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Abstract

Motivated by the expense in time and other resources to produce hand-crafted grammars,

there has been increased interest in wide-coverage grammars automatically obtained from

treebanks. In particular, recent years have seen a move towards acquiring deep (LFG, HPSG

and CCG) resources that can represent information absent from simple CFG-type structured

treebanks and which are considered to produce more language-neutral linguistic represen-

tations, such as syntactic dependency trees. As is often the case in early pioneering work

in natural language processing, English has been the focus of attention in the first efforts

towards acquiring treebank-based deep-grammar resources, followed by treatments of, for

example, German, Japanese, Chinese and Spanish. However, to date no comparable large-

scale automatically acquired deep-grammar resources have been obtained for French. The

goal of the research presented in this thesis is to develop, implement, and evaluate treebank-

based deep-grammar acquisition techniques for French.

Along the way towards achieving this goal, this thesis presents the derivation of a new

treebank for French from the Paris 7 Treebank—the Modified French Treebank—a cleaner,

more coherent treebank with several transformed structures and new linguistic analyses.

Statistical parsers trained on this data outperform those trained on the original Paris 7 Tree-

bank, which has five times the amount of data.

The Modified French Treebank is the data source used for the development of treebank-

based automatic deep-grammar acquisition for LFG parsing resources for French, based

on an f-structure annotation algorithm for this treebank. LFG CFG-based parsing architec-

tures are then extended and tested, achieving a competitive best f-score of 86.73% for all

features. The CFG-based parsing architectures are then complemented with an alternative

dependency-based statistical parsing approach, obviating the CFG-based parsing step, and

instead directly parsing strings into f-structures.
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Chapter 1

Introduction

Motivated by the expense in time and other resources to produce hand-crafted grammars,

there has been increased interest in wide-coverage grammars automatically obtained from

treebanks. In particular, recent years have seen a move towards acquiring deep resources

that can represent information absent from simple CFG-type structured treebanks and which

are considered to produce more language-neutral linguistic representations, such as syntac-

tic dependency trees. As is often the case in early pioneering work in natural language

processing, English has been the focus of attention in the first efforts towards acquiring

treebank-based deep-grammar resources, followed by treatments of, for example, German,

Japanese, Chinese and Spanish. However, to date, no comparable large-scale automatically

acquired deep-grammar resources have been obtained for French. The goal of the research

presented in this thesis is to develop, implement and evaluate treebank-based deep-grammar

acquisition techniques French.

1.1 Context of the Research

Phrase-structure grammars (CFGs) are the main syntactic representation formalism for

many mainstream linguistic theories. A central concern for natural language processing

of raw text over the past decades has been to find ways to automatically assign syntactic

17



structure to text. Hand-crafted grammars built to these ends, however, have turned out to

be limited in several important respects. The main problem has been that manual grammar

development for a wide-coverage and robust system is extraordinarily time-consuming and,

as a result, very expensive. Moreover, phrase-structure grammar representations tend to be

rather language dependent, and this has lead to a considerable body of research on whether

more abstract and language-neutral representations can be found for describing common

linguistic relations across languages.

Motivated by the expense in time and other resources to produce hand-crafted gram-

mars, there has been increased interest in automatically obtained wide-coverage grammars

that can represent information absent from simple CFG-type structured treebanks to pro-

vide more language-neutral linguistic representations. Dublin City University’s Treebank-

Based Unification Grammar Acquisition project for the Automatic Annotation of the Penn-II

Treebank with Feature-Structure Information (DCULFG, 2001-2004) was an early project,

which built technology for robust, large-scale, data-driven acquisition and parsing within

the framework of a linguistic theory comprising a deeper, more abstract, syntactic for-

malism—Lexical Functional Grammar (LFG). The project is a natural development and

extension of the basic, automatic treebank PCFG acquisition paradigm (Charniak, 1997).

The DCULFG project, as with most early efforts in NLP, was developed on and for

English. In essence, syntax is language dependent, even though the syntactic formalism

may be thought to be language independent. Automatic tools for the syntactic analysis of

raw text will essentially have a language dependent component also, though one might use

language independent techniques to “learn” these language dependent structures, assuming

suitable training resources exist (eg. treebanks).

At the start of the DCULFG project, a database containing more abstract syntactic rep-

resentations was not available to support training a deep probabilistic parser. Therefore, a

major part of the DCULFG project was to augment the existing CFG-based syntactic in-

formation provided by the Penn-II treebank as well as the CFG output of parsers trained

on this treebank with information describing the deeper representation and relations among

18



syntactic units: grammatical “function” equations (essentially describing bilexical labeled

dependencies augmented with grammatical features, such as aspect, number, etc., and non-

local dependencies). Though the actual extension of the information represented in the

original treebank was carried out in an automatic fashion, via an f-structure annotation algo-

rithm, the implementation of the algorithm as well as the construction of the corresponding

annotation program itself is strongly language and treebank data-structure dependent and

therefore based on and constructed for Penn-II style tree representations of English phrases

only. However, it was thought that the technology could be migrated to other languages and

treebanks with some additional effort to construct language tailored implementations of the

established annotation algorithm. Toy projects for Spanish, German, and Chinese aimed

to show early and limited proof-of-concept results (O’Donovan, Cahill, van Genabith and

Way, 2005; Cahill, 2004; Burke et al., 2004). Following this, the GramLab project (2004-

2008) was begun to effectively test this idea in depth. The research presented in this thesis

is part of GramLab.

The aims of the GramLab project are twofold. The first aim was to build treebank-

based multilingual deep-grammar parsing systems based on and adapting the technology

established by DCULFG, for Chinese, Japanese, Arabic, Spanish, French, and German. At

the time, such resources did not exist. Secondly, the project aimed to evolve the DCULFG

technology, and explore ways in which the original components can be improved or added

to for overall improvement of the system. My research is a contribution towards the two

aims of the GramLab project in a very specific manner. The primary objective of my re-

search is the automatic acquisition of wide-coverage, robust LFG resources for French. The

secondary objective of my research concerns the evolution of the original DCULFG model

by exploring other parsing paradigms—in particular, dependency parsing into f-structures,

obviating the CFG-based parsing step in more traditional LFG parsing architectures.

Concerning the first aim of the GramLab project, early proof-of-concept trials in the mi-

gration of this technology to other languages (German, Spanish and Chinese) attempted to

show how the model developed for English can be applied to to other languages (O’Donovan,
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Cahill, van Genabith and Way, 2005; Burke et al., 2004; Cahill, 2004). However, with the

possible exception of Spanish, these proof-of-concept trials did not produce results as im-

pressive as for English in any of the languages and treebank resources investigated. Also,

the proof-of-concept research was further put into question by the, at the time, insufficient

evaluation schemes. Applying the original DCULFG approach to the respective languages

and treebank resources has generally proven more complicated than was originally thought.

Though the DCULFG model has provided guidelines for the development of acquisition

and parsing system within other linguistic contexts, several important factors impact on the

effectiveness of the corresponding systems.

Work on other languages such as Spanish, Chinese, German, and Arabic as well as my

work on French, in the GramLab project has shown that the DCULFG annotation algorithm

as well as component algorithms such as the long-distance dependency resolution approach

make assumptions about both the language and the data structures (treebank trees) in ques-

tion.

For my work on French, unlike for the other GramLab languages, I did not have a

consistent and reliable treebank resource with syntactic structures compatible with LFG

annotations. The Paris 7 French Treebank (Abeillé and Clément (2003), for example) was

lacking in several important respects. The starting point of my research, therefore, was to

first derive a usable treebank resource for French grammar acquisition and parsing—the

Modified French Treebank (MFT) (Chapter 2). I also show that for French, a smaller but

high-quality resource supports better statistical modeling than a larger, less consistent re-

source.

Equipped with this new treebank, I developed the LFG parsing resources for French

(Chapter 3). A new f-structure annotation algorithm was developed for French that takes

into account some of the criticisms of the English model,1 as well as important linguistic

and structural differences between French and English and the different treebank tree data-

structures of the Penn-II treebank and the MFT. Also, following my work on the treebank,
1For example, the representation of tense and aspect.
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the MFT is now equipped with a complete and reliable treebank functional tag annotation

which can be exploited directly in an annotation algorithm, and which makes another part

of the original LFG annotation algorithm inefficient for certain constituents (Chapter 4).

The second goal of the GramLab project concerns various additions to the DCULFG

model, such as implementing machine learning algorithms in various components or as

pre/post-processing (Chrupała and van Genabith, 2006b), exploring the use of multi-word

unit recognition (Cafferkey et al., 2007), implementing automatic morphological annotation

for disambiguation (Rehbein and van Genabith, 2006), obtaining better training instances

and a wider array of sublanguages in training data (Chrupała and van Genabith, 2006b;

Guo, Wang and van Genabith, 2007; O’Donovan, Burke, Cahill, van Genabith and Way,

2005), as well as exploring the integration of hand-crafted and data-driven technologies. My

research on directly parsing with dependency structures, rather than going through CFG-

based technology as is traditionally done in LFG, for French contributes further towards

accomplishing this goal.

Parsing within the LFG framework has always first considered c-structures. However,

the question remains as to the utility of this integrated c-structure parsing step; in particular,

in a context where efficient and accurate data-driven parsers2 exist which directly parse

strings into dependency structures which can be obtained from f-structures. My research

aims to answer this question for French (Chapter 5).

Treebank Based Deep-Grammar Induction within other Linguistic Frameworks. The

last decade has also seen active research in treebank-based deep grammar acquisition within

the deep-grammar frameworks of Tree Adjoining Grammar (TAG) (Chen et al., 2006; Xia,

1999), Combinatory Categorial Grammar (CCG) (Hockenmaier, 2006; Hockenmaier and

Steedman, 2007) and Head-Phrase Structure Grammar (HPSG) (Miyao and Tsujii, 2005;

Nakanishi et al., 2004), which happen to be constraint-based also. This research has been

concentrated on English and the Penn Treebank, though there has been some work on
2For example, MST parser (McDonald et al., 2005) and MALT parser (Nivre et al., 2006).
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other languages—for example, German (Hockenmaier, 2006) and Turkish Cakici (2005)

for CCG, Korean (Park, 2006) for TAG, and Japanese (Yoshida, 2005) for Japanese. No

work has been carried out to date on treebank-based deep-grammar acquisition for French

in any other linguistic framework.

GramLab remains the first systematic investigation into treebank-based deep-grammar

acquisition within a single linguistic framework—LFG.

1.2 Preliminaries and Review of Related Research

1.2.1 Lexical-Functional Grammar

Lexical-Functional Grammar (LFG) is a constraint based theory of language, whose basic

architecture distinguishes two levels of syntactic representation : c-structure (constituent

structure) and f-structure (functional structure) —c-structures corresponding to traditional

constituent tree representation, and f-structures to a traditional dependency representation

in the form of an attribute value matrix.3

Consider, for example, the following sentence.

(1) John helped Mary

Sentence (1) has the c-structure shown to at the top in Figure 1.1, which corresponds to the

f-structure shown in the middle in the same figure.

Like any attribute-value matrix, f-structures are the minimal solution to a set of func-

tional equations such as (f a) = v, where f is an f-structure, a is some attribute, and v is

the value taken by that attribute, possibly another f-structure.

These two levels of representation (f-structure and c-structure), for a given phrase, are

explicitly related by a structural mapping, called the f-description, often denoted by φ,

which maps c-structure nodes to f-structure nodes.
3A detailed introduction to LFG may be found in (Dalrymple, 2001).
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S
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NP VP
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John helped NNP

Mary


pred ‘help’

subj
[
pred ‘John’

]
obj

[
pred ‘Mary’

]


S
↑=↓

nnnnnnn
WWWWWWWWWWWWW

NP
↑ subj =↓

VP
↑=↓

ZZZZZZZZZZZZZZZZZZZ

NNP
↑=↓

V
↑=↓

NP
↑ obj =↓

John
↑ pred =‘John’

helped
↑ pred =‘help’

NNP
↑=↓

Mary
↑ pred =‘Mary’

Figure 1.1: C-structure (top), basic f-structure (middle), and basic annotated c-structure
(bottom) for Example (1).

In the LFG framework, this mapping may be given by functional annotations inserted

into the c-structure tree, as in Figure 1.1 on the bottom.

The metavariables ↑ and ↓ refer to the f-structure of the mother node and that of

the node itself, respectively. So that if node n is annotated ↑=↓, then n’s f-structure is

mapped to the same f-structure as n’s mother’s f-structure. Also, if n has the annota-

tion ↑obj=↓, this means that the f-structure associated with n is mapped to the value of
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the mother’s f-structure obj attribute. LFG also has equations for members of sets, such

as ↓∈↑adjunct, which states that the node’s f-structure is mapped to an element of the

mother’s ADJ attribute.

The f-structure and the annotated tree in Figure 1.1 are derived from the following

annotated rules, productions whose left-hand sides and right-hand sides can be viewed as

(simple) regular expressions.

S −→
NP

↑ subj =↓

VP

↑=↓

NP −→
NNP

↑=↓

V P −→
V

↑=↓

NP

↑ obj =↓

1.2.2 Overview of the DCULFG Project: the Original Methodology

The technology for treebank-based acquisition of multilingual LFG probabilistic parsing

resources is based on the English model developed in DCULFG and adapted to the lan-

guage and treebank data structures in question. There are three main stages in initiating this

process, the basic input for which is a CFG-type treebank. These stages include the con-

struction and application of an f-structure annotation algorithm combined with satisfiability

verification, subcategorisation frame extraction, and long-distance dependency extraction

(Section 1.2.2.1). Given the resources produced in these initial stages, two probabilistic

parsing architectures were developed (Section 1.2.2.2).

1.2.2.1 Initial Stages

Augmenting the Penn-II Treebank with Deep Dependency Representation Annota-

tion. The treebank is automatically annotated with f-equations by the implementation of

an annotation algorithm constructed specifically for English and the Penn-II treebank.
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The annotation algorithm for the Penn-II treebank is composed of four separate modules

(McCarthy, 2003; Burke, 2006). The first module consists of left-right context annotation

principles: the head of a phrase is detected (adapting Magerman’s (1994) scheme) and

annotated, then the sister tags of the head are annotated depending on whether they are in the

right context of the head or in the left context. Because coordination in the Penn-II treebank

is highly ambiguous, a separate module was needed to provide appropriate annotations;

this constitutes the second module. The third module carries out the annotation of trace

elements, covering such linguistic phenomena as passivisation, topicalisation, wh-questions

and relative clauses. The fourth module performs a catch-all and clean-up, which attempts

to correct errors and overgeneralisations caused by the three previous modules.

Following the automatic annotation of Penn-II trees, f-equations are collected and sent

to a constraint-solver to produce f-structures. The annotation algorithm is evaluated in

terms of coverage and quality. It achieves 99.83% coverage, an f-score of 96.93% for all

grammatical features and 94.28% for preds-only against the DCU150 and an f-score of

87.33% for all grammatical features and 84.45% for preds-only against the PARC 700.4

Subcategorisation Frame Extraction from Deep Representations of the Penn-II/III

Treebank. Access to adequate lexical resources is crucial in the functioning of any wide-

coverage computational system carrying out a syntactic analysis of text. As with grammar

writing, manual construction of such resources is time-consuming, expensive and rarely

ever complete. O’Donovan, Burke, Cahill, van Genabith and Way (2005) give an approach

to automating subcategorisation frame acquisition, given the availability of the augmented

Penn-II/III treebanks obtained from the method above.

O’Donovan, Burke, Cahill, van Genabith and Way (2005)’s system for automatised lex-

ical resource acquisition takes f-structures from the automatically augmented treebanks as

input. The central algorithm recursively traverses these f-structures, recording for each lo-

cal pred value, the governable argument attributes. Other information recorded includes
4See, for example, (Burke, 2006) or (McCarthy, 2003) for more details.
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the syntactic categories of the predicate and its subcategorised arguments, prepositions re-

quired by obliques, verbal passivity, particles accompanying verbs, as well as counts (for

the assignment of conditional probabilities).

Following the appropriate mapping of lexical information, an evaluation is carried out

against COMLEX (MacLeod et al., 1994), obtaining a best f-score of 72%.

Long-Distance Dependency Extraction. Linguistic phenomena such as topicalisation

and wh-movement are characterised by the dislocation between surface realisation and

semantic interpretation of linguistic material; these phenomena are referred to as long-

distance dependencies. The Penn-II treebank contains empty nodes and co-indexation to

represent long-distance dependencies at the c-structure. The f-structure annotation algo-

rithm for English annotates these, and long-distance dependencies appear as reentrancies

at the f-structure level also. All long-distance dependencies are extracted from f-structures

and associated with relative frequencies conditioned on the local (communicative) function

(eg. topic, focus) of the reentrant f-structure in question (Cahill et al., 2004).

1.2.2.2 Parsing into Deep-Syntactic Structures Using the Augmented Penn-II Tree-

bank.

With the augmentation of the Penn-II treebank with f-structure annotations, a resource was

made available to which one could apply already available machine learning methods. The

DCULFG project developed two parsing architectures for PCFG-based approximations of

LFG grammars: the pipeline and the integrated architectures (Figure 1.2).

For the pipeline architecture, the parser is trained on the original treebank trees. Parser

output trees are then annotated by the annotation algorithm. In the integrated architecture,

the original treebank is augmented with f-equations and the parser is trained on the aug-

mented version of the treebank.

In both architectures, long-distance dependency resolution is carried out at the f-structure

level. The pipeline architecture achieves an f-score of 84.76%, and the integrated architec-
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Figure 1.2: Overview of treebank-based LFG parsing architectures.

ture achieves 87.09%, against the DCU 105. Against the PARC700, the pipeline achieves

an f-score of 80.33%, whereas the integrated architecture achieves 78.74%. 5

Long-Distance Dependency Resolution in Deep Syntax. In LFG, long-distance depen-

dencies are resolved at the f-structure level, accounted for by functional uncertainty equa-

tions which capture a regular set of optional non-local dependencies along a specific path of

dependencies. DCULFG’s system extracts a finite approximation of paths from f-structures

obtained from the augmented Penn-II treebank, along with their counts relative to the com-

municative attributes topic, topic-rel or focus for deriving conditional probabil-
5See (Cahill, 2004) for details. A new parsing best score of 82.73% has recently been reported by Cahill

et al. (2008).
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ities. It then uses these finite approximations and subcategorisation information obtained

as described in Section 1.2.2.1 to resolve these dependencies in f-structures obtained from

parsed (augmented) text.6

1.2.3 GramLab: Towards Multilingual LFG Resources

In GramLab, LFG based parsing systems are under development for German, Chinese,

Spanish and Arabic. As a contribution to GramLab, this thesis presents the research on

acquiring French LFG parsing resources.

LFG Resources for German. Following the proof-of-concept work carried out by Cahill

(2004) on German, Ines Rehbein has worked towards overcoming the limitations of the

initial annotation algorithm and evaluation scheme for the TiGer treebank.

German is less configurational than English, but morphologically richer. This provides

a first example of the problems to be overcome in the migration of language technology

developed on English to other languages. Rehbein first attempted to account for the infor-

mation exploited by the DCULFG version of the annotation algorithm in terms of right and

left contexts by observing first that such information, though not expressed always in terms

of word order, may be available in terms of morphology in German. This led to her work on

the automatic morphological annotation of the TiGer treebank (Rehbein and van Genabith,

2006).

To render the resulting f-structures more suitable to be evaluated against the publicly

available TiGer Dependency Bank, Rehbein fundamentally revised and extended the f-

structure annotation algorithm, incorporating a substantially larger set of features, achiev-

ing an f-score of 77.5% for all grammatical features. She developed an independent and

more compatible German dependency bank of 250 sentences for the purposes of evalua-

tion, showing that her new annotation algorithm actually obtains an f-score of 93.5% when

the triples mapping is fair. Rehbein’s first parsing experiments under the integrated archi-
6See (Cahill et al., 2004) for details.
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tecture result in an f-score of 69.9%.

LFG Resources for Chinese. Proof-of-concept work for Chinese was carried out by

Burke et al. (2004). However, closer study of Chinese linguistic phenomena important to

the construction of an adequate annotation algorithm, specifically regarding “empty produc-

tions” in the Chinese Penn treebank, revealed that much was not considered in the original

development of the system for Chinese.

Guo, van Genabith and Wang (2007)’s work involved revising and improving the f-

structure annotation algorithm to increase robustness and accuracy, and to more genuinely

reflect the linguistic structure of Chinese. Also, this new system now generates true f-

structures with long-distance dependencies effectively resolved, elaborating a new non-

local dependency resolution algorithm specifically designed for Chinese. The approach is

now scaled to the entire Penn Chinese treebank. Finally, Yuqing Guo collaborated with

Xerox PARC in the construction of a new 200 sentence gold standard for Chinese, for

evaluation purposes.

Specific fundamental modifications to the DCULFG technology, based on the linguis-

tic structures of Chinese, involved, for example, non-local dependency resolution (which

includes long-distance dependency resolution), and the basic f-structure annotation algo-

rithm structure which creates intermediate (dependency tree-like) f-structure templates to

be annotated rather than carrying out the annotation on treebank c-structures.

The modified annotation algorithm obtains an f-score of 96% on gold trees and 80.01%

on parser output.

LFG Resources for Spanish. Chrupała and van Genabith (2006b)’s work extends that of

O’Donovan, Cahill, van Genabith and Way (2005), by improving the annotation algorithm

for Spanish to take into account more linguistic phenomena, by extending the annotations to

account for functional optionality (necessary for the account of some linguistic phenomena

in Spanish), and by exploring machine learning techniques to account for the reliance of

the annotation algorithm for Spanish on existent function labels in the Spanish Cast3LB
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treebank (see Figure 1.2, centre). This work improves on already decent scores for Spanish

LFG parsing by an impressive 3% (with a 75.67% f-score in the integrated model for all

grammatical functions).

LFG Resources for Arabic. Tounsi et al. (2009a) use the Penn Arabic Treebank (Bies

and Maamouri, 2003) to induce an arabic LFG grammar. Though the annotation of this

treebank is in strong correspondence with that of the Penn-II Treebank (M. Marcus and

Schasberger, 1994), linguistic differences bear some effect on the design and implement

an f-structure annotation algorithm for Arabic using this treebank, especially at the mor-

phological level of analysis. For this reason, the left-right context principles module of the

f-structure annotation algorithm for English is much less important. On the other hand new

modules are introduced to handle syntactic complexity. Initial parsing experiments in the

pipeline parsing architecture yields an f-score of 77.78% (Tounsi et al., 2009b).

1.2.4 Related and More Recent Work on Parsing French

Essentially motivated by Rehbein and van Genabith (2007)’s observation that unlabeled

dependency evaluation is a more annotation-neutral metric, the series of papers (Candito

et al., 2009; Candito, Crabbé and Denis, 2010; Candito, Nivre, Denis and Anguiano, 2010)

explore the question of the most successful parsing architecture in terms of this type of eval-

uation for French. Following a preprocessing step, two strategies are compared for deriving

dependencies from a new reduced version of the Paris 7 Treebank, which greatly mirror

a coarser version of the pipeline and integrated architectures presented here. The depen-

dencies sought are based on the constituent head-finding rules, as proposed by Lin (1995);

dependency labels are taken from the Paris 7 Treebank if available or obtained by heuristics.

One strategy, called integrated parsing (analyse intégrée) uses a PCFG and statistical de-

pendency parsers to recover Paris 7 Treebank function labels and dependencies. The second

strategy, called sequential parsing (analyse séquentielle) uses a PCFG parser and recovers

function labels with a classifier in a post-processing step. The essential difference with this
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(later) work and my own work presented in this thesis is in the deepness of the syntactic

description: I worked towards deep-grammar parsing whereas this more recent work aimed

at a sort of surface-dependency parsing.

1.3 Thesis Outline

This thesis is organised as follows.

• Chapter 2 presents the data source which is used in the remainder of the thesis: the

Modified French Treebank.

The Modified French Treebank is a new French Treebank, derived from the Paris 7

Treebank, which is cleaner, more coherent, has several transformed structures, and

introduces new linguistic analyses. In this chapter, I investigate one important ef-

fect of a clean treebank on corpus-based linguistics, providing a strong argument in

favour of quality versus quantity in statistical parsing: a probabilistic parser trained

on clean and transformed data performs better than its counterpart trained on the orig-

inal French treebank, which consists of five times the data. Moreover, I show how

data which has a high error rate and is not “parser-friendly” can lead to the potentially

erroneous conclusions about the impact of lexicalisation on probabilistic parsing of

French.

• Chapter 3 outlines the design and implementation of the f-structure annotation algo-

rithm for French and the Modified French Treebank. Building on the ideas of Burke

(2006); McCarthy (2003); Sadler et al. (2000), the f-structure annotation algorithm

for French reflects criticism about certain syntactic representations of the original

model for English as well as differences in terms of language and data source from

the other language models. In addition, it implements a simple coordination distri-

bution algorithm, based on the LFG analyses for coordination as presented by, for

example, Dalrymple (2001), which is a novel and significantly beneficial addition to

the parsing architecture laid out by Cahill et al. (2005, 2008).
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This chapter also discusses the final steps (namely, hand verification and completion)

in the construction of the MFT Dependency Bank (MFTDB), an f-structure gold

standard to be used for evaluation of all deep parsing work reported in this thesis.

• In Chapter 4, I present the application of treebank-based LFG acquisition and parsing

to French. I show that with modest changes to the established parsing architectures,

encouraging results can be obtained for French, with an overall best dependency

structure f-score of 86.73% for all features. I also extend the existing parsing ar-

chitectures—introducing (1) a simplified architecture and a (2) machine learning ap-

proximation of an established parsing architecture (in the spirit of Chrupała and van

Genabith (2006b))—and evaluate this as well.

• Chapter 5 presents work on directly parsing into f-structures using statistical de-

pendency parsing technology. It gives a mise-en-scène between theoretical depen-

dency syntax and dependency parser practical requirements, an entrée en scène for

f-structures in the literature for dependency parsing, an approach to representing

f-structures in LFG as pseudo-projective dependencies, a first attempt to reconcile

parsing LFG and dependency parsing, and, finally, the first treebank-based statistical

dependency parsing results for French.

• In chapter 6, I provide some concluding remarks and outline directions for future

work.
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Chapter 2

Preparing, Restructuring, and

Augmenting a French Treebank:

Construction of the Modified French

Treebank

This chapter presents the data source adopted and adapted for my research: the Paris 7

Treebank adapted into the Modified French Treebank. It also presents preliminary CFG

parsing scores for parsers trained on the adapted treebank.1

2.1 Introduction

The construction of the Paris 7 Treebank (P7T) resulted in the first treebank available for

French (Abeillé et al., 2004; Abeillé and Barrier, 2004). Its use in research, however, has

proven challenging. Arun and Keller (2005), for example, observe a number of points in

which the treebank should be improved or even completely structurally reorganised before

any serious study can be carried out using it.
1This work was previously published as (Schluter and van Genabith, 2007).
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My goal has been to create a French treebank with consistent and coherent annotations

and with a comparatively low error rate, that supports efficient statistical parsing paradigms

while compromising as little as possible on linguistically relevant structural information. I

aimed to achieve this, while carrying out only the minimum number of changes to the P7T

necessary to meet this goal.

The necessary correction and modification of the P7T has led to the creation of the

Modified P7T, which I will simply call Modified French Treebank (MFT). My research

focusses on the functionally annotated subset of 9357 sentences from the P7T, and the

MFT now consists of the the first2 half of these sentences.

Following an overview of the P7T (Section 2.2), I introduce the MFT via the various

structural changes (Section 2.3), formatting and error mining (Section 2.4) applied to the

P7T source material. Using statistical analysis techniques, I show that the MFT and P7T

have become very different treebanks (Section 2.5). As a means of showing the importance

of such changes in treebank-based linguistic analysis, I provide results for statistical parsing

in Section 2.6, and draw some important conclusions. Finally, in Section 2.7, I touch upon

some more recent result in parsing French.

2.2 The Paris 7 Treebank

Work on the P7T was carried out by a research team at the Université Paris 7, under the

direction of Anne Abeillé. The treebank consists of Le Monde newspaper article excerpts

published between 1989 and 1993, written by various authors, and covering an array of

topics. The full P7T contains 20,648 sentences annotated for phrase structure, (and addi-

tionally, about half with grammatical function tags) comprising 580,945 words. Table 2.1

gives the phrase tags of the P7T. In particular, there is no VP, except in the cases of some

participial phrases (VPpart) and infinitival phrases (VPinf).3

Table 2.2 gives the syntactic function labels used in the functionally annotated sections
2In alphabetical order of the filenames.
3The phrase VN is considered to be more of a convention, grouping together all parts of composed verbs

into one unit with their clitic pronouns, as well as any modifier phrases occurring between these.
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label syntactic role
AP adjectival phrase

VPinf infinitival phrase
AdP adverbial phrase
Srel relative clause

COORD coordinated phrase
Ssub subordinated clause
NP noun phrase
Sint internal, inflected sentence
PP prepositional phrase
VN verb kernel

VPpart participial phrase
SENT independent sentence

Table 2.1: Phrase Tags of the Paris 7 Treebank.

of the P7T. Only some clitics and those phrases which are sisters of a VN constituent carry

functional annotations. This assumes that any phrase which is a sister element of VN func-

tionally depends directly on the verb kernel; I show that this is not always the case and

present a new functional annotation scheme in Section 2.3.5.

label functional role
SUJ subject

DE-OBJ de (of/from)-object
OBJ object

A-OBJ à (to)-object
P-OBJ prepositional-object
MOD modifier
ATS subject attribute
ATO object attribute

Table 2.2: Syntactic Function Labels of the Paris 7 Treebank.

My research focusses on the first half of the functionally annotated sentences of the tree-

bank; there are, in total, 20 files that contain the 9357 functionally annotated sentences, and

I am working with the first ten of these files. These files originally contain 4741 sentences,

comprising 134,445 words.
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2.3 Structural Changes

The MFT differs significantly from the P7T, in terms of its phrase structure as shown by the

statistical tests in Section 2.5. Major structural changes to the original P7T trees include

increased rule stratification, introduction of analyses for untreated structures, information

propagation, coordination raising, the addition of missing functional tags, and the introduc-

tion of functional path tags.

2.3.1 Rule Stratification

While maintaining a relatively flat syntactic analysis, the MFT has the property that there is

one distinct head (and sometimes also one co-head) for each constituent. For example, NP,

AP, and AdP constituents that have modifiers will have separate constituents for those mod-

ifiers. Figure 2.1 provides an example of increased stratification for AdP in Example (1);

note that some underspecification has been maintained between the modifying adverbial

phrases of the head adverb bien (‘well’).4

(1) encore
still

pas
not

très
very

bien
well

‘still not very well’5

2.3.2 Introduction of Analyses for Untreated Structures

Compared to the P7T, the MFT offers increased coverage of linguistic phenomena. ‘It’-

cleft constructions provide an important example of structures that remained untreated in

the P7T annotation guidelines, and therefore received a variety of treatments throughout

the P7T. Figures 2.2 and 2.3 (for Examples (2) and (3)) illustrate the new analysis, inspired

mainly by separate transitive and intransitive clefting analyses outlined in (van der Beek,

2003). In particular, in Figure 2.2, the P7T representation (above) shows that (possibly
4Dates, time periods and phrases involving adverbs of quantity provide further frequent examples of phrases

which always lacked internal structure, and into which I introduced structure.
5Sentence 88, file flmf7ag1ep.cat.xml.
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AdP

hhhhhhhhhhhhh

qqqqqqq
VVVVVVVVVVVVV

ADV ADV ADV ADV

encore
still

pas
not

très
very

bien
well

⇒ AdP

hhhhhhhhhhhhh

VVVVVVVVVVVVV

AdP AdP

qqqqqqq
MMMMMMM ADV

ADV AdP ADV bien
well

encore
still

ADV très
very

pas
not

Figure 2.1: P7T representation (left) and MFT representation (right) of Example (1).

due to a lack of analysis being provided in (Abeillé, 2003) for it-cleft constructions) the

Srel phrase is analysed incorrectly as a modifier the subject’s attribute, whereas in the MFT

representation (below) the whole sentential structure is recognised as a transitive it-cleft

construction, the attachment of the Srel phrase is corrected and given a path function tag

SUJ.MOD. In Figure 2.3, the P7T representation (above) erroneously calls the Ssub phrase

a simple modifier, whereas in the MFT representation (below) the sentential structure is

recognised as an intransitive it-cleft construction and the Ssub phrase is accordingly given

the SUJ function tag.

(2) C’est
It is

[...]
[...]

l’URSS
the USSR

[...]
[...]

qui
who

se
herself

trouve
finds

prise
taken

[...]
[...]

‘It is the USSR that finds itself trapped’6

(3) C’est
It is

á
at

ce
this

prix
price

que
that

l’Ukraine
the Ukraine

peut
can

convaincre
convince

sa
its

population
population

de
of

la
the

nécessité
need

‘It is this cost that the Ukraine can convince its population of the need.’7

6Sentence 8151, file cflmf3 08000 08499ep.xd.cat.xml of the MFT.
7Sentence 416, file flmf7ag1ep.cat.xml.
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VN-SUJ

qqqqqqq
MMMMMMM NP-ATS

llllllllll
RRRRRRRRRR Srel-SUJ.MOD

qqqqqqq
MMMMMMM

c’est
it is

D N qui se
trouve prise

that finds itself trappedl’
the

URSS
USSR

Figure 2.2: P7T representation (above) and MFT representation (below) of Example (2)
(transitive clefting).

2.3.3 Information Propagation

Some constituent categories in the P7T derive terminal strings with grammatical patterns

not reflected in the intervening levels of syntactic representation. VPinf, VPpart, and Srel

are the three categories which were found to have this property. For instance, VPinf re-

quires a VN daughter that has a V daughter which is an infinitive, and Srel requires a PP or

NP daughter whose head is or has an argument that has a relative pronoun daughter. The

phrase structure trees in the P7T do not capture these requirements. Cases such as these

amount to information loss across levels of representation, thereby introducing CFG ambi-

guity. A parser must guess the daughters of these VN, NP, and PP constituents in order to

produce a correct syntactic analysis. This potentially leads to poor statistical parsing. The

required information can be automatically propagated, augmenting the MFT with extended
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à

ce
pr

ix
at

th
is

pr
ic

e
C

S
N

P-
SU

J

qqqqqqq
MMMMMMM

V
N

fin
ite

qqqqqqq
MMMMMMM

V
Pi

nf
-O

B
J

qqqqqqq
MMMMMMM

qu
e

th
at

l’
U

kr
ai

ne
th

e
U

kr
ai

ne
pe

ut
ca

n
co

nv
ai

nc
re

sa
po

pu
la

tio
n

de
la

né
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Figure 2.3: P7T representation (left) and MFT representation (right) of Example (3) (in-
transitive clefting).
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constituent labels.8

• In the MFT, the part-of-speech V is separated into three different categories: Vfinite,

Vinf, and Vpart, according to whether the verb is tensed, infinite, or a participial. The

XML representation of the constituent VN for the MFT now has an attribute “type”,

which records the first verb’s grammatical category: finite, inf, or part. The VPinf

constituent will now only have a VN constituent with type “inf”, and similarly for

VPpart.

• Relative pronouns in the P7T are already indicated in the “subcat” attribute. I prop-

agate this information as “type” attributes through the dominating nodes, until the

node Srel is reached, thus introducing the constituent categories PPrel and NPrel.

Example (4), whose tree structure is shown in Figure (4), illustrates both these changes.

(4) [...]
[...]

qui
who

risquait
was risking

de
of

brouiller
shake-up

l’image
the image

[...]
[...]

‘who risked messing up the image’9

2.3.4 Raised Coordination

Coordination in the P7T is represented as a sort of adjunction of a COORD phrase as a

sister or daughter of the element it is to be coordinated with. This is interpreted in two

different ways in the treebank, illustrated in Figure 2.5, making coordinated structures in

the P7T highly ambiguous and inconsistent. Either of the two analyses shown are attested
8Note that this is similar to the strategy suggested by Johnson (1998), but with two important differences.

First, the information propagation is done here in a bottom-up fashion and, therefore, retains the central lin-
guistic motivation behind phrase structure trees, that of constituents making up and determining the type of a
phrase. On the other hand, Johnson (1998) suggests a sort of information propagation in a top-down fashion—a
sort of after the fact description of a phrase’s context within a given tree. Second, I am not carrying out trans-
formations to be undone after some parsing process; I am carrying out a permanent re-annotation of treebank
trees. In this latter sense my work is different from that of, for example, Klein and Manning (2003).

9Sentence 8009, file flmf3 08000 08499ep.xd.cat.xml.
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PROrel V P VN NP-OBJ

qqqqqqq
MMMMMMM

qui
who
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de
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V l’image
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brouiller
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⇓
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NPrel-SUJ VNfinite VPinf-OBJ

llllllllll

YYYYYYYYYYYYYYYYYY

PROrel Vfinite P VNinf NP-OBJ

qqqqqqq
MMMMMMM

qui
who

risquait
risked

de
-

Vinf l’image
the image

brouiller
messing up

Figure 2.4: P7T (above) and MFT representation (below) of Example (4).

in the P7T, as well as a third, sometimes, for PP coordination.10,11

The coordination analysis adopted for the MFT is similar to that of the Penn Treebank

(Bies et al., 1995), except for one important fact: I do not get rid of the COORD constituent.

Coordination has been modified to be structured as a single phrase consisting of coordinate

daughters. This process of restructuring was carried out in a semi-automatic fashion. All
10The annotation guidelines of the P7T suggest that there is a difference in distribution; however, upon

working with the P7T, one realises that, in fact, this is not the case. It seems that the flatness of analyses in the
trees of the P7T combined with their analysis of coordination has resulted in confused structures. Thus, for any
type of constituent coordination, both of the structures in Figure 2.5 are attested in the P7T.

11I have also found another regularly used form of coordination for PP coordination, where a PP is coordi-
nated with the mother node of its mother node. However, I believe that this is perhaps a consistent error, and
not an analysis.
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XP

hhhhhhhhhhhhh

qqqqqqq
VVVVVVVVVVVVV

... X ... COORD

qqqqqqq
MMMMMMM

CC ... (X)P

or YP

hhhhhhhhhhhhh

qqqqqqq
VVVVVVVVVVVVV

... (X)P ... COORD

qqqqqqq
MMMMMMM

CC ... (X)P

Figure 2.5: Coordination with Mother or with Sister Node in the P7T. The (X)P are coordi-
nated.

sentences had to be hand corrected after automatic transformation, due to the ambiguity

in the structures of the P7T. Generally, the goal of the transformation was to arrive at a

structure such as the one in Figure 2.6, from those in Figure 2.5 (as well as from any other

erroneous coordinated structures encountered).

XP

hhhhhhhhhhhhh

VVVVVVVVVVVVV

... COORD-XP

qqqqqqq
MMMMMMM ...

XP CC XP

Figure 2.6: MFT coordination with arguments.

For like-constituent coordination, COORD XML elements now have a “type” attribute,

whose value is the type of coordinated constituent (i.e., NP, AP, etc.). In Figure 2.6, the

COORD phrase is of type XP. In addition, it is enclosed in an XP phrase along with any of

its shared arguments or modifiers.

Nonconstituent coordination and unlike constituent coordination required slightly dif-

ferent, but similarly structured, analyses. Unlike constituent coordination was labeled with

the type UC, and nonconstituent coordination with the type NC, or VP in the case of an NC

that really corresponds to a VP.12

COORD-UC phrases may take a functional label if they are sister to a VN, whereas

COORD-NC phrases do not. In NC coordination, parallel elements are enclosed in a special
12Recall that VP is not a constituent in the P7T, and is not introduced into the MFT, except where NC would

correspond to a VP.
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NC phrase, if they are not argumentally complete verbal phrases (for example, in argument

cluster coordinations). The functional roles of each of their constituents is given on the

constituents themselves within the NC or Sint constituent.13 Figure 2.7 illustrates a type of

NC coordination for the following example.

(5) la
the

personalité
personality

morale
moral

de
of

la
the

Cinq
Five

disparaı̂t,
disappears,

et
and

avec
with

elle
her

l’autorisation
the authorisation

d’émettre
of broadcast
‘the moral personality of the Five is disappearing, and with it the permission to

broadcast’ 14

2.3.5 Functional Path Tags

Approximately half of the P7T was automatically functionally annotated and hand corrected

(Abeillé and Barrier, 2004).15 In the original subsection of the P7T (before being modified

and hand corrected by the present author) the functional tag counts are as given in Table

2.3.

functional tag count
SUJ 8036
OBJ 5949

MOD 6023
A-OBJ 833

DE-OBJ 1354
P-OBJ 913
ATS 560
ATO 104

Table 2.3: Original Functional Tag Counts for the Relevant P7T Subset.

The functional annotation scheme adopted for the P7T assumed that all sisters of the

VN phrase are functionally dependent on that phrase. However, this is not always the
13In reality, like VN, NC is not really a phrase; rather, it is a convention permitting the expression of parallel

structures. I explicitly use the tag “NC” to make this clear.
14Sentence 154, file flmfaa1ep.cat.xml.
15cf. Section 2.2.
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Figure 2.7: P7T (left) and MFT (right) representation of example (5).

case; it-cleft constructions provide a first example (cf. Section 2.3.2). Other cases involve,

for example, pronouns for DE prepositional phrases (pronouns such as dont or en) and

daughters of NC. Inspired by the functional paths in the LFG framework,16 I assign new
16See, for example, (Dalrymple, 2001).
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path functions, as illustrated in Figure 2.2, where the Srel constituent takes the functional

path tag SUJ.MOD, representing the fact that Srel has the function MOD, and is dependent

on the constituent whose function is SUJ.

Note, in addition, that much of the functional annotation was missing in the functionally

annotated subset of the P7T: only 23,772 functional tags were found in the relevant subsec-

tion of the P7T. In contrast, the MFT contains 30,399 functional tags. Table 2.4 presents

the MFT counts of the new functional path tags.

functional tag count
SUJ 7969
OBJ 6667

MOD 10615
A-OBJ 1432

DE-OBJ 956
ATS 1470

SUJ.MOD 158
P-OBJ 1022
ATO 126

A-OBJ.OBJ 1
ATS.MOD 14

DE-OBJ.OBJ 1
OBJ.MOD 38

OBJ.DE-OBJ 1
OBJ.OBJ 3

SUJ.A-OBJ 1
DE-OBJ.OBJ.MOD 2

OBJ.A-OBJ 2
SUJ.DE-OBJ 1

A-OBJ.OBJ.MOD 1

Table 2.4: MFT Counts of Functional Path Tags.

2.4 Formatting and Error Mining

In order to be usable by software, and before any restructuring of the P7T could take place, I

carried out an extensive clean-up of the original P7T formatting. This involved, for example,
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reinserting missing part-of-speech tags, and repairing the XML formatting.17

Following the reformatting and restructuring of the treebank, a phase of general error

mining and correction was undertaken to reduce any noise that I had introduced into the

new MFT version of the treebank, and to try to catch any important errors that I had as yet

left untreated or that I had missed. Error mining has been shown to improve the results of

even very robust techniques for comparatively large corpora (Dickinson and Meurers, 2005,

2003a,b).

This phase has been carried out semi-automatically, in three steps. The first step simply

involved automatically extracting a CFG grammar from the treebank, and verifying manu-

ally that the productions were consistent with P7T and MFT annotation guidelines, correct-

ing any deviations. The next two steps consisted of applying error-mining software created

under the Decca project (Dickinson and Meurers, 2005). This involved applying software

for the detection of part-of-speech variations and constituent-string relation variations, ex-

amining non-fringe results, and manually correcting any detected erroneous annotations.18

2.5 Comparative Statistics

The comparative counts of tokens and types of CFG rules for the relevant subset of sen-

tences, given a certain left-hand side, is presented in Table 2.5.19 Observe that in all in-

stances (except for AdP20), the number of tokens has increased from P7T to MFT, whereas,

except for Sint, the number of types has decreased. In addition, I have used a 2-sample

χ2 test for equality to show that all type-token proportions have significantly decreased, as

shown in the last column of Table 2.5 (ranging from the largest P-value 2.546E-02 to the
17For example, in the whole of the functionally annotated section of the P7T, I found 5 empty SENT con-

stituents, 3 cases of word-forms floating outside of their XML elements, 15 misformatted lemmas, 24 missing
parts-of-speech for words not belonging to a multi-word expression, 16,222 missing parts-of-speech for words
belonging to a multi-word expression, 18 misused attributes, etc.

18For example, Decca POS software detects 28 7-gram variations of which 15 are non-fringe. The non-
fringe variations were examined for errors. The same softwares detects only 11 7-gram variations in the MFT,
of which 5 are non-fringe.

19COORD and VN, and any new constituents added to the MFT are not mentioned for reasons of incompa-
rability. Also note that these rule counts abstract over any punctuation or functional tagging.

20Observe that the AdP phrase in the original P7T was comparatively rarely employed.
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smallest 2.2E-16). The differences reflect the consistency and comparative simplicity of the

MFT with respect to the P7T.

left side P7T MFT p-value
types/tokens types/tokens

SENT 1476/4741 1114/4739 2.2E-16
AP 93/5506 64/8440 5.428E-07
AdP 37/290 44/5755 2.2E-16
NP

(or NPrel) 1086/34747 690/38036 2.2E-16
PP

(or PPrel) 129/19071 60/19930 1.416E-07
VPinf 300/2940 221/3047 6.229E-05
VPpart 249/2009 160/2115 2.838E-07

Srel 302/1567 233/1590 6.475E-04
Ssub 361/1426 284/1513 2.235E-05
Sint 191/597 273/1024 2.546E-02

Table 2.5: Productions of the P7T versus the MFT.

2.6 Parsing Results and Regression Analysis

Arun and Keller (2005) explore the question of the role of lexicalisation in parsing French

and report parsing results on the P7T. Post-publication, Arun discovered (personal commu-

nication) that the results reported in these publications were erroneously obtained; Arun

and Keller (2005) mistakenly discarded over half of the treebank trees, believing that the

contracted words were XML errors. Their new results for sentences of length ≤ 40 words

were given in their presentation at ACL, and are reported in Table 2.6.21,22

Arun and Keller (2005) present results for BitPar (Schmid, 2004) (a simple PCFG

parser), as well as for several modifications made to Bikel’s parser (Bikel, 2002) (a lex-
21The ACL slides presenting these new results may be obtained at http://homepages.inf.ed.ac.uk/s0343799/

acl2005slides.pdf .
22In Table 2.6, perfect tagging mode means that the parser does not carry out any POS tagging; it is run with

all POS tags supplied. Bikel’s parser does not automatically run in perfect tagging mode when all POS tags are
supplied. It still carries out its own POS tagging, unless the word-forms have not been seen in the training set,
in which case it uses the supplied POS tag; so in this case, it is run with unknown POS tags supplied.
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parser and mode LR LP f-score
BitPar 64.49 64.36 64.42

(own POS tagging)
BitPar 67.78 67.07 67.42

(perfect tagging mode)
Bikel 79.94 79.36 79.65

(own POS tagging)
Bikel 80.79 80.23 80.50

(unknown POS tags supplied)

Table 2.6: Arun and Keller’s P7T parsing results (≤ 40 words).

icalised statistical parser).23 What they term as “Collins Model 2” is essentially Bikel’s

parser without any of the added modifications; results from this model applied to the best

of Arun and Keller (2005)’s transformations of the P7T (contracted compounds and raised

coordination24) will serve as a baseline for comparison with the results presented here.

Upon finding that Bikel’s parser outperforms BitPar when trained on the P7T by over

15%, Arun and Keller (2005) concluded that French, like English but unlike German, parses

best in a lexicalised statistical parsing framework, leading to the conjecture that word order,

and not flatness of annotation, is crucial for lexicalisation. By contrast, parsing results with

the MFT lead to a less extreme conclusion, and provide further evidence that a coherent and

well-structured treebank leads to better parsing results.

Experiments were repeated on the MFT using both BitPar and Bikel’s parser. The MFT

was randomly subdivided into a training set (3800 sentences), development set (509 sen-

tences) and a test set (430 sentences).25 My training set roughly corresponds (in quantity)

to only 20.5% of the training data used by Arun and Keller (2005) in their most recent ex-

periments (18,548 sentences), yet my results show improvements on results using the P7T.
23BitPar is a PCFG parser that considers most likely parses based on phrase structural (CFG) information

only, with associated rule frequencies. Bikel’s parser is a implementation of Collin’s parsing model (Collins,
1997; Bikel, 2004). Following this model, the parser first carries out a heavy preprocessing step, and then
proceeds to carry out training of a lexicalised PCFG based on, in addition, the associated frequencies resulting
from a number of smoothing and back-off techniques to compensate for fine-grained data due to lexicalisation.

24As in Arun and Keller (2005)’s work, I contracted compounds for all experiments. Their method of raising
coordination is completely different from the way coordination is treated in the MFT. See (Arun and Keller,
2005) for details.

25This data partition will remain the same for all experiments that I report on in this thesis.
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The results for the MFT are shown in Table 2.7.

parser and mode LR LP f-score
BitPar 70.66 70.62 70.64

(own POS tagging)
BitPar 78.07 77.36 77.71

(perfect tagging mode)
Bikel 79.76 80.13 79.95

(own POS tagging)
Bikel 83.09 83.31 83.20

(unknown POS tags supplied)
Bikel 84.62 84.69 84.66

(perfect tagging mode)

Table 2.7: MFT parsing results (≤ 40 words).

BitPar trained on the MFT outperforms across the board its scores when trained on

more than five times the amount of data from the P7T. On sentences of length less than 40

words, BitPar trained on the MFT scores 6.22% (absolute) better, and in perfect tagging

mode, BitPar scores 10.29% (absolute) better than when trained on the substantially larger

training set from the P7T.

Smaller increases are also achieved for Bikel’s parser, when trained on the small train-

ing set of the MFT. When Bikel’s parser carries out its own POS tagging, it scores 0.3%

(absolute) better, and when unknown POS tags are supplied, it performs 2.51% (absolute)

better than its counterpart trained on the large training set of the P7T.

Table 2.7 also shows how scores using Bikel’s parser increase further, when run in

perfect tagging mode.26 Arun and Keller do not report results for running Bikel in perfect

tagging mode.

The variances in the increases of f-scores seem to be the direct results of the parsing

mechanisms adopted by each of the parsers. BitPar is less flexible to inconsistent and error-

ridden data, than Bikel’s parser, which assumes independence relations among sister nodes

(with respect to the phrase head), compensating for this with only a distance measurement.
26Bikel’s parser can be tricked into perfect tagging mode, by appending the part-of-speech to the end of each

word-form.
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Table 2.8: Linear regression on learning curve data from Figure 2.8.

The learning curves in Figure 2.8 present the changes in parser performance trained

on increasingly larger subsets of the MFT training set. For this experiment, I also train
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on the development set to obtain further information about possible increases in parser

performance and its possible correlation to training set size.
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Figure 2.8: Learning curve for the MFT.
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Due to the small number of observations, any nonlinear growth curve fitting method

would be parsimonious; I therefore applied linear regression analysis. Using four different

combinations of power transformations, I found these learning curves to be approximately

linear with a very strong positive relationship between transformed number and f-score.

Table 2.8 shows the transforms,R2, parameters, and parameter p-values (using the standard

t-test). F-score extrapolation for a training set of size 18,548 (the size of the training set for

experiments by Arun and Keller on the P7T) are given in Table 2.9. These predictions show

an increase in f-score across the board.27

parser P7T MFT
and mode f-score predicted f-score

BitPar 64.42 75.72
(own POS tagging)

BitPar 67.42 81.08
(perfect tagging)

Bikel 79.65 82.44
(own POS tagging)

Bikel 80.50 83.99
(unknown POS tags supplied)

Table 2.9: F-score and f-score prediction comparison for training set of size 18,548.

The largest increase between P7T parsing scores and predicted MFT parsing scores

with a larger training set is for BitPar, whose predicted score is 11.3% higher when doing

its own POS tagging, and 13.66% higher in perfect tagging mode. In fact, the performance

gap between BitPar and Bikel’s parser seems to be steadily closing as MFT training data

sizes increase. These results suggest that lexicalisation for statistical parsing of French is

perhaps not as crucial as was concluded by Arun and Keller (2005).

2.6.1 What is not concluded here?

Some authors (for example, Rehbein and van Genabith (2007); Kűbler (2005)) argue that

parsing results for treebanks with different annotation schemes are not comparable. There
27Significance tests are not applicable.
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is also concern when comparing parsing results of treebanks having different test sets (even

though the MFT is a subset of the P7T). However, these concerns remain with respect to my

own argumentation. I do not conclude that our parsing results are necessarily better than

Arun and Keller (2005)’s—only that their conclusion about the critical role of lexicalisation

for the statistical parsing of French may be erroneous.

2.7 More Recent Work on Parsing French

Since this research was carried out and first published as (Schluter and van Genabith, 2007),

the P7T has undergone some changes, the most important of which seems to be a discard-

ing slightly less than half of the treebank trees; for example, Candito and Crabbé (2009)

report the P7T to contain only 12531 sentences. However, there has been no account of

the syntactic or other structural changes carried out in the static treebank, if any have taken

place.28

Recently, parsing experiments experiments with this new and reduced P7T treebank

have been carried out, by Candito and Crabbé (2009), using the Berkeley Parser (Petrov and

Klein, 2007) and word clustering with the (Brown et al., 1992) hard clustering algorithm,

both demonstrating the usability of the new version of the P7T and giving encouraging

results for this new form of the treebank, using this parsing method.

Seddah et al. (2009) consider the differences between the MFT and the new version of

the P7T in their comprehensive study on the influence of tag set on a number of parsing

models for French. In this work they show further signs of success in parsing French with

the Berkeley Parser, trained on the new version of the P7T enhanced by tag set transforma-

tions inspired by those carried out for the MFT (in Section 2.3.3).
28Here we are referring to changes within the static treebank and not to any preprocessing for specific parsing

experiments.
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2.8 Concluding Remarks

In this chapter, I have presented the Modified French Treebank, a new French Treebank,

derived from the P7T, which is cleaner, more coherent, has several transformed structures,

and introduces new linguistic analyses. The positive effect of transformations on and clean-

ing up treebanks is well documented (for example, by Dickinson and Meurers (2005)).

I investigated one important effect of a clean treebank on corpus-based linguistics. The

MFT provides a strong example of how quantity does not always make up for quality in

statistical parsing. A probabilistic parser trained on clean and transformed data performs

better than its counterpart trained on the original French treebank, which consists of five

times the data. Moreover, I have shown how data which has a high error rate and that is

not “parser-friendly” can lead to the potentially erroneous conclusions about the impact of

lexicalisation on probabilistic parsing of French.

Apart from the research on automatically detecting inconsistencies in treebank anno-

tations by Dickinson and Meurers (2003a,b, 2005), there has been very little research on

restructuring and correcting treebank resources: an exception is the work of Hockenmaier

and Steedman (2007) who describe the substantial clean-up and re-analysis of of Penn Tree-

bank structures as a prerequisite to their automatically deriving the CCGbank.

The MFT will serve as our new data source for the LFG acquisition and parsing research

reported in the remainder of this thesis.
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Chapter 3

An F-Structure Annotation

Algorithm and Dependency Gold

Standard for French

In this chapter, I discuss the design and implementation of an f-structure annotation al-

gorithm for the MFT, based on and substantially adapting and extending earlier work on

English by Burke (2006), McCarthy (2003), and Sadler et al. (2000) and complemented by

syntactic analyses for French outlined especially by Frank and Berman (1996) (as well as

Butt et al. (1999) and Dalrymple (2001) for the general perspective), within the framework

of LFG.1 This is combined with the implementation of a simple coordination distribution

algorithm, based on the LFG analyses for coordination as presented by, for example, Dal-

rymple (2001), which is a novel and significantly beneficial addition to the treebank-based

LFG parsing architecture laid out by Cahill et al. (2005, 2008). I also discuss the final steps

(namely, hand verification and completion) in the construction of the MFT Dependency

Bank (MFTDB), a 430 sentence f-structure gold standard to be used for evaluation of all

deep parsing work reported in this thesis.
1Note that the research reported in this thesis makes no arguments for one linguistic analysis or another. It

simply models itself after work by the DCULFG compensating for lacunae in syntactic analysis for French by
consultation of Frank and Berman (1996).
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3.1 Introduction

Automatically acquired deep-grammar parsing resources require a treebank with deep gram-

matical annotations. If no such ‘deep’ treebank exists, it may be possible to automatically

derive such a resource from existing treebank resources; in an LFG-based approach, this

is the role of the f-structure annotation algorithm. An f-structure annotation algorithm

simply derives an f-structure bank from a simple CFG style treebank. It takes as input a

c-structure and outputs an f-structure annotated c-structure from which an f-structure bank

can be derived using a constraint solver. The work presented in this chapter provides such

an f-structure annotation algorithm for French.

Moreover, (statistical) dependency parsing and automatic dependency derivation from

treebanks require evaluation against established gold standard resources, providing a bench-

mark for resource quality and allowing direct comparisons to be made among outputs from

differing grammar development paradigms and statistical methods. Gold standards for lan-

guages such as English, (for example, the PARC700 Dependency Bank (King et al., 2003)

and the DCU 105 (Cahill et al., 2002b), German (for example, TiGer dependency bank

(Brants et al., 2002)), and Arabic (for example, the DCU 250 (Al-Raheb et al., 2006)) have

been developed and used for evaluation of dependency parsing and automatic grammar and

lexicon extraction architectures. However, to my knowledge, the construction of the MFT

Dependency Bank (MFTDB), reported in this chapter, produced the first dependency gold

standard resource available for French.2

I briefly outline the original annotation algorithm developed for English (Section 3.2).

The new annotation algorithm for French and a selection of important novel linguistic anal-

yses3 it implements is presented in Section 3.3. I then discuss the construction of the de-

pendency gold standard (Section 3.4) and present an evaluation of the f-structure annotation

algorithm against this gold standard (Section 3.5).
2Bick (2004), for example, is forced to measure the precision and recall of his rule-based French dependency

parser by hand, and necessarily takes only a small chunk (1790 words) of the Europarl corpus to do so.
3The linguistic analyses are “novel” for this LFG parsing approach, not for linguistic analysis.
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3.2 An F-Structure Annotation Algorithm for English

The Annotation Algorithm for English Penn-II treebank-style CFG representations (Mc-

Carthy, 2003; Burke, 2006) is composed of five separate modules, as shown in Figure 3.1.

The first module consists of left-right context annotations: the head of a phrase is detected

and annotated (Head-Lexicalisation Module), then the sister nodes of the head are anno-

tated depending on whether they occur in the right context of the head or in the left context

(Left-Right Context Annotation Principles Module). As the representation of coordination

in the Penn-II treebank is highly ambiguous, a separate module is provided to keep the

Left-Right Context Annotation Principles Module simple and perspicuous; this makes up

the second module (Coordination Annotation Principles Module). The third module covers

the annotation of trace elements, including the treatment for such linguistic phenomena as

passivisation, topicalisation, wh-questions and relative clauses (Traces Module). The fourth

module performs a catch-all and clean-up, attempting to correct errors and overgeneralisa-

tions caused by the three previous modules (Catch-All and Clean-Up Module).

3.3 The Annotation Algorithm for French

There are several differences in the architecture of the annotation algorithm for French and

the one for English. In this section I motivate and outline these differences.

In contrast to English and the Penn-II treebank representations, French and the MFT are

rich in morphological information, as inherited from the P7T. In addition to this, because

of the extension, completion and verification of the MFT function tag annotation, our algo-

rithm relies less on f-equation decision heuristics than on simple translation of functional

information already present in MFT trees. This supports the construction of simple lexical

macros (Section 3.3.1), as well as the LFG Conversion Module (Section 3.3.2). For this

reason, and in particular for phrases with a verb kernel, rather than relying on annotation

approximations by means of a left-right context annotation module, the LFG Conversion

Module is used to simply translate existent function tags into LFG functional equations.
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Head Lexicalisation (Magerman, 1994)

Left-Right Context Annotation 
Principles

Coordination Annotation Principles

Catch-All and Clean-Up

Traces

Proper 
f-structures

Proto
f-structures

Figure 3.1: Annotation algorithm for English.

Ambiguities implicit in the original P7T treebank have been reduced considerably in the

MFT. In particular, there is no ambiguity between coordinated structures and modification

of these coordinated structures in the representation of coordination in the MFT. Therefore,

there is no need for a special coordination module.

In addition, to reflect the current linguistic analyses of verbs adopted in LFG (for exam-

ple, Frank and Berman, 1996; Butt et al., 1999; Dalrymple, 2001), I provide a monoclausal

treatment of compound verbs, resulting in the introduction of a Verb Combinatorics Module

(Section 3.3.3).

Finally, the MFT inherits from the P7T the absence of traces and empty productions.

In the Penn-II treebank representations, most traces and empty productions resolve long-

distance dependencies. These are accounted for by the path function tags of the MFT; it

is straightforward that communicative re-entrancies (such as topic or focus) are co-
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annotated in situ in terms of corresponding f-structure reentrancies in the LFG conversion

module.4 Other traces and empty productions may indicate passivisation, which is ac-

counted for in the annotation algorithm for French in the Verb Combinatorics Module.

For other constituents such as NP or PP, I maintain the left-right context annotation

principles in the corresponding annotation module (Section 3.3.4).

A catch-all and clean-up module is virtually non-existent, annotating only the sentence

type of the outermost f-structure (declarative, interrogative, etc.) (Section 3.3.5).

To boost the performance of the f-structure annotation algorithm, I introduce a post-

processing step of argument distribution over coordination, which significantly improves

the performance of the annotation algorithm (Section 3.3.6).

The goal of the f-structure annotation algorithm is to comprehensively annotate all

phrasal and lexical nodes of all the trees of the MFT, augmenting its tag and categorical

information with LFG f-structure annotations, in order to derive the dependency represen-

tation given by the attribute value matrix representing an f-structure. Given a tree, the

annotation algorithm iterates over its list of n non-terminal nodes, T , which are in some

order that maintains the dominance relation (root node downwards). For each non-terminal

node T (i)(1 ≤ i ≤ n), T (i)s daughters are annotated as follows. If T (i) is a verb phrase,

send T (i) to the Verb Combinatorics Module. Otherwise, if T (i)’s head is a verb phrase,

send T (i) to the LFG Conversion Module. Otherwise, send T (i) to the Left-Right Context

Annotation Module. For the annotation of any leaf node, directly use the lexical macros.

Once the list has been exhausted, it is sent to the Catch-All and Clean-Up Module.5 The

functional equations are then extracted from the trees, and sent to post-processing for dis-

tribution over coordination. Figure 3.2 shows the basic structure of the flow of control in

the annotation algorithm.

4Other approaches to long distance dependency resolution are tested and reported in Chapter 4.
5There is no ambiguity in annotations for coordination in the MFT, unlike the Penn-II treebank. For this

reason, there is no need for a special Coordination Module of the annotation algorithm as was adopted for the
English version (Cahill et al., 2004).
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Verb 

Combinatorics 
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Context 

Annotation 

LFG 

Conversion 

Head-Finding 

Principles 

Core modules 

Catch-all and  

Clean-up 

F-structure 

Equation Extraction 

Coordination 

Distribution 

Post-processing 

Figure 3.2: Three Modules of the Annotation Algorithm for French.

A Note on Clitics. The MFT inherited a relatively flat phrase-structure annotation from

the P7T, including a lexicalised treatment for clitic pronouns. As such, clitic pronouns are

not the head of any constituent, but are enclosed in the verb kernel (VN) together with the

verb lemma to which they are attached. Also, the function label for clitics is on the VN in

which they are enclosed. F-structure equations may not be labeled in this manner in LFG;

the predicate node cannot also be the value of the subject. As a preprocessing step, I have

enclosed clitics in their own constituents (CLP6) and propagated the function labels down

to this level from VN. Figure 3.3 shows a transformed main VN subtree derived from the

corresponding MFT subtree.

This is a preprocessing step and not an actual change in the MFT because clitics, lin-

guistically speaking, should not have their own constituent.
6In reality, I have added two different constituents: CLseP for all reflexive clitics, and CLP for the rest. For

ease in description, I will only refer to CLP here, even though there are actually both CLP and CLseP.

60



VN-SUJ
eeeee YYYYY

CL Vfinite

c’

it

est

is

⇒ VN
eeeee YYYYY

CLP-SUJ Vfinite

CL est

is
c’

it

Figure 3.3: Clitic transformation as a preprocessing step for the MFT. The subtree on the
left is replaced by the subtree on the right.

3.3.1 Lexical Macros

The annotation of terminal nodes is greatly facilitated by the richness in morphological and

lemma information provided by the MFT, which is directly inherited from the P7T. Mor-

phological information is directly translated into lexical features, and lemma information

provides predicate values for f-structure annotation. Table 3.1 provides simplified examples

of some noun annotation macros.

MFT XML encodings LFG function equations
mph =“(G)N” ↑-gend= G

↑-num= N

lemma =“l” ↑-pred= l

subcat =“s” ↑-n-type= s

Table 3.1: Noun lexical macros.

3.3.2 MFT LFG Conversion Module

MFT functional tags are directly translated into LFG functional equations for the constituent

under consideration. Table 3.2 gives the simplified macros adopted for the f-structure an-

notation algorithm.

Note, in particular, the translation of the function path tags, which permit the creation of

(LDD-resolved) proper f-structures, rather than only proto-f-structures, unlike the algorithm

designed for the Penn-II treebank (Cahill et al., 2004).
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functional tag function equation
SUJ ↑subj=↓
OBJ ↑obj=↓

MOD ↓∈↑adjunct
A-OBJ ↑a obj=↓

DE-OBJ ↑de obj=↓
ATS ↑xcomp=↓, ↑subj=↓subj

SUJ.MOD ↓∈↑subj:adjunct
P-OBJ ↑obl=↓
ATO ↑xcomp=↓, ↑obj=↓subj

A-OBJ.OBJ ↑xcomp:obj=↓
ATS.MOD ↓∈↑xcomp:adjunct

DE-OBJ.OBJ ↑xcomp:obj=↓
OBJ.MOD ↓∈↑obj:adjunct

OBJ.DE-OBJ ↑xcomp:de obj=↓
OBJ.OBJ ↑xcomp:obj=↓

SUJ.A-OBJ ↑subj:a obj=↓
DE-OBJ.OBJ.MOD ↓∈↑xcomp:obj:adjunct

OBJ.A-OBJ ↑xcomp:a obj=↓
SUJ.DE-OBJ ↑subj:de obj=↓

A-OBJ.OBJ.MOD ↑a obj:obj:rel mod=↓

Table 3.2: MFT function tag macros.

3.3.3 Verb Combinatorics Module

To render the f-structures more similar to those output by the current XLE systems (Butt

et al., 1999), in my f-structure analyses for the French annotation algorithm, I have made

the move away from the multi-clausal treatment of compound tenses (as implemented for

the English annotation algorithm of Cahill et al. (2008)), elaborating a verb combinatorics

module for the mono-clausal analysis.

The verb combinatorics module involves the exhaustive provision of annotations for

the (finite) number of composed tenses with and without coordinated verbal parts.7 The
7Frank (2000) proposed and tested a method for automatically inducing LFG f-structures from treebank tree

representations based on CFG subtree f-structure annotations rather than CFG rule f-structure annotations. This
is similar to the approach taken for the Verb Combinatorics Module here, except in one important respect. The
Verb Combinatorics Module annotations are exhaustive: it is possible to enumerate all verb tenses in French,
and with them the verb word-forms forming these tenses. This is what we have done here. In this sense,
the Verb Combinatorics Module is more than data induced, unlike the method proposed by Frank (2000), and
therefore does not suffer the same consequences of loss of robustness of the f-structure annotation algorithm.
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analysis may be carried out over several levels of phrase-structure representation, depending

on the presence of coordinated tenses. A verb in a compound tense is said to be made up

of a verb complex, which may include some tensed component, an auxiliary (which may

coincide with the tensed component), one or more past participles, and/or an infinitive. The

features associated with a verb complex at the f-structure level of representation are the

following:

• factive=+/-: French factive constructions, faire + infinitive, are essentially similar to

causative constructions in English. The MFT (like the P7T) treats factive phrases as mono-

clausal. This seems to be the more accepted linguistic analysis (Yates, 2002). The following

sentences, adapted from Yates (2002), illustrate the factive construction.

(1) Pierre
Pierre

fait
is making

courir
[to] run

Paul.
Paul.

‘Pierre is making Paul run.’

(2) Pierre
Pierre

lui
to him

fait
is making

écrire
[to] write

une
a

lettre.
letter.

‘Pierre is making him write a letter. / Pierre is having a letter written to him.’

(3) Pierre
Pierre

fait
is making

téléphoner
[to] phone

Marie
Marie

à
to

Paul.
Paul.

‘Pierre is making Marie phone Paul.’

Though the mono-clausal analysis at the f-structural level is not universally accepted, it also

seems to be the most accepted one (see, for example, Alsina, 1992; Zaenen and Dalrymple,

1996). Therefore, I adopt this analysis also. For the sentence in Example (1), the outer-

most predicate is courir (‘[to] run’), which has the attribute, factive=+. Note that the

semi-auxiliary verb faire (‘[to] make’), with any auxiliary associated with it, holds all the

morphological information of the verb complex. Basic f-structures for Examples (1) through

(3) are shown in Figures 3.4 through 3.6.

• passive=+/-: The passive voice is normally indicated, as in English, by the compound

form of the verb complex, and the introduction of the verb être (‘[to] be’), along with any
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
pred ‘courir’

subj
[
pred ‘Pierre’

]
obj

[
pred ‘Paul’

]
factive +


Figure 3.4: Basic f-structure for Example (1).

pred ‘écrire’

subj
[
pred ‘Pierre’

]
obj

pred ‘lettre’

spec
[
det ‘un’

]
aobj

[
pred ‘pro’

]
factive +



Figure 3.5: Basic f-structure for Example (2). (No disambiguation has taken place at the
f-structure level.) 

pred ‘téléphoner’

subj
[
pred ‘Pierre’

]
obj

[
pred ‘Marie’

]
aobj

[
pred ‘Paul’

]
factive +



Figure 3.6: Basic f-structure for Example (3).

associated auxiliary, for the morphological expression of tense, and mood.8

• aux select=v: The auxiliary in a compound verb complex is indicated through the aux select

feature, where v is the auxiliary in question (either avoir or être).

• tense=t, mood=m: Tense and mood are indicated according to the traditional tenses of

French, found, for example, in any complete conjugation reference for French.

8Other manners of expression for the passive voice are not annotated as such in this version of the annotation
software, since they are not only rare in the data, but also ambiguous in form with pronominal verbs and
therefore difficult to catch. Also, pronominality is indicated on the relevant clitic pronoun and, therefore, does
not come into play in the verb combinatorics module.
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• perf=+/-, superperf=+/-, inf=+/-, part=+/- : The aspectual attribute of perfec-

tivity is recorded in a simplistic manner, in keeping with the mainstream LFG treatment of

aspect as based on English verbal morphology. A tense that is absent in English, but present

in French is then the superperfect, composed of the same elements as for the perfect tenses,

but where the auxiliary is itself in a perfect tense.9 The attribute inf indicates whether or

not the verbal form is an infinitive and the attribute part indicates whether it is a participial.

In Sections 3.3.3.1 through 3.3.3.4, I give a description of the various possible annota-

tions for the possible cases, defined in Table 3.3.10

Case Subcase Figures Description
1 VNfinite is a sister of VPpart-OBJ-cmp

i 3.7 • VNfinite has 1 V daughter (Vpart)
ii 3.8 • VNfinite has 2 V daughters
iii 3.9 • VNfinite has 3 V daughters

VNfinite is a sister of VPinf-OBJ-cmp (com-
posed factive)

iv 3.10 • VNfinite has 2 V daughters
v 3.11 • VNfinite has 3 V daughters

2 3.13 lone VN
i • VN has 1 daughter
ii • VN has 2 daughters
iii • VNfinite has 3 daughters
iv • VNfinite has 4 daughters

3 VNfinite/VNpart/VNinf with COORD-
VNfinite/COORD-VNpart/COORD-VNinf
daughter

i 3.14 • VN has 1 V daughter
ii 3.15 • VNfinite has 2 V daughters
iii 3.16 • VNfinite has 3 V daughters

4 i 3.7, 3.8, 3.9, 3.10, 3.11 VNpart/VNinf daughter of VPpart-
cmp/VPinf-cmp

ii 3.14, 3.15, 3.16 VNpart/VNinf daughter of COORD-
VNpart/COORD-VNinf, in VN

Table 3.3: Legend for cases of verbal complexes defined for treatment in the verb combina-
torics module.

9For example, il a eu aimé (literally, ‘he has had loved’).
10When making an abstraction over the type of verbal element (Vfinite, Vpart, or Vinf ), I simply refer to V

in this chapter. Similarly for VN (VNfinite, VNpart, VNinf ) and VP (VPpart, VPinf ).
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3.3.3.1 Case 1

In this section, I present Case 1, where there is no coordination in the VNfinite phrase.

Subcase 1i The presence of the sister phrase VPpart-OBJ-cmp (VPinf-OBJ-cmp) implies

that the verb complex has a coordinated structure with past participials (infinitives). For

coordination in verb complexes, I take the first conjunct as representative of grammatical

information of all conjuncts. More complex coordination cannot be represented (and is

probably awkward or agrammatical anyways). Therefore, I consider all auxiliary and semi-

auxiliary material to be collected in the VNfinite phrase.

Subcase 1i, where VNfinite phrases have only a single V daughter, is illustrated in

Figure 3.7. For this subcase, in the annotation algorithm, first the value for passivity and

the auxiliary are detected (since there is only one V daughter of VNfinite, one knows that

there is no possibility for factivity). Then a certain combination of morpholgical forms

are translated by the macros given in Table 3.5, to obtain the tense and mood values. The

decision tree algorithm for this subset of annotations is given in Algorithm 1,11 where the

verb variables v1, v2, v3 reflect assignments in Figure 3.7, and the morphology variables

mph1,mph2,mph3 are the respective morphological encodings for verbs v1, v2, and v3.12

The function translate([mph1 · · ·mphn]) takes a combination (ordered set) of morpholog-

ical encodings and returns the grammatical (atomic) feature/value set for the verb complex,

according to the macros given in Tables 3.4 and 3.5. The function isMovementVerb(v)

returns true if v can only be conjugated with auxiliary être and false otherwise; this is

the case for special intransitive verbs.

Subcase 1ii. Subcase 1ii, where VNfinite phrases have two V daughters, is illustrated in

Figure 3.8. Note that factivity is impossible for this subcase. Also, the auxiliary is given by

the second V. This case is annotated using Algorithm 2.
11Note that, though this algorithm tests for factivity, for this case, this test will always result in false.
12mphi ∈ {P, K, I, J, F, S, T, S, C, W, G}, the set of possible morphological encodings of a verb compo-

nent. For example, K encodes the fact that the verb component is a past participle. See Table 3.4.
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Figure 3.7: Template for Subcase 1i verb complex annotations.

Subcase 1iii. Subcase 1iii, where VNfinite has three V daughters, is the single case of the

passive superperfect, annotated as in Figure 3.9 and Algorithm 3.
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Algorithm 1 Decision-tree algorithm for two V verb combinatorics.
if v1 = faire then
↑factive= +, ↑passive= −, translate([mph1])

else
if v1 = avoir then
↑ factive = −, ↑ passive = +, ↑ aux select =avoir,
translate([mph1 mph2])

else
if isMovementVerb(v1) then
↑factive= −, ↑passive= −, ↑aux select=être,
translate([mph1 mph2])

else
↑factive= −, ↑passive= +, ↑aux select=être, translate([mph1])

end if
end if

end if

Algorithm 2 Decision-tree algorithm for three V verb combinatorics.
if v2 = faire then
↑factive= +, ↑passive= −, translate([mph1 mph2])

else
if v2 = avoir then
↑factive= −, ↑passive= −, ↑aux select=avoir,
translate([mph1 mph2 mph3])

else
if isMovementVerb(v2) then
↑factive= −, ↑passive= −, ↑aux select=être,
translate([mph1 mph2 mph3])

else
↑factive= −, ↑passive= +, translate([mph1 mph2])

end if
end if

end if

Algorithm 3 Decision-tree algorithm for four V verb combinatorics.
if v3 = faire then
↑factive= +, ↑passive= −, translate([mph1 mph2 mph3])

else
↑factive= −, ↑passive= +, translate([mph1 mph2 mph3])

end if

Subcases 1iv and 1v. These subcases describe only the factive compound tenses, where

there is more than one V daughter of the VNfinite phrase (Figures 3.10 and 3.11).13 Note
13Recall that factivity is represented monoclausally in the MFT.
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TRADITIONAL MORPHOLOGICAL ANNOTATION
TENSE NAME ENCODING
présent indicatif P perf=- tense=pres

inf=- part=-
mood=indicative

imparfait I perf=- tense=past
inf=- part=-

mood=indicative
passé simple J perf=- tense=passesimple

inf=- part=-
mood=indicative

futur simple F perf=- tense=fut
inf=- part=-

mood=indicative
présent subjonctif S perf=- tense=pres

inf=- part=-
mood=subjunctive

imparfait subjonctif T perf=- tense=pres
inf=- part=-

mood=subjunctive
présent impératif Y perf=- tense=pres

inf=- part=-
mood=imperative

présent conditionnel C perf=- tense=pres
inf=- part=-

mood=cond
infinitif présent W perf=- part=-

inf=+ tense=pres
participe présent G perf=- part=+

inf=+ tense=pres

Table 3.4: Simple verb morphological macros for translating combinations of morphologi-
cal encodings.

that the passive voice is not possible here.

Subcase 1iv is annotated by Algorithm 2 and subcase 1v, by Algorithm 3.

3.3.3.2 Case 2

Case 2 describes the verb complex that is fully given in the VN phrase and that does not in-

volve any coordination, as illustrated in Figure 3.13. Note that for the case where COORD-

VNfinite/COORD-VNpart/COORD-VNinf does not have any V sister (Figure 3.12), each

VN conjunct branch is annotated individually according to Subcases 2i through 2iv.
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TRADITIONAL MORPHOLOGICAL ANNOTATION
TENSE NAME ENCODING
passé composé P K perf=+ tense=pres

inf=- part=-
mood=indicative

passé surcomposé P K K perf=+ mood=indicative
indicatif inf=- tense=pres

superperf=+ part=-
plus-que-parfait I K perf=+ tense=past

indicatif inf=- part=-
mood=indicative

passé antérieur J K perf=+ tense=passesimple
inf=- part=-

mood=indicative
futur antérieur F K perf=+ tense=fut

inf=- part=-
mood=indicative

passé subjonctif S K perf=+ tense=pres
inf=- part=-

mood=subjunctive
plus-que-parfait T K perf=+ tense=pres

subjonctif inf=- part=-
mood=subjunctive

passé impératif Y K perf=+ tense=pres
inf=- part=-

mood=imperative
passé conditionnel C K perf=+ tense=pres

1re forme inf=- part=-
mood=cond

passé conditionnel T K perf=+ tense=past
2e forme inf=- part=-

mood=cond
infinitif passé W K perf=+ tense=past

inf=+ part=-
participe passé G K perf=+ tense=past

inf=+ part=+

Table 3.5: Compound verb morphological macros for translating combinations of morpho-
logical encodings.

If there is only one V daughter of VNfinite (Subcase 2i), then annotation is carried out

using Algorithm 4.

Subcases 2ii, 2iii, and 2iv use respectively Algorithms 1, 2 and 3, which is also straight-

forward.
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Figure 3.8: Template for Subcase 1ii verb complex annotations.
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Figure 3.9: Template for Subcase 1iii verb complex annotations.
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Figure 3.10: Template for Subcase 1iv verb complex annotations.

73



eeeeeeeeeeeeeeeeeee

YYYYYYYYYYYYYYYYYYY

V
N

fin
ite
↑=
↓

eeeeeeeeeeeeeeeeeee

YYYYYYYYYYYYYYYYYYY
V

Pi
nf

-O
B

J-
cm

p
↑=
↓

V
fin

ite
v 1

↑t
e
n
s
e
=
t

↑m
o
o
d
=
m

↑f
a
c
t
i
v
e
=

+
↑i
n
f
=
−

↑p
a
r
t
=
−

↑p
e
r
f
=

+
↑s
u
p
e
r
p
e
r
f
=

+

V
in

f
v 2

↑p
a
s
s
i
v
e
=

+

V
in

f
v 3

C
O

O
R

D
-V

Pi
nf
↑=
↓

hhhhhhhhhhhhh

VVVVVVVVVVVVV

[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[

V
Pi

nf
-c

m
p
↓∈
↑c
o
o
r
d

MMMMMMM

qqqqqqq
C

C
↑c
o
o
r
d
f
o
r
m
=
c

V
Pi

nf
-c

m
p
↓∈
↑c
o
o
r
d

MMMMMMM

qqqqqqq

V
N

in
f
↑=
↓

...
V

N
in

f
↑=
↓

...

V
in

f
↑p
r
e
d
=
v 4

V
in

f
↑p
r
e
d
=
v 5

Figure 3.11: Template for Subcase 1v verb complex annotations.

74



VNfinite/VNpart/VNinf
↑=↓

COORD-VNfinite/COORD-VNpart/COORD-VNinf
↑=↓

ddddddddddddddddddd
ZZZZZZZZZZZZZZZZZZZ

VNfinite/VNpart/VNinf
↓∈↑ coord

CC
↑ coordform =c

VNfinite/VNpart/VNinf
↓∈↑ coord

Figure 3.12: A possible context for Subcases 2i-2iv.

Algorithm 4 Decision-tree algorithm for single V verb combinatorics.
↑factive= −, ↑passive= −, translate([mph1])

3.3.3.3 Case 3

Case 3 covers those verbal configurations where VN has at least one V daughter as well as

a COORD-VNpart/COORD-VNinf daughter; this is the case of coordination among verbal

components (similar to Case 1). Cases 3i, 3ii and 3iii are annotated using Algorithms 1, 2,

and 3, respectively.

3.3.3.4 Case 4

Case 3 describes annotation of those verb configurations that involve predicate coordina-

tion; it is the complement to Cases 1 and 2. The contexts of this case are

(4i) either VNpart(VNinf ) is a daughter of VPpart-cmp(VPinf-cmp), or

(4ii) VNpart (VNinf ) is a daughter of COORD-VNpart (COORD-VNinf ), in a VNfinite

phrase

The annotation of these cases are simple. Only predicate information is annotated as

shown in Figures 3.7, 3.8, 3.9, 3.10, 3.10, 3.14, 3.15, and 3.16.
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Figure 3.13: Template for Subcases 2i (top left), 2ii (top right), 2iii (bottom right), 2iv
(bottom left) verb complex annotations.
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VNfinite/VNpart/VNinf
↑=↓

ddddddddddddddddddd
ZZZZZZZZZZZZZZZZZZZ

Vfinite/Vpart/Vinf
(↑aux select= v1)
↑tense= t

↑mood= m

↑factive= +/−
↑inf= +/−
↑part= +/−
↑perf= +/−
↑superperf= −
↑passive= +/−

COORD-VNpart/COORD-VNinf
↑=↓

ddddddddddddddddddd
ZZZZZZZZZZZZZZZZZZZ

VNpart/VNinf
↓∈↑ coord

CC
↑ coordform =c

VNpart/VNinf
↓∈↑ coord

Vpart/Vinf
↑pred= v2

Vpart/Vinf
↑pred= v3

Figure 3.14: Template for Subcase 3i verb complex annotations (2 V combination).

3.3.4 Left-Right Context Annotation Module

Like the annotation algorithm for English (Cahill et al., 2004), the annotation algorithm for

French also (but to a considerably lesser extent) makes use of a Left-Right Context Anno-

tation Module. The module proceeds by first determining the head of a constituent with

respect to head-finding rules provided by the author (see Appendix C), then by consulting

annotation tables developed through the analysis of the most frequent rule types in the cor-

pus, covering at least 85% of the respective token instances. The table encodes information

on how to annotate CFG node types to the left or right of the constituent head. This is

combined with the simple rule that any argument annotation may only be used once and

therefore is assigned to the first applicable phrasal tag found. Such annotation principles

support easy maintenance and development of this basic annotation module. Table 3.6 gives

a simplified annotation table for PP rules.

left context head right context
*:↓∈↑adjunct P:↑=↓ NP, Sint, AdP, AP: ↓=↑obj

*:↓∈↑adjunct

Table 3.6: Simplified annotation table for PP rules.
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Figure 3.15: Template for Subcase 3ii verb complex annotations (3 V combination).

3.3.5 Catch-All and Clean-Up Module

The catch-all and clean-up module handles any special annotation that was not covered ear-

lier, and repairs predictable errors resulting from overgeneralisation in earlier components

of the annotation algorithm. For now, just the statement type (declarative, interrogative,
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Figure 3.16: Template for Subcase 3iii verb complex annotations (4 V combination).

etc.) of the sentence is annotated in this module.
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3.3.6 Coordination Distribution

Within the framework of LFG, coordinate phrases in coordination are generated by a pro-

duction rule which places them as sisters among the right-hand side of the rule (Dalrymple,

2001). The left-hand side is the type of coordination in question. Moreover, coordination

at the c-structure level is isomorphic to the corresponding representation at the f-structure

level (without considering shared dependencies within control structures or long-distance

dependencies–that is, in proto f-structures or distribution of shared elements into the coordi-

nate phrases). The MFT treatment of coordination is essentially inspired by such analyses;

the following rules illustrate the resulting configurations (where, for the treebank, the func-

tion equations would be annotated by the f-structure annotation algorithm).

COORD-NP −→ NP NP CC NP

↓∈↑coord ↓∈↑coord ↑coordform=p ↓∈↑coord

COORD-NC −→ SINT CC NC

↓∈↑coord ↑coordform=p ↓∈↑coord

For verb phrase or non-constituent coordination, coordinates may share arguments or a

predicate (including the predicates lexical attributes). In such cases, the shared predicate or

arguments are distributed among the coordinates at the f-structure level (Dalrymple, 2001).

Example (4) provides an example of gapping. Figures 3.17 and 3.18 are the f-structure

annotated tree and the f-structure for this example, respectively.14 In this example, the

predicate être (‘to be’) from the first conjunct has been distributed into the other in the

f-structure.

(4) Le
The

premier
first

est
is

collectionneur,
collector,

l’autre
the other

passionné
fascinated

de
of

vieux
old

papiers.
papers.

‘The first is a collector, the other has a passion for historic documents.’15

14See, for example, Hudson (1976); Maxwell and Manning (1996), for discussion of non-constituent coor-
dination such as gapping, argument clustering, and right-node raising.

15Sentence 919, file cflmf7ak2ep.xd.cat.xml of the MFT.
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Figure 3.17: F-structure annotated tree for Example (4) on gapping non-constituent coordi-
nation.

Distribution over coordination must be carried out for verb phrase (shared subject),

predicate, argument-cluster, gapping, and right-node raising types of coordination, and is

accounted for as a post-processing step among equations extracted from f-structure anno-

tated MFT trees. The decision tree heuristics adopted for this process are given in Figure

3.19. Distribution is essential for long-distance dependencies through coordinated struc-
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

coord
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

subj 1

pred ‘premier’

spec

[
det

[
pred ‘le’

]]


pred ‘être’

xcomp

[
pred ‘collectionneur’
subj 1

]




subj 2

pred ‘autre’

spec

[
det

[
pred ‘le’

]]


pred ‘être’

xcomp



pred ‘passionner’
subj 2

adjunct




pred ‘de’

obj

pred ‘papier’

adjunct

{[
pred ‘vieil’

]}







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Figure 3.18: F-structure for Example (4) on gapping non-constituent coordination, with être
distributed into both coordinate f-structure components.

tures, control verb phrases with coordinated structures as verbal arguments (Burke, 2006),

as well as for the extraction of lexical resources (O’Donovan, Cahill, van Genabith and

Way, 2005). Previous versions of automatically acquired LFG parsing resources do not

carry out any distribution over conjuncts and pay the price in performance.16 Moreover, the

MFT contains 3355 cases of coordination; that is, in terms of proportions, well over two

thirds of MFT sentences contain coordination. This makes coordination in the MFT, if not

in French sentences in general, important enough of a phenomenon to consider coordination

distribution as an essential part of the f-structure annotation algorithm.17

16Burke (2006), for example, derives a sort of hack which treats conjunction as a control structure, in at-
tempting to boost recall (but to the detriment of precision).

17For the reader’s information, I include a table of counts of types of coordination in the whole MFT below.
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In Section 3.5, I present the evaluation of the annotation algorithm with and without this

post-processing step. It turns out that distributing over coordination leads to statistically

significant improvements on the performance of the annotation algorithm.

COORD f-structure has no 
predicate sister?

COORD f-structure has 
distributable sister?

Some conjunct has a 
predicate?

no

yes

Right-node raising, predicate, verb phrase 
coordination:

action: distribute predicate and 
 subject into conjuncts

yes

no

Argument cluster coordination:
action: distribute distributable 

features and predicate into 
conjuncts 

no

Some conjunct has no 
predicate?

yes

Conjunct with predicate has 
subject?

Gapping coordination:
action: distribute predicate of one 

conjunct into the rest of the conjuncts.

yes

no

no

yes

Normal coordination

Figure 3.19: Decision tree heuristics and actions for distribution over coordination.

coordination type count
NP 1183
VP 186

VPinf 118
VPpart 66

AP 261
PP 641

Ssub 56
UC 138
Sint 225

unary 320
NC 87

VN inf 13
VN part 8

VN finite 7
Srel 31
AdP 15
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3.3.7 Other New Linguistic Annotations

Though linguistic analyses for the French annotation algorithm are very similar to those

for English, there are some exceptions. One exception involves the direct translation of

the new analyses for cleft constructions outlined in Section 2.3.2. Other exceptions involve

including positional information for some AP modifiers and the treatment of clitic-doubling,

which differs from that adopted for the Spanish annotation algorithm (Chrupała and van

Genabith, 2006a).

3.3.7.1 Modifier Positional Information

French is commonly known to have adjectival modification of noun phrases which either

follows or precedes the head noun (phrase). However, there are some adjectives which

require the prenominal position, and some that require the postnominal position. The fol-

lowing examples, taken from (Frank and Berman, 1996) illustrate the point.

(5) le
the

soin
care

paternel
fatherly

‘fatherly care’

(6) un
a

petit
little

garon
boy

‘a little boy’

Positional information would be very important to obtain good results in generation. There-

fore, following the suggestion of Frank and Berman (1996), I record this positional infor-

mation through the POS attribute at the f-structure level, which may take either of the values

pre or post.

3.3.7.2 Clitic-Doubling in French

In French, argument constituent daughters of the sentence kernel may be topicalised, “dis-

locating” them to the sentence initial position and marking their syntactic role by a (coin-

dexed) pronoun. The effect is to put emphasis on the topicalised phrase, which, in English,
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would normally be signalled via stressed prosody (Mel’čuk, 2001). In essence, these pro-

nouns co-occur with semantically full phrases. For this reason, this phenomenon is called

clitic-doubling. The following sentences, taken from Frank and Berman (1996), illustrate

clitic doubling in a tensed phrase, an infinitival phrase, and a noun phrase.

(7) Que
That

l’industrie
the industry

fasse
makes

des
some

progrès,
progress,

cela
that

agace
annoys

le Japon.
Japan.

’It annoys Japan that the indrustry is going better.’

(8) Réussir,
Succeed,

cela
that

ne suffit
suffices

pas.
not.

‘It is not sufficient to [just] succeed.’

(9) Le Japon,
Japan,

il
he

est
is

en
in

avance.
advance.

‘Japan is ahead.’

Clitic-doubling in French seems to differ from that of, for example, Spanish, where there

are strong relations with the pro-drop phenomenon. Therefore, whereas in my analysis I

simply annotate such dislocated phrases as topics, assigning the pronouns or clitics the non-

communicative syntactic annotation (illustrated in Figure 3.20), Chrupała and van Genabith

(2006a) adopt an analysis based on optional annotations, assigning both constituents the

non-communicative syntactic annotation where the clitic annotation is disregarded if the

other constituent is realised.

SENT

ccccccccccccccccccccccccc

[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[

NP-SUJ ↑topic=↓

qqqqqqq
MMMMMMM VNfinite-SUJ ↑=↓

qqqqqqq
VVVVVVVVVVVVV AdP-ATS ↑xcomp=↓

qqqqqqq
MMMMMMM

Le Japon
Japan

CL-SUJ ↑subj=↓

qqqqqqq
MMMMMMM Vfinite ↑=↓

qqqqqqq
MMMMMMM en avance

in advance

il
he

est
is

Figure 3.20: Basic Annotated C-structure for Example (9)
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with coordination distribution without coordination distribution
features precision recall f-score precision recall f-score

all 99.42 99.80 99.61 99.10 96.48 97.78
preds only 99.50 99.77 99.63 98.57 96.38 97.47

Table 3.7: Evaluation of the French annotation algorithm against the MFTDB.

3.4 The MFT Dependency Bank

In order to evaluate the quality and coverage of the f-structure annotation algorithm, a gold

standard f-structure (i.e., dependency) bank is required. The MFT was divided into three

sets of trees as follows: training set (3800 sentences), development set (509 sentences), and

test set (430 sentences). The annotation algorithm was applied to the test set. Functional

equations were extracted and sent to a constraint solver to verify consistency (and, there-

fore, producing the f-structures). All consistent f-structures from the test set were then hand

verified and corrected, if necessary, twice by the author. As much of the annotation algo-

rithm is basically LFG conversion software, the hand correction was straightforward. The

resulting hand-corrected f-structures were then compiled into dependency triples following

Crouch et al. (2002). The result of this work is the MFT Dependency Bank (MFTDB).

3.5 Evaluation

The f-structure annotation algorithm is measured for coverage (i.e., all output sets of equa-

tions are consistent and the corresponding f-structures are connected) and accuracy. The

f-structure annotation algorithm described here achieves 98.40% coverage on the training

set. Table 3.7 gives the scores for the algorithm, evaluated against the MFTDB, both with

coordination distribution post-processing and without.

The f-structure annotation algorithm achieves a high f-score of 99.61, with an equally

high preds-only (f-structures with only paths ending in a predicate value) f-score of 99.63.

This is the highest f-score for an f-structure annotation algorithm to date (Cahill and van

Genabith, 2006a; Chrupała and van Genabith, 2006a; Guo, van Genabith and Wang, 2007;
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Rehbein and van Genabith, 2009; Oya and van Genabith, 2007; Tounsi et al., 2009a). More-

over, there is a drop in performance when the coordination distribution post-processing step

is not carried out. In particular, recall drops by more than 3.3% for both preds-only and full

f-structures. This is clearly a statistically significant difference in recall (p-value< 2.2E-16

for both), perhaps partially explaining the high score of this annotation algorithm compared

to previous models as well as demonstrating the importance of coordination in the MFT.

3.6 Concluding Remarks

The objectives of this chapter have been twofold. First I described the f-structure anno-

tation algorithm for French, used to automatically obtain a treebank with deep grammar

annotations, along with a post-processing module over extracted equations for coordina-

tion distribution. I have also presented the MFTDB, a new gold standard within the LFG

framework, for dependency based resource development. With the construction of these

two resources, a first major hurdle in the automatic acquisition of LFG parsing and lexical

resources for French is overcome. Moreover, the availability of a dependency gold stan-

dard for French now provides a much needed benchmark for comparison among different

grammar engineering frameworks and methods.
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Chapter 4

Parsing into F-structure Annotated

C-structures

4.1 Introduction

This chapter presents the application of the treebank- and CFG-based LFG resource acqui-

sition methodologies presented in Chapter 3 to parsing French text.1 I present a number of

changes to the established treebank-based LFG parsing architectures (Cahill et al., 2002a;

Cahill, 2004; Cahill et al., 2008), and show that encouraging parsing results can be obtained

for French, with an overall best dependency structure f-score of 86.73% for all features and

81.35% for preds-only.

I start the presentation with a discussion of the parsing architectures that I am building

upon (Section 4.2)—namely (1) simplified, (2) with a machine learning component, and (3)

with a long-distance dependency resolution component. Following this, the versions of the

MFT on which the experiments are carried out are presented in Section 4.3, as well as the

performance of the f-structure annotation algorithm for French on these treebank versions

and the associated probabilistic parsing results. In Sections 4.4, 4.5, and 4.6, I present the

f-structure dependency results obtained for the various parsing architectures, followed by
1This work was previously published as (Schluter and van Genabith, 2008).
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some concluding remarks in Section 4.7.

4.2 CFG-Based LFG Parsing Architectures Tested for French

In Section 1.2.2.2, I presented the original pipeline and integrated treebank-based CFG

parsing architectures (see especially Figure 1.2). I also briefly presented Chrupała and van

Genabith (2006a)’s addition to this original pipeline parsing architecture by means of a sep-

arate machine learning component for recovering treebank function tags after parsing trees

with phrase structure tags only (no function tags) (Section 1.2.3). In this chapter, I present

results on French data for these parsing architectures. In addition, I evaluate a further exten-

sion of the pipeline parsing architecture, extending Chrupała and van Genabith (2006a)’s

work: I incorporate a separate machine learning component for f-structure equations as

annotated by the annotation algorithm (See Figure 4.1, in dark grey), rather than treebank

function tags as in the earlier work. It will be of interest to compare this component with

results on pure dependency parsing into LFG f-structures in Chapter 5.

4.2.1 The Simplified Parsing Architectures

Because of the MFT’s completed function tagging where function tag paths encode non-

local dependencies (Section 2.3.5), one can carry out LDD dependency resolution at the

f-structure annotation or parsing stages, without recourse to a separate LDD resolution com-

ponent as in the earlier work of Cahill et al. (2004). This is what I will call the simplified

parsing architecture, as depicted in Figure 4.1, on the bottom, bypassing the separate LDD

Resolution step (Section 4.4).

4.3 Generating Different Versions of the MFT: Clitic Constituents

and MFT Function Labels

In general, the adaption of the original approach to treebank-based LFG grammar acqui-

sition (for English data and Penn-II style representations) to other languages is based on
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Figure 4.1: Overview of CFG treebank-based LFG parsing architectures for French. Paths
including dark grey segments involve parsing architectures introduced here.

both linguistic and data-structure specific considerations. In terms of data-structure specific

considerations, several important differences between MFT data structures and Penn-II data

structures (on which the original technology is based) require special attention. This con-

cerns the absence of empty nodes and coindexation in the MFT, as well as the lexicalised

treatment of some personal pronouns (clitic pronouns).

In this section, I introduce the different versions of the MFT (and grammars extended

from these and in some cases further processed by the f-structure annotation algorithm or

the SVM-based treebank function tag or f-structure annotation labeler) used in my CFG-

based parsing experiments, summarised in Table 4.1:

• The versions MFT-norm, MFT-fct, and MFT-comm (numbers 1-3 in the table) will
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be explained in Sections 4.3.1 and 4.3.2.

• For the prefix A- and X ∈ {MFT-fct, MFT-comm, SVM-MFT-fct, SVM-MFT-

comm}, A-X denotes the output of the annotation algorithm with input X .

• For the prefix SVM- and Y ∈ {MFT-fct, MFT-comm, A-MFT-fct, A-MFT-comm},

SVM-Y denotes the approximation of Y by the Support Vector Machine classifier.

reference version explanation
number

1 MFT-norm MFT without any functional information
2 MFT-fct MFT with functional information (including

LDD function paths)
3 MFT-comm MFT without LDD function paths, but with

derived communicative function tags
4 A-MFT-fct output of f-structure annotation algorithm

with input MFT-fct
5 A-MFT-comm A-MFT-fct stripped of long-distance depen-

dencies
6 SVM-MFT-fct SVM approximation of MFT-fct:

SVM labeling of function tags from MFT-fct
onto MFT-norm

7 SVM-MFT-comm SVM approximation of MFT-comm:
SVM labeling of function tags from MFT-
comm onto MFT-norm

8 SVM-A-MFT-fct SVM approximation of A-MFT-fct:
SVM labeling of f-structure annotation from
A-MFT-fct onto MFT-norm

9 SVM-A-MFT-comm SVM approximation of A-MFT-comm:
SVM labeling of f-structure annotation from
A-MFT-comm onto MFT-norm

10 A-SVM-MFT-fct output of annotation algorithm with input
SVM-MFT-fct

11 A-SVM-MFT-comm output of annotation algorithm with input
SVM-MFT-comm

Table 4.1: Generated versions of the MFT.
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4.3.1 Deriving MFT-norm and MFT-fct

Similar to the preprocessing step before application of the f-structure annotation algorithm

for French to the MFT, for my parsing experiments for both the pipeline and integrated

architectures, I have enclosed clitics in their own constituents and propagated the function

labels down to this level from VN. The CLP transformed version of the MFT without func-

tion labels will be denoted by MFT-norm, and with function labels, by MFT-fct.

4.3.2 Deriving MFT-comm

Unlike the Penn-II treebank, the MFT does not have any communicative function anno-

tation such as TOPIC or FOCUS. Rather, whenever local c-structural constituents are not

locally dependent on the constituent head, there is a function path annotation indicating

where this dependency is resolved (see Section 2.3.5). Therefore, I generated a complemen-

tary version of the treebank to implement the existing treebank-based LFG architectures for

other languages for comparison–this version of the treebank has no function path tags cor-

responding to communicative LFG functions, instead introducing communicative function

tags.2,3 This is carried out automatically, using the automatically (f-structure) annotated

version of the treebank: since the f-structure annotation algorithm introduces communica-

tive f-structure equations, I project this communicative annotation onto the MFT, replacing

most path function tags (and some simple function tags) in the MFT’s function tag set.4

Figure 4.2 shows the representation in MFT-comm of Example (2) (Figure 2.2): SUJ.MOD

is replaced by TOPICREL. The MFT-fct with communicative function annotation will be

denoted by MFT-comm.
2These experiments are in addition to the simplified parsing architectures introduced in Section 4.2.1.
3Note that introduced communicative function tags will not only replace function path tags; they can also

replace simple function tags.
4Not all path function tags can be replaced, as they are not all communicative. This is specific to French.

See Section 4.7 for some discussion on this.
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that finds itself trappedl’
the

URSS
USSR

Figure 4.2: MFT-comm representation for Example (2) (Figure 2.2).

4.3.3 Performance of the F-Structure Annotation Algorithm on MFT-fct and

MFT-comm

The f-structure annotation algorithm was adjusted to also take MFT-comm as input. Ta-

ble 4.2 provides evaluation results using gold treebank trees. Tables 4.2 and 3.7 (which

measures the performance of the annotation algorithm on MFT-fct) show that without ac-

counting for LDDs (as in MFT-comm in Table 4.2), the f-structure annotation algorithm’s

performance is not optimal: scores decrease by 3-4% from Table 3.7 to Table 4.2.

coordination distribution features precision recall f-score
no all 99.26 89.29 94.02

preds only 98.58 90.33 94.28
yes all 99.54 91.60 95.41

preds only 99.35 92.85 95.99

Table 4.2: Performance of the f-structure annotation algorithm on MFT-comm.

4.3.4 CFG Parsing Results for MFT-norm, MFT-fct and MFT-comm

PARSEVAL parsing results for the MFT-norm, the MFT-fct, and the MFT-comm, are re-

ported in Table 4.3.5 Notice in particular that Bikel’s parser outperforms BitPar on all
5Table 4.4 gives the parsing results for MFT-norm shown in Table 4.3, but collapsing CLP at evaluation.

In both these tables, parsing scores for BitPar of MFT-norm are slightly higher than those of MFT (Compare
especially Tables 4.4 and 2.7). This is in support of the findings of Kűbler (2005); Maier (2006); Kűbler and
Prokic (2006), which give empirical proof that the omission of unary nodes is detrimental to parsing results.
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treebank versions. However, the divergence between precision and recall is always much

greater for Bikel’s parser than for BitPar; the difference between precision and recall for Bit-

Par is consistently close to 1%, whereas for Bikel, it fluctuates from 2.2-4.05%. Moreover,

with respect to the treebank versions, the difference in f-score is smaller between BitPar

and Bikel’s parser performances on MFT-fct (2.98) and MFT-comm (2.59) compared to

MFT-norm (7.39). The quality of these parsed c-structures will be put into question in light

of the results on the derived f-structures in Section 4.4.

treebank version parser precision recall f-score
MFT-norm BitPar 77.6 78.25 77.92

Bikel 84.21 86.41 85.31
MFT-fct BitPar 68.84 69.96 69.39

Bikel 70.45 74.40 72.37
MFT-comm BitPar 69.33 70.41 69.87

Bikel 70.49 74.54 72.46

Table 4.3: PARSEVAL parsing results for three derived MFT versions.

treebank version parser precision recall f-score
MFT-norm BitPar 77.67 78.40 78.03

(pruning CLP) Bikel 83.73 86.00 84.85

Table 4.4: PARSEVAL parsing results for MFT-norm, collapsing CLP at evaluation.

For both parsers, as expected, MFT-norm produces the best parse results; MFT-fct pro-

duces the worst parse results, as it provides the sparsest information (due to the inflation of

its functionally annotated phrasal category set). Since MFT-comm results are slightly better

than those for MFT-fct, it is worth looking into the original approach to LDD resolution for

French.

4.4 Simplified Parsing into F-Structures and Proto F-Structures

Deep grammar parsing experiments, for the MFT-fct, A-MFT-fct, MFT-comm, and A-MFT-

comm by the two simplified pipeline and integrated architectures were carried out and the
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extracted f-structures evaluated. The results are presented in Tables 4.5 through 4.9.

Similar differences in CFG parsing results as observed in Table 4.3 are also observable

in Table 4.5; that is, A-MFT-comm parses slightly better with both parsers, than A-MFT-

fct. However, a separate LDD resolution component would need to work very well, to

build on these differences to translate the highter CFG parsing scores for A-MFT-comm

into corresponding higher dependency scores for the resulting f-structures; I look into this

in Section 4.6.

treebank version parser precision recall f-score
A-MFT-fct BitPar 71.18 72.54 71.85

Bikel 73.71 75.90 74.79
A-MFT-comm BitPar 71.47 72.83 72.15

Bikel 74.25 76.38 75.30

Table 4.5: PARSEVAL results for simplified integrated parsing architecture.

coord dist features parser precision recall f-score
no all BitPar 89.61 80.92 85.04

all Bikel 91.63 68.20 78.20
preds only BitPar 78.93 72.24 75.44
preds only Bikel 82.16 61.99 70.66

yes all BitPar 89.25 79.39 84.04
all Bikel 91.27 67.82 77.82

preds only BitPar 79.10 71.22 74.96
preds only Bikel 82.37 61.82 70.63

Table 4.6: MFT-fct pipeline simplified architecture f-structure triples evaluation.

Comparing Tables 4.6 with 4.8 and 4.7 with 4.9, three important observations can be

made. Firstly, the pipeline architecture consistently outperforms the integrated architec-

ture. Secondly, though Bikel’s parser outperformed BitPar in terms of c-structure labeled

bracketing scores (Tables 4.3, 4.4, 2.7), BitPar output seems to better preserve dependency

relations between lemmata: the results show that f-structures extracted from BitPar parse

trees are generally of better quality under either parsing architecture. Finally, I observe that

coordination distribution post-processing almost never entails a boost in scores for parser
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coord dist features parser precision recall f-score
no all BitPar 91.12 75.51 82.58

all Bikel 91.10 66.04 76.92
preds only BitPar 80.21 68.39 73.83
preds only Bikel 82.49 60.53 69.83

yes all BitPar 90.67 74.03 81.51
all Bikel 91.84 65.53 76.48

preds only BitPar 80.27 67.40 73.27
preds only Bikel 82.68 60.25 69.71

Table 4.7: MFT-comm pipeline simplified architecture f-structure triples evaluation.

coord dist features parser precision recall f-score
no all BitPar 89.89 64.57 75.15

all Bikel 89.12 47.63 62.08
preds only BitPar 78.71 58.35 67.02
preds only Bikel 77.39 42.51 54.87

yes all BitPar 89.39 64.59 74.99
all Bikel 88.55 47.21 61.59

preds only BitPar 78.81 58.62 67.23
preds only Bikel 77.42 42.25 54.67

Table 4.8: A-MFT-fct integrated simplified architecture f-structure triples evaluation.

coord dist features parser precision recall f-score
no all BitPar 90.45 61.93 73.52

all Bikel 89.52 46.93 61.58
preds only BitPar 78.94 56.80 66.07
preds only Bikel 77.74 42.49 54.94

yes all BitPar 90.00 61.84 73.31
all Bikel 88.91 46.67 61.21

preds only BitPar 79.08 56.99 66.24
preds only Bikel 77.58 42.37 54.81

Table 4.9: A-MFT-comm integrated simplified architecture triples evaluation.

output extracted f-structures.6 This is probably due to the difficulty in obtaining good pars-

ing results for coordinate structures in the first place, which may be compounded by the

“explosion” of phrasal category tag set in some of the MFT versions. Indeed there are 42
6The only case is under the integrated architecture (for both MFT-fct and MFT-comm) using the preds only

metric.
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different constituent tags paired with up to 27 different function tags in MFT-fct for the

parser to recognise (Table 4.8).

Among the results presented for the integrated parsing architecture in this chapter, the

highest LFG all-features f-score of 75.15 is achieved by BitPar (Table 4.8), under the sim-

plified integrated parsing, without coordination distribution.

4.5 Using Generic Machine Learning Techniques for Annota-

tion

In the previous section we saw that higher PARSEVAL labeled bracketing scores did not

necessarily correspond to better f-structures. The question remained, however, as to whether

an explosion of the treebank phrasal category tag set was at fault. In the pipeline architec-

ture one must train parsers on the regular MFT phrasal tag set with function labels (either

MFT-fct or MFT-comm) and in the integrated architecture, parsers are trained on f-structure

annotated MFT-norm trees (i.e., A-MFT-fct or A-MFT-comm).

Moreover, general results could perhaps be boosted if one can use parse trees from

MFT-norm that were found to have a c-structure f-score of over 10% higher than the anno-

tated treebank version parse trees.

Chrupała and van Genabith (2006b) introduced an approach to side-stepping this tag

set explosion, enlisting machine learning of function tag information as provided by the

Spanish CAST3LB treebank; this is a sort of approximation of the original pipeline parsing

architecture. Several algorithms were tested, with the Support Vector Machine (SVM)

classifier performing best. I therefore applied this method to the French data. In addition,

I investigated the application of this method to directly learning f-structure equations from

f-structure annotated MFT trees (rather than MFT function tags), as an approximation of

the original integrated parsing architecture (see Figure 4.1).

As in Chrupała and van Genabith (2006b), I use Chang and Lin (2001)’s implementation
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of SVM; I also use exactly the same feature information.7 Before applying the methods on

probabilistic parser output, I present an evaluation on gold trees.

4.5.1 Evaluation of the SVM Approximation Architectures on Gold Trees

Table 4.10 gives the accuracy of the SVM classifier on gold trees. Observe that there

is no difference in performance of the classifier between SVM-MFT-fct and SVM-MFT-

comm (where the SVM learns MFT function tag labels), and only a small difference in per-

formance between SVM-A-MFT-fct and SVM-A-MFT-comm (+0.13%) (where the SVM

learns f-structure annotations).

treebank version accuracy
SVM-MFT-fct 96.73

SVM-MFT-comm 96.73
SVM-A-MFT-fct 96.68

SVM-A-MFT-comm 96.81

Table 4.10: Accuracy of the SVM classifier on gold trees.

Table 4.11 gives the PARSEVAL results on precision of the SVM classifier on gold

trees (all instances are given to the classifier, so precision, recall, and therefore f-score are

identical). Observe that once again there are very similar scores, with the classifier on

SVM-A-MFT-comm performing slightly better than the others.
7The feature information used is the following:

1. Node features:

(a) position relative to the constituent head

(b) tag

(c) definiteness

(d) head lemma of the constituent

2. Local features:

(a) parent constituent category

(b) head lemma of the verb

3. Context features:

(a) node features of the two previous and the following two nodes

(Chrupała and van Genabith, 2006b)
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treebank version precision
SVM-MFT-fct 96.61

SVM-MFT-comm 96.56
SVM-A-MFT-fct 96.52

SVM-A-MFT-comm 96.67

Table 4.11: PARSEVAL f-score precision for the SVM approximations on gold trees.

I ran the f-structure annotation algorithm on the gold trees from SVM-MFT-fct and

SVM-MFT-comm, resulting in A-SVM-MFT-fct and A-SVM-MFT-comm. The f-structure

equations were then extracted from A-SVM-MFT-fct and A-SVM-MFT-comm for the pipeline

approximations, SVM-A-MFT-fct, and SVM-A-MFT-comm for the integrated approxima-

tions, and the triples evaluation of the resulting f-structures is given in Table 4.12. On just

the gold trees, we see that already the pipeline approximation outperforms the integrated

approximation by more than 10% in f-score. The question remains as to whether this dif-

ference still holds and also, whether it is equally pronounced for parser output.

treebank version coord dist features precision recall f-score
A-SVM-MFT-fct no all 97.85 87.04 92.13

preds only 96.17 86.28 90.96
yes all 97.88 88.89 93.17

preds only 96.63 88.28 92.26
A-SVM-MFT-comm no all 97.76 83.43 90.03

preds only 95.81 83.44 89.20
yes all 97.87 85.24 91.12

preds only 96.36 85.43 90.57
SVM-A-MFT-fct no all 96.86 69.73 81.08

preds only 95.13 69.00 79.99
yes all 97.06 71.62 82.42

preds only 95.72 70.89 91.45
SVM-A-MFT-comm no all 97.54 66.22 78.89

preds only 95.57 66.31 78.30
yes all 97.66 67.24 79.65

preds only 95.99 67.44 79.22

Table 4.12: Triples evaluation for f-structures derived from SVM approximations on gold
trees
.
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4.5.2 Evaluation of the SVM Approximation Architectures on Parser Output

The PARSEVAL evaluation results for the SVM approximations of MFT-fct (SVM-MFT-

fct) and A-MFT-fct (SVM-A-MFT-fct) on parser output are presented in Table 4.13. The

results show that Bikel’s parser outperforms BitPar consistently, by more than 5%. Triples

evaluation, however, will show much closer scores for the two parsers.

treebank version parser precision recall f-score
SVM-MFT-fct BitPar 71.50 72.10 71.80

Bikel 79.00 81.08 80.03
SVM-MFT-comm BitPar 71.40 72.10 71.80

Bikel 78.91 81.00 79.94
SVM-A-MFT-fct BitPar 74.55 75.17 74.86

Bikel 79.73 81.83 80.77
SVM-A-MFT-comm BitPar 74.54 75.15 74.84

Bikel 79.82 81.92 80.86

Table 4.13: PARSEVAL results for the SVM approximations on parser output trees.

By comparison to the results for the simplified architecture, for triples evaluation of the

f-structures (Tables 4.14 to 4.17), observe that while BitPar makes modest gains in f-score

(around +2.5%) in the pipeline approximation, f-structure quality actually decreases in the

approximation of the integrated architecture. On the other hand, Bikel’s parser remarkably

gains over 5-7% in f-score for both parsing architectures. Interestingly, this suggests that

BitPar is less influenced by larger constituent tag sets than Bikel’s parser.

Also, the pipeline approximation outperforms the integrated approximation. Two pos-

sible explanations for this discrepancy are immediately evident. Firstly, the MFT-fct has

manual (and therefore, probably, better quality) function tag annotation, to be learned by

the SVM method. Moreover, there are much fewer function tags to be learned compared to

f-structure annotations (27 function tag types as opposed to 69 f-structure annotation types),

which makes learning f-structure equations the harder of the two tasks.

Observe also that the coordination distribution post-processing is only beneficial to

Bikel’s parser output under both approximation architectures. This suggests that Bikel’s

parser is better able to recognise coordinate structures than BitPar on MFT-norm trees.
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coord dist features parser precision recall f-score
no all BitPar 91.38 81.21 85.99

all Bikel 94.42 79.62 86.39
preds only BitPar 82.89 74.37 78.41
preds only Bikel 87.99 74.92 80.93

yes all BitPar 90.86 79.77 84.95
all Bikel 94.01 80.30 86.61

preds only BitPar 83.00 73.27 77.84
preds only Bikel 87.98 75.65 81.35

Table 4.14: LFG triples evaluation of the SVM approximation of the pipeline architecture
performance on MFT-fct.

coord dist features parser precision recall f-score
no all BitPar 91.97 58.59 71.58

all Bikel 93.26 57.61 71.22
preds only BitPar 83.65 54.32 65.87
preds only Bikel 87.20 54.14 66.80

yes all BitPar 91.56 57.26 70.46
all Bikel 93.09 58.96 72.20

preds only BitPar 83.87 53.16 65.08
preds only Bikel 87.51 55.45 67.88

Table 4.15: LFG triples evaluation of the SVM approximation of the integrated architecture
performance on MFT-fct.

coord dist features parser precision recall f-score
no all BitPar 91.47 79.26 84.93

all Bikel 94.22 77.46 85.02
preds only BitPar 82.56 73.10 77.54
preds only Bikel 87.51 73.43 79.85

yes all BitPar 90.95 77.97 83.96
all Bikel 93.96 78.15 85.33

preds only BitPar 82.52 72.1 76.96
preds only Bikel 87.61 74.19 80.35

Table 4.16: Triples evaluation of the SVM approximation of the pipeline architecture per-
formance on MFT-comm (SVM-MFT-comm).

Using the SVM classifier for approximations of the pipeline and integrated parsing

architectures, I achieve the highest predicates only f-scores for results in this chapter:

101



coord dist features parser precision recall f-score
no all BitPar 92.32 56.46 70.07

all Bikel 93.65 56.72 70.65
preds only BitPar 83.62 52.83 64.75
preds only Bikel 87.15 53.75 66.49

yes all BitPar 92.01 55.38 69.15
all Bikel 93.41 57.22 70.96

preds only BitPar 83.78 51.87 64.08
preds only Bikel 87.22 54.32 66.95

Table 4.17: Triples evaluation of the SVM approximation of the integrated architecture
performance on MFT-comm (SVM-A-MFT-comm).

1. For the pipeline architecture (approximation), the highest predicates only f-score of

81.35 is achieved, using Bikel’s parser and coordination distribution (Table 4.14).

2. For the integrated architecture (approximation), the highest predicates only f-score of

67.88 is achieved, using Bikel’s parser and coordination distribution (Table 4.15).

4.6 Long-Distance Dependency Resolution

In this section, following a brief presentation of LDDs in LFG (Section 4.6.1), I discuss

experiments when LDD resolution is a separate component—that is, with MFT-comm as

the base treebank version.

4.6.1 Long-Distance Dependency in LFG

There are several types of grammatical features that may appear in f-structures. Of excep-

tional value are the communicative attributes topic, focus, and topic-rel, which

represent the communicative organisation of a given phrase. I will call those f-structures

that are the values of these communicative attributes, communicative f-structures. Long-

distance dependencies in LFG are those non-local f-structural dependencies between non-

communicative f-structures and their re-entrancies as communicative f-structures. There-

fore, under this linguistic framework, long-distance dependencies are resolved at the f-
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structural level of representation and not in c-structures. In standard LFG, this is carried out

by means of function uncertainty equations (FUs) (Kaplan and Zaenen, 1989).

FUs are regular expressions which denote the set of proposed possible paths in an

f-structure between a source communicative f-structure and a target non-communicative

f-structure. For example, the equation ↑topic=↑comp+comp reflects the fact that a

topic f-structure may be resolved with a comp f-structure along some non-null path

of comp attributes. Among the paths, the only possible ones are those that maintain the

principles of completeness and coherence in LFG with regards to f-structures. That is, the

target’s local predicate must subcategorise for the argument in question, and this argument

must not already be filled.

4.6.2 Long-Distance Dependency Resolution for Treebank-Based LFG Pars-

ing Resources and its Application to French

A technique for the automatic resolution of long-distance dependencies, based on learning

finite approximations of FUs from f-structure annotated treebank resources in English was

first outlined by Cahill et al. (2004). A finite approximation of an FU is a single path, rather

than a set of possible paths. It is this technique for long-distance dependency resolution

that I test for the French case, with slight adaptations due to the particularities of the MFT

treebank encoding schemes.

In Section 3.3.2, I explained that the MFT has function path tags that are directly trans-

lated into f-structure equations. Moreover, it has no communicative function tags. These are

added in the translation of MFT’s function tags to f-structure equations. So, the f-structures

generated in the previous sections, using MFT-fct or SVM-MFT-fct (for the pipeline archi-

tecture), or A-MFT-fct or SVM-A-MFT-fct (for the integrated architecture), as the treebank

input to the parsers, are in fact full f-structures. No further long distance dependency resolu-

tion is needed. The question remained, however, as to how efficiently the function path tags

or functional uncertainty approximations are being recovered during the parsing or predic-

tion phase. I can test this, by rerunning my experiments on MFT-comm or A-MFT-comm,
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and by separating out LDD resolution.

The technique starts with the MFT-fct version of the MFT. This treebank includes path

function tags that are exploited for simple annotation of long-distance re-entrancies at the

f-structural level. These f-structures are complete f-structures; moreover, they are of high

quality as the f-structure annotation algorithm achieves an f-score that is close to perfect on

gold trees. Subcategorisation information and long-distance dependency paths for each

predicate are extracted from these f-structures from the training section of the original

gold treebank trees and stored with their associated relative frequencies from treebank f-

structures.

As an illustration, an example of subcategorisation information extracted for the verb

assurer ‘to reassure’ (along with relative frequencies), is given in Table 4.18. Observe that

in this approach, ([subj],p) and ([subj]) are considered to be different, where the

p indicates passivity. Also, the possible LDD paths for topic rel extracted from the

MFT are given in Table 4.19 along with their relative frequencies.

relative frequency subcat info
0.5227 ([subj,obj])
0.1364 ([subj,comp])
0.0909 ([subj],p)
0.0455 ([subj])
0.0455 ([subj,obj,de obj])
0.0455 ([subj,obl agt],p)
0.0227 ([obj])
0.0227 ([subj,xcomp],p)
0.0227 ([subj,obj,a obj])
0.0227 ([subj,obj,comp])
0.0227 ([subj,de obj,obl agt],p)

Table 4.18: Subcategorisation information for assurer ‘to reassure’ extracted from the MFT.

Armed with this information the LDD resolution algorithm works for MFT-comm or

A-MFT-comm derived f-structures as follows.

Given an f-structure of type GF ∈ {focus, topic, topic rel}, the possible paths

associated with GF are retrieved. The list of paths is pruned with regards to the principle
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relative frequency path
0.62378303 subj
0.13908206 adjunct
0.12169680 obj
0.05632823 subj:adjunct
0.01738526 de obj
0.01112656 a obj
0.01043115 obj:adjunct
0.00208623 xcomp:obj:adjunct
0.00208623 obl
0.00695410 xcomp
0.00347705 xcomp:obj
0.00208623 xcomp:adjunct
0.00208623 xcomp:de obj

6.954E-4 xcomp:a obj
6.954E-4 xcomp:xcomp

Table 4.19: LDD path information for topic rel extracted from the MFT.

of coherence, to obtain a list of possible paths for GF . Each possible path, p, has a relative

frequency, P (p|GF ). The end (or target) of the path p is in the f-structure of the predicate

l. The principle of completeness requires that the predicate l subcategorise for the target of

p. Therefore, the subcategorisation information for l is retrieved, each instance s associated

with a relative frequency P (s|l). The path with the highest ranking P (p|GF ) × P (s|l) is

the resolution of the long-distance dependency for GF .

The results of this technique are given in Table 4.22. All scores are reported with

coordination distribution. For completion, we also report in Figures 4.20 and 4.21 the

triples evaluation of the technique on gold MFT-comm trees and the SVM approximation

of gold MFT-comm trees.

Observe that the scores for BitPar are all poorer than in the simplified parsing archi-

tecture (on MFT-fct and A-MFT-fct). However, Bikel’s parser in the pipeline architecture

sometimes achieves slight gains from separating the process of LDD resolution. In fact, the

overall highest f-score of 86.73 measures on all features is achieved with the separation of

LDD resolution, using Bikel’s parser under the pipeline approximation.
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features precision recall f-score
all 99.2 95.75 97.44

preds only 99.01 95.77 97.37

Table 4.20: LFG triples evaluation of LDD resolution on MFT-comm gold trees

treebank version features precision recall f-score
A-SVM-MFT-comm all 97.53 88.87 93.00

preds only 96.02 87.90 91.78
SVM-A-MFT-comm all 96.64 69.62 80.94

preds only 95.18 68.88 79.92

Table 4.21: LFG triples evaluation of LDD resolution on SVM approximations on MFT-
comm gold trees

parsing architecture features parser precision recall f-score
pipeline all BitPar 90.44 77.00 83.18

all Bikel 91.67 66.81 77.29
preds only BitPar 80.15 69.21 74.28
preds only Bikel 82.46 60.71 69.93

integrated all BitPar 89.43 64.00 74.61
all Bikel 88.76 47.86 62.18

preds only BitPar 78.72 58.15 66.89
preds only Bikel 77.63 42.84 55.21

SVM all BitPar 90.33 80.82 85.31
pipeline all Bikel 93.62 80.78 86.73

approximation preds only BitPar 82.26 73.89 77.85
preds only Bikel 87.40 75.71 81.13

SVM all BitPar 91.27 57.43 70.50
integrated all Bikel 92.37 58.95 71.97

approximation preds only BitPar 83.31 53.10 64.86
preds only Bikel 86.59 55.17 67.39

Table 4.22: LFG tiples parsing results with separate LDD resolution.

4.7 Concluding Remarks

In this chapter, I have shown that the techniques applied to other languages for treebank-

based grammar acquisition can be successfully adapted to the French case. I introduced

a number of innovations with respect to function labeling (using machine learning tech-
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niques to predict LFG functional equations for tree nodes) and LDD resolution based on

function tag path annotation. I have also acquired evidence that Bikel’s parser is more

sensitive to larger tag sets than BitPar, overcoming this obstacle by means of integrating a

machine learning component for function tag and f-structure annotation. Tables 4.23 and

4.24 present summaries of the best f-scores achieved in the parsing experiments presented

in this chapter.

features parser parsing architecture coord dist score
all Bikel SVM approximation with yes 86.73

separate LDD resolution
preds only Bikel SVM approximation of simplified yes 81.35

Table 4.23: Summary of best results for (the approximation of) the pipeline architecture.

features parser parsing architecture coord dist score
all BitPar simplified no 75.15

preds only Bikel SVM approximation of simplified yes 67.88

Table 4.24: Summary of best results for (the approximation of) the integrated architecture.

An avenue for future work concerns further adaption of the LDD resolution for French.

Indeed, not all path functions in the MFT-fct correspond to communicative local features.

The phenomenon of de-phrase extraction from NPs provides the exception. Future research

on treebank-based grammar acquisition for French should work towards a targeted account

of this phenomenon.
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Chapter 5

Direct Parsing into F-Structure

Dependencies

5.1 Introduction

Research on automatically obtained wide-coverage deep grammars for natural language

processing, given reliable and large CFG-like treebanks, within the Lexical Functional

Grammar framework are typically based on an extended PCFG parsing architecture from

which dependencies are extracted. However, recent developments in statistical dependency

parsing Nivre et al. (2006); McDonald et al. (2005) suggest that such deep grammar ap-

proaches to statistical parsing could be streamlined in terms of a novel approach where

strings are directly parsed into LFG f-structures, effectively obviating the CFG-based pars-

ing step in traditional treebank-based (and hand-crafted) approaches to LFG parsing. In

this chapter, I present my research on this novel approach to deep grammar parsing within

the framework of LFG, for French, showing that best predicates only results (an f-score

of 69.46) for the established integrated parsing architecture can in fact be obtained by the

direct dependency parsing approach.1

This chapter presents a mise-en-scène between theoretical dependency syntax and de-
1This work was previously published as (Schluter and van Genabith, 2009).
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pendency parser practical requirements, an entrée en scène for f-structures in the litera-

ture for dependency parsing, an approach to representing f-structures in LFG as pseudo-

projective dependencies, a first attempt to reconcile parsing LFG and dependency parsing,

and, finally, the first treebank-based statistical dependency parsing results for French.

I begin with the discussion of LFG f-structure dependencies, comparing previously

mentioned theoretical frameworks for statistical dependency parsing in the literature and

showing their pseudo-projectivity (Section 5.2). In Section 5.3 I describe the data conver-

sion involved in this research. In Section 5.4 I overview the dependency parsing architecture

adopted. Finally, in Section 5.5 I discuss the dependency-parsing extension of the estab-

lished LFG parsing architectures and present and discuss the parsing results.

5.2 LFG F-structure Dependencies

In this section, I present an overview of the target frameworks for previous conversions

of CFG-like data into dependency tree data (Section 5.2.1). I then consider projectivity

in light of these conversions, and explain why projectivity need not be a problem in LFG

dependency parsing as a result of the f-structure’s property of pseudo-projectivity (Section

5.2.2).

5.2.1 A Comparison of Theoretical Frameworks

In the statistical dependency parsing literature, there are generally two sources of mod-

ern linguistic theoretical justification behind parsing models: the theoretical framework of

Meaning-Text Theory (Mel’čuk, 1998), and the annotation guidelines of the Prague Tree-

bank (Hajič et al., 1999). Moreover, software converting phrase-structure style treebanks

into dependencies (for example, Nivre et al. (2007); Johansson and Nugues (2007)) for sta-

tistical dependency parsing usually quote these two annotation styles in the treatment of

hard cases. Therefore, if our aim is to directly parse strings into LFG f-structures (obviat-

ing the CFG parsing step in standard LFG architectures), it is vital to consider what sorts of
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dependencies existing dependency parsers were intended to parse.

Meaning-Text Theory (MTT) represents the syntactic organisation of sentences strictly

by dependencies. Under this framework, syntax is separated into surface and deep syn-

tactic dependency-based tree representations. The deep-syntactic structure of a sentence

has nodes that are semantically full lemmata (full lexemes), abstracting away from any

auxiliary or structural lemmata at this level. Also, lemmata are subscripted by the gram-

matical information (grammemes) expressed by their associated word-form(s), rather than

those imposed by government and agreement. Arcs are labeled by a selection of around

ten language-independent relations. On the other hand, the surface-syntactic structure of

a sentence contains all lemmata of the sentence and its arcs are labeled with the names

of language-specific surface-syntactic relations, each of which represents a particular con-

struction of the language (Mel’čuk, 2003, 1998). Furthermore, communicative functions

such as topic or focus are not associated with a pure syntactic structure in the Meaning-

Text Theory (Mel’čuk, 2001). On the other hand, re-entrancies in the deep-syntactic rep-

resentation associated with coreference (belonging to the Deep-Syntactic Anaphoric Struc-

ture) are possible, as in Figure 5.2.

Figures 5.1 and 5.2 respectively show the surface and deep-syntactic structure for Ex-

ample (1) (taken from (Mel’čuk, 2003)).

(1) For decades, cocoa farming has escaped such problems by moving to new areas in

the tropics.

For Figure 5.2, the Roman numerals on arcs indicate the actant (or argument) num-

ber, ATTR indicates a modifier relationship, and in both figures, subscripted information

provides essentially grammatical features of the lemmata in the sentence. The dotted line

indicates a coreference link between the two occurrences of the lemma FARMING (sub-

ject raising). The structure in Figure 5.1 is just a projective dependency tree, whereas the

structure in Figure 5.2 is a non-projective DAG.

Note that there is no existing treebank constructed within the framework of MTT. There-
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determinative

��
THE

Figure 5.1: MTT surface-syntactic structure for Example (1).

fore, no statistical parsing has ever been carried out after training on MTT structures (only

on perhaps a very small subset of structures transformed to resemble some aspects of MTT

syntax).2 On the other hand, the data and annotations in Prague Treebank have been used

many times in statistical parsing experiments.

The Prague Treebank (PT) annotation guidelines Hajič et al. (1999) also distinguishes

between two levels of dependency-based syntactic representation: analytical and tectogram-

matical. These guidelines are written in the spirit of Functional Generative Description.3

2For example, Nilsson et al. (2006) explores coordination and verb group transformations resembling MTT
syntactic representations in statistical dependency parsing.

3See, for example, (Hajičová and Sgall, 2003) for a discussion of dependency syntax according to Functional
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Figure 5.2: MTT deep-syntactic structure for Example (1).

These two levels of syntactic representation roughly correspond to those of the Meaning-

Text Theory—the analytical level corresponding to the surface-syntax of the MTT and the

tectogrammatical level corresponding to the deep-syntactic level of the MTT (Žabokrtský,

2005). In the PT, word-forms have attributes for their lemmata as well as for grammatical

and lexical information expressed morphologically. The syntactic structure of the treebank

is given for the analytic level of representation, though work is under way on complement-

ing this with a tectogrammatical level of representation (Sgall et al., 2004). Also similarly

to the MTT, communicative structure is not associated with pure syntax in Functional Gen-

erative Description, and therefore does not figure among annotations defined for the PT.

Figure 5.3 shows the syntactic structures specified by Hajič et al. (1999) for Example

(2), taken directly from the annotation guidelines. Arcs are labeled with syntactic relations

defined in the annotation guidelines.

(2) Jeho
his

výklad
interpretation

je,
is

že
that

majı́
they ought

hrát.
to play

Generative Description.
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His interpretation is that they ought to play.

je
Sb

sshhhhhhhhhhhhh

AuxC ++VVVVVVVVVVVVV

výklad
Atr
��

že
Pnom

��
Jeho majı́

Obj
��

hrát

Figure 5.3: PT syntactic structure for Example (2).

LFG does not have a uniform dependency syntax, instead distinguishing between c-

structure and f-structure. These two systems express different sorts of information, rep-

resented by means of phrase-structure trees, for the c-structure, and dependency DAGs,

for f-structures. F-structure is an abstract functional syntactic representation of a sentence,

thought to contain deeper or more language-independent information than the c-structure

(Dalrymple, 2001).

There are several important ways in which f-structures differ from the tree-dependencies

outlined in the literature on dependency syntax within the MTT framework or the annota-

tion guidelines of the Prague Treebank. For instance, f-structures can include communica-

tive information, such as topic and focus, that LFG theorists consider to be grammati-

cised or syntacticised components of information structure. This introduces the notion of

long-distance dependencies. Moreover, subject and object-raising are represented with re-

entrancies at the f-structure syntactic level of description in LFG, as in the deep-syntactic

MTT representation. This creates DAGs rather than just dependency trees, since some

grammatical functions share the same f-structure value; these shared f-structures are called

re-entrancies. In fact, f-structure syntax corresponds, to a sort of mix of surface and deep

dependency MTT syntax (respectively, a mix of analytic and tectogrammatical syntax in

Functional Generative Description). Like a surface dependency syntax, some lemmata, like

copular verbs, that are not semantically full, appear in f-structures. On the other hand, like
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deep dependency syntax, some lemmata that are not semantically full are excluded (for ex-

ample, for the monoclausal treatment of compound tenses of verbs) and re-entrancies are

represented.

Other differences between dependency structures may be found in the notions of group-

ing and sets. In particular, coordination receives different treatments that must be consid-

ered. According to the PT annotation guidelines, coordination is treated as sets (conjuncts

are sister nodes, elements of a set of conjuncts). Also, every node of a dependency tree

must be associated with a word-form, which makes the coordinating conjunction or punc-

tuation the governor of the set. On the other hand, in the MTT, coordination has a cascaded

representation, with the first conjunct as governor. To distinguish between modifiers or ar-

guments of the first conjunct and those of the coordinated structure, MTT theorists resort

to grouping: the first conjunct essentially forms a distinguished group with its modifiers

and arguments, much like the notion of constituent (Mel’čuk, 2003). In this sense, the first

conjunct grouping is really the governor of the coordination.4 Also according to the MTT,

every node of a dependency tree must be associated with a word-form. But in LFG this

is not necessary, in particular, in the representation of coordination; coordinated elements,

like in the PT, are treated as sets. In DAG form, it can be seen that these coordinated struc-

tures have a null governor; that is, they do not have a governor that corresponds to any

word-form as the node has no label. Because today’s statistical dependency parsers cannot

handle null elements, some pre-processing will be needed to convert my LFG representation

of coordination (Section 5.3.1).

Finally, f-structures may be specified in terms of annotated c-structures with the local

meta-variables ↑ and ↓, and grammatical function regular paths. This restricts the structure

of dependencies actually occurring in LFG f-structure syntax, as we will show in Section

5.2.2.
4Grouping may be indicated on labels (Nilsson et al., 2006).
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5.2.2 The Breadth of Functional Equations in LFG

LFG’s f-structures often have re-entrancies (or shared sub-f-structures)—two functional

equations resolve to take the same (f-structure) value—making them DAGs, rather than

simple dependency trees. In LFG, the term functional uncertainty describes the uncertainty

in the resolution given a simple grammatical function, in the definition of the grammar.

The set of options for resolution may be finite and given by a disjunction, in which case

resolution is down a chain of f-structure nodes of bounded length, or (theoretically) infinite

in which case they are given by a regular expression (including the Kleene star operator)

and resolution is down a chain of f-structure nodes of unbounded length. We note, however,

that in statistical parsing of f-structures, the functional uncertainty in the resolution of a

grammatical function will never be infinite, since the data is finite.

5.2.2.1 Projectivity

Consider a labeled dependency tree (directed tree) T = (V,E, L), where V is its set of

vertices (or nodes), E = {(a, l, b) | a, b ∈ V, l ∈ L} its set of directed edges, and L the

set of labels for edges. If e = (a, l, b) ∈ E, we say that a immediately dominates b; in

this case, we say that a is the governor of b, or that b is a dependent on a. We say that v1

dominates vn if there is a chain of arcs e1, e2, . . . , en−1, such that e1 = (v1, l1, v2), e2 =

(v2, l2, v3), . . . , en−1 = (vn−1, ln−1, vn). In this case, we also say that vn is a descendent

of v1 or that v1 is an ancestor of vn.

An ordered tree is a tree having a total order, (V,≤), over its nodes, which for de-

pendency trees is just the linear order of the symbols (or natural language words) in the

generated string. An edge e = (a, l, b) covers nodes v1, v2, . . . , vn if a ≤ v1, . . . , vn ≤ b,

or b ≤ v1, . . . , vn ≤ a.

An edge, e = (v1, l, v2), of a tree is said to be projective if and only if for every vertex

v covered by e, v is dominated by v1. A tree T is projective if and only if all its edges

are projective (Robinson, 1970). Gaifman (1965) explains that a projective dependency

tree can be associated with a dependency tree whose constituents are the projections of the
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nodes of the dependency tree, showing that projectivity in dependency trees corresponds to

constituent continuity in phrase-structure trees.

These definitions are easily extended to DAGs. However in the case of DAGs, there are

sometimes two governors for a single node that must be considered. For f-structure DAGs,

we must additionally consider the mixed surface/deep dependency structure: some lemmata

do not appear in f-structures as predicates. For those f-structure DAGs for which there is

a one-to-one correspondence between predicates and original word-forms, these extended

definitions may easily be applied.

However, LFG’s treatment of long-distance dependency resolution and of subject/object

raising is non-projective. Consider the following example (Example (3)), adapted from

Example (4) of Chapter 3 (and from the corresponding f-structure in Figure 3.18).

(3) l’autre
the other

est
is

passionné
fascinated

de
of

vieux
old

papiers.
papers.

‘the other has a passion for historic documents.’5

Example (3) has the dependency structure (f-structure but with word-forms rather than

predicates and other LFG features) in Figure 5.4, which is non-projective: referring to nodes

by their word forms, the edge (passionné,subj, l’autre) covers the node est, but passionné

does not dominate est.

l’autre est passionnéde vieux papiers

�subj -xcomp
� subj

-adjunct
-obj

-adjunct

Figure 5.4: (Non-projective) dependency graph for Example (3).

For French, another interesting non-projective structure is found in en pronouns and NP
5Adapted from sentence 919, file cflmf7ak2ep.xd.cat.xml of the MFT.
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extraction. In fact, we can replace the phrase de vieux papiers in Example (3) to obtain the

following phrase (Example (4)).

(4) l’autre
the other

en
of it

est
is

passionné.
fascinated.

‘the other has a passion for it.’6

Example (4) then has the dependency structure in Figure 5.5 which non-projective for a

second reason: the edge (passionné,adjunct, en) covers est, but, again, passionné does

not dominate est.

l’autre en est passionné

� subj -xcomp

� subj

� adjunct

Figure 5.5: (Non-projective) dependency graph for Example (4).

Projectivity in dependency trees or syntax DAGs is obviously a result of the definition

of the generating dependency grammar. This is true also of cases that are not like LFG

re-entrancies. For example, Johansson and Nugues (2007) propose a conversion of the

Penn Treebank into dependency trees that introduces more non-projective edges than the

conversion proposed by Yamada and Matsumoto (2003) and Nivre (2006). In addition to

long-distance dependencies, for example, their representation of gapping always introduces

non-projective branches (Johansson and Nugues, 2007).

LFG is capable of locally representing non-projective dependencies in phrase structures,

which should, by definition, be impossible. This is because the only types of non-projective

dependencies theoretically represented in LFG are actually pseudo-projectivities.
6Adapted from sentence 919, file cflmf7ak2ep.xd.cat.xml of the MFT.
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5.2.2.2 Non-Projectivity and Pseudo-Projectivity

Dependency trees also model non-projective structures that have no correspondence with

any constituent trees—that is, they may be non-projective. This added “increase” in power

for dependency grammars is shown to be useful for syntactic representations of certain

languages (for example, the cross-serial dependencies of Dutch). However, as Kahane et al.

(1998) explain, pseudo-projective dependency trees may be parsed as projective trees with

the aid of a simple transformation.7

Consider three non-projective labeled dependency trees, T1 = (V,E1, L1), T2 = (V,E2,

L2), and T3 = (V,E3, L3). T2 is called a lift (of T1) if one of the following conditions hold,

for some e = (a, l, b), e′ = (b, l′, c) ∈ E1.8

(L1) E2 = (E1 − {e′}) ∪ {(a, l : l′, c)}, L2 ⊆ L1 ∪ {l : l′}, or

(L2) T3 is a lift of T1 and T2 is a lift of T3.

A labeled ordered dependency tree T is said to be pseudo-projective if there is some lift

T ′ of T that is projective.

Corresponding to (L1), the action of creating the tree T2 from T1 by removing the edge

e′ (adjacent to e) and adding the edge e′′, will be referred to as lifting. Note that lifting

results in path labels: in (L1), lifting for edge e′ (adjacent to e) results in a new edge

e′′ = (a, l : l′, c), with path label l : l′. Building a projective tree by means of lifting

results in arcs with path labels. Projecting the nodes would result in a sort of annotated c-

structure. Turning to LFG and abstracting away from any contractions resulting from ↑=↓

annotations, lifting is the opposite of the correspondence φ from c-structure to f-structure.9

Re-entrancies may simply be considered as complex labels. Let us call the transforma-

tion opposite to lifting a de-contraction (used to undo the lifting transformation). Since
7Nivre and Nilsson (2005) carries out parsing experiments based on this notion, with various levels of

precision in the transformation description.
8This definition is equivalent to the one given in (Kahane et al., 1998), where a lift was defined as in terms

of governance for unlabeled dependency trees.
9Kahane et al. (1998) remark that the idea of building a projective tree by means of lifting can be compared

to the functional uncertainty of LFG.
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generating an f-structure from an annotated c-structure involves simple contractions or lifts

of the form ↑=↓ and de-contractions, all f-structures are at most pseudo-projective. That

means, we do not have to worry about non-projective structures in the direct parsing of LFG

dependencies in f-structures.

As illustration, figures 5.6 and 5.7 give projective representations of the non-projective

dependency graphs in Figures 5.4 and 5.5, respectively. In particular, the dependency

graphs of Figures 5.4 and 5.5 have undergone a lifting of the non-projective edge (passionné,subj, l’autre),

adjacent to (est,xcomp, passionné), producing the projective edge (passionné,xcomp:subj, l’autre)

in the dependency graphs of Figures 5.6 and 5.7. Also, in the dependency graph of Figure

5.5 has undergone a further lift of the non-projective edge (passionné,adjunct, en), adja-

cent to (est,xcomp, passionné), producing the projective edge (passionné,xcomp:adjunct, en)

in the dependency graph of Figure 5.7.

l’autre est passionnéde vieux papiers

�subj -xcomp
�xcomp:subj

-adjunct
-obj

-adjunct

Figure 5.6: Projectivised dependency graph for Example (3).

l’autre en est passionné

� subj

-xcomp

� xcomp:subj

�xcomp:adjunct

Figure 5.7: Projectivised dependency graph for Example (4).
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5.3 Transforming Annotated C-Structures into Dependency Trees

To generate dependency trees, rather than using f-structures, we start with annotated c-

structures. The motivation for this choice is straightforward: we need only carry out a

certain number of contractions for the equations ↑=↓ in order to get a projective dependency

tree (rather than just a pseudo-projective dependency tree on which we must perform lifts).

Moreover, the association of labels for handling re-entrancies is sitting in the annotated tree

and does not need to be re-calculated. There are some problems that remain in the result.

Firstly, not every terminal will get have a predicate annotation. For example, in causative

constructions like for the phrase faire danser (‘to make dance’), the word-form faire would

only be annotated with the feature ↑ factive = +, not as a predicate. These will simply

be turned into f-structures rather than features, by changing annotations such as these to

↑ factive:pred = ‘faire′. For predicates only evaluation against the MFTDB, which

is an LFG gold standard, these f-structures will be thrown out.

Another problem is that coordination structures have no governor. These structures

must be transformed. We choose to follow the annotation guidelines for the PT for this

transformation, due to its similarity with LFG analyses. Some coordination structures of the

treebank need alternative treatment. In particular, non-constituent coordination and unlike

constituent coordination require analyses that are not covered in the those guidelines. We

resort to extended dependency tag sets to treat these cases and retain projectivity.

5.3.1 Coordination Transformations

In general, coordination will be transformed in the spirit of the PT annotation guidelines. If

there is a coordinating conjunction, then the last of these will be taken as the governor of

the coordination, as in Figure 5.8. In the case where there is no coordinating conjunction

but there is coordination punctuation (like a comma or semicolon), we will take the last of

these as the governor. Otherwise we will take the first conjunct of the coordination as the

governor and revert to grouping through extended labels.
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à court et moyen terme

-obj

�elem coord -elem coord
�coord adjunct

Figure 5.8: Dependency graph for a court et moyen terme (‘short and mid-term’).

For non-constituent coordination, the goal is twofold: (1) show that the different ele-

ments of each of the conjuncts belong together10 and (2) show that they are missing some-

thing that is present in the first conjunct (done by the function tags). For this reason, the

LFG analysis is ideal. LFG allows groupings of elements based on dependence on an item

that is physically there or not (i.e., by means of predicate-less (sub-)f-structures). However,

a surface dependency analysis cannot do this; constituent structure is not simply depen-

dency structure that projects lexical units to terminals. To make up for this impossibility,

extended labels are used, forcing a ”fake” lexical head.

With the conversion of the f-structure annotated c-structures into dependency trees de-

scribed here (especially with the use of extended labels for the transformation of various

coordination analyses), we have more than doubled the size of the f-structure tag set, from

69 tags to 152 tags for the simplified architecture. This will obviously have a detrimental

effect on parsing scores.

5.4 Dependency Parsing Architecture

The new direct f-structure dependency parsing architecture works as follows. The f-structure

annotation algorithm is applied to MFT trees, creating f-structure annotated trees that are

then transformed into the projective dependency representation described in Section 5.3, us-

ing the c-structure with the (only) f-structure equations. A dependency parser is then trained
10The dependency treatment of coordination outlined by Johansson and Nugues (2007) for the treatment of

gapping also introduced ambiguity for the case where there are more than two conjuncts; in their approach,
they have removed the relation that the components of gapping are part of the same element/constituent.
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on this data, and the test set parsed. The dependency parser output is then transformed back

to f-structure equations, which are evaluated against the f-structure gold standard (MFTDB)

along predicate paths only.11 Figure 5.9 shows the new probabilistic dependency-based in-

tegrated architecture that is presented here, in grey, to the right.
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Figure 5.9: Overview of treebank-based LFG parsing architectures. The dependency-based
architecture presented in this chapter is in bold grey to the right.

5.5 Evaluation

Two statistical dependency parsers were used for this research: MST parser (McDonald

et al., 2005) and MALT parser (Nivre et al., 2006).12 Experiments were done with the
11The construction of conversion software for dependency representation from simple f-structures (not f-

structure annotated c-structures) is outside the scope of this thesis. In addition, excepting any hand-correction,
the f-structures of the MFTDB are the product of an annotation algorithm that included, in particular, a verb
combinatorics module. The monoclausal verbal analysis requires that f-structure outputs have their own sort
of f-structure algorithm for the verb combinatorics module, which is outside the scope of this thesis. For these
reasons, evaluation is only carried out for predicate paths of the MFTDB (preds-only), not in the format of the
dependency conversion and not for all features.

12Using the default parameters for both. In particular, for MALT parser, the nivreeager parsing algorithm
(with the libsvm learner (Chang and Lin, 2001) and no pre/post-processing) is used and the default feature
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simplified architecture (in which long-distance dependencies are given as complex path

equations in training), and in the established architecture (with a separate long-distance

dependency resolution task). The results are given in Tables 5.1 and 5.2.

Parser coord dist precision recall f-score
MST no 87.46 54.67 67.28

yes 87.45 54.66 67.27
MALT no 86.23 52.17 65.01

yes 86.17 51.95 64.82

Table 5.1: Simplified Architecture Parsing Results.

Parser LDDs coord precision recall f-score
resolved dist

MST no no 86.90 57.07 68.89
yes 86.89 57.06 68.88

yes yes 86.48 58.03 69.46
MALT no no 85.98 51.13 64.13

yes 86.02 50.9 63.96
yes yes 86.08 51.62 64.54

Table 5.2: Parsing Results with Long Distance Dependency Resolution.

Best results are obtained by the MST parser when LDD recovery is separated and co-

ordination distribution is carried out. The overall best score of 69.46 for the dependency

parsing architecture is also the best predicates only score for the integrated architecture

for all work presented in this thesis. We observe, however, the characteristic divergence

in precision and recall for the integrated architectures, most probably due to the large de-

pendency tag set. Best overall results, are still obtained via the original PCFG based LFG

parsing approach, in the pipeline architecture.

The method described in this chapter has been a labeled dependency parsing approach.

It has been shown, for example, in (Chen et al., 2007), that combining the use of an unla-

beled dependency parser with a separate machine learning algorithm for dependency labels

may improve results. However, the parsers used here are unsuitable for this task; MALT

model that came with that for the 1.0.4 release. For MST parser, the version number is 0.5.0; some important
default settings are for projective parsing, the inclusion of punctuation in hamming loss calculation, and a
feature scope of 1.
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parser and MST parser are essentially labeled dependency parsers (with at least their default

feature sets).13

5.6 Concluding Remarks

In this chapter, I have reviewed the differences between the f-structures and dependency

representations parsed by MALT parser and MST parser, showing that f-structures may

be parsed non-projectively. I have shown that best statistical parsing results for French in

the integrated LFG parsing architecture are achievable by extending this architecture for

statistical dependency parsing (a preds-only f-score of 69.46%). This is 1.58% higher than

the best result obtained in the traditional PCFG and SVM approximation based integrated

parsing architecture (67.88%) reported in Chapter 4. However, best overall results are still

obtained via the original PCFG based pipeline LFG parsing approach (c.f. Chapter 4).

13An attempt was made to separate the labelling task and employ MALT parser and MST parser as unlabeled
dependency parsers, by using only ‘blank’ labels and employing the SVM classifier for labeling. The SVM
classifier performs well, with accuracy of 96.45% for MFTfct and 96.54% for MFTcomm, using similar features
as given in Section 4.5. On the other hand, the dependency parsers achieved discouraging results, as is observed
in the following table.

simplified architecture parser coord dist ldds resolved precision recall f-score
yes MALT no n/a 84.45 1.82 3.56

yes n/a 84.45 1.82 3.56
MST no n/a 0 0 0

yes n/a 0 0 0
no MALT no no 83.69 1.79 3.50

yes no 83.69 1.79 3.50
yes yes 83.59 1.81 3.54

MST no no 90.91 0.39 0.79
yes no 90.91 0.39 0.79
yes yes 88.41 0.40 0.80
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Chapter 6

Concluding Remarks

In this thesis, I have presented research on the automatic treebank-based generation of

French LFG parsing resources.

In order to carry out this research, a good quality French treebank was necessary. In

particular, this thesis has presented the derivation of a new treebank for French from the

Paris 7 Treebank—the Modified French Treebank—a cleaner, more coherent treebank with

several transformed structures and new linguistic analyses. In doing so, I show that treebank

design and quality has a large impact in statistical parsing.

The Modified French Treebank is the data source used for the development of treebank-

based automatic deep-grammar acquisition for LFG parsing resources for French. I devel-

oped an f-structure annotation algorithm for this treebank (and language). Already estab-

lished LFG CFG-based parsing architectures were then extended and tested, achieving a

competitive best f-score 86.73% for all features and 81.35% pred-only against the MFTDB,

in the pipeline architecture. The CFG-based parsing architectures were then complemented

with dependency-based statistical parsing, for the direct parsing of French strings into f-

structures, effectively providing another type of the integrated parsing method, obviating

the c-structure (CFG) parsing step in the traditional treebank-based and hand-crafted LFG

parsing architectures. The direct dependency-based parsing approach is a novel contribu-

tion, and though it achieved the highest predicates only f-score (69.46%) for the integrated
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parsing architecture, overall parser performance was significantly higher for the CFG-based

pipeline parsing architecture.

The findings of the research presented here on the performance of the LFG parsing

architectures for French are in general disagreement with that of the other languages: the

integrated architectures generally perform worst for parsing French and the MFT than the

pipeline architectures. One plausible explanation would be the exceptionally high score of

the f-structure annotation algorithm for the MFT, with respect to that of f-structure anno-

tation algorithms for other languages; indeed, quality parses seems to lead to satisfactory

recall. A second plausible explanation relates to the size of the data; the integrated archi-

tecture introduces a comparatively large tag set, which, given such a small dataset as the

MFT, yields too coarse-grained a (lexicalised) PCFG for, especially, Bikel’s parser. Further

research would be required to verify these hypotheses.

6.1 Future Work

6.1.1 Treebank-Based Deep-Grammar Induction of Parsing Resources for

French

Since the research presented in Chapter 2 was carried out and first published as (Schluter

and van Genabith, 2007), the P7T has undergone some changes, the most important of

which seems to be the discarding slightly less than half of the treebank trees; for example,

Candito and Crabbé (2009) report the P7T to contain only 12531 sentences. However,

there has been no account of the syntactic or other structural changes carried out in the

treebank, if any have taken place. Parsing experiments with this reduced treebank have

been carried out, for example by Candito and Crabbé (2009), showing relative success by

using the Berkeley Parser (Petrov and Klein, 2007). Unfortunately, no comparative results

have been shown in this recent research using the MFT and the Berkeley Parser. This is

one avenue of future research with respect to treebank-based deep-grammar induction of

parsing resources for French: if better parses are achievable on the MFT using the Berkeley
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Parser and since best triples scores to date for French have been obtained via the pipeline

architecture, the Berkeley Parser should translate to even more competitive results within,

at least, this architecture.

Future research in treebank-based deep-grammar induction of parsing resources for

french could also study the new version of the P7T to determine whether any significant

changes have been carried out in this treebank, converting it into a usable and reliable re-

source for deep-grammar induction.

6.1.2 Related Areas

A natural extension and completion for developing LFG deep-grammar resources for French

would be developing LFG generation resources for French and evaluating (via automatic

means) the extracted lexicon presented in this thesis.

LFG Generation Resources for French. A specific research aim for GramLab is the

use of the treebank-based multilingual LFG resources for a statistical machine translation

system that (1) parses f-structures of a source language from raw text, (2) “translates” these

f-structures to f-structures of a target language automatically, and (3) generates surface

realisations for the f-structures in the target languages.

As a contribution to the GramLab project Graham et al. (2009) designed and imple-

mented a statistical deep grammar transfer decoder as the transfer component to a transfer-

based machine translation system.1

Also arising from work within GramLab, there has been research on statistical gen-

eration from f-structures for Chinese and English. This research was based on grammars

extracted from the f-structure annotated Penn-II and Penn Chinese Treebanks for parsing re-

sources (Cahill and van Genabith, 2006b; Hogan et al., 2007; Guo, van Genabith and Wang,

2008; Guo, Wang and van Genabith, 2008). Similar work on generation with treebank-

based LFG resources for French has yet to be carried out. Such work would also extend the
1See also (Graham and van Genabith, 2009) and (Graham and van Genabith, 2008).
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above-mentioned transfer-based SMT system to fully cover French.

French Subcategorisation Lexicon Evaluation. Previous lexicons have been automati-

cally extracted for French, in each case relying on text parsed by rule-based parsers. Chesley

and Salmon-Alt (2006) extracted 104 verbs subcategorisation frames, which were evaluated

manually using two native French speakers. Messiant et al. (2008) extracted subcategorisa-

tion frames for 3297 verbs, testing only 20 of those verbs against a manually derived gold

standard dictionary. Both methods are fairly basic and almost identical. A corpus is parsed,

a CFG is automatically extracted and augmented with lexical head information. The ex-

tracted CFG rules are then filtered in terms of some measure of frequency and these rules

are taken as the subcategorisation frames.

The method for subcategorisation lexicon extraction presented in this thesis is superior

to that of the methods employed by Chesley and Salmon-Alt (2006) and Messiant et al.

(2008) in that more sophisticated means are used (e.g. fully reflecting long-distance de-

pendencies in the data) and that we have a cleaner corpus from which to extract subcate-

gorisation frames (rather than automatically parsed text). Future work would automate the

evaluation of extracted lexicons for French through the use of existing electronic dictionary

resources for French, in a manner similar to O’Donovan, Cahill, van Genabith and Way

(2005)’s use of the Oxford Learner’s Dictionary of Current English. The results of this new

evaluation method for my extracted lexicon and that of any others that are available (notably

that of Messiant et al. (2008)) should then be compared.2

2Chesley and Salmon-Alt (2006)’s extracted subcategorisation lexicon is not publicly available.
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Appendix

Appendix A: List of Atomic-Valued Features

Feature Values
stmt type decl, imp, int
aux select avoir, être
passive +/-
refl +/-
perf +/-

superperf +/-
part +/-
inf +/-

factive +/-
mood cond, imperative, indicative,

subjunctive
tense pres, fut, past, passesimple
degree comparative, positive, superla-

tive
pos post, pre
ne +/-
neg +/-

neg form wordform of negation
case acc, dat, nom
ntype common, proper, card

pron form lemma information
pron type dem, expl, pers, card, refl, rel, int
pform lemma information

comp form lemma information
coord form lemma information

precoord form lemma information
introducteur form lemma information

dtype def, dem, ind, part
anaph num sg, pl
agr num sg, pl
pred lemma information
gend fem, masc
num sg, pl
pers 1, 2, 3
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Appendix A: List of Grammatical Functions

Grammatical Function Explanation
adjunct adjunct
name mod proper noun list of proper noun modifiers

obj object
subj subject
a obj (indirect) à object
de obj (indirect) de object
xcomp subordinate clause whose subject is a reentrancy
comp subordinate clause with a subject (not reentrancy)
coord coordination
obl indirect complement

obl agt indirect complement of passive expression (thematic subject)
obl compar comparative phrase
topic rel topic of relative clause
rel mod relative clause
focus focus
topic topic

cleft subj non-thematic subject of clefted phrase
spec
det (in)definite determiner
poss possessive determiner
quant quantitative determiner
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Appendix C: Head-Finding Rules for the MFT

In this appendix, we give the head-finding rules used in all experiments requiring them in

experiments presented in this thesis. One set of head-finding rules is presented for MFT-

norm (Figure 6.2) and the other set is presented for MFT-fct (Figure 6.1). Both are presented

in the Lisp format required by Bikel’s parser, where tt and ss are used as special strings,

inserted where normally a space character or some other special character that is a reserved

character for Bikel’s parser would normally be.

The rules should be read as follows, for

(LHS (d1 ConstList1) · · · (dn ConstListn)). (6.1)

For the root of a depth-one subtree, LHS, for i ∈ {1, . . . , n} scan for the ith time, the

children of LHS in the direction di ∈ {l, r} for the constituents in the list (in order of

priority) ConstListi. As soon as the head is found the search process stops. The direction l

means from left to right and the direction r means from right to left.
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((SENT* (l VNttfinite) (l COORDttSint) (l COORDttNC) (l))
(Sint* (l VNttfinite) (l COORDttSint) (l COORDttNC) (l))
(Ssub* (l COORDttSsub) (l VNttfinite) (l NP* ) (l))
(Srel* (l COORDttSrel) (l VNttfinite) (l))
(VPpart* (l COORDttVPpart) (l VNttpart) (l))
(VPinf* (l COORDttVPinf) (l VNttinf) (l))
(VP* (l COORDttVP) (l VNttfinite) (l))
(VNttfinite* (l COORDttVN_finite) (l Vssfinite) (l))
(VNttinf* (l COORDttVN_inf)(l Vssinf) (l))
(VNttpart* (l COORDttVN_part) (l Vsspart) (l))
(NC* (l COORDttNC) (r))
(CLP* (l CL*) (r))
(CLseP* (l CL*) (r))
(AP* (l COORDttAP) (l A Asscard Assrel Assint Assord) (l))
(NP* (l COORDttNP) (l N Nssrel Nsscard Nssord Nssint PRO

PROssrel ET CL) (l))
(AdP* (l COORDttAdP) (l ADV*) (l))
(PP* (l COORDttPP) (l P Pssrel Pssint PROssrel) (r))
(COORDttunary (l VNttfinite) (r))
(COORD* (r))
(* (l)))

Table 6.1: Head-Finding Rules (with function labels)
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((SENT (l VNttfinite COORDttSint COORDttNC) (l))
(Sint (l VNttfinite COORDttSint COORDttNC) (l))
(Ssub (l COORDttSsub VNttfinite) (l NP AP AdP) (l))
(Srel (l COORDttSrel VNttfinite) (l))
(VPpart* (l COORDttVPpart*) (l VNttpart) (l))
(VPinf (l COORDttVPinf) (l VNttinf) (l))
(VP (l COORDttVP) (l VNttfinite) (l))
(VNttfinite (l COORDttVN_finite) (l Vssfinite) (l))
(VNttinf (l COORDttVN_inf)(l Vssinf) (l))
(VNttpart (l COORDttVN_part) (l Vsspart) (l))
(NC (l COORDttNC) (r))
(AP (l COORDttAP) (l A) (l))
(APrel (l COORDttAP*) (l Assrel) (l))
(APint (l COORDttAP*) (l Assint) (l))
(NP (l COORDttNP) (l N ET PRO Nsscard) (l))
(NPttint (l COORDttNP) (l Nssint ETssint PROssint) (l))
(NPttrel (l COORDttNP) (l Nssrel PROssrel) (l))
(AdP (l COORDttAdP) (l ADV*) (l))
(AdPttint (l COORDttAdP ADVssint) (l ADV*) (l))
(PP (l COORDttPP) (l P) (r))
(PPttrel (l COORDttPP*) (l Pssrel PROssrel) (r))
(PPttint (l COORDttPP*) (l Pssint PROssint) (r))
(COORDttNP* (r))
(COORDttVP (r))
(COORDttNC (r))
(COORDttSint (r))
(COORDttSsub (r))
(COORDttSrel (r))
(COORDttAP (r))
(COORDttAdP* (r))
(COORDttPP* (r))
(COORDttVN_part (r))
(COORDttVN_inf (r))
(COORDttVN_finite (r))
(COORDttVPinf (r))
(COORDttVPpart* (r))
(COORDttUC (r))
(COORDttunary (l VNttfinite) (r))
(* (l)))

Table 6.2: Head-Finding Rules (without function labels)
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Sgall, P., Panevová, J. and Hajičová, E. (2004). Deep syntactic annotation: Tectogrammat-

ical representation and beyond, in A. Meyers (ed.), HLT-NAACL 2004 Workshop: Fron-

tiers in Corpus Annotation, Association for Computational Linguistics, Boston, MASS,

pp. 32–38.

Tounsi, L., Attia, M. and van Genabith, J. (2009a). Automatic treebank-based acquisition

of arabic lfg dependency structures, Proceedings of the EACL 2009 Workshop on Com-

putational Approaches to Semitic Languages, Athens, Greece.

144



Tounsi, L., Attia, M. and van Genabith, J. (2009b). Parsing arabic using treebank-based lfg

resources, In Proceedings of the 14th International LFG Conference, Cambridge.

van der Beek, L. (2003). The dutch it-cleft constructions, Proceedings of the LFG03 Con-

ference.
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