6 research outputs found

    Computing elastic moduli of igneous rocks using modal composition and effective medium theory

    Get PDF
    Elastic constants of rock materials are the basic parameters required for modeling the response of rock materials under mechanical loads. Experimental tests for determining these properties are expensive, time-consuming and suffer from a high uncertainty due to both experimental limitations and the heterogeneous nature of rock materials. To avoid such experimental difficulties, in this paper a method is suggested for determining elastic constants of rock materials by determining their porosity and modal composition and employing effective medium theory. The Voigt–Reuss–Hill average is used to determine effective elastic constants of the studied igneous rocks according to the elastic moduli of their mineral constituents. Then, the effect of porosity has been taken into account by considering rock as a two-phase material, and the Kuster–Toksoz formulation is used for providing a close estimation of different moduli. The solutions are provided for different isotropic igneous rocks. This sustainable method avoids destructive tests and the usage of energy for performing time-consuming and expensive tests and requires simple equipment. © 2022 by the authors

    Intelligent Identification for Rock-Mineral Microscopic Images Using Ensemble Machine Learning Algorithms

    Get PDF
    It is significant to identify rock-mineral microscopic images in geological engineering. The task of microscopic mineral image identification, which is often conducted in the lab, is tedious and time-consuming. Deep learning and convolutional neural networks (CNNs) provide a method to analyze mineral microscopic images efficiently and smartly. In this research, the transfer learning model of mineral microscopic images is established based on Inception-v3 architecture. The four mineral image features, including K-feldspar (Kf), perthite (Pe), plagioclase (Pl), and quartz (Qz or Q), are extracted using Inception-v3. Based on the features, the machine learning methods, logistic regression (LR), support vector machine (SVM), random forest (RF), k-nearest neighbors (KNN), multilayer perceptron (MLP), and gaussian naive Bayes (GNB), are adopted to establish the identification models. The results are evaluated using 10-fold cross-validation. LR, SVM, and MLP have a significant performance among all the models, with accuracy of about 90.0%. The evaluation result shows LR, SVM, and MLP are the outstanding single models in high-dimensional feature analysis. The three models are also selected as the base models in model stacking. The LR model is also set as the meta classifier in the final prediction. The stacking model can achieve 90.9% accuracy, which is higher than all the single models. The result also shows that model stacking effectively improves model performance

    Mineral texture identification using local binary patterns equipped with a Classification and Recognition Updating System (CARUS)

    Get PDF
    In this paper, a rotation-invariant local binary pattern operator equipped with a local contrast measure (riLBPc) is employed to characterize the type of mineral twinning by inspecting the texture properties of crystals. The proposed method uses photomicrographs of minerals and produces LBP histograms, which might be compared with those included in a predefined database using the Kullback–Leibler divergence-based metric. The paper proposes a new LBP-based scheme for concurrent classification and recognition tasks, followed by a novel online updating routine to enhance the locally developed mineral LBP database. The discriminatory power of the proposed Classification and Recognition Updating System (CARUS) for texture identification scheme is verified for plagioclase, orthoclase, microcline, and quartz minerals with sensitivity (TPR) near 99.9%, 87%, 99.9%, and 96%, and accuracy (ACC) equal to about 99%, 97%, 99%, and 99%, respectively. According to the results, the introduced CARUS system is a promising approach that can be applied in a variety of different fields dealing with classification and feature recognition tasks. © 2022 by the authors

    Locating Anchor Drilling Holes Based on Binocular Vision in Coal Mine Roadways

    Get PDF
    The implementation of roof bolt support within a coal mine roadway has the capacity to bolster the stability of the encompassing rock strata and thereby mitigate the potential for accidents. To enhance the automation of support operations, this paper introduces a binocular vision positioning method for drilling holes, which relies on the adaptive adjustment of parameters. Through the establishment of a predictive model, the correlation between the radius of the target circular hole in the image and the shooting distance is ascertained. Based on the structural model of the anchor drilling robot and the related sensing data, the shooting distance range is defined. Exploiting the geometric constraints inherent to adjacent anchor holes, the precise identification of anchor holes is detected by a Hough transformer with an adaptive parameter-adjusted method. On this basis, the matching of the anchor hole contour is realized by using linear slope and geometric constraints, and the spatial coordinates of the anchor hole center in the camera coordinate system are determined based on the binocular vision positioning principle. The outcomes of the experiments reveal that the method attains a po-sitioning accuracy of 95.2%, with an absolute error of around 1.52 mm. When compared with manual operation, this technique distinctly enhances drilling accuracy and augments support efficiency
    corecore