673 research outputs found

    Spike pattern recognition by supervised classification in low dimensional embedding space

    Get PDF
    © The Author(s) 2016. This article is published with open access at Springerlink.com under the terms of the Creative Commons Attribution License 4.0, (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.Epileptiform discharges in interictal electroencephalography (EEG) form the mainstay of epilepsy diagnosis and localization of seizure onset. Visual analysis is rater-dependent and time consuming, especially for long-term recordings, while computerized methods can provide efficiency in reviewing long EEG recordings. This paper presents a machine learning approach for automated detection of epileptiform discharges (spikes). The proposed method first detects spike patterns by calculating similarity to a coarse shape model of a spike waveform and then refines the results by identifying subtle differences between actual spikes and false detections. Pattern classification is performed using support vector machines in a low dimensional space on which the original waveforms are embedded by locality preserving projections. The automatic detection results are compared to experts’ manual annotations (101 spikes) on a whole-night sleep EEG recording. The high sensitivity (97 %) and the low false positive rate (0.1 min−1), calculated by intra-patient cross-validation, highlight the potential of the method for automated interictal EEG assessment.Peer reviewedFinal Published versio

    Seizure Detection Using Deep Learning, Information Theoretic Measures and Factor Graphs

    Get PDF
    Epilepsy is a common neurological disorder that disrupts normal electrical activity in the brain causing severe impact on patients’ daily lives. Accurate seizure detection based on long-term time-series electroencephalogram (EEG) signals has gained vital importance for epileptic seizure diagnosis. However, visual analysis of these recordings is a time-consuming task for neurologists. Therefore, the purpose of this thesis is to propose an automatic hybrid model-based /data-driven algorithm that exploits inter-channel and temporal correlations. Hence, we use mutual information (MI) estimator to compute correlation between EEG channels as spatial features and employ a carefully designed 1D convolutional neural network (CNN) to extract additional information from raw EEGs. Then, seizure probabilities from combined features of MI estimator and CNN are applied to factor graphs to learn factor nodes. The performance of the algorithm is evaluated through measuring different parameters as well as comparing with previous studies. On CHB-MIT dataset, our generalized algorithm achieves state-of-the-art performance

    Epileptic seizure detection and prediction based on EEG signal

    Get PDF
    Epilepsy is a kind of chronic brain disfunction, manifesting as recurrent seizures which is caused by sudden and excessive discharge of neurons. Electroencephalogram (EEG) recordings is regarded as the golden standard for clinical diagnosis of epilepsy disease. The diagnosis of epilepsy disease by professional doctors clinically is time-consuming. With the help artificial intelligence algorithms, the task of automatic epileptic seizure detection and prediction is called a research hotspot. The thesis mainly contributes to propose a solution to overfitting problem of EEG signal in deep learning and a method of multiple channels fusion for EEG features. The result of proposed method achieves outstanding performance in seizure detection task and seizure prediction task. In seizure detection task, this paper mainly explores the effect of the deep learning in small data size. This thesis designs a hybrid model of CNN and SVM for epilepsy detection compared with end-to-end classification by deep learning. Another technique for overfitting is new EEG signal generation based on decomposition and recombination of EEG in time-frequency domain. It achieved a classification accuracy of 98.8%, a specificity of 98.9% and a sensitivity of 98.4% on the classic Bonn EEG data. In seizure prediction task, this paper proposes a feature fusion method for multi-channel EEG signals. We extract a three-order tensor feature in temporal, spectral and spatial domain. UMLDA is a tensor-to-vector projection method, which ensures minimal redundancy between feature dimensions. An excellent experimental result was finally obtained, including an average accuracy of 95%, 94% F1-measure and 90% Kappa index

    Epileptic Seizure Detection And Prediction From Electroencephalogram Using Neuro-Fuzzy Algorithms

    Get PDF
    This dissertation presents innovative approaches based on fuzzy logic in epileptic seizure detection and prediction from Electroencephalogram (EEG). The fuzzy rule-based algorithms were developed with the aim to improve quality of life of epilepsy patients by utilizing intelligent methods. An adaptive fuzzy logic system was developed to detect seizure onset in a patient specific way. Fuzzy if-then rules were developed to mimic the human reasoning and taking advantage of the combination in spatial-temporal domain. Fuzzy c-means clustering technique was utilized for optimizing the membership functions for varying patterns in the feature domain. In addition, application of the adaptive neuro-fuzzy inference system (ANFIS) is presented for efficient classification of several commonly arising artifacts from EEG. Finally, we present a neuro-fuzzy approach of seizure prediction by applying the ANFIS. Patient specific ANFIS classifier was constructed to forecast a seizure followed by postprocessing methods. Three nonlinear seizure predictive features were used to characterize changes prior to seizure. The nonlinear features used in this study were similarity index, phase synchronization, and nonlinear interdependence. The ANFIS classifier was constructed based on these features as inputs. Fuzzy if-then rules were generated by the ANFIS classifier using the complex relationship of feature space provided during training. In this dissertation, the application of the neuro-fuzzy algorithms in epilepsy diagnosis and treatment was demonstrated by applying the methods on different datasets. Several performance measures such as detection delay, sensitivity and specificity were calculated and compared with results reported in literature. The proposed algorithms have potentials to be used in diagnostics and therapeutic applications as they can be implemented in an implantable medical device to detect a seizure, forecast a seizure, and initiate neurostimulation therapy for the purpose of seizure prevention or abortion

    Deep learning for epileptic intracranial EEG data

    Get PDF
    Detection algorithms for electroencephalography (EEG) data typically employ handcrafted features that take advantage of the signal's specific properties. In the field of interictal epileptic discharge (IED) detection, the feature representation that provides optimal classification performance is still an unresolved issue. In this paper, we consider deep learning for automatic feature generation from epileptic intracranial EEG data in the time domain. Specifically, we consider convolutional neural networks (CNNs) in a subject independent fashion and demonstrate that meaningful features, representing IEDs are automatically learned. The resulting model achieves state of the art classification performance, provides insights for the different types of IEDs within the group, and is invariant to time differences between the IEDs. This study suggests that automatic feature generation via deep learning is suitable for IEDs and EEG in genera

    Epilepsy

    Get PDF
    With the vision of including authors from different parts of the world, different educational backgrounds, and offering open-access to their published work, InTech proudly presents the latest edited book in epilepsy research, Epilepsy: Histological, electroencephalographic, and psychological aspects. Here are twelve interesting and inspiring chapters dealing with basic molecular and cellular mechanisms underlying epileptic seizures, electroencephalographic findings, and neuropsychological, psychological, and psychiatric aspects of epileptic seizures, but non-epileptic as well
    • …
    corecore