924 research outputs found

    Shape-driven segmentation of the arterial wall in intravascular ultrasound images

    Get PDF
    Segmentation of arterial wall boundaries from intravascular images is an important problem for many applications in the study of plaque characteristics, mechanical properties of the arterial wall, its 3D reconstruction, and its measurements such as lumen size, lumen radius, and wall radius. We present a shape-driven approach to segmentation of the arterial wall from intravascular ultrasound images in the rectangular domain. In a properly built shape space using training data, we constrain the lumen and media-adventitia contours to a smooth, closed geometry, which increases the segmentation quality without any tradeoff with a regularizer term. In addition to a shape prior, we utilize an intensity prior through a non-parametric probability density based image energy, with global image measurements rather than pointwise measurements used in previous methods. Furthermore, a detection step is included to address the challenges introduced to the segmentation process by side branches and calcifications. All these features greatly enhance our segmentation method. The tests of our algorithm on a large dataset demonstrate the effectiveness of our approach

    Stent implant follow-up in intravascular optical coherence tomography images

    Get PDF
    The objectives of this article are (i) to utilize computer methods in detection of stent struts imaged in vivo by optical coherence tomography (OCT) during percutaneous coronary interventions (PCI); (ii) to provide measurements for the assessment and monitoring of in-stent restenosis by OCT post PCI. Thirty-nine OCT cross-sections from seven pullbacks from seven patients presenting varying degrees of neointimal hyperplasia (NIH) are selected, and stent struts are detected. Stent and lumen boundaries are reconstructed and one experienced observer analyzed the strut detection, the lumen and stent area measurements, as well as the NIH thickness in comparison to manual tracing using the reviewing software provided by the OCT manufacturer (LightLab Imaging, MA, USA). Very good agreements were found between the computer methods and the expert evaluations for lumen cross-section area (mean difference = 0.11 ± 0.70 mm2; r2 = 0.98, P\ 0.0001) and the stent cross-section area (mean difference = 0.10 ± 1.28 mm2; r2 = 0.85, P value\ 0.0001). The average number of detected struts was 10.4 ± 2.9 per crosssection when the expert identified 10.5 ± 2.8 (r2 = 0.78, P value\0.0001). For the given patient dataset: lumen cross-sectional area was on the average (6.05 ± 1.87 mm2), stent cross-sectional area was (6.26 ± 1.63 mm2), maximum angle between struts was on the average (85.96 ± 54.23), maximum, average, and minimum distance between the stent and the lumen were (0.18 ± 0.13 mm), (0.08 ± 0.06 mm), and (0.01 ± 0.02 mm), respectively, and stent eccentricity was (0.80 ± 0.08). Low variability between the expert and automatic method was observed in the computations of the most important parameters assessing the degree of neointimal tissue growth in stents imaged by OCT pullbacks. After further extensive validation, the presented methods might offer a robust automated tool that will improve the evaluation and follow-up monitoring of in-stent restenosis in patients

    Automatic segmentation of the lumen region in intravascular images of the coronary artery

    Get PDF
    Image assessment of the arterial system plays an important role in the diagnosis of cardiovascular diseases. The segmentation of the lumen and media-adventitia in intravascular (IVUS) images of the coronary artery is the first step towards the evaluation of the morphology of the vessel under analysis and theidentification of possible atherosclerotic lesions. In this study, a fully automatic method for the segmentation of the lumen in IVUS images of the coronary artery is presented. The proposed method relies on theK-means algorithm and the mean roundness to identify the region corresponding to the potential lumen.An approach to identify and eliminate side branches on bifurcations is also proposed to delimit the areawith the potential lumen regions. Additionally, an active contour model is applied to refine the contourof the lumen region. In order to evaluate the segmentation accuracy, the results of the proposed methodwere compared against manual delineations made by two experts in 326 IVUS images of the coronaryartery. The average values of the Jaccard measure, Hausdorff distance, percentage of area difference andDice coefficient were 0.88 ± 0.06, 0.29 ± 0.17 mm, 0.09 ± 0.07 and 0.94 ± 0.04, respectively, in 324IVUS images successfully segmented. Additionally, a comparison with the studies found in the literatureshowed that the proposed method is slight better than the majority of the related methods that havebeen proposed. Hence, the new automatic segmentation method is shown to be effective in detecting thelumen in IVUS images without using complex solutions and user interaction

    A New 3-D automated computational method to evaluate in-stent neointimal hyperplasia in in-vivo intravascular optical coherence tomography pullbacks

    Get PDF
    Abstract. Detection of stent struts imaged in vivo by optical coherence tomography (OCT) after percutaneous coronary interventions (PCI) and quantification of in-stent neointimal hyperplasia (NIH) are important. In this paper, we present a new computational method to facilitate the physician in this endeavor to assess and compare new (drug-eluting) stents. We developed a new algorithm for stent strut detection and utilized splines to reconstruct the lumen and stent boundaries which provide automatic measurements of NIH thickness, lumen and stent area. Our original approach is based on the detection of stent struts unique characteristics: bright reflection and shadow behind. Furthermore, we present for the first time to our knowledge a rotation correction method applied across OCT cross-section images for 3D reconstruction and visualization of reconstructed lumen and stent boundaries for further analysis in the longitudinal dimension of the coronary artery. Our experiments over OCT cross-sections taken from 7 patients presenting varying degrees of NIH after PCI illustrate a good agreement between the computer method and expert evaluations: Bland-Altmann analysis revealed a mean difference for lumen cross-section area of 0.11 ± 0.70mm2 and for the stent cross-section area of 0.10 ± 1.28mm2

    A new approach for improving coronary plaque component analysis based on intravascular ultrasound images

    Get PDF
    Virtual histology intravascular ultrasound (VH-IVUS) is a clinically available technique for atherosclerosis plaque characterization. It, however, suffers from a poor longitudinal resolution due to electrocardiogram (ECG)-gated acquisition. This article presents an effective algorithm for IVUS image-based histology to overcome this limitation. After plaque area extraction within an input IVUS image, a textural analysis procedure consisting of feature extraction and classification steps is proposed. The pixels of the extracted plaque area excluding the shadow region were classified into one of the three plaque components of fibro-fatty (FF), calcification (CA) or necrotic core (NC) tissues. The average classification accuracy for pixel and region based validations is 75% and 87% respectively. Sensitivities (specificities) were 79% (85%) for CA, 81% (90%) for FF and 52% (82%) for NC. The kappa (kappa) = 0.61 and p value = 0.02 indicate good agreement of the proposed method with VH images. Finally, the enhancement in the longitudinal resolution was evaluated by reconstructing the IVUS images between the two sequential IVUS-VH images

    A framework for computational fluid dynamic analyses of patient-specific stented coronary arteries from optical coherence tomography images

    Get PDF
    The clinical challenge of percutaneous coronary interventions (PCI) is highly dependent on the recognition of the coronary anatomy of each individual. The classic imaging modality used for PCI is angiography, but advanced imaging techniques that are routinely performed during PCI, like optical coherence tomography (OCT), may provide detailed knowledge of the pre-intervention vessel anatomy as well as the post-procedural assessment of the specific stent-to-vessel interactions. Computational fluid dynamics (CFD) is an emerging investigational tool in the setting of optimization of PCI results. In this study, an OCT-based reconstruction method was developed for the execution of CFD simulations of patient-specific coronary artery models which include the actual geometry of the implanted stent. The method was applied to a rigid phantom resembling a stented segment of the left anterior descending coronary artery. The segmentation algorithm was validated against manual segmentation. A strong correlation was found between automatic and manual segmentation of lumen in terms of area values. Similarity indices resulted >96% for the lumen segmentation and >77% for the stent strut segmentation. The 3D reconstruction achieved for the stented phantom was also assessed with the geometry provided by X-ray computed micro tomography scan, used as ground truth, and showed the incidence of distortion from catheter-based imaging techniques. The 3D reconstruction was successfully used to perform CFD analyses, demonstrating a great potential for patient-specific investigations. In conclusion, OCT may represent a reliable source for patient-specific CFD analyses which may be optimized using dedicated automatic segmentation algorithms

    CT Coronary Angiography with 100kV tube voltage and a low noise reconstruction filter in non-obese patients: evaluation of radiation dose and diagnostic quality of 2D and 3D image reconstructions using open source software (OsiriX)

    Get PDF
    INTRODUCTION AND PURPOSE. Computed tomography coronary angiography (CTCA) has seen a dramatic evolution in the last decade owing to the availability of multislice CT scanners with 64 detector rows and beyond. However, this evolution has been paralleled by an increase in radiation dose to patients, that can reach extremely high levels (>20mSv) when retrospective ECG-gating techniques are used. On CT angiography, reduction of tube voltage allows to cut radiation dose with improved contrast resolution due to the lower energy of the X-ray beam and increased photoelectric effect. Our purpose is twofold: 1) to evaluate the radiation dose of CTCA studies carried out using a tube voltage of 100kV and a low noise reconstruction filter, compared with a conventional tube voltage of 120kV and a standard reconstruction kernel; 2) to assess the impact of the 100kV acquisition technique on the diagnostic quality of 2D and 3D image reconstructions performed with open source software (OsiriX). MATERIALS AND METHODS. Fifty-one non-obese patients underwent CTCA on a 64-row CT scanner. Out of them, 28 were imaged using a tube voltage of 100kV and a low noise reconstruction filter, while in the remaining 23 patients a tube voltage of 120kV and a standard reconstruction kernel were selected. All CTCA datasets were exported via PACS to a Macintosh™ computer (iMac™) running OsiriX 4.0 (64-bit version), and Maximum Intensity Projection (MIP), Curved Planar Reformation (CPR), and Volume Rendering (VR) views of each coronary artery were generated using a dedicated plug-in (CMIV CTA; Linköping University, Sweden). Diagnostic quality of MIP, CPR, and VR reconstructions was assessed visually by two radiologists with experience in cardiac CT using a three-point score (1=poor, 2=good, 3=excellent). Signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), intravascular CT density, and effective dose for each group were also calculated. RESULTS. Image quality of VR views was significantly better with the 100kV than with the 120kV protocol (2.77±0.43 vs 2.21±0.85, p=0.0332), while that of MIP and CPR reconstructions was comparable (2.59±0.50 vs 2.32±0.75, p=0.3271, and 2.68±0.48 vs 2.32±0.67, p=0.1118, respectively). SNR and CNR were comparable between the two protocols (16.42±4.64 vs 14.78±2.57, p=0.2502, and 13.43±3.77 vs 12.08±2.10, p=0.2486, respectively), but in the 100kV group aortic root density was higher (655.9±127.2 HU vs 517.2±69.7 HU, p=0.0016) and correlated with VR image quality (rs=0.5409, p=0.0025). Effective dose was significantly lower with the 100kV than with the 120kV protocol (7.43±2.69 mSv vs 18.83±3.60 mSv, p<0.0001). CONCLUSIONS. Compared with a standard tube voltage of 120kV, usage of 100kV and a low noise filter leads to a significant reduction of radiation dose with equivalent and higher diagnostic quality of 2D and 3D reconstructions, respectively in non-obese patients

    Computer Vision Techniques for Transcatheter Intervention

    Get PDF
    Minimally invasive transcatheter technologies have demonstrated substantial promise for the diagnosis and treatment of cardiovascular diseases. For example, TAVI is an alternative to AVR for the treatment of severe aortic stenosis and TAFA is widely used for the treatment and cure of atrial fibrillation. In addition, catheter-based IVUS and OCT imaging of coronary arteries provides important information about the coronary lumen, wall and plaque characteristics. Qualitative and quantitative analysis of these cross-sectional image data will be beneficial for the evaluation and treatment of coronary artery diseases such as atherosclerosis. In all the phases (preoperative, intraoperative, and postoperative) during the transcatheter intervention procedure, computer vision techniques (e.g., image segmentation, motion tracking) have been largely applied in the field to accomplish tasks like annulus measurement, valve selection, catheter placement control, and vessel centerline extraction. This provides beneficial guidance for the clinicians in surgical planning, disease diagnosis, and treatment assessment. In this paper, we present a systematical review on these state-of-the-art methods.We aim to give a comprehensive overview for researchers in the area of computer vision on the subject of transcatheter intervention. Research in medical computing is multi-disciplinary due to its nature, and hence it is important to understand the application domain, clinical background, and imaging modality so that methods and quantitative measurements derived from analyzing the imaging data are appropriate and meaningful. We thus provide an overview on background information of transcatheter intervention procedures, as well as a review of the computer vision techniques and methodologies applied in this area
    corecore