 6.16: Evaluation results for Freeling with two different dictionaries

Morfette - All words
MSD-tagging Lemmatization Joint

basic small 95.88 (+3.30) 97.78 (+1.23) 95.52 (+3.66)
basic+dict-large full 97.32 (+4.75) 99.10 (+2.55) 97.17 (+5.31)

Table 6.17: Evaluation results for Morfette in two configurations. The numbers in
brackets indicate improvement over Freeling with dict-large

Table 6.16 shows the Freeling scores with the two dictionaries described previously.

Table 6.17 shows the scores obtained in the same way as for Freeling, i.e. ignoring the

MSDs described above, for two Morfette configurations: basic trained on the small

corpus, and basic+dict with dict-large trained on the full corpus. The scores are

given for all words only, and not for unseen and seen words. This is because Freeling

does not use the same training set as Morfette; rather the default POS tagging model

which comes with Freeling is used.11

The first observation is that in the case of Freeling the difference in the dictionary

size between dict-small and dict-large translates into more pronounced score im-

provements than what we saw for Morfette. The second is that even the resource-light

Morfette configuration gives substantial error rate reductions over Freeling with the

large lexicon: 44.44% and 35.66% for MSD tagging and lemmatization respectively.

The differences are even more pronounced between the resource rich Morfette config-

uration and the best Freeling numbers: 63.93% and 73.90% error reduction for MSD

tagging and lemmatization respectively.

Freeling is a mature and widely used system which efficiently performs a large array

of useful language processing tasks, and it has not been tuned specifically to joint MSD
11I tried retraining Freeling’s POS tagging model on the same data as used to train Morfette, but

the results turned out to be slightly worse.
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tagging and lemmatization. It also has a very simple lookup approach to lemmatization.

Given that, the fact that my dedicated approach outperforms it is hardly surprising.

On the other hand Morfette’s feature set is quite generic, the annotated resources

it was trained on are relatively small in size, and relatively little effort was expended

for tuning the system. Thus the large gains over Freeling inspire confidence that the

approach is on the right track.

6.4.6 Improving lemma class discovery

As noticed in Section 6.4.4 the reverse-edit-list version of edit script makes it

is difficult to induce sufficiently general lemma classes for cases where morphology

affects word beginnings rather than, or in addition to, word endings. In this Section I

investigate whether another instantiation of edit script which makes less assumptions

about where in the string morphological changes take place can improve lemma class

induction and help boost lemmatization results.

Edit tree

The problem with reverse-edit-list is that it always indexes edits starting from the

end of the string: this means that lemma classes involving prefixation are not general:

they unnecessarily depend on the word length. Edit-tree is a variation of edit script

which indexes prefixes relative to the beginning of the string and suffixes relative to

the end.

The idea is to find the longest common substring (LCS) between the form w and

the lemma w′. We know that the portions of the string in the lemma before (prefix)

and after (suffix) the LCS need to be modified in some way, while the LCS (stem) stays

the same. If there is no LCS, then we simply record that we need to replace w with

w′. As for the modifications to the prefix and the suffix, we apply the same procedure

recursively: we try to find the LCS between the prefix of w and the prefix of w′: if we

find one, we recurse again; if we do not, we record the replacement; we do the same for

the suffix. So for example the edit-tree of the Polish form-lemma pair najtrudniejszy

and trudny12 is the following:
12hardest and hard
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Split(3, 6)

Replace〈naj, ε〉 Split(5, 0)

Replace〈iejsz, ε〉 Replace〈ε, ε〉

It encodes the following operations:

• Split najtrudniejszy at position 3 and length(najtrudniejszy)− 6 to get the prefix

naj the stem trudn and the suffix iejszy.

Concatenate:

– Replace naj with ε.

– Stem trudn

– Split iejszy at position 5 and length(iejszy) − 0 to get the prefix iejsz, the

stem y and the suffix ε.

Concatenate:

∗ Replace iejsz with ε

∗ Stem y

∗ Replace ε with ε

More formally the Edit-tree can be defined as follows. Let the function lcs :

(Σ∗ × Σ∗)→ (N× N× N× N) take two strings w1..n and w′1..m and return the 4-tuple

(i, j, k, l) where wi..n−j = w′k..m−l is the (first) longest common substring of strings w

and w′.

Let the function split : (Σ∗ × N × N) → (Σ∗ × Σ∗ × Σ∗) take the string w1..n, and

indices i and j and return the triple (w1..wi, wi+1..n−j , wn−j+1..n).

The edit-tree is represented by the following recursive sum-of-products type:

EditTree = (Replace : (Σ∗ × Σ∗)) + (Split : (N× N)× EditTree× EditTree) (6.4)

That is an EditTree is either a leaf node labeled Replace, which stores a tuple of

strings, or it is an internal node labeled Split which stores a tuple of natural numbers

and has an EditTree as the left child and an EditTree as the right child.
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The function et builds this tree structure given two strings w and w′:

et(w,w′) =


Replace〈w,w′〉 if w and w′ have no LCS

Split〈(iw, jw), et(wprefix , w
′
prefix ), et(wsuffix , w

′
suffix )〉 otherwise

(6.5)

where
(iw, jw, iw′ , jw′) = lcs(w,w′)

(wprefix , wstem , wsuffix ) = split(w, iw, jw)

(w′prefix , w
′
stem , w

′
suffix ) = split(w′, iw′ , jw′)

(6.6)

EditTree encodes the operations to perform on an input string w in order to transform

it into the output string w′. The operations are applied recursively as follows:

apply(Replace〈v, v′〉, w) = v′

apply(Split〈(i, j), l, r〉, w) = apply(l, wprefix )⊕ wstem ⊕ apply(r, wsuffix )
(6.7)

where

(wprefix , wstem , wsuffix ) = split(w, i, j)

and ⊕ is string concatenation.

Using edit-tree as the edit script (unlike reverse-edit-list) preserves analogies

like the one holding between the two Polish form-lemma pairs13:

naj ladniejszy :  ladny :: najtrudniejszy : trudny

since

apply(et(naj ladniejszy,  ladny), najtrudniejszy) = trudny

The better generalization of edit-tree as compared to reverse-edit-list is sug-

gested by the smaller number of unique lemma classes discovered in the small training

set for Polish by the former compared to the latter method: 1110 vs. 1209.

Table 6.18 shows evaluation results for the small Polish training set when using

edit-tree for lemma class induction. There is a modest (relative error reduction of

2.24%) but statistically significant (p-value < 0.005) improvement for lemmatization
13prettiest, pretty and hardest, hard
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All words
MSD-tagging Lemmatization Joint
81.94 (+0.07) 93.44 (+0.15) 81.28 (+0.09)

Seen words
86.97 (+0.01) 97.53 (+0.05) 86.83 (+0.03)

Unseen words
MSD-tagging Lemmatization Joint
62.22 (+0.30) 77.42 (+0.54) 59.52 (+0.34)

Table 6.18: Results for the basic feature set on small training set, using the edit-
tree as lemma class for Polish. Numbers in brackets indicate improvement over the
same configuration with reverse-edit-list

for all tokens. The small magnitude of the improvement is most probably due to

the relatively infrequent occurence of prefixal morphological phenomena in Polish. In

Spanish and Romanian they are even less frequent, and differences between edit-tree

and reverse-edit-list for them are very small and not statistically significant.

In order to test the edit-tree lemma class induction on more interesting and

more challenging data I decided to try to run Morfette data taken from the Celtic

languages Welsh and Irish. Celtic features word initial consonant mutations: i.e. the

first consonant of a word may change depending on the word’s grammatical context.

Those mutations can co-occur with the more common suffixal morphology.

The Welsh data comes form the Cronfa Electroneg o Gymraeg corpus (Ellis et al.,

2001). I used a training set of 70,000 tokens and a test set of 10,000 tokens. The Irish

data was provided by Elaine Uı́ Dhonnchadha. I used 10,000 tokens for the test set

and approximately 60,000 for training.

Table 6.19 shows the results for the edit-tree on this data together with im-

provements over the baseline using reverse-edit-list. The difference for Welsh is

somewhat more pronounced than for Polish (4.58% relative error reduction for lemma-

tization, all words, p-value < 0.005) but still rather modest. For Irish however there

are larger gains: 12.14% relative error reduction for lemmatization for all words, with

p-value of 3×1014

It seems that the more general edit script instantiation does permit us to find
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Unseen word ratio
Welsh 11.25
Irish 12.61

All words
MSD-tagging Lemmatization Joint

Welsh 87.72 (+0.18) 92.92 (+0.34) 84.86 (+0.35)
Irish 79.64 (+0.12) 94.21 (+0.80) 78.81 (+0.40)

Seen words
MSD-tagging Lemmatization Joint

Welsh 92.11 (+0.03) 96.12 (−0.16) 90.35 (−0.05)
Irish 85.43 (+0.06) 98.00 (+0.03) 85.07 (+0.05)

Unseen words
MSD-tagging Lemmatization Joint

Welsh 53.07 (+1.33) 67.64 (+4.27) 41.51 (+3.47)
Irish 39.49 (+0.56) 67.96 (+6.11) 35.45 (+2.85)

Table 6.19: Results for the basic feature set, using the edit-tree as lemma class for
Welsh and Irish. Numbers in brackets indicate improvement over the same configuration
with reverse-edit-list.

better lemma classes, but the magnitude of the improvement varies depending on the

language. In the case of Irish the improvements are robust and the richer lemma class

representation is clearly beneficial. In other cases, such as Polish and also Welsh, in

spite of the very strong bias towards suffixation that reverse-edit-list encodes, it is

not trivial to substantially improve on the scores achieved with it.

6.4.7 Conclusion

Morfette has two important features. Firstly, it is modular in the sense that the

morphological-tagging and lemmatization models can use different features, can be

trained separately, and even use different classifiers. Secondly, in spite of such modu-

larity, the way the search algorithm combines MSD and lemma-class conditional prob-

abilities means that the outputs of the two models are integrated at decoding time and

their predictions are combined into an overall scoring over MSD-tag-lemma-class pair

sequences.

This data-driven approach can be adapted to scenarios with different types of re-

sources available: it can be trained on nothing more than a modest-sized corpus an-
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notated with lemmas and morphological tags, or it can additionally make use of mor-

phological dictionaries if such are available. The dictionary information is exploited

by including it in the log-linear models as features. This means that the tag sets and

annotations in the training corpus and the lexicon resources do not have to be identical.

Morfette substantially improves on the scores on the Spanish test set obtained by

a popular and mature language analyzer Freeling: even in the resource-poor configura-

tion, using a small training set and no lexical resources. Similar comparisons with other

systems and on other languages would be desirable to strengthen the conclusion that

the Morfette approach is competitive with state-of-the-art morphological analyzers.

The novel lemma class induction method depends on the abstract notion of edit

script or a specification of how to convert an inflected word form to the corresponding

lemma. The current default edit script type used in the system, reverse-edit-list

assumes that inflectional morphology affects word endings and does not produce good

general lemma classes when this assumption is violated. Experiments with a less biased

alternative edit script type edit-tree showed improvement in lemmatization score;

however there is still scope for further investigation in lemma class induction.

6.5 Morphological Analysis and Synthesis: ILP and Classifier-

Based Approaches

In this section I compare two machine learning approaches to building models of mor-

phological analysis and synthesis: the Inductive Logic Programming (ILP) approach

used in (Manandhar et al., 1998) and the classifier-based approach used here.

The lemmatization method described in Sections 6.3 and 6.4 differs in several ways

from the ILP method using Clog and thus comparative performance is difficult to

assess.

In what follows I take two basic ideas from Section 6.3, namely

• treating lemmatization as a classification task,

• using a version of edit script to induce lemma classes.

However, I use an experimental setup similar to that described in (Manandhar et al.,
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1998) and perform evaluation of both systems on the same data, which makes a mean-

ingful comparison possible.

More specifically, the classifier-based lemmatization method introduced in 6.3 works

on running text, that is the examples to classify are word tokens in context. The

classifier uses features extracted from the word forms and also from the surrounding

context, i.e. the preceding and following word forms. The output to learn to predict is

always the edit script which takes the word-form to the corresponding lemma.

In contrast, the training examples in the ILP method are isolated wordform-MSD-

lemma triples, i.e. the learner works with word-types, rather than word tokens. During

prediction, either the wordform or the lemma are output, depending on whether we

are performing synthesis or analysis. That is both the training and test examples come

from a lexicon rather than being from a corpus of sentences. However, it is easy to

adapt the classifier method to the setting analogous to that used in (Manandhar et al.,

1998). We need to remove all the context features since they are no longer available.

They are effectively replaced by the MSD-tag associated with the word type or lemma

to classify. In order to perform synthesis rather than analysis, we compute the edit

script from the lemma to word form rather than the other way round.

Those modifications to the classifier-based lemmatization method make it possible

to have a fair and informative comparison to the ILP approach to learning morphology.

6.5.1 Data

The data I use for this experiment are almost the same as those used in (Manandhar

et al., 1998), i.e. they come from the Multext-EAST corpus. However, I use the most

recent Version 3 of that resource. Also I do not experiment with Estonian data, since

the morphologically analyzed Appendix for this language is missing from the resource.

I use data from English, Romanian, Czech and Slovene.

The training data comes from parts 1 through 3 of the corpus, while the test set

comes from part 4, the Appendix. The training and testing data is generated as follows,

to mimic the setup used in (Manandhar et al., 1998):

For each token in the text, all its morphological analyses (lemma-MSD pairs) are

extracted from the accompanying lexicon. Then all analyses with MSDs for nouns and

132



Feature notation Description
f Lowercased wordform
sn(f), n = 1 · · · 7 Suffixes of length n
pn(f), n = 1 · · · 3 Prefixes of length n
m MSD tag

Table 6.20: Features for lexical analysis model

Feature notation Description
l Lowercased lemma
sn(l), n = 1 · · · 7 Suffixes of length n
pn(l), n = 1 · · · 3 Prefixes of length n
m MSD tag

Table 6.21: Features for lexical synthesis model

adjectives are kept while other tokens are discarded. Finally duplicates are removed, so

that the training and testing data consists of morphologically analyzed word types, not

tokens. Duplicates are removed separately for training set and test set, which means

that there are some examples in the test set that also appear in the training set.

6.5.2 Model and features

Here, as in Section 6.4, I use the Maximum Entropy algorithm for classification.

In order to match the original ILP work, I trained two sets of models: one for

analysis, mapping wordform-MSD pairs to lemmas, and one for synthesis, mapping

lemma-MSD pairs to wordforms. The only difference is which of the two strings is

given as input and which is produced as output – no other changes were made to

the overall method. Both model sets used edit-tree for class induction (with the

arguments swapped for the synthesis model).

As already mentioned, the features have to be adapted to the new setting: none of

the context word features can be used, while the MSD-tags provide an important new

feature. Tables 6.20 and 6.21 describe the features sets used: they are analogous for

both sets of models, identical for all the languages, and were chosen based on cross-

validation on the training set. The MaxEnt smoothing parameter σ2 = 10 was also

133



split([X,Y|Z],[X],[Y|Z]).
split([X|Y],[X|Z],W) :- split(Y,Z,W).

mate(W1,W2,[],[],Y1,[]):-
split(W1,W2,Y1).

mate(W1,W2,[],[],[],Y2):-
split(W2,W1,Y2).

mate(W1,W2,[],[],Y1,Y2):-
split(W1,X,Y1),
split(W2,X,Y2).

mate(W1,W2,P1,P2,Y1,Y2):-
split(W1,P1,W11),
split(W2,P2,W22),
split(W11,X,Y1),
split(W22,X,Y2).

% total suppletion
mate(W1,W2,[],[],W1,W2).

Figure 6.3: Background predicate mate/6

chosen in the same way.

For experiments with Clog14, the background predicate mate/6 was used, shown

in Table 6.3.

Following (Manandhar et al., 1998), a separate program was learned for each MSD

(I did not collapse any MSDs together). When an MSD in the test set is absent from

the training data, the system backs off to outputting the input string. The same backoff

was used in case of the predicate failing.

6.5.3 Results and error analysis

Tables 6.22 and 6.23 summarize the results for analysis and synthesis respectively, for

all input tuples. In most cases the differences between the two systems are relatively

small, with higher MaxEnt+edit-tree scores, giving relative error reductions between

2.67% and 18.16%. The only exception is Czech synthesis where Clog is better with
14I would like to thank Tomaž Erjavec for providing me with Clog software for the purpose of this

research
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Clog MaxEnt+et RER
English 98.93 99.04 10.28
Romanian 96.67 97.10 12.91
Czech 95.15 95.70 11.34
Slovene 97.34 97.66 12.03

Table 6.22: Morphological analysis results - all

Clog MaxEnt+et RER
English 99.25 99.36 14.67
Romanian 97.38 97.45 2.67
Czech 92.01 91.17 −9.51
Slovene 95.98 96.71 18.16

Table 6.23: Morphological synthesis results - all

Clog MaxEnt+et RER
English 99.71 99.71 0.00
Romanian 99.88 99.88 0.00
Czech 99.51 99.40 −18.33
Slovene 99.44 99.44 0.00

Table 6.24: Morphological analysis results - seen

Unseen ratio Clog MaxEnt+et RER
English 25.91 96.69 97.11 12.69
Romanian 40.65 91.99 93.03 12.98
Czech 42.95 89.37 90.77 13.17
Slovene 48.26 95.10 95.75 13.27

Table 6.25: Morphological analysis results - unseen

Clog MaxEnt+et RER
English 99.42 99.57 25.86
Romanian 99.76 99.64 −33.33
Czech 91.19 91.69 5.68
Slovene 98.54 98.74 13.70

Table 6.26: Morphological synthesis results - seen
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Unseen ratio Clog MaxEnt+et RER
English 25.59 98.74 98.74 0.00
Romanian 40.51 93.88 94.23 5.72
Czech 39.49 93.28 90.37 −30.22
Slovene 47.74 93.17 94.49 19.33

Table 6.27: Morphological synthesis results - unseen

a relative error reduction of 9.51%.

Tables 6.24 and 6.26 show results for the subset of input tuples seen in the training

data, while tables 6.25 and 6.27 show unknown tuple ratio and results for unseen inputs.

For both systems the performance on Czech data looked surprising bad, especially

for synthesis, so I inspected the training data more closely. It seems that the major

source of error are negated adjectives such as nebezpečný (dangerous). In the Czech

lexicon both nebezpečný and bezpečný (safe), are assigned the same lemma-MSD pair.

Thus in the case of synthesis, in principle each adjectival lemma-MSD pair has two

possible solutions, one non-negated and one negated form. In the case of analysis it

simply creates more cases where both the suffix and prefix have to be modified in the

input form, which seems more difficult to learn than the simpler cases of suffix modi-

fication. This treatment of negated adjectives is questionable since it makes synthesis

non-deterministic, and the analysis does not preserve all the information present in

the wordform. Arguably if the negative prefix is treated as an inflection, then there

should be a corresponding feature in the MSD recording its presence. It is not clear

how Manandhar et al. (1998) deal with this issue or if it even arises in their version of

the Multext-EAST data.

This interpretation of the poor performance on Czech data is confirmed by rerunning

the systems on data with negated adjectives removed. I removed from both training and

test data all examples where the wordform starts with ne whose lemma does not start

withne, except for the superlative adjectives which start with nej. On this modified

Czech data set Clog scores 97.03% and 96.63% on analysis and synthesis respectively,

while MaxEnt+et scores 97.28% and 96.16%

From these results it is evident that the classifier + edit script approach to morpho-
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logical analysis is competitive with, and in most cases improves on the ILP method.

The advantages of ILP are its greater generality, as well as the fact that the learned

decision lists can be easily interpreted by humans.

On the other hand the classifier approach offers better performance and easier scal-

ability. Since the classification paradigm is the most common one in machine learning,

it comes with many well-understood, efficient and well-performing algorithms. If the

classifier used is a probabilistic one such as MaxEnt, there is the considerable addi-

tional advantage of being able to easily integrate it in larger probabilistic models, as in

Section 6.4.

6.6 Summary

In this chapter I have reviewed the most common existing approaches to data driven

morphological analysis and lemmatization, and I have proposed a novel perspective

on lemmatization as a classification task. I showed that lemmatization classes can be

induced automatically from annotated data using the idea of edit script which is a

representation of the transformation which maps an input string (e.g. wordform) to the

corresponding output string (e.g. the lemma).

I described successfully lemmatizing running text using reverse-edit-lists as

lemma classes and an SVM classifier for data from eight different languages. I then

proposed a method which performs morphological analysis and lemmatization in a joint

fashion, by learning two models, one for morphological tagging and one for lemmatiza-

tion, and by integrating their predictions in an integrated probabilistic model. I also

showed how to exploit information from morphological lexicons within this framework,

and how to improve lemma class induction by using a more general version of edit

script, the edit-tree.

Finally I contrasted the edit script- and classifier-based approach to learning mor-

phology with the Inductive Logic Programming method, and showed that the former

gives competitive or improved performance while being scalable, well understood, and

easy to use.
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Chapter 7

Conclusion

The approach to treebank-based LFG parsing developed by Cahill et al. (2002, 2004)

has been shown to be highly competitive. Part of that success is due to its modular,

pipeline-like architecture which makes it easy to swap components, and experiment

with different combinations. In this way a system can be built which leverages state-

of-the-art models for the different subparts of the parsing system.

In this thesis I have described the work on the design, integration and evaluation

of two of the components for the DCU LFG parsing architecture. Even though this

work has been motivated and driven by this particular parsing approach, its usefulness

transcends this context. This is again the result of the modular and flexible nature of

the system: most of the submodules are general-purpose processing engines while the

LFG-specific part is localized in the annotation algorithm, and to some degree in the

NLD module. This means that my enhancements to LFG parsing can be easily reused

in other applications.

7.1 Summary of Main Contributions

The main achievements described in this thesis are the following:

Spanish treebank-based LFG parsing

• I have overhauled and substantially extended the range of phenomena treated in

the Spanish annotation algorithm. I also revised and extended the gold standard
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which now includes 338 sentences with their corresponding f-structures. This

exercise served two purposes: first it helped to identify areas where the existing

LFG parsing architecture for English needed further work to make it less language

dependent and more portable. Second, it enabled the work on developing and

evaluating a function labeling model for Spanish.

Function labeling

• I have developed a function labeler for Spanish which substantially outperforms

the previously used method of using the c-structure parser to obtain function-

labeled trees. The use of this model in the LFG parsing pipeline also improves

the f-structure quality as compared to the baseline method.

• I have described a training regime for an SVM-based function labeling model

where trees output by a parser are used in combination with treebank trees in

order to achieve better similarity between training and test examples. This model

outperforms all previously described function labelers on the standard English

Penn II treebank test set.

Morphological analysis

• I have developed a method to cast lemmatization as a sequence labeling task. It

relies on the notion of edit script which encodes the transformations on the word

form which will convert it into the corresponding lemma. Edit scripts can be

automatically computed from a corpus of word-lemma pairs and used as lemma-

tization classes: thus class labels themselves are induced from data and need not

be manually predefined. A lemmatization model can be learned from a corpus

annotated only with lemmas, with no explicit part-of-speech information.

• I have built the Morfette system which performs morphological analysis by learn-

ing a morphological tagging model and a lemmatization model, and combines the

predictions of those two models to find a globally good sequence of MSD-lemma

pairs for a sentence.
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• I have shown that integrating information from morphological dictionaries into

the Maximum Entropy models used by Morfette is straightforward and can

substantially reduce error, especially on words absent from training corpus data.

• I have developed an instantiation of the edit script, the Edit Tree, which im-

proves lemmatization class induction in the case where inflectional morphology

affects word beginnings in addition to word endings, and have shown that the

use of this edit script version results in statistically significant error reductions

on test data in Polish, Welsh and Irish.

• I compared the proposed morphology models against existing systems (Freeling

and Clog): in both cases my proposed models showed competitive or superior

performance

7.2 Directions for Future Research

Research extending and following from the work reported in this thesis falls into two

broad categories. Firstly, there are multiple interesting problems related to extending

and improving the specific models discussed. Secondly, more work is needed to better

integrate the proposed models into the overall LFG parsing architecture, and port,

train and tune them on data for other languages, both within the GramLab project

and beyond.

7.2.1 Grammatical functions

I have shown in Chapter 5 that using the simple local classifier approach to learning

a function labeling model gives good results. However, in reality labeling decisions at

different nodes of the parse tree are dependent on each other. As a simple example

consider the cross-linguistically wide-spread constraint which ensures that a given verb

cannot subcategorize for more than one argument with the same grammatical function,

i.e. a verb can only govern a single subject, or a single direct object etc. In the scenario

where a local classification decision is taken at each node this very strong constraint is

not enforced in any way. For instance for a verb each of its neighboring nodes may be
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independently a good candidate for a subject label; however if one of them is labeled

as a subject, the others should not.

A simple resolution to this inadequacy would be to partition nodes in the parse

tree into sets which are governed by the same verb – for example for the Spanish

Cast3LB treebank it would be sufficient to group together all sisters of the same gv

(verb group) constituent – and label those groups jointly. The simplest such joint

labeling could use a sequence labeling approach, make labeling decision dependent on

previous labelings, and choose a label sequence which is globally optimal. More complex

structured prediction schemes could also be explored.

As currently used, the function labeler is a module which is independent of the over-

all LFG parsing system: the annotation algorithm uses its output, but the module itself

is unaware of the context in which it is used. This makes is easier to reuse in scenarios

other than LFG parsing, but to achieve best performance a tighter integration might be

helpful. Currently model parameters and algorithm parameters (hyperparameters) are

tuned to optimize the accuracy on the original treebank function labels: however some

of these labels are not used by the LFG annotation algorithm; also some distinctions

encoded in the labels are collapsed in the f-structures. Additionally some labels may

influence larger portions of the f-structure than others. Thus it might be beneficial to

optimize more directly the score on the f-structures rather than the raw treebank func-

tion labeling accuracy: to some degree this can be achieved by simply dropping LFG-

irrelevant labels and collapsing LFG-irrelevant distinctions from the training data, and

training as usual. For model selection, including feature selection and hyperparameter

tuning, it would also be relatively straightforward to optimize directly on f-structure

f-scores.

7.2.2 Morphology and Morfette

As stressed in Chapter 6, the morphology models investigated in this thesis are quite

generic. Although they are usable in realistic scenarios as they are, for best performance

some amount of work would need to be dedicated to model selection: the feature

sets and the parameter settings should be tuned to specific languages and specific

processing tasks. There are extensions to Maximum Entropy optimization algorithms
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which incorporate feature selection in the training step (Berger et al., 1996): it would

be interesting to implement such a scheme for Morfette in order to automate model

selection to some degree and make the system better adapt to characteristics of the

training data.

The Morfette system as described in Section 6.4 learns two separate MaxEnt

models, one for MSD tagging and one for lemmatization. This has the virtue of sim-

plicity, and, as we have seen, gives good performance. However, it would be possible

to envision other more fine-grained decompositions of the overall morphological anal-

ysis model. As mentioned in Section 6.2.4, one approach to reducing data-sparseness

and computational load for languages with highly complex morphology is to predict

morphological features encoded in MSDs independently and then combine those pre-

dictions for the full MSD. It would be worthwhile to adopt such a scheme since it could

potentially offer improved scalability of the simple approach of learning each MSD in

one go.

Another decomposition of the MSD tagging task has been explored in (Tufiş, 1999;

Tufiş and Dragomirescu, 2004; Ceauşu, 2006). They propose to learn the target MSD

set in two steps: first learn a reduced tagset and then use the predictions of the model

trained on such a reduced set to learn a model which predicts the full tagset. It would be

straightforward and could be beneficial to implement a similar approach for Morfette.

The lemmatization model could also be easily factored into a number of smaller

models, one for each MSD tag: currently the MSD tag of the focus word is one of the

features in the lemmatization model. It is an important feature, which stands proxy

for the local context: its importance would be made more explicit by conditioning the

whole lemmatization model on the predicted MSD tag. One potential benefit would be

the possibility of more fine-grained model selection which could be done separately for

each MSD-conditioned model.

The research on data-driven morphological analysis reported in this thesis has con-

cerned itself almost exclusively with the supervised learning setting: the only unsu-

pervised aspect is the fact that lemma-classes are not present in the training data

but rather are automatically induced from it. However, there is a large body of re-

search on learning morphology from unannotated data: some of this research could
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be adapted to leverage the huge amounts of unlabeled data which are nowadays avail-

able for many languages. Just as I have shown that using dictionaries improves the

analysis of lexical items not encountered in the training corpus, one would hope that

exploiting co-occurrence statistics in large bodies of unlabeled text would enable further

improvements. Some very preliminary experiments in this area have been encouraging.

7.2.3 Other aspects of LFG parsing

One module in the LFG parsing architecture which has not received much attention

in this thesis is the Non-Local Dependency (NLD) resolver. Currently its resolution-

ranking model relies on the product of two conditional probability scores: the proba-

bility of the subcategorization frame given lemma, and the probability of NLD path

given the source grammatical function (GF). It is likely that this simple model could

be improved on by using a classifier-based approach, where the resolution candidates

could have a rich feature representation, subsuming the lemma, subcat frame, source

GF and NLD path “features” used in the current model, and adding other features such

as target GF, attributes of the f-structure which is the value of source/target GFs, NLD

path length and other sources of information that could contribute to the ranking.

Finally, given the linguistically rich two-level syntactic representations given by the

DCU LFG parsing architecture, it would be worthwhile to explore how to leverage

them in a system which computes predicate-argument structures. A large body of

work exists on the task of semantic role labeling (SRL) especially using the PropBank

(Palmer et al., 2005) as the target representation and training resource.

The majority of this research has relied on using machine-learning approaches work-

ing with relatively shallow syntactic representations such as chunks or basic phrase-

structure trees (see e.g. the CoNLL Shared Tasks in (Carreras and Màrquez, 2004,

2005)). On the other hand, Miyao and Tsujii (2004) and Burke et al. (2005) attempt

to directly map deep syntactic representations (HPSG and LFG respectively) to Prop-

Bank roles.

Gildea and Hockenmaier (2003) combine the use of deep syntactic representations

(CCG) with machine-learning techniques: this is the approach which is most in the

spirit of the ideas behind this thesis. As such, it would be worthwhile trying to use
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f-structures as input to a machine-learning-based SRL system, thus providing the LFG

parsing system with a semantic component.
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Hajič, J. (2000). Morphological tagging: data vs. dictionaries. In NAACL 2000: Pro-

ceedings of the First Conference of the North American Chapter of the Association

for Computational Linguistics, pages 94–101.
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and multilevel annotated corpora. Unpublished draft available at http://clic.ub.

edu/ancora/ancora-corpus.pdf.

Maxwell, J. T. and Kaplan, R. M. (1996). Unification-based parsers that automati-

cally take advantage of context freeness. In LFG 1996: Proceedings of the Lexical

Functional Grammar Conference.

McCallum, A., Freitag, D., and Pereira, F. (2000). Maximum Entropy Markov models

for information extraction and segmentation. In ICML 2000: Proceedings of the

International Conference on Machine Learning, pages 591–598.

Merlo, P. and Musillo, G. (2005). Accurate function parsing. In HLT-EMNLP 2005:

Proceedings of the Conference on Human Language Technology and Empirical Meth-

ods in Natural Language Processing, pages 620–627.

155



Miyao, Y., Ninomiya, T., and Tsujii, J. (2003). Probabilistic modeling of argument

structures including non-local dependencies. In RANLP 2003: Proceedings of the

Conference on Recent Advances in Natural Language Processing, pages 285–291.

Miyao, Y. and Tsujii, J. (2002). Maximum Entropy Estimation for Feature Forests. In

HLT 2002: Proceedings of Human Language Technology Conference, pages 292–297.

Miyao, Y. and Tsujii, J. (2004). Deep linguistic analysis for the accurate identifica-

tion of predicate-argument relations. In COLING 2004: Proceedings of the 20th

International Conference on Computational Linguistics, pages 1392–1397.

Miyao, Y. and Tsujii, J. (2005). Probabilistic disambiguation models for wide-coverage

HPSG parsing. In ACL 2005: Proceedings of the 43rd Annual Meeting on Association

for Computational Linguistics, pages 83–90.

Miyao, Y. and Tsujii, J. (2008). Feature forest models for probabilistic HPSG parsing.

Computational Linguistics, 34(1):35–80.

Mooney, R. J. and Califf, M. E. (1995). Induction of first-order decision lists: Results

on learning the past tense of English verbs. In Proceedings of the 5th International

Workshop on Inductive Logic Programming, pages 145–146.

Muggleton, S. (1991). Inductive logic programming. New Generation Computing,

8(4):295–318.

Musillo, G. and Merlo, P. (2005). Lexical and structural biases for function parsing.

In Proceedings of the Ninth International Workshop on Parsing Technology, pages

83–92.

Myers, E. W. (1986). An O(ND) difference algorithm and its variations. Algorithmica,

1(1):251–266.

Noreen, E. W. (1989). Computer intensive methods for testing hypotheses. A Wiley-

Interscience Publication, New York.

O’Donovan, R., Burke, M., Cahill, A., van Genabith, J., and Way, A. (2004). Large-

scale induction and evaluation of lexical resources from the Penn-II treebank. In ACL

156



2004: Proceedings of the 42nd Annual Meeting of the Association for Computational

Linguistics, pages 367–374.

O’Donovan, R., Cahill, A., van Genabith, J., and Way, A. (2005). Automatic acquisition

of Spanish LFG resources from the CAST3LB treebank. In LFG 2005: Proceedings of

the Tenth International Conference on Lexical Functional Grammar, pages 334–352.

Oya, M. and van Genabith, J. (2007). Automatic acquisition of Lexical-Functional

Grammar resources from a Japanese dependency corpus. In PACLIC 2007: Proceed-

ings of the 21st Pacific Asia Conference on Language, Information and Computation.

Palmer, M., Gildea, D., and Kingsbury, P. (2005). The proposition bank: An annotated

corpus of semantic roles. Computational Linguistics, 31(1):71–106.

Ramshaw, L. and Marcus, M. (1995). Text chunking using transformation-based learn-

ing. In Proceedings of the Third ACL Workshop on Very Large Corpora, pages 82–94.

Cambridge MA, USA.

Ratnaparkhi, A. (1996). A maximum entropy model for part-of-speech tagging. In

EMNLP 1996: Proceedings of the 1st Conference on Empirical Methods in Natural

Language Processing, pages 133–142.

Riezler, S., King, T. H., Kaplan, R. M., Crouch, R., John T. Maxwell, I., and Johnson,

M. (2001). Parsing the Wall Street Journal using a Lexical-Functional Grammar and

discriminative estimation techniques. In ACL 2002: Proceedings of the 40th Annual

Meeting on Association for Computational Linguistics, pages 271–278.

Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage

and organization in the brain. Psychological Review, (65):386–408. Reprinted in

Neurocomputing (MIT Press, 1998).

Rosenfeld, R. (1996). Maximum entropy approach to adaptive statistical language

modelling. Computer Speech & Language, 10(3):187–228.

Roth, D. (2001). Reasoning with classifiers. In ECML 2001: Proceedings of the Euro-

pean Conference on Machine Learning, pages 506–510.

157



Roth, D. and Yih, W. (2004). A linear programming formulation for global inference

in natural language tasks. In CONLL 2004: Eighth Conference on Computational

Natural Language Learning, pages 1–8.

Schluter, N. and van Genabith, J. (2007). Preparing, restructuring and augmenting

a French treebank: Lexicalised parsing or coherent treebanks? In PACLING 2007:

Proceedings of The 10th Conference of the Pacific Association of Computational Lin-

guistics, pages 200–209.

Sha, F. and Pereira, F. (2003). Shallow parsing with Conditional Random Fields. In

NAACL 2003: Proceedings of the 2003 Conference of the North American Chapter

of the Association for Computational Linguistics on Human Language Technology,

pages 134–141.

Shen, L., Sarkar, A., and Joshi, A. (2003). Using LTAG based features in parse rerank-

ing. In EMNLP 2003: Proceedings of the ACL-03 Conference on Empirical Methods

in Natural Language Processing, pages 89–96.

Stroppa, N. and Yvon, F. (2005). An analogical learner for morphological analysis. In

CoNNL 2005: Proceedings of the 9th Conference on Computational Natural Language

Learning, pages 120–127.

Taskar, B., Guestrin, C., and Koller, D. (2004). Max-margin Markov networks. In

Thrun, S., Saul, L., and Schölkopf, B., editors, Advances in Neural Information

Processing Systems. MIT Press.

Tsochantaridis, I., Joachims, T., Hofmann, T., and Altun, Y. (2005). Large margin

methods for structured and interdependent output variables. Journal of Machine

Learning Research, 6:1453–1484.
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Tufiş, D. and Dragomirescu, L. (2004). Tiered tagging revisited. In LREC 2004: Pro-

158



ceedings of the Fourth International Language Resources and Evaluation Conference,

pages 39–42.

van den Bosch, A. (2004). Wrapped progressive sampling search for optimizing learn-

ing algorithm parameters. In Proceedings of the 16th Belgian-Dutch Conference on

Artificial Intelligence, pages 219–226.

van den Bosch, A. and Daelemans, W. (1999). Memory-based morphological analy-

sis. In ACL 1999: Proceedings of the 37th Annual Meeting of the Association for

Computational Linguistics, pages 285–292.

van der Beek, L., Bouma, G., Malouf, R., and van Noord, G. (2002). The Alpino

dependency treebank. In CLIN 2001: Computational Linguistics in the Netherlands,

pages 8–22.

Vapnik, V. (2006). Estimation of Dependences Based on Empirical Data. Springer.

Vapnik, V. N. (1995). The Nature of Statistical Learning Theory. Springer-Verlag, New

York, NY, USA.

Vapnik, V. N. (1998). Statistical Learning Theory. Wiley-Interscience, New York, NY,

USA.

Vossen, P., editor (1998). EuroWordNet: A Multilingual Database with Lexical Semantic

Networks. Springer.

Weston, J. and Watkins, C. (1999). Support vector machines for multiclass pattern

recognition. In Proceedings of the Seventh European Symposium On Artificial Neural

Networks.

White, A. and Liu, W. (1994). Bias in information-based measures in decision tree

induction. Machine Learning, 15(3):321–329.

Xia, F. (1999). Extracting Tree Adjoining Grammars from Bracketed Corpora. In

Proceedings of the 5th Natural Language Processing Pacific Rim Symposium, pages

398–403.

159



Xue, N. and Xia, F. (2000). The bracketing guidelines for the Penn Chinese treebank.

Technical report, University of Pennsylvania.
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