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Abstract: Elastic constants of rock materials are the basic parameters required for modeling the
response of rock materials under mechanical loads. Experimental tests for determining these prop-
erties are expensive, time-consuming and suffer from a high uncertainty due to both experimental
limitations and the heterogeneous nature of rock materials. To avoid such experimental difficulties, in
this paper a method is suggested for determining elastic constants of rock materials by determining
their porosity and modal composition and employing effective medium theory. The Voigt–Reuss–Hill
average is used to determine effective elastic constants of the studied igneous rocks according to the
elastic moduli of their mineral constituents. Then, the effect of porosity has been taken into account by
considering rock as a two-phase material, and the Kuster–Toksoz formulation is used for providing
a close estimation of different moduli. The solutions are provided for different isotropic igneous
rocks. This sustainable method avoids destructive tests and the usage of energy for performing
time-consuming and expensive tests and requires simple equipment.

Keywords: elasticity; Voigt–Reuss–Hill average; Kuster–Toksoz formulation; mineralogy

1. Introduction

There are various direct and indirect methods to estimate different moduli of elasticity.
The Young modulus (E) and Poisson ratio (v) of rock materials, for instance, can be directly
computed from uniaxial comparative strength (UCS) tests [1,2]. The computed values
following these common methods are based on the following assumptions: isotropy,
homogeneity and linear elasticity. The rock materials, however, are neither homogeneous
nor linear elastic. Therefore, repeating several expensive and time-consuming standard
UCS tests is required to estimate the average elastic moduli of the rocks with the assumption
of isotropy. If the rock is not isotropic, then this method is not acceptable. It is notable
that igneous rock materials can be considered isotropic, but sedimentary and metamorphic
rocks are mainly transversely isotropic. For modeling the deformation of transversely
isotropic rocks, the estimation of five different elastic moduli is required [3].

With the assumption of isotropic deformation by having any two elastic moduli
such as E and v, the others can be determined using some relationships that are basically
derived from Hooke’s law. The shear modulus (G) and bulk modulus (K) can also be
determined experimentally. However, direct methods are costly and time-consuming.
Furthermore, sometimes it is nearly impossible to measure such parameters using direct
laboratory or in situ tests because of experimental limitations. Elastic constants are of
great importance to material and structural engineers, and various indirect methods have
been developed to estimate different elastic moduli. For example, compressional and
shear wave velocities have been used for estimating the elastic constants of subsurface
rocks [4]. In this study, various elastic constants of different heterogeneous igneous rocks
that can be considered isotropic are determined by employing the effective medium theory.
The adopted methodology requires no sophisticated equipment and can provide a good
estimation of the elastic constants of rocks for modeling deformation and failure analyses
of rock structures.
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2. Materials and Methods

A wide range of Iranian volcanic and plutonic igneous rocks are studied. Table 1
summarizes the conducted modal analysis of the studied rocks. The modal composition of
the studied rocks is determined by means of digital optical microscopy [5]. The porosity of
the studied rocks is determined according to [6].

Table 1. Modal analysis and rock names of the studied rocks (the mineral constituents are given
in percentage).

Rock
Code Qtz Pl Afs Bt Ms Am Chl Cpx Opx Ol Grt OM Ep Gl AM Rock Name *

R1 28 35 20 17 - - - - - - - - - - Zrn Micro-
monzogranite

R2 38 24 28 3 7 - - - - - - - - - - Monzogranite
R3 31 21 34 4 9 - 1 - - - - - - - - Monzogranite

R4 - 41 - - - 5 - 8 5 - 2 2 1 36 - Hyalo-basaltic
andesite

R5 32 34 27 4 - 2 - - - - - 1 - - - Monzogranite
R6 - 47 - - - 4 - 19 5 9 - 13 3 - - Basalt
R7 37 22 31 7 - 1 2 - - - - - - - Zrn Monzogranite
R8 37 18 38 5 - 1 1 - - - - - - - Zrn Syenogranite
R9 41 14 40 2 - 1 2 - - - - - - - Zrn Syenogranite
R10 26 17 48 6 - - 1 - - - - - 2 - - Syenogranite
R11 12 34 7 9 - 3 - - - - - 3 - 32 - Hyalo-dacite
R12 29 38 22 4 - 3 2 - - - 1 1 - - - Monzogranite

R13 14 46 16 - - 12 9 - - - - 3 - - Zrn Quartz
Monzodiorite

R14 12 59 3 - - 7 9 4 - - - 6 - - - Andesite
R15 1 64 1 3 - 23 3 - - - 1 4 - - Spn Diorite
R16 4 63 6 - - 14 8 - - - - 5 - - - Andesite
R17 28 29 35 5 - - 3 - - - - - - - - Monzogranite
R18 - 48 - 4 - 3 - 16 6 - 9 6 8 - - Gabbro
R19 - 36 - 5 - 7 - 18 11 14 - 2 7 - - Gabbro
R20 - 57 2 4 - 6 - - 11 8 1 5 6 - Zrn Diorite
R21 - 58 3 4 - 4 - 13 3 7 1 4 3 - - Diorite
R22 13 33 41 1 - 9 - - - - - 3 - - - Quartz Monzonite
R23 7 40 44 1 - 6 - - - - - 2 - - - Quartz Monzonite
R24 12 24 56 2 - 4 - - - - - 2 - - - Quartz Syenite
R25 3 69 7 4 - 14 - - - - - 3 - - - Andesite
R26 27 41 19 6 - 4 1 - - - - 2 - - Spn Granodiorite
R27 29 45 9 7 - 6 2 - - - 1 1 - - Spn Granodiorite
R28 - 59 - 8 - 5 - 12 4 - - 2 6 4 - Micro-gabbro

* According to optical microscopy studies (Streckeisen, 1976). Qtz: quartz; Pl: plagioclase; Afs: alkali feldspar;
Bt: biotite; Ms: muscovite; Am: amphibole; Chl: chlorite; Cpx: clino pyroxene; Opx: orthopyroxene; Ol: olivine;
Grt: garnet; OM: OPAC minerals; Ep: epidote; Gl: glass; AM: accessory minerals; Zrn: zircon; Spn: sphene.

Elastic constants of different mineral phases have been experimentally determined
and compiled by different researchers. In this study, the values compiled by Bass [7]
and Mavko et al. [8] are used. Table 2 summarizes the elastic constants of the mineral
constituents of the studied igneous rocks. The elastic moduli of different mineral con-
stituents of each rock are used to determine its effective elastic properties by employing the
Voigt–Reuss–Hill average [9].

Table 2. Bulk and shear moduli of constituents of the studied igneous rocks.

Elastic
Modulus Qtz Pl Afs Bt Ms Am Chl Cpx Opx Ol Grt OM Ep Gl

(Sio2)
Gl
(Andesite)

Gl
(Basalt)

K 37.7 70.6 56.2 49.9 58.2 90.2 81.0 104.5 104.4 131.8 159.4 142.6 106.2 36.5 52.5 62.9
G 44.4 34.3 28.4 27.1 35.3 46.2 27.0 62.0 63.9 65.9 90.4 114.5 61.2 31.2 33.6 36.5

If optical microscopy is used, the values for different mineral phases must be chosen
based on some petrological facts and engineering judgements. If a rock is igneous, its rock-
forming minerals are different from a metamorphic rock. The common clino-pyroxenes, for
instance, in igneous rocks are augite and diopside, so in this study, the average bulk and
shear moduli of these two minerals are considered for the studied igneous rocks. Some
mineral groups are solid solutions and have two end members. The olivine mineral group,
for example, has two end members, namely forsterite (Mg2SiO4) and fayalite (Fe2SiO4), and
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most olivine minerals fall somewhere between them. In this study the average modulus of
pure forsterite and fayalite is used for the olivine mineral group; the same is true for other
solid solutions such as the plagioclase and alkali feldspar mineral groups. In general, the
authors recommend the reported average modulus for igneous rocks (Table 2). For better
estimations, one can use more accurate mineral identification methods, such as using XRD.

2.1. Determining Modal Composition

For the successful application of this method, determining the mineral composition of
the rock should be obtained from a representative sample. Selecting a representative thin
section and determining the modal composition of the studied rocks are explained in [10].
Notably, automatic mineral identification schemes [11–13] can be employed for fast and
reliable determination of the modal composition of rock materials as the basic requirement
of this method.

2.2. Hooke’s Law

The deformation of a material under an applied load is controlled by its stiffness matrix.
In other words, the elastic constants of material are making a relationship between the
infinitesimal strain (εkl) and Cauchy stress (σij), which are second-order tensors. Therefore,
the deformation of a material can be determined by a fourth order tensor Cijkl :

σij = Cijklεkl , (1)

Cijkl, the so-called stiffness tensor, can be rewritten in Voigt notation as a symmetric second-
order tensor with six different stress elements (σ11, σ22, σ33, σ23, σ13, σ12 ≡ σ1, σ2, σ3, σ4, σ5, σ6)
and six different strain elements (ε11, ε22, ε33, ε23, ε13, ε12 ≡ ε1, ε2, ε3, ε4, ε5, ε6), such that
ij⇒ α and kl ⇒ β :

Cijkl = Cαβ =



C11 C12 C13 C14 C15 C16
C21 C22 C23 C24 C25 C26
C31 C32 C33 C34 C35 C36
C41 C42 C43 C44 C45 C46
C51 C52 C53 C54 C55 C56
C61 C62 C63 C64 C65 C66

 (2)

This symmetric matrix has 21 different elements. For an isotropic material, there are
only two independent elements:

Cαβ =



K + 4G/3 K− 2G/3 K− 2G/3 0 0 0
K− 2G/3 K + 4G/3 K− 2G/3 0 0 0
K− 2G/3 K− 2G/3 K + 4G/3 0 0 0

0 0 0 G 0 0
0 0 0 0 G 0
0 0 0 0 0 G

 (3)

Therefore, just shear and bulk modulus or any other two elastic constants such as
Young modulus and Poisson’s ratio, which is normally estimated from standard UCS tests,
are required to model rock deformation. For anisotropic materials, the stiffness matrix
needs more elastic constants. For instance, minerals formed in a cubic crystal system,
which is the simplest anisotropic crystalline form, the stiffness matrix has three different
independent elements including C11, C12 and C44:
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Cαβ =



C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44

 (4)

The studied igneous rocks are contained minerals that are formed in different crys-
talline systems. Different crystalline systems have different independent elastic elements;
a triclinic system, for instance, has 21 independent elements. More details regarding the
elastic properties of individual minerals can be found in [7]. In the presented methodology,
igneous rocks are considered isotropic materials. It is notable that according to the petro-
graphic analysis of the studied rocks reported in [5,10], minerals in igneous rocks do not
show orientation, and these rocks can be considered isotropic. Then, the experimentally
determined shear and bulk moduli of each mineral constituent are used to quantify the
effective shear and bulk moduli of the studied rocks that can be used to determine other
required elastic constants (Equation (3)).

2.3. Voigt–Reuss–Hill Average

Voigt–Reuss–Hill average [9] can be utilized to determine the effective mechanical
properties of a heterogeneous polycrystalline solid [14,15]. Voigt–Reuss–Hill is the arith-
metic average of the Voigt upper bound (isostrain) and Reuss lower bound (isostress)
effective elastic moduli, presented in Equations (5) and (6), respectively:

MV = ∑N
i=1 fi Mi, (5)

1
MR

= ∑N
i=1

fi
Mi

, (6)

where fi and Mi are the volume fraction and the elastic moduli of the ith component of a
mixture of N material phases (minerals and pores in rocks). By assuming that an isotropic
rock material is dealt with, the shear modulus (G) and bulk modulus (K) of the mineral
phases of the rock material can be used to obtain its elastic properties. Computed bulk and
shear effective moduli according to the Voigt–Reuss–Hill average for the studied rocks are
presented in Table 3.

2.4. Effect of Porosity on Effective Moduli

The Voigt–Reuss–Hill average has little practical value, except in the case where the
constituent endmembers are elastically similar, as with a mixture of minerals without pore
space [8]. The Voigt and Reuss bounds could be applied to a porous rock by treating the
pore space as an additional component that has Ki = Gi = 0. However, the resulting Reuss
bound will be zero, so other methods must be used to account for the effect of voids [3]. In
this study, dry rock is considered a two-phase material in which the solid part of the rock is
considered as the first phase, based on the effective medium theory, and the assumption
that the solid part of a dry rock is homogenous. For this part, as proved by Brace [16],
the Voigt–Reuss–Hill average would be a robust method to compute effective bulk and
shear moduli. Then, pores are considered as the second phase. There are some models for
considering two phase materials including matrix and inclusion as homogenous materials,
among which Hashin–Shtrikman bounds [17] and Kuster and Toksoz formulation for
effective moduli [18] seem to be more appropriate for estimating elastic moduli of dry rocks
containing pores.
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Table 3. Bulk and shear moduli of the solid phase of the studied rocks calculated using the Voigt–
Reuss–Hill average.

Rock Code
K (GPa) G (GPa)

Voigt Reuss Hill Voigt Reuss Hill

R1 55.0 51.7 53.3 34.7 33.5 34.1
R2 52.6 49.3 50.9 36.3 35.0 35.7
R3 53.6 50.7 52.2 35.1 33.9 34.5
R4 74.9 70.4 72.6 41.8 38.5 40.2
R5 56.4 52.1 54.2 36.7 34.9 35.8
R6 95.4 88.7 92.0 55.6 46.7 51.1
R7 52.9 49.5 51.2 35.6 34.2 34.9
R8 52.2 49.1 50.6 35.5 34.0 34.7
R9 51.3 48.2 49.8 35.9 34.3 35.1

R10 54.7 51.6 53.2 34.1 32.6 33.4
R11 55.6 49.1 52.4 36.2 33.8 35.0
R12 59.4 54.0 56.7 37.2 35.1 36.2
R13 69.1 63.5 66.3 37.9 35.2 36.5
R14 74.2 67.7 70.9 41.4 37.0 39.2
R15 78.1 74.7 76.4 40.4 37.1 38.8
R16 75.6 71.7 73.6 39.4 35.9 37.7
R17 55.6 52.2 53.9 34.4 33.2 33.8
R18 93.0 84.9 88.9 52.5 44.5 48.5
R19 93.2 86.8 90.0 50.9 45.6 48.2
R20 85.9 79.7 82.8 46.5 40.7 43.6
R21 84.6 78.8 81.7 45.5 40.1 42.8
R22 64.1 59.4 61.7 36.6 33.8 35.2
R23 64.3 61.1 62.7 34.6 32.7 33.6
R24 60.4 57.0 58.7 34.1 32.0 33.1
R25 72.6 69.5 71.1 37.9 35.6 36.8
R26 60.0 54.7 57.4 37.4 35.2 36.3
R27 61.3 55.2 58.2 38.1 36.1 37.1
R28 78.6 74.7 76.6 42.1 38.3 40.2

2.5. Kuster and Toksoz Formulation

Kuster and Toksoz [18] derived expressions for P- and S-wave velocities by using
a long-wavelength first-order scattering theory. This expression for the bulk effective
modulus K∗KT and shear effective modulus G∗KT can be written as [19]:

(K∗KT − Km)

(
Km + 4

3 Gm

)
(

K∗KT + 4
3 Gm

) =
N

∑
i=1

xi(Ki − Km)Pmi (7)

(G∗KT − Gm)
(Gm + ζm)(
G∗KT + ζm

) = ∑N
i=1 xi(Gi − Gm)Qmi, (8)

where the coefficients Pmi and Qmi describe the effect of inclusion of material i in a back-
ground medium m. These coefficients can be calculated for specific shapes. In this study,
it is considered that only one spherical pore space is within a medium of minerals as the
background, such that N and xi are equal to 1. Notably, this should be considered as the rep-
resentative elementary volume (REV) of the studied rocks. Therefore, Equations (7) and (8)
can be calculated for the studied rocks by replacing Km and Gm with calculated effective
bulk and shear moduli using the Voigt–Reuss–Hill average; replacing Ki and Gi with bulk
and shear moduli of the air, which are 0.101 MPa and zero, respectively; and by calculating
Pmi and Qmi using the following formulas [20]:

Pmi =
Km + 4

3 Gm

Ki +
4
3 Gm

(9)
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Qmi =
Gm + ζm

Gi + ζm
(10)

where:

ζ =
G
6
(9K + 8G)

(K + 2G)
(11)

3. Results and Discussions

In this study, a new method is suggested for determining elastic constants of igneous
rock materials by determining their porosity and modal composition and employing the
effective medium theory. This method avoids destructive tests and the usage of energy as
well as time-consuming and expensive tests.

In summary, the bulk and shear moduli of the solid phase of the studied rocks are
calculated using the Voigt–Reuss–Hill average (Table 3). Then, using the Kuster and Toksoz
formulation, the effect of porosity or the pore inclusions has been taken into account for
calculating the effective moduli of the studied igneous rocks. The calculated effective
moduli of the studied rocks following this method are presented in Table 4.

Table 4. Porosity, computed effective shear modulus and computed effective bulk modulus of the
studied rocks.

Rock Code Porosity K (GPa) G (GPa)

R1 1.13 52.01 33.35
R2 1.01 49.85 34.99
R3 1.25 50.83 33.66
R4 0.65 71.50 39.70
R5 1.4 52.61 34.82
R6 0.89 90.10 50.22
R7 0.87 50.27 34.30
R8 0.86 49.70 34.11
R9 0.84 48.94 34.52
R10 0.76 52.32 32.90
R11 1.91 50.32 33.70
R12 1.49 54.89 35.15
R13 2.76 62.13 34.59
R14 0.57 69.96 38.77
R15 0.67 75.14 38.30
R16 1.26 71.36 36.80
R17 1.31 52.37 32.94
R18 0.55 87.75 47.99
R19 0.18 89.61 48.03
R20 0.18 82.44 43.45
R21 0.26 81.19 42.59
R22 2.31 58.50 33.65
R23 1.46 60.55 32.66
R24 3.57 54.04 30.88
R25 0.74 69.83 36.28
R26 1.07 56.07 35.54
R27 1.19 56.71 36.24
R28 0.29 76.06 39.98

Based on these results, the bulk modulus of igneous rocks range between 48 and
91 GPa, while their shear modulus is between 30 and 51 GPa, and acidic igneous rocks show
a lower modulus in comparison to the basic ones. These results confirm the experimental
studies on determining elastic constants of igneous rocks [21].

Finally, it is notable that the method that is suggested in this study needs further verifica-
tion by means of either numerical techniques or well-designed experimental methodologies.
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4. Conclusions

In this study, a method is suggested for determining elastic constants of igneous rock
materials, which requires the determination of the porosity and modal composition of the
rock materials. Accordingly, based on modal composition, effective elastic constants of
the studied igneous rocks are determined using the Voigt–Reuss–Hill average and elastic
moduli of different mineral constituents. Then, the studied rocks are considered as a two-
phase material, and the Kuster–Toksoz formulation is used to take into account the effect of
porosity. The estimated elastic constants following this methodology are in good agreement
with the experimental measurement of elastic constants of similar rock types. This method
avoids destructive tests and the usage of energy for performing time-consuming and
expensive tests and requires simple equipment.
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